Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy Perspectives, Total Energy - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections this will be filled with a highchart PREVIOUSNEXT Energy Perspectives 1949-2011 September 2012 PDF | previous editions Release Date: September 27, 2012 Introduction Energy Perspectives is a graphical overview of energy history in the United States. The 42 graphs shown here reveal sweeping trends related to the Nation's production, consumption, and trade of energy from 1949 through 2011. Energy Flow, 2011 (Quadrillion Btu) Total Energy Flow diagram image For footnotes see here. Energy can be grouped into three broad categories. First, and by far the largest, is the fossil fuels-coal, petroleum, and natural gas. Fossil fuels have stored the sun's energy over millennia past, and it is primarily

2

Productivity & Energy Flow  

E-Print Network [OSTI]

1 Productivity & Energy Flow Ecosystem approach, focuses: on flow of energy, water, and nutrients (capture) of energy by autotrophs Gross (total) Net (total ­ costs) Secondary productivity- capture of energy by herbivores http://sciencebitz.com/?page_id=204 What Controls the Primary Productivity

Mitchell, Randall J.

3

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

4

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Flow, (Quadrillion Btu) Total Energy Flow, (Quadrillion Btu) Total Energy Flow diagram image Footnotes: 1 Includes lease condensate. 2 Natural gas plant liquids. 3 Conventional hydroelectric power, biomass, geothermal, solar/photovoltaic, and wind. 4 Crude oil and petroleum products. Includes imports into the Strategic Petroleum Reserve. 5 Natural gas, coal, coal coke, biofuels, and electricity. 6 Adjustments, losses, and unaccounted for. 7 Natural gas only; excludes supplemental gaseous fuels. 8 Petroleum products, including natural gas plant liquids, and crude oil burned as fuel. 9 Includes 0.01 quadrillion Btu of coal coke net exports. 10 Includes 0.13 quadrillion Btu of electricity net imports. 11 Total energy consumption, which is the sum of primary energy consumption, electricity retail sales, and electrical system energy losses.

5

National Fuel Cell and Hydrogen Energy Overview: Total Energy...  

Broader source: Energy.gov (indexed) [DOE]

and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the Total Energy USA...

6

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... ment of the total energy and vice versa. From a measurement of spectral irradi- ance ... unit energy (for the wavelength region specified).

2000-01-02T23:59:59.000Z

7

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... havior of the ratio of total quanta to total energy (Q : W) within the spectral region of photosynthetic ..... For blue-green waters, where hRmax lies.

2000-01-02T23:59:59.000Z

8

Solar total energy project Shenandoah  

SciTech Connect (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

9

National Fuel Cell and Hydrogen Energy Overview: Total Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the...

10

Compare All CBECS Activities: Total Energy Use  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Use Total Energy Use Compare Activities by ... Total Energy Use Total Major Fuel Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 5.7 quadrillion Btu of all major fuels (electricity, natural gas, fuel oil, and district steam or hot water) in 1999. Office buildings used the most total energy of all the building types, which was not a surprise since they were the most common commercial building type and had an above average energy intensity. Figure showing total major fuel consumption by building type. If you need assistance viewing this page, please call 202-586-8800. Major Fuel Consumption per Building by Building Type Because there were relatively few inpatient health care buildings and they tend to be large, energy intensive buildings, their energy consumption per building was far above that of any other building type.

11

US energy flow, 1991  

SciTech Connect (OSTI)

Trends in energy consumption and assessment of energy sources are discussed. Specific topics discussed include: energy flow charts; comparison of energy use with 1990 and earlier years; supply and demand of fossil fuels (oils, natural gas, coal); electrical supply and demand; and nuclear power.

Borg, I.Y.; Briggs, C.K.

1992-06-01T23:59:59.000Z

12

ENERGY FLOWS CLIMATE CHANGE  

E-Print Network [OSTI]

absorption of solar radiation. #12;AEROSOLS AS SEEN FROM SPACE Fire plumes from southern Mexico transportedENERGY FLOWS FORCINGS CLIMATE CHANGE A REALLY TOUGH PROBLEM Stephen E. Schwartz, BNL, 7-20-11 www average temperature 15°C or 59°F #12;ATMOSPHERIC RADIATION Power per area Energy per time per area Unit

Schwartz, Stephen E.

13

Energy Flow Energy Flow Energy Flow A.Ukleja, T.Tymieniecka, I.Skillicorn 1 Azimuthal asymmetry  

E-Print Network [OSTI]

Energy Flow Energy Flow Energy Flow A.Ukleja, T.Tymieniecka, I.Skillicorn 1 Azimuthal asymmetry using energy flow method Azimuthal angle distribution at Q2 >100 GeV2 Energy flow method.Ukleja on behalf of the ZEUS Collaboration #12; Energy Flow Energy Flow Energy Flow A.Ukleja, T.Tymieniecka, I

14

TENESOL formerly known as TOTAL ENERGIE | Open Energy Information  

Open Energy Info (EERE)

TENESOL formerly known as TOTAL ENERGIE TENESOL formerly known as TOTAL ENERGIE Jump to: navigation, search Name TENESOL (formerly known as TOTAL ENERGIE) Place la Tour de Salvagny, France Zip 69890 Sector Solar Product Makes polycrystalline silicon modules, and PV-based products such as solar powered pumps. References TENESOL (formerly known as TOTAL ENERGIE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. TENESOL (formerly known as TOTAL ENERGIE) is a company located in la Tour de Salvagny, France . References ↑ "TENESOL (formerly known as TOTAL ENERGIE)" Retrieved from "http://en.openei.org/w/index.php?title=TENESOL_formerly_known_as_TOTAL_ENERGIE&oldid=352112" Categories:

15

AEO2011: World Total Coal Flows By Importing Regions and Exporting  

Open Energy Info (EERE)

Total Coal Flows By Importing Regions and Exporting Total Coal Flows By Importing Regions and Exporting Countries Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 144, and contains only the reference case. The dataset uses million short tons. The data is broken down into total coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO coal EIA Data application/vnd.ms-excel icon AEO2011: World Total Coal Flows By Importing Regions and Exporting Countries - Reference Case (xls, 104 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

16

LLNL Energy Flow Charts | Open Energy Information  

Open Energy Info (EERE)

LLNL Energy Flow Charts LLNL Energy Flow Charts Jump to: navigation, search Tool Summary Name: LLNL Energy Flow Charts Agency/Company /Organization: Lawrence Livermore National Lab Sector: Energy Focus Area: Renewable Energy Topics: Pathways analysis References: LLNL Energy Flow Charts [1] Decision makers have long recognized the importance of visualizing energy and material flows in a way that distinguishes between resources, transformations and services. Research priorities can be defined in terms of changes to the flows, and the consequences of policy or technology shifts can be traced both upstream and downstream. The usefulness of this top-down view is limited by the level of detail that can be conveyed in a single image. We use two techniques to balance information content with readability. First we employe visualization

17

Total Energy Facilities Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Total Energy Facilities Biomass Facility Total Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type Non-Fossil Waste Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

18

Energy flows, metabolism and translation  

Science Journals Connector (OSTI)

...L. , Pascal, R. 2011 Energy sources, self-organization...E. 1946 What's life. New York, NY: McMillan. 14 Lotka...nonequilibrium systems. New York, NY: Wiley. 17 Morowitz, H. , Smith, E. 2007 Energy flow and the organization...

2011-01-01T23:59:59.000Z

19

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

September 2012 PDF | previous editions September 2012 PDF | previous editions Release Date: September 27, 2012 A report of historical annual energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, as well as financial and environmental indicators; and data unit conversion tables. About the data Previous Editions + EXPAND ALL Annual Energy Review 2011 Edition PDF (Full issue) Annual Energy Review 2011 - Released on September 27, 2012 PDF Annual Energy Review 2010 Edition PDF (Full issue) Annual Energy Review 2010 - Released on October 19, 2011 PDF Annual Energy Review 2009 Edition PDF (Full issue) Annual Energy Review 2009 - Released on August 19, 2010 PDF

20

Residential Energy Consumption Survey Results: Total Energy Consumption,  

Open Energy Info (EERE)

Survey Results: Total Energy Consumption, Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) Dataset Summary Description The Residential Energy Consumption Survey (RECS) is a national survey that collects residential energy-related data. The 2005 survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the U.S. Data were obtained from residential energy suppliers for each unit in the sample to produce the Consumption & Expenditures data. The Consumption & Expenditures and Intensities data is divided into two parts: Part 1 provides energy consumption and expenditures by census region, population density, climate zone, type of housing unit, year of construction and ownership status; Part 2 provides the same data according to household size, income category, race and age. The next update to the RECS survey (2009 data) will be available in 2011.

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Serck standard packages for total energy  

Science Journals Connector (OSTI)

Although the principle of combined heat and power generation is attractive, practical problems have hindered its application. In the U.K. the scope for small scale combined heat and power (total energy) systems has been improved markedly by the introduction of new Electricity Board regulations which allow the operation of small a.c. generators in parallel with the mains low voltage supply. Following this change, Serck have developed a standard total energy unit, the CG100, based on the 2.25 1 Land Rover gas engine with full engine (coolant and exhaust gas) heat recovery. The unit incorporates an asynchronous generator, which utilising mains power for its magnetising current and speed control, offers a very simple means of generating electricity in parallel with the mains supply, without the need for expensive synchronising controls. Nominal output is 15 kW 47 kW heat; heat is available as hot water at temperatures up to 85C, allowing the heat output to be utilised directly in low pressure hot water systems. The CG100 unit can be used in any application where an appropriate demand exists for heat and electricity, and the annual utilisation will give an acceptable return on capital cost; it produces base load heat and electricity, with LPHW boilers and the mains supply providing top-up/stand-by requirements. Applications include residential use (hospitals, hotels, boarding schools, etc.), swimming pools and industrial process systems. The unit also operates on digester gas produced by anaerobic digestion of organic waste. A larger unit based on a six cylinder Ford engine (45 kWe output) is now available.

R. Kelcher

1984-01-01T23:59:59.000Z

22

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections All Reports Most Requested Annual Monthly Projections U.S. States Annual Energy Review September 2012 PDF | previous editions Release Date: September 27, 2012 Important notes about the data Note: The emphasis of the Annual Energy Review (AER) is on long-term trends. Analysts may wish to use the data in this report in conjunction with EIA's monthly releases that offer updates to the most recent years' data. In particular, see the Monthly Energy Review for statistics that include updates to many of the annual series in this report. Data Years Displayed: For tables beginning in 1949, some early years (usually 1951-1954, 1956-1959, 1961-1964, 1966-1969, and 1971-1974) are not

23

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Electricity Flow, (Quadrillion Btu) Electricity Flow, (Quadrillion Btu) Electricity Flow diagram image Footnotes: 1 Blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuels. 2 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies, and non-renewable waste (municipal solid waste from non-biogenic sources, and tire-derived fuels). 3 Data collection frame differences and nonsampling error. Derived for the diagram by subtracting the "T & D Losses" estimate from "T & D Losses and Unaccounted for" derived from Table 8.1. 4 Electric energy used in the operation of power plants. 5 Transmission and distribution losses (electricity losses that occur between the point of generation and delivery to the customer) are estimated

24

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Flow, (Million Barrels per Day) Petroleum Flow, (Million Barrels per Day) Petroleum Energy Flow diagram image Footnotes: 1 Unfinished oils, hydrogen/oxygenates/renewables/other hydrocarbons, and motor gasoline and aviation gasoline blending components. 2 Renewable fuels and oxygenate plant net production (0.972), net imports (1.164) and adjustments (0.122) minus stock change (0.019) and product supplied (0.001). 3 Finished petroleum products, liquefied petroleum gases, and pentanes plus. 4 Natural gas plant liquids. 5 Field production (2.183) and renewable fuels and oxygenate plant net production (-.019) minus refinery and blender net imputs (0.489). 6 Production minus refinery input. (s)= Less than 0.005. Notes: * Data are preliminary. * Values are derived from source data prior to rounding for publication.

25

Achieving Total Employee Engagement in Energy Efficiency  

Broader source: Energy.gov [DOE]

Ratheon and GM share their experiences with employee engagement to achieve energy efficiency and sustainability goals in this presentation.

26

Achieving Total Employee Engagement in Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Raytheon Employee Engagement Raytheon Employee Engagement in Energy Conservation Department of Energy August 5, 2010 Steve Fugarazzo Raytheon Company Enterprise Energy Team Copyright © 2007 Raytheon Company. All rights reserved. Customer Success Is Our Mission is a trademark of Raytheon Company. Page 2 8/9/2010 Presentation Overview  Company Background  Communication & Outreach Initiatives - Internal Partnerships - Energy Champions - Energy Citizens - Energy Awareness Events & Contests Page 3 8/9/2010 Raytheon ... What We Do Raytheon is a global technology company that provides innovative solutions to customers in 80 nations. Through strategic vision, disciplined management and world-class talent, Raytheon is delivering operational advantages for customers every day while helping them prepare for the

27

Property:TotalValue | Open Energy Information  

Open Energy Info (EERE)

TotalValue TotalValue Jump to: navigation, search This is a property of type Number. Pages using the property "TotalValue" Showing 25 pages using this property. (previous 25) (next 25) 4 44 Tech Inc. Smart Grid Demonstration Project + 10,000,000 + A ALLETE Inc., d/b/a Minnesota Power Smart Grid Project + 3,088,007 + Amber Kinetics, Inc. Smart Grid Demonstration Project + 10,000,000 + American Transmission Company LLC II Smart Grid Project + 22,888,360 + American Transmission Company LLC Smart Grid Project + 2,661,650 + Atlantic City Electric Company Smart Grid Project + 37,400,000 + Avista Utilities Smart Grid Project + 40,000,000 + B Baltimore Gas and Electric Company Smart Grid Project + 451,814,234 + Battelle Memorial Institute, Pacific Northwest Division Smart Grid Demonstration Project + 177,642,503 +

28

SolarTotal | Open Energy Information  

Open Energy Info (EERE)

SolarTotal SolarTotal Jump to: navigation, search Name SolarTotal Place Bemmel, Netherlands Zip 6681 LN Sector Solar Product The company sells and installs PV solar instalations Coordinates 51.894112°, 5.89881° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.894112,"lon":5.89881,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

EQUUS Total Return Inc | Open Energy Information  

Open Energy Info (EERE)

EQUUS Total Return Inc EQUUS Total Return Inc Jump to: navigation, search Name EQUUS Total Return Inc Place Houston, Texas Product A business development company and VC investor that trades as a closed-end fund. EQUUS is managed by MCC Global NV, a Frankfurt stock exchange listed management and merchant banking group. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

Correlation Of Surface Heat Loss And Total Energy Production...  

Open Energy Info (EERE)

Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Correlation...

31

Total Pollution Effect and Total Energy Cost per Output of Different Products for Polish Industrial System  

Science Journals Connector (OSTI)

For many years a broad use has been made of the indices of total energy requirements in the whole large production system corresponding to unit output of particular goods (Boustead I., Hancock G.F., 1979). The...

Henryk W. Balandynowicz

1988-01-01T23:59:59.000Z

32

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

Estimating Total Energy Consumption and Emissions of Chinasof Chinas total energy consumption mix. However, accuratelyof Chinas total energy consumption, while others estimate

Fridley, David G.

2008-01-01T23:59:59.000Z

33

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

ABORATORY Estimating Total Energy Consumption and Emissionscomponent of Chinas total energy consumption mix. However,about 19% of Chinas total energy consumption, while others

Fridley, David G.

2008-01-01T23:59:59.000Z

34

Total and Peak Energy Consumption Minimization of Building HVAC Systems Using Model Predictive Control  

E-Print Network [OSTI]

combination of the total energy consumption and the peakalso reduces the total energy consumption of the occupancyTotal and Peak Energy Consumption Minimization of Building

Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

2012-01-01T23:59:59.000Z

35

Energy focusing in bubbly flows  

Science Journals Connector (OSTI)

Sonoluminescence cavitation damage at surfaces and cavitation in accelerating flows are realizations of spectacular levels of energy focusing in nature. In a resonant sound field a single trapped bubble of gas can focus the ambient sound energy by 12 orders of magnitude to generate a clocklike string of picosecond flashes of ultraviolet light. [Barber et al. Defining the unknowns of sonoluminescence Phys. Rep. 281 65 (1977)]. In more complicated geometries a high level of sound leads to the formation of hemispherical bubbles attached to an exposed surface. These bubbles also emit light and in addition damage the surface. Measurements show that the pulsation of these bubbles maintains the hemispherical symmetry [Weninger et al. Sonoluminescence from an isolated bubble on a solid surface Phys. Rev. E 56 6745 (1997)] thus raising the question as to whether cavitation damage is due to (micro)jets or imploding (hemispherical) shock waves. Finally flow through a Venturi tube generates a stream of bubbles which also emit subnanosecond flashes of light [F. B. Peterson and T. P. Anderson Phys. Fluids 10 874 (1967)]. Luminescence from an isolated trapped bubble in water seems to work well with any noble gas whereas luminescence from cavitating flows and surface bubbles is quite dependent on xenon [argon bubbles appear to give no light at all]. The width of the SL flash [Gompf et al. Phys. Rev. Lett. 79 1405 (1997) Hiller et al. Phys. Rev. Lett. 80 1090 (1998)] has been found to be independent of wavelength suggesting that light is emitted from a new high energy phase of matter?probably a cold dense nano?plasma. The key unknowns of SL are the size and temperature of the hot spot from which the light is emitted. Experiments aimed at measuring these quantities will be discussed. [Research supported by the NSF.] a)Present address: CMS Los Alamos National Laboratories Los Alamos NM. b)Present address: Lucent Technologies Murray Hill NJ.

Seth Putterman; Keith Weninger; Robert A. Hiller; Bradley P. Barber

1998-01-01T23:59:59.000Z

36

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

37

Property:Geothermal/TotalProjectCost | Open Energy Information  

Open Energy Info (EERE)

TotalProjectCost TotalProjectCost Jump to: navigation, search Property Name Geothermal/TotalProjectCost Property Type Number Description Total Project Cost Pages using the property "Geothermal/TotalProjectCost" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + 14,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 2,155,497 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + 6,135,381 + A new analytic-adaptive model for EGS assessment, development and management support Geothermal Project + 1,629,670 +

38

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

What's New in Monthly Energy Review What's New in Monthly Energy Review December 2013 PDF | previous editions Release Date: December 24, 2013 Next Update: January 28, 2014 Listed below are changes in Monthly Energy Review content. Only months with changes beyond the standard updates are shown. CONTENT CHANGES + EXPAND ALL Changes in 2013 December 2013 Release Electricity statistics have been revised in coordination with EIA's Electric Power Annual 2012. Revisions affect data series in Energy Overview, Energy Consumption, Petroleum, Natural Gas, Coal, Electricity, Nuclear Energy, Energy Prices, Renewable Energy, and Environment. Final 2012 heat content values for electricity (Table A6) have also been incorporated. October 2013 Release Excel and CSV files now include pre-1973 data for all series except for Section 12. The Excel files now have two worksheets, one for monthly data and one for annual data.

39

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

40

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012  

Broader source: Energy.gov [DOE]

Presentation by Sunita Satyapal at the Total Energy USA 2012 meeting in Houston, Texas, on November 27, 2012.

42

Flow Test | Open Energy Information  

Open Energy Info (EERE)

Flow Test Flow Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Flow Test Details Activities (38) Areas (33) Regions (1) NEPA(3) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Flow tests provide information on permeability, recharge rates, reservoir pressures, fluid chemistry, and scaling. Thermal: Flow tests can measure temperature variations with time to estimate characteristics about the heat source. Dictionary.png Flow Test: Flow tests are typically conducted shortly after a well has been drilled to test its productivity. The well is opened and fluids are released, the

43

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Superseded -- see MER for key annual tables Superseded -- see MER for key annual tables Annual Energy Review archives for data year: 2011 2010 2009 2008 all archives Go CONTENT CHANGES + EXPAND ALL Changes in Annual Energy Review 2011 Annual Energy Review 2011 Release: September 27, 2012 1. Energy Consumption, Expenditures, and Emissions Indicators Estimates (Table 1.5) has been modified to include columns for Gross Output and Energy Expenditures as Share of Gross Output and remove Greenhouse Gas Emissions per Real Dollar of Gross Domestic Product. 2. Sales of Fossil Fuels Produced on Federal and American Indian Lands (Table 1.14) was previously titled "Fossil Fuel Production on Federally Administered Lands." It has been redesigned and now provides data on sales of fossil fuels from Federal and American Indian lands for fiscal years 2003 through 2011.

44

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) Primary Energy Consumption by Source and Sector diagram image Footnotes: 1 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 2 Excludes supplemental gaseous fuels. 3 Includes less than 0.1 quadrillion Btu of coal coke net exports. 4 Conventional hydroelectric power, geothermal, solar/PV, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP) and industrial electricity-only plants. 6 Includes commercial combined-heat-and-power (CHP) and commercial electricity-only plants. 7 Electricity-only and combined-heat-and-power (CHP) plants whose primary business is to sell electricity, or electricity and heat, to the public.

45

Coupled robot-flow injection analysis system for fully automated determination of total polyphenols in olive oil  

Science Journals Connector (OSTI)

Coupled robot-flow injection analysis system for fully automated determination of total polyphenols in olive oil ...

Jose A. Garcia-Mesa; M. Dolores Luque de Castro; Miguel Valcarcel

1993-12-01T23:59:59.000Z

46

California energy flow in 1993  

SciTech Connect (OSTI)

Energy consumption in the state of California decreased about 3% in 1993 reflecting continuation of the recession that was manifest in a moribund construction industry and a high state unemployment that ran counter to national recovery trends. Residential/commercial use decreased slightly reflecting a mild winter in the populous southern portion of the state, a decrease that was offset to some extent by an increase in the state population. Industrial consumption of purchased energy declined substantially as did production of self-generated electricity for in-house use. Consumption in the transportation sector decreased slightly. The amount of power transmitted by the utilities was at 1992 levels; however a smaller proportion was produced by the utilities themselves. Generation of electricity by nonutilities, primarily cogenerators and small power producers, was the largest of any state in the US. The growth in the number of private power producers combined with increased amounts of electricity sold to the public utilities set the stage for the sweeping proposals before the California Public Utility Commission to permit direct sales from the nonutilities to retail customers. California production of both oil and natural gas declined; however, to meet demand only the imports of natural gas increased. A break in the decade-long drought during the 1992--1993 season resulted in a substantial increase in the amount of hydroelectricity generated during the year. Geothermal energy`s contribution increased substantially because of the development of new resources by small power producers. Decline in steam production continued at The Geysers, the state`s largest field, principally owned and managed by a public utility. Increases in windpower constituted 1--1/2% of the total electric supply--up slightly from 1992. Several solar photo voltaic demonstration plants were in operation, but their contribution remained small.

Borg, I.Y.; Briggs, C.K.

1995-04-01T23:59:59.000Z

47

California energy flow in 1991  

SciTech Connect (OSTI)

Energy consumption in California fell in 1991 for the first time in five years. The State`s economy was especially hard hit by a continuing national recession. The construction industry for the second year experienced a dramatic downturn. Energy use in the industrial sector showed a modest increase, but consumption in other end-use categories declined. The decrease in energy used in transportation can be traced to a substantial fall in the sales of both highway diesel fuels and vessel bunkering fuels at California ports, the latter reflecting a mid-year increase in taxes. Gasoline sales by contrast increased as did the number of miles traveled and the number of automobiles in the State. Production in California`s oil and gas fields was at 1990 levels thus arresting a steady decline in output. Due to enlarged steam flooding operations, production at several fields reached record levels. Also countering the decline in many of California fields was new production from the Port Arguello offshore field. California natural gas production, despite a modest 1991 increase, will not fill the use within the State. Petroleum comprised more than half of the State`s energy supply principally for transportation. Natural gas use showed a small increase. Oil products play virtually no role in electrical production. The largest single source of electricity to the State is imports from the Pacific Northwest and from coal-fired plants in the Southwest. Combined contributions to transmitted electricity from renewable and alternate sources declined as hydropower was constrained by a prolonged drought and as geothermal power from the largest and oldest field at The Geysers fell. Windpower grew slightly; however solar power remained at 1990 levels and made no substantial contribution to total power generation.

Borg, I.Y.; Briggs, C.K.

1993-04-01T23:59:59.000Z

48

Potential Energy Total electric potential energy, U, of a system of  

E-Print Network [OSTI]

Potential Energy Total electric potential energy, U, of a system of charges is obtained from of work done by the field, W*= -W. Bring q1 from , W *= 0 since no electric F yet #12;Potential Energy Total electric potential energy, U, of a system of charges is obtained from the work done by an external

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

49

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

50

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

51

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

52

California energy flow in 1994  

SciTech Connect (OSTI)

California energy consumption increased in 1994 in keeping with a recovery from the previous mild recession years. Although unemployment remained above the national average, other indicators pointed to improved economic health. Increased energy use was registered principally in the residential/commercial and transportation end-use sectors. A cooler-than-usual winter and spring was reflected in increased consumption of natural gas, the principal space-heating fuel in the state. Because of low water levels behind state dams, utilities turned to natural gas for electrical generation and to increased imports from out-of- state sources to meet demand. Other factors, such as smaller output from geothermal, biomass, and cogenerators, contributed to the need for the large increase in electrical supply from these two sources. Nonetheless, petroleum dominated the supply side of the energy equation of the state in which transportation requirements comprise more than one-third of total energy demand. About half of the oil consumed derived from California production. Onshore production has been in slow decline; however, in 1994 the decrease was compensated for by increases from federal offshore fields. Until 1994 production had been limited by regulatory restrictions relating to the movement of the crude oil to onshore refineries. State natural gas production remained at 1993 levels. The increased demand was met by larger imports from Canada through the recent expansion of Pacific Transmission Company`s 804 mile pipeline. Deregulation of the state`s utilities moved ahead in 1994 when the California Public Utilities Commission issued its proposal on how to restructure the industry. Public hearings were conducted in which the chief issues were recovery of the utilities` capital investments, conflicts with the Public Utilities Policies Act, management of power transactions between new suppliers and former utility customers, and preservation of energy conservation programs currently sponsored by the utilities. The issues were not resolved at year-end, but the state`s public utilities began to take steps to improve their positions in a future competitive market by cutting costs, improving efficiencies operating plants, and enlarging their nonutility interests.

Borg, I.Y.; Mui, N.

1996-09-01T23:59:59.000Z

53

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

54

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

55

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

56

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

57

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

58

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

59

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

60

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

62

Correlation Of Surface Heat Loss And Total Energy Production For Geothermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Details Activities (1) Areas (1) Regions (0) Abstract: Geothermal systems lose their heat by a site-specific combination of conduction (heat flow) and advection (surface discharge). The conductive loss at or near the surface (shallow heat flow) is a primary signature and indication of the strength of a geothermal system. Using a database of

63

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

64

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

65

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

66

Online Speed Scaling Based on Active Job Count to Minimize Flow plus Energy  

E-Print Network [OSTI]

Online Speed Scaling Based on Active Job Count to Minimize Flow plus Energy Tak-Wah Lam Lap-Kei Lee research on online job scheduling has gradually taken speed scaling and energy usage into consideration algorithms that aim at minimizing the total flow time plus energy usage. The results are divided into two

Wong, Prudence W.H.

67

A Viscosity Approach to Total Variation Flows of Non-Divergence Type  

E-Print Network [OSTI]

A Viscosity Approach to Total Variation Flows of Non-Divergence Type Norbert Poz´ar Graduate School, we will introduce a notion of viscosity solutions for a class of singular nonlinear parabolic viscosity theory does not apply is the unboundedness of the operator on the right-hand side of (5) at u = 0

Ishii, Hitoshi

68

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

18 Figure 6 Primary Energy Consumption by End-Use in24 Figure 7 Primary Energy Consumption by Fuel in Commercialbased on total primary energy consumption (source energy),

Fridley, David G.

2008-01-01T23:59:59.000Z

69

Dissipation flow-frames: particle, energy, thermometer  

E-Print Network [OSTI]

We associate the following physical co-mover conditions of to different frame choices: i) Eckart: particle flow, ii) Landau-Lifshitz: energy flow, iii) J\\"uttner: moving thermometer frame. The role of fixing a flow-frame is analysed with respect to local equilibrium concentrating on dissipative currents and forces in single component relativistic fluids. The special role of a "J\\"uttner frame" is explored and contrasted to the more common Eckart and Landau-Lifshitz choices.

Vn, P

2013-01-01T23:59:59.000Z

70

Dissipation flow-frames: particle, energy, thermometer  

E-Print Network [OSTI]

We associate the following physical co-mover conditions of to different frame choices: i) Eckart: particle flow, ii) Landau-Lifshitz: energy flow, iii) J\\"uttner: moving thermometer frame. The role of fixing a flow-frame is analysed with respect to local equilibrium concentrating on dissipative currents and forces in single component relativistic fluids. The special role of a "J\\"uttner frame" is explored and contrasted to the more common Eckart and Landau-Lifshitz choices.

P. Vn; T. S. Bir

2013-05-14T23:59:59.000Z

71

A coupled BEM and energy flow method for mid-high frequency internal acoustic  

E-Print Network [OSTI]

formalism whereas the SEA formalism is based on global energies of finite subsystems. This model has been using four energy variables: the total energy as well as the Lagrangian energy density, the activeA coupled BEM and energy flow method for mid-high frequency internal acoustic Sbastien BESSET, M

Paris-Sud XI, Université de

72

Energy flows, metabolism and translation  

Science Journals Connector (OSTI)

...taking advantage of a minimum amount of energy corresponding to ca one-third of the free energy content of ATP (i.e. ca 20 kJ mol1 as more...mini-helices [56]). The fact that the free energy content of aa-AMP is far beyond that of ATP...

2011-01-01T23:59:59.000Z

73

Table 16. Total Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual" Total Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",88.02,89.53,90.72,91.73,92.71,93.61,94.56,95.73,96.69,97.69,98.89,100,100.79,101.7,102.7,103.6,104.3,105.23 "AEO 1995",,89.21,89.98,90.57,91.91,92.98,93.84,94.61,95.3,96.19,97.18,98.38,99.37,100.3,101.2,102.1,102.9,103.88 "AEO 1996",,,90.6,91.26,92.54,93.46,94.27,95.07,95.94,96.92,97.98,99.2,100.38,101.4,102.1,103.1,103.8,104.69,105.5 "AEO 1997",,,,92.64,93.58,95.13,96.59,97.85,98.79,99.9,101.2,102.4,103.4,104.7,105.8,106.6,107.2,107.9,108.6 "AEO 1998",,,,,94.68,96.71,98.61027527,99.81855774,101.254303,102.3907928,103.3935776,104.453476,105.8160553,107.2683716,108.5873566,109.8798981,111.0723877,112.166893,113.0926208

74

Energy flow observables in hadronic collisions  

E-Print Network [OSTI]

We present recent QCD calculations of energy flow distributions associated with the production of jets at wide rapidity separations in high-energy hadron collisions, and discuss the role of these observables to analyze contributions from parton showering and from multiple parton collisions.

F. Hautmann

2012-05-24T23:59:59.000Z

75

Energy flows : empowering New Orleans  

E-Print Network [OSTI]

This thesis claims to develop alternative energy-harvesting systems by looking at their implementation at the residential scale in order to facilitate the economical autonomy of a community and thus improve its living ...

Guiraud, Florence Nathalie

2012-01-01T23:59:59.000Z

76

The Excitation Energy Dependence of the Total Kinetic Energy Release in 235U(n,f)  

E-Print Network [OSTI]

The total kinetic energy release in the neutron induced fission of $^{235}$U was measured (using white spectrum neutrons from LANSCE) for neutron energies from E$_{n}$ = 3.2 to 50 MeV. In this energy range the average post-neutron total kinetic energy release drops from 167.4 $\\pm$ 0.7 to 162.1 $\\pm$ 0.8 MeV, exhibiting a local dip near the second chance fission threshold. The values and the slope of the TKE vs. E$_{n}$ agree with previous measurements but do disagree (in magnitude) with systematics. The variances of the TKE distributions are larger than expected and apart from structure near the second chance fission threshold, are invariant for the neutron energy range from 11 to 50 MeV. We also report the dependence of the total excitation energy in fission, TXE, on neutron energy.

R. Yanez; L. Yao; J. King; W. Loveland; F. Tovesson; N. Fotiades

2014-03-18T23:59:59.000Z

77

High energy density redox flow device  

DOE Patents [OSTI]

Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

2014-05-13T23:59:59.000Z

78

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

were used to calculate the energy mix in manufacturing,of Chinas total energy consumption mix. However, accuratelyof Chinas total energy consumption mix. However, accurately

Fridley, David G.

2008-01-01T23:59:59.000Z

79

Keeping the Nation's Energy Flowing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Keeping the Nation's Energy Flowing Keeping the Nation's Energy Flowing Keeping the Nation's Energy Flowing March 29, 2013 - 10:58am Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability What does this mean for me? The Department's priority is reflected in its investment in cybersecurity for energy delivery systems and energy reliability modernization. We closely collaborate with Federal, State and local governments, and industry. Our lives are constantly being intertwined with the digital world, making cyber security a critical component of daily life. And this is especially true when it comes to protecting the nation's critical infrastructure, which delivers services that are vital to U.S. security, economic prosperity and the safety and well being of Americans.

80

"Table A15. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Energy Operating Ratios for Total Energy Consumption for" Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991" ,,,"Consumption","Major" " "," ","Consumption","per Dollar","Byproducts(b)","Fuel Oil(c)"," " " ","Consumption","per Dollar","of Value","as a Percent","as a Percent","RSE" " ","per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Economic Characteristics(a)","(million Btu)","(thousand Btu)","(thousand Btu)","(percent)","(percent)","Factors"

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

"Table A45. Selected Energy Operating Ratios for Total Energy Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

5. Selected Energy Operating Ratios for Total Energy Consumption" 5. Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Value of Shipment Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

82

"Table A46. Selected Energy Operating Ratios for Total Energy Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Energy Operating Ratios for Total Energy Consumption" Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Employment Size Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

83

"Table A48. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Selected Energy Operating Ratios for Total Energy Consumption for" 8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, and Economic" " Characteristics of the Establishment, 1994" ,,,"Consumption","Major" " "," ","Consumption","per Dollar","Byproducts(b)","Fuel Oil(c)"," " " ","Consumption","per Dollar","of Value","as a Percent","as a Percent","RSE" " ","per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row"

84

"Table A8. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

A8. Selected Energy Operating Ratios for Total Energy Consumption for" A8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Industry Group, and" " Selected Industries, 1991" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent of","RSE" "SIC"," ","per Employee","of Value Added","of Shipments","Consumsption","Natural Gas","Row" "Code(a)","Industry Groups and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","(PERCENT)","(percent)","Factors"

85

"Table A51. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Energy Operating Ratios for Total Energy Consumption for" 1. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991 " ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percent)","(percent)","Factors"

86

"Table A47. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Selected Energy Operating Ratios for Total Energy Consumption for" 7. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent of","RSE" "SIC"," ","per Employee","of Value Added","of Shipments","Consumption","Natural Gas","Row" "Code(a)","Industry Group and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

87

"Table A50. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Selected Energy Operating Ratios for Total Energy Consumption for" 0. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Economic Characteristics of the" " Establishment, 1991 (Continued)" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent of","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(Percent)","(percent)","Factors"

88

STRUCTURE AND ENERGY FLOW OF A MUSSEL POPULATION ...  

Science Journals Connector (OSTI)

STRUCTURE AND ENERGY FLOW OF A MUSSEL POPULATION. IN A GEORGIA ... fore, be expected to influence the energy ...... same energy content. In spite...

89

Flow Cells for Energy Storage Workshop Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Delivery Electricity Delivery & Energy Reliability Organized by: Energy Efficiency & Renewable Energy W i t h h e l p b y : Agenda Day/Time Speaker Subject Wednesday, March 07, 2012 8:45-9:00 Adam Weber, LBNL Welcome and workshop overview 9:00-9:30 Various, EERE, OFCT Background, approach, and reversible fuel cells 9:30-9:55 Michael Perry, UTRC Renaissance in flow cells: opportunities 9:55-10:20 Joe Eto, LBNL Energy storage requirements for the smart grid 10:20-10:35 AM Break 10:35-11:00 Robert Savinell, CWRU Revisiting flow-battery R&D 11:00-11:25 Stephen Clarke, Applied Intellectual Capital Lessons learned and yet to be learned from 20 years in RFB R&D 11:25-11:45 Imre Gyuk, DOE OE Research and deployment of stationary storage at DOE

90

Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Commercial Energy Consumption, Projected vs. Actual Total Delivered Commercial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.6 AEO 1995 6.9 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 8.0 8.1 AEO 1997 7.4 7.4 7.4 7.5 7.5 7.6 7.7 7.7 7.8 7.8 7.9 7.9 8.0 8.1 8.1 8.2 AEO 1998 7.5 7.6 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.3 8.4 8.4 8.5 8.6 8.7 AEO 1999 7.4 7.8 7.9 8.0 8.1 8.2 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 AEO 2000 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.5 8.7 8.7 8.8 AEO 2001 7.8 8.1 8.3 8.6 8.7 8.9 9.0 9.2 9.3 9.5 9.6 9.7 AEO 2002 8.2 8.4 8.7 8.9 9.0 9.2 9.4 9.6 9.7 9.9 10.1

91

Table 16. Total Energy Consumption, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 88.0 89.5 90.7 91.7 92.7 93.6 94.6 95.7 96.7 97.7 98.9 100.0 100.8 101.7 102.7 103.6 104.3 105.2 AEO 1995 89.2 90.0 90.6 91.9 93.0 93.8 94.6 95.3 96.2 97.2 98.4 99.4 100.3 101.2 102.1 102.9 103.9 AEO 1996 90.6 91.3 92.5 93.5 94.3 95.1 95.9 96.9 98.0 99.2 100.4 101.4 102.1 103.1 103.8 104.7 105.5 AEO 1997 92.6 93.6 95.1 96.6 97.9 98.8 99.9 101.2 102.4 103.4 104.7 105.8 106.6 107.2 107.9 108.6 AEO 1998 94.7 96.7 98.6 99.8 101.3 102.4 103.4 104.5 105.8 107.3 108.6 109.9 111.1 112.2 113.1 AEO 1999 94.6 97.0 99.2 100.9 102.0 102.8 103.6 104.7 106.0 107.2 108.5 109.7 110.8 111.8

92

Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual Total Delivered Industrial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 25.4 25.9 26.3 26.7 27.0 27.1 26.8 26.6 26.9 27.2 27.7 28.1 28.3 28.7 29.1 29.4 29.7 30.0 AEO 1995 26.2 26.3 26.5 27.0 27.3 26.9 26.6 26.8 27.1 27.5 27.9 28.2 28.4 28.7 29.0 29.3 29.6 AEO 1996 26.5 26.6 27.3 27.5 26.9 26.5 26.7 26.9 27.2 27.6 27.9 28.2 28.3 28.5 28.7 28.9 29.2 AEO 1997 26.2 26.5 26.9 26.7 26.6 26.8 27.1 27.4 27.8 28.0 28.4 28.7 28.9 29.0 29.2 29.4 AEO 1998 27.2 27.5 27.2 26.9 27.1 27.5 27.7 27.9 28.3 28.7 29.0 29.3 29.7 29.9 30.1 AEO 1999 26.7 26.4 26.4 26.8 27.1 27.3 27.5 27.9 28.3 28.6 28.9 29.2 29.5 29.7 AEO 2000 25.8 25.5 25.7 26.0 26.5 26.9 27.4 27.8 28.1 28.3 28.5 28.8 29.0

93

Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Residential Energy Consumption, Projected vs. Actual Total Delivered Residential Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.5 10.5 10.6 10.6 AEO 1995 11.0 10.8 10.8 10.8 10.8 10.8 10.8 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.9 AEO 1996 10.4 10.7 10.7 10.7 10.8 10.8 10.9 10.9 11.0 11.2 11.2 11.3 11.4 11.5 11.6 11.7 11.8 AEO 1997 11.1 10.9 11.1 11.1 11.2 11.2 11.2 11.3 11.4 11.5 11.5 11.6 11.7 11.8 11.9 12.0 AEO 1998 10.7 11.1 11.2 11.4 11.5 11.5 11.6 11.7 11.8 11.9 11.9 12.1 12.1 12.2 12.3 AEO 1999 10.5 11.1 11.3 11.3 11.4 11.5 11.5 11.6 11.6 11.7 11.8 11.9 12.0 12.1 AEO 2000 10.7 10.9 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0

94

Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual Total Delivered Transportation Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 23.6 24.1 24.5 24.7 25.1 25.4 25.7 26.2 26.5 26.9 27.2 27.6 27.9 28.3 28.6 28.9 29.2 29.5 AEO 1995 23.3 24.0 24.2 24.7 25.1 25.5 25.9 26.2 26.5 26.9 27.3 27.7 28.0 28.3 28.5 28.7 28.9 AEO 1996 23.9 24.1 24.5 24.8 25.3 25.7 26.0 26.4 26.7 27.1 27.5 27.8 28.1 28.4 28.6 28.9 29.1 AEO 1997 24.7 25.3 25.9 26.4 27.0 27.5 28.0 28.5 28.9 29.4 29.8 30.3 30.6 30.9 31.1 31.3 AEO 1998 25.3 25.9 26.7 27.1 27.7 28.3 28.8 29.4 30.0 30.6 31.2 31.7 32.3 32.8 33.1 AEO 1999 25.4 26.0 27.0 27.6 28.2 28.8 29.4 30.0 30.6 31.2 31.7 32.2 32.8 33.1 AEO 2000 26.2 26.8 27.4 28.0 28.5 29.1 29.7 30.3 30.9 31.4 31.9 32.5 32.9

95

Quantum Processes and Energy-Momentum Flow  

E-Print Network [OSTI]

In this paper we focus on energy flows in simple quantum systems. This is achieved by concentrating on the quantum Hamilton-Jacobi equation. We show how this equation appears in the standard quantum formalism in essentially three different but related ways, from the standard Schr\\"{o}dingier equation, from Lagrangian field theory and from the von Neumann-Moyal algebra. This equation allows us to track the energy flow using the energy-momentum tensor, the components of which are related to weak values of the four-momentum operator. This opens up a new way to explore these components empirically. The algebraic approach enables us to discuss the physical significance of the underlying non-commutative symplectic geometry, raising questions as to the structure of particles in quantum systems.

B. J. Hiley; D. Robson

2014-11-28T23:59:59.000Z

96

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

of Central Government Buildings. Available at: http://Energy Commission, PIER Building End-Use Energy Efficiencythe total lifecycle of a building such as petroleum and

Fridley, David G.

2008-01-01T23:59:59.000Z

97

Energy End-Use Flow Maps for the Buildings Sector  

SciTech Connect (OSTI)

Graphical presentations of energy flows are widely used within the industrial sector to depict energy production and use. PNNL developed two energy flow maps, one each for the residential and commercial buildings sectors, in response to a need for a clear, concise, graphical depiction of the flows of energy from source to end-use in the building sector.

Belzer, David B.

2006-12-04T23:59:59.000Z

98

Preliminary assessment of the velocity pump reaction turbine as a geothermal total-flow expander  

SciTech Connect (OSTI)

A preliminary evaluation was made of the Velocity Pump Reaction Turbine (VPRT) as a total flow expander in a geothermal-electric conversion cycle. Values of geofluid effectiveness of VPRT systems were estimated for conditions consisting of: a 360/sup 0/ geothermal resource, 60/sup 0/F wet-bulb ambient temperature, zero and 0.003 mass concentrations of dissolved noncondensible gas in the geofluid, 100 and 120/sup 0/F condensing temperatures, and engine efficiencies ranging from 0.4 to 1.0. Achievable engine efficiencies were estimated to range from 0.47 to 0.77, with plant geofluid effectiveness values ranging as high as 9.5 Watt hr/lbm geofluid for the 360/sup 0/F resource temperature. This value is competitive with magnitudes of geofluid effectiveness projected for advanced binary plants, and is on the order of 40% higher than estimates for dual-flash steam and other total flow systems reviewed. Because of its potentially high performance and relative simplicity, the VPRT system appears to warrant further investigation toward its use in a well-head geothermal plant.

Demuth, O.J.

1984-06-01T23:59:59.000Z

99

An Adaptive Tree Code for Computing Total Potential Energy in Classical Molecular Systems  

E-Print Network [OSTI]

An Adaptive Tree Code for Computing Total Potential Energy in Classical Molecular Systems Zhong, 2000 Abstract A tree code algorithm is presented for rapid computation of the total potential energy are presented for a variety of systems. Keywords: adaptive tree code; total potential energy; nonbonded

Duan, Zhong-Hui

100

THE USE OF TRUST REGIONS IN KOHN-SHAM TOTAL ENERGY MINIMIZATION  

E-Print Network [OSTI]

-consistent and the Kohn-Sham (KS) total energy function associated with the system reaches the global minimum. It has longTHE USE OF TRUST REGIONS IN KOHN-SHAM TOTAL ENERGY MINIMIZATION CHAO YANG , JUAN C. MEZA , AND LIN system, is viewed in this paper as an optimization procedure that minimizes the Kohn- Sham total energy

Geddes, Cameron Guy Robinson

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Free Flow Power Corporation | Open Energy Information  

Open Energy Info (EERE)

Flow Power Corporation Flow Power Corporation Jump to: navigation, search Name Free Flow Power Corporation Address 239 Causeway St Suite 300 Place Gloucester, Massachusetts Zip 1930 Sector Marine and Hydrokinetic, Ocean Product Massachusetts-based company that has developed a turbine generator designed to extract energy from tides, ocean currents, rivers, streams, canals and conduits. Free Flow has raised some initial funding and is prototype testing in rivers and tanks. Year founded 2007 Number of employees 28 Phone number 978-232-3536 Website http://www.free-flow-power.com Coordinates 37.413962°, -76.526305° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.413962,"lon":-76.526305,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

102

Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flow Cells for Energy Flow Cells for Energy Storage Workshop to someone by E-mail Share Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Facebook Tweet about Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Twitter Bookmark Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Google Bookmark Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Delicious Rank Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Digg Find More places to share Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings

103

High energy density redox flow device  

DOE Patents [OSTI]

Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

Chiang, Yet-Ming; Carter, William Craig; Duduta, Mihai; Limthongkul, Pimpa

2014-05-13T23:59:59.000Z

104

The Effect of Flow Rate of Very Dilute Sulfuric Acid on Xylan, Lignin, and Total Mass Removal from Corn Stover  

E-Print Network [OSTI]

The Effect of Flow Rate of Very Dilute Sulfuric Acid on Xylan, Lignin, and Total Mass Removal from mass, xylan, and lignin and increases cellulose digestibility compared to batch operations at otherwise in corn stover at 180 °C. A flow rate of 10 mL/min in a 3.8-mL reactor enhanced xylan removal by about 25

California at Riverside, University of

105

Total China Investment Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Total China Investment Co Ltd Total China Investment Co Ltd Jump to: navigation, search Name Total (China) Investment Co. Ltd. Place Beijing, China Zip 100004 Product Total has been present in China for about 30 years through its activities of Exploration & Production, Gas & Power, Refining & Marketing, and Chemicals. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

106

Network flow model for multi-energy systems  

Science Journals Connector (OSTI)

This paper describes a novel approach to model networks with multiple energy carrier. The proposed nodal matrix establishes a link between an optimization of enclosed areas and their interconnections via networks. In the envisioned network flow model ... Keywords: energy conversion, energy hubs, grids, line losses, network flow, optimal power flow

Matthias Schulze; Goran Gaparovi?

2010-02-01T23:59:59.000Z

107

Property:Building/TotalFloorArea | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/TotalFloorArea Jump to: navigation, search This is a property of type Number. Total floor area (BRA), m2 Pages using the property "Building/TotalFloorArea" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 7,160 + Sweden Building 05K0003 + 4,855 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,260 + Sweden Building 05K0006 + 13,048 + Sweden Building 05K0007 + 24,155 + Sweden Building 05K0008 + 7,800 + Sweden Building 05K0009 + 34,755 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 15,310 + Sweden Building 05K0012 + 22,565 + Sweden Building 05K0013 + 19,551 +

108

Property:RenewableFuelStandard/Total | Open Energy Information  

Open Energy Info (EERE)

Total Total Jump to: navigation, search This is a property of type Number. Pages using the property "RenewableFuelStandard/Total" Showing 15 pages using this property. R Renewable Fuel Standard Schedule + 13.95 + Renewable Fuel Standard Schedule + 26 + Renewable Fuel Standard Schedule + 15.2 + Renewable Fuel Standard Schedule + 28 + Renewable Fuel Standard Schedule + 16.55 + Renewable Fuel Standard Schedule + 30 + Renewable Fuel Standard Schedule + 18.15 + Renewable Fuel Standard Schedule + 9 + Renewable Fuel Standard Schedule + 33 + Renewable Fuel Standard Schedule + 20.5 + Renewable Fuel Standard Schedule + 11.1 + Renewable Fuel Standard Schedule + 36 + Renewable Fuel Standard Schedule + 22.25 + Renewable Fuel Standard Schedule + 12.95 + Renewable Fuel Standard Schedule + 24 +

109

"Table A28. Total Expenditures for Purchased Energy Sources by Census Region"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Expenditures for Purchased Energy Sources by Census Region" Total Expenditures for Purchased Energy Sources by Census Region" " and Economic Characteristics of the Establishment, 1991" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

110

Property:Building/FloorAreaTotal | Open Energy Information  

Open Energy Info (EERE)

FloorAreaTotal FloorAreaTotal Jump to: navigation, search This is a property of type Number. Total Pages using the property "Building/FloorAreaTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 7,160 + Sweden Building 05K0003 + 4,454 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,260 + Sweden Building 05K0006 + 14,348 + Sweden Building 05K0007 + 24,155 + Sweden Building 05K0008 + 7,800 + Sweden Building 05K0009 + 34,755 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 15,300 + Sweden Building 05K0012 + 22,565 + Sweden Building 05K0013 + 19,551 + Sweden Building 05K0014 + 1,338.3 + Sweden Building 05K0015 + 1,550 + Sweden Building 05K0016 + 2,546 +

111

Property:Building/SPElectrtyUsePercTotal | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercTotal SPElectrtyUsePercTotal Jump to: navigation, search This is a property of type String. Total Pages using the property "Building/SPElectrtyUsePercTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 100.0 + Sweden Building 05K0002 + 100.0 + Sweden Building 05K0003 + 100.0 + Sweden Building 05K0004 + 100.0 + Sweden Building 05K0005 + 100.0 + Sweden Building 05K0006 + 100.0 + Sweden Building 05K0007 + 100.0 + Sweden Building 05K0008 + 100.0 + Sweden Building 05K0009 + 100.0 + Sweden Building 05K0010 + 100.0 + Sweden Building 05K0011 + 100.0 + Sweden Building 05K0012 + 100.0 + Sweden Building 05K0013 + 100.0 + Sweden Building 05K0014 + 100.0 + Sweden Building 05K0015 + 100.0 + Sweden Building 05K0016 + 100.0 +

112

AEO2011: Total Energy Supply, Disposition, and Price Summary | OpenEI  

Open Energy Info (EERE)

Total Energy Supply, Disposition, and Price Summary Total Energy Supply, Disposition, and Price Summary Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics

113

Jet energy flow at the LHC  

Science Journals Connector (OSTI)

We present a quantitative study of energy flow away from jets by numerically solving the evolution equation derived by Banfi, Marchesini, and Smye, and apply the result to two processes at the LHC: discriminating high-pt jets originating from decays of heavy electroweak bosons from the QCD background, and the survival probability of the BFKL-initiated dijet rapidity gaps. As a by-product, we find a hidden symmetry of the Banfi, Marchesini, and Smye equation which is a remnant of conformal symmetry.

Yoshitaka Hatta and Takahiro Ueda

2009-10-19T23:59:59.000Z

114

IEP - Water-Energy Interface: Total Maximum Daily Load Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Maximum Daily Loads (TMDLs) Total Maximum Daily Loads (TMDLs) The overall goal of the Clean Water Act is to "restore and maintain the chemical, physical, and biological integrity of the Nation’s waters." In 1999, EPA proposed changes to Section 303(d), to establish Total Maximum Daily Loads (TMDLs) for watersheds that do not meet this goal. The TMDL is the highest amount of a given pollutant that is permissible in that body of water over a given period of time. TMDLs include both waste load allocation (WLA) for point sources and load allocations for non-point sources. In Appalachia, acid mine drainage (AMD) is the single most damaging non-point source. There is also particular concern of the atmospheric deposition of airborne sulfur, nitrogen, and mercury compounds. States are currently in the process of developing comprehensive lists of impaired waters and establishing TMDLs for those waters. EPA has recently proposed a final rule that will require states to develop TMDLs and implement plans for improving water quality within the next 10 years. Under the new rule, TMDL credits could be traded within a watershed.

115

"Table A36. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Total Expenditures for Purchased Energy Sources by Census Region," 6. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Group and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors" ,,"Total United States"

116

Toward understanding the exchange-correlation energy and total-energy density functionals  

Science Journals Connector (OSTI)

If an accurate ground-state electron density ?0 for a system is known, it is shown from calculations on atoms that a strikingly good estimate for the total electronic energy of atoms is provided by the formula E[?0]=tsumi?i-(1-1/N)J[?0], where N is the number of electrons, J[?0] is the classical Coulomb repulsion energy for ?0, and the ?i are the Kohn-Sham orbital energies determined by the Zhao-Morrison-Parr procedure [Phys. Rev. A 50, 2138 (1994)] for implementation of the Levy-constrained search determination of the Kohn-Sham kinetic energy. The surprising accuracy of this formula is attributed to the fact that the exchange-correlation functional is equal to -J/N plus a functional that behaves as if it were approximately homogeneous, of degree 1 in the electron density. A corresponding exact formula is given, and various approximate models are constructed.

Robert G. Parr and Swapan K. Ghosh

1995-05-01T23:59:59.000Z

117

Table A10. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Fuel Type, Industry Group, Selected Industries, and End Use, 1994:" " Part 2" " (Estimates in Trillion...

118

A Constrained Optimization Algorithm for Total Energy Minimization in Electronic Structure Calculation  

E-Print Network [OSTI]

Functionals for Electronic Structure Calculations. J. Comp.Minimization in Electronic Structure Calculation ? ChaoKey words: electronic structure calculation, total energy

Yang, Chao; Meza, Juan C.; Wang, Lin-Wang

2005-01-01T23:59:59.000Z

119

Portable Liquid Flow Metering for Energy Conservation Programs  

E-Print Network [OSTI]

meters to measure liquids. This paper reviews the principles of ultrasonic flow meters. Applications and costs of ultrasonic versus orifice flow meters are important to consider in energy audits. A discussion follows on 'how' and 'where' to use...

Miles, F. J.

1982-01-01T23:59:59.000Z

120

Modal and Nonmodal Symmetric Perturbations. Part II: Nonmodal Growths Measured by Total Perturbation Energy  

Science Journals Connector (OSTI)

Maximum nonmodal growths of total perturbation energy are computed for symmetric perturbations constructed from the normal modes presented in Part I. The results show that the maximum nonmodal growths are larger than the energy growth produced by ...

Qin Xu; Ting Lei; Shouting Gao

2007-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Category:Flow Test | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Category Edit History Facebook icon Twitter icon Category:Flow Test Jump to: navigation, search Geothermalpower.jpg Looking for the Flow Test page? For...

122

Energy Flow: A Multimodal `Ready' Indication For Electric Vehicles  

E-Print Network [OSTI]

Energy Flow: A Multimodal `Ready' Indication For Electric Vehicles Abstract The lack of sound and vibration while starting the drive system of an electric vehicle (EV) is one of the major differences the energy level to the driver. With Energy Flow (see Figure 1), we test if there will be a benefit in terms

123

Total electron and proton energy input during auroral substorms: Remote sensing with IMAGE-FUV  

E-Print Network [OSTI]

, it is found that the most critical factor is the assumption made on the energy of the auroral protonsTotal electron and proton energy input during auroral substorms: Remote sensing with IMAGE-FUV B and proton energy fluxes. The proton energy flux is derived from the Lyman a measurements on the basis

California at Berkeley, University of

124

Deuterons and flow: At intermediate AGS energies  

SciTech Connect (OSTI)

A quantitative model, based on hadronic physics and Monte Carlo cascading is applied to heavy ion collisions at BNL-AGS and BEVALAC energies. The model was found to be in excellent agreement with particle spectra where data previously existed, for Si beams, and was able to successfully predict the spectra where data was initially absent, for Au beams. For Si + Au collisions baryon densities of three or four times the normal nuclear matter density ({rho}{sub 0}) are seen in the theory, while for Au + Au collisions, matter at densities up to 10 {rho}{sub 0} is anticipated. The possibility that unusual states of matter may be created in the Au beams and potential signatures for its observation, in particular deuterons and collective flow, are considered.

Kahana, D.E. [State Univ. of New York, Stony Brook, NY (United States); Pang, Y. [Brookhaven National Lab., Upton, NY (United States)]|[Columbia Univ., New York, NY (United States); Kahana, S.H. [Brookhaven National Lab., Upton, NY (United States)

1996-06-01T23:59:59.000Z

125

"Table A37. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Total Expenditures for Purchased Energy Sources by Census Region," 7. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

126

Table A14. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" 4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," "," "," ",," "," "," "," " "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "," ",," "

127

Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent Conditioned Floorspace","Total","Present","Not Present","Factors" " "," " "RSE Column Factors:",0.8,1.3,0.9 "ALL SQUARE FEET CATEGORIES" "Approximate Conditioned Floorspace"

128

Table A30. Total Primary Consumption of Energy for All Purposes by Value of  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Primary Consumption of Energy for All Purposes by Value of" 0. Total Primary Consumption of Energy for All Purposes by Value of" "Shipment Categories, Industry Group, and Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," ","(million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," "," "," ",," "," "," "," " "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "," ",," "

129

Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"

130

"Table A11. Total Primary Consumption of Combustible Energy for Nonfuel"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Total Primary Consumption of Combustible Energy for Nonfuel" 1. Total Primary Consumption of Combustible Energy for Nonfuel" " Purposes by Census Region and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," "," "," ","Natural"," "," ","Coke"," "," " " ","Total","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","(trillion","Row"

131

Table 21. Total Transportation Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Consumption, Projected vs. Actual Transportation Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 18.6 18.2 17.7 17.3 17.0 16.9 AEO 1983 19.8 20.1 20.4 20.4 20.5 20.5 20.7 AEO 1984 19.2 19.0 19.0 19.0 19.1 19.2 20.1 AEO 1985 20.0 19.8 20.0 20.0 20.0 20.1 20.3 AEO 1986 20.5 20.8 20.8 20.6 20.7 20.3 21.0 AEO 1987 21.3 21.5 21.6 21.7 21.8 22.0 22.0 22.0 21.9 22.3 AEO 1989* 21.8 22.2 22.4 22.4 22.5 22.5 22.5 22.5 22.6 22.7 22.8 23.0 23.2 AEO 1990 22.0 22.4 23.2 24.3 25.5 AEO 1991 22.1 21.6 21.9 22.1 22.3 22.5 22.8 23.1 23.4 23.8 24.1 24.5 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 AEO 1992 21.7 22.0 22.5 22.9 23.2 23.4 23.6 23.9 24.1 24.4 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 27.1 AEO 1993 22.5 22.8 23.4 23.9 24.3 24.7 25.1 25.4 25.7 26.1 26.5 26.8 27.2 27.6 27.9 28.1 28.4 28.7 AEO 1994 23.6

132

Table 17. Total Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption, Projected vs. Actual Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 79.1 79.6 79.9 80.8 82.1 83.3 AEO 1983 78.0 79.5 81.0 82.4 83.9 84.6 89.0 AEO 1984 78.5 79.4 81.2 83.1 85.1 86.4 93.0 AEO 1985 77.6 78.5 79.8 81.2 82.7 83.3 84.2 85.0 85.7 86.3 87.2 AEO 1986 77.0 78.8 79.8 80.7 81.5 82.9 83.8 84.6 85.3 86.0 86.6 87.4 88.3 89.4 90.2 AEO 1987 78.9 80.0 82.0 82.8 83.9 85.1 86.2 87.1 87.9 92.5 AEO 1989* 82.2 83.8 84.5 85.4 86.2 87.1 87.8 88.7 89.5 90.4 91.4 92.4 93.5 AEO 1990 84.2 85.4 91.9 97.4 102.8 AEO 1991 84.4 85.0 86.0 87.0 87.9 89.1 90.4 91.8 93.1 94.3 95.6 97.1 98.4 99.4 100.3 101.4 102.5 103.6 104.7 105.8 AEO 1992 84.7 87.0 88.0 89.2 90.5 91.4 92.4 93.4 94.5 95.6 96.9 98.0 99.0 100.0 101.2 102.2 103.2 104.3 105.2 AEO 1993 87.0 88.3 89.8 91.4 92.7 94.0 95.3 96.3 97.5 98.6

133

Table 20. Total Industrial Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Industrial Energy Consumption, Projected vs. Actual Industrial Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 24.0 24.1 24.4 24.9 25.5 26.1 AEO 1983 23.2 23.6 23.9 24.4 24.9 25.0 25.4 AEO 1984 24.1 24.5 25.4 25.5 27.1 27.4 28.7 AEO 1985 23.2 23.6 23.9 24.4 24.8 24.8 24.4 AEO 1986 22.2 22.8 23.1 23.4 23.4 23.6 22.8 AEO 1987 22.4 22.8 23.7 24.0 24.3 24.6 24.6 24.7 24.9 22.6 AEO 1989* 23.6 24.0 24.1 24.3 24.5 24.3 24.3 24.5 24.6 24.8 24.9 24.4 24.1 AEO 1990 25.0 25.4 27.1 27.3 28.6 AEO 1991 24.6 24.5 24.8 24.8 25.0 25.3 25.7 26.2 26.5 26.1 25.9 26.2 26.4 26.6 26.7 27.0 27.2 27.4 27.7 28.0 AEO 1992 24.6 25.3 25.4 25.6 26.1 26.3 26.5 26.5 26.0 25.6 25.8 26.0 26.1 26.2 26.4 26.7 26.9 27.2 27.3 AEO 1993 25.5 25.9 26.2 26.8 27.1 27.5 27.8 27.4 27.1 27.4 27.6 27.8 28.0 28.2 28.4 28.7 28.9 29.1 AEO 1994 25.4 25.9

134

Table 18. Total Residential Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Residential Energy Consumption, Projected vs. Actual Residential Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 10.1 10.1 10.1 10.1 10.2 10.2 AEO 1983 9.8 9.9 10.0 10.1 10.2 10.1 10.0 AEO 1984 9.9 9.9 10.0 10.2 10.3 10.3 10.5 AEO 1985 9.8 10.0 10.1 10.3 10.6 10.6 10.9 AEO 1986 9.6 9.8 10.0 10.3 10.4 10.8 10.9 AEO 1987 9.9 10.2 10.3 10.3 10.4 10.5 10.5 10.5 10.5 10.6 AEO 1989* 10.3 10.5 10.4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 AEO 1990 10.4 10.7 10.8 11.0 11.3 AEO 1991 10.2 10.7 10.7 10.8 10.8 10.8 10.9 10.9 10.9 11.0 11.0 11.0 11.1 11.2 11.2 11.3 11.4 11.4 11.5 11.6 AEO 1992 10.6 11.1 11.1 11.1 11.1 11.1 11.2 11.2 11.3 11.3 11.4 11.5 11.5 11.6 11.7 11.8 11.8 11.9 12.0 AEO 1993 10.7 10.9 11.0 11.0 11.0 11.1 11.1 11.1 11.1 11.2 11.2 11.2 11.2 11.3 11.3 11.4 11.4 11.5 AEO 1994 10.3 10.4 10.4 10.4

135

Energy Flow: Flow Charts Illustrating United States Energy Resources and Usage, from Lawrence Livermore National Laboratory  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Decision makers have long recognized the importance of visualizing energy and material flows in a way that distinguishes between resources, transformations and services. Research priorities can be defined in terms of changes to the flows, and the consequences of policy or technology shifts can be traced both upstream and downstream. The usefulness of this top-down view is limited by the level of detail that can be conveyed in a single image. We use two techniques to balance information content with readability. First we employe visualization techniques, such as those embodied in the energy Sankey diagram below (Figure 1), to display both qualitative (relative line weight) and quantitative (listed values) information in a reader-friendly package. The second method is to augment static images with dynamic, scalable digital content containing multiple layers (e.g. energy, carbon and economic data). This transitions the audience from that of a passive reader to an active user of the information. When used in conjunction these approaches enable relatively large, interconnected processes to be described and analyzed efficiently. [copied from the description at http://en.openei.org/wiki/LLNL_Energy_Flow_Charts#cite_note-1

136

U.S. Energy Flow -- 1995  

SciTech Connect (OSTI)

Energy consumption in 1995 increased slightly for the fifth year in a row (from 89 to 91 quadrillion [1015Btu). U.S. economic activity slowed from the fast-paced recovery of 1994, even with the continued low unemployment rates and low inflation rates. The annual increase in U.S. real GDP dropped to 4.6% from 1994?s increase of 5.8%. Energy consumption in all major end-use sectors surpassed the record-breaking highs achieved in 1994, with the largest gains (2.5%) occurring in the residential/commercial sector. Crude oil imports decreased for the first time this decade. There was also a decline in domestic oil production. Venezuela replaced Saudi Arabia as the principal supplier of imported oil. Imports of natural gas, mainly from Canada, continued to increase. The demand for natural gas reached a level not seen since the peak levels of the early 1970s and the demand was met by a slight increase in both natural gas production and imports. Electric utilities had the largest percentage increase of n.atural gas consumption, a climb of 7% above 1994 levels. Although coal production decreased, coal exports continued to make a comeback after 3 years of decline. Coal once again become the primary U.S. energy export. Title IV of the Clean Air Act Amendments of 1990 (CAAA90) consists of two phases. Phase I (in effect as of January 1, 1995) set emission restrictions on 110 mostly coal-burning plants in the eastern and midwestem United States. Phase II, planned to begin in the year 2000, places additional emission restrictions on about 1,000 electric plants. As of January 1, 1995, the reformulated gasoline program, also part of the CAAA90, was finally initiated. As a result, this cleaner-burning fuel was made available in areas of the United States that failed to meet the Environmental Protection Agency? s (EPA?s) ozone standards. In 1995, reformulated gasoline represented around 28% of total gasoline sales in the United States. The last commercial nuclear power plant under construction in the United States came on line in 1995. The Tennessee Valley Authority? s (TVA) Watts Bar-l received a low-power operating license from the U.S. Nuclear Regulatory Commission (NRC). The construction permit was granted in 1972. Also, TVA canceled plans to complete construction of three other nuclear plants. In 1995, federal and state governments took steps to deregulate and restructure the electric power industry. The Federal Energy Regulatory Commission (FERC) unanimously approved a proposal to require utilities to open their electric transmission system to competition from wholesale electricity suppliers. California has been at the forefront in the restructuring of the electric utility industry. Plans authorized by the California Public Utility Commission prepare for a free market in electricity to be established by 1998. In 1990, the U.S. Department of Energy (DOE) began reporting statistics on renewable energy consumption. The types and amounts of renewable energy consumed vary by end-use sector, electric utilities and the industrial sector being the primary consumers since 1990. Renewable energy provided 6.83 quads (7.6I) of the total energy consumed in the United States in 1995, compared to 7.1% in 1994. Increasing concern over the emission of greenhouse gases has resulted in exhaustive analysis of U.S. carbon emissions from energy use. Emissions in the early 1990s have already exceeded those projected by the Clinton Administration? s Climate Change Action Plan (CCAP) released in 1994 that was developed to stabilize U.S. greenhouse gas emissions by the year 2000.

Miller, H.; Mui, N.; Pasternak, A.

1997-12-01T23:59:59.000Z

137

Table 19. Total Commercial Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Commercial Energy Consumption, Projected vs. Actual Commercial Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 6.6 6.7 6.8 6.8 6.8 6.9 AEO 1983 6.4 6.6 6.8 6.9 7.0 7.1 7.2 AEO 1984 6.2 6.4 6.5 6.7 6.8 6.9 7.3 AEO 1985 5.9 6.1 6.2 6.3 6.4 6.5 6.7 AEO 1986 6.2 6.3 6.4 6.4 6.5 7.1 7.4 AEO 1987 6.1 6.1 6.3 6.4 6.6 6.7 6.8 6.9 6.9 7.3 AEO 1989* 6.6 6.7 6.9 7.0 7.0 7.1 7.2 7.3 7.3 7.4 7.5 7.6 7.7 AEO 1990 6.6 6.8 7.1 7.4 7.8 AEO 1991 6.7 6.9 7.0 7.1 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.6 8.7 AEO 1992 6.8 7.1 7.2 7.3 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 AEO 1993 7.2 7.3 7.4 7.4 7.5 7.6 7.7 7.7 7.8 7.9 7.9 8.0 8.0 8.1 8.1 8.1 8.2 8.2 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 AEO 1995 6.94 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0

138

Table A54. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of General Technologies, 1994: Part 2" ,," "," ",," "," ",," "," "," "," " ,,,,"Computer Control" ,," "," ","of Processes"," "," ",," "," ",," " ,," ","Computer Control","or Major",,,"One or More"," ","RSE" "SIC"," ",,"of Building","Energy-Using","Waste Heat"," Adjustable-Speed","General Technologies","None","Row"

139

U.S. energy flow -- 1994  

SciTech Connect (OSTI)

Energy consumption in 1994 increased for the fourth year in a row, reaching an all-time high. It was associated with a robust economy, low inflation, and low unemployment rates. Of the populous states, California lagged substantially behind the national recovery. Consumption in all major end-use sectors reached historic highs. Transmission of electrical power by the utilities increased almost 3%. However, this understates the increase of the total amount of electricity used in the nation because the amount of electricity used ``in-house`` by a growing number of self-generators is unrecorded. Imports of both fossil fuels and electricity increased. About half of the total oil consumed was imported, with Saudi Arabia being the principal supplier. Domestic oil production continued to decline; however, the sharp decline in Alaskan production was slowed. The increase in the demand for natural gas was met by both a modest increase in domestic production and imports from Canada, which comprised 10% of supply. The residential/commercial sector is the largest single consumer of natural gas; however, use by electric generators has increased annually for the past decade. The regulated utilities increased their consumption 11% in 1994. The year was noteworthy for the US nuclear power industry. Work was halted on the last nuclear power plant under construction in the country. Because of the retirement of aged and poorly performing nuclear plants and because of improved efficiencies, the capacity factor for the remaining 109 operable plants reached a record 74%.

Borg, I.Y.; Briggs, C.K.

1995-12-01T23:59:59.000Z

140

Definition: Flow Test | Open Energy Information  

Open Energy Info (EERE)

Flow Test Flow tests are typically conducted shortly after a well has been drilled to test its productivity. The well is opened and fluids are released, the volume of fluids...

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

"Table A24. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total Expenditures for Purchased Energy Sources by Census Region," 4. Total Expenditures for Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Groupsc and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:","0.6 ",0.6,1.3,1.3,0.7,1.2,1.2,1.5,1.1

142

Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.2,1.1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",12605,1209,3303,6386,1706,2.9

143

Table A20. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" " Region, Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke",,"Shipments" " "," ","Net","Residual","Distillate","Natural Gas(e)"," ","Coal","and Breeze"," ","of Energy Sources","RSE" " ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

144

Table A41. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

A41. Total Inputs of Energy for Heat, Power, and Electricity" A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.3,1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",10743,1150,2819,5309,1464,2.6,,,"/WIR{D}~"

145

Vanadium Flow Battery for Energy Storage: Prospects and Challenges  

Science Journals Connector (OSTI)

Vanadium Flow Battery for Energy Storage: Prospects and Challenges ... Her work involves investigating the strategy to improve the stability of electrolytes for the vanadium flow battery. ... Dr. Huamin Zhang currently is a tenured Professor at Dalian Institute of Chemical Physics, Chinese Academy of Science; he serves as the head of the energy storage division and chief scientist of the 973 National Project on Flow Battery. ...

Cong Ding; Huamin Zhang; Xianfeng Li; Tao Liu; Feng Xing

2013-03-28T23:59:59.000Z

146

Flow-Through Fourier Transform Infrared Sensor for Total Hydrocarbons Determination in Water  

Science Journals Connector (OSTI)

A new flow-through Fourier transform infrared (FT-IR) sensor for oil in water analysis based on solid-phase spectroscopy on octadecyl (C18) silica particles has been developed. The C18...

Prez-Palacios, David; Armenta, Sergio; Lendl, Bernhard

2009-01-01T23:59:59.000Z

147

AEO2011:Total Energy Supply, Disposition, and Price Summary | OpenEI  

Open Energy Info (EERE)

Total Energy Supply, Disposition, and Price Summary Total Energy Supply, Disposition, and Price Summary Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption disposition energy exports imports Supply Data application/vnd.ms-excel icon AEO2011:Total Energy Supply, Disposition, and Price Summary- Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

148

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

SciTech Connect (OSTI)

Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

2008-03-01T23:59:59.000Z

149

Ab initio total energy study of brucite, diaspore and hypothetical hydrous wadsleyite  

Science Journals Connector (OSTI)

Ab initio total energy calculations based on the local density approximation (LDA) and the generalised gradient approximation (GGA) of density functional theory have been performed for brucite, Mg(OH)2, diaspore,...

B. Winkler; V. Milman; B. Hennion; M. C. Payne

1995-10-01T23:59:59.000Z

150

E-Print Network 3.0 - ab-initio total energy Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ab-initio total energy Page: << < 1 2 3 4 5 > >> 1 INSTITUTE OF PHYSICS PUBLISHING MEASUREMENT SCIENCE AND TECHNOLOGY Meas. Sci. Technol. 16 (2005) 296301 doi:10.10880957-0233...

151

"Table A22. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Quantity of Purchased Energy Sources by Census Region," 2. Total Quantity of Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Groups and Industry","Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

152

Table A9. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

A9. Total Primary Consumption of Energy for All Purposes by Census" A9. Total Primary Consumption of Energy for All Purposes by Census" " Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke" " "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" " ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Economic Characteristics(a)","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

153

Table A56. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Industry-Specific Technologies for Selected Industries, 1994: Part 2" ,,,"RSE" "SIC",,,"Row" "Code(a)","Industry Group and Industry","Total(b)","Factors" ,"RSE Column Factors:",1 20,"FOOD and KINDRED PRODUCTS" ,"Industry-Specific Technologies" ,"One or More Industry-Specific Technologies Present",2353,9 ," Infrared Heating",607,13 ," Microwave Drying",127,21 ," Closed-Cycle Heat Pump System Used to Recover Heat",786,19

154

Table A17. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes" Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Employment Size Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors" ,"RSE Column Factors:",0.6,1.5,1.5,1,0.9,0.9,0.9 , 20,"Food and Kindred Products",1193,119,207,265,285,195,122,6

155

Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors" ,"RSE Column Factors:",0.6,1.3,1,1,0.9,1.2,1.2

156

U.S. Department of Energy Releases Revised Total System Life Cycle Cost  

Broader source: Energy.gov (indexed) [DOE]

Releases Revised Total System Life Cycle Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project August 5, 2008 - 2:40pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca Mountain, Nevada. The 2007 total system life cycle cost estimate includes the cost to research, construct and operate Yucca Mountain during a period of 150 years, from the beginning of the program in 1983 through closure and decommissioning in 2133. The new cost estimate of $79.3 billion, when updated to 2007 dollars comes to $96.2 billion, a 38 percent

157

Benchmark quality total atomization energies of small polyatomic Jan M. L. Martin  

E-Print Network [OSTI]

Benchmark quality total atomization energies of small polyatomic molecules Jan M. L. Martin Successive coupled-cluster CCSD T calculations in basis sets of spdf, spdfg, and spdfgh quality, combined with separate Schwartz-type extrapolations A B/(l 1/2) of the self-consistent field SCF and correlation energies

Martin, Jan M.L.

158

Table A33. Total Primary Consumption of Energy for All Purposes by Employment  

U.S. Energy Information Administration (EIA) Indexed Site

Primary Consumption of Energy for All Purposes by Employment" Primary Consumption of Energy for All Purposes by Employment" " Size Categories, Industry Group, and Selected Industries, 1991 (Continued)" " (Estimates in Trillion Btu)" ,,,,,"Employment Size" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," ",,500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "

159

Low-energy positron scattering from methanol and ethanol: Total cross sections  

Science Journals Connector (OSTI)

We report total cross sections for positron scattering from two primary alcohols, methanol (CH3OH) and ethanol (C2H5OH). The energy range of the present study is 0.140eV. The ethanol measurement appears to be original while for methanol we compare our data to the only previous result from Kimura and colleagues [Adv. Chem. Phys. 111, 537 (2000)], with a significant discrepancy between them being found at the lower energies. Positronium formation threshold energies for both species, deduced from the present respective total cross section data sets, are found to be consistent with those expected on the basis of their known ionization energies. There are currently no theoretical results against which we can compare our total cross sections.

Antonio Zecca, Luca Chiari, A. Sarkar, Kate L. Nixon, and Michael J. Brunger

2008-08-05T23:59:59.000Z

160

Improved Multi-processor Scheduling for Flow Time and Energy  

E-Print Network [OSTI]

good "quality of service" (QoS) and conserving energy. One commonly used QoS measurement for scheduling between 0 and , and incurs an energy of s per unit time when running at speed s, where 2 (typically 2 not admit any constant competitive online algorithm even if jobs are of unit size [7]. Flow time and energy

Wong, Prudence W.H.

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy-Efficient Flow Time Scheduling: An Experimental Study  

E-Print Network [OSTI]

] and Intel's Speedstep [6]. Running a job at a slower speed saves energy, yet it takes longer time and may and energy. An algorithm called AJC (active job count) has been proposed [3, 7], in which the speedEnergy-Efficient Flow Time Scheduling: An Experimental Study Jude-Thaddeus Ojiaku (speaker) Daniel

Wong, Prudence W.H.

162

High-Energy Shock Waves Induce Blood Flow Reduction in Tumors  

Science Journals Connector (OSTI)

...Experimental Therapeutics High-Energy Shock Waves Induce Blood Flow Reduction...extracorporeally applied high-energy shock waves (HESW) on blood flow in amelanotic...therapeutical modalities. High-energy shock waves induce blood flow reduction...

Fernando Gamarra; Fritz Spelsberg; Gerhard E. H. Kuhnle; and Alwin E. Goetz

1993-04-01T23:59:59.000Z

163

Radiant energy receiver having improved coolant flow control means  

DOE Patents [OSTI]

An improved coolant flow control for use in radiant energy receivers of the type having parallel flow paths is disclosed. A coolant performs as a temperature dependent valve means, increasing flow in the warmer flow paths of the receiver, and impeding flow in the cooler paths of the receiver. The coolant has a negative temperature coefficient of viscosity which is high enough such that only an insignificant flow through the receiver is experienced at the minimum operating temperature of the receiver, and such that a maximum flow is experienced at the maximum operating temperature of the receiver. The valving is accomplished by changes in viscosity of the coolant in response to the coolant being heated and cooled. No remotely operated valves, comparators or the like are needed.

Hinterberger, H.

1980-10-29T23:59:59.000Z

164

The Energy Transformation Limit Theorem for Gas Flow Systems  

E-Print Network [OSTI]

The limit energy theorem which determines the possibility of transformation the energy flow in power systems in the absence of technical work is investigated and proved for such systems as gas lasers and plasmatrons, chemical gas reactors, vortex tubes, gas-acoustic and other systems, as well as a system of close stars. In the case of the same name ideal gas in the system the maximum ratio of energy conversion effectiveness is linked to the Carnot theorem, which in its turn is connected with the Nernst theorem. However, numerical analyses show that the class of flow energy systems is non-carnot one. The ratio of energy conversion effectiveness depends on the properties of the working medium; a conventional cycle in open-circuit is essentially irreversible. The proved theorem gives a more strongly worded II law of thermodynamics for the selected class of flow energy systems. Implications for astrophysical thermodynamic systems and the theory of a strong shock wave are discussed.

Volov, V T

2011-01-01T23:59:59.000Z

165

Excitation Energy Flow in Photosynthesis | MIT-Harvard Center...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Excitation Energy Flow in Photosynthesis April 25, 2013 at 3pm36-428 Graham Fleming Department of Chemistry University of California, Berkeley GrahamFleming000 Abstract: The...

166

Introduction to the Cash Flow Opportunity Calculator Spreadsheet | ENERGY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Cash Flow Opportunity Calculator Spreadsheet the Cash Flow Opportunity Calculator Spreadsheet Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

167

Precision Flow Technologies | Open Energy Information  

Open Energy Info (EERE)

Precision Flow Technologies Precision Flow Technologies Jump to: navigation, search Name Precision Flow Technologies Place Saugerties, New York Zip 12477 Product New York-based, firm focused on the design and manufacture of ultra high purity gas and control systems. Coordinates 42.07778°, -73.952459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.07778,"lon":-73.952459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

168

Precision Flow Table | Open Energy Information  

Open Energy Info (EERE)

Table Table Jump to: navigation, search Basic Specifications Facility Name Flow Table Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flow Table Length(m) 2.4 Beam(m) 1.2 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system Cameras None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe Data Generation Capability Real-Time No Test Services Test Services Yes Past Pertinent Test Experience Users are District Engineers, Planners, and Engineering Consultants

169

Table A55. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 2" ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One or More",," " " "," ",,"Conventional","Combustion ","Combined-Cycle","Internal Combustion","Heat Recovered from","Cogeneration",,"RSE" "SIC"," ",,"or Fluidized","Turbines with","Combustion","Engines with","High-Temperature","Technologies","None","Row"

170

A Total Quality Management (TQM) Approach for Energy Savings Through Employee Awareness and Building Upgrades to Improve Energy Efficiency  

E-Print Network [OSTI]

A TOTAL QUALIn' MANAGEMENT (TQM) APPROACH FOR ENERGY SAVINGS THROUGH EMPLOYEE AWARENESS AND BUILDING UPGRADES TO IMPROVE ENERGY EFFICIENCY Daniel H. Stewart, Principal Engineer, Facilities Department, Rh6oe-Poulenc. Inc., Cranbury, NJ...) approach depends on the input from the end-users, clients, employees, power companies, various consultants and site operation management. This paper discusses the energy efficiency projects that are currently in progress at Rhone Poulenc's Corporate...

Stewart, D. H.

171

Keeping the Power Flowing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

ability to respond quickly. Because most of the energy critical infrastructure such as electricity transmission lines and oil pipelines is owned and operated by private...

172

Table A32. Total Consumption of Offsite-Produced Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption of Offsite-Produced Energy for Heat, Power, and" Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Value of Shipment Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,," ","-","-","-","-","-","-","RSE" ," "," "," ",,,,,500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "

173

Total electron scattering cross sections for methanol and ethanol at intermediate energies  

Science Journals Connector (OSTI)

Absolute total cross section (TCS) measurements of electron scattering from gaseous methanol and ethanol molecules are reported for impact energies from 60 to 500 eV, using the linear transmission method. The attenuation of intensity of a collimated electron beam through the target volume is used to determine the absolute TCS for a given impact energy, using the BeerLambert law to first approximation. Besides these experimental measurements, we have also determined TCS using the additivity rule.

D G M Silva; T Tejo; J Muse; D Romero; M A Khakoo; M C A Lopes

2010-01-01T23:59:59.000Z

174

Energy momentum flows for the massive vector field  

E-Print Network [OSTI]

We present a causal trajectory interpretation for the massive vector field, based on the flows of rest energy and a conserved density defined using the time-like eigenvectors and eigenvalues of the stress-energy-momentum tensor. This work extends our previous work which used a similar procedure for the scalar field. The massive, spin-one, complex vector field is discussed in detail and solutions are classified using the Pauli-Lubanski spin vector. The flows of energy-momentum are illustrated in a simple example of standing waves in a plane.

George Horton; Chris Dewdney

2006-09-26T23:59:59.000Z

175

Table A52. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" 2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" " Categories and Presence of General Technologies and Cogeneration Technologies, 1994" " (Estimates in Trillion Btu)" ,,,,"Employment Size(a)" ,,,,,,,,"RSE" ,,,,,,,"1000 and","Row" "General/Cogeneration Technologies","Total","Under 50","50-99","100-249","250-499","500-999","Over","Factors" "RSE Column Factors:",0.5,2,2.1,1,0.7,0.7,0.9 "One or More General Technologies Present",14601,387,781,2054,2728,3189,5462,3.1 " Computer Control of Building Environment (b)",5079,64,116,510,802,1227,2361,5

176

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",," ",,"Coke and"," ","of Energy Sources","Row" "Code(a)","Industry Group and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","LPG","Coal","Breeze","Other(f)","Produced Onsite(g)","Factors"

177

Accelerating the convergence of the total energy evaluation in density functional theory calculations  

E-Print Network [OSTI]

Accelerating the convergence of the total energy evaluation in density functional theory.1063/1.2821101 I. INTRODUCTION Density functional theory DFT ,1,2 one of the most widely used first functional theory OO-DFT B. Zhou and Y. A. Wang, J. Chem. Phys. 124, 081107 2006 is that the second

Wang, Yan Alexander

178

Total cross section of neutron-proton scattering at low energies in quark-gluon model  

E-Print Network [OSTI]

We show that analysis of nonrelativistic neutron-proton scattering in a framework of relativistic QCD based quark model can give important information about QCD vacuum structure. In this model we describe total cross section of neutron-proton scattering at kinetic energies of projectile neutron from 1 eV up to 1 MeV.

V. A. Abramovsky; N. V. Radchenko

2011-07-30T23:59:59.000Z

179

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)"," ","Coal","Breeze"," ","of Energy Sources","RSE" "SIC"," ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

180

Energy Flow Diagram | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Science for Energy Flow » Energy Flow Diagram Science for Energy Flow » Energy Flow Diagram Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Energy Flow Diagram Seeing Matter Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » Science for Energy Flow Energy Flow Diagram Print Text Size: A A A RSS Feeds FeedbackShare Page This diagram shows 2010 energy flow from primary sources (oil, natural gas,

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Measurement of the total energy of an isolated system by an internal observer  

E-Print Network [OSTI]

We consider the situation in which an observer internal to an isolated system wants to measure the total energy of the isolated system (this includes his own energy, that of the measuring device and clocks used, etc...). We show that he can do this in an arbitrarily short time, as measured by his own clock. This measurement is not subjected to a time-energy uncertainty relation. The properties of such measurements are discussed in detail with particular emphasis on the relation between the duration of the measurement as measured by internal clocks versus external clocks.

S. Massar; S. Popescu

2004-12-10T23:59:59.000Z

182

Device for deriving energy from a flow of fluid  

SciTech Connect (OSTI)

Improved process and device for extracting energy present in a flowing fluid medium wherein a supported hub with propellers or blades is placed in said medium and the blades are provided with a wing or vane at the tip. The wing is of such a form that it generates a ''venturi effect'' in the flowing medium by which a part of the fluid which should normally pass outside the propeller disc area, is drawn into the propeller. The improvement consists of mixing of fluid which normally should pass outside the venturi with fluid which has flowed through the blades by provisions on blades and/or wing or vanes.

van Holten, T.

1982-12-07T23:59:59.000Z

183

"Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",5060,5129.666667,5184.666667,5239.666667,5287.333333,5335,5379,5437.666667,5481.666667,5529.333333,5599,5657.666667,5694.333333,5738.333333,5797,5874,5925.333333,5984 "AEO 1995",,5137,5173.666667,5188.333333,5261.666667,5309.333333,5360.666667,5393.666667,5441.333333,5489,5551.333333,5621,5679.666667,5727.333333,5775,5841,5888.666667,5943.666667 "AEO 1996",,,5181.817301,5223.645142,5294.776326,5354.687297,5416.802205,5463.67395,5525.288005,5588.52771,5660.226888,5734.87972,5812.398031,5879.320068,5924.814575,5981.291626,6029.640422,6086.804077,6142.120972

184

"Table A32. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region," Quantity of Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Group and Industry","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","(trillion Btu)","Factors"

185

Total energy and band structure of the 3d, 4d, and 5d metals  

Science Journals Connector (OSTI)

We performed total-energy calculations by the scalar-relativistic augmented-plane-wave method in the local-density and muffin-tin approximations for all 3d, 4d, and 5d transition metals in the fcc and bcc structures. These calculations predict the correct equilibrium structure and give good agreement with experiment and other calculations for lattice constants and bulk moduli.

M. Sigalas; D. A. Papaconstantopoulos; N. C. Bacalis

1992-03-15T23:59:59.000Z

186

Abstract--Numerous studies have shown that households' consumption is an important part of the total energy consumed  

E-Print Network [OSTI]

appropriate strategies of giving households' effective feedback on their energy consumption. This study, Energy efficiency. I. INTRODUCTION HE energy consumption of households in buildings attracts a lot in the housing sector. Energy consumption in buildings accounts for 39% of Sweden's total final energy

Beigl, Michael

187

Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids.  

SciTech Connect (OSTI)

Using the 'total energy cycle' methodology, we compare U.S. near term (to {approx}2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO{sub x}), fine particulate (PM2.5) and sulfur oxides (SO{sub x}) values are presented. We also isolate the PHEV emissions contribution from varying kWh storage capability of battery packs in HEVs and PHEVs from {approx}16 to 64 km of charge depleting distance. Sensitivity analysis is conducted with respect to the effect of replacing the battery once during the vehicle's life. The paper includes one appendix that examines several recent studies of interactions of PHEVs with patterns of electric generation and one that provides definitions, acronyms, and fuel consumption estimation steps.

Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.; Energy Systems

2008-01-01T23:59:59.000Z

188

Table ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States  

Gasoline and Diesel Fuel Update (EIA)

ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States Year Primary Energy Electric Power Sector h,j Retail Electricity Total Energy g,h,i Coal Coal Coke Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i,j Coking Coal Steam Coal Total Exports Imports Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f,g Prices in Dollars per Million Btu 1970 0.45 0.36 0.38 1.27 0.93 0.59 1.16 0.73 1.43 2.85 0.42 1.38 1.71 0.18 1.29 1.08 0.32 4.98 1.65 1975 1.65 0.90 1.03 2.37 3.47 1.18 2.60 2.05 2.96 4.65 1.93 2.94 3.35 0.24 1.50 2.19 0.97 8.61 3.33 1980 2.10 1.38 1.46 2.54 3.19 2.86 6.70 6.36 5.64 9.84 3.88 7.04 7.40 0.43 2.26 4.57 1.77 13.95 6.89 1985 2.03 1.67 1.69 2.76 2.99 4.61 7.22 5.91 6.63 9.01 4.30 R 7.62 R 7.64 0.71 2.47 4.93 1.91 19.05

189

Reduction of drag and energy consumption during energy release preceding a blunt body in supersonic flow  

Science Journals Connector (OSTI)

A simple approximate theory is used to estimate the optimal power of a stationary lumped source of energy in a supersonic flow and its minimal distance from a body, which provide for a significant reduction of...

L. N. Myrabo; Yu. P. Raizer; M. N. Shneider; R. Bracken

190

Energy Loss Distribution in the Taylor-Couette Flow between Concentric Rotating Cylinders  

E-Print Network [OSTI]

The distribution of energy loss due to viscosity friction in plane Couette flow and Taylor-Couette Flow between concentric rotating cylinders are studied in detail for various flow conditions. The energy loss is related to the industrial processes in some fluid delivery devices and has significant influence on the flow efficiency, flow stability, turbulent transition, mixing, and heat transfer behaviours, etc. Therefore, it is very helpful to know about the energy loss distribution in the flow domain and to know its influence on the flow for understanding the flow physics. The calculation method of the energy loss distribution in the Taylor-Couette Flow between concentric rotating cylinders has not been found in open literature. In this note, the principle and the calculation are given for single cylinder rotating of inner or outer cylinder, and counter and same direction rotating of two cylinders. For comparison, the distribution of energy loss in a plane Couette flow is also derived for various flow conditi...

Dou, H S; Phan-Thien, N; Yeo, K S; Dou, Hua-Shu; Khoo, Boo Cheong; Phan-Thien, Nhan; Yeo, Khoon Seng

2005-01-01T23:59:59.000Z

191

Minimum Stream Flow Standards (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Minimum Stream Flow Standards (Connecticut) Minimum Stream Flow Standards (Connecticut) Minimum Stream Flow Standards (Connecticut) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection These regulations apply to all dams and structures which impound or divert waters on rivers or their tributaries, with some exceptions. The

192

Total Neutron Cross Section of Xe135 as a Function of Energy  

Science Journals Connector (OSTI)

The total neutron cross section of Xe135 as a function of energy has been remeasured at Oak Ridge National Laboratory under more favorable conditions than obtained in earlier measurements. A sample thickness of 2.51018 atoms of Xe135 gas per cm2 was procured from the gases generated in a homogeneous reactor. A mechanical time-of-flight chopper was used to select neutrons in the energy range from 0.01 ev to several thousand ev. The number of Xe135 atoms in the sample was determined by means of mass spectrometer measurements on the long-lived daughter, Cs135. The data of the low-energy resonance were fitted to the single-level Breit-Wigner formula, taking into account Doppler corrections, equally well with the following two sets of parameters: statistical weight factor g=38; resonance energy ?0=0.084720.00027 ev; neutron width at energy ?0, ?n0=0.034770.00021 ev; capture width, ??=0.0833030.00062 ev; for g=58, ?0=0.084150.00028 ev; ?n0=0.020570.00012 ev; ?a=0.094930.00071 ev. The errors quoted are the standard deviations derived from the statistics of the measurements. Systematic errors are discussed in the body of the paper. No evidence for resonances at energies greater than 0.085 ev was observed. The results described are interpreted in terms of recent considerations on the statistics of the properties of nuclear energy levels.

E. C. Smith, G. S. Pawlicki, P. E. F. Thurlow, G. W. Parker, W. J. Martin, G. E. Creek, P. M. Lantz, and S. Bernstein

1959-09-15T23:59:59.000Z

193

ESTIMATE OF THE TOTAL MECHANICAL FEEDBACK ENERGY FROM GALAXY CLUSTER-CENTERED BLACK HOLES: IMPLICATIONS FOR BLACK HOLE EVOLUTION, CLUSTER GAS FRACTION, AND ENTROPY  

SciTech Connect (OSTI)

The total feedback energy injected into hot gas in galaxy clusters by central black holes can be estimated by comparing the potential energy of observed cluster gas profiles with the potential energy of non-radiating, feedback-free hot gas atmospheres resulting from gravitational collapse in clusters of the same total mass. Feedback energy from cluster-centered black holes expands the cluster gas, lowering the gas-to-dark-matter mass ratio below the cosmic value. Feedback energy is unnecessarily delivered by radio-emitting jets to distant gas far beyond the cooling radius where the cooling time equals the cluster lifetime. For clusters of mass (4-11) x 10{sup 14} M{sub sun}, estimates of the total feedback energy, (1-3) x 10{sup 63} erg, far exceed feedback energies estimated from observations of X-ray cavities and shocks in the cluster gas, energies gained from supernovae, and energies lost from cluster gas by radiation. The time-averaged mean feedback luminosity is comparable to those of powerful quasars, implying that some significant fraction of this energy may arise from the spin of the black hole. The universal entropy profile in feedback-free gaseous atmospheres in Navarro-Frenk-White cluster halos can be recovered by multiplying the observed gas entropy profile of any relaxed cluster by a factor involving the gas fraction profile. While the feedback energy and associated mass outflow in the clusters we consider far exceed that necessary to stop cooling inflow, the time-averaged mass outflow at the cooling radius almost exactly balances the mass that cools within this radius, an essential condition to shut down cluster cooling flows.

Mathews, William G.; Guo Fulai, E-mail: mathews@ucolick.org [University of California Observatories/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

2011-09-10T23:59:59.000Z

194

Flowing Wells, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Arizona: Energy Resources Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.2939638°, -111.0098178° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.2939638,"lon":-111.0098178,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

195

Flow Cells for Energy Storage Workshop Summary Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Workshop Summary Report Workshop Summary Report Prepared for: U. S. Department of Energy Prepared by: Dr. Adam Z. Weber Lawrence Berkeley National Laboratory Organizing Committee: Michael Perry, UTRC Tom Zawodzinski, UTK and ORNL Ned Stetson, DOE EERE Mark Johnson, DOE ARPA-E Imre Gyuk, DOE OEDER i Executive Summary An essentially identical technology to a reversible fuel cell is that of a redox flow cell (RFC) or redox flow battery (RFB), where a RFC can be seen as merging the concepts of RFBs with recent improvements in fuel cells. To investigate how a RFC can be a grid-scale electrical- energy-storage (EES) system and the associated technological needs, this workshop was held. The specific objectives of the workshop were to understand the needs for applied research in RFCs; identify the grand challenges and prioritize R&D needs; and gather input for future

196

"Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual" Total Delivered Transportation Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",23.62,24.08,24.45,24.72,25.06,25.38,25.74,26.16,26.49,26.85,27.23,27.55,27.91,28.26,28.61,28.92,29.18,29.5 "AEO 1995",,23.26,24.01,24.18,24.69,25.11,25.5,25.86,26.15,26.5,26.88,27.28,27.66,27.99,28.25,28.51,28.72,28.94 "AEO 1996",,,23.89674759,24.08507919,24.47502899,24.84881783,25.25887871,25.65527534,26.040205,26.38586426,26.72540092,27.0748024,27.47158241,27.80837631,28.11616135,28.3992157,28.62907982,28.85912895,29.09081459 "AEO 1997",,,,24.68686867,25.34906006,25.87225533,26.437994,27.03513145,27.52499771,27.96490097,28.45482063,28.92999458,29.38239861,29.84147453,30.26097488,30.59760475,30.85550499,31.10873222,31.31938744

197

"Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual" Total Delivered Industrial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",25.43,25.904,26.303,26.659,26.974,27.062,26.755,26.598,26.908,27.228,27.668,28.068,28.348,28.668,29.068,29.398,29.688,30.008 "AEO 1995",,26.164,26.293,26.499,27.044,27.252,26.855,26.578,26.798,27.098,27.458,27.878,28.158,28.448,28.728,29.038,29.298,29.608 "AEO 1996",,,26.54702756,26.62236823,27.31312376,27.47668697,26.90313339,26.47577946,26.67685979,26.928811,27.23795407,27.58448499,27.91057103,28.15050595,28.30145734,28.518,28.73702901,28.93001263,29.15872662 "AEO 1997",,,,26.21291769,26.45981795,26.88483478,26.67847443,26.55107968,26.78246968,27.07367604,27.44749539,27.75711339,28.02446072,28.39156621,28.69999783,28.87316602,29.01207631,29.19475644,29.37683575

198

"Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Commercial Energy Consumption, Projected vs. Actual" Total Delivered Commercial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",6.82,6.87,6.94,7,7.06,7.13,7.16,7.22,7.27,7.32,7.36,7.38,7.41,7.45,7.47,7.5,7.51,7.55 "AEO 1995",,6.94,6.9,6.95,6.99,7.02,7.05,7.08,7.09,7.11,7.13,7.15,7.17,7.19,7.22,7.26,7.3,7.34 "AEO 1996",,,7.059859276,7.17492485,7.228339195,7.28186655,7.336973667,7.387932777,7.442782879,7.501244545,7.561584473,7.623688221,7.684037209,7.749266148,7.815915108,7.884147644,7.950204372,8.016282082,8.085801125 "AEO 1997",,,,7.401538849,7.353548527,7.420701504,7.48336792,7.540113449,7.603093624,7.663851738,7.723834991,7.783358574,7.838726044,7.89124918,7.947964668,8.008976936,8.067288399,8.130317688,8.197405815

199

Advanced Redox Flow Batteries for Stationary Electrical Energy Storage  

SciTech Connect (OSTI)

This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energys Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

2012-03-19T23:59:59.000Z

200

Wave turbulence revisited: Where does the energy flow?  

E-Print Network [OSTI]

Turbulence in a system of nonlinearly interacting waves is referred to as wave turbulence. It has been known since seminal work by Kolmogorov, that turbulent dynamics is controlled by a directional energy flux through the wavelength scales. We demonstrate that an energy cascade in wave turbulence can be bi-directional, that is, can simultaneously flow towards large and small wavelength scales from the pumping scales at which it is injected. This observation is in sharp contrast to existing experiments and wave turbulence theory where the energy flux only flows in one direction. We demonstrate that the bi-directional energy cascade changes the energy budget in the system and leads to formation of large-scale, large-amplitude waves similar to oceanic rogue waves. To study surface wave turbulence, we took advantage of capillary waves on a free, weakly charged surface of superfluid helium He-II at temperature 1.7K. Although He-II demonstrates non-classical thermomechanical effects and quantized vorticity, waves on its surface are identical to those on a classical Newtonian fluid with extremely low viscosity. The possibility of directly driving a charged surface by an oscillating electric field and the low viscosity of He-II have allowed us to isolate the surface dynamics and study nonlinear surface waves in a range of frequencies much wider than in experiments with classical fluids.

L. V. Abdurakhimov; I. A. Remizov; A. A. Levchenko; G. V. Kolmakov; Y. V. Lvov

2014-04-03T23:59:59.000Z

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy and materials flows in the iron and steel industry  

SciTech Connect (OSTI)

Past energy-consumption trends and future energy-conservation opportunities are investigated for the nation's iron and steel industry. It is estimated that, in 1980, the industry directly consumed approximately 2.46 x 10/sup 15/ Btu of energy (roughly 3% of total US energy consumption) to produce 111 million tons of raw steel and to ship 84 million tons of steel products. Direct plus indirect consumption is estimated to be about 3.1 x 10/sup 15/ Btu. Of the set of conservation technologies identified, most are judged to be ready for commercialization if and when the industry's capital formation and profitability problems are solved and the gradual predicted increase in energy prices reduces the payback periods to acceptable levels.

Sparrow, F.T.

1983-06-01T23:59:59.000Z

202

Nuclear Physics A 772 (2006) 113137 Total prompt energy release in the neutron-induced  

E-Print Network [OSTI]

This study addresses, for the first time, the total prompt energy release and its components for the fission of 235U, 238U, and 239Pu as a function of the kinetic energy of the neutron inducing the fission. The components are extracted from experimental measurements, where they exist, together with model-dependent calculation, interpolation, and extrapolation. While the components display clear dependencies upon the incident neutron energy, their sums display only weak, yet definite, energy dependencies. Also addressed is the total prompt energy deposition in fission for the same three systems. Results are presented in equation form. New measurements are recommended as a consequence of this study.

D. G. Madland

2006-01-01T23:59:59.000Z

203

Reduced Total Energy Requirements For The Original Alcubierre and Natario Warp Drive Spacetimes-The Role Of Warp Factors.  

E-Print Network [OSTI]

Reduced Total Energy Requirements For The Original Alcubierre and Natario Warp Drive Spacetimes Alcubierre and Natario themselves the Warp Drive violates all the known energy conditions because the stress energy momentum tensor(the right side of the Einstein Field Equations) for the Einstein tensor G00

Boyer, Edmond

204

Energy efficiency improvements utilising mass flow control and a ring topology in a district heating network  

Science Journals Connector (OSTI)

Abstract Heating and cooling have a major role in the energy sector, covering 46% of total final energy use worldwide. District heating (DH) is a significant technology for improving the energy efficiency of heating systems in communities, because it enables waste heat sources to be utilised economically and therefore significantly reduces the environmental impacts of power generation. As a result of new and more stringent construction regulations for buildings, the heat demands of individual buildings are decreasing and more energy-efficient heating systems have to be developed. In this study, the energy efficiency of a new DH system which includes both a new control system called mass flow control and a new network design called a ring network is examined. A topology in the Helsinki region is studied by using a commercial DH network modelling tool, Grades Heating. The district heating network is attached to a wood-burning heat station which has a heat recovery system in use. Examination is performed by means of both technical and economic analysis. The new non-linear temperature programme that is required is adopted for supply and return temperatures, which allows greater temperature cooling and smaller flow rates. Lower district heating water temperatures are essential when reducing the heat losses in the network and heat production. Mass flow control allows smaller pressure drops in the network and thus reduces the pumping power. The aim of this study was to determine the most energy-efficient DH water supply temperatures in the case network. If the ring network design is utilised, the district heating system is easier to control. As a result the total heat consumption within the heating season is reduced compared to traditional DH systems. On the basis of the results, the new DH system is significantly more energy-efficient in the case network that was examined than the traditional design. For example, average energy losses within the constraints (which consist of heat losses, pumping energy, and surplus energy from the heat recovery system) are reduced from 4.4% to 3.1%.

Tatu Laajalehto; Maunu Kuosa; Tapio Mkil; Markku Lampinen; Risto Lahdelma

2014-01-01T23:59:59.000Z

205

Science for Energy Flow | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science for Energy Flow Science for Energy Flow Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Energy Flow Diagram Seeing Matter Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » News & Resources Science for Energy Flow Print Text Size: A A A RSS Feeds FeedbackShare Page Powering the Future with a New Era of Science Click to enlarge photo. Enlarge Photo Energy Flow 2010

206

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

material intensity, energy intensity of materials, buildingtypes manufacturing energy intensity (how much energy itthe manufacturing energy intensity of each type of building

Fridley, David G.

2008-01-01T23:59:59.000Z

207

An Energy Principle for Ideal MHD Equilibria with Flows  

SciTech Connect (OSTI)

In the standard ideal MHD energy principle for equilibria with no flows, the stability criterion, which is the defi niteness of the perturbed potential energy, is usually constructed from the linearized equation of motion. Equivalently while more straightforwardly, it can also be obtained from the second variation of the Hamiltonian calculated with proper constraints. For equilibria with flows, a stability criterion was proposed from the linearized equation of motion, but not explained as an energy principle1. In this paper, the second variation of the Hamiltonian is found to provide a stability criterion equivalent to, while more straightforward than, what was constructed from the linearized equation of motion. To calculate the variations of the Hamiltonian, a complete set of constraints on the dynamics of the perturbations is derived from the Euler-Poincare structure of the ideal MHD. In addition, a previous calculation of the second variation of the Hamiltonian was claimed to give a different stability criterion2, and in this paper we argue such a claim is incorrect.

Yao Zhou and Hong Qin

2013-03-11T23:59:59.000Z

208

TOTAL Full-TOTAL Full-  

E-Print Network [OSTI]

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

209

Parametric analysis of total costs and energy efficiency of 2G enzymatic ethanol production  

Science Journals Connector (OSTI)

Abstract This paper presents an analysis of total costs (TPC) and energy efficiency of enzymatic ethanol production. The analysis is parametrized with respect to plant capacity and polysaccharides content (pc) of lignocellulosic feedstock. The feedstock is based on wheat straw whose price is proportional to its pc ranging from new straw with high pc and high cost to agro-wastes with limited pc but lower cost. The plant flowsheet was built using a conventional biochemical platform with co-saccharification and fermentation (SHF) technologies. A parametric analysis of TPC as a function of plant capacity (1002100ton DB/day) and pc (i.e. feedstock price) (80% (75 USD/ton DB)35% (6 USD/ton DB)) was performed with Net Present Value (NPV) techniques. Current data from Mexican economics and the agro-industrial sector were used as an illustrative case. A quasi-linear section of the TCP surface was identified delimited by (3001100ton DB/day) and (8055% pc) with increments no larger than 21% of the minimum TPC obtained (0.99 USD/l etOH for 2100ton DB/day and 80% pc). Major cost contributions are detailed and quantified for boundary cases of this surface. Energy consumption and production were also calculated for all the plant capacity and feedstock pc cases, taking into consideration the Maximum Energy Recovery (MER) obtained from a Pinch analysis. The end-use energy index eer was less than 0.82 for all cases, thus stressing the need to use process equipment with lower energy requirements. TPC are compared against previously published results for SHF technology between 500 and 2100ton DB/day plant capacities. These values were updated and normalized with respect to feedstock and enzyme costs employed in this work. Differences among TPC and recently published normalized results are within a 5% range, thus confirming the dependence of TPC from feedstock and enzyme prices, regardless of flowsheet technology and economic conditions.

A. Sanchez; V. Sevilla-Gitrn; G. Magaa; L. Gutierrez

2013-01-01T23:59:59.000Z

210

Energy flow along the medium-induced parton cascade  

E-Print Network [OSTI]

We discuss the dynamics of parton cascades that develop in dense QCD matter, and contrast their properties with those of similar cascades of gluon radiation in vacuum. We argue that such cascades belong to two distinct classes that are characterized respectively by an increasing or a constant (or decreasing) branching rate along the cascade. In the former class, of which the BDMPS, medium-induced, cascade constitutes a typical example, it takes a finite time to transport a finite amount of energy to very soft quanta, while this time is essentially infinite in the latter case, to which the DGLAP cascade belongs. The medium induced cascade is accompanied by a constant flow of energy towards arbitrary soft modes, leading eventually to the accumulation of the initial energy of the leading particle at zero energy. It also exhibits scaling properties akin to wave turbulence. These properties do not show up in the cascade that develops in vacuum. There, the energy accumulates in the spectrum at smaller and smaller e...

Blaizot, Jean-Paul

2015-01-01T23:59:59.000Z

211

Common Patterns of Energy Flow and Biomass Distribution on Weighted Food Webs  

E-Print Network [OSTI]

Weights of edges and nodes on food webs which are available from the empirical data hide much information about energy flows and biomass distributions in ecosystem. We define a set of variables related to weights for each species $i$, including the throughflow $T_i$, the total biomass $X_i$, and the dissipated flow $D_i$ (output to the environment) to uncover the following common patterns in 19 empirical weighted food webs: (1) DGBD distributions (Discrete version of a Generalized Beta Distribution), a kind of deformed Zipf's law, of energy flow and storage biomass; (2) The allometric scaling law $T_i\\propto X_i^{\\alpha}$, which can be viewed as the counterpart of the Kleiber's 3/4 law at the population level; (3) The dissipation law $D_i\\propto T_i^{\\beta}$; and (4) The gravity law, including univariate version $f_{ij}\\propto (T_iT_j)^{\\gamma}$ and bivariate approvement $f_{ij}\\propto T_i^{\\gamma_1}T_j^{\\gamma_2}$. These patterns are very common and significant in all collected webs, as a result, some remark...

Zhang, Jiang

2012-01-01T23:59:59.000Z

212

The Impact of Neighbourhood Density on the Energy Demand of Passive Houses and on Potential Energy Sources from the Waste Flows and Solar Energy.  

E-Print Network [OSTI]

??This study demonstrates how the density of a neighbourhood affects its energy demand, metabolism (energy and material flows) and its ability to produce its own (more)

Stupka, Robert

2011-01-01T23:59:59.000Z

213

An Energy-Flow Model for Self-Powered Routers and its Application for Energy-Aware Routing  

E-Print Network [OSTI]

of electrical energy. Depen- dence on renewable energy sources and variable power consump- tion make energy trend estimation we develop an energy flow model that accounts for communication and energy, network devices are self-powered, i.e., powered by energy harvested from renewable sources such as wind

Belding-Royer, Elizabeth M.

214

Total energy loss to fast ablator-ions and target capacitance of direct-drive implosions on OMEGA  

E-Print Network [OSTI]

Energetics, Rochester, New York 14623, USA 3 Los Alamos National Laboratory, Los Alamos, New Mexico 87545Total energy loss to fast ablator-ions and target capacitance of direct-drive implosions on OMEGA N 19, 093101 (2012) Target normal sheath acceleration sheath fields for arbitrary electron energy

215

Effect of Beam Quality on the Scaling of High-Energy Flow Lasers  

Science Journals Connector (OSTI)

The maximum output power from high-energy flow lasers is primarily determined by the ... field intensity, however, depends on the beam quality that can be achieved with the laser ... of gas flow inhomogeneities o...

W. L. Bohn; Th. Hall

1987-01-01T23:59:59.000Z

216

Flow Test At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Wister Area (DOE GTP) Exploration Activity...

217

Flow Test At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Colrado Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Colrado Area (DOE GTP) Exploration Activity...

218

Flow Test At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Alum Area (DOE GTP) Exploration Activity Details...

219

ENERGY CONCENTRATION FOR 2-DIMENSIONAL RADIALLY SYMMETRIC EQUIVARIANT HARMONIC MAP HEAT FLOWS  

E-Print Network [OSTI]

flows. Adapting Struwe's energy method we first establish a finite bubble tree result with a discrete, energy method, energy quanta, bubble tree, bubbling off, single bubble, intersection-comparison. AMSENERGY CONCENTRATION FOR 2-DIMENSIONAL RADIALLY SYMMETRIC EQUIVARIANT HARMONIC MAP HEAT FLOWS

Hulshof, Joost

220

Sleep with Guilt and Work Faster to Minimize Flow plus Energy  

E-Print Network [OSTI]

to reduce energy usage. Re- cently there is a lot of theory research on online job scheduling taking speedSleep with Guilt and Work Faster to Minimize Flow plus Energy Tak-Wah Lam1, , Lap-Kei Lee1 , Hing. {isaacto, pwong}@liverpool.ac.uk Abstract. In this paper we extend the study of flow-energy scheduling

Wong, Prudence W.H.

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy flow of moving dissipative topological solitons A. V. Gorbach, S. Denisov, and S. Flach  

E-Print Network [OSTI]

. For the case of an external ac force the moving soliton (ratchet effect) trans- ports energy exclusively viaEnergy flow of moving dissipative topological solitons A. V. Gorbach, S. Denisov, and S. Flach Max; accepted 2 May 2006; published online 23 June 2006 We study the energy flow due to the motion

Flach, Sergej

222

Beryllium and Graphite High-Accuracy Total Cross-Section Measurements in the Energy Range from 24 to 900 keV  

E-Print Network [OSTI]

Beryllium and Graphite High-Accuracy Total Cross-Section Measurements in the Energy Range from 24 new measurements of the carbon and beryllium neutron total cross section in the energy range of 24 the measurement of the energy-dependent total cross section st ~Ei ! by applying Eq. ~1! for every TOF channel i

Danon, Yaron

223

"Table B29. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" 9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",64783,60028,15996,32970,3818,4907 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,1779,2672,484,"Q" "5,001 to 10,000 ..............",6585,5786,1686,3068,428,"Q" "10,001 to 25,000 .............",11535,10387,3366,5807,536,"Q" "25,001 to 50,000 .............",8668,8060,2264,4974,300,325

224

A Variable Refrigerant Flow Heat Pump Computer Model in EnergyPlus  

SciTech Connect (OSTI)

This paper provides an overview of the variable refrigerant flow heat pump computer model included with the Department of Energy's EnergyPlusTM whole-building energy simulation software. The mathematical model for a variable refrigerant flow heat pump operating in cooling or heating mode, and a detailed model for the variable refrigerant flow direct-expansion (DX) cooling coil are described in detail.

Raustad, Richard A. [Florida Solar Energy Center

2013-01-01T23:59:59.000Z

225

FY 2007 Total System Life Cycle Cost, Pub 2008 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management's (OCRWM) May 2007 total system cost estimate for the disposal of the Nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TSLCC analysis provides a basis for assessing the adequacy of the Nuclear Waste Fund (NWF) Fee as required by Section 302 of the Nuclear Waste Policy Act of 1982 (NWPA), as amended. In addition, the TSLCC analysis provides a basis for the calculation of the Government's share of disposal costs for government-owned and managed SNF and HLW. The TSLCC estimate includes both historical costs and

226

Gravitational collapse of a spherical star with heat flow as a possible energy mechanism of gamma-ray bursts  

E-Print Network [OSTI]

We investigate the gravitational collapse of a spherically symmetric, inhomogeneous star, which is described by a perfect fluid with heat flow and satisfies the equation of state $p=\\rho/3$ at its center. In the process of the gravitational collapsing, the energy of the whole star is emitted into space. And the remaining spacetime is a Minkowski one without a remnant at the end of the process. For a star with a solar mass and solar radius, the total energy emitted is at the order of $10^{54}$ {\\rm erg}, and the time-scale of the process is about $8s$. These are in the typical values for a gamma-ray burst. Thus, we suggest the gravitational collapse of a spherical star with heat flow as a possible energy mechanism of gamma-ray bursts.

Zhe Chang; Cheng-Bo Guan; Chao-Guang Huang; Xin Li

2008-03-26T23:59:59.000Z

227

Total fission cross section of {sup 181}Ta and {sup 208}Pb induced by protons at relativistic energies  

SciTech Connect (OSTI)

Total fission cross section induced by protons in {sup 181}Ta and {sup 208}Pb at energies in the range of 300 to 1000 A MeV have been measured at GSI (Germany) using the inverse kinematics technique. A dedicated setup with high efficiency made it possible to determine these cross sections with high accuracy. The new data seed light in the controversial results obtained so far and contribute to the understanding of the fission process at high excitation energies. (authors)

Ayyad, Y.; Benlliure, J.; Casarejos, E. [Group GENP, Dpto. Fisica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Schmidt, K. H. [GSI, Planckstrasse 1, 64941, Darmstadt (Germany); Jurado, B. [Universite Bordeaux I, CNRS/IN2 P3, CENBG, BP 120, F-33175 Gradignan (France); Kelic-Heil, A. [GSI, Planckstrasse 1, 64941, Darmstadt (Germany); Pol, H. A. [Group GENP, Dpto. Fisica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Ricciardi, M. V.; Pleskac, R. [GSI, Planckstrasse 1, 64941, Darmstadt (Germany); Enqvist, T. [CUPP Project, P.O. Box 22, FI-86801, Pyhsalmi (Finland); Rejmund, F. [Grand Accelerateur National D Ions Lourds, BP 55027, F-14076 Caen Cedex 05 (France); Giot, L. [Subatech - Ecole des Mines de Nantes (France); Henzl, V. [Massachusetts Inst. of Technology, 77, Massachusetts Ave, Cambridge, MA 02139 (United States); Lukic, S. [Karlsruhe Inst. of Technology, D-76021 Karlsruhe (Germany); Ngoc, S. N. [Dept. of Nuclear Physics, Inst. of Physics, National Centre for Natural Science and Technology, NgiaDo-TuLiem, Hanoi (Viet Nam); Boudard, A. [DSM/IRFU/CEA, 91191 Gif-sur-Ivette (France); Universite Louis Pasteur, Strasbourg (France); Leray, S. [DSM/IRFU/CEA, 91191 Gif-sur-Ivette (France); Fernandez, M. [Entro de Investigaciones Energticas Medioambientales Y Tecnolgicas, Madrid (Spain); Kurtukian, T. [Universite Bordeaux I, CNRS/IN2 P3, CENBG, BP 120, F-33175 Gradignan (France); Nadtochy, P. [Omsk State Univ., Dept. of Theoretical Physics, RU-644077 Omsk (Russian Federation); Schmitt, C. [Grand Accelerateur National D'Ions Lourds, BP 55027, F-14076 Caen Cedex 05 (France); Henzlova, D. [Los Alamos National Laboratory, Safeguards Science and Technology Group N-1, Los Alamos, NM 87545 (United States); Paradela, C. [Group GENP, Dpto. Fisica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Bacquias, A. [DSM/IRFU/CEA, 91191 Gif-sur-Ivette (France); Universite Louis Pasteur, Strasbourg (France); Loureiro, D. P. [Group GENP, Dpto. Fisica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Foehr, V. [GSI, Planckstrasse 1, 64941, Darmstadt (Germany); Tarrio, D. [Group GENP, Dpto. Fisica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Kezzar, K. [DSM/IRFU/CEA, 91191 Gif-sur-Ivette (France)

2011-07-01T23:59:59.000Z

228

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" "Total United States" "RSE Column Factors:","NF",0.4,1.6,1.5,0.7,1,1.6,"NF" "TOTAL INPUTS",15027,2370,414,139,5506,105,1184,5309,3 "Boiler Fuel","--","W",296,40,2098,18,859,"--",3.6

229

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:"," NF",0.5,1.3,1.4,0.8,1.2,1.2," NF" "TOTAL INPUTS",16515,2656,441,152,6141,99,1198,5828,2.7 "Indirect Uses-Boiler Fuel"," --",28,313,42,2396,15,875," --",4

230

NUCLEAR FLUID DYNAMICS VERSUS INTRANUCLEAR CASCADE--POSSIBLE EVIDENCE FOR COLLECTIVE FLOW IN CENTRAL HIGH ENERGY NUCLEAR COLLISIONS  

E-Print Network [OSTI]

Flow in Central High Energy Nuclear Collisions H. Stockera,theoretical models of high energy nuclear collisions andunder Contract High energy nuclear collisions offer a unique

Stocker, H.

2012-01-01T23:59:59.000Z

231

Effect of window type, size and orientation on the total energy demand for a building in Indian climatic conditions  

Science Journals Connector (OSTI)

Windows in a building allow daylight to enter a building space but simultaneously they also result in heat gains and losses affecting energy balance. This requires an optimisation of window area from the point of view of total energy demand viz., for lighting and cooling/heating. This paper is devoted to this kind of study for Indian climatic conditions, which are characterised by six climatic zones varying from extreme cold to hot, dry and humid conditions. Different types of windows have been considered because the optimised size will also depend on the thermo-optical parameters like heat transfer coefficient (U-value), solar heat gain coefficient (g), visual (?), and total transmittance (T) of the glazing in the window. It is observed that in a non-insulated building, cooling/heating energy demand far exceeds lighting energy demand, making the optimisation of window area a futile exercise from the point of view of total energy demand. Only for buildings with U-value below 0.6 W/m²K can optimisation be achieved. The optimised window area and the corresponding specific energy consumption have been calculated for different climates in India, for different orientations, and for three different advanced window systems.

Inderjeet Singh; N.K. Bansal

2004-01-01T23:59:59.000Z

232

Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrtyTotal | Open Energy  

Open Energy Info (EERE)

ElctrtyTotal ElctrtyTotal Jump to: navigation, search This is a property of type String. Electricity, total Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2ElctrtyTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 71.2214478303 + Sweden Building 05K0002 + 95.9357541899 + Sweden Building 05K0003 + 72.2496632241 + Sweden Building 05K0004 + 65.8830409357 + Sweden Building 05K0005 + 54.2477876106 + Sweden Building 05K0006 + 58.7608028994 + Sweden Building 05K0007 + 61.5607534672 + Sweden Building 05K0008 + 40.3846153846 + Sweden Building 05K0009 + 56.4810818587 + Sweden Building 05K0010 + 152.219679634 + Sweden Building 05K0011 + 25.5555555556 + Sweden Building 05K0012 + 35.8807888323 + Sweden Building 05K0013 + 61.3267863536 +

233

Total Facility Control - Applying New Intelligent Technologies to Energy Efficient Green Buildings  

E-Print Network [OSTI]

lighting, co-generation stations, and much more. This paper will discuss some of the basic concepts, architectures, and technologies that are being used today to implement a Total Facility Control model....

Bernstein, R.

2010-01-01T23:59:59.000Z

234

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

"Net","Residual","and Diesel",,,"and",,"Row" "Code(a)","End-Use Categories","Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural Gas(d)","LPG","Breeze)","Other(e)","Factors" ,...

235

Table A10. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

,,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural Gas(d)","LPG","and Breeze)","Other(e)","Row"...

236

Hybrid Recursive Energy-based Method for Robust Optical Flow on Large Motion Fields  

E-Print Network [OSTI]

Hybrid Recursive Energy-based Method for Robust Optical Flow on Large Motion Fields Jangheon Kim for optical flow estimation. The method efficiently combines the advantage of discrete motion estimation and optical flow estimation in a recursive block-to-pixel estimation scheme. Integrated local and global

Wichmann, Felix

237

Effect of local energy supply to a hypersonic flow on the drag of bodies with different nose bluntness  

SciTech Connect (OSTI)

Parameters of the axisymmetric flow around bodies with different bluntness are compared in the case of constant energy supply to the main hypersonic flow. Flow structures, drag coefficients, and expenditure of energy on overcoming drag are analyzed with the effect of thermal energy on the flow taken into account for different bodies with equal volume.

Borzov, V.Yu.; Rybka, I.V.; Yur`ev, A.S. [A.F. Mozhaisky Military Space Engineering Academy, St. Petersburg (Russian Federation)

1995-06-01T23:59:59.000Z

238

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(billion cu ft)","(1000 bbls)","(1000 short tons)","(trillion Btu)","Factors" ,,,,,,,,,,, ,"Total United States"

239

The material and energy flow through the abrasive waterjet machining and recycling processes  

E-Print Network [OSTI]

The purpose of this thesis was to investigate the material and energy flow through the abrasive waterjet machine and the WARD recycling machine. The goal was to track all of the material, water, abrasive, energy, air, and ...

Kurd, Michael Omar, 1982-

2004-01-01T23:59:59.000Z

240

Fuel Cell Technologies Overview: 2012 Flow Cells for Energy Storage Workshop  

Broader source: Energy.gov [DOE]

Presentation by Sunita Satyapal and Dimitrios Papageorgopoulos, U.S. Department of Energy Fuel Cell Technologies Program, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC.

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Interpretive geothermal heat flow map of Colorado | Open Energy...  

Open Energy Info (EERE)

Interpretive geothermal heat flow map of Colorado Jump to: navigation, search OpenEI Reference LibraryAdd to library Map: Interpretive geothermal heat flow map of ColoradoInfo...

242

Optical Flow Estimation using Laplacian Mesh Energy Wenbin Li Darren Cosker Matthew Brown Rui Tang  

E-Print Network [OSTI]

Optical Flow Estimation using Laplacian Mesh Energy Wenbin Li Darren Cosker Matthew Brown Rui Tang.p.cosker,m.brown,r.tang}@bath.ac.uk Abstract In this paper we present a novel non-rigid optical flow algorithm for dense image correspondence and non-rigid registration. The algorithm uses a unique Laplacian Mesh Energy term to encourage local

Martin, Ralph R.

243

Optimal mixing and optimal stirring for fixed energy, fixed power or fixed palenstrophy flows  

E-Print Network [OSTI]

Optimal mixing and optimal stirring for fixed energy, fixed power or fixed palenstrophy flows-time perfect mixing with a finite energy constraint on the stirring flow. On the other hand, using techniques, University of Michigan, Ann Arbor, MI 48109 (Dated: 31 March 2012) We consider passive scalar mixing

Novikov, Alexei

244

Property:Building/SPPurchasedEngyNrmlYrMwhYrElctrtyTotal | Open Energy  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/SPPurchasedEngyNrmlYrMwhYrElctrtyTotal Jump to: navigation, search This is a property of type String. Electricity, total Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrElctrtyTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1400.0 + Sweden Building 05K0002 + 686.9 + Sweden Building 05K0003 + 321.8 + Sweden Building 05K0004 + 1689.9 + Sweden Building 05K0005 + 122.6 + Sweden Building 05K0006 + 843.1 + Sweden Building 05K0007 + 1487.0 + Sweden Building 05K0008 + 315.0 + Sweden Building 05K0009 + 1963.0 + Sweden Building 05K0010 + 66.52 + Sweden Building 05K0011 + 391.0 + Sweden Building 05K0012 + 809.65 +

245

CoreFlow Scientific Solutions Ltd | Open Energy Information  

Open Energy Info (EERE)

CoreFlow Scientific Solutions Ltd CoreFlow Scientific Solutions Ltd Jump to: navigation, search Name CoreFlow Scientific Solutions Ltd Place Yoqneam, Israel Zip 20692 Sector Solar Product Israel-based manufacturer of non-contact substrate processing, handling, and testing equipments for Flat Panel Display (FPD), semiconductor, and solar industries. References CoreFlow Scientific Solutions Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CoreFlow Scientific Solutions Ltd is a company located in Yoqneam, Israel . References ↑ "CoreFlow Scientific Solutions Ltd" Retrieved from "http://en.openei.org/w/index.php?title=CoreFlow_Scientific_Solutions_Ltd&oldid=343913" Categories:

246

Dixie Valley Six Well Flow Test | Open Energy Information  

Open Energy Info (EERE)

Six Well Flow Test Six Well Flow Test Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Dixie Valley Six Well Flow Test Abstract A six well flow test was conducted during 1986 at the Dixie Valley geothermal field. Flow duration lasted from 40 to 74 days with a maximum rate of 5.9 million pounds/hour. During the test, downhole pressures were monitored in eight surrounding wells. Downhole pressure and temperature surveys were run in each of the flowing wells,usually in conjunction with productivity tests. Results from the flow test and earlier interference tests indicate that six wells are capable of providing in excess of the 4.5 million pounds/hour required for a 62 mw (gross) power plant. Author William L. Desormier Published Journal Geothermal Resources Council, TRANSACTIONS, 1987

247

Table A1. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ","Coke and"," "," " " "," ",,"Net","Residual","Distillate","Natural Gas(d)"," ","Coal","Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row"

248

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Net","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

249

Property:Building/SPPurchasedEngyNrmlYrMwhYrTotal | Open Energy Information  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrTotal SPPurchasedEngyNrmlYrMwhYrTotal Jump to: navigation, search This is a property of type String. Total Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4355.0 + Sweden Building 05K0002 + 1530.1 + Sweden Building 05K0003 + 872.1 + Sweden Building 05K0004 + 4466.9 + Sweden Building 05K0005 + 768.6 + Sweden Building 05K0006 + 3031.1 + Sweden Building 05K0007 + 3479.0 + Sweden Building 05K0008 + 1336.0 + Sweden Building 05K0009 + 4876.0 + Sweden Building 05K0010 + 131.52 + Sweden Building 05K0011 + 1501.0 + Sweden Building 05K0012 + 2405.65 + Sweden Building 05K0013 + 3436.6002445 + Sweden Building 05K0014 + 389.66 + Sweden Building 05K0015 + 270.0 +

250

Property:Building/SPPurchasedEngyForPeriodMwhYrTotal | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrTotal SPPurchasedEngyForPeriodMwhYrTotal Jump to: navigation, search This is a property of type String. Total Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4228.0 + Sweden Building 05K0002 + 1501.1 + Sweden Building 05K0003 + 847.1 + Sweden Building 05K0004 + 4360.9 + Sweden Building 05K0005 + 727.6 + Sweden Building 05K0006 + 2915.1 + Sweden Building 05K0007 + 3385.0 + Sweden Building 05K0008 + 1282.0 + Sweden Building 05K0009 + 4739.0 + Sweden Building 05K0010 + 127.52 + Sweden Building 05K0011 + 1436.0 + Sweden Building 05K0012 + 2334.65 + Sweden Building 05K0013 + 3323.0 + Sweden Building 05K0014 + 381.66 + Sweden Building 05K0015 + 257.0 +

251

Property:Building/SPPurchasedEngyForPeriodMwhYrElctrtyTotal | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrElctrtyTotal SPPurchasedEngyForPeriodMwhYrElctrtyTotal Jump to: navigation, search This is a property of type String. Electricity, total Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrElctrtyTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1399.0 + Sweden Building 05K0002 + 686.9 + Sweden Building 05K0003 + 321.8 + Sweden Building 05K0004 + 1689.9 + Sweden Building 05K0005 + 122.6 + Sweden Building 05K0006 + 843.1 + Sweden Building 05K0007 + 1487.0 + Sweden Building 05K0008 + 315.0 + Sweden Building 05K0009 + 1963.0 + Sweden Building 05K0010 + 66.52 + Sweden Building 05K0011 + 391.0 + Sweden Building 05K0012 + 809.65 + Sweden Building 05K0013 + 1199.0 + Sweden Building 05K0014 + 227.66 +

252

Bounds on the Solar Antineutrino total Flux and Energy spectrum from the SK experiment  

E-Print Network [OSTI]

A search for inverse beta decay electron antineutrinos has been carried out using the 825 days sample of solar data obtained at SK. The absence of a significant signal, that is, contributions to the total SK background and their angular variations has set upper bounds on a) the absolute flux of solar antineutrinos originated from ${}^8 B$ neutrinos $\\Phi_{\\bar{\

E. Torrente-Lujan

1999-11-23T23:59:59.000Z

253

Table A1. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," ",," "," "," "," "," "," "," "," ","RSE" "SIC"," ",,"Net","Residual","Distillate "," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry"," Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

254

Variational bounds on energy dissipation in incompressible flows. III. Convection  

SciTech Connect (OSTI)

Building on a method of analysis for the Navier-Stokes equations introduced by Hopf [Math. Ann. {bold 117}, 764 (1941)], a variational principle for upper bounds on the largest possible time averaged convective heat flux is derived from the Boussinesq equations of motion. When supplied with appropriate test background fields satisfying a spectral constraint, reminiscent of an energy stability condition, the variational formulation produces rigorous upper bounds on the Nusselt number (Nu) as a function of the Rayleigh number (Ra). For the case of vertical heat convection between parallel plates in the absence of sidewalls, a simplified (but rigorous) formulation of the optimization problem yields the large Rayleigh number bound Nu{le}0.167 Ra{sup 1/2}{minus}1. Nonlinear Euler-Lagrange equations for the optimal background fields are also derived, which allow us to make contact with the upper bound theory of Howard [J. Fluid Mech. {bold 17}, 405 (1963)] for statistically stationary flows. The structure of solutions of the Euler-Lagrange equations are elucidated from the geometry of the variational constraints, which sheds light on Busse{close_quote}s [J. Fluid Mech. {bold 37}, 457 (1969)] asymptotic analysis of general solutions to Howard{close_quote}s Euler-Lagrange equations. The results of our analysis are discussed in the context of theory, recent experiments, and direct numerical simulations. {copyright} {ital 1996 The American Physical Society.}

Doering, C.R. [Center for Nonlinear Studies, MS-B258, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Center for Nonlinear Studies, MS-B258, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Constantin, P. [Department of Mathematics, University of Chicago, Chicago, Illinois 60637 (United States)] [Department of Mathematics, University of Chicago, Chicago, Illinois 60637 (United States)

1996-06-01T23:59:59.000Z

255

Isotopic Mo Neutron Total Cross Section Measurements in the Energy Range 1 to 620 keV  

Science Journals Connector (OSTI)

Abstract A series of new total cross section measurements for the stable molybdenum isotopes of 92,94,95,96,98,100Mo covering the energy range between 1 keV and 620 keV was performed at the Gaerttner LINAC Center at Rensselaer Polytechnic Institute. New high-accuracy resonance parameters were extracted from an analysis of the data using the multilevel R-matrix Bayesian code SAMMY. In the unresolved resonance region, average resonance parameters and fits to the total cross sections were obtained using the Bayesian Hauser-Feshbach statistical model code FITACS.

R. Bahran; D. Barry; G. Leinweber; M. Rapp; R. Block; A. Daskalakis; B. McDermott; S. Piela; E. Blain; Y. Danon

2014-01-01T23:59:59.000Z

256

MHK Technologies/GreenFlow Turbines | Open Energy Information  

Open Energy Info (EERE)

GreenFlow Turbines GreenFlow Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage GreenFlow Turbines.jpg Technology Profile Primary Organization Gulfstream Technologies Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Targeted at commercial sites with large water flow volume These hydro turbines range in size from 50kW to 750kW with many sites able to house multiple units Technology Dimensions Device Testing Date Submitted 55:53.9 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/GreenFlow_Turbines&oldid=681584

257

Flow Test At Coso Geothermal Area (1978) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Coso Geothermal Area (1978) Flow Test At Coso Geothermal Area (1978) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Flow Test Activity Date 1978 Usefulness not indicated DOE-funding Unknown Notes Flow tests of well CGEH No. 1 were conducted. LBL performed eight temperature surveys after completion of the well to estimate equilibrium reservoir temperatures. Downhole fluid samples were obtained by the U.S. Geological Survey (USGS) and Lawrence Berkeley Laboratory (LBL), and a static pressure profile was obtained. The first test began September 5, 1978 using nitrogen stimulation to initiate flow; this procedure resulted in small flow and subsequent filling of the bottom hole with drill cuttings. The second test, on November 2, 1978, utilized a nitrogen-foam-water mixture to clean residual particles from bottom hole,

258

Total and Peak Energy Consumption Minimization of Building HVAC Systems Using Model Predictive Control  

E-Print Network [OSTI]

inputs. The idea of modeling building thermal behavior usingThe detail of building thermal modeling is pre- sented in [Modeling and optimal control algorithm design for hvac systems in energy efficient buildings,

Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

2012-01-01T23:59:59.000Z

259

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

rate of technology penetration and rate of intensity change,energy. In addition, the penetration rate of each end-use isinstalled base (i.e. penetration rate) for each end-use set

Fridley, David G.

2008-01-01T23:59:59.000Z

260

Asymptotic High Energy Total Cross Sections and Theories with Extra Dimensions  

E-Print Network [OSTI]

The rate at which cross sections grow with energy is sensitive to the presence of extra dimensions in a rather model-independent fashion. We examine how rates would be expected to grow if there are more spatial dimensions than 3 which appear at some energy scale, making connections with black hole physics and string theory. We also review what is known about the corresponding generalization of the Froissart-Martin bound and the experimental status of high energy hadronic cross sections which appear to saturate it up to the experimentally accessible limit of 100 TeV. We discuss how extra dimensions can be searched for in high energy cross section data and find no room for large extra dimensions in present data. Any apparent signatures of extra dimensions at the LHC may have to be interpreted as due to some other form of new physics.

J. Swain; A. Widom; Y. Srivastava

2014-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

of energy consumed from coal, coke, liquid fuels, naturalwas expressed in terms of coal equivalency. 2.1.8.1 Tnational fuel inputs of coal, natural gas and petroleum were

Fridley, David G.

2008-01-01T23:59:59.000Z

262

Property:Building/SPBreakdownOfElctrcityUseKwhM2Total | Open Energy  

Open Energy Info (EERE)

SPBreakdownOfElctrcityUseKwhM2Total" SPBreakdownOfElctrcityUseKwhM2Total" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 71.4577086539 + Sweden Building 05K0002 + 110.926946534 + Sweden Building 05K0003 + 72.9096074806 + Sweden Building 05K0004 + 66.0248923654 + Sweden Building 05K0005 + 54.8654809632 + Sweden Building 05K0006 + 65.291976787 + Sweden Building 05K0007 + 65.5403331042 + Sweden Building 05K0008 + 41.6418235453 + Sweden Building 05K0009 + 56.5413268466 + Sweden Building 05K0010 + 150.269021739 + Sweden Building 05K0011 + 27.5018481341 + Sweden Building 05K0012 + 37.9937990385 + Sweden Building 05K0013 + 68.8990371973 + Sweden Building 05K0014 + 166.794253904 + Sweden Building 05K0015 + 71.0813662687 + Sweden Building 05K0016 + 38.5267410327 +

263

Property:Building/SPPurchasedEngyPerAreaKwhM2Total | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyPerAreaKwhM2Total" SPPurchasedEngyPerAreaKwhM2Total" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 221.549575215 + Sweden Building 05K0002 + 213.701117318 + Sweden Building 05K0003 + 195.801526718 + Sweden Building 05K0004 + 174.148148148 + Sweden Building 05K0005 + 340.088495575 + Sweden Building 05K0006 + 211.255924171 + Sweden Building 05K0007 + 144.028151521 + Sweden Building 05K0008 + 171.282051282 + Sweden Building 05K0009 + 140.296360236 + Sweden Building 05K0010 + 300.961098398 + Sweden Building 05K0011 + 98.1045751634 + Sweden Building 05K0012 + 106.609793929 + Sweden Building 05K0013 + 175.776187637 + Sweden Building 05K0014 + 291.160427408 + Sweden Building 05K0015 + 174.193548387 + Sweden Building 05K0016 + 145.793794187 +

264

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

265

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

1",,,,,,,"Coal" 1",,,,,,,"Coal" " (Estimates in Btu or Physical Units)",,,,,,,"(excluding" ,,,,"Distillate",,,"Coal Coke" ,,"Net",,"Fuel Oil",,,"and" ,,"Electricity(a)","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" ,"Total","(million","Fuel Oil","Fuel","(billion","LPG","(1000 short","Other","Row" "End-Use Categories","(trillion Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors"

266

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

,,,,,,,,"Coal" ,,,,,,,,"Coal" " Part 1",,,,,,,,"(excluding" " (Estimates in Btu or Physical Units)",,,,,"Distillate",,,"Coal Coke" ,,,,,"Fuel Oil",,,"and" ,,,"Net","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel","(billion","LPG","(1000 Short","Other","Row" "Code(a)","End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors",

267

The International Heat Flow Commission | Open Energy Information  

Open Energy Info (EERE)

The International Heat Flow Commission The International Heat Flow Commission Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The International Heat Flow Commission Details Activities (1) Areas (1) Regions (0) Abstract: Unavailable Author(s): A. E. Beck, V. Cermak Published: Geothermics, 1989 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Data Acquisition-Manipulation (Beck & Cermak, 1989) Unspecified Retrieved from "http://en.openei.org/w/index.php?title=The_International_Heat_Flow_Commission&oldid=387748" Category: Reference Materials What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863774514

268

Smoothing the Flow of Renewable Solar Energy in California's...  

Energy Savers [EERE]

which are packaged in small modules, iron-chromium flow batteries consist of two large tanks that store liquids (called electrolytes) containing the metals. During discharge, the...

269

Flow Test At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Additional References Retrieved from "http:en.openei.orgw...

270

Total energy study of the microscopic structure and electronic properties of tetragonal perovskite SrTiO{sub 3}  

SciTech Connect (OSTI)

To study the structural and electronic properties of cubic perovskite SrTiO{sub 3} and its stress-induced tetragonal phase, we have performed total energy calculations and studied the effect of oxygen vacancies on the electronic properties of tetragonal perovskite SrTiO{sub 3}. The method used was the relativistic full-potential linearized augmented plane wave (FLAPW) method. To obtain the geometry that minimizes the total energy, we relaxed the internal atomic sites of the tetragonal cell. As a result of this procedure, we have found that the titanium atoms move toward the plane of the vacancy by 0.03 , and the apical oxygen atoms move to the same plane by approximately 0.14 . These results are discussed in comparison with experimental data.

Rubio-Ponce, A. [Departamento de Ciencias Bsicas, Universidad Autnoma Metropolitana-Azcapotzalco, Av. San Pablo 180, 02200 Mxico, D.F. (Mexico); Olgun, D. [Departamento de Fsica, Centro de Investigacin y de Estudios Avanzados del Instituto Politcnico Nacional, A.P. 14740, Mxico, D.F. (Mexico)

2014-05-15T23:59:59.000Z

271

High energy Gamma-Ray Bursts as a result of the collapse and total annihilation of neutralino clumps  

E-Print Network [OSTI]

Rare astrophysical events - cosmological gamma-ray bursts with energies over GeV - are considered as an origin of information about some SUSY parameters. The model of generation of the powerful gamma-ray bursts is proposed. According to this model the gamma-ray burst represents as a result of the collapse and the total annihilation of the neutralino clump. About 80 % of the clump mass radiates during about 100 second at the final stage of annihilation. The annihilation spectrum and its characteristic energies are calculated in the framework of Split Higgsino model.

R. S. Pasechnik; V. A. Beylin; V. I. Kuksa; G. M. Vereshkov

2006-02-20T23:59:59.000Z

272

"Table A33. Total Quantity of Purchased Energy Sources by Census Region, Census Division,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region, Census Division," Quantity of Purchased Energy Sources by Census Region, Census Division," " and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,"Natural",,,"Coke" " ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000 ","(1000","(trillion","Row" "Economic Characteristics(a)","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","Btu)","Factors"

273

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

274

"State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production"  

U.S. Energy Information Administration (EIA) Indexed Site

P2. Energy Production Estimates in Trillion Btu, 2011 " P2. Energy Production Estimates in Trillion Btu, 2011 " "State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production" ,"Coal a",,"Natural Gas b",,"Crude Oil c",,,,"Biofuels d",,"Other e",,"Total" ,"Trillion Btu" "Alabama",468.671,,226.821,,48.569,,411.822,,0,,245.307,,245.307,,1401.191 "Alaska",33.524,,404.72,,1188.008,,0,,0,,15.68,,15.68,,1641.933 "Arizona",174.841,,0.171,,0.215,,327.292,,7.784,,107.433,,115.217,,617.734 "Arkansas",2.985,,1090.87,,34.087,,148.531,,0,,113.532,,113.532,,1390.004 "California",0,,279.71,,1123.408,,383.644,,25.004,,812.786,,837.791,,2624.553

275

Solyndra Facts vs. Fiction: Cash Flow Modeling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Solyndra Facts vs. Fiction: Cash Flow Modeling Solyndra Facts vs. Fiction: Cash Flow Modeling September 23, 2011 - 5:25pm Addthis Questions have been raised about a quote selectively pulled from an Aug. 20, 2009 email to make it look like Solyndra would run out of cash by Sept. 2011. To be clear, the analysis addressed in that email did not refer to Solyndra's corporate cash flow, but rather the cash flow for a subsidiary of Solyndra - the "Fab 2 Project Company." The cash flow models never said that Solyndra (the parent company) would run short of cash in September 2011. The email noted that the subsidiary was projected to have relatively low levels of cash in one particular month, and that the parent company would need to make up any potential shortfall.

276

MHK Technologies/Uppsala Cross flow Turbine | Open Energy Information  

Open Energy Info (EERE)

flow Turbine flow Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uppsala Cross flow Turbine.gif Technology Profile Primary Organization Uppsala University Technology Resource Click here Wave Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A cross flow turbine with fixed blade pitch is directly connected i e no gearbox to a low speed generator The generator is designed to give good efficiency over a wide range of speeds and loads The output voltage and current from the generator will be rectified and then inverted to grid specifications Mooring Configuration Gravity base Optimum Marine/Riverline Conditions Not yet determined Research concerns velocities below and above 1 m s

277

ENERGY FLOW IN A NATURAL POPULATION OF THE ...  

Science Journals Connector (OSTI)

The energy budget, in which ingestion was obtained by summation, ... lations based on energy parameters have ...... phyllum) and using the conversion factors.

2000-02-13T23:59:59.000Z

278

Projections up for total energy demand by IEA nations in 1990  

SciTech Connect (OSTI)

The author reviews the most recent IEA projections for energy demand to the year 2000 in IEA countries. These show that the expectations for 1990 are now higher than estimates made last year. Production of solid fuels is expected to increase from 814 million toe in 1983 to 1044 million toe in 1990 and 1345 million toe by 2000. Nearly all the increase is expected in the US, Canada and Australia.

Vielvoye, R.

1985-06-17T23:59:59.000Z

279

Estimate the fraction of the total transported energy (in the form of gasoline) in the Trans-Alaska Pipeline that is consumed in pumping.  

E-Print Network [OSTI]

Estimate the fraction of the total transported energy (in the form of gasoline) in the Trans m). So we can toss this out. Now estimate the energy content of gasoline: Many of you tried figuring

Nimmo, Francis

280

Heat Flow At Standard Depth | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Heat Flow At Standard Depth Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow At Standard Depth Details Activities (2) Areas (1) Regions (0) Abstract: Secular and long-term periodic changes in surface temperature cause perturbations to the geothermal gradient which may be significant to depths of at least 1000 m, and major corrections are required to determine absolute values of heat flow from the Earth's interior. However, detailed climatic models remain contentious and estimates of error in geothermal gradients differ widely. Consequently, regions of anomalous heat flow which

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Free Flow Energy (TRL 1 2 3 Component)- Design and Development of a Cross-Platform Submersible Generator Optimized for the Conditions of Current Energy Conversion  

Broader source: Energy.gov [DOE]

Free Flow Energy (TRL 1 2 3 Component) - Design and Development of a Cross-Platform Submersible Generator Optimized for the Conditions of Current Energy Conversion

282

Energy performance evaluation of fishing vessels by fuel mass flow measuring system  

Science Journals Connector (OSTI)

A new fuel consumption monitoring system was set up for research purpose in order to evaluate the energy performance of fishing vessels under different operating conditions. The system has been tested on two semi-pelagic pair trawlers in the Adriatic Sea with an engine power of around 900kW, and with length overall of around 30m. Both vessels work with a gear of similar design and size, the differences between the two vessels are in the propeller design and the hull material: the first with a controllable pitch propeller (CPP) and a metal hull, the second with a fixed pitch propeller (FPP) and a wooden hull. The fuel monitoring system conceived at CNR-ISMAR Ancona (Italy) consists of two mass flow sensors, one multichannel recorder and one GPS data logger. The working time duration, the vessel speed, the total fuel consumption and the instant fuel rate were logged by the system. A typical commercial round trip for a semi-pelagic trawler consists of several fishing operations (steaming, trawling sailing, etc.). Fuel consumption rate and vessel speed data were used to identify energy performance under different vessel-operating conditions. The highest fuel demands were during the trawling (130l/h at 4.4kn) and the steaming (100130l/h at 11kn) phases. Fuel savings of up to 15% could be obtained by reducing the navigation speed of half a knot.

Antonello Sala; Francesco De Carlo; Gabriele Buglioni; Alessandro Lucchetti

2011-01-01T23:59:59.000Z

283

Electron induced dissociation of trimethyl (methylcyclopentadienyl) platinum (IV): Total cross section as a function of incident electron energy  

SciTech Connect (OSTI)

The total cross section has been measured for the electron induced dissociation of trimethyl (methylcyclopentadienyl) platinum (IV) [MeCpPt(IV)Me{sub 3}], a Pt precursor often used in focused electron beam induced processing (FEBIP), for incident electron energies ranging between 3-3 keV. Measurements were performed for the precursor in the adsorbed state under ultrahigh vacuum conditions. The techniques used in this study were temperature programmed desorption, x-ray photoelectron spectroscopy and mass spectrometry. Two surfaces were used in these experiments, amorphous carbon overlayers containing embedded Pt atoms (a:C-Pt), formed by the electron decomposition of the Pt precursor, and atomically clean Au. The results from these three experiments revealed a comparatively low total cross section at 8 eV (4.2+-0.3x10{sup -17} cm{sup 2} on the a:C-Pt and 1.4+-0.1x10{sup -17} cm{sup 2} on the Au) that increases with increasing incident electron energy, reaching a maximum at around 150 eV (4.1+-0.5x10{sup -16} cm{sup 2} on the a:C-Pt and 2.3+-0.2x10{sup -16} cm{sup 2} on the clean Au), before decreasing at higher incident electron energies, up to 3000 eV. Differences in the measured cross sections between Au and a:C-Pt surfaces demonstrate that the substrate can influence the reaction cross section of adsorbed species. Temperature programmed desorption was also used to measure the adsorption energy of MeCpPt(IV)Me{sub 3}, which was found to depend on both the substrate and the adsorbate coverage. The work in this paper demonstrates that surface science techniques can be used to quantitatively determine the total cross section of adsorbed FEBIP precursors for electron induced dissociation as a function of incident electron energy. These total cross section values are necessary to obtain quantitatively accurate information from FEBIP models and to compare the reaction efficiencies of different precursors on a quantitative basis.

Dorp, W. F. van [Department of Physics and Astronomy, Laboratory of Surface Modification, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854-8019 (United States); Charged Particle Optics Group, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Wnuk, J. D.; Gorham, J. M.; Fairbrother, D. H. [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Madey, T. E. [Department of Physics and Astronomy, Laboratory of Surface Modification, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854-8019 (United States); Hagen, C. W. [Charged Particle Optics Group, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands)

2009-10-01T23:59:59.000Z

284

Simulation and visualization of fields and energy flows in electric circuits with idealized geometries  

E-Print Network [OSTI]

This thesis develops a method to simulate and visualize the fields and energy flows in electric circuits, using a simplified physical model based on an idealized geometry. The physical models combine and extend previously ...

Ohannessian, Mesrob I., 1981-

2005-01-01T23:59:59.000Z

285

Energy-Saving Design for Pressure Difference Control in Variable Flow Air Conditioning Systems  

E-Print Network [OSTI]

Zhang Senior Engineer Postgraduate Wuhan Architectural Design Institute, Wuhan, China, 430014 Chenyh918@263.net Abstract: This paper analyzes energy-saving design for pressure-difference control in a variable flow air...

Chen, Y.; Zhang, Z.

2006-01-01T23:59:59.000Z

286

Characterization of the Hydrogen-Bromine Flow Battery for Electrical Energy Storage  

E-Print Network [OSTI]

generating units through peak shaving and load leveling. Batteries have proper energy and power densities for these applications. A flow battery is advantageous to a secondary battery because the reactants are stored externally and the electrodes are inert...

Kreutzer, Haley Maren

2012-05-31T23:59:59.000Z

287

Performance characterisation and energy savings of uncovered swimming pool solar collectors under reduced flow rate conditions  

Science Journals Connector (OSTI)

The effects of reduced flow rates on the performance and effectiveness of domestic unglazed, uninsulated pool solar collector heaters are investigated. The study shows electrical energy savings in excess of 80% are achievable for typical solar collectors operating at flow rates reduced by up to 75% while collector efficiency is only reduced by approximately 1015%. The reduction of electrical energy required for pumping and the increased COP of reduced flow through typical pool solar thermal collectors is shown to far outweigh the small loss of collector performance attributable to the change in flow rates. The ratio of thermal energy delivered to the electrical energy supplied was improved in the order of 400% for the collector tested.

L.N. Cunio; A.B. Sproul

2012-01-01T23:59:59.000Z

288

Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean  

E-Print Network [OSTI]

A global estimate of the energy conversion rate from geostrophic flows into internal lee waves in the ocean is presented. The estimate is based on a linear theory applied to bottom topography at O(110) km scales obtained ...

Nikurashin, Maxim

289

Optimal Power Flow of Multiple Energy Carriers(Geidl and Andersson 2007) |  

Open Energy Info (EERE)

Optimal Power Flow of Multiple Energy Carriers(Geidl and Andersson 2007) Optimal Power Flow of Multiple Energy Carriers(Geidl and Andersson 2007) Home > Groups > Energy Systems Integration Qinsun's picture Submitted by Qinsun(35) Member 15 November, 2012 - 13:04 Literature Review The author proposed a linear static state model for multiple energy carriers. The optimal power flow and economic dispatch was determined. The method is a simple method of integrated system planning The methods used in the paper are linear deterministic system without control signal, optimal power flow and economic dispatch The proposed method stabilized the power grid, reduced the marginal cost of electricity, and increased the marginal cost of natural gas. The strength of the proposed method is following: 1. it is integrated; 2. it secures to converge;

290

A Cascade-Type Global Energy Conversion Diagram Based on WaveMean Flow Interactions  

Science Journals Connector (OSTI)

A cascade-type energy conversion diagram is proposed for the purpose of diagnosing the atmospheric general circulation based on wavemean flow interactions. Mass-weighted isentropic zonal means facilitate the expression of nongeostrophic wave ...

Sachiyo Uno; Toshiki Iwasaki

2006-12-01T23:59:59.000Z

291

Property:FirstWellFlowRate | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:FirstWellFlowRate Jump to: navigation, search Property Name FirstWellFlowRate Property Type Quantity Use this type to express a quantity of flow rate by mass. The default unit is kilogram per second (kg/s). Acceptable units (and their conversions) are: Kilogram per second - 1 kg/s,kilogram per second Kilogram per minute - 60 kg/min,kilogram per minute Kilogram per hour - 3600 kg/hour,kilogram per hour,kg/h Kilogram per day - 86400 kg/day,kilogram per day Liter per second - 1.0000000001 L/s,l/s,liters per second,l/sec,L/sec,liters/sec,Liters/sec Gallon per minute - 15.85032 gal/min,gallons per minute,gpm,gallons/min,Gallons/min Barrel per minute - 0.00839 bar/min,barrels per minute,barrel/min,barrels/min,Barrels/min

292

Small modular HTGR nuclear power plant concept to meet the total energy needs of the developing nations  

SciTech Connect (OSTI)

In this paper, a small modular High-Temperature Gas-Cooled Reactor (HTGR) is described that can support the total energy needs of the developing nations by supplying electrical power, process steam, low-grade heat for desalination, and hydrogen production. Major features of the nuclear power plant concept, currently under development by GA Technologies Inc. (GA), are discussed with emphasis on (1) plant simplicity, (2) inherent safety, (3) ease of operation, (4) design and licensing standardization, and (5) acceptable power generation economics.

McDonald, C.F.

1983-09-26T23:59:59.000Z

293

An input-output approach to analyze the ways to increase total output of energy sectors: The case of Japan  

Science Journals Connector (OSTI)

The purpose of this study is to analyze the ways to increase total output of Japanese energy sectors in future time. In this study, Input-Output (IO) analysis is employed as a tool of analysis. This study focuses on petroleum refinery products and non-ferrous metals as analyzed sectors. The results show that positive impact observed in export and outside households consumption modifications while opposite impact is given by modification of import. The recommendations suggested based on these results are Japanese government should make breakthroughs so analyzed sector's export activities can increase and they have to careful in conducting import activities related to these sectors.

Ubaidillah Zuhdi

2014-01-01T23:59:59.000Z

294

Property:Geothermal/FlowLmin | Open Energy Information  

Open Energy Info (EERE)

FlowLmin FlowLmin Jump to: navigation, search This is a property of type Number. Subproperties This property has the following 117 subproperties: A Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility Avila Hot Springs Spa & RV Resort Pool & Spa Low Temperature Geothermal Facility B Bagby Hot Springs Pool & Spa Low Temperature Geothermal Facility Baileys Hot Springs Pool & Spa Low Temperature Geothermal Facility Baker's Bar M Pool & Spa Low Temperature Geothermal Facility Banbury Hot Springs Pool & Spa Low Temperature Geothermal Facility Baranof Pool & Spa Low Temperature Geothermal Facility Bashfords Hot Mineral Spa Pool & Spa Low Temperature Geothermal Facility

295

Property:Geothermal/FlowGpm | Open Energy Information  

Open Energy Info (EERE)

FlowGpm FlowGpm Jump to: navigation, search This is a property of type Number. Subproperties This property has the following 115 subproperties: A Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility Avila Hot Springs Spa & RV Resort Pool & Spa Low Temperature Geothermal Facility B Bagby Hot Springs Pool & Spa Low Temperature Geothermal Facility Baileys Hot Springs Pool & Spa Low Temperature Geothermal Facility Baker's Bar M Pool & Spa Low Temperature Geothermal Facility Banbury Hot Springs Pool & Spa Low Temperature Geothermal Facility Baranof Pool & Spa Low Temperature Geothermal Facility Bashfords Hot Mineral Spa Pool & Spa Low Temperature Geothermal Facility

296

Flow Cells for Energy Storage Workshop Summary Report  

Broader source: Energy.gov [DOE]

Workshop summary report from the Flow Cell Workshop held March 7-8, 2012, in Washington, D.C., to investigate how a redow flow cell (RFC) can be a grid-scale electricalenergy-storage system and the associated technological needs. The specific objectives of the workshop were to understand the needs for applied research in RFCs; identify the grand challenges and prioritize R&D needs; and gather input for future development of roadmaps and technical targets for RFCs for various applications.

297

Persistent energy flow for a stochastic wave equation model in nonequilibrium statistical mechanics  

E-Print Network [OSTI]

We consider a one-dimensional partial differential equation system modeling heat flow around a ring. The system includes a Klein-Gordon wave equation for a field satisfying spatial periodic boundary conditions, as well as Ornstein-Uhlenbeck stochastic differential equations with finite rank dissipation and stochastic driving terms modeling heat baths. There is an energy flow around the ring. In the case of a linear field with different (fixed) bath temperatures, the energy flow can persist even when the interaction with the baths is turned off. A simple example is given.

Lawrence E. Thomas

2012-04-29T23:59:59.000Z

298

High-Energy Redox-Flow Batteries with Hybrid Metal Foam Electrodes  

Science Journals Connector (OSTI)

A nonaqueous redox-flow battery employing [Co(bpy)3]+/2+ and [Fe(bpy)3]2+/3+ redox couples is proposed for use in large-scale energy-storage applications. ... We successfully demonstrate a redox-flow battery with a practical operating voltage of over 2.1 V and an energy efficiency of 85% through a rational cell design. ... By utilizing carbon-coated Ni-FeCrAl and Cu metal foam electrodes, the electrochemical reactivity and stability of the nonaqueous redox-flow battery can be considerably enhanced. ...

Min-Sik Park; Nam-Jin Lee; Seung-Wook Lee; Ki Jae Kim; Duk-Jin Oh; Young-Jun Kim

2014-06-06T23:59:59.000Z

299

Skylarks trade size and energy content in weed seeds to maximize total ingested lipid biomass  

Science Journals Connector (OSTI)

Abstract The trade-off between forage quality and quantity has been particularly studied in herbivore organisms, but much less for seed eating animals, in particular seed-eating birds which constitute the bulk of wintering passerines in European farmlands. The skylark is one of the commonest farmland birds in winter, mainly feeding on seeds. We focus on weed seeds for conservation and management purposes. Weed seeds form the bulk of the diet of skylarks during winter period, and although this is still a matter for discussion, weed seed predation by granivorous has been suggested as an alternative to herbicides used to regulate weed populations in arable crops. Our objectives were to identify whether weed seed traits govern foraging decisions of skylarks, and to characterize key seed traits with respect to size, which is related to searching and handling time, and lipid content, which is essential for migratory birds. We combined a single-offer experiment and a multiple-offer one to test for feeding preferences of the birds by estimating seed intake on weed seed species differing in their seed size and seed lipid content. Our results showed (1) a selective preference for smaller seeds above a threshold of seed size or seed size difference in the pair and, (2) a significant effect of seed lipid biomass suggesting a trade-off between foraging for smaller seeds and selecting seeds rich in lipids. Skylarks foraging decision thus seems to be mainly based on seed size, that is presumably a proxy for weed seed energy content. However, there are clearly many possible combinations of morphological and physiological traits that must play crucial role in the plantbird interaction such as toxic compound or seed coat.

Sabrina Gaba; Claire Collas; Thibaut Powolny; Franois Bretagnolle; Vincent Bretagnolle

2014-01-01T23:59:59.000Z

300

NETL: Novel Flow Sheet for Low Energy CO2 Capture Enabled by Biocatalyst  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel Flow Sheet for Low Energy CO2 Capture Enabled by Biocatalyst Delivery System Novel Flow Sheet for Low Energy CO2 Capture Enabled by Biocatalyst Delivery System Project No.: DE-FE0012862 Akermin is conducting laboratory and integrated bench-scale pilot testing to validate the performance of their next generation Biocatalyst Delivery System (BDS). This effort builds upon work conducted under a previous project. The novel system enables on-stream replacement of the catalyst and enables integration with an advanced process flow scheme. Akermin is exploring an enzyme-enabled advanced process flow scheme with non-volatile capture solutions, AKM-24 and potassium carbonate. The advanced process flow scheme is projected to have lower parasitic energy requirements and lower capital costs resulting in greater than 30 percent reduction in the cost of capture. The novel flow sheet enabled by the biocatalyst permits regeneration at lower temperatures allowing heat integration with the lowest grade steam from the power plant and minimizing water consumption. The existing 500 standard liters per minute (SLPM) bench unit will be modified to incorporate the next-generation BDS, accommodate the new process flow scheme, and reduce heat loss for better quantification of energy performance. The modified bench unit will be operated at the National Carbon Capture Center on actual flue gas.

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Energy Transfer and Flow in the Solar1  

E-Print Network [OSTI]

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Energy Transfer and Flow TENFJORD AND ?STGAARD: ENERGY TRANSFER AND FLOW Abstract. In this paper we describe and quantify the energy data. We employ what we consider to be the best es-6 timates for energy sinks, and relate

?stgaard, Nikolai

302

Flow Test At Coso Geothermal Area (1985-1986) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Coso Geothermal Area (1985-1986) Flow Test At Coso Geothermal Area (1985-1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Coso Geothermal Area (1985-1986) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Flow Test Activity Date 1985 - 1986 Usefulness not indicated DOE-funding Unknown Exploration Basis Understand the connectivity of the production and injection wells. Notes A long-term flow test was conducted involving one producing well (well 43-7), one injector (well 88-1), and two observation wells (well 66-6 and California Energy Co's well 71A-7). The flow test included a well production metering system and a water injection metering system. References Sanyal, S.; Menzies, A.; Granados, E.; Sugine, S.; Gentner, R.

303

Measurement of low-energy Na^+ -- Na total collision rate in an ion--neutral hybrid trap  

E-Print Network [OSTI]

We present measurements of the total elastic and resonant charge-exchange ion-atom collision rate coefficient $k_\\mathrm{ia}$ of cold sodium (\\ce{Na}) with optically-dark low energy \\ce{Na+} ions in a hybrid ion-neutral trap. To determine $k_\\mathrm{ia}$, we measured the trap loading and loss from both a \\ce{Na} magneto-optical trap (MOT) and a linear radio frequency quadrupole Paul trap. We found the total rate coefficient to be $7.4 \\pm 1.9 \\times 10^{-8}$ cm$^3$/s for the type I \\ce{Na} MOT immersed within an $\\approx 140$ K ion cloud and $1.10 \\pm 0.25 \\times 10^{-7}$ cm$^3$/s for the type II \\ce{Na} MOT within an $\\approx 1070$ K ion cloud. Our measurements show excellent agreement with previously reported theoretical fully quantal \\textit{ab initio} calculations. In the process of determining the total rate coefficient, we demonstrate that a MOT can be used to probe an optically dark ion cloud's spatial distribution within a hybrid trap.

Goodman, D S; Kwolek, J M; Blmel, R; Narducci, F A; Smith, W W

2014-01-01T23:59:59.000Z

304

File:0 - OverallFlow-1.pdf | Open Energy Information  

Open Energy Info (EERE)

OverallFlow-1.pdf OverallFlow-1.pdf Jump to: navigation, search File File history File usage File:0 - OverallFlow-1.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 32 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:48, 11 September 2012 Thumbnail for version as of 14:48, 11 September 2012 1,275 × 1,650 (32 KB) Djenne (Talk | contribs) 09:08, 7 June 2012 Thumbnail for version as of 09:08, 7 June 2012 1,275 × 1,650 (16 KB) Dklein2012 (Talk | contribs) 11:26, 4 May 2012 Thumbnail for version as of 11:26, 4 May 2012 1,275 × 1,650 (16 KB) Kyoung (Talk | contribs) You cannot overwrite this file.

305

Energy extremals and nonlinear stability in a variational theory of a coupled barotropic flow -Rotating solid  

E-Print Network [OSTI]

-body flow state is a constrained energy minimum provided the relative enstrophy is small enough, otherwise maximizers. Unlike the standard barotropic vorticity model which conserves angular momentum of the fluid. The coupled system is a conservative or nondissipative model in the sense that the energy and angular momentum

Lim, Chjan C.

306

Implications of Heat Flow Studies for Geothermal Energy Prospects  

Science Journals Connector (OSTI)

There is a close interrelation between the phenomena of heat generation, storage of heat, transport of heat and the temperature field in the crust. For evaluating the geothermal energy potential of a given area t...

O. Kappelmeyer

1979-01-01T23:59:59.000Z

307

The Total Energy Content  

Science Journals Connector (OSTI)

The important message of RG theory [1] is that we have to attribute a specific symmetry to the continuous or infinite solid. Also, magnets with long range magnetic order show properties of an infinite system. Usi...

Dr. Ulrich Kbler; Dr. Andreas Hoser

2010-01-01T23:59:59.000Z

308

Total and partial capture cross sections in reactions with deformed nuclei at energies near and below the Coulomb barrier  

SciTech Connect (OSTI)

Within the quantum diffusion approach, the capture of a projectile nucleus by a target nucleus is studied at bombarding energies above and below the Coulomb barrier. The effects of deformation of interacting nuclei and neutron transfer between them on the total and partial capture cross sections and the mean angular momentum of the captured system are studied. The results obtained for the {sup 16}O + {sup 112}Cd, {sup 152}Sm, and {sup 184}W; {sup 19}F +{sup 175}Lu; {sup 28}Si +{sup 94,100}Mo and {sup 154}Sm; {sup 40}Ca +{sup 96}Zr; {sup 48}Ca+ {sup 90}Zr; and {sup 64}Ni +{sup 58,64}Ni, {sup 92,96}Zr, and {sup 100}Mo reactions are in good agreement with available experimental data.

Kuzyakin, R. A., E-mail: rkuzyakin@theor.jinr.ru; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V. [Joint Institute for Nuclear Research (Russian Federation)

2013-06-15T23:59:59.000Z

309

High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage Title High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage Publication Type Journal Article Year of Publication 2012 Authors Cho, Kyu Taek, Paul L. Ridgway, Adam Z. Weber, Sophia Haussener, Vincent S. Battaglia, and Venkat Srinivasan Journal Journal of the Electrochemical Society Volume 159 Issue 11 Pagination A1806 - A1815 Date Published 01/2012 ISSN 0013-4651 Keywords hydrogen/bromine, redox flow battery Abstract The electrochemical behavior of a promising hydrogen/bromine redox flow battery is investigated for grid-scale energy-storage application with some of the best redox-flow-battery performance results to date, including a peak power of 1.4 W/cm(2) and a 91% voltaic efficiency at 0.4 W/cm(2) constant-power operation. The kinetics of bromine on various materials is discussed, with both rotating-disk-electrode and cell studies demonstrating that a carbon porous electrode for the bromine reaction can conduct platinum-comparable performance as long as sufficient surface area is realized. The effect of flow-cell designs and operating temperature is examined, and ohmic and mass-transfer losses are decreased by utilizing a flow-through electrode design and increasing cell temperature. Charge/discharge and discharge-rate tests also reveal that this system has highly reversible behavior and good rate capability.

310

Smart audio frequency energy flow control by magneto-sensitive rubber isolators  

Science Journals Connector (OSTI)

A magneto-sensitive rubber isolator inserted between a source and an infinite plate is modelled in the audible frequency range, and the energy flow into the plate with the rubber subjected to a magnetic field applied perpendicular to the axial displacement is calculated. Subsequently the result is compared to the corresponding energy flow for zero magnetic induction; upon the application of an external magnetic field the rubber becomes stiffer, thus shifting the internal resonances of the isolator. This is a fast and reversible process enabling adaption of the isolator to rapidly changing audio frequency conditions by simply turning on and off a magnetic field. In the application example considered, the energy flow into the plate at the first internal dynamic peak stiffness frequency is reduced by approximately 7dBa large difference in a sound and vibration contextby inducing magnetic saturation of the rubber.

Peter Blom; Leif Kari

2008-01-01T23:59:59.000Z

311

Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 2: appendices A-D to technical report  

SciTech Connect (OSTI)

This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline- powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume II contains additional details on the vehicle, utility, and materials analyses and discusses several details of the methodology.

NONE

1998-01-01T23:59:59.000Z

312

Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 4: peer review comments on technical report  

SciTech Connect (OSTI)

This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume IV includes copies of all the external peer review comments on the report distributed for review in July 1997.

NONE

1998-01-01T23:59:59.000Z

313

Structure in the energy dependence of the proton total reaction cross section for C and Si in the energy region 20-40 MeV  

Science Journals Connector (OSTI)

Measurements of proton total reaction cross sections for Be9, C12, O16, and Si28 have been made in the energy range between 20-44 MeV. The cross sections show irregular energy variation for C12 at about 23.8 and 25.9 MeV, and for Si28 at 30.3 and 33.5 MeV; irregularities were not observed clearly for Be9 or O16.NUCLEAR REACTIONS Be9, C12, O16, Si28: 20MeV

I. laus; D. J. Margaziotis; R. F. Carlson; W. T. H. van Oers; J. Reginald Richardson

1975-09-01T23:59:59.000Z

314

Energy flux fluctuations in a finite volume of turbulent flow  

E-Print Network [OSTI]

The flux of turbulent kinetic energy from large to small spatial scales is measured in a small domain B of varying size R. The probability distribution function of the flux is obtained using a time-local version of Kolmogorov's four-fifths law. The measurements, made at a moderate Reynolds number, show frequent events where the flux is backscattered from small to large scales, their frequency increasing as R is decreased. The observations are corroborated by a numerical simulation based on the motion of many particles and on an explicit form of the eddy damping.

Mahesh Bandi; Walter Goldburg; John Cressman Jr.; Alain Pumir

2006-07-19T23:59:59.000Z

315

Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed  

E-Print Network [OSTI]

solener.2011.02.014, Solar Energy. Lave, M. , Kleissl, J. ,smoothing. Submitted to Solar Energy. Linke, F. , 1922.24th European Photovoltaic Solar Energy Conference, Hamburg,

2011-01-01T23:59:59.000Z

316

Measurement of thermodynamics using gradient flow  

E-Print Network [OSTI]

We analyze bulk thermodynamics and correlation functions of the energy-momentum tensor in pure Yang-Mills gauge theory using the energy-momentum tensor defined by the gradient flow and small flow time expansion. Our results on thermodynamic observables are consistent with those obtained by the conventional integral method. The analysis of the correlation function of total energy supports the energy conservation. It is also addressed that these analyses with gradient flow require less statistics compared with the previous methods. All these results suggest that the energy-momentum tensor can be successfully defined and observed on the lattice with moderate numerical costs with the gradient flow.

Masakiyo Kitazawa; Masayuki Asakawa; Tetsuo Hatsuda; Takumi Iritani; Etsuko Itou; Hiroshi Suzuki

2014-12-15T23:59:59.000Z

317

The effect of non-uniform damping on flutter in axial flow and energy-harvesting strategies  

Science Journals Connector (OSTI)

...vortex induced vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow. J. Offshore Mech. Arct...Chebyshev and Fourier spectral methods. New York, NY: Dover Publications. Boyer, F...

2012-01-01T23:59:59.000Z

318

Statistics of Energy Flows in Spring-Coupled One-Dimensional Subsystems  

Science Journals Connector (OSTI)

15 March 1994 research-article Statistics of Energy Flows in Spring-Coupled...of modes contributing to the response statistics at any specified driving frequency are...developed to predict the 5% and 95% probability points given knowledge of the first...

1994-01-01T23:59:59.000Z

319

Study of nuclear dynamics of neutron-rich colliding pair at energy of vanishing flow  

E-Print Network [OSTI]

We study nuclear dynamics at the energy of vanishing flow of neutron-rich systems having N/Z ratio 1.0, 1.6 and 2.0 throughout the mass range at semi central colliding geometry. In particular we study the behavior of average and maximum density with N/Z dependence of the system.

Sakshi Gautam

2011-07-28T23:59:59.000Z

320

Radial flow has little effect on clusterization at intermediate energies in the framework of the Lattice Gas Model  

E-Print Network [OSTI]

The Lattice Gas Model was extended to incorporate the effect of radial flow. Contrary to popular belief, radial flow has little effect on the clusterization process in intermediate energy heavy-ion collisions except adding an ordered motion to the particles in the fragmentation source. We compared the results from the lattice gas model with and without radial flow to experimental data. We found that charge yields from central collisions are not significantly affected by inclusion of any reasonable radial flow.

C. B. Das; L. Shi; S. Das Gupta

2004-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Flow Distances on Open Flow Networks  

E-Print Network [OSTI]

Open flow network is a weighted directed graph with a source and a sink, depicting flux distributions on networks in the steady state of an open flow system. Energetic food webs, economic input-output networks, and international trade networks, are open flow network models of energy flows between species, money or value flows between industrial sectors, and goods flows between countries, respectively. Flow distances (first-passage or total) between any given two nodes $i$ and $j$ are defined as the average number of transition steps of a random walker along the network from $i$ to $j$ under some conditions. They apparently deviate from the conventional random walk distance on a closed directed graph because they consider the openness of the flow network. Flow distances are explicitly expressed by underlying Markov matrix of a flow system in this paper. With this novel theoretical conception, we can visualize open flow networks, calculating centrality of each node, and clustering nodes into groups. We apply fl...

Guo, Liangzhu; Shi, Peiteng; Wang, Jun; Huang, Xiaohan; Zhang, Jiang

2015-01-01T23:59:59.000Z

322

Two-Layer Baroclinic Eddy Heat Fluxes: Zonal Flows and Energy Balance ANDREW F. THOMPSON AND WILLIAM R. YOUNG  

E-Print Network [OSTI]

Two-Layer Baroclinic Eddy Heat Fluxes: Zonal Flows and Energy Balance ANDREW F. THOMPSON of these drag- less heat-flux parameterizations relies on the ability of to direct energy into zonal flows, California (Manuscript received 27 September 2006, in final form 13 December 2006) ABSTRACT The eddy heat

Young, William R.

323

Coupling Air Flow Models to Load/Energy Models and Implications for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coupling Air Flow Models to Load/Energy Models and Implications for Coupling Air Flow Models to Load/Energy Models and Implications for Envelope Component Testing and Modeling Speaker(s): Brent Griffith Date: July 30, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Dariush Arasteh Air models allow accounting for air temperature variations within a thermal zone or along the surface of an envelope component. A recently completed ASHRAE research project (RP-1222) produced a source code toolkit focused on coupling airflow models to load routines typical of whole building energy simulation. The two modeling domains are computed separately (and iteratively) with relevant temperature boundary conditions passed back and forth. One of the air models in the toolkit is a new contribution to crude/fast airflow modeling that is based on solving the Euler equation

324

Energy flow and ecosystem dynamics and wood energy in forest ecosystems  

E-Print Network [OSTI]

living beings in the world need energy for the growth and survival. For this purpose the ultimate energy source is the Sun which supplies the energy continuously for the Earth. All times some part of the Earth known as primary consumers consume the plants for their energy requirements. These primary consumers

325

Measurements of continuous mix evolution in a high energy density shear flow  

SciTech Connect (OSTI)

We report on the novel integration of streaked radiography into a counter-flowing High Energy Density (HED) shear environment that continually measures a growing mix layer of Al separating two low-density CH foams. Measurements of the mix width allow us to validate compressible turbulence models and with streaked imaging, make this possible with a minimal number of experiments on large laser facilities. In this paper, we describe how the HED counter-flowing shear layer is created and diagnosed with streaked radiography. We then compare the streaked data to previous two-dimensional, single frame radiography and radiation hydrodynamic simulations of the experiment with inline compressible turbulent mix models.

Loomis, E., E-mail: loomis@lanl.gov; Doss, F.; Flippo, K.; Fincke, J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2014-04-15T23:59:59.000Z

326

Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization  

SciTech Connect (OSTI)

Purpose: Dual-energy CT (DECT) is being increasingly used for its capability of material decomposition and energy-selective imaging. A generic problem of DECT, however, is that the decomposition process is unstable in the sense that the relative magnitude of decomposed signals is reduced due to signal cancellation while the image noise is accumulating from the two CT images of independent scans. Direct image decomposition, therefore, leads to severe degradation of signal-to-noise ratio on the resultant images. Existing noise suppression techniques are typically implemented in DECT with the procedures of reconstruction and decomposition performed independently, which do not explore the statistical properties of decomposed images during the reconstruction for noise reduction. In this work, the authors propose an iterative approach that combines the reconstruction and the signal decomposition procedures to minimize the DECT image noise without noticeable loss of resolution. Methods: The proposed algorithm is formulated as an optimization problem, which balances the data fidelity and total variation of decomposed images in one framework, and the decomposition step is carried out iteratively together with reconstruction. The noise in the CT images from the proposed algorithm becomes well correlated even though the noise of the raw projections is independent on the two CT scans. Due to this feature, the proposed algorithm avoids noise accumulation during the decomposition process. The authors evaluate the method performance on noise suppression and spatial resolution using phantom studies and compare the algorithm with conventional denoising approaches as well as combined iterative reconstruction methods with different forms of regularization. Results: On the Catphan600 phantom, the proposed method outperforms the existing denoising methods on preserving spatial resolution at the same level of noise suppression, i.e., a reduction of noise standard deviation by one order of magnitude. This improvement is mainly attributed to the high noise correlation in the CT images reconstructed by the proposed algorithm. Iterative reconstruction using different regularization, including quadratic orq-generalized Gaussian Markov random field regularization, achieves similar noise suppression from high noise correlation. However, the proposed TV regularization obtains a better edge preserving performance. Studies of electron density measurement also show that our method reduces the average estimation error from 9.5% to 7.1%. On the anthropomorphic head phantom, the proposed method suppresses the noise standard deviation of the decomposed images by a factor of ?14 without blurring the fine structures in the sinus area. Conclusions: The authors propose a practical method for DECT imaging reconstruction, which combines the image reconstruction and material decomposition into one optimization framework. Compared to the existing approaches, our method achieves a superior performance on DECT imaging with respect to decomposition accuracy, noise reduction, and spatial resolution.

Dong, Xue; Niu, Tianye; Zhu, Lei, E-mail: leizhu@gatech.edu [Nuclear and Radiological Engineering and Medical Physics Programs, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)] [Nuclear and Radiological Engineering and Medical Physics Programs, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

2014-05-15T23:59:59.000Z

327

Relationship Between Surface Free Energy and Total Work of Fracture of Asphalt Binder and Asphalt Binder-Aggregate Interfaces  

E-Print Network [OSTI]

is the surface free energy of the asphalt binder and the aggregate. Surface free energy, which is a thermodynamic material property, is directly related to the adhesive bond energy between the asphalt binder and the aggregate as well as the cohesive bond energy...

Howson, Jonathan Embrey

2012-10-19T23:59:59.000Z

328

Flow Test At Chena Area (Benoit, Et Al., 2007) | Open Energy Information  

Open Energy Info (EERE)

Chena Area (Benoit, Et Al., 2007) Chena Area (Benoit, Et Al., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Chena Area (Benoit, Et Al., 2007) Exploration Activity Details Location Chena Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References Dick Benoit, Gwen Holdmann, David Blackwell (2007) Low Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Chena_Area_(Benoit,_Et_Al.,_2007)&oldid=387083" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

329

Minijets: Transverse-energy flow in very-high-energy nuclear collisions  

Science Journals Connector (OSTI)

We estimate the transverse energy produced by semihard partonic interactions in nuclear collisions at c.m. energies of the order of 1 TeV per nucleon. Keeping properly into account multiple partonic interactions the transverse-energy spectrum has no longer any power divergence for small values of the cutoff ptmin which separates the semihard region from the soft one.

G. Calucci and D. Treleani

1991-11-01T23:59:59.000Z

330

In-medium NN cross sections determined from stopping and collective flow in intermediate-energy heavy-ion collisions  

E-Print Network [OSTI]

In-medium nucleon-nucleon scattering cross sections are explored by comparing results of quantum molecular dynamics simulations to data on stopping and on elliptic and directed flow in intermediate-energy heavy-ion collisions. The comparison points to in-medium cross sections which are suppressed at low energies but not at higher energies. Positive correlations are found between the degree of stopping and the magnitudes of elliptic and directed flows.

Zhang, Y; Li, Z; Danielewicz, Pawel; Li, Zhuxia; Zhang, Yingxun

2007-01-01T23:59:59.000Z

331

In-medium NN cross sections determined from stopping and collective flow in intermediate-energy heavy-ion collisions  

E-Print Network [OSTI]

In-medium nucleon-nucleon scattering cross sections are explored by comparing results of quantum molecular dynamics simulations to data on stopping and on elliptic and directed flow in intermediate-energy heavy-ion collisions. The comparison points to in-medium cross sections which are suppressed at low energies but not at higher energies. Positive correlations are found between the degree of stopping and the magnitudes of elliptic and directed flows.

Yingxun Zhang; Zhuxia Li; Pawel Danielewicz

2007-03-14T23:59:59.000Z

332

Collective flows of light particles in the Au+Au collision at intermediate energies  

E-Print Network [OSTI]

The Skyrme potential energy density functional is introduced into the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) model and the updated version is applied to studying the directed and elliptic flows of light particles (protons, neutrons, deuterons, tritons, $^3$He and $^4$He) in $^{197}$Au+$^{197}$Au collisions at beam energies 150, 250 and 400 MeV/nucleon. The results are compared with the recent FOPI experimental data. It is found that the yields and collective flows of light particles can be described quite well. The influence of the equation of state (EoS), medium-modified nucleon-nucleon elastic cross sections (NNECS) and cluster recognition criteria on the directed and elliptic flows is studied in detail. It is found that the flows of light particles are sensitive to the medium-modified NNECS, but not sensitive to the isospin dependent cluster recognition criteria. It seems difficult, however, even with the new data and calculations, to obtain a more accurate constraint on the nuclear incompressibility $K_0$ than the interval 200-260 MeV.

Yongjia Wang; Chenchen Guo; Qingfeng Li; Hongfei Zhang; Zhuxia Li; W. Trautmann

2013-05-21T23:59:59.000Z

333

Energy confinement studies in the tandem mirror experiment (TMX): Power flow  

Science Journals Connector (OSTI)

Using the measured plasma densities and energies the flow of power between the different particle species and regions of the tandem mirror experiment (TMX) is analyzed. The power flow is described by a simple classical model modified to include: (1) a halo of cool plasma that reduces end?cell ion losses due to charge exchange on background gas (2) instability heating of the central?cell ions both in the central cell and as they escape through the plugs (3) electron energy transport along the field lines which is less than predicted and (4) radial transport of the central?cell ions. Our global power balance including all particles and regions accounts for 8727% of the trapped neutral?beam power.

D. P. Grubb; S. L. Allen; T. A. Casper; J. F. Clauser; F. H. Coensgen; R. H. Cohen; D. L. Correll; W. C. Cummins; J. C. Davis; R. P. Drake; J. H. Foote; A. H. Futch; R. K. Goodman; G. E. Gryczkowski; E. B. Hooper Jr.; R. S. Hornady; A. L. Hunt; C. V. Karmendy; W. E. Nexsen; W. L. Pickles; G. D. Porter; P. Poulsen; T. D. Rognlien; T. C. Simonen; D. R. Slaughter; P. Coakley; G. A. Hallock; O. T. Strand

1983-01-01T23:59:59.000Z

334

Joint downscale fluxes of energy and potential enstrophy in rotating stratified Boussinesq flows  

Science Journals Connector (OSTI)

We employ a coarse-graining approach to analyze non-linear cascades in Boussinesq flows using high-resolution simulation data. We derive budgets which resolve the evolution of energy and potential enstrophy simultaneously in space and in scale. We then use numerical simulations of Boussinesq flows, with forcing in the large scales, and fixed rotation and stable stratification along the vertical axis, to study the inter-scale flux of energy and potential enstrophy in three different regimes of stratification and rotation: i) strong rotation and moderate stratification, ii) moderate rotation and strong stratification, and iii) equally strong stratification and rotation. In all three cases, we observe constant fluxes of both global invariants, the mean energy and mean potential enstrophy, from large to small scales. The existence of constant potential enstrophy flux ranges provides the first direct empirical evidence in support of the notion of a cascade of potential enstrophy. The persistent forward cascade of the two invariants reflects a marked departure of these flows from two-dimensional turbulence.

H. Aluie; S. Kurien

2011-01-01T23:59:59.000Z

335

Joint downscale fluxes of energy and potential enstrophy in rotating stratified Boussinesq flows  

E-Print Network [OSTI]

We employ a coarse-graining approach to analyze nonlinear cascades in Boussinesq flows using high-resolution simulation data. We derive budgets which resolve the evolution of energy and potential enstrophy simultaneously in space and in scale. We then use numerical simulations of Boussinesq flows, with forcing in the large-scales, and fixed rotation and stable stratification along the vertical axis, to study the inter-scale flux of energy and potential enstrophy in three different regimes of stratification and rotation: (i) strong rotation and moderate stratification, (ii) moderate rotation and strong stratification, and (iii) equally strong stratification and rotation. In all three cases, we observe constant fluxes of both global invariants, the mean energy and mean potential enstrophy, from large to small scales. The existence of constant potential enstrophy flux ranges provides the first direct empirical evidence in support of the notion of a cascade of potential enstrophy. The persistent forward cascade of the two invariants reflects a marked departure of these flows from two-dimensional turbulence.

Hussein Aluie; Susan Kurien

2011-07-25T23:59:59.000Z

336

Bis(4-methylanilinium) and bis(4-iodoanilinium) pentamolybdates from laboratory X-ray powder data and total energy minimization  

Science Journals Connector (OSTI)

The crystal structures of bis(4-methylanilinium) and bis(4-iodoanilinium) pentamolybdates were determined using laboratory X-ray data and refined by total energy minimization methods. The obtained structures present alternating organic cation and inorganic polyanion layers bound by weak bonding (apart from ionic interactions).

Oszajca, M.

2013-10-31T23:59:59.000Z

337

Effects of Forest Management on Total Biomass Production and CO2 Emissions from use of Energy Biomass of Norway Spruce and Scots Pine  

Science Journals Connector (OSTI)

The aim of this study was to analyze the effects of forest management on the total biomass production (t ha-1a-1) and CO2 emissions (kg CO2 MWh-1) from use of energy biomass of Norway spruce and Scots pine grown ...

Johanna Routa; Seppo Kellomki; Harri Strandman

2012-09-01T23:59:59.000Z

338

Flow at Brookhaven AGS Energy (11.6 GeV/nucleon): A barometer for high density effects?  

SciTech Connect (OSTI)

Preliminary data on transverse energy {open_quotes}flow{close_quotes} and event asymmetries reported by the E877(814) Collaborations are compared to ARC (a relativistic cascade) model calculations for Au+Au at full AGS Brookhaven (Alternating Gradient Synchroton) beam energy. ARC triple differential cross sections for protons and pions are presented. Proton flow is produced in ARC, with the maximum {l_angle}P{sub x}{r_angle}{approximately}120 MeV/c. For central events {l_angle}P{sub x}{r_angle} for the pions is near zero, consistent with experiment. The comparison with data provides a constraint on the size of flow at the highest energy available, to be put beside that at Bevalac energy. This sets the stage for examining flow at intermediate energies, now being measured by E895, for signs of baryon rich plasma. {copyright} {ital 1997} {ital The American Physical Society}

Kahana, D.E.; Shuryak, E. [Department of Physics, State University of New York, Stony Brook, New York 11791 (United States)] [Department of Physics, State University of New York, Stony Brook, New York 11791 (United States); Pang, Y. [Department of Physics, Brookhaven National Laboratory, Upton, New York 11973 (United States)] [Department of Physics, Brookhaven National Laboratory, Upton, New York 11973 (United States); Pang, Y. [Department of Physics, Columbia University, New York, New York 10027 (United States)] [Department of Physics, Columbia University, New York, New York 10027 (United States)

1997-07-01T23:59:59.000Z

339

Energy and Material Flow Analysis of Binder-jetting Additive Manufacturing Processes  

Science Journals Connector (OSTI)

Abstract Manufacturing, where great amount of energy and materials are being consumed, should take response to have cleaner production and to improve its sustainability. Additive manufacturing (AM) technology shows potential to reduce environment impact as a more sustainable manufacturing method; however, the lack of well documented energy consumption and material flow data limits the development of Life-Cycle Inventory (LCI) analysis of AM technology. This paper presents an energy and material consumption model of Binder-Jetting (BJ) process. A Unit-Process (UP) level model is created and validated by experimental data to provide LCI data for further Life-Cycle Analysis (LCA) of BJ additive manufacturing processes. The accurate process model provides a tool to industry to understand the energy consumption and material efficiency aspect of the binder-jetting process and to allow comparisons with traditional processes.

Simon Meteyer; Xin Xu; Nicolas Perry; Yaoyao Fiona Zhao

2014-01-01T23:59:59.000Z

340

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Evaluation of flow hood measurements for residential register flows  

SciTech Connect (OSTI)

Flow measurement at residential registers using flow hoods is becoming more common. These measurements are used to determine if the HVAC system is providing adequate comfort, appropriate flow over heat exchangers and in estimates of system energy losses. These HVAC system performance metrics are determined by using register measurements to find out if individual rooms are getting the correct airflow, and in estimates of total air handler flow and duct air leakage. The work discussed in this paper shows that commercially available flow hoods are poor at measuring flows in residential systems. There is also evidence in this and other studies that flow hoods can have significant errors even when used on the non-residential systems they were originally developed for. The measurement uncertainties arise from poor calibrations and the sensitivity of exiting flow hoods to non-uniformity of flows entering the device. The errors are usually large--on the order of 20% of measured flow, which is unacceptably high for most applications. Active flow hoods that have flow measurement devices that are insensitive to the entering airflow pattern were found to be clearly superior to commercially available flow hoods. In addition, it is clear that current calibration procedures for flow hoods may not take into account any field application problems and a new flow hood measurement standard should be developed to address this issue.

Walker, I.S.; Wray, C.P.; Dickerhoff, D.J.; Sherman, M.H.

2001-09-01T23:59:59.000Z

342

GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, Global energy conversion rate from geostrophic flows into  

E-Print Network [OSTI]

GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, Global energy conversion rate from estimate of the energy conversion rate from geostrophic flows into internal lee waves in the ocean that linear lee wave theory gives a good prediction of the energy conversion rate at sub-critical and critical

Ferrari, Raffaele

343

Summary of energy flow measurements and calculations made on the INCE standard test structures  

Science Journals Connector (OSTI)

In 1996 a series of standard test structures was conceived and manufactured by members of the Institute of Noise Control Engineering (INCE) [Cuschieri Burroughs and Carroll Evaluation of Structure?Borne Noise Prediction Techniques Review Proceedings of Noise?Con 98 April 1998 pp. 315320]. The structures include a Lexan T?shaped beam and two ribbed panels of identical geometries but different materials: aluminum and lexan. In subsequent years a wide variety of investigators from the U.S. and around the world have conducted experimental and numerical studies on the test structures particularly on energy flow parameters such as power input power dissipation and power flow. Most of the studies have been performed at low frequencies and have shown phenomena such as the conversion of flexural wave power to longitudinal wave power at the T?beam joint and the nature of the structural intensity fields in the ribbed panels. Measurements and computations compare well. At high frequencies Statistical Energy Analysis (SEA) techniques have shown that energy tends to become trapped in the drive leg of the T?beam. SEA studies on the ribbed panels show that the Lexan panel transmits less energy across the ribs than the aluminum panel does due primarily to differences in material loss factor.

2002-01-01T23:59:59.000Z

344

ESS 2012 Peer Review - Redox Flow Battery (RFB) with Low-cost Electrolyte and Membrane Technologies - Thomas Kodenkandath, ITN Energy Systems  

Broader source: Energy.gov (indexed) [DOE]

Innovative, high energy density Mn-V based RFB electrolytes as a Innovative, high energy density Mn-V based RFB electrolytes as a low-cost alternate to all-Vanadium systems * Low-cost membrane technology, based on renewable biopolymer Chitosan with improved proton conduction & chemical stability, adaptable to Mn-V system * Scale-up of electrolyte and membrane technologies in pursuit of ARPA-E's goal for a 2.5kW/10kWh RFB stack with integrated BoS at a total cost of ~$1000/unit and ~1.2 m 3 footprint ITN Energy Systems, Inc., Littleton, CO 2.5kW/10kWh Redox Flow Battery (RFB) with Low-cost Electrolyte and Membrane Technologies $2.1 M, 33-month program awarded by ARPA-E Sept 7, 2012 Dr. Thomas Kodenkandath High-Performance, Low-cost RFB through Electrolyte & Membrane Innovations Technology Summary

345

Minimization of a free-energy-like potential for non-equilibrium flow systems at steady state  

Science Journals Connector (OSTI)

...Engl. transl. Brose, H. L.). New York, NY: Macmillan. Prigogine, I...irreversible processes, 3rd edn. New York, NY: Interscience. Prigogine...Sagan, D. 2005 Into the cool: energy flow, thermodynamics and life...

2010-01-01T23:59:59.000Z

346

Transverse Collective Flow and Emission Order of Mid-Rapidity Fragments in Fermi Energy Heavy Ion Collisions  

E-Print Network [OSTI]

TRANSVERSE COLLECTIVE FLOW AND EMISSION ORDER OF MID-RAPIDITY FRAGMENTS IN FERMI ENERGY HEAVY ION COLLISIONS A Dissertation by ZACHARY WAYNE KOHLEY Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2010 Major Subject: Chemistry TRANSVERSE COLLECTIVE FLOW AND EMISSION ORDER OF MID-RAPIDITY FRAGMENTS IN FERMI ENERGY HEAVY ION COLLISIONS A Dissertation by ZACHARY WAYNE KOHLEY Submitted...

Kohley, Zachary Wayne

2011-10-21T23:59:59.000Z

347

Dynamo dominated accretion and energy flow: The mechanism of active galactic nuclei  

SciTech Connect (OSTI)

An explanation of the magnetic fields of the universe, the central mass concentration of galaxies, the massive black hole of every galaxy, and the AGN phenomena has been an elusive goal. The authors suggest here the outlines of such a theoretical understanding and point out where the physical understanding is missing. They believe there is an imperative to the sequence of mass flow and hence energy flow in the collapse of a galactic mass starting from the first non-linearity appearing in structure formation following decoupling. This first non-linearity of a two to one density fluctuation, the Lyman-{alpha} clouds, ultimately leads to the emission spectra of the phenomenon of AGN, quasars, blazars, etc. The over-arching physical principle is the various mechanisms for the transport of angular momentum. They believe they have now understood the new physics of two of these mechanisms that have previously been illusive and as a consequence they impose strong constraints on the initial conditions of the mechanisms for the subsequent emission of the gravitational binding energy. The new phenomena described are: (1) the Rossby vortex mechanism of the accretion disk {alpha}-viscosity, and (2) the mechanism of the {alpha}-{Omega} dynamo in the accretion disk. The Rossby vortex mechanism leads to a prediction of the black hole mass and rate of energy release and the {alpha}-{Omega} dynamo leads to the generation of the magnetic flux of the galaxy (and the far greater magnetic flux of clusters) and separately explains the primary flux of energy emission as force-free magnetic energy density. This magnetic flux and magnetic energy density separately are the necessary consequence of the saturation of a dynamo created by the accretion disk with a gain greater than unity.

Colgate, S.A.; Li, H.

1998-12-31T23:59:59.000Z

348

Heavy flavours in high-energy nuclear collisions: quenching, flow and correlations  

E-Print Network [OSTI]

We present results for the quenching, elliptic flow and azimuthal correlations of heavy flavour particles in high-energy nucleus-nucleus collisions obtained through the POWLANG transport setup, developed in the past to study the propagation of heavy quarks in the Quark-Gluon Plasma and here extended to include a modeling of their hadronization in the presence of a medium. Hadronization is described as occurring via the fragmentation of strings with endpoints given by the heavy (anti-)quark Q(Qbar) and a thermal parton $qbar(q)$ from the medium. The flow of the light quarks is shown to affect significantly the R_AA} and v_2 of the final D mesons, leading to a better agreement with the experimental data.

Beraudo, A; Monteno, M; Nardi, M; Prino, F

2014-01-01T23:59:59.000Z

349

Technical Subtopic 2.1: Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus  

SciTech Connect (OSTI)

The University of Central Florida/Florida Solar Energy Center, in cooperation with the Electric Power Research Institute and several variable-refrigerant-flow heat pump (VRF HP) manufacturers, provided a detailed computer model for a VRF HP system in the United States Department of Energy's (U.S. DOE) EnergyPlus? building energy simulation tool. Detailed laboratory testing and field demonstrations were performed to measure equipment performance and compare this performance to both the manufacturer's data and that predicted by the use of this new model through computer simulation. The project goal was to investigate the complex interactions of VRF HP systems from an HVAC system perspective, and explore the operational characteristics of this HVAC system type within a laboratory and real world building environment. Detailed laboratory testing of this advanced HVAC system provided invaluable performance information which does not currently exist in the form required for proper analysis and modeling. This information will also be useful for developing and/or supporting test standards for VRF HP systems. Field testing VRF HP systems also provided performance and operational information pertaining to installation, system configuration, and operational controls. Information collected from both laboratory and field tests were then used to create and validate the VRF HP system computer model which, in turn, provides architects, engineers, and building owners the confidence necessary to accurately and reliably perform building energy simulations. This new VRF HP model is available in the current public release version of DOE?s EnergyPlus software and can be used to investigate building energy use in both new and existing building stock. The general laboratory testing did not use the AHRI Standard 1230 test procedure and instead used an approach designed to measure the field installed full-load operating performance. This projects test methodology used the air enthalpy method where relevant air-side parameters were controlled while collecting output performance data at discreet points of steady-state operation. The primary metrics include system power consumption and zonal heating and cooling capacity. Using this test method, the measured total cooling capacity was somewhat lower than reported by the manufacturer. The measured power was found to be equal to or greater than the manufacturers indicated power. Heating capacity measurements produced similar results. The air-side performance metric was total cooling and heating energy since the computer model uses those same metrics as input to the model. Although the sensible and latent components of total cooling were measured, they are not described in this report. The test methodology set the thermostat set point temperature very low for cooling and very high for heating to measure full-load performance and was originally thought to provide the maximum available capacity. Manufacturers stated that this test method would not accurately measure performance of VRF systems which is now believed to be a true statement. Near the end of the project, an alternate test method was developed to better represent VRF system performance as if field installed. This method of test is preliminarily called the Load Based Method of Test where the load is fixed and the indoor conditions and unit operation are allowed to fluctuate. This test method was only briefly attempted in a laboratory setting but does show promise for future lab testing. Since variable-speed air-conditioners and heat pumps include an on-board control algorithm to modulate capacity, these systems are difficult to test. Manufacturers do have the ability to override internal components to accommodate certification procedures, however, it is unknown if the resulting operation is replicated in the field, or if so, how often. Other studies have shown that variable-speed air-conditioners and heat pumps do out perform their single-speed counterparts though these field studies leave as many questions as they do provide answers. The measure

Raustad, Richard; Nigusse, Bereket; Domitrovic, Ron

2013-09-30T23:59:59.000Z

350

Energy flow between two hydrodynamically coupled particles kept at different effective temperatures  

E-Print Network [OSTI]

We measure the energy exchanged between two hydrodynamically coupled micron-sized Brownian particles trapped in water by two optical tweezers. The system is driven out of equilibrium by random forcing the position of one of the two particles. The forced particle behaves as it has an "effective temperature" higher than that of the other bead. This driving modifies the equilibrium variances and cross-correlation functions of the bead positions: we measure an energy flow between the particles and an instantaneous cross-correlation, proportional to the effective temperature difference between the two particles. A model of the interaction which is based on classical hydrodynamic coupling tensors is proposed. The theoretical and experimental results are in excellent agreement.

Antoine Brut; Artyom Petrosyan; Sergio Ciliberto

2015-02-06T23:59:59.000Z

351

Energy flow between two hydrodynamically coupled particles kept at different effective temperatures  

E-Print Network [OSTI]

We measure the energy exchanged between two hydrodynamically coupled micron-sized Brownian particles trapped in water by two optical tweezers. The system is driven out of equilibrium by random forcing the position of one of the two particles. The forced particle behaves as it has an "effective temperature" higher than that of the other bead. This driving modifies the equilibrium variances and cross-correlation functions of the bead positions: we measure an energy flow between the particles and an instantaneous cross-correlation, proportional to the effective temperature difference between the two particles. A model of the interaction which is based on classical hydrodynamic coupling tensors is proposed. The theoretical and experimental results are in excellent agreement.

Antoine Brut; Artyom Petrosyan; Sergio Ciliberto

2014-08-22T23:59:59.000Z

352

Measurement of energy flow at large pseudorapidities in pp collisions at sqrt(s) = 0.9 and 7 TeV  

E-Print Network [OSTI]

The energy flow, dE/d(eta), is studied at large pseudorapidities in proton-proton collisions at the LHC, for centre-of-mass energies of 0.9 and 7 TeV. The measurements are made in the pseudorapidity range 3.15 energy-flow measurements. Inclusion of multiple-parton interactions in the Monte Carlo event generators is found to improve the description of the energy-flow measurements.

CMS Collaboration

2011-10-02T23:59:59.000Z

353

Hadronic Total Cross Sections (R) in E+E- Interactions: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

A comprehensive compilation of experimental data on total hadronic cross sections, and R ratios, in e+e- interactions is presented. Published data from the Novosibirsk, Orsay, Frascati, SLAC, CORNELL, DESY, KEK and CERN e+e- colliders on both exclusive and inclusive final particle states are included from threshold energies to the highest LEP energies. The data are presented in tabular form supplemented by compilation plots of different exclusive final particle states and of different energy regions. (Taken from abstract of paper, A Compilation of Data on Hadronic Total Cross Sections in E+E- Interactions, M.R. Whalley, Journal of Physics G (Nuclear and Particle Physics), Volume 29, Number 12A, 2003). The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. The data are also included in the Durham HEP Reaction Data Database, which can be searched at http://hepdata.cedar.ac.uk/reaction

Whalley, M.R.

354

Attractor local dimensionality, nonlinear energy transfers and finite-time instabilities in unstable dynamical systems with applications to two-dimensional fluid flows  

Science Journals Connector (OSTI)

...Attractor local dimensionality, nonlinear energy transfers and finite-time instabilities...relate its nonlinear dimensionality to energy exchanges between dynamical components...the attractor with the circulation of energy: (i) from the mean flow to the unstable...

2013-01-01T23:59:59.000Z

355

CFEST Coupled Flow, Energy & Solute Transport Version CFEST005 Users Guide  

SciTech Connect (OSTI)

The CFEST (Coupled Flow, Energy, and Solute Transport) simulator described in this Users Guide is a three-dimensional finite-element model used to evaluate groundwater flow and solute mass transport. Confined and unconfined aquifer systems, as well as constant and variable density fluid flows can be represented with CFEST. For unconfined aquifers, the model uses a moving boundary for the water table, deforming the numerical mesh so that the uppermost nodes are always at the water table. For solute transport, changes in concentration of a single dissolved chemical constituent are computed for advective and hydrodynamic transport, linear sorption represented by a retardation factor, and radioactive decay. Although several thermal parameters described in this Users Guide are required inputs, thermal transport has not yet been fully implemented in the simulator. Once fully implemented, transport of thermal energy in the groundwater and solid matrix of the aquifer can also be used to model aquifer thermal regimes. The CFEST simulator is written in the FORTRAN 77 language, following American National Standards Institute (ANSI) standards. Execution of the CFEST simulator is controlled through three required text input files. These input file use a structured format of associated groups of input data. Example input data lines are presented for each file type, as well as a description of the structured FORTRAN data format. Detailed descriptions of all input requirements, output options, and program structure and execution are provided in this Users Guide. Required inputs for auxillary CFEST utilities that aide in post-processing data are also described. Global variables are defined for those with access to the source code. Although CFEST is a proprietary code (CFEST, Inc., Irvine, CA), the Pacific Northwest National Laboratory retains permission to maintain its own source, and to distribute executables to Hanford subcontractors.

Freedman, Vicky L.; Chen, Yousu; Gilca, Alex; Cole, Charles R.; Gupta, Sumant K.

2006-07-20T23:59:59.000Z

356

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

357

Energy states and energy flow near the transition states of unimolecular reactions  

SciTech Connect (OSTI)

The use of lasers with jet-cooled samples has improved energy and angular momentum resolution for the reactant and time resolution for the rate constant by orders of magnitude. The resolution of product quantum states has added a new dimension to unimolecular dynamics. In the past, the geometry, barrier height and vibrational frequencies of the transition state in RRKM theory were adjusted to fit thermal unimolecular reaction rate data. There have been successful quantitative tests of the ability of ab initio theory to calculate transition state geometries accurately and barrier heights to a few kJ/mol for simple molecules. Predicted frequencies tend to be somewhat too high for the softest modes which are of most importance in determining rates; however, the basic normal modes and sequence of frequencies seem to be correctly predicted. RRKM theory can be used with ab initio results to predict rate constants to within a factor of two or three and may be used for quantitative extrapolation to conditions not accessible in the laboratory but important in practical situations. Experiments on single molecular eigenstates have revealed quantum statistical fluctuations in rates which are predicted quantitatively in the appropriate extension of RRKM theory. Many experiments seeking to demonstrate non-statistical or non-RRKM dynamics have demonstrated the very wide range of applicability of the RRKM model. A few such experiments have demonstrated a lack of complete vibrational energy randomization in a reactant molecule. Dynamical theory has provided an exact quantum analog to RRKM theory which will combine with future experiments to define the extent to which quantized motion along the reaction coordinate and coupling between the reaction coordinate and vibrational degrees of freedom at the transition state are important. 42 refs., 11 figs.

Moore, C.B. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States). Chemical Sciences Div.

1994-10-01T23:59:59.000Z

358

Exploring alternative symmetry breaking mechanisms at the LHC with 7, 8 and 10 TeV total energy  

E-Print Network [OSTI]

In view of the annnouncement that in 2012 the LHC will run at 8 TeV, we study the possibility of detecting signals of alternative mechanisms of ElectroWeak Symmetry Breaking, described phenomenologically by unitarized models, at energies lower than 14 TeV. A complete calculation with six fermions in the final state is performed using the PHANTOM event generator. Our results indicate that at 8 TeV some of the scenarios with TeV scale resonances are likely to be identified while models with no resonances or with very heavy ones will be inaccessible, unless the available luminosity will be much higher than expected.

Alessandro Ballestrero; Diogo Buarque Franzosi; Ezio Maina

2012-03-13T23:59:59.000Z

359

DEVELOPMENT OF A LOW COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE  

SciTech Connect (OSTI)

In 1998, Southwest Research Institute began a multi-year project to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype energy meter in 2002-2003 included: (1) refinement of the algorithm used to infer properties of the natural gas stream, such as heating value; (2) evaluation of potential sensing technologies for nitrogen content, improvements in carbon dioxide measurements, and improvements in ultrasonic measurement technology and signal processing for improved speed of sound measurements; (3) design, fabrication and testing of a new prototype energy meter module incorporating these algorithm and sensor refinements; and (4) laboratory and field performance tests of the original and modified energy meter modules. Field tests of the original energy meter module have provided results in close agreement with an onsite gas chromatograph. The original algorithm has also been tested at a field site as a stand-alone application using measurements from in situ instruments, and has demonstrated its usefulness as a diagnostic tool. The algorithm has been revised to use measurement technologies existing in the module to measure the gas stream at multiple states and infer nitrogen content. The instrumentation module has also been modified to incorporate recent improvements in CO{sub 2} and sound speed sensing technology. Laboratory testing of the upgraded module has identified additional testing needed to attain the target accuracy in sound speed measurements and heating value.

E. Kelner; D. George; T. Morrow; T. Owen; M. Nored; R. Burkey; A. Minachi

2005-05-01T23:59:59.000Z

360

Flow Test At Hot Pot Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Hot Pot Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Hot Pot Area (DOE GTP) Exploration Activity...

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Flow Test At Snake River Plain Region (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Flow Test At Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Snake River Plain Region (DOE GTP)...

362

Flow Test At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At New River Area (DOE GTP) Exploration Activity...

363

Flow Test At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Gabbs Valley Area (DOE GTP) Exploration...

364

Flow Test At Mcgee Mountain Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Mcgee Mountain Area (DOE GTP) Exploration...

365

Flow Test At San Emidio Desert Area (DOE GTP) | Open Energy Informatio...  

Open Energy Info (EERE)

Flow Test At San Emidio Desert Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At San Emidio Desert Area (DOE GTP)...

366

Flow Test At Black Warrior Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Black Warrior Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Black Warrior Area (DOE GTP) Exploration...

367

Flow Test At Glass Buttes Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Glass Buttes Area (DOE GTP) Exploration...

368

Flow Test At Rye Patch Area (DOE GTP, 2011) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Rye Patch Area (DOE GTP, 2011) Exploration Activity Details Location Rye Patch Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding...

369

Compare Energy Use in Variable Refrigerant Flow Heat Pumps Field Demonstration and Computer Model  

SciTech Connect (OSTI)

Variable Refrigerant Flow (VRF) heat pumps are often regarded as energy efficient air-conditioning systems which offer electricity savings as well as reduction in peak electric demand while providing improved individual zone setpoint control. One of the key advantages of VRF systems is minimal duct losses which provide significant reduction in energy use and duct space. However, there is limited data available to show their actual performance in the field. Since VRF systems are increasingly gaining market share in the US, it is highly desirable to have more actual field performance data of these systems. An effort was made in this direction to monitor VRF system performance over an extended period of time in a US national lab test facility. Due to increasing demand by the energy modeling community, an empirical model to simulate VRF systems was implemented in the building simulation program EnergyPlus. This paper presents the comparison of energy consumption as measured in the national lab and as predicted by the program. For increased accuracy in the comparison, a customized weather file was created by using measured outdoor temperature and relative humidity at the test facility. Other inputs to the model included building construction, VRF system model based on lab measured performance, occupancy of the building, lighting/plug loads, and thermostat set-points etc. Infiltration model inputs were adjusted in the beginning to tune the computer model and then subsequent field measurements were compared to the simulation results. Differences between the computer model results and actual field measurements are discussed. The computer generated VRF performance closely resembled the field measurements.

Sharma, Chandan; Raustad, Richard

2013-06-01T23:59:59.000Z

370

Numerical investigations of flow and energy fields near a thermoacoustic couple  

Science Journals Connector (OSTI)

The flow field and the energy transport near thermoacoustic couples are simulated using a 2D full NavierStokes solver. The thermoacoustic couple plate is maintained at a constant temperature; plate lengths which are short and long compared with the particle displacement lengths of the acoustic standing waves are tested. Also investigated are the effects of plate spacing and the amplitude of the standing wave. Results are examined in the form of energy vectors particle paths and overall entropy generation rates. These show that a net heat-pumping effect appears only near the edges of thermoacoustic couple plates within about a particle displacement distance from the ends. A heat-pumping effect can be seen even on the shortest plates tested when the plate spacing exceeds the thermal penetration depth. It is observed that energy dissipation near the plate increases quadratically as the plate spacing is reduced. The results also indicate that there may be a larger scale vortical motion outside the plates which disappears as the plate spacing is reduced.

Haruko Ishikawa; David J. Mee

2002-01-01T23:59:59.000Z

371

Problems in resumming interjet energy flows with k_t clustering  

E-Print Network [OSTI]

We consider the energy flow into gaps between hard jets. It was previously believed that the accuracy of resummed predictions for such observables can be improved by employing the $k_t$ clustering procedure to define the gap energy in terms of a sum of energies of soft jets (rather than individual hadrons) in the gap. This significantly reduces the sensitivity to correlated soft large-angle radiation (non-global leading logs), numerically calculable only in the large $N_c$ limit. While this is the case, as we demonstrate here, the use of $k_t$ clustering spoils the straightforward single-gluon Sudakov exponentiation that multiplies the non-global resummation. We carry out an ${\\mathcal{O}}(\\alpha_s^2)$ calculation of the leading single-logarithmic terms and identify the piece that is omitted by straightforward exponentiation. We compare our results with the full ${\\mathcal{O}} (\\alpha_s^2)$ result from the program EVENT2 to confirm our conclusions. For $e^{+}e^{-} \\to 2$ jets and DIS (1+1) jets one can numerically resum these additional contributions as we show, but for dijet photoproduction and hadron-hadron processes further studies are needed.

A. Banfi; M. Dasgupta

2005-08-13T23:59:59.000Z

372

Universal formula for the energy--momentum tensor via a flow equation in the Gross--Neveu model  

E-Print Network [OSTI]

For the fermion field in the two-dimensional Gross--Neveu model, we introduce a flow equation that allows a simple $1/N$ expansion. By employing the $1/N$ expansion, we examine the validity of a universal formula for the energy--momentum tensor which is based on the small flow-time expansion. We confirm that the formula reproduces a correct normalization and the conservation law of the energy--momentum tensor by computing the translation Ward--Takahashi relation in the leading non-trivial order in the $1/N$ expansion. Also we confirm that the expectation value at finite temperature correctly reproduces thermodynamic quantities. These observations support the validity of a similar construction of the energy--momentum tensor via the gradient/Wilson flow in lattice gauge theory.

Suzuki, Hiroshi

2015-01-01T23:59:59.000Z

373

ESS 2012 Peer Review - Hydrogen-Bromine Flow Batteries for Grid-Scale Energy Storage - Vincent Battaglia, LBNL  

Broader source: Energy.gov (indexed) [DOE]

H H 2 /Br 2 Flow Battery for Grid-Scale Energy Storage Venkat Srinivasan, Adam Weber, & Vince Battaglia Lawrence Berkeley National Laboratory * DOE ESS Review * Washington, DC * September 26, 2012 vsbattaglia@lbl.gov Purpose Develop a low-cost, energy-storage system with high power density at 80% efficiency Use H 2 and Br 2 in a flow battery Future Plans Modeling Funding from ARPA-E GRIDS, USDOE LBNL: Kyu Taek Cho (Cell studies); Paul Ridgway (Catalysis studies); Sophia Haussener (Transport modeling) Bosch: Paul Albertus (Cost Modeling); Roel Sanchez-Carrera and Boris Kozinsky (Catalyst theory)

374

Application Study of the Pump Water Flow Station for Building Energy Consumption Monitoring and Control Optimization  

E-Print Network [OSTI]

. For example, the Venturi meter is commonly used for steam flow measurement, but it is less commonly used for water flow measurement because of the poor accuracy at low flow rates and high installation cost. 2) Displacement flow meter: The meter works... by using the fluid to rotate or displace a device inserted into the flow stream, e.g., a turbine flow meter, tangential paddlewheel meter, etc. It causes extra pressure drop. The bearing wears out and calibration is often needed to ensure accuracy...

Liu, G.; Liu, M.

2006-01-01T23:59:59.000Z

375

Direct measurements of the mean flow and eddy kinetic energy structure of the upper ocean circulation in the NE Atlantic  

E-Print Network [OSTI]

Direct measurements of the mean flow and eddy kinetic energy structure of the upper ocean, University of Bergen, Bergen, Norway Tom Rossby Graduate School of Oceanography, University of Rhode Island and variable wind-forcing, and strong and variable deep currents that lead to large uncertainties in the use

376

ESS 2012 Peer Review - Iron Based Flow Batteries for Low Cost Grid Level Energy Storage - Jesse Wainright, Case Western Reserve  

Broader source: Energy.gov (indexed) [DOE]

authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program. authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program. Iron Based Flow Batteries for Low Cost Grid Level Energy Storage J.S. Wainright, R. F. Savinell, P.I.s Dept. of Chemical Engineering, Case Western Reserve University Purpose Impact on Iron Based Batteries on the DOE OE Energy Storage Mission Recent Results Recent Results Develop efficient, cost-effective grid level storage capability based on iron. Goals of this Effort: * Minimize Cost/Watt by increasing current density - Hardware Cost >> Electrolyte Cost * Minimize Cost/Whr by increasing plating capacity * Maximize Efficiency by minimizing current lost to hydrogen evolution Electrochemistry of the all-Iron system:

377

Comparison of approaches to Total Quality Management. Including an examination of the Department of Energy`s position on quality management  

SciTech Connect (OSTI)

This paper presents a comparison of several qualitatively different approaches to Total Quality Management (TQM). The continuum ranges from management approaches that are primarily standards -- with specific guidelines, but few theoretical concepts -- to approaches that are primarily philosophical, with few specific guidelines. The approaches to TQM discussed in this paper include the International Organization for Standardization (ISO) 9000 Standard, the Malcolm Baldrige National Quality Award, Senge`s the Learning Organization, Watkins and Marsick`s approach to organizational learning, Covey`s Seven Habits of Highly Successful People, and Deming`s Fourteen Points for Management. Some of these approaches (Deming and ISO 9000) are then compared to the DOE`s official position on quality management and conduct of operations (DOE Orders 5700.6C and 5480.19). Using a tabular format, it is shown that while 5700.6C (Quality Assurance) maps well to many of the current approaches to TQM, DOE`s principle guide to management Order 5419.80 (Conduct of Operations) has many significant conflicts with some of the modern approaches to continuous quality improvement.

Bennett, C.T.

1994-03-01T23:59:59.000Z

378

Simulating atmosphere flow for wind energy applications with WRF-LES  

SciTech Connect (OSTI)

Forecasts of available wind energy resources at high spatial resolution enable users to site wind turbines in optimal locations, to forecast available resources for integration into power grids, to schedule maintenance on wind energy facilities, and to define design criteria for next-generation turbines. This array of research needs implies that an appropriate forecasting tool must be able to account for mesoscale processes like frontal passages, surface-atmosphere interactions inducing local-scale circulations, and the microscale effects of atmospheric stability such as breaking Kelvin-Helmholtz billows. This range of scales and processes demands a mesoscale model with large-eddy simulation (LES) capabilities which can also account for varying atmospheric stability. Numerical weather prediction models, such as the Weather and Research Forecasting model (WRF), excel at predicting synoptic and mesoscale phenomena. With grid spacings of less than 1 km (as is often required for wind energy applications), however, the limits of WRF's subfilter scale (SFS) turbulence parameterizations are exposed, and fundamental problems arise, associated with modeling the scales of motion between those which LES can represent and those for which large-scale PBL parameterizations apply. To address these issues, we have implemented significant modifications to the ARW core of the Weather Research and Forecasting model, including the Nonlinear Backscatter model with Anisotropy (NBA) SFS model following Kosovic (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005).We are also modifying WRF's terrain-following coordinate system by implementing an immersed boundary method (IBM) approach to account for the effects of complex terrain. Companion papers presenting idealized simulations with NBA-RSFS-WRF (Mirocha et al.) and IBM-WRF (K. A. Lundquist et al.) are also presented. Observations of flow through the Altamont Pass (Northern California) wind farm are available for validation of the WRF modeling tool for wind energy applications. In this presentation, we use these data to evaluate simulations using the NBA-RSFS-WRF tool in multiple configurations. We vary nesting capabilities, multiple levels of RSFS reconstruction, SFS turbulence models (the new NBA turbulence model versus existing WRF SFS turbulence models) to illustrate the capabilities of the modeling tool and to prioritize recommendations for operational uses. Nested simulations which capture both significant mesoscale processes as well as local-scale stable boundary layer effects are required to effectively predict available wind resources at turbine height.

Lundquist, J K; Mirocha, J D; Chow, F K; Kosovic, B; Lundquist, K A

2008-01-14T23:59:59.000Z

379

Flow Test At Raft River Geothermal Area (2008) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2008) Flow Test At Raft River Geothermal Area (2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2008) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis To confirm resource using flow tests Notes Both production and injection wells were flow tested. Aslo includes interference testing across the well field. References Glaspey, Douglas J. (30 January 2008) Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Raft_River_Geothermal_Area_(2008)&oldid=473856

380

Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates  

Science Journals Connector (OSTI)

This paper presents an experimental energy and exergy analysis for a novel flat plate solar air heater (SAH) with several obstacles and without obstacles. For increasing the available heat-transfer area may be achieved if air is flowing simultaneously and separately over and under the different obstacle absorbing plates, instead of only flowing either over or under the different obstacle absorbing plates, leading to improved collector efficiency. The measured parameters were the inlet and outlet temperatures, the absorbing plate temperatures, the ambient temperature, and the solar radiation. Further, the measurements were performed at different values of mass flow rate of air and different levels of absorbing plates in flow channel duct. After the analysis of the results, the optimal value of efficiency is middle level of absorbing plate in flow channel duct for all operating conditions and the double-flow collector supplied with obstacles appears significantly better than that without obstacles. At the end of this study, the exergy relations are delivered for different SAHs. The results show that the largest irreversibility is occurring at the flat plate (without obstacles) collector in which collector efficiency is smallest.

Hikmet Esen

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Flow rate and duty cycle effects in lysis of Chlamydomonas reinhardtii using high-energy pulsed focused ultrasound  

Science Journals Connector (OSTI)

To consider microalgae lipid biofuel as a viable energy source it is a necessity to maximize algal cell lysis lipid harvest and thus biofuel production versus the energy used to lyse the cells. Previous techniques have been to use energy consumptive ultrasound waves in the 1040?kHz range in a stationary exposure environment. This study evaluated the potential of using 1.1?MHz ultrasound pulses in a new flow through type chamber on Chlamydomonas reinhardtii as a model organism for cell breakage. The ultrasound was generated using a spherically focused transducer with a focal length of 6.34?cm and an active diameter of 6.36?cm driven by 20 cycle sine-wave tone bursts at varied pulse repetition frequencies. First variations in flow rate were examined at a constant duty cycle of 3.6%. After assessing flow rates the duty cycle was varied to further explore the dependence on the tone burst parameters. Cell lysis was assessed by quantifying protein and chlorophyll release into the supernatant as well as by lipid extractability. Appropriate flow rates with higher duty cycles led to statistically significant increases in cell lysis relative to controls and other exposure conditions.

Timothy A. Bigelow; Jin Xu

2014-01-01T23:59:59.000Z

382

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network [OSTI]

Comparison of energy efficiency between variable refrigeranttheir superior energy efficiency. The variable refrigerantfew studies reporting the energy efficiency of VRF systems

Hong, Tainzhen

2010-01-01T23:59:59.000Z

383

Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II: Radiation of Gravity Waves from a Gaussian Jet  

E-Print Network [OSTI]

Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II structures that dominate wave momentum and energy transport. When the interior of a typical midlatitude jet and energy at jet interior critical levels. Longer waves transport momentum and energy away from the jet

Farrell, Brian F.

384

Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Flow Test Activity Date Usefulness useful DOE-funding Unknown Notes Core holes enabled injection and flow testing up to 70 gpm. References Dick Benoit, Joe Moore, Colin Goranson, David Blackwell (2005) Core Hole Drilling And Testing At The Lake City, California Geothermal Field Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Lake_City_Hot_Springs_Area_(Benoit_Et_Al.,_2005)&oldid=386872" Category: Exploration Activities What links here Related changes

385

Bi-Annual Report 2010-2011: Shaping pulse flows to meet environmental and energy objectives  

SciTech Connect (OSTI)

This report describes a bioenergetic model developed to allocate seasonal pulse flows to benefit salmon growth. The model links flow with floodplain inundation and production of invertebrate prey eaten by juvenile Chinook salmon. A unique quantile modeling approach is used to describe temporal variation among juvenile salmon spawned at different times. Preliminary model outputs are presented and future plans to optimize flows both to maximize salmon growth and hydropower production are outlined.

Jager, Yetta [ORNL

2010-10-01T23:59:59.000Z

386

Beam Energy Dependence of Directed and Elliptic Flow Measurement from the STAR Experiment  

E-Print Network [OSTI]

Measurements of anisotropic flow in heavy-ion collisions provide insight into the early stage of the system's evolution. This proceedings presents directed and elliptic flow for Au+Au collisions at 39, 11.5 and 7.7 GeV, and for Cu+Cu at 22.4 GeV, measured in the STAR Experiment at RHIC. Differential measurements of directed and elliptic flow of charged particles as a function of centrality, transverse momentum and pseudorapidity are discussed.

Yadav Pandit

2011-09-13T23:59:59.000Z

387

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network [OSTI]

the current movement toward net zero energy buildings, manyThe movement towards net zero energy buildings brings

Hong, Tainzhen

2010-01-01T23:59:59.000Z

388

Flow Test At Mccoy Geothermal Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Flow Test At Mccoy Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

389

Flow Test At Jemez Pueblo Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

GTP) Exploration Activity Details Location Jemez Pueblo Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011)...

390

Flow Test At Crump's Hot Springs Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Details Location Crump's Hot Springs Geothermal Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011)...

391

Flow Test At The Needles Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At The Needles Area (DOE GTP) Exploration Activity Details Location The Needles Area...

392

Flow Test At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fort Bliss Area (DOE GTP) Exploration Activity Details Location Fort Bliss Area...

393

Flow Test At Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Additional References Retrieved from "http:en.openei.orgw...

394

Flow Test At Fish Lake Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Additional References Retrieved from "http:en.openei.orgw...

395

Flow Test At Newberry Caldera Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Exploration Activity Details Location Newberry Caldera Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011)...

396

Application of continuous flow and alternative energy devices for 5-hydroxymethylfurfural production  

Science Journals Connector (OSTI)

Dehydration of fructose and glucose in dipolar, aprotic solvents leads to formation of 5-hydroxymethylfurfural. Conditions for continuous flow reactions using a...

Michael Schn; Michael Schnrch; Marko D. Mihovilovic

2011-08-01T23:59:59.000Z

397

In-medium NN cross sections determined from the nuclear stopping and collective flow in heavy-ion collisions at intermediate energies  

SciTech Connect (OSTI)

In-medium nucleon-nucleon scattering cross sections are explored by comparing results of quantum molecular dynamics simulations to data on stopping and on elliptic and directed flow in intermediate-energy heavy-ion collisions. The comparison points to in-medium cross sections which are suppressed at low energies but not at higher energies. Positive correlations are found between the degree of stopping and the magnitudes of elliptic and directed flows.

Zhang Yingxun [China Institute of Atomic Energy, P.O. Box 275 (18), Beijing 102413 (China); Li Zhuxia [China Institute of Atomic Energy, P.O. Box 275 (18), Beijing 102413 (China); Center of Theoretical Nuclear Physics, National Laboratory of Lanzhou Heavy Ion Accelerator, Lanzhou 730000 (China); Institute of Theoretical Physics, Chinese Academic of Science, Beijing 100080 (China); Danielewicz, Pawel [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

2007-03-15T23:59:59.000Z

398

1. [M] Estimate the fraction of the total transported energy (in the form of gasoline) in the Trans-Alaska Pipeline that is consumed in pumping. As always, try not to look anything up.  

E-Print Network [OSTI]

1. [M] Estimate the fraction of the total transported energy (in the form of gasoline) in the Trans to this (which is 1 bend per 10 m). So we can toss this out. Now estimate the energy content of gasoline: Many

Nimmo, Francis

399

Flow Test At Lightning Dock Area (Cunniff & Bowers, 2005) | Open Energy  

Open Energy Info (EERE)

Flow Test At Lightning Dock Area (Cunniff & Bowers, 2005) Flow Test At Lightning Dock Area (Cunniff & Bowers, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lightning Dock Area (Cunniff & Bowers, 2005) Exploration Activity Details Location Lightning Dock Area Exploration Technique Flow Test Activity Date Usefulness useful DOE-funding Unknown Notes After the Welaco temperature survey was completed for TG52-7, preparations were completed for a controlled airlift test. This test was completed in the period from 19-20 September 2003 for some 23 hours. The well produced steady state flow of about 320-325 gpm at a wellhead temperature of 126.7degrees C (260degreesF). This production rate is equivalent to about 162,000 pounds per hour, with the production temperature producing usable

400

Flow Test At Long Valley Caldera Area (Farrar, Et Al., 2003) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Flow Test At Long Valley Caldera Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Flow Test Activity Date Usefulness useful DOE-funding Unknown Notes The pressure data collected during a 50-h-long flow test at LVEW in September 2001 are best matched using solutions for a flow system consisting of a steeply dipping fracture with infinite hydraulic conductivity, surrounded by a finite-conductivity rock matrix. At shallow

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Heat flow in the northern Basin and Range province | Open Energy  

Open Energy Info (EERE)

in the northern Basin and Range province in the northern Basin and Range province Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Heat flow in the northern Basin and Range province Abstract The heat flow in the Basin and Range province of northern Nevada is extremely complex. It is a product of superposition of the regional effects of extension and volcanism /intrusion modified by the local conductive effects of thermal refraction (complicated structural settings),variations in radioactive heat production, erosion and sedimentation. In addition to these conductive effects,groundwater flow, both on a local and a regional basis,affects heat-flow measurements. Typical heat -flow values for the Basin and Range province average 85 +/- 10 mWm-2. The higher estimates are

402

Barge Truck Total  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

403

Matter & Energy Wind Energy  

E-Print Network [OSTI]

See Also: Matter & Energy Wind Energy Energy Technology Physics Nuclear Energy Petroleum 27, 2012) -- Energy flowing from large-scale to small-scale places may be prevented from flowing, indicating that there are energy flows from large to small scale in confined space. Indeed, under a specific

Shepelyansky, Dima

404

Flow Test At Raft River Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (1979) Flow Test At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To allow for the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes Temperature and flowmeter logs provide evidence that these fractures and faults are conduits that conduct hot water to the wells. One of the intermediate depth core holes penetrated a hydrothermally altered zone that includes several fractures producing hot water. This altered production

405

Flow Test At Raft River Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2004) Flow Test At Raft River Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2004) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2004 Usefulness useful DOE-funding GRED II Notes Geothermal Resource Exploration and Definition Projects Raft River (GRED II): Re-assessment and testing of previously abandoned production wells. The objective of the U.S. Geothermal effort is to re-access the available wellbores, assess their condition, perform extensive testing of the reservoir to determine its productive capacity, and perform a resource utilization assessment. At the time of this paper, all five wells had been

406

TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries  

SciTech Connect (OSTI)

We will present a novel design lithium-organic non-aqueous redox flow battery based on a TEMPO catholyte. This RFB produced desired electrochemical performance exceeding most of the currently reported nonaqueous RFB systems.

Wei, Xiaoliang; Xu, Wu; Vijayakumar, M.; Cosimbescu, Lelia; Liu, Tianbiao L.; Sprenkle, Vincent L.; Wang, Wei

2014-12-03T23:59:59.000Z

407

Flow Test At Raft River Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2006) Flow Test At Raft River Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2006) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2006 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine field hydraulic conductivity using borehole impeller flowmeter data Notes A quantitative evaluation of borehole-impeller flowmeter data leads to estimated field hydraulic conductivity. Data were obtained during an injection test of a geothermal well at the Raft River geothermal test site in Idaho. Both stationary and trolling calibrations of the flowmeter were made in the well. Methods were developed to adjust for variations in hole

408

6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xi'an, China, 11-15 July 2009  

E-Print Network [OSTI]

6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xi, hydrogen fuel, obtained from ethanol, is a potentially strong contender as an energy carrier based for more secure and cleaner energy carrier (Barreto, Makihira, and Riahi 2003). Hydrogen can be produced

Khandekar, Sameer

409

Total Light Management  

Broader source: Energy.gov (indexed) [DOE]

Light Management Light Management Why is saving Energy Important World Electricity Consumption (2007) Top 20 Countries 0 500 1000 1500 2000 2500 3000 3500 4000 4500 U n i t e d S t a t e s C h i n a J a p a n R u s s i a I n d i a G e r m a n y C a n a d a A f r i c a F r a n c e B r a z i l K o r e a , S o u t h U n i t e d K i n g d o m I t a l y S p a i n A u s t r a l i a T a i w a n S o u t h A f r i c a M e x i c o S a u d i A r a b i a I r a n Billion kWh Source: US DOE Energy Information Administration Lighting Control Strategies 4 5 6 Occupancy/Vacancy Sensing * The greatest energy savings achieved with any lighting fixture is when the lights are shut off * Minimize wasted light by providing occupancy sensing or vacancy sensing 7 8 Daylight Harvesting * Most commercial space has enough natural light flowing into it, and the amount of artificial light being generated can be unnecessary * Cut back on the production of artificial lighting by

410

6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xi'an, China, 11-15 July 2009  

E-Print Network [OSTI]

6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xi in pipeline transportation, where it is important to identify and control bottlenecks influence on production be viewed as the hydrodynamic equivalent of the Mach number for gas flows. Simplified hydraulic theories

Al Hanbali, Ahmad

411

Disaggregating regional energy supply/demand and flow data to 173 BEAs in support of export coal analysis. Final report  

SciTech Connect (OSTI)

This report documents the procedures and results of a study sponsored jointly by the US Department of Transportation and the US Department of Energy. The study was conducted to provide, Bureau of Economic Analysis (BEA)-level production/consumption data for energy materials for 1985 and 1990 in support of an analysis of transportation requirements for export coal. Base data for energy forecasts at the regional level were obtained from the Department of Energy, Energy Information Administration. The forecasts selected for this study are described in DOE/EIA's 1980 Annual Report to Congress, and are: 1985 Series, B, medium oil import price ($37.00/barrel); and 1990 Series B, medium oil import price ($41.00/barrel). Each forecast period is extensively described by approximately forty-three statistical tables prepared by EIA and made available to TERA for this study. This report provides sufficient information to enable the transportation analyst to appreciate the procedures employed by TERA to produce the BEA-level energy production/consumption data. The report presents the results of the procedures, abstracts of data tabulations, and various assumptions used for the preparation of the BEA-level data. The end-product of this effort was the BEA to BEA energy commodity flow data by more which serve as direct input to DOT's transportation network model being used for a detailed analysis of export coal transportation.

Not Available

1981-06-01T23:59:59.000Z

412

Use of the Predictive Sugars Biomarker to Evaluate Self-Reported Total Sugars Intake in the Observing Protein and Energy Nutrition (OPEN) Study  

Science Journals Connector (OSTI)

...Observing Protein and Energy Nutrition (OPEN...Human Nutrition Unit, Cambridge, United...biomarker to assess measurement error (ME) structure...Observing Protein and Energy Nutrition (OPEN...Schoeller DA .Measurement of energy expenditure in...

Nataa Tasevska; Douglas Midthune; Nancy Potischman; Amy F. Subar; Amanda J. Cross; Sheila A. Bingham; Arthur Schatzkin; and Victor Kipnis

2011-03-01T23:59:59.000Z

413

Flow Test At Pilgrim Hot Springs Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Area (DOE GTP) Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Pilgrim Hot Springs Area (DOE GTP) Exploration Activity Details Location Pilgrim Hot Springs Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Pilgrim_Hot_Springs_Area_(DOE_GTP)&oldid=402456" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863028959 Varnish cache server

414

Multi Agent System to Optimize Comfort and Energy Flows in the Built Environment  

E-Print Network [OSTI]

This paper discusses the control of building energy comfort management systems led by the economic movement within the energy market resulting in different prices. This new generation of building management systems focuses on the application...

Pennings, L. W.; Houten, M. A.; Boxem, G.; Zeiler, W.

2010-01-01T23:59:59.000Z

415

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network [OSTI]

simulation with credible software programs is a proven feasible way to get quantitative comparison of the energy

Hong, Tainzhen

2010-01-01T23:59:59.000Z

416

Fictitious domain methods for two-phase flow energy balance computations in nuclear  

E-Print Network [OSTI]

is a software platform dedicated to the thermal- hydraulic numerical simulation of nuclear power plants from the local scale to the system scale through the component scale. The thermal-hydraulic simulation of nuclear power plants consists in modeling two-phase flow (wa- ter/steam) passing into obstacles: we are hence

Boyer, Edmond

417

Sustainability analysis of complex dynamic systems using embodied energy flows: The eco-bond graphs modeling and simulation framework  

Science Journals Connector (OSTI)

Abstract This article presents a general methodology for modeling complex dynamic systems focusing on sustainability properties that emerge from tracking energy flows. We adopt the embodied energy (emergy) concept that traces all energy transformations required for running a process. Thus, energy at any process within a system is studied in terms of all the energy previously invested to support it (up to the primary sources) and therefore sustainability can be analyzed structurally. These ideas were implemented in the bond graph framework, a modeling paradigm where physical variables are explicitly checked for adherence to energy conservation principles. The results are a novel Ecological Bond Graphs (EcoBG) modeling paradigm and the new EcoBondLib library, a set of practical ready-to-use graphical models based on EcoBG principles and developed under the Modelica model encoding standard. EcoBG represents general systems in a three-faceted fashion, describing dynamics at their mass, energy, and emergy facets. EcoBG offers a scalable graphical formalism for the description of emergy dynamic equations, resolving some mathematical difficulties inherited from the original formulation of the equations. The core elements of EcoBG offer a soundly organized mathematical skeleton upon which new custom variables and indexes can be built to extend the modeling power. This can be done safely, without compromising the correctness of the core energy balance calculations. As an example we show how to implement a custom sustainability index at local submodels, for detecting unsustainable phases that are not automatically discovered when using the emergy technique alone. The fact that we implemented EcoBondLib relying on the Modelica technology opens up powerful possibilities for studying sustainability of systems with interactions between natural and industrial processes. Modelica counts on a vast and reusable knowledge base of industrial-strength models and tools in engineering applications, developed by the Modelica community throughout decades.

Rodrigo D. Castro; Franois E. Cellier; Andreas Fischlin

2014-01-01T23:59:59.000Z

418

Isospin distillation with radial flow: A test of the nuclear symmetry energy  

SciTech Connect (OSTI)

We discuss mechanisms related to isospin transport in central collisions between neutron-rich systems at Fermi energies to gain information on the nuclear symmetry energy at and below saturation. A fully consistent study of the isospin distillation and expansion dynamics in two-component systems is presented in the framework of a stochastic transport theory. We analyze correlations between fragment observables, focusing on the study of the fragment asymmetry N/Z as a function of their kinetic energy. We find that the relation between these observables allows us to better characterize the fragmentation path and to access new information on the low-density behavior of the symmetry energy.

Colonna, M. [LNS-INFN, I-95123 Catania (Italy); Baran, V. [NIPNE-HH, Bucharest, and Bucharest University, Bucharest (Romania); Toro, M. Di [LNS-INFN, I-95123 Catania (Italy); Department of Physics and Astronomy, University of Catania, Catania (Italy); Wolter, H. H. [LNS-INFN, I-95123 Catania (Italy); Fakultaet fuer Physik, University of Munich, Garching (Germany)

2008-12-15T23:59:59.000Z

419

Super-acceleration on the Brane by Energy Flow from the Bulk  

E-Print Network [OSTI]

We consider a brane cosmological model with energy exchange between brane and bulk. Parameterizing the energy exchange term by the scale factor and Hubble parameter, we are able to exactly solve the modified Friedmann equation on the brane. In this model, the equation of state for the effective dark energy has a transition behavior changing from $w_{de}^{eff}>-1$ to $w_{de}^{eff}dark energy on the brane has $w>-1$. Fitting data from type Ia supernova, Sloan Digital Sky Survey and Wilkinson Microwave Anisotropy Probe, our universe is predicted now in the state of super-acceleration with $w_{de0}^{eff}=-1.21$.

Rong-Gen Cai; Yungui Gong; Bin Wang

2005-11-30T23:59:59.000Z

420

Impacts of increased outdoor air flow rates on annual HVAC energy costs in office environment.  

E-Print Network [OSTI]

??The use of different ventilation systems has an important impact on the energy cost of office buildings. This paper examines the relationship between heating and (more)

Destrez, Adrien

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy conversions and storage caused by an unsteady poloidal flow in active solar regions  

Science Journals Connector (OSTI)

In this paper we discuss coupling processes between a magnetic field and an unsteady plasma motion, and analyze the features of energy storage and conversions in active region.

Zhongyuan Li; W. R. Hu

422

Wind flow modeling for wind energy analysis of the Nellis Dunes area in Nevada.  

E-Print Network [OSTI]

??A wind energy analysis of the Nellis Dunes area in Nevada was conducted. A DEM file which contains the elevation data was used to generate (more)

Rangegowda, Upendra

2010-01-01T23:59:59.000Z

423

Vanadium-redox flow and lithium-ion battery modelling and performance in wind energy applications.  

E-Print Network [OSTI]

??As wind energy penetration levels increase, there is a growing interest in using storage devices to aid in managing the fluctuations in wind turbine output (more)

Chahwan, John A.

2007-01-01T23:59:59.000Z

424

Use of the Predictive Sugars Biomarker to Evaluate Self-Reported Total Sugars Intake in the Observing Protein and Energy Nutrition (OPEN) Study  

Science Journals Connector (OSTI)

...Katan MB.Underestimation of energy intake by 3-d records compared with energy intake to maintain body weight...Multimodel Inference.2nd ed.New York:Springer;2002. Supplementary...the Observing Protein and Energy Nutrition (OPEN) study...

Nataa Tasevska; Douglas Midthune; Nancy Potischman; Amy F. Subar; Amanda J. Cross; Sheila A. Bingham; Arthur Schatzkin; and Victor Kipnis

2011-03-01T23:59:59.000Z

425

Use of the Predictive Sugars Biomarker to Evaluate Self-Reported Total Sugars Intake in the Observing Protein and Energy Nutrition (OPEN) Study  

Science Journals Connector (OSTI)

...whereas in analysis with energy-adjusted intakes...epidemiology may have prevented us from detecting a causal...and overreporting of energy intake related to weight status and lifestyle in a nationwide...Elliott P.Who are the low energy reporters' in the dietary...

Nataa Tasevska; Douglas Midthune; Nancy Potischman; Amy F. Subar; Amanda J. Cross; Sheila A. Bingham; Arthur Schatzkin; and Victor Kipnis

2011-03-01T23:59:59.000Z

426

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

of total primary energy consumption was also announced forenergy in total primary energy consumption to 10% by 2010coal in total primary energy consumption as well as slightly

Zheng, Nina

2012-01-01T23:59:59.000Z

427

International Energy Statistics  

Gasoline and Diesel Fuel Update (EIA)

> Countries > International Energy Statistics > Countries > International Energy Statistics International Energy Statistics Petroleum Production| Annual Monthly/Quarterly Consumption | Annual Monthly/Quarterly Capacity | Bunker Fuels | Stocks | Annual Monthly/Quarterly Reserves | Imports | Annual Monthly/Quarterly Exports | CO2 Emissions | Heat Content Natural Gas All Flows | Production | Consumption | Reserves | Imports | Exports | Carbon Dioxide Emissions | Heat Content Coal All Flows | Production | Consumption | Reserves | Imports | Exports | Carbon Dioxide Emissions | Heat Content Electricity Generation | Consumption | Capacity | Imports | Net Imports | Exports | Distribution Losses | Heat Content Renewables Electricity Generation| Electricity Consumption | Biofuels Production | Biofuels Consumption | Heat Content Total Energy

428

Isospin Distillation with Radial Flow: a Test of the Nuclear Symmetry Energy  

E-Print Network [OSTI]

We discuss mechanisms related to isospin transport in central collisions between neutron-rich systems at Fermi energies. A fully consistent study of the isospin distillation and expansion dynamics in two-component systems is presented in the framework of a stochastic transport theory. We analyze correlations between fragment observables, focusing on the study of the average N/Z of fragments, as a function of their kinetic energy. We identify an EOS-dependent relation between these observables, allowing to better characterize the fragmentation path and to access new information on the low density behavior of the symmetry energy.

M. Colonna; V. Baran; M. Di Toro; H. H. Wolter

2007-07-20T23:59:59.000Z

429

Ultrafast Energy Flow and Equilibration Dynamics in Photosynthetic Light-Harvesting Complexes  

Science Journals Connector (OSTI)

We disentangle various energy transfer pathways in the bacterio-chlorophyll excitation cascade from LH2 to LH1 in Chromatium vinosum grown under high-light or low-light illumination...

Maiuri, Margherita; Luer, Larry; Henry, Sarah; Carey, Anne-Marie; Cogdell, Richard; Cerullo, Giulio; Polli, Dario

430

Resistivity and Energy Flow in a Plasma Undergoing Magnetic-Field-Line Reconnection  

Science Journals Connector (OSTI)

Detailed time- and space-resolved measurements of the electric fields and currents have been made in a laboratory plasma undergoing magnetic-field-line reconnection. The resistivity normalized to the classical value is found to be spatially inhomogeneous (10energy balance [?E?H?=-E?J?-(??t)(B22?0)] shows that electron heating accounts for most of the electromagnetic energy loss.

N. Wild; W. Gekelman; R. L. Stenzel

1981-02-02T23:59:59.000Z

431

Numerical and Physical Modelling of Bubbly Flow Phenomena - Final Report to the Department of Energy  

SciTech Connect (OSTI)

This report describes the main features of the results obtained in the course of this project. A new approach to the systematic development of closure relations for the averaged equations of disperse multiphase flow is outlined. The focus of the project is on spatially non-uniform systems and several aspects in which such systems differ from uniform ones are described. Then, the procedure used in deriving the closure relations is given and some explicit results shown. The report also contains a list of publications supported by this grant and a list of the persons involved in the work.

Andrea Prosperetti

2004-12-21T23:59:59.000Z

432

Simulation of tides, residual flow and energy budget in the Gulf of California  

Science Journals Connector (OSTI)

With the application of a two-dimensional nonlinear hydrodynamical-numerical semi-implicit model, the principal tides M2, S2, K2, N2, K1, P1 and O1 were studied. Energy budgets of the semi-diurnal M2 and S2 were calculated separately. The linear sum of these budgets was compared with the tidal energy budget obtained when these two tidal constituents interact. Since a quadratic form for the bottom friction was used, remarkable differences were found. The results show that in the area of the Colorado River delta, the dissipation of tidal energy is very strong. Intense tidal currents were observed in the same region and over the Salsipuedes Sill. Energy budgets calculated for forcing waves of different periods, but of the same amplitude, were used to estimate the principal periods of resonance. Although the topography of the Gulf is very complex, the model reproduced observed sea-surface elevation and current patterns. To study spring tide conditions, the above seven tidal constituents were simulated. Estimates of residual currents reveal the presence of several intense cyclonic and anticyclonic gyres. Over the Salsipuedes Sill, residual currents of the M2 tide reach values of more than 15 cm s?1. Horizontal distributions of dissipation rates of tidal energy and of kinetic energy were also obtained.

Noel Carbajal; Jan O. Backhaus

1998-01-01T23:59:59.000Z

433

Variations of Total Domination  

Science Journals Connector (OSTI)

The study of locatingdominating sets in graphs was pioneered by Slater[186, 187...], and this concept was later extended to total domination in graphs. A locatingtotal dominating set, abbreviated LTD-set, in G

Michael A. Henning; Anders Yeo

2013-01-01T23:59:59.000Z

434

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

435

Urban Sewage Delivery Heat Transfer System (1): Flow Resistance and Energy Analysis  

E-Print Network [OSTI]

? Specific Resistance?s 2/m6? Diameter?mm? Specific Resistance?s 2/m6? Diameter?mm? Specific Resistance?s 2/m6? 10 77392033.96 125 118.87 400 0.249907 15 9024280.53 150 45.23 450 0.133866 20 1964433.28 175 19.98 500 0.076587 25 602024... pipe and the old cast iron pipe. It is 0.30 0.021 z d? = (6) (1.2/um> )s Defined the ratio of flow resistance of mediate water and sewage is zHw, the ratio of the flux is wz,and the ratio of velocity is z wUr u u= , supposed the inside...

Zhang, C.; Wu, R.; Li, G.; Li, X.; Huang, L.; Sun, D.

2006-01-01T23:59:59.000Z

436

Neuroimaging and neuroenergetics: Brain activations as information-driven reorganization of energy flows  

E-Print Network [OSTI]

Neuroimaging and neuroenergetics: Brain activations as information-driven reorganization of energy 25 January 2010 Keywords: Neuroimaging Neuroenergetics Brain activation Cortical response Deviance detection a b s t r a c t There is increasing focus on the neurophysiological underpinnings of brain

437

Combined Energy, Material and Building Simulation for Green Factory Planning  

Science Journals Connector (OSTI)

The paper describes a novel approach, Total Factory Simulation, for integration of energy and material flows in manufacturing as well ... a csolution to support planning and optimization of green factories. The f...

Bojan Stahl; Marco Taisch

2013-01-01T23:59:59.000Z

438

China Energy Databook - Rev. 4  

E-Print Network [OSTI]

try. Calcium carbide and phosphorous intensities declined,total energy use Yellow phosphorous, total energy use W o ototal energy use Yellow phosphorous, total energy use Wood

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

439

On the asymptotic balance between electric and magnetic energies for hydromagnetic relativistic flows  

SciTech Connect (OSTI)

In the equations of classical magnetohydrodynamics, the displacement current is considered vanishingly small due to low plasma velocities. For velocities comparable to the speed of light, the full relativistic electromagnetic equations must be used. In the absence of gravitational forcings and with an isotropic Ohm's law, it is proved that for poloidal magnetic field and velocity and toroidal electric field, the electric and magnetic energies tend to be equivalent in average for large times. This represents a partial extension of Cowling's theorem for axisymmetric fields.

Nez, Manuel [Department of Algebra and Mathematical Analysis and IMUVA, Universidad de Valladolid, 47005 Valladolid (Spain)] [Department of Algebra and Mathematical Analysis and IMUVA, Universidad de Valladolid, 47005 Valladolid (Spain)

2013-06-15T23:59:59.000Z

440

Energy Lossand Flow of Heavy Quarks in Au+Au Collisions at root-s=200GeV  

SciTech Connect (OSTI)

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured electrons with 0.3 < p{sub rmT} < 9 GeV/c at midrapidity (|y| < 0.35) from heavy flavor (charm and bottom) decays in Au+Au collisions at {radical}s{sub NN} = 200 GeV. The nuclear modification factor R{sub AA} relative to p+p collisions shows a strong suppression in central Au+Au collisions, indicating substantial energy loss of heavy quarks in the medium produced at RHIC energies. A large azimuthal anisotropy, v{sub 2}, with respect to the reaction plane is observed for 0.5 < p{sub rmT} < 5 GeV/c indicating non-zero heavy flavor elliptic flow. A simultaneous description of R{sub AA}(p{sub rmT}) and v{sub 2}(p{sub rmT}) constrains the existing models of heavy-quark rescattering in strongly interacting matter and provides information on the transport properties of the produced medium. In particular, a viscosity to entropy density ratio close to the conjectured quantum lower bound, i.e. near a perfect fluid, is suggested.

Soltz, R; Klay, J; Enokizono, A; Newby, J; Heffner, M; Hartouni, E

2007-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Total quality management implementation guidelines  

SciTech Connect (OSTI)

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

442

Thermal Energy Measurement with Tangential Paddlewheel Flow Meters: Summary of Experimental Results and in-situ Diagnostics  

E-Print Network [OSTI]

paddlewheel flow meters, and several new methods for in-situ diagnostic measures for ascertaining whether or not a flow meter is experiencing fluctuating flow conditions or if a flow meter is suffering a degraded signal due to shaft wear. INTRODUCTION Flow... section where it passes across the candidate sensor that is placed in the inter-changeable test section, through the orifice plate and finally into the is combined with Btu meter the threshold can be much higher than the published threshold of the flow...

Haberl, J. S.; Watt, J. B.

1994-01-01T23:59:59.000Z

443

Innovative Techniques of Multiphase Flow in Pipeline System for Oil?Gas Gathering and Transportation with Energy?Saving and Emission?Reduction  

Science Journals Connector (OSTI)

Multiphase flow measurement desanding dehumidification and heat furnace are critical techniques for the oil and gas gathering and transportation which influnce intensively the energy?saving and emission?reduction in the petroleum industry. Some innovative techniques were developed for the first time by the present research team including an online recognation instrument of multiphase flow regime a water fraction instrument for multuphase flow a coiled tube desanding separator with low pressure loss and high efficiency a supersonic swirling natural gas dehumifier and a vacuum phase?change boiler. With an integration of the above techniques a new oil gas gathering and transpotation system was proposed which reduced the establishment of one metering station and several transfer stations compared with the tranditional system. The oil and gas mixture transpotation in single pipes was realized. The improved techniques were applied in the oilfields in China and promoted the productivity of the oilfields by low energy consumption low emissions high efficiency and great security.

Bofeng Bai; Liejin Guo; Shaojun Zhang; Ximin Zhang; Hanyang Gu

2010-01-01T23:59:59.000Z

444

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

0 Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy...

445

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch LPG to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy...

446

Energy Production Over the Years | Department of Energy  

Office of Environmental Management (EM)

an energy source Total Energy Produced Coal Crude Oil Natural Gas Total Renewable Energy Non-Biofuel Renewable Energy Biofuels Nuclear Power Source: EIA State Energy Data Systems...

447

The Bioenergetic Description of Light Energy Migration in Photoactive Membranes; Equivalence between the Theory of the Energy Fluxes and the Theory of the Proportion of Pigments Forms to Total Pigments  

Science Journals Connector (OSTI)

The energy exchanges between pigments in biological membranes irradiated with light can be described in a number of ... , is equivalent to the theory of the energy exchange fluxes developed by Strasser (1978). .....

C. Sironval; R. Strasser; M. Brouers

1984-01-01T23:59:59.000Z

448

Annual Energy Review - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Energy Review Annual Energy Review Superseded -- see MER for key annual tables Annual Energy Review archives for data year: 2011 2010 2009 2008 all archives Go EIA has expanded the Monthly Energy Review (MER) to include annual data as far back as 1949 for those data tables that are found in both the Annual Energy Review (AER) and the MER . During this transition, EIA will not publish the 2012 edition of the AER. In the list of tables below, grayed-out table numbers now go to MER tables that contain 1949-2012 (and later) data series. New interactive tables and graphs have also been added and are currently on EIA's Beta site. Data categories + EXPAND ALL Energy Overview 1.0 Total Energy Flow, GRAPH 1.1 Primary Energy Overview, 1949- PDF XLS CSV INTERACTIVE 1.2 Primary Energy Production by Source, 1949- PDF XLS CSV INTERACTIVE

449

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network [OSTI]

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA S RENSEN a generalization of previously proposed batch distillation schemes. A simple feedback control strategy for total re verify the simulations. INTRODUCTION Although batch distillation generally is less energy e cient than

Skogestad, Sigurd

450

Technological Implementation of Renewable Energy in Rural?Isolated Areas and Small?Medium Islands in Indonesia: Problem Mapping And Preliminary Surveys of Total People Participation in a Local Wind Pump Water Supply  

Science Journals Connector (OSTI)

This article discusses a formulation of problem mapping and preliminary surveys of total people participation in a local wind pump (LWP) water supply in term of technological implementation of renewable energy (RE) in rural?isolated areas and small?medium islands in Indonesia. The formulation was constructed in order to enhance and to promote the local product of RE across Indonesia. It was also addressed to accommodate local potencies barriers and opportunities into a priority map. Moreover it was designed into five aspects such as (1) local technology of the RE: a case of pilot project of the LWP; (2) environmental?cultural aspects related to global issues of energy?renewable energy; (3) potencies and barriers corresponding to local national regional and international contents; (4) education and training and (5) gender participation. To focus the formulation serial preliminary surveys were conducted in five major areas namely: (1) survey on support and barrier factors of the aspects; (2) strategic planning model a concept A?B?G which stands for Academician?Business people?Government; (3) survey on background based knowledge on energy conservation; (4) survey on gender participation in energy conservation and (5) survey on local stakeholder involvement. Throughout the surveys it has been notified that the concept needs to be developed to any level of its component since its elements were identified in tolerance values such as high potency value of the LWP development (95%); a strong potency of rural area application (88%); a medium background of energy energy conservation (EC) identified in a range of 56%?72% sufficient support from local stakeholders and gender participation.

Ahmad Taufik

2007-01-01T23:59:59.000Z

451

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network [OSTI]

a forecast for total energy consumption in network standbyconsiderable impact on total energy consumption from TVs.factors affecting total energy consumption. Although further

Park, Won Young

2011-01-01T23:59:59.000Z

452

Instream Flow Project  

Broader source: Energy.gov [DOE]

As a part of the Department of Energys Water Power Program, the Instream Flow Project was carried out by Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and Argonne National Laboratory to develop tools aimed at defining environmental flow needs for hydropower operations.

453

Key China Energy Statistics 2012  

E-Print Network [OSTI]

Consumption Total Primary Energy Consumption by Source AAGRFuel Wind Total Primary Energy Consumption by Source SharesFuel Wind Total Final Energy Consumption by Region Mtce East

Levine, Mark

2013-01-01T23:59:59.000Z

454

Key China Energy Statistics 2011  

E-Print Network [OSTI]

Gas Consumption Total Primary Energy Consumption by Source (Nuclear Fuel Total Primary Energy Consumption by Fuel SharesNuclear Fuel Total Final Energy Consumption by Region (1995-

Levine, Mark

2013-01-01T23:59:59.000Z

455

Energy Efficiency Indicators Methodology Booklet  

E-Print Network [OSTI]

in shaping total energy consumption. These changes may bethe reduction of total energy consumption is not due toimprovements on the total energy consumption is estimated by

Sathaye, Jayant

2010-01-01T23:59:59.000Z

456

Key China Energy Statistics 2011  

E-Print Network [OSTI]

Growth of China's Total Primary Energy Production (TPE) byFuel (Mtce) Primary Energy Production (Mtce) AAGR Coal Rawof China's Total Primary Energy Production (Mtce) AAGR Total

Levine, Mark

2013-01-01T23:59:59.000Z

457

Evaluation of Cerebral Energy Demand during Graded Hypercapnia and Validation of Optical Blood Flow Measurements against ASL fMRI  

Science Journals Connector (OSTI)

We validate optical cerebral blood flow measurements against functional MRI in a rat model during graded hypercapnia. We test the iso-metabolic assumption and demonstrate an apaprent...

Carp, Stefan; Franceschini, Maria A; Boas, David A; Kim, Young R

458

Multistage jet deflection on ski jumps with flow-energy dissipation by compression of the entrained air  

Science Journals Connector (OSTI)

1. As flow is deflected along a ski-jump profile, a hydrodymamic pressure is developed which exceeds that of gra...

P. R. Khlopenkov

1977-07-01T23:59:59.000Z

459

21 briefing pages total  

Broader source: Energy.gov (indexed) [DOE]

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

460

Berkning av vrmeenergifrluster i flerbostadshus genom analys av den totala fjrrvrmeenergianvndningen; Calculation of the thermal energy losses in apartment buildings through analyze of the total district thermal energy consumption .  

E-Print Network [OSTI]

?? This thesis has been carried out on behalf of IV Produkt AB and intends to set an average ratio of thermal energy losses in (more)

Fredhav, Dennis

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

462

Summary Max Total Units  

Broader source: Energy.gov (indexed) [DOE]

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

463

Total Precipitable Water  

SciTech Connect (OSTI)

The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

None

2012-01-01T23:59:59.000Z

464

Total Sustainability Humber College  

E-Print Network [OSTI]

1 Total Sustainability Management Humber College November, 2012 SUSTAINABILITY SYMPOSIUM Green An Impending Global Disaster #12;3 Sustainability is NOT Climate Remediation #12;Our Premises "We cannot, you cannot improve it" (Lord Kelvin) "First rule of sustainability is to align with natural forces

Thompson, Michael

465

Flow shop scheduling with peak power consumption constraints  

E-Print Network [OSTI]

Mar 29, 2012 ... Flow shop scheduling with peak power consumption constraints ... Keywords: scheduling, flow shop, energy, peak power consumption, integer...

K. Fang

2012-03-29T23:59:59.000Z

466

Commissioning : The Total Process  

E-Print Network [OSTI]

that rely on electronic control. Very frequently these systems and design features have not performed as expected. This can result in energy-efficiency losses. occupant complaints about comfort, indoor air quality problems. high operating costs...

Kettler, G. J.

1998-01-01T23:59:59.000Z

467

Total isomerization gains flexibility  

SciTech Connect (OSTI)

Isomerization extends refinery flexibility to meet changing markets. TIP (Total Isomerization Process) allows conversion of paraffin fractions in the gasoline boiling region including straight run naptha, light reformate, aromatic unit raffinate, and hydrocrackate. The hysomer isomerization is compared to catalytic reforming. Isomerization routes are graphed. Cost estimates and suggestions on the use of other feedstocks are given. TIP can maximize gas production, reduce crude runs, and complement cat reforming. In four examples, TIP reduces reformer severity and increases reformer yield.

Symoniak, M.F.; Holcombe, T.C.

1983-05-01T23:59:59.000Z

468

Total Cross Sections for Neutron Scattering  

E-Print Network [OSTI]

Measurements of neutron total cross-sections are both extensive and extremely accurate. Although they place a strong constraint on theoretically constructed models, there are relatively few comparisons of predictions with experiment. The total cross-sections for neutron scattering from $^{16}$O and $^{40}$Ca are calculated as a function of energy from $50-700$~MeV laboratory energy with a microscopic first order optical potential derived within the framework of the Watson expansion. Although these results are already in qualitative agreement with the data, the inclusion of medium corrections to the propagator is essential to correctly predict the energy dependence given by the experiment.

C. R. Chinn; Ch. Elster; R. M. Thaler; S. P. Weppner

1994-10-19T23:59:59.000Z

469

Piezoelectric Artificial Kelp: Experimentally Validated Parameter Optimization of a Quasi-Static, Flow-Driven Energy Harvester  

E-Print Network [OSTI]

Piezoelectric energy harvesting is the process of taking an external mechanical input and converting it directly into electrical energy via the piezoelectric effect. To determine the power created by a piezoelectric energy harvester, a specific...

Pankonien, Alexander Morgan

2011-10-21T23:59:59.000Z

470

Orifice flow measurement uncertainty  

SciTech Connect (OSTI)

A computer program is now available from Union Carbide that evaluates the total flow uncertainty of orifice flowmeter systems. Tolerance values for every component in the system and the sensitivity of the measured flowrate to each component can be established using historical data and published hardware specifications. Knowing the tolerance and sensitivity values, a total measurement uncertainty can be estimated with a 95% confidence level. This computer program provides a powerful design tool to ensure correct component matching and total metering system optimization.

Samples, C.R.

1984-04-01T23:59:59.000Z

471

Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle  

SciTech Connect (OSTI)

This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J. (Energy Systems)

2012-06-21T23:59:59.000Z

472

Momentum, energy and scalar transport in polydisperse gas-solid flows using particle-resolved direct numerical simulations.  

E-Print Network [OSTI]

??Gas-solid flows are commonly encountered in Nature and in several industrial applications. Emerging carbon-neutral or carbon negative technologies such as chemical looping combustion and CO2 (more)

Tenneti, Sudheer

2013-01-01T23:59:59.000Z

473

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

474

Key China Energy Statistics 2012  

E-Print Network [OSTI]

Total Primary Energy Production per GDP (MER*) (2009) *Total Primary Energy Production per GDP (PPP**) **PurchasingNorth West China's Energy Consumption per Unit of GDP Energy

Levine, Mark

2013-01-01T23:59:59.000Z

475

Determination of Total Solids in Biomass and Total Dissolved...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 3312008 A. Sluiter, B. Hames, D. Hyman, C. Payne,...

476

Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry  

E-Print Network [OSTI]

12 Figure 7 Total energy consumption and energy intensity ofonly data on total energy consumption or energy intensitytce) Figure 7 Total energy consumption and energy intensity

Price, Lynn

2013-01-01T23:59:59.000Z

477

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

478

The principle of maximum energy dissipation: a novel thermodynamic perspective on rapid water flow in connected soil structures  

Science Journals Connector (OSTI)

...mouth. Most of the energy dissipation during...conclude that future research on the organization...conditions when energy inputs are large...different. Future research should hence focus...hydrology. Geophysical research abstracts, vol. 8. Vienna...

2010-01-01T23:59:59.000Z

479

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

480

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

Gasoline and Diesel Fuel Update (EIA)

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column:...

Note: This page contains sample records for the topic "total energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

Gasoline and Diesel Fuel Update (EIA)

4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;...

482

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

U.S. Energy Information Administration (EIA) Indexed Site

6 Capability to Switch Electricity to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column:...

483

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;...

484

Cotton flow  

E-Print Network [OSTI]

Using the conformally invariant Cotton tensor, we define a geometric flow, the "Cotton flow", which is exclusive to three dimensions. This flow tends to evolve the initial metrics into conformally flat ones, and is somewhat orthogonal to the Yamabe flow, the latter being a flow within a conformal class. We define an entropy functional, and study the flow of nine homogeneous spaces both numerically and analytically. In particular, we show that the arbitrarily deformed homogeneous 3-sphere flows into the round 3-sphere. Two of the nine homogeneous geometries, which are degenerated by the Ricci flow, are left intact by the Cotton flow.

Ali Ulas Ozgur Kisisel; Ozgur Sarioglu; Bayram Tekin

2008-06-17T23:59:59.000Z

485

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect (OSTI)

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

486

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

487

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

488

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

489

Flow Batteries: A Historical Perspective  

Broader source: Energy.gov [DOE]

Presentation by Robert Savinell, Case Western Reserve University, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC.

490

ESS 2012 Peer Review - Flow Battery Solution for Smart Grid Renewable Energy Applications - Sheri Nevins, Raytheon & Ron Moss, EnerVault  

Broader source: Energy.gov (indexed) [DOE]

2012, Raytheon Proprietary and EnerVault Corporation, All Rights Reserved. 2012, Raytheon Proprietary and EnerVault Corporation, All Rights Reserved. 1 Sheri Nevins Raytheon Ktech Ron Mosso EnerVault Corporation DEMONSTRATION OF ENERGY STORAGE USING A BREAKTHROUGH REDOX FLOW BATTERY TECHNOLOGY v. 1-0 Copyright ©2012, Raytheon Proprietary and EnerVault Corporation, All Rights Reserved. 2 Disclaimer This material is partially based upon work supported by NYSERDA under PON1200 Project 15880 NYSERDA has not reviewed the information contained herein, and the opinions expressed in this report do not necessarily reflect those of NYSERDA or the State of New York. This material is partially based upon work supported by the Department of Energy under Award Number DE-OE0000225. This report was prepared as an account of work sponsored by an agency of the United States

491

Primus Power's Flow Battery Powered by $11 Million in Private Investment  

Broader source: Energy.gov (indexed) [DOE]

Primus Power's Flow Battery Powered by $11 Million in Private Primus Power's Flow Battery Powered by $11 Million in Private Investment Primus Power's Flow Battery Powered by $11 Million in Private Investment June 14, 2011 - 10:00am Addthis Primus Power's energy cell stack. | Photo Courtesy of Primus Power Primus Power's energy cell stack. | Photo Courtesy of Primus Power Kristina Pflanz Writer & Contractor, Advanced Research Projects Agency - Energy What does this mean for me? Will make renewable energy sources, such as solar and wind, available to more utility customers. In February, the Advanced Research Projects Agency-Energy (ARPA-E) announced that six of its projects, which initially received a total of $23.6 million in agency seed funding, had collectively generated more than $100 million in outside private capital investment. ARPA-E recently

492

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

structure. From 51% of total energy consumption in 1980, thefor 61% of total energy consumption. Industrial energy usethis scenario, Chinas total energy consumption by 2020 will

2008-01-01T23:59:59.000Z

493

ARM - Measurement - Net broadband total irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsNet broadband total irradiance govMeasurementsNet broadband total irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Net broadband total irradiance The difference between upwelling and downwelling, covering longwave and shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments EBBR : Energy Balance Bowen Ratio Station SEBS : Surface Energy Balance System External Instruments ECMWF : European Centre for Medium Range Weather Forecasts Model

494

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Capability to Switch Electricity to Alternative Energy Sources, 2006; " 6 Capability to Switch Electricity to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Kilowatthours." ,,"Electricity Receipts",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Natural","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Receipts(c)","Switchable","Switchable","Gas","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(d)"," "

495