Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Table US1. Total Energy Consumption, Expenditures, and Intensities ...  

U.S. Energy Information Administration (EIA)

Part 1: Housing Unit Characteristics and Energy Usage Indicators Energy Consumption 2 Energy Expenditures 2 Total U.S. (quadrillion Btu) Per Household (Dollars) Per

2

"Table A28. Total Expenditures for Purchased Energy Sources by Census Region"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Expenditures for Purchased Energy Sources by Census Region" Total Expenditures for Purchased Energy Sources by Census Region" " and Economic Characteristics of the Establishment, 1991" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

3

Table CE1-6.2u. Total Energy Consumption and Expenditures by ...  

U.S. Energy Information Administration (EIA)

Table CE1-6.2u. Total Energy Consumption and Expenditures by Square Feet and Usage Indicators, 2001 Usage Indicators RSE Column Factor: Total End-Use Energy

4

"Table A36. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Total Expenditures for Purchased Energy Sources by Census Region," 6. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Group and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors" ,,"Total United States"

5

"Table A37. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Total Expenditures for Purchased Energy Sources by Census Region," 7. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

6

"Table A24. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total Expenditures for Purchased Energy Sources by Census Region," 4. Total Expenditures for Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Groupsc and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:","0.6 ",0.6,1.3,1.3,0.7,1.2,1.2,1.5,1.1

7

Energy Expenditures | OpenEI  

Open Energy Info (EERE)

Expenditures Expenditures Dataset Summary Description The State Energy Data System (SEDS) is compiled by the U.S. Energy Information Administration's (EIA); it is a comprehensive database of energy statistics by state (and includes totals for the entire US). SEDS includes estimates of energy production, consumption, prices, and expenditures broken down by energy source and sector. Annual estimates are available from 1960 - 2009 for production and consumption estimates and from 1970 - 2009 for price and expenditure estimates. Source EIA Date Released June 30th, 2011 (3 years ago) Date Updated Unknown Keywords EIA Energy Consumption Energy Expenditures energy prices energy production SEDS State energy data States US Data text/csv icon Complete SEDS dataset as csv (may be too big for Excel) (csv, 40.6 MiB)

8

Table ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States  

Gasoline and Diesel Fuel Update (EIA)

ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States Year Primary Energy Electric Power Sector h,j Retail Electricity Total Energy g,h,i Coal Coal Coke Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i,j Coking Coal Steam Coal Total Exports Imports Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f,g Prices in Dollars per Million Btu 1970 0.45 0.36 0.38 1.27 0.93 0.59 1.16 0.73 1.43 2.85 0.42 1.38 1.71 0.18 1.29 1.08 0.32 4.98 1.65 1975 1.65 0.90 1.03 2.37 3.47 1.18 2.60 2.05 2.96 4.65 1.93 2.94 3.35 0.24 1.50 2.19 0.97 8.61 3.33 1980 2.10 1.38 1.46 2.54 3.19 2.86 6.70 6.36 5.64 9.84 3.88 7.04 7.40 0.43 2.26 4.57 1.77 13.95 6.89 1985 2.03 1.67 1.69 2.76 2.99 4.61 7.22 5.91 6.63 9.01 4.30 R 7.62 R 7.64 0.71 2.47 4.93 1.91 19.05

9

OpenEI - Energy Expenditures  

Open Energy Info (EERE)

State Energy Data State Energy Data System (SEDS) Complete Dataset through 2009 http://en.openei.org/datasets/node/883 The State Energy Data System (SEDS) is compiled by the U.S. Energy Information Administration's (EIA); it is a comprehensive database of energy statistics by state (and includes totals for the entire US). SEDS includes estimates of energy production, consumption, prices, and expenditures broken down by energy source and sector. Annual estimates are available from 1960 - 2009 for production and consumption estimates and from 1970 - 2009 for price and expenditure estimates.

License
Type of

10

Household Energy Consumption and Expenditures  

Reports and Publications (EIA)

Presents information about household end use consumption of energy and expenditures for that energy. These data were collected in the 2005 Residential Energy Consumption Survey (RECS)

Information Center

2008-09-01T23:59:59.000Z

11

State Energy Price and Expenditure Estimates  

U.S. Energy Information Administration (EIA)

2010 Price and Expenditure Summary Tables. Table E1. Primary Energy, Electricity, ... Ranked by State, 2010 Rank Prices Expenditures Expenditures per Person State

12

Household Energy Consumption and Expenditures 1993 -- Executive ...  

U.S. Energy Information Administration (EIA)

national level data on energy-related issues on households and energy expenditures in the residential sector.

13

State energy price and expenditure report, 1986  

SciTech Connect

The average price paid for energy in the United States in 1986 was $7.19 per million Btu, down significantly from the 1985 average of $8.42 per million Btu. While total energy consumption increased slightly to 74.3 quadrillion Btu from 1985 to 1986, expenditures fell from $445 billion to $381 billion. Energy expenditures per capita in 1986 were $1578, down significantly from the 1985 rate. In 1986, consumers used only 94 percent as much energy per person as they had in 1970, but they spent 3.9 times as much money per person on energy as they had in 1970. By state, energy expenditures per capita in 1986 ranged from the lowest rate of $1277 in New York to the highest of $3108 in Alaska. Of the major energy sources, electricity registered the highest price per million Btu ($19.00), followed by petroleum ($5.63), natural gas ($3.97), coal ($1.62), and nuclear fuel ($0.70). The price of electricity is relatively high because of significant costs for converting energy from various forms (e.g., fossil fuels, nuclear fuel, hydroelectric energy, and geothermal energy) into electricity, and additional, somewhat smaller costs for transmitting and distributing electricity to end users. In addition, electricity is a premium form of energy because of its flexibility and clean nature at energy consumers' sites.

Not Available

1988-10-28T23:59:59.000Z

14

Table A39. Total Expenditures for Purchased Electricity and Steam  

U.S. Energy Information Administration (EIA) Indexed Site

9. Total Expenditures for Purchased Electricity and Steam" 9. Total Expenditures for Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" ," Electricity",," Steam" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors" ,"Total United States" "RSE Column Factors:",0.3,2,1.6,1.2

15

Assumptions to the Annual Energy Outlook 2002 - Household Expenditures...  

Annual Energy Outlook 2012 (EIA)

Expenditures Module The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and...

16

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

4 4 2005 Average Household Expenditures as Percent of Annual Income, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Average Annual Expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the Consumer Expenditure Survey (CE). RECS assumed total US households to be 111,090,617 in 2005, while the CE data is based on 117,356,000 "consumer units," which the Bureau of Labor Statistics defines to be financially independent persons or groups of people that use their incomes to make joint expenditure decisions, including all members of a

17

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

3 3 2005 Average Household Expenditures, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Other expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the Consumer Expenditure Survey (CE). RECS assumed total US households to be 111,090,617 in 2005, while the CE data is based on 117,356,000 "consumer units," which the Bureau of Labor Statistics defines to be financially independent persons or groups of people that use their incomes to make joint expenditure decisions, including all members of a

18

Residential Energy Expenditures for Water Heating (2005) | OpenEI  

Open Energy Info (EERE)

Expenditures for Water Heating (2005) Expenditures for Water Heating (2005) Dataset Summary Description Provides total and average household expenditures on energy for water heating in the United States in 2005. The data was collected as part of the Residential Energy Consumption Survey (RECS). RECS is a national survey that collects residential energy-related data. The survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the United States. Data were obtained from residential energy suppliers for each unit in the sample to produce the data. Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (6 years ago) Keywords Energy Expenditures Residential Water Heating Data application/vnd.ms-excel icon 2005_Total.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 70.1 KiB)

19

Commercial Buildings Energy Consumption and Expenditures 1992  

Annual Energy Outlook 2012 (EIA)

(92) Distribution Category UC-950 Commercial Buildings Energy Consumption and Expenditures 1992 April 1995 Contacts The Energy Information Administration (EIA) prepared this...

20

State energy price and expenditure report 1984  

Science Conference Proceedings (OSTI)

The average price paid by US consumers for energy in 1984 was $8.43 per million Btu, down 0.5% from the 1983 average price of $8.47 per million Btu. While the average price changed very little, total expenditures rose 5% from $418 billion in 1983 to $438 billion in 1984 due to increased energy consumption. By energy source, prices showed the most change in petroleum and electricity: the average price paid for petroleum products fell from $7.79 per million Btu in 1983 to $7.62 per million Btu in 1984, and the average price paid for electricity increased from $18.62 per million Btu in 1983 to $19.29 per million Btu in 1984. Expenditures in 1984 hit record high levels for coal, natural gas, nuclear fuel, and electricity, but were 16% below the 1981 peak for petroleum.

Not Available

1986-12-04T23:59:59.000Z

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

State energy price and expenditure report 1994  

SciTech Connect

The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates developed in the State Energy Price and Expenditure Data System (SEPEDS) are provided by energy source and economic sector and are published for the years 1970 through 1994. Consumption estimates used to calculate expenditures and the documentation for those estimates are taken from the State Energy Data Report 1994, Consumption Estimates (SEDR), published in October 1996. Expenditures are calculated by multiplying the price estimates by the consumption estimates, which are adjusted to remove process fuel; intermediate petroleum products; and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar, and photovoltaic energy sources. Documentation is included describing the development of price estimates, data sources, and calculation methods. 316 tabs.

NONE

1997-06-01T23:59:59.000Z

22

State energy price and expenditure report 1992  

SciTech Connect

The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates are provided by energy source and economic sector and are published for the years 1970, 1980, and 1985 through 1992. Data for all years, 1970 through 1992, are available on personal computer diskettes.

1994-12-01T23:59:59.000Z

23

State energy price and expenditure report 1991  

SciTech Connect

The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates are provided by energy source and economic sector and are published for the years 1970, 1975, 1980, and 1985 through 1991. Data for all years, 1970 through 1991, are available on personal computer diskettes. Documentation in Appendix A describes how the price estimates are developed, including sources of data, methods of estimation, and conversion factors applied. This report is an update of the State Energy Price and Expenditure Report 1990, published in September 1992.

1993-09-01T23:59:59.000Z

24

Table 7.9 Expenditures for Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2002;" 9 Expenditures for Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Million U.S. Dollars." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ",,"Residual","Distillate","Natural ","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

25

State energy price and expenditure report, 1995  

SciTech Connect

The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the US. The estimates developed in the State Energy Price and Expenditure Data System (SEPEDS) are provided by energy source and economic sector and are published for the years 1970 through 1995. Data for all years are available on a CD-ROM and via Internet. Consumption estimates used to calculate expenditures and the documentation for those estimates are taken from the State Energy Data Report 1995, Consumption Estimates (SEDR), published in December 1997. Expenditures are calculated by multiplying the price estimates by the consumption estimates, which are adjusted to remove process fuel; intermediate petroleum products; and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar, and photovoltaic energy sources.

1998-08-01T23:59:59.000Z

26

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, Table C4; and EIA, Annual Energy Review 2010, Aug. 2011, Appendix D, p. 353 for price deflators...

27

State energy price and expenditure report 1993  

SciTech Connect

The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 states and the District of Columbia and in aggregate for the US. The five economic sectors used in SEPER correspond to those used in SEDR and are residential, commercial, industrial, transportation, and electric utility. Documentation in appendices describe how the price estimates are developed, provide conversion factors for measures used in the energy analysis, and include a glossary. 65 tabs.

1995-12-01T23:59:59.000Z

28

Commercial Buildings Energy Consumption and Expenditures 1992 - Executive  

U.S. Energy Information Administration (EIA) Indexed Site

& Expenditures > Executive Summary & Expenditures > Executive Summary 1992 Consumption & Expenditures Executive Summary Commercial Buildings Energy Consumption and Expenditures 1992 presents statistics about the amount of energy consumed in commercial buildings and the corresponding expenditures for that energy. These data are based on the 1992 Commercial Buildings Energy Consumption Survey (CBECS), a national energy survey of buildings in the commercial sector, conducted by the Energy Information Administration (EIA) of the U.S. Department of Energy. Figure ES1. Energy Consumption is Commercial Buidings by Energy Source, 1992 Energy Consumption: In 1992, the 4.8 million commercial buildings in the United States consumed 5.5 quadrillion Btu of electricity, natural gas, fuel oil, and district heat. Of those 5.5 quadrillion Btu, consumption of site electricity accounted for 2.6 quadrillion Btu, or 48.0 percent, and consumption of natural gas accounted for 2.2 quadrillion Btu, or 39.6 percent. Fuel oil consumption made up 0.3 quadrillion Btu, or 4.0 percent of the total, while consumption of district heat made up 0.4 quadrillion Btu, or 7.9 percent of energy consumption in that sector. When the energy losses that occur at the electricity generating plants are included, the overall energy consumed by commercial buildings increases to about 10.8 quadrillion Btu (Figure ES1).

29

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

4 4 FY 2007 Federal Buildings Energy Prices and Expenditures, by Fuel Type ($2010) Fuel Type Electricity (1) Natural Gas Fuel Oil Coal Purchased Steam LPG/Propane Other Average Total Note(s): Source(s): 17.05 6028.63 Prices and expenditures are for Goal-Subject buildings. 1) $0.0776/kWh. 2) Energy used in Goal-Subject buildings in FY 2007 accounted for 33.8% of the total Federal energy bill. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table A-4, p. 93 for prices and expenditures, and Table A-9, p. 97 for total energy expenditures; EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price deflators. 24.30 318.35 17.06 43.87 16.19 36.64 9.37 1138.21 15.25 419.30 3.62 62.87 Average Fuel Prices Total Expenditures ($/million BTU) ($ million) (2) 23.68

30

Household energy consumption and expenditures 1993  

Science Conference Proceedings (OSTI)

This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

NONE

1995-10-05T23:59:59.000Z

31

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

2 2 2005 Household Energy Expenditures, by Vintage ($2010) | Year | Prior to 1950 887 | 22% 1950 to 1969 771 | 22% 1970 to 1979 736 | 16% 1980 to 1989 741 | 16% 1990 to 1999 752 | 16% 2000 to 2005 777 | 9% | Average 780 | Total 100% Note(s): Source(s): 1.24 2,003 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008 for 2005 expenditures; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price inflators.

32

Assumptions to the Annual Energy Outlook - Household Expenditures Module  

Gasoline and Diesel Fuel Update (EIA)

Household Expenditures Module Household Expenditures Module Assumption to the Annual Energy Outlook Household Expenditures Module Figure 5. United States Census Divisions. Having problems, call our National Energy Information Center at 202-586-8800 for help. The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and demographic characteristics, and consumption and expenditures for fuels for various end-uses. These data are combined with NEMS forecasts of household disposable income, fuel consumption, and fuel expenditures by end-use and household type. The HEM disaggregation algorithm uses these combined results to forecast household fuel consumption and expenditures by income quintile and Census Division (see

33

Table CE3-3e. Electric Air-Conditioning Energy Expenditures in U.S ...  

U.S. Energy Information Administration (EIA)

Electric Air-Conditioning Energy Expenditures in U.S. Households by Household Income, 2001 RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli-

34

Table CE2-5.1u. Space-Heating Energy Consumption and Expenditures ...  

U.S. Energy Information Administration (EIA)

Space-Heating Energy Consumption and Expenditures by Household Member and Demographics, 2001 Household ... Total Households Using a Major Space-Heating

35

Lower residential energy use reduces home energy expenditures as ...  

U.S. Energy Information Administration (EIA)

Aggregate home energy expenditures by U.S. households fell $12 billion in 2012 ... households spent $1,945 on heating, cooling, appliances, electronics, and lighting ...

36

Table WH5. Total Expenditures for Water Heating by Major Fuels ...  

U.S. Energy Information Administration (EIA)

Total Table WH5. Total Expenditures for Water Heating by Major Fuels Used, 2005 Billion Dollars Electricity Natural Gas Fuel Oil LPG U.S. Households

37

Energy and household expenditure patterns  

Science Conference Proceedings (OSTI)

Since households account, either directly or indirectly, for two-thirds of the energy consumed in the US, changes in household activities will affect energy use. Expected changes in prices, personal income, and family spending over the next 20 years are looked at as well as the implications for energy consumption. The analysis shows that direct energy purchases will break with past trends, dropping from 2.6% to 0.2% annual growth for the rest of the century. Growth in spending on energy-using goods is also likely to slow down. The year 2000 will see a marked decrease in the growth of national energy consumption. 58 references, 3 figures, 35 tables.

Lareau, T.J.; Darmstadter, J.

1983-01-01T23:59:59.000Z

38

Residential Energy Consumption Survey Results: Total Energy Consumptio...  

Open Energy Info (EERE)

Consumption Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005)

39

Table SH5. Total Expenditures for Space Heating by Major Fuels ...  

U.S. Energy Information Administration (EIA)

Space Heating Fuel 4 (millions) Fuel Oil U.S. Households ... 2005 Residential Energy Consumption Survey: Energy Consumption and Expenditures Tables. Natural Gas

40

Commercial Buildings Energy Consumption and Expenditures 1992...  

U.S. Energy Information Administration (EIA) Indexed Site

1992 Consumption and Expenditures 1992 Consumption & Expenditures Overview Full Report Tables National estimates of electricity, natural gas, fuel oil, and district heat...

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

1 1 2005 Energy Expenditures per Household, by Housing Type and Square Footage ($2010) Per Household Single-Family 1.16 Detached 1.16 Attached 1.20 Multi-Family 1.66 2 to 4 units 1.90 5 or more units 1.53 Mobile Home 1.76 All Homes 1.12 Note(s): Source(s): 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-1 part1; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for

42

Table AP4. Total Expenditures for Home Appliances and Lighting by ...  

U.S. Energy Information Administration (EIA)

and Lighting Table AP4. Total Expenditures for Home Appliances and Lighting by Fuels Used, 2005 Billion Dollars U.S. Households (millions) Electricity

43

Table 2.10 Commercial Buildings Energy Consumption and Expenditure ...  

U.S. Energy Information Administration (EIA)

Table 2.10 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003: Energy Source and Year: Building Characteristics

44

Assumptions to the Annual Energy Outlook 2000 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Key Assumptions Key Assumptions The historical input data used to develop the HEM version for the AEO2000 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2000 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS). HEM uses the consumption forecast by NEMS for the residential and transportation sectors as inputs to the disaggregation algorithm that results in the direct fuel expenditure analysis. Household end-use and personal transportation service consumption are obtained by HEM from the NEMS Residential and Transportation Demand Modules. Household disposable income is adjusted with forecasts of total disposable income from the NEMS Macroeconomic Activity Module.

45

Household energy consumption and expenditures 1987  

SciTech Connect

This report is the third in the series of reports presenting data from the 1987 Residential Energy Consumption Survey (RECS). The 1987 RECS, seventh in a series of national surveys of households and their energy suppliers, provides baseline information on household energy use in the United States. Data from the seven RECS and its companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are made available to the public in published reports such as this one, and on public use data files. This report presents data for the four Census regions and nine Census divisions on the consumption of and expenditures for electricity, natural gas, fuel oil and kerosene (as a single category), and liquefied petroleum gas (LPG). Data are also presented on consumption of wood at the Census region level. The emphasis in this report is on graphic depiction of the data. Data from previous RECS surveys are provided in the graphics, which indicate the regional trends in consumption, expenditures, and uses of energy. These graphs present data for the United States and each Census division. 12 figs., 71 tabs.

Not Available

1990-01-22T23:59:59.000Z

46

Household energy and consumption and expenditures, 1990. Supplement, Regional  

Science Conference Proceedings (OSTI)

The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990.

Not Available

1993-03-02T23:59:59.000Z

47

Table CE3-10e. Electric Air-Conditioning Energy Expenditures in U ...  

U.S. Energy Information Administration (EIA)

Table CE3-10e. Electric Air-Conditioning Energy Expenditures in U.S. Households by Midwest Census Region, 2001 RSE Column Factor: Total U.S. Midwest Census Region

48

Table CE2-3e. Space-Heating Energy Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE2-3e. Space-Heating Energy Expenditures in U.S. Households by Household Income, 2001 RSE Column Factor: Total 2001 Household Income Below Poverty

49

Table CE2-7e. Space-Heating Energy Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE2-7e. Space-Heating Energy Expenditures in U.S. Households by Four Most Populated States, 2001 RSE Column Factor: Total U.S. Four Most Populated States

50

Table 1.5 Energy Consumption, Expenditures, and Emissions ...  

U.S. Energy Information Administration (EIA)

1 Expenditures include taxes where data are available. 5 In chained (2005) dollars. See "Chained Dollars" in Glossary. 2 Carbon dioxide emissions from energy consumption.

51

Energy Consumption and Expenditures RECS 2001  

U.S. Energy Information Administration (EIA)

Water Heating. Space Heating. Appliances. Air-Conditioning. About the Data. Tables: Total Energy Consumption in U.S ...

52

"Table A38. Total Expenditures for Purchased Electricity, Steam, and Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Total Expenditures for Purchased Electricity, Steam, and Natural Gas" 8. Total Expenditures for Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Million Dollars)" ,," Electricity",," Steam" ,,,,,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Row" "Code(a)","Industry Group and Industry","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors" ,,"Total United States"

53

Table 1.5 Energy Consumption, Expenditures, and Emissions ...  

U.S. Energy Information Administration (EIA)

Consumption per Capita: Energy Expenditures 1: Energy ... 2009. 94,559,407 [R] 308 : 1,061,220 [R] ... 2 Carbon dioxide emissions from energy consumption. See Table 11.1.

54

"Table A46. Total Expenditures for Purchased Electricity, Steam, and Natural"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Total Expenditures for Purchased Electricity, Steam, and Natural" 6. Total Expenditures for Purchased Electricity, Steam, and Natural" " Gas by Type of Supplier, Census Region, Industry Group, and Selected Industries," 1991 " (Estimates in Million Dollars)" ,," Electricity",," Steam",," Natural Gas" ,,"-","-----------","-","-----------","-","------------","-","RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row" "Code(a)","Industry Groups and Industry","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Supplier(b)","Pipelines","Supplier(d)","Factors"

55

"Table A48. Total Expenditures for Purchased Electricity, Steam, and Natural"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Total Expenditures for Purchased Electricity, Steam, and Natural" 8. Total Expenditures for Purchased Electricity, Steam, and Natural" " Gas by Type of Supplier, Census Region, and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Million Dollars)" ," Electricity",," Steam",," Natural Gas" ,"-","-----------","-","-----------","-","------------","-----------","RSE" " ","Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Supplier(b)","Pipelines","Supplier(d)","Factors"," "

56

2009 Energy Expenditure Per Person | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy Potential Solar Energy Potential Renewable Energy Production By State Renewable Energy Production By State 2009 Total Energy Production by State 2009 Total...

57

Table 7.9 Expenditures for Purchased Energy Sources, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2010; 9 Expenditures for Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Million U.S. Dollars. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal and Breeze Other(e) Total United States 311 Food 10,111 5,328 130 431 3,391 150 442 29 210 3112 Grain and Oilseed Milling 2,130 932 2 12 673 Q 294 0 158 311221 Wet Corn Milling 1,002 352 1 5 296 1 239 0 107 31131 Sugar Manufacturing 367 105 7 18 87 1 118 29 2 3114 Fruit and Vegetable Preserving and Specialty Foods 1,408 698 17 Q 579 18 7 0 18 3115 Dairy Products 1,186 695 20 40 412 8 1 0 10 3116 Animal Slaughtering and Processing

58

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2005 Households and Energy Expenditures, by Income Level ($2010) Energy Expenditures by Household Income Households (millions) Household Less than $10,000 9.9 9% $10,000 to $14,999 8.5 8% $15,000 to $19,999 8.4 8% $20,000 to $29,999 15.1 14% $30,000 to $39,999 13.6 12% $40,000 to $49,999 11.0 10% $50,000 to $74,999 19.8 18% $75,000 to $99,999 10.6 10% $100,000 or more 14.2 13% Total 111.1 100% Note(s): Source(s): 7% 1) See Table 2.3.15 for more on energy burdens. 2) A household is defined as a family, an individual, or a group of up to nine unrelated individuals occupying the same housing unit. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-1 part 2; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price inflators. 2,431 847 3% 2,774 909 3% 1,995

59

Commercial Buildings Energy Consumption and Expenditures 1992 - Publication  

U.S. Energy Information Administration (EIA) Indexed Site

and Expenditures > Publication and Tables and Expenditures > Publication and Tables 1992 Consumption & Expenditures Publication and Tables Figure ES1. Energy Consumption in Commercial Buildings by Energy Sources, 1992 Separater Bar To View and/or Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader . If you experience any difficulties, visit our Technical Frequently Asked Questions. You have the option of downloading the entire report or selected sections of the report. Separater Bar Full Report - Commercial Buildings Energy Consumption and Expenditures, 1992 (file size 1.07 MB) pages: 214 Selected Sections Main Text - requires Adobe Acrobat Reader (file size 193,634 bytes) pages: 28, includes the following: Contacts Contents Executive Summary Introduction Background

60

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

3.3 Commercial Sector Expenditures 3.3 Commercial Sector Expenditures March 2012 3.3.3 Commercial Buildings Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Natural Gas Petroleum (2) Total 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 148.6 37.0 17.0 202.6 148.9 37.2 17.1 203.2 145.9 36.2 16.7 198.9 147.5 36.8 16.9 201.2 143.8 35.1 16.4 195.2 145.0 35.5 16.6 197.0 141.1 34.0 16.0 191.1 142.5 34.6 16.2 193.3 136.9 32.1 15.7 184.8 139.1 33.0 15.9 188.0 133.5 31.0 15.4 179.9 135.0 31.6 15.6 182.2 131.0 29.7 15.1 175.8 131.9 30.3 15.3 177.5 128.1 28.7 14.5 171.3 130.0 29.3 15.0 174.4 129.4 29.7 15.4 174.5 127.7 29.2 13.8 170.7 134.8 29.9 14.5 179.2 134.5 28.5 16.9 180.0 141.1

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

8 8 2035 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 44.3 10.3 7.7 18.6 0.0 16.0 79.0 27.4% Space Cooling (3) 0.0 40.6 40.6 14.1% Water Heating 17.6 1.2 1.2 2.3 17.7 37.6 13.0% Lighting 15.5 15.5 5.4% Refrigeration (4) 17.0 17.0 5.9% Electronics (5) 14.2 14.2 4.9% Wet Cleaning (6) 0.9 10.4 11.3 3.9% Cooking 3.2 0.8 0.8 4.8 8.9 3.1% Computers 8.7 8.7 3.0% Other (7) 0.0 7.7 7.7 47.9 55.7 19.3% Total 66.0 11.5 17.5 29.6 0.0 193.0 288.6 100% Note(s): Source(s): 0.6 0.6 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.8 billion). 3) Fan energy use included. 4) Includes refrigerators ($14.1 billion) and freezers ($2.9 billion). 5) Includes color televisions ($14.2 billion). 6) Includes clothes washers ($0.8 billion), natural gas

62

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2010 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 38.7 11.2 8.0 19.8 0.0 14.3 72.9 28.9% Space Cooling (3) 0.0 35.4 35.4 14.0% Water Heating (4) 14.3 2.1 2.0 4.0 14.2 32.6 12.9% Lighting 22.6 22.6 9.0% Refrigeration (5) 14.9 14.9 5.9% Electronics (6) 17.8 17.8 7.1% Cooking 2.4 0.8 0.8 6.0 9.2 3.7% Wet Cleaning (7) 0.6 10.7 11.3 4.5% Computers 5.6 5.6 2.2% Other (8) 0.0 4.4 4.4 6.7 11.1 4.4% Adjust to SEDS (9) 13.6 13.6 5.4% Total 56.1 13.3 15.2 29.0 0.0 166.8 251.8 100% Note(s): Source(s): 0.5 0.5 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.5 billion). 3) Fan energy use included. 4) Includes residential recreational water heating ($1.4 billion). 5) Includes refrigerators ($15.3 billion) and freezers ($4.4 billion). 6) Includes color televisions ($11.0

63

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

7 7 2025 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 39.7 11.5 7.8 19.9 0.0 15.0 74.5 28.6% Space Cooling (3) 0.0 36.2 36.2 13.9% Water Heating 16.0 1.4 1.3 2.7 17.1 35.9 13.8% Lighting 15.2 15.2 5.8% Refrigeration (4) 15.5 15.5 6.0% Electronics (5) 12.0 12.0 4.6% Wet Cleaning (6) 0.8 9.8 10.5 4.1% Cooking 2.7 0.8 0.8 4.3 7.8 3.0% Computers 7.7 7.7 2.9% Other (7) 0.0 6.4 6.4 38.7 45.0 17.3% Total 59.1 12.9 16.3 29.8 0.0 171.3 260.3 100% Note(s): Source(s): 0.6 0.6 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.7 billion). 3) Fan energy use included. 4) Includes refrigerators ($12.7 billion) and freezers ($2.8 billion). 5) Includes color televisions ($12 billion). 6) Includes clothes washers ($0.8 billion), natural gas

64

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

6 6 2015 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 35.0 13.0 8.1 21.6 0.0 14.0 70.6 29.2% Space Cooling (3) 0.0 33.8 33.8 14.0% Water Heating 13.5 1.9 1.5 3.4 15.8 32.7 13.5% Lighting 17.6 17.6 7.3% Refrigeration (4) 15.0 15.0 6.2% Electronics (5) 10.9 10.9 4.5% Wet Cleaning (6) 0.6 10.8 11.4 4.7% Cooking 2.2 0.9 0.9 3.8 6.8 2.8% Computers 6.3 6.3 2.6% Other (7) 0.0 5.2 5.2 31.3 36.5 15.1% Total 51.3 14.9 15.7 31.1 0.0 159.3 241.7 100% Note(s): Source(s): 0.6 0.6 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.6 billion). 3) Fan energy use included. 4) Includes refrigerators ($12.3 billion) and freezers ($2.8 billion). 5) Includes color televisions ($10.9 billion). 6) Includes clothes washers ($1.1 billion), natural gas

65

Residential Energy Consumption Survey Results: Total Energy Consumption,  

Open Energy Info (EERE)

Survey Results: Total Energy Consumption, Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) Dataset Summary Description The Residential Energy Consumption Survey (RECS) is a national survey that collects residential energy-related data. The 2005 survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the U.S. Data were obtained from residential energy suppliers for each unit in the sample to produce the Consumption & Expenditures data. The Consumption & Expenditures and Intensities data is divided into two parts: Part 1 provides energy consumption and expenditures by census region, population density, climate zone, type of housing unit, year of construction and ownership status; Part 2 provides the same data according to household size, income category, race and age. The next update to the RECS survey (2009 data) will be available in 2011.

66

Table C37. Total District Heat Consumption and Expenditures for ...  

U.S. Energy Information Administration (EIA)

HVAC Maintenance ..... 60 5,154 86 612 6,987 Energy Management and Control System (EMCS) ..... 18 2,782 158 320 3,636 Equipment Usage Reduced When ...

67

wf01 - Energy_Expenditures.xlsx  

U.S. Energy Information Administration (EIA) Indexed Site

6-07 6-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 % Change Natural Gas Northeast Consumption (mcf**) 73.6 74.2 79.6 74.7 79.7 65.6 75.2 77.5 3.1 Price ($/mcf) 14.74 15.18 15.83 13.31 12.66 12.23 11.75 13.38 13.8 Expenditures ($) 1,085 1,127 1,260 994 1,010 802 883 1,036 17.3 Midwest Consumption (mcf) 74.5 78.2 80.8 78.6 80.1 65.4 77.5 77.9 0.5 Price ($/mcf) 11.06 11.40 11.47 9.44 9.23 8.96 8.23 9.15 11.2 Expenditures ($) 824 892 927 742 740 586 638 713 11.8 South Consumption (mcf) 45.3 44.8 47.0 53.4 49.5 41.1 46.6 47.5 1.9 Price ($/mcf) 13.57 14.19 14.08 11.52 11.03 11.47 10.69 11.78 10.3 Expenditures ($) 615 635 661 615 546 472 498 560 12.4 West Consumption (mcf) 46.4 48.1 46.2 47.7 47.2 47.6 46.9 46.5 -0.8 Price ($/mcf) 11.20 11.31 10.86 9.91 9.67 9.38 9.15 9.90 8.1 Expenditures ($) 520 544 502 473 457 447 429

68

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

8 8 2035 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 63.4 13.0 1.6 7.7 0.8 23.1 0.2 20.6 107.2 20.9% Water Heating 23.8 2.2 1.2 3.4 35.8 63.0 12.3% Space Cooling 0.4 55.7 56.1 10.9% Lighting 47.8 47.8 9.3% Electronics (4) 27.2 27.2 5.3% Refrigeration (5) 27.0 27.0 5.3% Computers 14.8 14.8 2.9% Cooking 5.8 0.8 0.8 5.4 12.1 2.3% Wet Clean (6) 0.9 10.4 11.3 2.2% Ventilation (7) 2.4 2.4 0.5% Other (8) 9.3 0.4 12.6 2.0 15.0 88.8 113.2 22.0% Adjust to SEDS (9) 4.6 5.3 5.3 21.7 31.6 6.2% Total 108.2 21.0 1.6 22.3 2.8 47.6 0.2 357.8 513.8 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.8 billion) and motor gasoline other uses ($2.0 billion). 3) Includes furnace fans ($4.8 billion). 4) Includes color televisions ($14.2 billion). 5) Includes refrigerators ($24.1 billion) and freezers ($3.0

69

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2015 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 28.4 28.4 16.3% Space Heating 14.6 2.9 1.3 0.1 4.3 0.1 4.7 23.7 13.6% Ventilation 15.1 15.1 8.6% Space Cooling 0.3 14.2 14.5 8.3% Refrigeration 9.9 9.9 5.7% Electronics 8.8 8.8 5.1% Water Heating 4.1 0.7 0.7 2.5 7.3 4.2% Computers 5.3 5.3 3.0% Cooking 1.7 0.6 2.3 1.3% Other (4) 2.9 0.3 3.7 1.4 5.4 22.8 31.1 17.8% Adjust to SEDS (5) 5.8 4.5 4.5 17.7 28.1 16.1% Total 29.3 8.4 1.3 3.7 1.5 14.9 0.1 130.0 174.5 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.1 billion) and motor gasoline other uses ($1.4 billion). 3) Coal average price is from AEO 2012 Early Release, all users price. 4) Includes service station equipment, ATMs, medical equipment,

70

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

4 4 2010 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 35.4 35.4 19.7% Space Heating 15.0 2.9 0.9 0.1 3.9 0.1 8.5 27.5 15.3% Space Cooling 0.4 25.0 25.3 14.1% Ventilation 15.9 15.9 8.9% Refrigeration 11.6 11.6 6.5% Water Heating 4.0 0.6 0.6 2.7 7.3 4.1% Electronics 7.8 7.8 4.3% Computers 6.3 6.3 3.5% Cooking 1.6 0.7 2.3 1.3% Other (4) 2.7 0.3 3.3 1.2 4.8 20.4 28.0 15.6% Adjust to SEDS (5) 6.2 5.2 5.2 0.6 12.0 6.7% Total 29.9 9.0 0.9 3.3 1.3 14.5 0.1 134.8 179.4 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.1 billion) and motor gasoline other uses ($1.2 billion). 3) Coal average price is from AEO 2012 Early Release, all users price. 4) Includes service station equipment, ATMs, medical equipment,

71

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2010 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 53.7 14.2 0.9 8.0 0.6 23.7 0.1 23.2 100.8 23.4% Space Cooling 0.4 61.3 61.7 14.3% Lighting 59.3 59.3 13.8% Water Heating 18.3 2.6 2.0 4.6 17.8 40.7 9.4% Refrigeration (4) 26.9 26.9 6.2% Electronics (5) 26.1 26.1 6.1% Ventilation (6) 15.9 15.9 3.7% Cooking 4.0 0.8 0.8 8.8 13.6 3.2% Computers 12.1 12.1 2.8% Wet Cleaning (7) 0.6 11.0 11.6 2.7% Other (8) 2.7 0.3 7.7 1.2 9.2 27.3 39.2 9.1% Adjust to SEDS (9) 6.2 5.2 5.2 11.9 23.4 5.4% Total 86.0 22.3 0.9 18.5 1.8 43.5 0.1 301.6 431.2 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.6 billion) and motor gasoline other uses ($1.2 billion). 3) Includes furnace fans ($4.5 billion). 4) Includes refrigerators ($24.1 billion) and freezers ($2.8 billion). 5) Includes color televisions ($11.0

72

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

6 6 2015 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Gas Distil. Resid. LPG Oth(2) Total Coal Total Percent Space Heating (3) 49.5 15.9 1.3 8.1 0.7 25.9 0.2 18.7 94.3 22.7% Space Cooling 0.3 48.0 48.3 11.6% Lighting 45.9 45.9 11.0% Water Heating 17.6 2.6 1.5 4.1 18.3 40.0 9.6% Refrigeration (4) 24.9 24.9 6.0% Electronics (5) 19.8 19.8 4.7% Ventilation (6) 15.1 15.1 3.6% Computers 11.6 11.6 2.8% Wet Cleaning (7) 0.6 10.8 11.4 2.7% Cooking 3.9 0.9 0.9 4.4 9.1 2.2% Other (8) 2.9 0.3 8.9 1.4 10.6 54.1 67.6 16.3% Adjust to SEDS (9) 5.8 4.5 4.5 17.7 28.1 6.7% Total 80.6 23.3 1.3 19.4 2.1 46.1 0.2 289.3 416.2 100% Note(s): Source(s): Petroleum Electricity 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.7 billion) and motor gasoline other uses ($1.4 billion). 3) Includes furnace fans ($4.6 billion). 4) Includes refrigerators ($22.6 billion) and freezers ($2.8 billion). 5) Includes color televisions ($10.9

73

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

7 7 2025 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 56.7 14.3 1.5 7.8 0.7 24.3 0.2 19.5 100.7 22.0% Space Cooling 0.3 50.5 50.9 11.1% Lighting 45.2 45.2 9.9% Water Heating 21.3 2.3 1.3 3.6 19.6 44.4 9.7% Refrigeration (4) 24.9 24.9 5.4% Electronics (5) 23.2 23.2 5.1% Computers 13.2 13.2 2.9% Wet Clean (6) 0.8 9.8 10.5 2.3% Cooking 4.8 0.8 0.8 4.9 10.5 2.3% Ventilation (7) 16.6 16.6 3.6% Other (8) 4.8 0.4 10.6 1.7 12.7 69.8 87.4 19.1% Adjust to SEDS (9) 5.9 4.9 4.9 19.2 30.0 6.6% Total 94.6 21.9 1.5 20.6 2.5 46.4 0.2 316.3 457.4 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.7 billion) and motor gasoline other uses ($1.7 billion). 3) Includes furnace fans ($4.7 billion). 4) Includes refrigerators ($22.3 billion) and freezers ($2.6 billion). 5) Includes color televisions ($12.0

74

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

6 6 2025 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 30.1 30.1 15.2% Space Heating 17.1 2.8 1.5 0.1 4.4 0.2 4.5 26.1 13.3% Electronics 11.2 11.2 5.7% Space Cooling 0.3 14.3 14.6 7.4% Water Heating 5.2 0.8 0.8 2.5 8.5 4.3% Computers 5.5 5.5 2.8% Refrigeration 9.4 9.4 4.8% Ventilation 16.6 16.6 8.4% Cooking 2.1 0.6 2.7 1.4% Other (4) 4.8 0.3 4.3 1.7 6.3 31.2 42.3 21.5% Adjust to SEDS (5) 5.9 4.9 4.9 19.2 30.0 15.2% Total 35.5 8.9 1.5 4.3 1.9 16.5 0.2 145.0 197.1 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.1 billion) and motor gasoline other uses ($1.7 billion). 3) Coal average price is from AEO 2011 Early Release, all users price. 4) Includes service station equipment, ATMs, medical equipment,

75

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

7 7 2035 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 32.3 32.3 14.4% Space Heating 19.0 2.7 1.6 0.2 4.5 0.2 4.6 28.2 12.5% Water Heating 6.3 1.0 1.0 18.1 25.4 11.3% Space Cooling 0.4 15.1 15.5 6.9% Electronics 13.0 13.0 5.8% Refrigeration 10.0 10.0 4.4% Computers 6.0 6.0 2.7% Cooking 2.6 0.6 3.2 1.4% Ventilation 2.4 2.4 1.1% Other (4) 9.3 0.4 4.9 2.0 7.2 40.9 57.5 25.5% Adjust to SEDS (5) 4.6 5.3 5.3 21.7 31.6 14.0% Total 42.2 9.4 1.6 4.9 2.2 18.0 0.2 164.8 225.1 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.2 billion) and motor gasoline other uses ($2.0 billion). 3) Coal average price is from AEO 2012 Early Release, all users price. 4) Includes service station equipment, ATMs, medical equipment,

76

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

3 3 Residential Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Total 1980 158.5 1981 164.0 1982 172.3 1983 176.1 1984 178.5 1985 176.8 1986 169.2 1987 167.1 1988 170.1 1989 172.8 1990 168.2 1991 169.9 1992 166.7 1993 175.6 1994 174.9 1995 172.7 1996 181.8 1997 180.0 1998 173.5 1999 174.0 2000 192.8 2001 203.3 2002 192.1 2003 208.8 2004 215.1 2005 236.7 2006 240.0 2007 246.1 2008 259.6 2009 241.6 2010 251.8 2011 251.3 2012 247.1 2013 240.3 2014 239.4 2015 241.7 2016 241.8 2017 243.0 2018 244.7 2019 246.4 2020 247.9 2021 250.4 2022 253.3 2023 255.6 2024 257.8 2025 260.3 2026 263.2 2027 266.0 2028 267.6 2029 268.1 2030 269.7 2031 272.9 2032 276.6 2033 280.4 2034 284.6 2035 288.6 Note(s): Source(s): 1) Residential petroleum products include distillate fuel oil, LPG, and kerosene. EIA, State Energy Data 2009: Prices and Expenditures, Jun. 2011, Table 2 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table

77

Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels  

Science Conference Proceedings (OSTI)

This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

Patinkin, L.

1983-12-01T23:59:59.000Z

78

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

3 3 Buildings Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Residential Buildings Commercial Buildings Total Building Electricity Natural Gas Petroleum (2) Total Electricity Natural Gas Petroleum (3) Total Expenditures 1980 89.1 40.5 28.9 158.5 70.9 20.5 17.2 108.6 267.2 1981 94.9 41.3 27.8 164.0 79.4 21.4 16.5 117.3 281.3 1982 99.9 47.9 24.5 172.3 83.4 25.1 13.7 122.2 294.5 1983 103.6 51.0 21.4 176.1 83.6 26.1 14.6 124.3 300.4 1984 103.3 51.6 23.6 178.5 87.6 25.9 14.7 128.2 306.7 1985 105.4 48.8 22.6 176.8 90.0 24.0 12.6 126.6 303.4 1986 106.9 44.2 18.1 169.2 90.5 20.7 9.1 120.2 289.4 1987 108.2 40.9 18.0 167.1 88.7 19.8 9.2 117.7 284.7 1988 110.3 41.8 18.0 170.1 89.9 20.4 8.2 118.5 288.7 1989 110.2 42.9 19.7 172.8 91.5 20.5 8.4 120.4 293.2 1990 110.9 39.0 18.2 168.2 92.9 19.4 9.2 121.5 289.7 1991 113.7 39.2 17.0 169.9 93.9 19.5 7.7 121.1 291.0

79

Assumptions to the Annual Energy Outlook 2001 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Completed Copy in PDF Format Completed Copy in PDF Format Related Links Annual Energy Outlook2001 Supplemental Data to the AEO2001 NEMS Conference To Forecasting Home Page EIA Homepage Household Expenditures Module Key Assumptions The historical input data used to develop the HEM version for the AEO2001 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2001 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS). HEM uses the consumption forecast by NEMS for the residential and

80

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

9 9 2003 Energy Expenditures per Square Foot of Commercial Floorspace and per Building, by Building Type ($2010) ($2010) Food Service 4.88 27.2 Mercantile 2.23 38.1 Food Sales 4.68 26.0 Education 1.43 36.6 Health Care 2.76 68.0 Service 1.39 9.1 Public Order and Safety 2.07 32.0 Warehouse and Storage 0.80 13.5 Office 2.01 29.8 Religious Worship 0.76 7.8 Public Assembly 1.73 24.6 Vacant 0.34 4.8 Lodging 1.72 61.5 Other 2.99 65.5 Note(s): Source(s): Mall buildings are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs. EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, Oct. 2006, Table 4; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price deflators. Per Square Foot Per Building

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Table CE3-1e. Electric Air-Conditioning Energy Expenditures in U.S ...  

U.S. Energy Information Administration (EIA)

Dollars per Household4,a Electric Air-Conditioning Expenditures per Household ... per Household4 2001 Cooling Degree-Days per Household Total U.S. Households ...

82

Household energy and consumption and expenditures, 1990. [Contains Division, Census Region, and Climate Zone maps  

Science Conference Proceedings (OSTI)

The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990.

Not Available

1993-03-02T23:59:59.000Z

83

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

9 9 Average Annual Energy Expenditures per Household, by Year ($2010) Year 1980 1,991 1981 1,981 1982 2,058 1983 2,082 1984 2,067 1985 2,012 1986 1,898 1987 1,846 1988 1,849 1989 1,848 1990 1,785 1991 1,784 1992 1,729 1993 1,797 1994 1,772 1995 1,727 1996 1,800 1997 1,761 1998 1,676 1999 1,659 2000 1,824 2001 1,900 2002 1,830 2003 1,978 2004 2,018 2005 2,175 2006 2,184 2007 2,230 2008 2,347 2009 2,173 2010 2,201 2011 2,185 2012 2,123 2013 2,056 2014 2,032 2015 2,030 2016 2,007 2017 1,992 2018 1,982 2019 1,973 2020 1,963 2021 1,961 2022 1,964 2023 1,962 2024 1,959 2025 1,957 2026 1,959 2027 1,960 2028 1,953 2029 1,938 2030 1,932 2031 1,937 2032 1,946 2033 1,956 2034 1,967 2035 1,978 Source(s): Average Expenditure EIA, State Energy Data 2009: Prices and Expenditures, Jun. 2011 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table A2, p. 3-

84

Table CE4-6.1u. Water-Heating Energy Consumption and Expenditures ...  

U.S. Energy Information Administration (EIA)

Table CE4-6.1u. Water-Heating Energy Consumption and Expenditures by Household Member and Usage Indicators, 2001 Usage Indicators RSE Column Factor:

85

Table CE5-5.1u. Appliances Energy Consumption and Expenditures by ...  

U.S. Energy Information Administration (EIA)

Table CE5-5.1u. Appliances1 Energy Consumption and Expenditures by Household Member and Demographics, 2001 Household Demographics RSE Column Factor:

86

Table CE5-6.1u. Appliances Energy Consumption and Expenditures by ...  

U.S. Energy Information Administration (EIA)

Table CE5-6.1u. Appliances1 Energy Consumption and Expenditures by Household Member and Usage Indicators, 2001 Usage Indicators RSE Column Factor:

87

Residential energy-consumption survey: consumption and expenditures, April 1978-March 1979  

SciTech Connect

Tables present data on energy consumption and expenditures for US households during a 12-month period. The total amount of energy consumed by the residential sector from April 1978 through March 1979 is estimated to have been 10,563 trillion Btu with an average household consumption of 138 million Btu. Table 1 summarizes residential energy consumption for all fuels (totals and averages) as wells as total amounts consumed and expenditures for each of the major fuel types (natural gas, electricity, fuel oil, and liquid petroleum gas). Tables 2 and 3 give the number of households and the average energy prices, respectively, for each of the major fuel types. In Tables 4 to 9, totals and averages for both consumption and expenditures are given for each of the major fuels. The consumption of each fuel is given first for all households using the fuel. Then, households are divided into those that use the fuel as their main source of heat and those using the fuel for other purposes. Electricity data (Tables 5 to 7) are further broken down into households that use electricity for air conditioning and those not using it for this purpose. Limited data are also presented on households that use each of the major fuels for heating water. Each of the consumption tables is given for a variety of general household features, including: geographical, structural and physical, and demographic characteristics. Tables 10 to 18 present the same information for the subgroup of households living in single-family owner-occupied detached houses. The third set of tables (19 to 27) is limited to households that paid directly for all of the energy they used. Tables 28 to 36 provide variance estimates for the data.

Not Available

1980-07-01T23:59:59.000Z

88

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

8 8 Average Annual Energy Expenditures per Square Foot of Commercial Floorspace, by Year ($2010) Year $/SF 1980 (1) 2.12 1981 2.22 (2) 1982 2.24 1983 2.21 1984 2.25 1985 2.20 1986 2.06 1987 2.00 1988 1.99 1989 2.01 1990 1.98 1991 1.92 1992 1.86 1993 1.96 1994 2.05 1995 2.12 1996 2.10 1997 2.08 1998 1.97 1999 1.88 2000 2.06 2001 2.20 2002 2.04 2003 2.13 2004 2.16 2005 2.30 2006 2.36 2007 2.35 2008 1.71 2009 2.43 2010 2.44 2011 2.44 2012 2.35 2013 2.28 2014 2.27 2015 2.29 2016 2.29 2017 2.28 2018 2.29 2019 2.29 2020 2.29 2021 2.31 2022 2.32 2023 2.32 2024 2.32 2025 2.32 2026 2.32 2027 2.33 2028 2.32 2029 2.31 2030 2.31 2031 2.32 2032 2.35 2033 2.37 2034 2.39 2035 2.42 Note(s): Source(s): EIA, State Energy Data Prices and Expenditures Database, June 2011 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Summary Reference Case Tables, Table A2, p. 3-5 and Table A5, p. 11-12 for consumption, Table A3, p. 6-8 for prices for 2008-2035; EIA, Annual Energy Review

89

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

Table CE5-1e. Appliances1 Energy Expenditures in U.S. Households by Climate Zone, 1997 RSE Column Factor: Total Climate Zone2 RSE Row Factors Fewer than 2,000 CDD and --

90

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

Table CE4-1e. Water-Heating Energy Expenditures in U.S. Households by Climate Zone, 1997 RSE Column Factor: Total Climate Zone1 RSE Row Factors Fewer than 2,000 CDD ...

91

Buildings Energy Data Book: 4.3 Federal Buildings and Facilities Expenditures  

Buildings Energy Data Book (EERE)

2 2 Annual Energy Expenditures per Gross Square Foot of Federal Floorspace Stock, by Year ($2010) FY 1985 2.13 FY 2000 1.36 FY 2001 1.58 FY 2002 1.49 FY 2003 1.45 FY 2004 1.54 FY 2005 1.59 FY 2006 2.01 (1) FY 2007 2.01 Note(s): Source(s): Total Federal buildings and facilities energy expenditures in FY 2006 were $5.79 billion (in $2010). 1) Increase due to change in FEMP categorization of Federal buildings. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table A-9, p. 97 and Table 1, p. 13; DOE/FEMP, Annual Report to Congress on FEMP, Nov. 2008, Table A-9, p. 78 for energy costs, and Table 1, p. 12 for floorspace for 2006; DOE/FEMP, Annual Report to Congress on FEMP, Sep. 2006, Table A-12, p. 158 for energy costs for 1985-2005; DOE/FEMP, Annual Report on FEMP, Dec. 2002, Table 8-A, p. 61 for 2000; DOE/FEMP, Annual

92

2009 Energy Expenditure Per Person | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act -Energy Sector Jobs -Education & Training -Funding Opportunities --Grants -Prices & Trends -Energy Policy Environmental Cleanup -Emergency Response & Procedures or Search...

93

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

2 2 Residential Energy Prices, by Year and Fuel Type ($2010) LPG ($/gal) 1980 2.24 1981 2.51 1982 2.30 1983 2.14 1984 2.10 1985 1.96 1986 1.54 1987 1.42 1988 1.39 1989 1.48 1990 1.69 1991 1.56 1992 1.40 1993 1.33 1994 1.27 1995 1.22 1996 1.37 1997 1.34 1998 1.15 1999 1.16 2000 1.70 2001 1.59 2002 1.42 2003 1.67 2004 1.84 2005 2.36 2006 2.64 2007 2.81 2008 3.41 2009 2.52 2010 2.92 2011 3.62 2012 3.65 2013 3.43 2014 3.60 2015 3.74 2016 3.79 2017 3.86 2018 3.89 2019 3.92 2020 3.96 2021 3.99 2022 4.02 2023 4.07 2024 4.10 2025 4.15 2026 4.19 2027 4.23 2028 4.26 2029 4.30 2030 4.34 2031 4.35 2032 4.38 2033 4.43 2034 4.50 2035 4.55 Source(s): EIA, State Energy Data 2009: Prices and Expenditures, Jun. 2011, Table 2, p. 24-25 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table A3, p. 6-8 for 2010-2035 and Table G1, p. 215 for fuels' heat content; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for

94

Table 3.5 Consumer Expenditure Estimates for Energy by Source ...  

U.S. Energy Information Administration (EIA)

1972. 5,415 -26: 13,198 : 7,552: 1,682: 2,834 : 35,346 : ... 8 Asphalt and road oil, aviation gasoline, kerosene, ... "State Energy Data 2010: Prices and Expenditures"

95

2009 Energy Expenditure Per Person | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design --Solar Decathlon -Manufacturing Energy Sources -Renewables --Solar ---SunShot --Wind --Water ---Carbon Capture & Sequestration -Consumption -Smart Grid Science &...

96

Table US1. Total Energy Consumption, Expenditures, and Intensities ...  

U.S. Energy Information Administration (EIA)

Quadrillion British Thermal Units (Btu) U.S. Households (millions) Other Appliances and Lighting Space Heating (Major Fuels) 4 Air-Conditioning 5 Water Heating 6 ...

97

Energy consumption and expenditure projections by population group on the basis on the annual energy outlook 2000 forecast.  

SciTech Connect

The changes in the patterns of energy use and expenditures by population group are analyzed by using the 1993 and 1997 Residential Energy Consumption Surveys. Historically, these patterns have differed among non-Hispanic White households, non-Hispanic Black households, and Hispanic households. Patterns of energy use and expenditures are influenced by geographic and metropolitan location, the composition of housing stock, economic and demographic status, and the composition of energy use by end-use category. As a consequence, as energy-related factors change across groups, patterns of energy use and expenditures also change. Over time, with changes in the composition of these factors by population group and their variable influences on energy use, the impact on energy use and expenditures has varied across these population groups.

Poyer, D. A.; Decision and Information Sciences

2001-05-31T23:59:59.000Z

98

Energy Perspectives, Total Energy - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections this will be filled with a highchart PREVIOUSNEXT Energy Perspectives 1949-2011 September 2012 PDF | previous editions Release Date: September 27, 2012 Introduction Energy Perspectives is a graphical overview of energy history in the United States. The 42 graphs shown here reveal sweeping trends related to the Nation's production, consumption, and trade of energy from 1949 through 2011. Energy Flow, 2011 (Quadrillion Btu) Total Energy Flow diagram image For footnotes see here. Energy can be grouped into three broad categories. First, and by far the largest, is the fossil fuels-coal, petroleum, and natural gas. Fossil fuels have stored the sun's energy over millennia past, and it is primarily

99

The impact of the Persian Gulf crisis on household energy consumption and expenditure patterns  

Science Conference Proceedings (OSTI)

The Iraqi invasion of the Kingdom of Kuwait on August 2, 1990, and the subsequent war between Iraq and an international alliance led by the United States triggered first immediate and then fluctuating world petroleum prices. Increases in petroleum prices and in U.S. petroleum imports resulted in increases in the petroleum prices paid by U.S. residential, commercial, and industrial consumers. The result was an immediate price shock that reverberated throughout the U.S. economy. The differential impact of these price increases and fluctuations on poor and minority households raised immediate, significant, and potentially long-term research, policy, and management issues for a variety of federal, state, and local government agencies, including the U.S. Department of Energy (DOE). Among these issues are (1) the measurement of variations in the impact of petroleum price changes on poor, nonpoor, minority, and majority households; (2) how to use the existing policy resources and policy innovation to mitigate regressive impacts of petroleum price increases on lower-income households; and (3) how to pursue such policy mitigation through government agencies severely circumscribed by tax and expenditure limitations. Few models attempt to assess household energy consumption and energy expenditure under various alternative price scenarios and with respect to the inclusion of differential household choices correlated with such variables as race, ethnicity, income, and geographic location. This paper provides a preliminary analysis of the nature and extent of potential impacts of petroleum price changes attributable to the Persian Gulf War and its aftermath on majority, black, and Hispanic households and on overlapping poor and nonpoor households. At the time this was written, the Persian Gulf War had concluded with Iraq`s total surrender to all of the resolutions and demands of the United Nations and United States.

Henderson, L. [Univ. of Baltimore, MD (United States); Poyer, D.; Teotia, A. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

100

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Residential energy consumption and expenditure patterns of low-income households in the United States  

SciTech Connect

The principal objective of this study is to compare poor and non-poor households with respect to energy consumption and expenditures, housing characteristics, and energy-related behavior. We based our study on an analysis of a national data base created by the US Department of Energy, the 1982-1983 Residential Energy Consumption Survey (RECS). RECS includes detailed information on individual households: demographic characteristics, energy-related features of the structure, heating equipment and appliances, recent conservation actions taken by the household, and fuel consumption and costs for April 1982-March 1983. We found a number of statistically significant (at the 0.05 level) differences between the two income groups in terms of demographics, heating/cooling/water heating systems, appliance saturation, the thermal integrity of their home, energy conservation behavior, energy consumption, energy expenditures, and the percentage of income spent on energy costs. For example, the non-poor used 22% more energy and paid 25% more money on utilities than the poor; however, the poor spent 20% more energy per square foot than the non-poor and spent about 25% of their income on energy expenditures, compared to 7% for the non-poor. These differences suggest different approaches that might be taken for targeting energy conservation programs to low-income households. Since the poor's ''energy burden'' is large, informational, technical, and financial assistance to low-income households remains an urgent, national priority. 13 refs., 26 tabs.

Vine, E.L.; Reyes, I.

1987-09-01T23:59:59.000Z

102

Residential energy consumption and expenditures by end use for 1978, 1980, and 1981  

Science Conference Proceedings (OSTI)

The end-use estimates of the average household consumption and expenditures are statistical estimates based on the 1978, 1980, and 1981 Residential Enery Consumption Surveys (RECS) conducted by the Energy Information Administration (EIA) rather than on metered observations. The end-use estimates were obtained by developing a set of equations that predict the percentage of energy used for each broad end-use category. The equations were applied separately to each household and to each fuel. The resulting household end-use estimates were averaged to produce estimates of the average end-use consumption and expenditures on a national and regional basis. The accuracy and potential biases of these end-use estimates vary depending on the fuel type, on the year of the survey, and on the type of end use. The figures and tables presented show the amount and the type of energy cosumed, plus the cost of this energy. National averages are given as well as averages for various categories including region, size and age of dwelling, number of heating degree-days, and income. Some of the significant findings; energy trends by end use for all fuels used in the home for 1978, 1980, and 1981; and electricity consumption and expenditures and natural gas consumption and expenditures are discussed.

Johnson, M.

1984-12-01T23:59:59.000Z

103

Energy consumption and expenditure projections by income quintile on the basis of the Annual Energy Outlook 1997 forecast  

SciTech Connect

This report presents an analysis of the relative impacts of the base-case scenario used in the Annual Energy Outlook 1997, published by the US Department of Energy, Energy Information Administration, on income quintile groups. Projected energy consumption and expenditures, and projected energy expenditures as a share of income, for the period 1993 to 2015 are reported. Projected consumption of electricity, natural gas, distillate fuel, and liquefied petroleum gas over this period is also reported for each income group. 33 figs., 11 tabs.

Poyer, D.A.; Allison, T.

1998-03-01T23:59:59.000Z

104

Table 2.10 Commercial Buildings Energy Consumption and Expenditure ...  

U.S. Energy Information Administration (EIA)

parking garages. Note: Data are estimates. Statistics for individual fuels are for all buildings using each fuel. ... "Nonresidential Buildings Energy Consumption

105

1997 Residential Energy Consumption and Expenditures per Household ...  

U.S. Energy Information Administration (EIA)

Return to: Residential Home Page . Changes in the 1997 RECS: Housing Unit Type Per Household Member Per Building Increase. Residential Energy Consumption ...

106

Assumptions to the Annual Energy Outlook 2000 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

107

Residential Energy Expenditures for Water Heating (2005) Provides...  

Open Energy Info (EERE)

the 111.1 million housing units in the United States. Data were obtained from residential energy suppliers for each unit in the sample to produce the data.

...

108

Diacylglycerol Oil, 2nd Edition Chapter 5 The Effect of Diacylglycerols on Energy Expenditure and Substrate Utilization in Humans  

Science Conference Proceedings (OSTI)

Diacylglycerol Oil, 2nd Edition Chapter 5 The Effect of Diacylglycerols on Energy Expenditure and Substrate Utilization in Humans Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Bioc

109

Diacylglycerol Oil, 2nd EditionChapter 4 Activation of Lipid Metabolism and Energy Expenditure by Dietary Diacylglycerol  

Science Conference Proceedings (OSTI)

Diacylglycerol Oil, 2nd Edition Chapter 4 Activation of Lipid Metabolism and Energy Expenditure by Dietary Diacylglycerol Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry

110

Household Energy Expenditure and Income Groups: Evidence from Great Britain  

E-Print Network (OSTI)

and 0.024 for districtheatingHowever,asincomeisnotobserveditseffectcannotbeanalysed. Wuetal.(2004)examinethedemandforspaceheatinginArmenia,Moldova,and Kyrgyz Republic using household survey data. In these countries... andinsomeregionsincomesarenotsufficientto affordspaceheatingfromdistrictheatingsystemsmakingthesesystemsunviable. We analyse electricity, gas and overall energy spending for a large sample of households in Great Britain. We discern inflection points and discuss...

Jamasb, Tooraj; Meier, H

111

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

1 1 Energy Service Company (ESCO) Industry Activity ($Million Nominal) (1) Low High 1990 143 342 Market Segment Share 1991 218 425 MUSH (2) 69% 1992 331 544 Federal 15% 1993 505 703 Commercial & Industrial 7% 1994 722 890 Residential 6% 1995 1,105 1,159 Public Housing 3% 1996 1,294 1,396 1997 1,394 1,506 1998 1,551 1,667 2008 Revenues by Project/Technology Type 1999 1,764 1,925 2000 1,876 2,186 Market Segment Share 2001 - - Energy Efficiency 75% 2002 - - Onsite Renewables 14% 2003 - - Engine/Turbine Generators 6% 2004 2,447 2,507 Consulting/Master Planning 3% 2005 2,949 3,004 Other 2% 2006 3,579 3,627 2007 - - 2008 4,087 4,171 Note(s): Source(s): Estimated Revenue ($Million Nominal) (1) 2008 Revenue Sources 1) Estimates based on surveys of major ESCOs and input from industry experts. 2) Includes municipal and state governments, universities

112

Residential energy consumption and expenditure patterns of black and nonblack households in the United States  

Science Conference Proceedings (OSTI)

Residential energy consumption and expenditures by black and nonblack households are presented by Census region and for the nation based on the Energy Information Administration's 1982-83 Residential Energy Consumption Survey (RECS). Black households were found to have significantly lower levels of electricity consumption at both the national and regional level. Natural gas is the dominant space heating fuel used by black households. Natural gas consumption was typically higher for black households. However, when considering natural gas consumption conditional on natural gas space heating no significant differences were found. 10 refs., 1 fig., 8 tabs.

Vyas, A.D.; Poyer, D.A.

1987-01-01T23:59:59.000Z

113

Energy Efficiency Report: Chapter 3 Figures (Residential)  

U.S. Energy Information Administration (EIA)

Figure 3.1. Total Site Residential Energy Consumption and Personal Consumption Expenditures Indices, 1980 to 1993. Notes: Personal consumption expenditures used ...

114

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

2 2 Commercial Energy Prices, by Year and Fuel Type ($2010) Electricity Natural Gas Distillate Oil Residual Oil ($/gal) ($/gal) 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 9.39 104.50 2.79 3.78 9.35 104.74 2.81 3.81 9.47 101.25 2.73 3.69 9.40 103.22 2.76 3.75 9.54 99.28 2.67 3.60 9.51 100.49 2.70 3.64 9.52 94.53 2.66 3.52 9.55 97.45 2.64 3.55 9.46 90.92 2.61 3.46 9.48 92.13 2.63 3.49 9.49 87.65 2.54 3.41 9.47 89.48 2.58 3.42 9.58 85.91 2.41 3.28 9.54 86.36 2.49 3.34 9.57 87.02 2.07 2.97 9.52 84.58 2.26 3.14 10.09 86.14 2.34 3.55 9.76 87.22 2.37 3.57 10.27 97.87 1.49 2.03 10.14 90.95 1.66 2.86 10.04 114.33 1.51 2.47 10.56 121.16 2.01 3.34 9.59 121.45 1.24 2.07 10.13 124.31 1.39 2.32 9.44 94.94 0.93 1.23

115

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

Residential Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Electricity Natural Gas Petroleum (1) Avg. 1980 36.40 8.35 16.77 17.64 1981 38.50 8.88 18.35 19.09 1982 40.15 10.08 17.28 19.98 1983 40.43 11.30 16.08 21.00 1984 38.80 11.02 15.61 20.20 1985 38.92 10.68 14.61 20.10 1986 38.24 9.98 11.88 19.38 1987 37.29 9.22 11.23 18.73 1988 36.22 8.80 10.83 18.02 1989 35.67 8.71 11.96 17.93 1990 35.19 8.63 13.27 18.64 1991 34.88 8.38 12.49 18.31 1992 34.79 8.28 11.23 17.76 1993 34.52 8.47 10.75 17.76 1994 34.04 8.63 10.63 17.87 1995 33.43 8.00 10.33 17.50 1996 32.63 8.21 11.70 17.28 1997 32.34 8.83 11.47 17.69 1998 31.33 8.55 9.96 17.73 1999 30.52 8.29 10.13 17.09 2000 30.13 9.54 14.18 18.06 2001 30.71 11.50 13.98 19.38 2002 29.73 9.24 12.26 17.89 2003 30.05 10.87 14.21 18.88 2004 29.98 11.97 15.54 19.76 2005 30.64 13.66 18.93 21.50 2006 32.67 14.30 21.06 23.34 2007 32.50

116

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

1 1 Building Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Residential Buildings Commercial Buildings Building Electricity Natural Gas Petroleum (1) Avg. Electricity Natural Gas Petroleum (2) Avg. Avg. (3) 1980 36.40 8.35 16.77 17.64 37.22 7.70 13.06 18.52 17.99 1981 38.50 8.88 18.35 19.09 39.06 8.29 14.78 20.56 19.68 1982 40.15 10.08 17.28 19.98 40.15 9.40 13.28 21.21 20.48 1983 40.43 11.30 16.08 21.00 39.51 10.43 12.53 21.55 21.23 1984 38.80 11.02 15.61 20.20 38.68 10.00 12.04 21.14 20.58 1985 38.92 10.68 14.61 20.10 38.29 9.60 11.68 21.41 20.63 1986 38.24 9.98 11.88 19.38 37.09 8.69 7.85 20.17 19.70 1987 37.29 9.22 11.23 18.73 34.93 7.93 8.16 19.14 18.90 1988 36.22 8.80 10.83 18.02 33.60 7.45 7.47 18.24 18.11 1989 35.67 8.71 11.96 17.93 33.06 7.34 8.13 18.29 18.07 1990 35.19 8.63 13.27 18.64 32.49 7.20 9.31 18.62 18.63 1991 34.88 8.38 12.49 18.31

117

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

Commercial Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Electricity Natural Gas Petroleum (1) Average 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 (2) 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 27.39 10.47 27.48 21.15 27.10 10.45 27.73 21.01 27.56 10.32 27.04 21.10 27.52 10.45 27.28 21.18 27.86 10.05 26.41 21.06 27.74 10.12 26.73 21.07 28.00 9.75 25.85 20.90 27.96 9.93 26.16 21.01 27.78 9.21 25.46 20.46 27.90 9.45 25.69 20.67 27.76 8.95 24.95 20.23 27.72 9.09 25.24 20.32 27.96 8.64 24.34 20.11 27.81 8.77 24.80 20.14 27.91 8.46 23.15 19.90 28.07 8.59 24.07 20.11 28.61 8.72 23.94 20.36 28.05 8.70 22.00 19.99 29.73 9.10 20.28 20.99 29.57 8.61 24.24 21.03 30.95 12.12 23.75 23.21 30.09 9.79 15.83 21.13 29.70

118

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

2 2 Building Energy Prices, by Year and Fuel Type ($2010) (cents/therm) (cents/gal) ($/gal) 1980 12.42 83.51 1.53 2.24 12.70 77.01 1.43 2.05 1981 13.14 88.83 1.47 2.51 13.33 82.90 1.63 2.32 1982 13.70 100.83 1.54 2.30 13.70 93.95 1.40 2.11 1983 13.79 113.04 1.51 2.14 13.48 104.33 1.30 1.75 1984 13.24 110.16 1.46 2.10 13.20 100.01 1.37 1.68 1985 13.28 106.80 1.37 1.96 13.06 95.96 1.21 1.56 1986 13.05 99.76 1.25 1.54 12.66 86.86 0.71 1.01 1987 12.72 92.16 1.22 1.42 11.92 79.32 0.79 1.05 1988 12.36 87.96 1.15 1.39 11.46 74.52 0.62 0.95 1989 12.17 87.08 1.39 1.48 11.28 73.39 0.70 1.07 1990 12.01 86.28 1.40 1.69 11.08 72.04 0.78 1.26 1991 11.90 83.77 1.34 1.56 10.97 69.49 0.58 1.11 1992 11.87 82.80 1.24 1.40 10.93 68.64 0.58 1.01 1993 11.78 84.73 1.19 1.33 10.81 71.91 0.58 0.96 1994 11.62 86.30 1.25 1.27 10.57 74.09 0.60 0.90 1995 11.41 79.96 1.22 1.22 10.32 66.99 0.64 0.88 1996 11.13 82.07 1.36 1.37

119

A Look at Commercial Buldings in 1995: Characteristics, Energy Consumption, and Energy Expenditures  

U.S. Energy Information Administration (EIA) Indexed Site

DOE/EIA-0625(95) DOE/EIA-0625(95) Distribution Category UC-950 A Look at Commercial Buildings in 1995: Characteristics, Energy Consumption, and Energy Expenditures October 1998 En ergy In for ma tion Ad min istra tion Of fice of En ergy Mar kets and End Use U.S. De part ment of En ergy Wash ing ton, DC 20585 This re port was pre pared by the En ergy In for ma tion Ad min istra tion, the in de pend ent sta tis ti cal and ana lytic agency within the U.S. De part ment of En ergy. The in for ma tion con tained herein should be at trib uted to the En ergy In for ma tion Ad min istra tion and should not be con strued as ad vo cat ing or re flect ing any pol icy po si tion of the De part ment of En ergy or any other or gani za tion. Contacts The En ergy In for ma tion Ad min istra tion (EIA) pre pared this pub li ca tion un der the gen eral di rec tion of W. Cal vin

120

The federal energy policy: An example of its potential impact on energy consumption and expenditures in minority and poor households  

SciTech Connect

This report presents an analysis of the relative impacts of the National Energy Strategy on majority and minority households and on nonpoor and poor households. (Minority households are defined as those headed by black or Hispanic persons; poor households are defined as those having combined household income less than or equal to 125% of the Office of Management and Budget`s poverty-income threshold.) Energy consumption and expenditures, and projected energy expenditures as a share of income, for the period 1987 to 2009 are reported. Projected consumptions of electricity and nonelectric energy over this period are also reported for each group. An analysis of how these projected values are affected under different housing growth scenarios is performed. The analysis in this report presents a preliminary set of projections generated under a set of simplifying assumptions. Future analysis will rigorously assess the sensitivity of the projected values to various changes in a number of these assumptions.

Poyer, D.A.

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

expenditures decline relative to gross domestic product and gross output Total U.S. energy expenditures decline relative to GDP in the AEO2012 Reference case (Figure 62)...

122

Solar total energy project Shenandoah  

DOE Green Energy (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

123

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Superseded -- see MER for key annual tables Superseded -- see MER for key annual tables Annual Energy Review archives for data year: 2011 2010 2009 2008 all archives Go CONTENT CHANGES + EXPAND ALL Changes in Annual Energy Review 2011 Annual Energy Review 2011 Release: September 27, 2012 1. Energy Consumption, Expenditures, and Emissions Indicators Estimates (Table 1.5) has been modified to include columns for Gross Output and Energy Expenditures as Share of Gross Output and remove Greenhouse Gas Emissions per Real Dollar of Gross Domestic Product. 2. Sales of Fossil Fuels Produced on Federal and American Indian Lands (Table 1.14) was previously titled "Fossil Fuel Production on Federally Administered Lands." It has been redesigned and now provides data on sales of fossil fuels from Federal and American Indian lands for fiscal years 2003 through 2011.

124

Residential Energy Consumption Survey: Consumption and expenditures, April 1984 through March 1985: Part 1, National data  

Science Conference Proceedings (OSTI)

This report presents data collected in the 1984 Residential Energy Consumption Survey (RECS) conducted by the Energy Information Administration (EIA). The 1984 RECS was the sixth national survey of US households and their energy suppliers. The purpose of these surveys is to provide baseline information on how households use energy. Households in all types of housing units - single family homes (including townhouses), apartments, and mobile homes - were chosen to participate. Data from the surveys are available to the public in published reports such as this one and on public-use data tapes. The report presents data on the US consumption and expenditures for residential use of these ''major fuels'' - natural gas, electricity, fuel oil, kerosene, and liquefied petroleum gas (LPG) - from April 1984 through March 1985. These data are presented in tables in the Detailed Statistics section of this report. Except for kerosene and wood fuel, the consumption and expenditures data are based on actual household bills obtained, with the permission of the household, from the companies supplying energy to the household. Purchases of kerosene are based on respondent reports because records of ''cash and carry'' purchases of kerosene for individual households are usually unavailable. Data on the consumption of wood fuel (Table 27) covers the 12-month period ending November 1984 and are based on respondent recall of the amount of wood burned during the 12-month period. Both the kerosene and wood consumption data are subject to memory errors and other reporting errors. This report does not cover household use of motor fuel, which is reported separately.

Not Available

1987-03-04T23:59:59.000Z

125

Residential Energy Consumption Survey: Consumption and expenditures, April 1984 through March 1985: Part 2, Regional data. [Contains glossary  

SciTech Connect

Included here are data at the Census region and division level on consumption of and expenditures for the major fuels used in residential households - electricity, natural gas, fuel oil/kerosene, and liquefied petroleum gas (LPG). Data are also presented on wood consumption. Section 1 of this report contains data on the average amount of energy consumed per household for space heating in 1984 and the corresponding expenditures. Sections 2 through 7 summarize the energy consumption and expenditure patterns. Appendices A through D contain information on how the survey was conducted, estimates of the size of the housing unit in square feet and the quality of the data. Procedures for calculating relative standard errors (RSE) are located in Appendix C, Quality of the Data. Procedures for estimating the end-use statistics are located in Appendix D. Census and weather maps, and related publications are located in Appendices E through G.

Not Available

1987-05-13T23:59:59.000Z

126

An analysis of residential energy consumption and expenditures by minority households by home type and housing vintage  

SciTech Connect

In this paper a descriptive analysis of the relationship between energy consumption, patterns of energy use, and housing stock variables is presented. The purpose of the analysis is to uncover evidence of variations in energy consumption and expenditures, and patterns of energy use between majority households (defines as households with neither a black nor Hispanic head of household), black households (defined as households with a black head of household), and Hispanic households (defined as households with a Hispanic head of household) between 1980 (time of the first DOE/EIA Residential Energy Consumption Survey, 1982a) and 1987 (time of the last DOE/EIA Residential Energy Consumption Survey, 1989a). The analysis is three-dimensional: energy consumption and expenditures are presented by time (1980 to 1987), housing vintage, and housing type. A comparative analysis of changes in energy variables for the three population groups -- majority, black, and Hispanic -- within and between specific housing stock categories is presented.

Poyer, D.A.

1992-01-01T23:59:59.000Z

127

An analysis of residential energy consumption and expenditures by minority households by home type and housing vintage  

SciTech Connect

In this paper a descriptive analysis of the relationship between energy consumption, patterns of energy use, and housing stock variables is presented. The purpose of the analysis is to uncover evidence of variations in energy consumption and expenditures, and patterns of energy use between majority households (defines as households with neither a black nor Hispanic head of household), black households (defined as households with a black head of household), and Hispanic households (defined as households with a Hispanic head of household) between 1980 (time of the first DOE/EIA Residential Energy Consumption Survey, 1982a) and 1987 (time of the last DOE/EIA Residential Energy Consumption Survey, 1989a). The analysis is three-dimensional: energy consumption and expenditures are presented by time (1980 to 1987), housing vintage, and housing type. A comparative analysis of changes in energy variables for the three population groups -- majority, black, and Hispanic -- within and between specific housing stock categories is presented.

Poyer, D.A.

1992-06-01T23:59:59.000Z

128

Table 3.6 Consumer Expenditure Estimates for Energy by End ...  

U.S. Energy Information Administration (EIA)

1999. 31,577 : 11,397 : 93,482: ... Expenditures include taxes where data are ... includes fuel ethanol blended into motor gasoline that is not ...

129

START Program Project Sites | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Expenditure Per Person Solar Energy Potential Solar Energy Potential Renewable Energy Production By State Renewable Energy Production By State 2009 Total Energy...

130

Compare All CBECS Activities: Total Energy Use  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Use Total Energy Use Compare Activities by ... Total Energy Use Total Major Fuel Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 5.7 quadrillion Btu of all major fuels (electricity, natural gas, fuel oil, and district steam or hot water) in 1999. Office buildings used the most total energy of all the building types, which was not a surprise since they were the most common commercial building type and had an above average energy intensity. Figure showing total major fuel consumption by building type. If you need assistance viewing this page, please call 202-586-8800. Major Fuel Consumption per Building by Building Type Because there were relatively few inpatient health care buildings and they tend to be large, energy intensive buildings, their energy consumption per building was far above that of any other building type.

131

2009 Total Energy Production by State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 Total Energy Production by State 2009 Total Energy Production by State 2009 Total Energy Production by State Click on a state for more information. Addthis Browse By Topic...

132

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Census Division Total South...

133

Total Energy | U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

What's New in Total Energy. Monthly Energy Review September 25, 2013. Monthly Energy Review August 27, 2013. Monthly Energy Review July 26, 2013.

134

Table WH2. Total Households by Water Heating Fuels Used, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households by Water Heating Fuels Used, 2005 ... 2005 Residential Energy Consumption Survey: Energy Consumption and Expenditures Tables. Table WH2.

135

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Division Total West Mountain Pacific Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

136

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

(millions) Census Division Total South Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC13.7...

137

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Midwest Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC12.7...

138

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Northeast Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC11.7...

139

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total South Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

140

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(millions) Census Division Total West Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC14.7...

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Cogeneration Plant is Designed for Total Energy  

E-Print Network (OSTI)

This paper describes application considerations, design criteria, design features, operating characteristics and performance of a 200 MW combined cycle cogeneration plant located at Occidental Chemical Corporation's Battleground chlorine-caustic plant at La Porte, Texas. This successful application of a total energy management concept utilizing combined cycle cogeneration in an energy intensive electrochemical manufacturing process has resulted in an efficient reliable energy supply that has significantly reduced energy cost and therefore manufacturing cost.

Howell, H. D.; Vera, R. L.

1987-09-01T23:59:59.000Z

142

Table 1. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

This write-up presents 1997 Residential Energy Consumption and Expenditures by Origin of Householder. In 1997, there were 101.5 million residential ho ...

143

Table 3. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

This write-up presents 1997 Residential Energy Consumption and Expenditures by Origin of Householder. In 1997, there were 101.5 million residential ...

144

Total Energy - Data - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy. ... They are for public testing and comment only. We ...

145

A look at commercial buildings in 1995: Characteristics, energy consumption, and energy expenditures  

SciTech Connect

The commercial sector consists of business establishments and other organizations that provide services. The sector includes service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as a wide range of facilities that would not be considered commercial in a traditional economic sense, such as public schools, correctional institutions, and religious and fraternal organizations. Nearly all energy use in the commercial sector takes place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with different types of buildings is the clearest way to evaluate commercial sector energy use. The Commercial Buildings Energy Consumption Survey (CBECS) is a national-level sample survey of commercial buildings and their energy suppliers conducted quadrennially (previously triennially) by the Energy Information Administration (EIA). The target population for the 1995 CBECS consisted of all commercial buildings in the US with more than 1,000 square feet of floorspace. Decision makers, businesses, and other organizations that are concerned with the use of energy--building owners and managers, regulators, legislative bodies and executive agencies at all levels of government, utilities and other energy suppliers--are confronted with a buildings sector that is complex. Data on major characteristics (e.g., type of building, size, year constructed, location) collected from the buildings, along with the amount and types of energy the buildings consume, help answer fundamental questions about the use of energy in commercial buildings.

1998-10-01T23:59:59.000Z

146

TENESOL formerly known as TOTAL ENERGIE | Open Energy Information  

Open Energy Info (EERE)

TENESOL formerly known as TOTAL ENERGIE TENESOL formerly known as TOTAL ENERGIE Jump to: navigation, search Name TENESOL (formerly known as TOTAL ENERGIE) Place la Tour de Salvagny, France Zip 69890 Sector Solar Product Makes polycrystalline silicon modules, and PV-based products such as solar powered pumps. References TENESOL (formerly known as TOTAL ENERGIE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. TENESOL (formerly known as TOTAL ENERGIE) is a company located in la Tour de Salvagny, France . References ↑ "TENESOL (formerly known as TOTAL ENERGIE)" Retrieved from "http://en.openei.org/w/index.php?title=TENESOL_formerly_known_as_TOTAL_ENERGIE&oldid=352112" Categories:

147

1997 Consumption and Expenditures-Detailed Data Tables  

U.S. Energy Information Administration (EIA)

1997 Resdiential Energy Consumption Survey(RECS)-1997 Consumption and Expenditures-1997 Detailed Tables, Energy Information Administration

148

Total Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Glossary FAQS Overview Data Monthly Annual Analysis & Projections All Reports Most Requested Annual Monthly Projections U.S. States EIA's latest Short-Term...

149

2005 RECS Consumption and Expenditures Detailed Tables  

U.S. Energy Information Administration (EIA)

Detailed Consumption and Expenditures (C&E) tables containing Space Heating, Air-Conditioning, Water Heating, and Appliance residential energy data are now available.

150

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Flow, (Quadrillion Btu) Total Energy Flow, (Quadrillion Btu) Total Energy Flow diagram image Footnotes: 1 Includes lease condensate. 2 Natural gas plant liquids. 3 Conventional hydroelectric power, biomass, geothermal, solar/photovoltaic, and wind. 4 Crude oil and petroleum products. Includes imports into the Strategic Petroleum Reserve. 5 Natural gas, coal, coal coke, biofuels, and electricity. 6 Adjustments, losses, and unaccounted for. 7 Natural gas only; excludes supplemental gaseous fuels. 8 Petroleum products, including natural gas plant liquids, and crude oil burned as fuel. 9 Includes 0.01 quadrillion Btu of coal coke net exports. 10 Includes 0.13 quadrillion Btu of electricity net imports. 11 Total energy consumption, which is the sum of primary energy consumption, electricity retail sales, and electrical system energy losses.

151

SEDS CSV File Documentation: Price and Expenditure  

Gasoline and Diesel Fuel Update (EIA)

Prices and Expenditures Prices and Expenditures The State Energy Data System (SEDS) comma-separated value (CSV) files contain the price and expenditure estimates shown in the tables located on the SEDS website. There are three files that contain estimates for all states and years. Prices contains the price estimates for all states and Expenditures contains the expenditure estimates for all states. The third file, Adjusted Consumption for Expenditure Calculations contains adjusted consumption estimates used in calculating expenditures (see Appendix E below). Zip files are also available for the large data files. In addition, there is a CSV file for each state, named with the two-letter U.S. Postal Code listed in Appendix A, as well as a file for the United States.

152

EIA Data: Total International Primary Energy Consumption

This...  

Open Energy Info (EERE)

EIA Data: Total International Primary Energy Consumption

This table lists total primary energy consumption by country and region in Quadrillion Btu. Figures in this table...

153

Solar Total Energy Project final test report  

DOE Green Energy (OSTI)

The Solar Total Energy Project (STEP), a cooperative effort between the United States Department of Energy (DOE) and Georgia Power Company (GPC) located at Shenandoah, Georgia, has undergone several design modifications based on experience from previous operations and test programs. The experiences encountered were discussed in detail in the Solar Total Energy Project Summary Report'' completed in 1987 for DOE. Most of the proposed changes discussed in this report were installed and tested in 1987 as part of two 15-day test programs (SNL Contract No. 06-3049). However, several of the suggested changes were not completed before 1988. These plant modifications include a new distributed control system for the balance of plant (BOP), a fiber a optical communications ring for the field control system, and new control configuration reflecting the new operational procedures caused by the plant modifications. These modifications were tested during a non-consecutive day test, and a 60-day field test conducted during the autumn of 1989. These test were partially funded by SNL under Contract No. 42-4859, dated June 22, 1989. Results of these tests and preliminary analysis are presented in this test summary report. 9 refs., 19 figs., 7 tabs.

Nelson, R.F.; Abney, L.O.; Towner, M.L. (Georgia Power Co., Shenandoah, GA (USA))

1990-09-01T23:59:59.000Z

154

Total Energy Facilities Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Total Energy Facilities Biomass Facility Total Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type Non-Fossil Waste Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

155

Total Energy - Analysis & Projections - U.S. Energy Information...  

Annual Energy Outlook 2012 (EIA)

Current & Selected Reports Most Requested Annual Monthly Projections U.S. States Search within Total Energy Search By: Go Pick a date range: From: To: Go Search All Reports &...

156

Table 3.5 Consumer Expenditure Estimates for Energy by Source ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook Annual Energy Outlook Energy Disruptions International Energy Outlook ... 1984: 29,025-22: 77,169: 44,668: 15,097: R 14,197:

157

Total energy cycle emissions and energy use of electric vehicles  

DOE Green Energy (OSTI)

The purpose of this project is to provide estimates of changes in life cycle energy use and emissions that would occur with the introduction of EVs. The topics covered include a synopsis of the methodology used in the project, stages in the EV and conventional vehicle energy cycles, characterization of EVs by type and driving cycle, load analysis and capacity of the electric utility, analysis of the materials used for vehicle and battery, description of the total energy cycle analysis model, energy cycle primary energy resource consumption, greenhouse gas emissions, energy cycle emissions, and conclusions.

Singh, M.

1997-12-31T23:59:59.000Z

158

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

September 2012 PDF | previous editions September 2012 PDF | previous editions Release Date: September 27, 2012 A report of historical annual energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, as well as financial and environmental indicators; and data unit conversion tables. About the data Previous Editions + EXPAND ALL Annual Energy Review 2011 Edition PDF (Full issue) Annual Energy Review 2011 - Released on September 27, 2012 PDF Annual Energy Review 2010 Edition PDF (Full issue) Annual Energy Review 2010 - Released on October 19, 2011 PDF Annual Energy Review 2009 Edition PDF (Full issue) Annual Energy Review 2009 - Released on August 19, 2010 PDF

159

AEO2011: Total Energy Supply, Disposition, and Price Summary...  

Open Energy Info (EERE)

Total Energy Supply, Disposition, and Price Summary This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report...

160

Annual Energy Outlook with Projections to 2025-Figure 5. Total...  

Gasoline and Diesel Fuel Update (EIA)

5. Total energy production and consumption, 1970-2025 (quadrillion Btu). For more detailed information, contact the National Energy Information Center at (202) 586-8800. Energy...

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Table 2.5 Household Energy Consumption and Expenditures by End ...  

U.S. Energy Information Administration (EIA)

Appliances, 2 Electronics, and Lighting : Natural Gas: Elec-tricity 3: Fuel Oil 4: LPG 5: Total: Electricity 3: Natural Gas: Elec-tricity 3: Fuel Oil ...

162

Table 2.5 Household Energy Consumption and Expenditures by End Use ...  

U.S. Energy Information Administration (EIA)

Air Conditioning: Water Heating: Appliances, 2 Electronics, and Lighting : Natural Gas: Elec-tricity 3: Fuel Oil 4: LPG 5: Total: Electricity 3: Natural Gas: Elec ...

163

Map Data: Total Production | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Total Production Map Data: Total Production totalprod2009final.csv More Documents & Publications Map Data: Renewable Production Map Data: State Consumption...

164

Total energy cycle energy use and emissions of electric vehicles.  

SciTech Connect

A total energy cycle analysis (TECA) of electric vehicles (EV) was recently completed. The EV energy cycle includes production and transport of fuels used in power plants to generate electricity, electricity generation, EV operation, and vehicle and battery manufacture. This paper summarizes the key assumptions and results of the EVTECA. The total energy requirements of EVS me estimated to be 24-35% lower than those of the conventional, gasoline-fueled vehicles they replace, while the reductions in total oil use are even greater: 55-85%. Greenhouse gases (GHG) are 24-37% lower with EVs. EVs reduce total emissions of several criteria air pollutants (VOC, CO, and NO{sub x}) but increase total emissions of others (SO{sub x}, TSP, and lead) over the total energy cycle. Regional emissions are generally reduced with EVs, except possibly SO{sub x}. The limitations of the EVTECA are discussed, and its results are compared with those of other evaluations of EVs. In general, many of the results (particularly the oil use, GHG, VOC, CO, SO{sub x}, and lead results) of the analysis are consistent with those of other evaluations.

Singh, M. K.

1999-04-29T23:59:59.000Z

165

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections All Reports Most Requested Annual Monthly Projections U.S. States Annual Energy Review September 2012 PDF | previous editions Release Date: September 27, 2012 Important notes about the data Note: The emphasis of the Annual Energy Review (AER) is on long-term trends. Analysts may wish to use the data in this report in conjunction with EIA's monthly releases that offer updates to the most recent years' data. In particular, see the Monthly Energy Review for statistics that include updates to many of the annual series in this report. Data Years Displayed: For tables beginning in 1949, some early years (usually 1951-1954, 1956-1959, 1961-1964, 1966-1969, and 1971-1974) are not

166

Table 2.5 Household Energy Consumption and Expenditures by End Use ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook Annual Energy Outlook ... 1984: 20.66: 4.62: 8.51: 2.00: 35.79: 7.06: 6.63: 6.44: 1.09.58: 14.74: 2.31: 36.36.54: 39.21: 1987: 18.05: 5 ...

167

A Total Energy & Water Quality Management System  

Science Conference Proceedings (OSTI)

This report develops a generic model for an energy and water quality management system for the water community, and defines standard specifications for software applications required to minimize energy costs within the constraints of water quality and operation goals.

1999-09-30T23:59:59.000Z

168

Solar total energy systems final technical summary report. Volume I. Solar total energy systems market penetration  

SciTech Connect

The results of the market penetration analysis of Solar Total Energy Systems (STES) for the industrial sector are described. Performance data derived for STES commercial applications are included. The energy use and price forecasts used in the analysis are summarized. The STES Applications Model (SAM), has been used to develop data on STES development potential by state and industry as a function of time from 1985 through 2015. A second computer code, the Market Penetration Model (MPM), has been completed and used to develop forecasts of STES market penetration and national energy displacement by fuel type. This model was also used to generate sensitivity factors for incentives, and variations in assumptions of cost of STES competing fuel. Results for the STES performance analysis for commercial applications are presented. (MHR)

Bush, L.R.; Munjal, P.K.

1978-03-31T23:59:59.000Z

169

Buildings Energy Data Book: 4.3 Federal Buildings and Facilities Expenditures  

Buildings Energy Data Book (EERE)

3 3 Direct Appropriations on Federal Buildings Energy Conservation Retrofits and Capital Equipment ($2010 Million) FY 1985 FY 1986 FY 1987 FY 1988 FY 1989 FY 1990 Source(s): DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table 11-B, p. 31; DOE/FEMP, Annual Report to Congress on FEMP, Nov. 2007, Table 9-B, p. 26 for 1985, 1990, 1995, 2000-2006; DOE/FEMP, Annual Report to Congress on FEMP, Sep. 2004, Table 4-B, p. 38 for 1986-1989, 1991-1994, 1996-1999; EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price deflators. 349,350 102,135 FY 1996 238,232 FY 2002 147,895 83,340 FY 1995 438,943 FY 2001 162,488 FY 2007 321,686 108,705 FY 1994 318,739 FY 2000 150,900 FY 2006 301,222 98,708 FY 1993 170,826 FY 1999 261,784 FY 2005 201,156 342,653 FY 1992 209,973

170

Achieving Total Employee Engagement in Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Raytheon Employee Engagement Raytheon Employee Engagement in Energy Conservation Department of Energy August 5, 2010 Steve Fugarazzo Raytheon Company Enterprise Energy Team Copyright © 2007 Raytheon Company. All rights reserved. Customer Success Is Our Mission is a trademark of Raytheon Company. Page 2 8/9/2010 Presentation Overview  Company Background  Communication & Outreach Initiatives - Internal Partnerships - Energy Champions - Energy Citizens - Energy Awareness Events & Contests Page 3 8/9/2010 Raytheon ... What We Do Raytheon is a global technology company that provides innovative solutions to customers in 80 nations. Through strategic vision, disciplined management and world-class talent, Raytheon is delivering operational advantages for customers every day while helping them prepare for the

171

Property:TotalValue | Open Energy Information  

Open Energy Info (EERE)

TotalValue TotalValue Jump to: navigation, search This is a property of type Number. Pages using the property "TotalValue" Showing 25 pages using this property. (previous 25) (next 25) 4 44 Tech Inc. Smart Grid Demonstration Project + 10,000,000 + A ALLETE Inc., d/b/a Minnesota Power Smart Grid Project + 3,088,007 + Amber Kinetics, Inc. Smart Grid Demonstration Project + 10,000,000 + American Transmission Company LLC II Smart Grid Project + 22,888,360 + American Transmission Company LLC Smart Grid Project + 2,661,650 + Atlantic City Electric Company Smart Grid Project + 37,400,000 + Avista Utilities Smart Grid Project + 40,000,000 + B Baltimore Gas and Electric Company Smart Grid Project + 451,814,234 + Battelle Memorial Institute, Pacific Northwest Division Smart Grid Demonstration Project + 177,642,503 +

172

SolarTotal | Open Energy Information  

Open Energy Info (EERE)

SolarTotal SolarTotal Jump to: navigation, search Name SolarTotal Place Bemmel, Netherlands Zip 6681 LN Sector Solar Product The company sells and installs PV solar instalations Coordinates 51.894112°, 5.89881° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.894112,"lon":5.89881,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

5 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 5 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings Characteristics Tables, number of buildings and amount of floorspace for major building characteristics. Energy Consumption and Expenditures Tables, energy consumption and expenditures for major energy sources. Energy End-Use Data, total, electricity and natural gas consumption and energy intensities for nine specific end-uses. All Principal Buildings Activities Number of Buildings, Total Floorspace, and Total Site and Primary Energy Consumption for All Principal Building Activities, 1995

174

Total Economics of Energy Efficient Motors  

E-Print Network (OSTI)

Due to the large increases in cost of electrical energy in recent years, the energy savings attainable with the use of energy-efficient motors is very attractive to all motor users. But energy and electric demand charge savings tell only part of the story. Engineers responsible for the selection of motors for many varying uses must also consider many less tangible factors when deciding whether a price premium for an energy-efficient motor is justified. These important intangible factors may throw a borderline decision in favor of a premium motor; at other times these factors may dictate that the capital money could be spent more wisely in other areas. This paper will point out those factors which effect the decision of whether or not to buy a premium priced energy-efficient motor or a standard electric motor. It will also address the question of whether it is cost-effective to rewind an old motor which has failed or to replace it with a new energy-efficient motor.

Nester, A. T.

1984-01-01T23:59:59.000Z

175

EQUUS Total Return Inc | Open Energy Information  

Open Energy Info (EERE)

EQUUS Total Return Inc EQUUS Total Return Inc Jump to: navigation, search Name EQUUS Total Return Inc Place Houston, Texas Product A business development company and VC investor that trades as a closed-end fund. EQUUS is managed by MCC Global NV, a Frankfurt stock exchange listed management and merchant banking group. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

176

2009 Total Energy Production by State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Per Person Solar Energy Potential Solar Energy Potential Renewable Energy Production By State Renewable Energy Production By State 2009 Energy Consumption Per Person...

177

"Table 17. Total Delivered Residential Energy Consumption, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Residential Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,...

178

Correlation Of Surface Heat Loss And Total Energy Production...  

Open Energy Info (EERE)

Facebook icon Twitter icon Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

179

Atomic total energies: Atomic Ref.Data Elec Struc Cal  

Science Conference Proceedings (OSTI)

... These tables contain the atomic total energies and orbital eigenvalues, for the ground electronic configuration of the elements H ... Definition of format ...

180

Atomic total energies: Atomic Ref. Data Elec. Struc. Cal.  

Science Conference Proceedings (OSTI)

... These tables contain the atomic total energies and orbital eigenvalues, for the ground electronic configuration of the elements H ... Definition of format ...

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy dependence of the total photoproduction cross section at HERA  

E-Print Network (OSTI)

The energy dependence of the total photon-proton cross-section is determined from data collected with the ZEUS detector at HERA with two different proton beam energies.

Aharon Levy

2008-07-01T23:59:59.000Z

182

The Total Energy Norm in a Quasigeostrophic Model  

Science Conference Proceedings (OSTI)

Total energy E as the sum of kinetic and available potential energies is considered here for quasigeostrophic (QG) dynamics. The discrete expression for E is derived for the QG model formulation of Marshall and Molteni. While E is conserved by ...

Martin Ehrendorfer

2000-10-01T23:59:59.000Z

183

Total Energy - Data - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

... Quarterly Coal Report Monthly Energy Review Residential Energy ... Solar Energy in Brief. What's ... They are for public testing and comment ...

184

Total Energy - U.S. Energy Information Administration (EIA ...  

U.S. Energy Information Administration (EIA)

... Quarterly Coal Report Monthly Energy Review Residential Energy Consumption ... Solar Energy in ... testing but not to operate at full power.

185

Total Energy - Data - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Maps. Maps by energy source and topic, ... Solar Energy in Brief. ... U.S. Department of Energy USA.gov FedStats. Stay Connected

186

Total Energy - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies. ... is the U.S. Energy Information Administration's primary report of recent energy statistics.

187

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.7...

188

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC4.7...

189

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Self-Reported) City Town Suburbs Rural Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC8.7...

190

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

East North Central West North Central Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

191

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Heating Characteristics Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC5.4 Space Heating...

192

Total Energy - Data - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook Annual Energy Outlook Energy Disruptions International Energy Outlook ... A B C D E F G H I J K L M N O P Q R S T U V ...

193

2009 Total Energy Production by State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sandy Alternative Fueling Station Locator Alternative Fueling Station Locator Energy Department National Labs and Minority Serving Institutions Energy Department National...

194

Total Energy - Analysis & Projections - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Released: July 25, 2013. This report presents international energy projections through 2040, ... 2012. A report of historical annual energy ...

195

Total Energy - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, ...

196

Chapter 4. Fuel Economy, Consumption and Expenditures  

U.S. Energy Information Administration (EIA) Indexed Site

4. Fuel Economy, Consumption, and Expenditures 4. Fuel Economy, Consumption, and Expenditures Chapter 4. Fuel Economy, Consumption, and Expenditures This chapter analyzes trends in fuel economy, fuel consumption, and fuel expenditures, using data unique to the Residential Transportation Energy Consumption Survey, as well as selected data from other sources. Analysis topics include the following: Following the oil supply and price disruptions caused by the Arab oil embargo of 1973-1974, motor gasoline price increases, the introduction of corporate average fuel economy standards, and environmental quality initiatives helped to spur major changes in vehicle technology. But have the many advances in vehicle technology resulted in measurable gains in the fuel economy of the residential vehicle fleet?

197

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

198

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

Estimating Total Energy Consumption and Emissions of Chinasof Chinas total energy consumption mix. However, accuratelyof Chinas total energy consumption, while others estimate

Fridley, David G.

2008-01-01T23:59:59.000Z

199

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

60,000 to 79,999 80,000 or More Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

200

Table 21. Total Energy Related Carbon Dioxide Emissions, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual Projected (million metric tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008...

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

AEO2011:Total Energy Supply, Disposition, and Price Summary ...  

Open Energy Info (EERE)

AEO2011:Total Energy Supply, Disposition, and Price Summary

202

2009 Total Energy Production by State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-powered Dams U.S. Hydropower Potential from Existing Non-powered Dams Creating an Energy Innovation Ecosystem Creating an Energy Innovation Ecosystem Sunshot Rooftop Solar...

203

Total Prompt Energy Release in the Neutron-Induced Fission  

E-Print Network (OSTI)

This study addresses, for the first time, the total prompt energy release and its components for the fission of 235 U, 238 U, and 239 Pu as a function of the kinetic energy of the neutron inducing the fission. The components are extracted from experimental measurements, where they exist, together with model-dependent calculation, interpolation, and extrapolation. While the components display clear dependencies upon the incident neutron energy, their sums display only weak, yet definite, energy dependencies. Also addressed is the total prompt energy deposition in fission for the same three systems. Results are presented in equation form. New measurements are recommended as a consequence of this study. Key words: Energy release and energy deposition in neutron-induced fission,

D. G. Madland

2006-01-01T23:59:59.000Z

204

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

205

Property:Geothermal/TotalProjectCost | Open Energy Information  

Open Energy Info (EERE)

TotalProjectCost TotalProjectCost Jump to: navigation, search Property Name Geothermal/TotalProjectCost Property Type Number Description Total Project Cost Pages using the property "Geothermal/TotalProjectCost" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + 14,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 2,155,497 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + 6,135,381 + A new analytic-adaptive model for EGS assessment, development and management support Geothermal Project + 1,629,670 +

206

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

207

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

What's New in Monthly Energy Review What's New in Monthly Energy Review December 2013 PDF | previous editions Release Date: December 24, 2013 Next Update: January 28, 2014 Listed below are changes in Monthly Energy Review content. Only months with changes beyond the standard updates are shown. CONTENT CHANGES + EXPAND ALL Changes in 2013 December 2013 Release Electricity statistics have been revised in coordination with EIA's Electric Power Annual 2012. Revisions affect data series in Energy Overview, Energy Consumption, Petroleum, Natural Gas, Coal, Electricity, Nuclear Energy, Energy Prices, Renewable Energy, and Environment. Final 2012 heat content values for electricity (Table A6) have also been incorporated. October 2013 Release Excel and CSV files now include pre-1973 data for all series except for Section 12. The Excel files now have two worksheets, one for monthly data and one for annual data.

208

Total Energy - Data - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Comprehensive data summaries, comparisons, analysis, and projections integrated across all energy sources. Highlights This Week in Petroleum ... Wind Geothermal

209

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Usage Indicators by U.S. Census Region, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators U.S. Census Region Northeast Midwest South West Energy Information...

210

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005 Housing Units (millions) Energy Information...

211

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location, 2005 Housing Units (millions) Energy Information...

212

Total Energy - Data - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions.

213

1999 Commercial Buildings Energy Consumption Survey Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption and Expenditures Tables Table C1. Total Energy Consumption by Major Fuel ............................................... 124 Table C2. Total Energy Expenditures by Major Fuel................................................ 130 Table C3. Consumption for Sum of Major Fuels ...................................................... 135 Table C4. Expenditures for Sum of Major Fuels....................................................... 140 Table C5. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels................................................................................................... 145 Table C6. Expenditures by Census Region for Sum of Major Fuels......................... 150 Table C7. Consumption and Gross Energy Intensity by Building Size for Sum of

214

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

215

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

216

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

217

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) Primary Energy Consumption by Source and Sector diagram image Footnotes: 1 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 2 Excludes supplemental gaseous fuels. 3 Includes less than 0.1 quadrillion Btu of coal coke net exports. 4 Conventional hydroelectric power, geothermal, solar/PV, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP) and industrial electricity-only plants. 6 Includes commercial combined-heat-and-power (CHP) and commercial electricity-only plants. 7 Electricity-only and combined-heat-and-power (CHP) plants whose primary business is to sell electricity, or electricity and heat, to the public.

218

The Use of Trust Regions in Kohn-Sham Total Energy Minimization  

E-Print Network (OSTI)

of the KS total energy optimization problem, which has beenthe original total energy minimization problem is. Secondly,the KS total energy minimiza- tion problem as min E total (

Yang, Chao; Meza, Juan C.; Wang, Lin-wang

2006-01-01T23:59:59.000Z

219

A comparative analysis of energy demand and expenditures by minority and majority households within the context of a conditional demand system  

SciTech Connect

Analysis and evaluation of the impact that programs and policies have on energy consumption and expenditures are confounded by many intervening variables. A clear understanding of how these variables influence energy consumption patterns should be grounded in a rigorously developed framework. In this regard much is documented in the literature. However, an analysis of the comparative relationship between energy demand and variables which influence it among different socioeconomic groups has not been thoroughly explored with any theoretical rigor. It is proposed that differences in patterns of energy use between black, Hispanic, and majority households (where the household head is neither black nor Hispanic) are due to both structural and distribution differences. It is felt that the structural dissimilarities are primarily due to the dynamic nature in which energy consumption patterns evolve, with differences in changing housing patterns playing a significant role. For minorities, this implies a potential difference in the effect of policy and programs on economic welfare when compared to majority households.To test this hypothesis, separate conditional demand systems are estimated for majority, black, and Hispanic households. With the use of separate variance/covariance matrices, various parameter groups are tested for statistically significant differences.

Poyer, D.A.

1992-08-01T23:59:59.000Z

220

A comparative analysis of energy demand and expenditures by minority and majority households within the context of a conditional demand system  

SciTech Connect

Analysis and evaluation of the impact that programs and policies have on energy consumption and expenditures are confounded by many intervening variables. A clear understanding of how these variables influence energy consumption patterns should be grounded in a rigorously developed framework. In this regard much is documented in the literature. However, an analysis of the comparative relationship between energy demand and variables which influence it among different socioeconomic groups has not been thoroughly explored with any theoretical rigor. It is proposed that differences in patterns of energy use between black, Hispanic, and majority households (where the household head is neither black nor Hispanic) are due to both structural and distribution differences. It is felt that the structural dissimilarities are primarily due to the dynamic nature in which energy consumption patterns evolve, with differences in changing housing patterns playing a significant role. For minorities, this implies a potential difference in the effect of policy and programs on economic welfare when compared to majority households.To test this hypothesis, separate conditional demand systems are estimated for majority, black, and Hispanic households. With the use of separate variance/covariance matrices, various parameter groups are tested for statistically significant differences.

Poyer, D.A.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

222

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

223

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

224

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

225

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

226

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

227

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

228

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

229

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

230

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

231

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

232

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

233

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1991  

SciTech Connect

This is the sixth report submitted to Congress under section 5(d)(2)(E)(ii)(II) of the Low-Level Radioactive Waste Policy Act of 1985 (the Act). This section of the Act directs the Department of Energy (DOE) to summarize the annual expenditures of funds disbursed from the DOE surcharge escrow account and to assess compliance of these expenditures with the limitations specified in the Act. In addition to placing limitations on the use of these funds, the Act also requires the nonsited compact regions and nonmember States to provide DOE with an itemized report of their expenditures on December 31 of each year in which funds are expended. Within 6 months after receiving the individual reports, the Act requires the Secretary to furnish Congress with a summary of the reported expenditures and an assessment of compliance with the specified usage limitations. This report fulfills that requirement. DOE disbursed funds totaling $15,037,778.91 to the States and compact regions following the July 1, 1986, January 1, 1988, and January 1, 1990, milestones specified in the Act. Of this amount, $3,517,020.56 was expended during calendar year 1991 and $6,602,546.24 was expended during the prior 5 years. At the end of December 1991, $4,918,212.11 was unexpended. DOE has reviewed each of the reported expenditures and concluded that all reported expenditures comply with the spending limitations stated in section 5(d)(2)(E)(i) of the Act.

Not Available

1992-06-01T23:59:59.000Z

234

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Electricity Flow, (Quadrillion Btu) Electricity Flow, (Quadrillion Btu) Electricity Flow diagram image Footnotes: 1 Blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuels. 2 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies, and non-renewable waste (municipal solid waste from non-biogenic sources, and tire-derived fuels). 3 Data collection frame differences and nonsampling error. Derived for the diagram by subtracting the "T & D Losses" estimate from "T & D Losses and Unaccounted for" derived from Table 8.1. 4 Electric energy used in the operation of power plants. 5 Transmission and distribution losses (electricity losses that occur between the point of generation and delivery to the customer) are estimated

235

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Flow, (Million Barrels per Day) Petroleum Flow, (Million Barrels per Day) Petroleum Energy Flow diagram image Footnotes: 1 Unfinished oils, hydrogen/oxygenates/renewables/other hydrocarbons, and motor gasoline and aviation gasoline blending components. 2 Renewable fuels and oxygenate plant net production (0.972), net imports (1.164) and adjustments (0.122) minus stock change (0.019) and product supplied (0.001). 3 Finished petroleum products, liquefied petroleum gases, and pentanes plus. 4 Natural gas plant liquids. 5 Field production (2.183) and renewable fuels and oxygenate plant net production (-.019) minus refinery and blender net imputs (0.489). 6 Production minus refinery input. (s)= Less than 0.005. Notes: * Data are preliminary. * Values are derived from source data prior to rounding for publication.

236

Commercial applications of solar total energy systems. Volume 4. Appendices. Final report. [Solar Total Energy System Evaluation Program (STESEP) code  

DOE Green Energy (OSTI)

A methodology has been developed by Atomics International under contract to the Department of Energy to define the applicability of solar total energy systems (STES) to the commercial sector (e.g., retail stores, shopping centers, offices, etc.) in the United States. Candidate STES concepts were selected to provide on-site power generation capability, as well as thermal energy for both heating and cooling applications. Each concept was evaluated on the basis of its cost effectiveness (i.e., as compared to other concepts) and its ability to ultimately penetrate and capture a significant segment of this market, thereby resulting in a saving of fossil fuel resources. This volume contains the appendices. Topics include deterministic insolation model computer code; building energy usage data; computer simulation programs for building energy demand analysis; model buildings for STES evaluation; Solar Total Energy System Evaluation Program (STESEP) computer code; transient simulation of STES concept; solar data tape analysis; program listings and sample output for use with TRNSYS; transient simulation, and financial parameters sensitivities. (WHK)

Boobar, M.G.; McFarland, B.L.; Nalbandian, S.J.; Willcox, W.W.; French, E.P.; Smith, K.E.

1978-07-01T23:59:59.000Z

237

Total Primary Energy Use in the U.S. by Sector, 1998 (chart)  

U.S. Energy Information Administration (EIA)

Home > Energy Users > Energy Efficiency Page > Figure 1. Total Primary Energy Use by Sector [Trends in Building-Related Energy and ...

238

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

5HVLGHQWLDO (QHUJ\\ &RQVXPSWLRQ 6XUYH\\V 1997 Consumption and Expenditures Tables Appliances Consumption Tables (17 pages, 60 kb) Contents Pages CE5-1c.

239

United States - Rankings - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Rankings Rankings Additional State Rankings Consumption Total Energy per Capita Prices Natural Gas Electricity Environment Carbon Dioxide Emissions Expenditures Total Energy per Capita Production Total Energy Crude Oil Natural Gas Coal Electricity More State Ranking Tables › Notes & Sources Consumption Total Energy per Capita: EIA, State Energy Data System, Total Consumption Per Capita Expenditures Total Energy per Capita: EIA, State Energy Data System, Total Expenditures Per Capita Production Total Energy: EIA, State Energy Data System, Total Energy Production Crude Oil: EIA, Petroleum Supply Annual, Crude Oil Production Natural Gas: EIA, Natural Gas Annual, Natural Gas Gross Withdrawals and Production Coal: EIA, Annual Coal Report, Coal Production and Number of Mines by State

240

New America Foundation Working Paper The Price-Induced Energy Trap Exploring the Impacts of Transportation Expenditures on the American Economy  

E-Print Network (OSTI)

Even though the U.S. economy grows at an anemic rate of perhaps 1.5 percent and 1.9 percent (or less) in this year and next, the world economy is likely to expand by well over 3 percent in that same two-year period. The world demand for oil is expected to increase, concurrently, by about 1.5 percent annually. The most recent projections by the U.S. Energy Information Administration (EIA 2011a) suggest that absent major disruptions the growing demand for energy worldwide will continue to push oil prices up in a slow but steady movement. Absent dramatic changes in U.S. energy policy, consumers are likely to continue to pay high and volatile prices. Despite an anticipated 1.8 percent decline this year in gasoline consumption, for example, the overall expenditures for gasoline will increase 25 percent, rising from $391 billion dollars in 2010 to $489 billion dollars in 2011. Both the size of the U.S. gasoline bill, and its dependence on global events, impact the lives and well-being of individuals, families, and households especially those from the middle and lower income levels. And as consumers incomes, already shrinking in the after-effects of the recession, continue to be absorbed by high fuel costs, gasoline is becoming a drag on the economy. How will U.S. policy makers navigate the future? For decades price has been the focus of policy-makers attention. Policy-byprice has taken three approaches. First, policymakers have tried to keep prices low through subsidies for ethanol and biofuels, increased domestic oil production and an active foreign policy toward oil suppliers, while letting the market (i.e., rising prices),

John A. skip Laitner; For The Energy Policy Initiative

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Table 16. Total Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual" Total Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",88.02,89.53,90.72,91.73,92.71,93.61,94.56,95.73,96.69,97.69,98.89,100,100.79,101.7,102.7,103.6,104.3,105.23 "AEO 1995",,89.21,89.98,90.57,91.91,92.98,93.84,94.61,95.3,96.19,97.18,98.38,99.37,100.3,101.2,102.1,102.9,103.88 "AEO 1996",,,90.6,91.26,92.54,93.46,94.27,95.07,95.94,96.92,97.98,99.2,100.38,101.4,102.1,103.1,103.8,104.69,105.5 "AEO 1997",,,,92.64,93.58,95.13,96.59,97.85,98.79,99.9,101.2,102.4,103.4,104.7,105.8,106.6,107.2,107.9,108.6 "AEO 1998",,,,,94.68,96.71,98.61027527,99.81855774,101.254303,102.3907928,103.3935776,104.453476,105.8160553,107.2683716,108.5873566,109.8798981,111.0723877,112.166893,113.0926208

242

EXPENDITURES General Fund Expenditures-2.0 % Page 12 NON-GENERAL FUND REVENUES  

E-Print Network (OSTI)

Key to revenue trend indicators: ?NEUTRAL ? = Variance of-1 % to +2 % compared to projections. ?POSITIVE ? = Positive variance of>+2 % compared to projections. ?WARNING ? = Negative variance of-1 % to-4 % compared to projections. ?NEGATIVE ? = Negative variance of>-4 % compared to projections. 1 First Quarter 2013- May 2013CITY FINANCIAL OVERVIEW EXECUTIVE SUMMARY Total General Fund revenue receipts for the first quarter of 2013, in the amount of $4,175,309, are above the projection by $172,955, or 4.3%. Total General Fund expenditures, in the amount of $4,508,707, are below the projection by $92,764, or 2.0%. Street Fund revenue receipts for the first quarter of 2013, including transfers in, total $511,302 and are $3,654, or 0.7%, above the projection. Street Fund expenditures, including transfers out, total $460,168 and are $19,734, or 4.1%, below the projection. Surface Water Utility Fund (SWM) revenue receipts for the first quarter of 2013 totaling $114,495 are $42,761, or 59.6%, above the projection. SWM expenditures total $691,401 and are $90,757, or 15.1%, above the projection. Real Estate Excise Tax (REET) revenue receipts for the first quarter of 2013 totaling $231,011 are $7,274, or 3.3%, ahead of the projection and

unknown authors

2013-01-01T23:59:59.000Z

243

Solar total energy systems (STES) simulation program user's guide  

DOE Green Energy (OSTI)

A computer program which simulates the operations of a STES facility and evaluates its annualized costs and energy displacement is described. The program contains a dynamic model which simulates the interaction of the insolation and electrical and thermal demands on an hourly basis. The program is flexible enough to allow thousands of different configurations to be simulated under a wide variety of conditions. Moreover, with this program, the sizes of the STES components can be adjusted to maximize the return on invested capital or the savings in fossil fuels. The program can also be used to simulate conventional fossil fuel Total Energy (TE) systems and solar thermal energy systems for comparison with STES. The program is written in Fortran for the FTN compiler on The Aerospace Corporation's CDC 7600 computer. It consists of 9 routines and approximately 1300 cards, including comments. A description of the program, its inputs and its outputs are presented. Examples of program input and otput as well as a sample deck structure are provided. A source listing appears in the appendix.

Timmer, B.R.

1979-01-04T23:59:59.000Z

244

Table 1.4b Primary Energy Exports by Source and Total Net Imports  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review August 2013 11 Table 1.4b Primary Energy Exports by Source and Total Net Imports

245

Total Energy Recovery System for Agribusiness. [Geothermally heated]. Final Report  

DOE Green Energy (OSTI)

An engineering and economic study was made to determine a practical balance of selected agribusiness subsystems resulting in realistic estimated produce yields for a geothermally heated system known as the Total Energy Recovery System for Agribusiness. The subsystem cycles for an average application at an unspecified hydrothermal resources site in the western United States utilize waste and by-products from their companion cycles insofar as practicable. Based on conservative estimates of current controlled environment yields, produce wholesale market prices, production costs, and capital investment required, it appears that the family-operation-sized TERSA module presents the potential for marginal recovery of all capital investment costs. In addition to family- or small-cooperative-farming groups, TERSA has potential users in food-oriented corporations and large-cooperative-agribusiness operations. The following topics are considered in detail: greenhouse tomatoes and cucumbers; fish farming; mushroom culture; biogas generation; integration methodology; hydrothermal fluids and heat exchanger selection; and the system. 133 references. (MHR)

Fogleman, S.F.; Fisher, L.A.; Black, A.R.; Singh, D.P.

1977-05-01T23:59:59.000Z

246

A Total Turbulent Energy Closure Model for Neutrally and Stably Stratified Atmospheric Boundary Layers  

Science Conference Proceedings (OSTI)

This paper presents a turbulence closure for neutral and stratified atmospheric conditions. The closure is based on the concept of the total turbulent energy. The total turbulent energy is the sum of the turbulent kinetic energy and turbulent ...

Thorsten Mauritsen; Gunilla Svensson; Sergej S. Zilitinkevich; Igor Esau; Leif Enger; Branko Grisogono

2007-11-01T23:59:59.000Z

247

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

Total embodied energy was highest for the hotel subsector,School Hotel The total non-operational embodied energy ofEnergy, Reference Case) Million Tonnes CO2 Hospital Hotel

Fridley, David G.

2008-01-01T23:59:59.000Z

248

Total Floorspace of Commercial Buildings - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities >Table 4

249

Market assessment of fuel cell total energy systems summary report  

DOE Green Energy (OSTI)

An investigation of the potential market penetration of fuel cell total energy systems (FCTES) into the nonindustrial, single building market is summarized. Nine building types, two types of construction, and the ten Department of Energy (DOE) regions were used to model the market for the time period 1985--2000. Input data developed for the penetration model included size distributions of each building type and performance and cost characteristics of FCTES and competing conventional systems. Two fuel cell systems, fuel cell - heat pump and fuel cell - central boiler and chiller, were assumed to compete with two conventional systems, electric heat pump and central chiller-boiler models. Two fuel cell supply situations were considered: (a) one in which only 40 kW(e) modules were available, and (b) one in which a catalog of 25, 40, 100, and 250 kW(e) modules were available. Data characterizing the economic climate, the intended market, and system cost and performance were used to determine the present value of life-cycle costs for each system in each market segment. Two market models were used to estimate FCTES sales. In the first, the perfect market model, FCTES sales were assumed to occur in all segments in which that system had the lowest present-valued costs. In the second, a market diffusion model was used to obtain a more probable (and lower) sales estimate than that of the perfect market model. Results are presented as FCTES sales for each market segment by FCTES module size and the effect on primary energy use by fuel type.

Mixon, W.R.; Christian, J.E.; Jackson, W.L.; Pine, G.D.; Hagler, H.; Shanker, R.; Koppelman, L.; Greenstein, D.

1979-03-01T23:59:59.000Z

250

"Table A15. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Energy Operating Ratios for Total Energy Consumption for" Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991" ,,,"Consumption","Major" " "," ","Consumption","per Dollar","Byproducts(b)","Fuel Oil(c)"," " " ","Consumption","per Dollar","of Value","as a Percent","as a Percent","RSE" " ","per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Economic Characteristics(a)","(million Btu)","(thousand Btu)","(thousand Btu)","(percent)","(percent)","Factors"

251

"Table A45. Selected Energy Operating Ratios for Total Energy Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

5. Selected Energy Operating Ratios for Total Energy Consumption" 5. Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Value of Shipment Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

252

"Table A46. Selected Energy Operating Ratios for Total Energy Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Energy Operating Ratios for Total Energy Consumption" Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Employment Size Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

253

"Table A48. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Selected Energy Operating Ratios for Total Energy Consumption for" 8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, and Economic" " Characteristics of the Establishment, 1994" ,,,"Consumption","Major" " "," ","Consumption","per Dollar","Byproducts(b)","Fuel Oil(c)"," " " ","Consumption","per Dollar","of Value","as a Percent","as a Percent","RSE" " ","per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row"

254

"Table A8. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

A8. Selected Energy Operating Ratios for Total Energy Consumption for" A8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Industry Group, and" " Selected Industries, 1991" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent of","RSE" "SIC"," ","per Employee","of Value Added","of Shipments","Consumsption","Natural Gas","Row" "Code(a)","Industry Groups and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","(PERCENT)","(percent)","Factors"

255

"Table A51. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Energy Operating Ratios for Total Energy Consumption for" 1. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991 " ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percent)","(percent)","Factors"

256

"Table A47. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Selected Energy Operating Ratios for Total Energy Consumption for" 7. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent of","RSE" "SIC"," ","per Employee","of Value Added","of Shipments","Consumption","Natural Gas","Row" "Code(a)","Industry Group and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

257

"Table A50. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Selected Energy Operating Ratios for Total Energy Consumption for" 0. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Economic Characteristics of the" " Establishment, 1991 (Continued)" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent of","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(Percent)","(percent)","Factors"

258

U.S. States - Rankings - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Rankings Rankings Additional State Rankings Consumption Total Energy per Capita Prices Natural Gas Electricity Environment Carbon Dioxide Emissions Expenditures Total Energy per Capita Production Total Energy Crude Oil Natural Gas Coal Electricity More State Ranking Tables › Notes & Sources Consumption Total Energy per Capita: EIA, State Energy Data System, Total Consumption Per Capita Expenditures Total Energy per Capita: EIA, State Energy Data System, Total Expenditures Per Capita Production Total Energy: EIA, State Energy Data System, Total Energy Production Crude Oil: EIA, Petroleum Supply Annual, Crude Oil Production Natural Gas: EIA, Natural Gas Annual, Natural Gas Gross Withdrawals and Production Coal: EIA, Annual Coal Report, Coal Production and Number of Mines by State

259

Analysis of Long-range Clean Energy Investment Scenarios for Eritrea, East Africa  

E-Print Network (OSTI)

the reduction in annual non-renewable energy expenditures asin the expenditure for non- renewable energy supplies, with

Van Buskirk, Robert D.

2004-01-01T23:59:59.000Z

260

Concentrating Solar Power Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid Projects 2009 Energy Expenditure Per Person 2009 Energy Expenditure Per Person Solar Energy Potential Solar Energy Potential Renewable Energy Production By State Renewable...

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Table CE1-4c. Total Energy Consumption in U.S. Households by Type ...  

U.S. Energy Information Administration (EIA)

Total Energy Consumption in U.S. Households by Type of Housing Unit, 2001 RSE Column Factor: Total ... where the end use is electric air-conditioning, ...

262

Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Residential Energy Consumption, Projected vs. Actual Total Delivered Residential Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.5 10.5 10.6 10.6 AEO 1995 11.0 10.8 10.8 10.8 10.8 10.8 10.8 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.9 AEO 1996 10.4 10.7 10.7 10.7 10.8 10.8 10.9 10.9 11.0 11.2 11.2 11.3 11.4 11.5 11.6 11.7 11.8 AEO 1997 11.1 10.9 11.1 11.1 11.2 11.2 11.2 11.3 11.4 11.5 11.5 11.6 11.7 11.8 11.9 12.0 AEO 1998 10.7 11.1 11.2 11.4 11.5 11.5 11.6 11.7 11.8 11.9 11.9 12.1 12.1 12.2 12.3 AEO 1999 10.5 11.1 11.3 11.3 11.4 11.5 11.5 11.6 11.6 11.7 11.8 11.9 12.0 12.1 AEO 2000 10.7 10.9 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0

263

Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual Total Delivered Transportation Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 23.6 24.1 24.5 24.7 25.1 25.4 25.7 26.2 26.5 26.9 27.2 27.6 27.9 28.3 28.6 28.9 29.2 29.5 AEO 1995 23.3 24.0 24.2 24.7 25.1 25.5 25.9 26.2 26.5 26.9 27.3 27.7 28.0 28.3 28.5 28.7 28.9 AEO 1996 23.9 24.1 24.5 24.8 25.3 25.7 26.0 26.4 26.7 27.1 27.5 27.8 28.1 28.4 28.6 28.9 29.1 AEO 1997 24.7 25.3 25.9 26.4 27.0 27.5 28.0 28.5 28.9 29.4 29.8 30.3 30.6 30.9 31.1 31.3 AEO 1998 25.3 25.9 26.7 27.1 27.7 28.3 28.8 29.4 30.0 30.6 31.2 31.7 32.3 32.8 33.1 AEO 1999 25.4 26.0 27.0 27.6 28.2 28.8 29.4 30.0 30.6 31.2 31.7 32.2 32.8 33.1 AEO 2000 26.2 26.8 27.4 28.0 28.5 29.1 29.7 30.3 30.9 31.4 31.9 32.5 32.9

264

Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Commercial Energy Consumption, Projected vs. Actual Total Delivered Commercial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.6 AEO 1995 6.9 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 8.0 8.1 AEO 1997 7.4 7.4 7.4 7.5 7.5 7.6 7.7 7.7 7.8 7.8 7.9 7.9 8.0 8.1 8.1 8.2 AEO 1998 7.5 7.6 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.3 8.4 8.4 8.5 8.6 8.7 AEO 1999 7.4 7.8 7.9 8.0 8.1 8.2 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 AEO 2000 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.5 8.7 8.7 8.8 AEO 2001 7.8 8.1 8.3 8.6 8.7 8.9 9.0 9.2 9.3 9.5 9.6 9.7 AEO 2002 8.2 8.4 8.7 8.9 9.0 9.2 9.4 9.6 9.7 9.9 10.1

265

Table 16. Total Energy Consumption, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 88.0 89.5 90.7 91.7 92.7 93.6 94.6 95.7 96.7 97.7 98.9 100.0 100.8 101.7 102.7 103.6 104.3 105.2 AEO 1995 89.2 90.0 90.6 91.9 93.0 93.8 94.6 95.3 96.2 97.2 98.4 99.4 100.3 101.2 102.1 102.9 103.9 AEO 1996 90.6 91.3 92.5 93.5 94.3 95.1 95.9 96.9 98.0 99.2 100.4 101.4 102.1 103.1 103.8 104.7 105.5 AEO 1997 92.6 93.6 95.1 96.6 97.9 98.8 99.9 101.2 102.4 103.4 104.7 105.8 106.6 107.2 107.9 108.6 AEO 1998 94.7 96.7 98.6 99.8 101.3 102.4 103.4 104.5 105.8 107.3 108.6 109.9 111.1 112.2 113.1 AEO 1999 94.6 97.0 99.2 100.9 102.0 102.8 103.6 104.7 106.0 107.2 108.5 109.7 110.8 111.8

266

Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual Total Delivered Industrial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 25.4 25.9 26.3 26.7 27.0 27.1 26.8 26.6 26.9 27.2 27.7 28.1 28.3 28.7 29.1 29.4 29.7 30.0 AEO 1995 26.2 26.3 26.5 27.0 27.3 26.9 26.6 26.8 27.1 27.5 27.9 28.2 28.4 28.7 29.0 29.3 29.6 AEO 1996 26.5 26.6 27.3 27.5 26.9 26.5 26.7 26.9 27.2 27.6 27.9 28.2 28.3 28.5 28.7 28.9 29.2 AEO 1997 26.2 26.5 26.9 26.7 26.6 26.8 27.1 27.4 27.8 28.0 28.4 28.7 28.9 29.0 29.2 29.4 AEO 1998 27.2 27.5 27.2 26.9 27.1 27.5 27.7 27.9 28.3 28.7 29.0 29.3 29.7 29.9 30.1 AEO 1999 26.7 26.4 26.4 26.8 27.1 27.3 27.5 27.9 28.3 28.6 28.9 29.2 29.5 29.7 AEO 2000 25.8 25.5 25.7 26.0 26.5 26.9 27.4 27.8 28.1 28.3 28.5 28.8 29.0

267

Medical Area Total Egy Plt Inc | Open Energy Information  

Open Energy Info (EERE)

Total Egy Plt Inc Jump to: navigation, search Name Medical Area Total Egy Plt Inc Place Massachusetts Utility Id 12258 References EIA Form EIA-861 Final Data File for 2010 -...

268

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

7A. Total District Heat Consumption and Expenditures for All Buildings, 2003 All Buildings Using District Heat District Heat Consumption District Heat Expenditures Number of...

269

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Total Electricity Expenditures (million dollars) Electricity Expenditures (dollars) per kWh per Square Foot North- east Mid- west South West North- east Mid- west South West...

270

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

of Central Government Buildings. Available at: http://Energy Commission, PIER Building End-Use Energy Efficiencythe total lifecycle of a building such as petroleum and

Fridley, David G.

2008-01-01T23:59:59.000Z

271

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

component of Chinas total energy consumption mix. However,China-specific factors were used to calculate the energy mix

Fridley, David G.

2008-01-01T23:59:59.000Z

272

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1992  

SciTech Connect

This is the seventh report submitted to Congress in accordance with section 5(d)(2)(E)(ii)(II) of Title I--Low-Level Radioactive Waste Policy Amendments Act of 1985 (the Act). This section of the Act directs the Department of Energy (DOE) to summarize the annual expenditures of funds disbursed from the DOE surcharge escrow account and to assess compliance of these expenditures with the limitations specified in the Act. In addition to placing limitations on the use of these funds, the Act also requires the nonsited compact regions and nonmember States to provide DOE with an itemized report of their expenditures on December 31 of each year in which funds are expended. Within 6 months after receiving the individual reports, the Act requires the Secretary to furnish Congress with a summary of the reported expenditures and an assessment of compliance with the specified usage limitations. This report fulfills that requirement. DOE disbursed funds totaling $15,037,778.91 to the States and compact regions following the July 1, 1986, January 1, 1988, and January 1, 1990, milestones specified in the Act. Of this amount, $1,445,701.61 was expended during calendar year 1992 and $10,026,763.87 was expended during the prior 6 years. At the end of December 1992, $3,565,313.43 was unexpended. DOE has reviewed each of the reported expenditures and concluded that all reported expenditures comply with the spending limitations stated in section 5(d)(2)(E)(i) of the Act.

Not Available

1993-06-01T23:59:59.000Z

273

Total China Investment Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Total China Investment Co Ltd Total China Investment Co Ltd Jump to: navigation, search Name Total (China) Investment Co. Ltd. Place Beijing, China Zip 100004 Product Total has been present in China for about 30 years through its activities of Exploration & Production, Gas & Power, Refining & Marketing, and Chemicals. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Property:Building/TotalFloorArea | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/TotalFloorArea Jump to: navigation, search This is a property of type Number. Total floor area (BRA), m2 Pages using the property "Building/TotalFloorArea" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 7,160 + Sweden Building 05K0003 + 4,855 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,260 + Sweden Building 05K0006 + 13,048 + Sweden Building 05K0007 + 24,155 + Sweden Building 05K0008 + 7,800 + Sweden Building 05K0009 + 34,755 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 15,310 + Sweden Building 05K0012 + 22,565 + Sweden Building 05K0013 + 19,551 +

275

Property:RenewableFuelStandard/Total | Open Energy Information  

Open Energy Info (EERE)

Total Total Jump to: navigation, search This is a property of type Number. Pages using the property "RenewableFuelStandard/Total" Showing 15 pages using this property. R Renewable Fuel Standard Schedule + 13.95 + Renewable Fuel Standard Schedule + 26 + Renewable Fuel Standard Schedule + 15.2 + Renewable Fuel Standard Schedule + 28 + Renewable Fuel Standard Schedule + 16.55 + Renewable Fuel Standard Schedule + 30 + Renewable Fuel Standard Schedule + 18.15 + Renewable Fuel Standard Schedule + 9 + Renewable Fuel Standard Schedule + 33 + Renewable Fuel Standard Schedule + 20.5 + Renewable Fuel Standard Schedule + 11.1 + Renewable Fuel Standard Schedule + 36 + Renewable Fuel Standard Schedule + 22.25 + Renewable Fuel Standard Schedule + 12.95 + Renewable Fuel Standard Schedule + 24 +

276

Property:Building/SPElectrtyUsePercTotal | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercTotal SPElectrtyUsePercTotal Jump to: navigation, search This is a property of type String. Total Pages using the property "Building/SPElectrtyUsePercTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 100.0 + Sweden Building 05K0002 + 100.0 + Sweden Building 05K0003 + 100.0 + Sweden Building 05K0004 + 100.0 + Sweden Building 05K0005 + 100.0 + Sweden Building 05K0006 + 100.0 + Sweden Building 05K0007 + 100.0 + Sweden Building 05K0008 + 100.0 + Sweden Building 05K0009 + 100.0 + Sweden Building 05K0010 + 100.0 + Sweden Building 05K0011 + 100.0 + Sweden Building 05K0012 + 100.0 + Sweden Building 05K0013 + 100.0 + Sweden Building 05K0014 + 100.0 + Sweden Building 05K0015 + 100.0 + Sweden Building 05K0016 + 100.0 +

277

Property:Building/FloorAreaTotal | Open Energy Information  

Open Energy Info (EERE)

FloorAreaTotal FloorAreaTotal Jump to: navigation, search This is a property of type Number. Total Pages using the property "Building/FloorAreaTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 7,160 + Sweden Building 05K0003 + 4,454 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,260 + Sweden Building 05K0006 + 14,348 + Sweden Building 05K0007 + 24,155 + Sweden Building 05K0008 + 7,800 + Sweden Building 05K0009 + 34,755 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 15,300 + Sweden Building 05K0012 + 22,565 + Sweden Building 05K0013 + 19,551 + Sweden Building 05K0014 + 1,338.3 + Sweden Building 05K0015 + 1,550 + Sweden Building 05K0016 + 2,546 +

278

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1990  

SciTech Connect

This is the fifth report submitted to Congress under Title 1, section 5(d)(2)(E) of Public Law 99--240, The Low-Level Radioactive Waste Policy Amendments Act of 1985'' (the Act). This section of the Act requests the Department of Energy (DOE) to summarize the annual expenditures of funds disbursed from the DOE surcharge escrow account and to assess compliance of these expenditures with the specified limitations. The Act places limitations on the use of these funds and requires the nonsited compact regions and nonmember States to provide DOE with an itemized report of their expenditures on December 31 of each year in which funds are expended. Within 6 months after receiving the individual reports, DOE is to furnish Congress a summary of the reported expenditures and an assessment of compliance with the limitations on the use of these funds specified in the Act. This report fulfills that requirements. DOE disbursed funds totaling $15,006,587.76 to the States and compact regions following the July 1, 1986, January 1, 1988, and January 1, 1990, milestones. Of this amount, $4,328,340.44 was expended during calendar year 1990 and $2,239,205.80 was expended during the prior 4 years. At the end of December 1990, $8,439,041.52 was unexpended. 5 tabs.

Not Available

1991-06-01T23:59:59.000Z

279

T O T Section 7. Total Energy L E N E R G Y Total Energy Consumption  

U.S. Energy Information Administration (EIA)

Residential Sector Solar thermal direct use energy and photovoltaic electricity net generation ... dent population as published by the U.S. Department of Commerce, Bu-

280

IEP - Water-Energy Interface: Total Maximum Daily Load Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Total Maximum Daily Loads (TMDLs) Total Maximum Daily Loads (TMDLs) The overall goal of the Clean Water Act is to "restore and maintain the chemical, physical, and biological integrity of the Nation’s waters." In 1999, EPA proposed changes to Section 303(d), to establish Total Maximum Daily Loads (TMDLs) for watersheds that do not meet this goal. The TMDL is the highest amount of a given pollutant that is permissible in that body of water over a given period of time. TMDLs include both waste load allocation (WLA) for point sources and load allocations for non-point sources. In Appalachia, acid mine drainage (AMD) is the single most damaging non-point source. There is also particular concern of the atmospheric deposition of airborne sulfur, nitrogen, and mercury compounds. States are currently in the process of developing comprehensive lists of impaired waters and establishing TMDLs for those waters. EPA has recently proposed a final rule that will require states to develop TMDLs and implement plans for improving water quality within the next 10 years. Under the new rule, TMDL credits could be traded within a watershed.

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

AEO2011: Total Energy Supply, Disposition, and Price Summary | OpenEI  

Open Energy Info (EERE)

Total Energy Supply, Disposition, and Price Summary Total Energy Supply, Disposition, and Price Summary Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics

282

U.S. Department of Energy Releases Revised Total System Life...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project U.S. Department of Energy Releases Revised Total System Life Cycle Cost...

283

Table CE1-1c. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

Table CE1-1c. Total Energy Consumption in U.S. Households by Climate Zone, 2001 RSE Column Factor: Total Climate Zone1 RSE Row Factors Fewer than 2,000 CDD and --

284

Table CE1-10c. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

Table CE1-10c. Total Energy Consumption in U.S. Households by Midwest Census Region, 2001 RSE Column Factor: Total U.S. Midwest Census Region RSE Row

285

Capital expenditures of leading petroleum companies 1968-1982  

Science Conference Proceedings (OSTI)

A review of aggregate capital expenditures by 37 leading US petroleum companies from 1968 through 1982 examines data from several vantages, including capital expenditures by geographical and functional segment and in relation to sources of funds. The paper responds to a number of issues raised during and after the Arab oil embargo, when widespread public concern developed over the economic and security implications of US dependence on foreign energy supplies and over whether US petroelum companies were adequately using their profits to assure sufficient supplies. Contrary to the allegations made, this study finds that capital expenditures increased and were largely directed toward exploration and production in the US, with only a small proportion going to non-petroleum, non-energy purposes. 2 figures, 17 tables.

Gal, N.P.

1984-01-01T23:59:59.000Z

286

Table A4. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, and Selected Industries, 1994: Part 2" "...

287

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

"Table A36. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Fuel Type, Industry Group, Selected Industries, and End Use, 1991:" " Part 2" " (Estimates in...

288

Table A10. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Fuel Type, Industry Group, Selected Industries, and End Use, 1994:" " Part 2" " (Estimates in...

289

Table A26. Total Quantity of Purchased Energy Sources by Census...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Quantity of Purchased Energy Sources by Census Region and" " Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)"...

290

Total instantaneous energy transport in polychromatic fluid gravity waves at finite depth  

Science Conference Proceedings (OSTI)

The total instantaneous energy transport can be found for polychromatic waves when using the deep water approximation. Expanding this theory to waves in waters of finite depth

J. Engstrm; J. Isberg; M. Eriksson; M. Leijon

2012-01-01T23:59:59.000Z

291

Table A12. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical...

292

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1991. Report to Congress in response to Public Law 99-240  

SciTech Connect

This is the sixth report submitted to Congress under section 5(d)(2)(E)(ii)(II) of the Low-Level Radioactive Waste Policy Act of 1985 (the Act). This section of the Act directs the Department of Energy (DOE) to summarize the annual expenditures of funds disbursed from the DOE surcharge escrow account and to assess compliance of these expenditures with the limitations specified in the Act. In addition to placing limitations on the use of these funds, the Act also requires the nonsited compact regions and nonmember States to provide DOE with an itemized report of their expenditures on December 31 of each year in which funds are expended. Within 6 months after receiving the individual reports, the Act requires the Secretary to furnish Congress with a summary of the reported expenditures and an assessment of compliance with the specified usage limitations. This report fulfills that requirement. DOE disbursed funds totaling $15,037,778.91 to the States and compact regions following the July 1, 1986, January 1, 1988, and January 1, 1990, milestones specified in the Act. Of this amount, $3,517,020.56 was expended during calendar year 1991 and $6,602,546.24 was expended during the prior 5 years. At the end of December 1991, $4,918,212.11 was unexpended. DOE has reviewed each of the reported expenditures and concluded that all reported expenditures comply with the spending limitations stated in section 5(d)(2)(E)(i) of the Act.

Not Available

1992-06-01T23:59:59.000Z

293

Modal and Nonmodal Symmetric Perturbations. Part II: Nonmodal Growths Measured by Total Perturbation Energy  

Science Conference Proceedings (OSTI)

Maximum nonmodal growths of total perturbation energy are computed for symmetric perturbations constructed from the normal modes presented in Part I. The results show that the maximum nonmodal growths are larger than the energy growth produced by ...

Qin Xu; Ting Lei; Shouting Gao

2007-06-01T23:59:59.000Z

294

The impact of rising energy prices on household energy consumption and expenditure patterns: The Persian Gulf crisis as a case example  

SciTech Connect

The Iraqi invasion of Kuwait and the subsequent war between Iraq and an international alliance led by the United States triggered immediate increases in world oil prices. Increases in world petroleum prices and in US petroleum imports resulted in higher petroleum prices for US customers. In this report, the effects of the Persian Gulf War and its aftermath are used to demonstrate the potential impacts of petroleum price changes on majority, black, and Hispanic households, as well as on poor and nonpoor households. The analysis is done by using the Minority Energy Assessment Model developed by Argonne National Laboratory for the US Department of Energy (DOE). The differential impacts of these price increases and fluctuations on poor and minority households raise significant issues for a variety of government agencies, including DOE. Although the Persian Gulf crisis is now over and world oil prices have returned to their prewar levels, the differential impacts of rising energy prices on poor and minority households as a result of any future crisis in the world oil market remains a significant long-term issue.

Henderson, L.J. (Baltimore Univ., MD (United States)); Poyer, D.A.; Teotia, A.P.S. (Argonne National Lab., IL (United States). Energy Systems Div.)

1992-09-01T23:59:59.000Z

295

Table 21. Total Transportation Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Consumption, Projected vs. Actual Transportation Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 18.6 18.2 17.7 17.3 17.0 16.9 AEO 1983 19.8 20.1 20.4 20.4 20.5 20.5 20.7 AEO 1984 19.2 19.0 19.0 19.0 19.1 19.2 20.1 AEO 1985 20.0 19.8 20.0 20.0 20.0 20.1 20.3 AEO 1986 20.5 20.8 20.8 20.6 20.7 20.3 21.0 AEO 1987 21.3 21.5 21.6 21.7 21.8 22.0 22.0 22.0 21.9 22.3 AEO 1989* 21.8 22.2 22.4 22.4 22.5 22.5 22.5 22.5 22.6 22.7 22.8 23.0 23.2 AEO 1990 22.0 22.4 23.2 24.3 25.5 AEO 1991 22.1 21.6 21.9 22.1 22.3 22.5 22.8 23.1 23.4 23.8 24.1 24.5 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 AEO 1992 21.7 22.0 22.5 22.9 23.2 23.4 23.6 23.9 24.1 24.4 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 27.1 AEO 1993 22.5 22.8 23.4 23.9 24.3 24.7 25.1 25.4 25.7 26.1 26.5 26.8 27.2 27.6 27.9 28.1 28.4 28.7 AEO 1994 23.6

296

Table 17. Total Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption, Projected vs. Actual Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 79.1 79.6 79.9 80.8 82.1 83.3 AEO 1983 78.0 79.5 81.0 82.4 83.9 84.6 89.0 AEO 1984 78.5 79.4 81.2 83.1 85.1 86.4 93.0 AEO 1985 77.6 78.5 79.8 81.2 82.7 83.3 84.2 85.0 85.7 86.3 87.2 AEO 1986 77.0 78.8 79.8 80.7 81.5 82.9 83.8 84.6 85.3 86.0 86.6 87.4 88.3 89.4 90.2 AEO 1987 78.9 80.0 82.0 82.8 83.9 85.1 86.2 87.1 87.9 92.5 AEO 1989* 82.2 83.8 84.5 85.4 86.2 87.1 87.8 88.7 89.5 90.4 91.4 92.4 93.5 AEO 1990 84.2 85.4 91.9 97.4 102.8 AEO 1991 84.4 85.0 86.0 87.0 87.9 89.1 90.4 91.8 93.1 94.3 95.6 97.1 98.4 99.4 100.3 101.4 102.5 103.6 104.7 105.8 AEO 1992 84.7 87.0 88.0 89.2 90.5 91.4 92.4 93.4 94.5 95.6 96.9 98.0 99.0 100.0 101.2 102.2 103.2 104.3 105.2 AEO 1993 87.0 88.3 89.8 91.4 92.7 94.0 95.3 96.3 97.5 98.6

297

Table 20. Total Industrial Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Industrial Energy Consumption, Projected vs. Actual Industrial Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 24.0 24.1 24.4 24.9 25.5 26.1 AEO 1983 23.2 23.6 23.9 24.4 24.9 25.0 25.4 AEO 1984 24.1 24.5 25.4 25.5 27.1 27.4 28.7 AEO 1985 23.2 23.6 23.9 24.4 24.8 24.8 24.4 AEO 1986 22.2 22.8 23.1 23.4 23.4 23.6 22.8 AEO 1987 22.4 22.8 23.7 24.0 24.3 24.6 24.6 24.7 24.9 22.6 AEO 1989* 23.6 24.0 24.1 24.3 24.5 24.3 24.3 24.5 24.6 24.8 24.9 24.4 24.1 AEO 1990 25.0 25.4 27.1 27.3 28.6 AEO 1991 24.6 24.5 24.8 24.8 25.0 25.3 25.7 26.2 26.5 26.1 25.9 26.2 26.4 26.6 26.7 27.0 27.2 27.4 27.7 28.0 AEO 1992 24.6 25.3 25.4 25.6 26.1 26.3 26.5 26.5 26.0 25.6 25.8 26.0 26.1 26.2 26.4 26.7 26.9 27.2 27.3 AEO 1993 25.5 25.9 26.2 26.8 27.1 27.5 27.8 27.4 27.1 27.4 27.6 27.8 28.0 28.2 28.4 28.7 28.9 29.1 AEO 1994 25.4 25.9

298

Table 18. Total Residential Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Residential Energy Consumption, Projected vs. Actual Residential Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 10.1 10.1 10.1 10.1 10.2 10.2 AEO 1983 9.8 9.9 10.0 10.1 10.2 10.1 10.0 AEO 1984 9.9 9.9 10.0 10.2 10.3 10.3 10.5 AEO 1985 9.8 10.0 10.1 10.3 10.6 10.6 10.9 AEO 1986 9.6 9.8 10.0 10.3 10.4 10.8 10.9 AEO 1987 9.9 10.2 10.3 10.3 10.4 10.5 10.5 10.5 10.5 10.6 AEO 1989* 10.3 10.5 10.4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 AEO 1990 10.4 10.7 10.8 11.0 11.3 AEO 1991 10.2 10.7 10.7 10.8 10.8 10.8 10.9 10.9 10.9 11.0 11.0 11.0 11.1 11.2 11.2 11.3 11.4 11.4 11.5 11.6 AEO 1992 10.6 11.1 11.1 11.1 11.1 11.1 11.2 11.2 11.3 11.3 11.4 11.5 11.5 11.6 11.7 11.8 11.8 11.9 12.0 AEO 1993 10.7 10.9 11.0 11.0 11.0 11.1 11.1 11.1 11.1 11.2 11.2 11.2 11.2 11.3 11.3 11.4 11.4 11.5 AEO 1994 10.3 10.4 10.4 10.4

299

Best Practices: Energy Savings Efficient energy use reduces Colorado State's total energy demand, decreases harmful  

E-Print Network (OSTI)

square foot on campus has flattened out. Students making a difference In 2004, Colorado State became one, decreases harmful emissions, and minimizes the cost of providing energy to the campus. As a result of energy conservation initiatives that have been implemented over the past 20 years, growth in the average demand per

300

Engineering guidelines for total energy are even more vital during fuel shortage  

SciTech Connect

Large total-energy facilities, from 3 to 20 MW in capacity, are studied, but the guidelines are applicable to small units also. Heat-balance analysis, fuel costs, load factor, load-profile match, and control-system design are engineering parameters for total-energy systems that will improve fuel economy. (MCW)

Kauffmann, W.M.

1974-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Buildings Energy Data Book: 2.9 Low-Income Housing  

Buildings Energy Data Book (EERE)

0 2005 Average Energy Expenditures per Household Member and per Square Foot, by Weatherization Eligibility (2010) Members Hhold Hhold Total U.S. Households 780 2.6 0.86 Federally...

302

Table 19. Total Commercial Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Commercial Energy Consumption, Projected vs. Actual Commercial Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 6.6 6.7 6.8 6.8 6.8 6.9 AEO 1983 6.4 6.6 6.8 6.9 7.0 7.1 7.2 AEO 1984 6.2 6.4 6.5 6.7 6.8 6.9 7.3 AEO 1985 5.9 6.1 6.2 6.3 6.4 6.5 6.7 AEO 1986 6.2 6.3 6.4 6.4 6.5 7.1 7.4 AEO 1987 6.1 6.1 6.3 6.4 6.6 6.7 6.8 6.9 6.9 7.3 AEO 1989* 6.6 6.7 6.9 7.0 7.0 7.1 7.2 7.3 7.3 7.4 7.5 7.6 7.7 AEO 1990 6.6 6.8 7.1 7.4 7.8 AEO 1991 6.7 6.9 7.0 7.1 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.6 8.7 AEO 1992 6.8 7.1 7.2 7.3 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 AEO 1993 7.2 7.3 7.4 7.4 7.5 7.6 7.7 7.7 7.8 7.9 7.9 8.0 8.0 8.1 8.1 8.1 8.2 8.2 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 AEO 1995 6.94 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0

303

Table A14. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" 4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," "," "," ",," "," "," "," " "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "," ",," "

304

Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent Conditioned Floorspace","Total","Present","Not Present","Factors" " "," " "RSE Column Factors:",0.8,1.3,0.9 "ALL SQUARE FEET CATEGORIES" "Approximate Conditioned Floorspace"

305

Table A30. Total Primary Consumption of Energy for All Purposes by Value of  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Primary Consumption of Energy for All Purposes by Value of" 0. Total Primary Consumption of Energy for All Purposes by Value of" "Shipment Categories, Industry Group, and Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," ","(million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," "," "," ",," "," "," "," " "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "," ",," "

306

Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"

307

"Table A11. Total Primary Consumption of Combustible Energy for Nonfuel"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Total Primary Consumption of Combustible Energy for Nonfuel" 1. Total Primary Consumption of Combustible Energy for Nonfuel" " Purposes by Census Region and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," "," "," ","Natural"," "," ","Coke"," "," " " ","Total","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","(trillion","Row"

308

energy prices | OpenEI  

Open Energy Info (EERE)

prices prices Dataset Summary Description The State Energy Data System (SEDS) is compiled by the U.S. Energy Information Administration's (EIA); it is a comprehensive database of energy statistics by state (and includes totals for the entire US). SEDS includes estimates of energy production, consumption, prices, and expenditures broken down by energy source and sector. Annual estimates are available from 1960 - 2009 for production and consumption estimates and from 1970 - 2009 for price and expenditure estimates. Source EIA Date Released June 30th, 2011 (3 years ago) Date Updated Unknown Keywords EIA Energy Consumption Energy Expenditures energy prices energy production SEDS State energy data States US Data text/csv icon Complete SEDS dataset as csv (may be too big for Excel) (csv, 40.6 MiB)

309

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 2 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1992 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings characteristics tables-number of buildings and amount of floorspace for major building characteristics. Energy consumption and expenditures tables-energy consumption and expenditures for major energy sources. Energy end-use tables-total, electricity and natural gas consumption and energy intensities for nine specific end-uses. Guide to the 1992 CBECS Detailed Tables Released: Nov 1999 Column Categories Row Categories The first set of detailed tables for the 1992 CBECS, Tables A1 through A70,

310

Table A54. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of General Technologies, 1994: Part 2" ,," "," ",," "," ",," "," "," "," " ,,,,"Computer Control" ,," "," ","of Processes"," "," ",," "," ",," " ,," ","Computer Control","or Major",,,"One or More"," ","RSE" "SIC"," ",,"of Building","Energy-Using","Waste Heat"," Adjustable-Speed","General Technologies","None","Row"

311

Green Pricing Program Marketing Expenditures: Finding the Right Balance  

NLE Websites -- All DOE Office Websites (Extended Search)

449 449 September 2009 Green Pricing Program Marketing Expenditures: Finding the Right Balance Barry Friedman and Mackay Miller National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-46449 September 2009 Green Pricing Program Marketing Expenditures: Finding the Right Balance Barry Friedman and Mackay Miller Prepared under Task No. SAO9.3003 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

312

Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.2,1.1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",12605,1209,3303,6386,1706,2.9

313

Table A20. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" " Region, Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke",,"Shipments" " "," ","Net","Residual","Distillate","Natural Gas(e)"," ","Coal","and Breeze"," ","of Energy Sources","RSE" " ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

314

Table A41. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

A41. Total Inputs of Energy for Heat, Power, and Electricity" A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.3,1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",10743,1150,2819,5309,1464,2.6,,,"/WIR{D}~"

315

AEO2011:Total Energy Supply, Disposition, and Price Summary | OpenEI  

Open Energy Info (EERE)

Total Energy Supply, Disposition, and Price Summary Total Energy Supply, Disposition, and Price Summary Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption disposition energy exports imports Supply Data application/vnd.ms-excel icon AEO2011:Total Energy Supply, Disposition, and Price Summary- Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

316

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

SciTech Connect

Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

2008-03-01T23:59:59.000Z

317

Table CE1-4c. Total Energy Consumption in U.S. Households by Type ...  

U.S. Energy Information Administration (EIA)

Table CE1-4c. Total Energy Consumption in U.S. Households by Type of Housing Unit, 1997 ... where the end use is electric air-conditioning, ...

318

Fort Hood Solar Total Energy Project. Volume I. Executive summary. Final report  

DOE Green Energy (OSTI)

A summary of the history, design, performance, supporting activities, and management plans for the Solar Total Energy System for the troop housing complex at Fort Hood, Texas, is presented. (WHK)

None

1979-01-01T23:59:59.000Z

319

The total energy-momentum of the universe in teleparallel gravity  

E-Print Network (OSTI)

We investigate the conservation law of energy-momentum in teleparallel gravity by using general Noether theorem. The energy-momentum current has also superpotential and is therefore identically conserved. The total energy-momentum, which includes the contributions of both matter and gravitational fields, is given by the integral of scalar densities over a three-dimensional spacelike hypersurface. As an example, the universe in teleparallel gravity is investigated. It is shown that the total energy-momentum vanishes independently of both the curvature parameter and the three dimensionless coupling constants of teleparallel gravity.

Liu, Yu-Xiao; Yang Jie; Duan Yi Shi

2007-01-01T23:59:59.000Z

320

The total energy-momentum of the universe in teleparallel gravity  

E-Print Network (OSTI)

We investigate the conservation law of energy-momentum in teleparallel gravity by using general Noether theorem. The energy-momentum current has also superpotential and is therefore identically conserved. The total energy-momentum, which includes the contributions of both matter and gravitational fields, is given by the integral of scalar densities over a three-dimensional spacelike hypersurface. As an example, the universe in teleparallel gravity is investigated. It is shown that the total energy-momentum vanishes independently of both the curvature parameter and the three dimensionless coupling constants of teleparallel gravity.

Yu-Xiao Liu; Zhen-Hua Zhao; Jie Yang; Yi-Shi Duan

2007-06-22T23:59:59.000Z

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

State energy data | OpenEI  

Open Energy Info (EERE)

0 0 Varnish cache server State energy data Dataset Summary Description The State Energy Data System (SEDS) is compiled by the U.S. Energy Information Administration's (EIA); it is a comprehensive database of energy statistics by state (and includes totals for the entire US). SEDS includes estimates of energy production, consumption, prices, and expenditures broken down by energy source and sector. Annual estimates are available from 1960 - 2009 for production and consumption estimates and from 1970 - 2009 for price and expenditure estimates. Source EIA Date Released June 30th, 2011 (3 years ago) Date Updated Unknown Keywords EIA Energy Consumption Energy Expenditures energy prices energy production SEDS State energy data States US Data text/csv icon Complete SEDS dataset as csv (may be too big for Excel) (csv, 40.6 MiB)

322

"Table A22. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Quantity of Purchased Energy Sources by Census Region," 2. Total Quantity of Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Groups and Industry","Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

323

Table A9. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

A9. Total Primary Consumption of Energy for All Purposes by Census" A9. Total Primary Consumption of Energy for All Purposes by Census" " Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke" " "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" " ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Economic Characteristics(a)","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

324

Table A56. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Industry-Specific Technologies for Selected Industries, 1994: Part 2" ,,,"RSE" "SIC",,,"Row" "Code(a)","Industry Group and Industry","Total(b)","Factors" ,"RSE Column Factors:",1 20,"FOOD and KINDRED PRODUCTS" ,"Industry-Specific Technologies" ,"One or More Industry-Specific Technologies Present",2353,9 ," Infrared Heating",607,13 ," Microwave Drying",127,21 ," Closed-Cycle Heat Pump System Used to Recover Heat",786,19

325

Table A17. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes" Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Employment Size Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors" ,"RSE Column Factors:",0.6,1.5,1.5,1,0.9,0.9,0.9 , 20,"Food and Kindred Products",1193,119,207,265,285,195,122,6

326

Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors" ,"RSE Column Factors:",0.6,1.3,1,1,0.9,1.2,1.2

327

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Aggregate Aggregate Ratio: See Mean and Ratio Estimate. AMPD: Average miles driven per day. See Appendix B, "Estimation Methodologies." Annual Vehicle Miles Traveled: See Vehicle Miles Traveled. Automobile: Includes standard passenger car, 2-seater car and station wagons; excludes passenger vans, cargo vans, motor homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for all RTECS households divided by the total number of households. See Ratio Estimate, and Combined Household Energy Expenditures. Average Number of Vehicles per Household: The average number of vehicles used by a household for personal transportation during 1991. For this report, the average number of vehicles per household is computed as the ratio of the total number of vehicles to the

328

U.S. Department of Energy Releases Revised Total System Life Cycle Cost  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Revised Total System Life Cycle Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project August 5, 2008 - 2:40pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca Mountain, Nevada. The 2007 total system life cycle cost estimate includes the cost to research, construct and operate Yucca Mountain during a period of 150 years, from the beginning of the program in 1983 through closure and decommissioning in 2133. The new cost estimate of $79.3 billion, when updated to 2007 dollars comes to $96.2 billion, a 38 percent

329

Table N11.4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 19  

U.S. Energy Information Administration (EIA) Indexed Site

4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" 4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources","RSE"

330

Table A33. Total Primary Consumption of Energy for All Purposes by Employment  

U.S. Energy Information Administration (EIA) Indexed Site

Primary Consumption of Energy for All Purposes by Employment" Primary Consumption of Energy for All Purposes by Employment" " Size Categories, Industry Group, and Selected Industries, 1991 (Continued)" " (Estimates in Trillion Btu)" ,,,,,"Employment Size" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," ",,500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "

331

CBECS 1992 - Consumption & Expenditures, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Detailed Tables Figure on Energy Consumption in Commercial Buildings by Energy Source, 1992 Divider Line The 49 tables present detailed energy consumption and expenditure data for buildings in the commercial sector. This section provides assistance in reading the tables by explaining some of the headings for the data categories. It will also explain the use of row and column factors to compute both the confidence levels of the estimates given in the tables and the statistical significance of differences between the data in two or more categories. The section concludes with a "Quick-Reference Guide" to the statistics in the different tables. Categories of Data in the Tables After Table 3.1, which is a summary table, the tables are grouped into the major fuel tables (Tables 3.2 through 3.13) and the specific fuel tables (Tables 3.14 through 3.29 for electricity, Tables 3.30 through 3.40 for natural gas, Tables 3.41 through 3.45 for fuel oil, and Tables 3.46 through 3.47 for district heat). Table 3.48 presents energy management and DSM data as reported by the building respondent. Table 3.49 presents data on participation in electric utility-sponsored DSM programs as reported by both the building respondent and the electricity supplier.

332

Priority listing of industrial processes by total energy consumption and potential for savings. Final report  

SciTech Connect

A survey of eight of the most energy-intensive segments of the U.S. industry is made to quantify the energy consumed in the principal process units, to identify areas in which significant improvement appear possible, and to rank the process units in terms of total energy consumption and the potential for improvement. Data on the steel, paper, aluminum, textile, cement, and glass industries, petroleum refineries, and olefins and derivative products industries were compiled to help plan the development of new energy sources and to provide targets for energy conservation activities. (MCW)

Streb, A.J.

1977-01-01T23:59:59.000Z

333

Table F18: Coal Price and Expenditure Estimates and Imports ...  

U.S. Energy Information Administration (EIA)

Table F18: Coal Price and Expenditure Estimates and Imports and Exports of Coal Coke, 2011 State Coal Coal Coke Prices Expenditures Prices ...

334

Table A55. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 2" ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One or More",," " " "," ",,"Conventional","Combustion ","Combined-Cycle","Internal Combustion","Heat Recovered from","Cogeneration",,"RSE" "SIC"," ",,"or Fluidized","Turbines with","Combustion","Engines with","High-Temperature","Technologies","None","Row"

335

Development of an energy consumption and cost data base for fuel cell total energy systems and conventional building energy systems  

DOE Green Energy (OSTI)

This report describes the procedures and data sources used to develop an energy-consumption and system-cost data base for use in predicting the market penetration of phosphoric acid fuel cell total-energy systems in the nonindustrial building market. A computer program was used to simulate the hourly energy requirements of six types of buildings - office buildings, retail stores, hotels and motels, schools, hospitals, and multifamily residences. The simulations were done by using hourly weather tapes for one city in each of the ten Department of Energy administrative regions. Two types of building construction were considered, one for existing buildings and one for new buildings. A fuel cell system combined with electrically driven heat pumps and one combined with a gas boiler and an electrically driven chiller were compared with similar conventional systems. The methods of system simulation, component sizing, and system cost estimation are described for each system. The systems were simulated for a single building size for each building type. Methods were developed to extrapolate the system cost and performance data to other building sizes.

Pine, G.D.; Christian, J.E.; Mixon, W.R.; Jackson, W.L.

1980-07-01T23:59:59.000Z

336

Table A32. Total Consumption of Offsite-Produced Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption of Offsite-Produced Energy for Heat, Power, and" Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Value of Shipment Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,," ","-","-","-","-","-","-","RSE" ," "," "," ",,,,,500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "

337

Commercial applications of solar total energy systems. Final report. Volume 2. Technical  

SciTech Connect

The overall objective of this program was to assess the feasibility of using solar energy to provide a significant fraction of the energy needs of commercial buildings that have energy demands greater than 200 kWe. This volume of the final report discusses the approach employed to develop: (1) STES concept configurations and component data, (2) commercial buildings application data, and (3) computer simulation programs for evaluating various STES concept-commercial buildings applications. Various solar thermal and photovoltaic solar total energy systems (STES) configurations were considered. Concurrently, data on commercial buildings (e.g., categories, energy demand, demographic population, etc.) were developed and used to define six model building configurations which could be used as representative commercial buildings within six various regions (12 specific sites) of the United States. The six configurations included four building types (a low rise office building, a large retail store, a medium-size shopping center and a large shopping center) typifying current building designs. The remaining two configurations used the large shopping center model except that the energy demand was changed to reflect future building designs. The STESEP Computer Code was developed for a quick evaluation method for tradeoffs related to (1) cascading of thermal power conversion systems, (2) determination of optimum collector sizes and operating conditions (make or buy decisions for auxiliary energy), and (3) comparison of solar total energy concepts in various parts of the country and in various types of commercial buildings to assess their future economic potential for various economic scenarios. (WHK)

Boobar, M.G.; McFarland, B.L.; Nalbandian, S.J.; Willcox, W.W.; French, E.P.; Smith, K.E.

1978-07-01T23:59:59.000Z

338

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",," ",,"Coke and"," ","of Energy Sources","Row" "Code(a)","Industry Group and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","LPG","Coal","Breeze","Other(f)","Produced Onsite(g)","Factors"

339

Fort Hood Solar Total Energy Project. Volume III. Engineering drawings. Final report  

DOE Green Energy (OSTI)

Engineering drawings are presented for the Solar Total Energy System at Fort Hood, Texas. Drawings are given for the solar collector subsystem, power conversion subsystem, instrumentation and control subsystem, thermal storage subsystem, site preparation, thermal storage area piping and equipment layout, heating/cooling and domestic hot water subsystem, STES building and facility, and electrical distribution. (WHK)

None,

1979-01-01T23:59:59.000Z

340

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)"," ","Coal","Breeze"," ","of Energy Sources","RSE" "SIC"," ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Table A52. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" 2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" " Categories and Presence of General Technologies and Cogeneration Technologies, 1994" " (Estimates in Trillion Btu)" ,,,,"Employment Size(a)" ,,,,,,,,"RSE" ,,,,,,,"1000 and","Row" "General/Cogeneration Technologies","Total","Under 50","50-99","100-249","250-499","500-999","Over","Factors" "RSE Column Factors:",0.5,2,2.1,1,0.7,0.7,0.9 "One or More General Technologies Present",14601,387,781,2054,2728,3189,5462,3.1 " Computer Control of Building Environment (b)",5079,64,116,510,802,1227,2361,5

342

Analysis of photovoltaic total energy systems for single family residential applications  

DOE Green Energy (OSTI)

The performance and cost-effectiveness of three photovoltaic total energy system concepts designed to meet the thermal and electrical demands of a typical single family house are compared. The three photovoltaic total energy system concepts considered are: (1) All-photovoltaic systems. Passively air-cooled photovoltaic panels provide electricity to meet both electrical and thermal demands. (2) Separate-panel systems. Solar thermal panels provide thermal energy, while passively air-cooled photovoltaic panels serve the purely electric demand. (3) Combined thermal/electric panel systems. Water-cooled photovoltaic panels provide both thermal energy (transported by cooling water) and electrical energy to meet the separate thermal and electrical demands. Additional passively air-cooled photovoltaic panels are added, as required, to meet the electrical demand. The thermal demand is assumed to consist of the energy required for domestic hot water and space heating, while the electrical demand includes the energy required for baseload power (lights, appliances, etc.) plus air conditioning. An analysis procedure has been developed that permits definition of the panel area, electrical and/or thermal storage capacity, and utility backup energy level that, in combination, provide the lowest annual energy cost to the homeowner for each system concept for specified assumptions about costs and system operations. The procedure appears capable of being used to approximately any size system using solar collectors, as well as in any application where the thermal and/or electrical demand is being provided by solar energy, with utility or other conventional backup. This procedure has been used to provide results for homes located in Phoenix, Arizona, and Madison, Wisconsin, and to evaluate the effects of array and backup power costs and the desirability of selling excess electrical energy back to the utility. (WHK)

Chobotov, V.; Siegel, B.

1978-08-01T23:59:59.000Z

343

Institutional applications of solar total-energy systems. Draft final report. Volume 2. Appendixes  

DOE Green Energy (OSTI)

The appendices present the analytical basis for the analysis of solar total energy (STE) systems. A regional-climate model and a building-load requirements model are developed, along with fuel-price scenarios. Life-cycle costs are compared for conventional-utility, total energy, and STE systems. Thermal STE system design trade-offs are performed and thermal STE system performance is determined. The sensitivity of STE competitiveness to fuel prices is examined. The selection of the photovoltaic array is briefly discussed. The institutional-sector decision processes are analyzed. Hypothetical regional back-up rates and electrical-energy costs are calculated. The algorithms and equations used in operating the market model are given, and a general methodology is developed for projecting the size of the market for STE systems and applied to each of 8 institutional subsectors. (LEW)

None

1978-07-01T23:59:59.000Z

344

Stirling total energy systems study. Final report, May 15, 1976--June 13, 1977  

SciTech Connect

The application of Stirling cycle prime movers to total energy power generation systems was investigated. Electrical, heating, and cooling demand profiles for a typical residential complex, hospital, and office building were studied, and alternative Stirling total energy systems were conceptualized for each site. These were analyzed in detail and contrasted with purchased-power systems for these sites to determine fuel-energy savings and investment attractiveness. The residential complex and hospital would be excellent candidates for total energy systems, and prime movers in the 1000 kW output range would be required. Stirling engines with so large an output have not been built to date, although there would be no fundamental technical barrier to prevent this. However, careful consideration must be given to the following technological decision areas before arriving at a final design, if its potential is to be realized: engine configuration, hotside heat exchange interface, engine control system, internal gas seals, and advanced coal combustion technology. The principal advantage of a Stirling prime mover in this application, in view of national concern over present and future dependence on oil, is that it could utilize low-grade liquid fuels and coal.

Lehrfeld, D.

1977-08-01T23:59:59.000Z

345

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

4.1 Federal Buildings Energy Consumption 4.1 Federal Buildings Energy Consumption 4.2 Federal Buildings and Facilities Characteristics 4.3 Federal Buildings and Facilities Expenditures 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter provides information on Federal building energy consumption, characteristics, and expenditures, as well as information on legislation affecting said consumption. The main points from this chapter are summarized below: In FY 2007, Federal buildings accounted for 2.2% of all building energy consumption and 0.9% of total U.S. energy consumption.

346

TAX EXPENDITURES RELATED TO THE PRODUCTION AND CONSUMPTION OF MOTOR FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

-miles of travel RECS = Residential Energy Consumption Survey SIC = standard industrial classification SOx = sulfur industries, or oil over other energy industries: virtually all major energy sources require large investments.......................24 18.5.1 Corporate income-tax expenditures for the oil industry

Delucchi, Mark

347

Assumptions to the Annual Energy Outlook 1999 - Commercial Demand...  

Annual Energy Outlook 2012 (EIA)

household.gif (5637 bytes) The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and...

348

Correlation Of Surface Heat Loss And Total Energy Production For Geothermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Details Activities (1) Areas (1) Regions (0) Abstract: Geothermal systems lose their heat by a site-specific combination of conduction (heat flow) and advection (surface discharge). The conductive loss at or near the surface (shallow heat flow) is a primary signature and indication of the strength of a geothermal system. Using a database of

349

"Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",5060,5129.666667,5184.666667,5239.666667,5287.333333,5335,5379,5437.666667,5481.666667,5529.333333,5599,5657.666667,5694.333333,5738.333333,5797,5874,5925.333333,5984 "AEO 1995",,5137,5173.666667,5188.333333,5261.666667,5309.333333,5360.666667,5393.666667,5441.333333,5489,5551.333333,5621,5679.666667,5727.333333,5775,5841,5888.666667,5943.666667 "AEO 1996",,,5181.817301,5223.645142,5294.776326,5354.687297,5416.802205,5463.67395,5525.288005,5588.52771,5660.226888,5734.87972,5812.398031,5879.320068,5924.814575,5981.291626,6029.640422,6086.804077,6142.120972

350

"Table A32. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region," Quantity of Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Group and Industry","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","(trillion Btu)","Factors"

351

Mid-South solar total energy: institutional analysis. Final report, May 1, 1978-December 31, 1979  

DOE Green Energy (OSTI)

A comprehensive survey was undertaken to determine the current usage of energy by the Mississippi State University, considering electricity and fuel separately. A variety of individual components likely to be employed in total energy systems are then considered in detail, including: solar assisted space heating system, space cooling system design, solar electric system, flat plate solar collector system, central solar receiver, and geothermal heat pump system. Also, algorithms have been developed for the approximate prediction of building heating and cooling loads based on gross parameters such as floor area, type of wall construction, etc. System considerations and evaluation are then presented. (LEW)

Powe, R.E.; Carley, C.T.; Forbes, R.E.; Johnson, L.R.; Stiffler, A.K.; Hodge, B.K.; Bouchillon, C.W.

1979-01-01T23:59:59.000Z

352

Institutional applications of solar total-energy systems. Draft final report  

DOE Green Energy (OSTI)

Conceptual designs are presented for thermal and photovoltaic solar total energy (STE) systems optimized to have the lowest possible life-cycle costs. An analysis is made of the market for STE systems, synthesizing the results of interviews with institutional-sector decision-makers and representatives of utilities, component manufacturers, architect/engineers, contractors, and labor unions. The operation and outputs of the market model developed to estimate potential STE system sales and resultant energy savings are presented. Outlined are the preliminary guidelines for selecting sites and conducting the planned federal demonstration program. (LEW)

None

1978-07-01T23:59:59.000Z

353

Application analysis of solar total energy systems to the residential sector. Volume II, energy requirements. Final report  

DOE Green Energy (OSTI)

This project analyzed the application of solar total energy systems to appropriate segments of the residential sector and determined their market penetration potential. This volume covers the work done on energy requirements definition and includes the following: (1) identification of the single-family and multi-family market segments; (2) regionalization of the United States; (3) electrical and thermal load requirements, including time-dependent profiles; (4) effect of conservation measures on energy requirements; and (5) verification of simulated load data with real data.

Not Available

1979-07-01T23:59:59.000Z

354

Annual Capital Expenditures Survey | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Capital Expenditures Survey Annual Capital Expenditures Survey BusinessUSA Data/Tools Apps Challenges Let's Talk BusinessUSA You are here Data.gov » Communities » BusinessUSA » Data Annual Capital Expenditures Survey Dataset Summary Description Provides national estimates of investment in new and used buildings and other structures, machinery, and equipment by U.S. nonfarm businesses with and without employees. Data are published by industry for companies with employees for NAICS 3-digit and selected 4-digit industries. Data on the amount of business expenditures for new plant and equipment and measures of the stock of existing facilities are critical to evaluate productivity growth, the ability of U.S. business to compete with foreign business, changes in industrial capacity, and measures of overall economic performance. In addition, ACES data provide industry analysts with capital expenditure data for market analysis, economic forecasting, identifying business opportunities and developing new and strategic plans. The ACES is an integral part of the Federal Government's effort to improve and supplement ongoing statistical programs. Private companies and organizations,, educators and students, and economic researchers use the survey results for analyzing and conducting impact evaluations on past and current economic performance, short-term economic forecasts, productivity, long-term economic growth, tax policy, capacity utilization, business fixed capital stocks and capital formation, domestic and international competitiveness trade policy, market research, and financial analysis.

355

Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids.  

SciTech Connect

Using the 'total energy cycle' methodology, we compare U.S. near term (to {approx}2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO{sub x}), fine particulate (PM2.5) and sulfur oxides (SO{sub x}) values are presented. We also isolate the PHEV emissions contribution from varying kWh storage capability of battery packs in HEVs and PHEVs from {approx}16 to 64 km of charge depleting distance. Sensitivity analysis is conducted with respect to the effect of replacing the battery once during the vehicle's life. The paper includes one appendix that examines several recent studies of interactions of PHEVs with patterns of electric generation and one that provides definitions, acronyms, and fuel consumption estimation steps.

Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.; Energy Systems

2008-01-01T23:59:59.000Z

356

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

... per Household3 1997 Cooling Degree-Days per Household Total U.S. Households ..... 1,274 1,166 1,562 1,010 6.6 No/Dont Use Air-Conditioning ...

357

EA-1861: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Assessment Final Environmental Assessment EA-1861: Final Environmental Assessment Frito-Lay Biomass Boiler Project, Beloit, Wisconsin The U.S. Department of Energy (DOE) is proposing to authorize the expenditure of Federal grant funding to design, permit, and construct a biomass boilerhouse at the Frito-Lay North America (Frito-Lay) plant in Beloit, Wisconsin. DOE awarded the grant under the State Energy Program, but has not yet authorized the expenditure of grant funds on this proposed project. DOE prepared this EA to evaluate the potential environmental consequences of DOE's Proposed Action, which is to authorize the expenditure of Federal funding for Frito-Lay's proposed boilerhouse. DOE's Proposed Action would authorize up to $5.5 million in grant expenditures. The total cost of Frito-Lay's proposed project would be

358

Framework for Evaluating the Total Value Proposition of Clean Energy Technologies  

SciTech Connect

Conventional valuation techniques fail to include many of the financial advantages of clean energy technologies. By omitting benefits associated with risk management, emissions reductions, policy incentives, resource use, corporate social responsibility, and societal economic benefits, investors and firms sacrifice opportunities for new revenue streams and avoided costs. In an effort to identify some of these externalities, this analysis develops a total value proposition for clean energy technologies. It incorporates a series of values under each of the above categories, describing the opportunities for recapturing investments throughout the value chain. The framework may be used to create comparable value propositions for clean energy technologies supporting investment decisions, project siting, and marketing strategies. It can also be useful in policy-making decisions.

Pater, J. E.

2006-02-01T23:59:59.000Z

359

A Review and Discussion of the Literature on Travel Time and Money Expenditures  

E-Print Network (OSTI)

Expenditure of Time and Money on Travel. Transport RoadExpenditure of Time and Money on Travel. Transp. Research6 I.2.4.2. Travel Money Expenditure ..

Chen, Cynthia; Mokhtarian, Patricia

2008-01-01T23:59:59.000Z

360

Residential Energy Consumption and Expenditures -- Detailed Tables ...  

U.S. Energy Information Administration (EIA)

Categories of Data in the Table Rows. The row categories classify data by specific features of the households. The following, listed in alphabetical order, are ...

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Residential Energy Consumption and Expenditures -- Detailed Tables...  

U.S. Energy Information Administration (EIA) Indexed Site

in suburban areas fell between 5.85 and 6.21 per million Btu. If you are having any technical problems with this site, please contact the EIA Webmaster at wmaster@eia.doe.gov...

362

Residential Energy Consumption and Expenditures -- Detailed Tables...  

U.S. Energy Information Administration (EIA) Indexed Site

gas estimates, the difference is statistically significant. If you are having any technical problems with this site, please contact the EIA Webmaster at wmaster@eia.doe.gov...

363

Conceptual design of a 5x CPC for solar total energy systems  

DOE Green Energy (OSTI)

The results of a conceptual design of a nontracking collector for a solar total energy system are described. Sandia Laboratories has responsibility for the evaluation of concentrating collectors in a total energy test bed. A Rankine cycle turbine, generator, controls, thermal storage, and air conditioning equipment have been installed and checked out. The thermal energy for the facility is to be provided by a large (approximately 800 m/sup 2/) concentrating collector field. At present a portion of the area is installed as E-W oriented linear parabolic troughs. Three additional concepts for the remaining area have been selected--a fixed mirror-moving receiver system, fixed receiver-moving reflector slats, and a two-axis tracking parabolic dish. All four systems use diurnal tracking and have the reflecting surfaces exposed to the elements. Argonne National Laboratory has been working on the development of non-tracking concentrators for high temperature operation. The recent experimental results indicate that a 5x CPC collector with only 12 adjustments per year could effectively compete with the systems presently being considered. These collectors would be enclosed under a protective cover glass, eliminating many of the problems with dirt, etc. A conceptual design of a CPC collector system is presented.

Cole, R; Schertz, W W; Teagan, W P

1977-01-01T23:59:59.000Z

364

Commercial applications of solar total energy systems. Volume 1. Summary. Final report  

DOE Green Energy (OSTI)

A methodology has been developed by Atomics International under contract to the Department of Energy to define the applicability of solar total energy systems (STES) to the commercial sector (e.g., retail stores, shopping centers, offices, etc.) in the United States. Candidate STES concepts were selected to provide on-site power generation capability, as well as thermal energy for both heating and cooling applications. Each concept was evaluated on the basis of its cost effectiveness (i.e., as compared to other concepts) and its ability to ultimately penetrate and capture a significant segment of this market, thereby resulting in a saving of fossil fuel resources. The photovoltaic STES appears favorable for applications under 800 kWe; whereas the organic Rankine STES would be more cost effective for larger energy demand applications. Initial penetration of these systems are expected to occur in the northeast for large shopping centers in the 1990 to 2000 time period. Such systems could provide about 0.8 to 1.8 quads (8 x 10/sup 14/ to 1.8 x 10/sup 15/ Btu) of energy per year for commercial applictions by the year 2010.

Boobar, M.G.; McFarland, B.L.; Nalbandian, S.J.; Willcox, W.W.; French, E.P.; Smith, K.E.

1978-07-01T23:59:59.000Z

365

Survey and screening of intermediate-size photovoltaic total energy and electric applications  

DOE Green Energy (OSTI)

One of the principal objectives of this photovoltaic mission analysis effort has been to identify and evaluate applications for photovoltaic solar energy conversion that could lead to significant contributions to the national energy supply and that would provide attractive opportunities for application experiments aimed at stimulating the adoption of photovoltaic technology. The scope of the study has included applications both for electric-only photovoltaic (PV) systems and for photovoltaic total energy systems (PTES), i.e., systems that provide both photovoltaic electricity and solar thermal energy to meet all or part of the energy demand at a single load point or a group of related load points. In either case, both flat-plate and concentrating systems have been considered and it has been assumed that the thermal energy is collected in and transported by the fluid used in an active cooling system for the photovoltaic cells. Because the efficiency of photovoltaic devices decreases rapidly with increasing temperature and because the operational lifetime of such devices is reduced by prolonged operation at elevated temperatures, a practical upper limit of about 200/sup 0/C (400/sup 0/F) was assumed for the temperature at which arrays can be allowed to be operated. This limitation, in turn, places an upper bound on the temperature at which solar thermal energy is available in PTES applications. An initial screening aimed at identifying the most promising applications has therefore been required, with the expectation that detailed evaluation will be made of only the higher-ranking candidates. A description of the screening procedure that was adopted and a discussion of the results are presented.

Rattin, E.J.

1978-08-01T23:59:59.000Z

366

Solar total energy: large scale experiment, Shenandoah, Georgia Site. Annual report, June 1978-June 1979  

DOE Green Energy (OSTI)

A background summary and a complete description of the progress and current status of activities relative to the Cooperative Agreement for the Solar Total Energy - Large Scale Experiment at the Bleyle Knitwear Plant at Shenandoah, Georgia are presented. A statement of objectives and an abstract of progress to date are included. This is followed by a short introduction containing a project overview, a summary of the participants and their respective roles, a brief description of the Solar Total Energy System (STES) design concept, and a chronological summary of progress to date. A general description of the site is given, a detailed report of progress is reported, and drawings and equipment lists are included. The closed-loop solar energy system planned for Shenandoah begins with circulation of Syltherm 800, a heat transfer fluid of the Dow-Corning Corporation, through the receiver tubes of a parabolic dish solar collector field. As solar energy is focused on the receivers, the heat transfer fluid is heated to approximately 399/sup 0/C (750/sup 0/F) and is pumped to a heat exchanger for immediate use, or to a thermal storage system for later use. Once in the heat exchanger, the fluid heats a working fluid that produces the steam required for operating the turbine. After performing this task, the heat transfer fluid returns to the collectors to repeat the cycle, while the steam turbine-generator system supplies the electrical demands for the knitwear plant and the STES. During STES operation, maximum thermal and electrical requirements of the application are expected to be at 1.08 MWth and 161 kWe, respectively. During the power generation phase, some of the steam is extracted for use as process steam in the knitwear manufacturing process, while exhaust steam from the turbine is passed through a condenser to produce hot water for heating, domestic use, and absorption air conditioning. (WHK)

Ney, E.J.

1979-07-01T23:59:59.000Z

367

U.S. Uranium Expenditures, 2003-2010  

U.S. Energy Information Administration (EIA)

Domestic Uranium Production Report presents information Operating Status of U.S. Uranium Expenditures, 2003-2005

368

Total Facility Control - Applying New Intelligent Technologies to Energy Efficient Green Buildings  

E-Print Network (OSTI)

Energy efficiency through intelligent control is a core element of any "Green Building". We need smarter, more efficient ways of managing the energy consuming elements within a building. But what we think of as "the building" is only a small piece of the puzzle. We have to think broader in order to gain the greater energy savings and efficiencies that are possible. "Total Facility Control" is a concept that we need to embrace and consider when we design, commission, and retrofit our facilities. Very often a single building is part of a larger campus or collection of buildings under a common management domain. Be it a university, public school district, office complex, or multiuse tenant space, there are often multiple "buildings" plus the connectivity between buildings: walkway lighting, signage, parking structures, and even the irrigation systems. We don't often think about the outdoor lighting, security, or irrigation as part of the building management plan, but it can be a significant contributing factor when looking at places to save on energy and improve operational efficiency. We must change the way we design our buildings, facilities, campuses, and enterprises in order to be more energy efficient and be green. A variety of technologies and design principles are available to ensure we move in a positive direction. We must make our systems and processes more visible and, hence, more accessible. At the core of this is the visibility and control of the systems within these environments. A majority of the building control systems in operation today are extremely limited in their ability to achieve higher efficiencies because there is no intelligent control or communication system available; and the amount of cross system interoperability is even scarcer. What does an interoperable system architecture look like? It's one in which a wide variety of energy consuming, intelligent devices can share their information and be controlled by an energy management system. Newer technologies use open systems, open protocols, and higher levels of interoperability, all of which have been proven to cost effectively provide competitive solutions. Better energy efficiency and improved operational costs start with better visibility and control of the myriad of systems within a facility. They must communicate together in a way that enables greater functionality and lower costs. Total Facility Control must be considered as we look at the entire building envelope as well as the rest of the facility systems. Included in the mix are HVAC, indoor lighting, security, access, sun shading, indoor air quality, sound masking and alarm annunciation, elevators/escalators, appliances, power conditioning, irrigation, energy metering, outdoor/parking lot lighting, street lighting, co-generation stations, and much more. This paper will discuss some of the basic concepts, architectures, and technologies that are being used today to implement a Total Facility Control model.

Bernstein, R.

2010-01-01T23:59:59.000Z

369

"Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual" Total Delivered Transportation Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",23.62,24.08,24.45,24.72,25.06,25.38,25.74,26.16,26.49,26.85,27.23,27.55,27.91,28.26,28.61,28.92,29.18,29.5 "AEO 1995",,23.26,24.01,24.18,24.69,25.11,25.5,25.86,26.15,26.5,26.88,27.28,27.66,27.99,28.25,28.51,28.72,28.94 "AEO 1996",,,23.89674759,24.08507919,24.47502899,24.84881783,25.25887871,25.65527534,26.040205,26.38586426,26.72540092,27.0748024,27.47158241,27.80837631,28.11616135,28.3992157,28.62907982,28.85912895,29.09081459 "AEO 1997",,,,24.68686867,25.34906006,25.87225533,26.437994,27.03513145,27.52499771,27.96490097,28.45482063,28.92999458,29.38239861,29.84147453,30.26097488,30.59760475,30.85550499,31.10873222,31.31938744

370

"Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual" Total Delivered Industrial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",25.43,25.904,26.303,26.659,26.974,27.062,26.755,26.598,26.908,27.228,27.668,28.068,28.348,28.668,29.068,29.398,29.688,30.008 "AEO 1995",,26.164,26.293,26.499,27.044,27.252,26.855,26.578,26.798,27.098,27.458,27.878,28.158,28.448,28.728,29.038,29.298,29.608 "AEO 1996",,,26.54702756,26.62236823,27.31312376,27.47668697,26.90313339,26.47577946,26.67685979,26.928811,27.23795407,27.58448499,27.91057103,28.15050595,28.30145734,28.518,28.73702901,28.93001263,29.15872662 "AEO 1997",,,,26.21291769,26.45981795,26.88483478,26.67847443,26.55107968,26.78246968,27.07367604,27.44749539,27.75711339,28.02446072,28.39156621,28.69999783,28.87316602,29.01207631,29.19475644,29.37683575

371

"Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Commercial Energy Consumption, Projected vs. Actual" Total Delivered Commercial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",6.82,6.87,6.94,7,7.06,7.13,7.16,7.22,7.27,7.32,7.36,7.38,7.41,7.45,7.47,7.5,7.51,7.55 "AEO 1995",,6.94,6.9,6.95,6.99,7.02,7.05,7.08,7.09,7.11,7.13,7.15,7.17,7.19,7.22,7.26,7.3,7.34 "AEO 1996",,,7.059859276,7.17492485,7.228339195,7.28186655,7.336973667,7.387932777,7.442782879,7.501244545,7.561584473,7.623688221,7.684037209,7.749266148,7.815915108,7.884147644,7.950204372,8.016282082,8.085801125 "AEO 1997",,,,7.401538849,7.353548527,7.420701504,7.48336792,7.540113449,7.603093624,7.663851738,7.723834991,7.783358574,7.838726044,7.89124918,7.947964668,8.008976936,8.067288399,8.130317688,8.197405815

372

The cost of dying on Medicare: an analysis of expenditure data  

E-Print Network (OSTI)

Roughly one third of Medicare expenditures are made on behalf of beneficiaries in their terminal year, though only five percent of the Medicare-covered population dies annually. Per-capita spending on decedents is as much as six times the level of spending on survivors. The demographic, technological and political trends that will determine the future path of spending on terminal-year beneficiaries have important implications for the fiscal well-being of the Medicare program, and by extension, the American taxpayer. Coming to an understanding of the moving parts that will control the path of the cost of dying on Medicare is vital for careful consideration of Medicare??s future, and for any discussions about further reform of the program. Analysis of expenditures in the terminal year must be made while keeping in mind the fact that major expenditures are often made in surviving years. The spike in spending in the terminal period rightly focuses attention to expenditures near death, but also we should proceed in its analysis keeping in mind that it is not the only spell of elevated medical spending for a typical individual. Given those cautions, however, the cost of dying on Medicare stands as an important area of economic inquiry and policy consideration. As total Medicare expenditures top a quarter trillion dollars, the third of that spending which covers treatments in beneficiaries?? terminal years ought to be understood more fully than it is currently.

House, Donald Reed

2005-08-01T23:59:59.000Z

373

Total Prompt Energy Release in the Neutron-Induced Fission of 235-U, 238-U, and 239-Pu  

E-Print Network (OSTI)

This study addresses, for the first time, the total prompt energy release and its components for the fission of 235-U, 238-U, and 239-Pu as a function of the kinetic energy of the neutron inducing the fission. The components are extracted from experimental measurements, where they exist, together with model-dependent calculation, interpolation, and extrapolation. While the components display clear dependencies upon the incident neutron energy, their sums display only weak, yet definite, energy dependencies. Also addressed is the total prompt energy deposition in fission for the same three systems. Results are presented in equation form. New measurements are recommended as a consequence of this study.

Madland, D G

2006-01-01T23:59:59.000Z

374

Total Prompt Energy Release in the Neutron-Induced Fission of 235-U, 238-U, and 239-Pu  

E-Print Network (OSTI)

This study addresses, for the first time, the total prompt energy release and its components for the fission of 235-U, 238-U, and 239-Pu as a function of the kinetic energy of the neutron inducing the fission. The components are extracted from experimental measurements, where they exist, together with model-dependent calculation, interpolation, and extrapolation. While the components display clear dependencies upon the incident neutron energy, their sums display only weak, yet definite, energy dependencies. Also addressed is the total prompt energy deposition in fission for the same three systems. Results are presented in equation form. New measurements are recommended as a consequence of this study.

D. G. Madland

2006-03-29T23:59:59.000Z

375

Solar Total Energy Test Facility Project. Semiannual report, October 1976--March 1977  

DOE Green Energy (OSTI)

The Solar Total Energy System will operate as follows: A heat transfer fluid (Therminol 66) is heated in the receiver tubes of the solar collectors by reflected and focused solar radiation. This fluid is pumped to the high-temperature storage subsystem. Fluid is extracted from this storage on a demand basis and pumped to the heat exchanger which produces superheated toluene vapor to power the turbine/generator. The boiler can also be operated from a fossil fuel-fired heater to insure continuity of operation during extended cloudy periods. Turbine condenser coolant is pumped to the low-temperature storage tank and becomes the energy source for heating and air-conditioning components of the system. Progress is reported on the design, fabrication, installation, and checkout of the first 200 m/sup 2/ collector field quadrant, a high-temperature stratified storage tank, a 32-kW turbine/generator and Therminol-to-toluene heat exchanger, an instrumentation and control subsystem, a cooling tower, the turbine and control building, and all necessary pumps and fluid loops to interconnect these subsystems. Also, experience with operating the facility in accordance with a detailed test plan to provide performance data on all subsystems and to accumulate operating and maintenance experience which can provide a basis for the design of large-scale experimental plants and future solar energy systems is described. (WHK)

Petterson, B. Jr. (ed.)

1977-08-01T23:59:59.000Z

376

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

construction, Energy and Buildings 20: 205217. Chau 2007.management in China, Energy and Buildings (forthcoming).addition to operational energy, buildings embody the energy

Fridley, David G.

2008-01-01T23:59:59.000Z

377

Development of a Total Energy, Environment and Asset Management (TE2AM tm) Curriculum  

Science Conference Proceedings (OSTI)

The University of Wisconsin Department of Engineering Professional Development (EPD) has completed the sponsored project entitled, Development of a Total Energy, Environment and Asset Management (TE2AM) Curriculum. The project involved the development of a structured professional development program to improve the knowledge, skills, capabilities, and competencies of engineers and operators of commercial buildings. TE2AM advances a radically different approach to commercial building design, operation, maintenance, and end-?of-?life disposition. By employing asset management principles to the lifecycle of a commercial building, owners and occupants will realize improved building performance, reduced energy consumption and positive environmental impacts. Through our commercialization plan, we intend to offer TE2AM courses and certificates to the professional community and continuously improve TE2AM course materials. The TE2AM project supports the DOE Strategic Theme 1 -? Energy Security; and will further advance the DOE Strategic Goal 1.4 Energy Productivity. Through participation in the TE2AM curriculum, engineers and operators of commercial buildings will be eligible for a professional certificate; denoting the completion of a prescribed series of learning activities. The project involved a comprehensive, rigorous approach to curriculum development, and accomplished the following goals: 1. Identify, analyze and prioritize key learning needs of engineers, architects and technical professionals as operators of commercial buildings. 2. Design and develop TE2AM curricula and instructional strategies to meet learning needs of the target learning community. 3. Establish partnerships with the sponsor and key stakeholders to enhance the development and delivery of learning programs. 4. Successfully commercialize and sustain the training and certificate programs for a substantial time following the term of the award. The project team was successful in achieving the goals and deliverables set forth in the original proposal. Though attempts were made to adhere to the original project timeline, the team requested, and was granted a 6-?month project extension, during which time the project was completed.

None

2012-12-31T23:59:59.000Z

378

Georgia - State Energy Profile Overview - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Puerto Rico US Virgin Islands: Overview; Data; Economy; Prices; Reserves & Supply; Distribution & Marketing; Consumption & Expenditures; Environment; Analysis; Energy ...

379

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

US military expenditures to protect the use of Persian Gulf oil for motor vehicles Mark A. Delucchi 2008 Keywords: Oil importing cost Motor fuel social cost Energy security cost a b s t r a c t Analyses of the full social cost of motor vehicle use in the US often estimate an ``oil import premium'' that includes

Murphy, James J.

380

Total Energy Recovery System for Agribusiness: Lake County study. Final report  

DOE Green Energy (OSTI)

A brief summary is given of the results of a previously reported study designed to evaluate the costs and viability of combined thermodynamic and biologic cycles in a system known as the Total Energy Recovery System for Agribusiness (TERSA). This conceptual system involved the combined geothermally assisted activities of greenhouse crop and mushroom growing, fish farming, and biogas generation in an integrated biologic system such that the waste or by-products of each subsystem cycle were recovered to service input needs of companion cycles. An updated direct use geothermal system based on TERSA that is viable for implementation in Lake County is presented. Particular consideration is given to: location of geothermal resources, availability of land and irrigation quality water, compatibility of the specific direct use geothermal activities with adjacent and local uses. Private interest and opposition, and institutional factors as identified. Factors relevant to local TERSA implementation are discussed, followed by sites considered, selection criteria, site slection, and the modified system resulting. Particular attention is paid to attempt to make clear the process followed in applying this conceptual design to the specific task of realistic local implementation. Previous publications on geothermal energy and Lake County are referenced where specific details outside the scope of this study may be found. (JGB)

Fogleman, S.F.; Fisher, L.A.; Black, A.R.

1978-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Efficiency Indicators Methodology Booklet  

E-Print Network (OSTI)

energy consumption. IEA countries have experienced a steady increase in car- kilometers per capita as personal consumption expenditure increase.

Sathaye, Jayant

2010-01-01T23:59:59.000Z

382

Case history study of total energy system at Western Mall Shopping Center, Sioux Falls, South Dakota  

SciTech Connect

Western Mall Total Energy Plant in Sioux Falls, South Dakota, serves an enclosed mall shopping center of 462,000 ft/sup 2/. The plant provides most of the mall and tenants with electricity, space-heating, and air-conditioning services from a natural gas-fueled engine-generator plant with hot water heat recovery, supplementary gas-fueled boiler, and absorption water chiller. Heating load served by the plant is calculated to be 15,000,000 Btu at -30/sup 0/F winter design condition with 70/sup 0/F space temperature. Maximum observed cooling load at 100/sup 0/F, 75/sup 0/ W.B. outdoor conditions is about 750 tons of refrigeration. Engine heat is recovered in a water system operated at 210 to 240/sup 0/F; an auxiliary scotch marine type, firetype gas-fueled boiler provides up to 14,000,000 Btu/h or supplementary heat. Energy customers have recently begun to exercise considerable control over their uses of electricity with more careful operation of lighting and appliances and with some replacement of illumination devices with more-efficient equipment. It is concluded that central heating and air-conditioning facilities provide the owner with an assured means for serving the shopping center, regardless of which energy source is most economical or least available. The hot and chilled water can be obtained from gas fuel as at present, from fuel oil, propane, all electric, or coal firing. Adapting the conversion equipment is difficult only for coal because of the space requirement for storage and handling that fuel. The power-generating capacity in place is an asset that should be used to serve the tenants because it reduces the public utility company need for expanded capacity. (MCW)

1977-11-01T23:59:59.000Z

383

Table 7.10 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010; 0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Million U.S. Dollars. Electricity Components Natural Gas Electricity Electricity from Sources Natural Gas NAICS Electricity from Local Other than Natural Gas from Local Code(a) Subsector and Industry Total Utility(b) Local Utility(c) Total Utility(b) Total United States 311 Food 5,328 4,635 692 3,391 1,675 3112 Grain and Oilseed Milling 932 850 82 673 261 311221 Wet Corn Milling 352 331 21 296 103 31131 Sugar Manufacturing 105 87 18 87 39 3114 Fruit and Vegetable Preserving and Specialty Foods 698

384

Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 1: technical report  

DOE Green Energy (OSTI)

This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume I contains the major results, a discussion of the conceptual framework of the study, and summaries of the vehicle, utility, fuel production, and manufacturing analyses. It also contains summaries of comments provided by external peer reviewers and brief responses to these comments.

Cuenca, R.; Formento, J.; Gaines, L.; Marr, B.; Santini, D.; Wang, M. [Argonne National Lab., IL (United States); Adelman, S.; Kline, D.; Mark, J.; Ohi, J.; Rau, N. [National Renewable Energy Lab., Golden, CO (United States); Freeman, S.; Humphreys, K.; Placet, M. [Pacific Northwest National Lab., Richland, WA (United States)

1998-01-01T23:59:59.000Z

385

Fort Hood solar total energy project. Technical support and systems integration. First semiannual report, May 1-October 31, 1978  

DOE Green Energy (OSTI)

Progress on the design of a Solar Total Energy System which will supply a significant portion of the energy requirements of a troop housing complex at Fort Hood, Texas, is described. Selection and sizing of the distributed collector field are discussed, and parabolic trough collector technology is reviewed. Energy load measurements and insolation models for the Fort Hood site are described. Technical project support efforts are reviewed. (WHK)

None,

1978-01-01T23:59:59.000Z

386

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

from the Long-Range Energy Alternatives Planning (LEAP) end-using the Long-Range Energy Alternatives Planning (LEAP)Primary Energy Savings by Fuel, Alternative Case, Trillion

Fridley, David G.

2008-01-01T23:59:59.000Z

387

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C2A. Total Energy Expenditures by Major Fuel for All Buildings, 2003 C2A. Total Energy Expenditures by Major Fuel for All Buildings, 2003 All Buildings Total Energy Expenditures (million dollars) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings ................................ 4,859 71,658 107,897 82,783 16,010 1,826 7,279 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,586 6,922 13,083 10,547 2,227 292 Q 5,001 to 10,000 .............................. 948 7,033 10,443 8,199 1,830 307 Q 10,001 to 25,000 ............................ 810 12,659 15,689 12,172 2,897 238 Q 25,001 to 50,000 ............................ 261 9,382 11,898 9,179 2,054 134 Q 50,001 to 100,000 .......................... 147 10,291 15,171 11,694 2,140 229 Q

388

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Total Energy Expenditures by Major Fuel for Non-Mall Buildings, 2003 . Total Energy Expenditures by Major Fuel for Non-Mall Buildings, 2003 All Buildings* Total Energy Expenditures (million dollars) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings* ............................... 4,645 64,783 92,577 69,032 14,525 1,776 7,245 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 6,789 12,812 10,348 2,155 292 Q 5,001 to 10,000 .............................. 889 6,585 9,398 7,296 1,689 307 Q 10,001 to 25,000 ............................ 738 11,535 13,140 10,001 2,524 232 Q 25,001 to 50,000 ............................ 241 8,668 10,392 7,871 1,865 127 Q 50,001 to 100,000 .......................... 129 9,057 11,897 8,717 1,868 203 Q

389

energy production | OpenEI  

Open Energy Info (EERE)

52 52 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278352 Varnish cache server energy production Dataset Summary Description The State Energy Data System (SEDS) is compiled by the U.S. Energy Information Administration's (EIA); it is a comprehensive database of energy statistics by state (and includes totals for the entire US). SEDS includes estimates of energy production, consumption, prices, and expenditures broken down by energy source and sector. Annual estimates are available from 1960 - 2009 for production and consumption estimates and from 1970 - 2009 for price and expenditure estimates. Source EIA Date Released June 30th, 2011 (3 years ago) Date Updated Unknown

390

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

9 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 9 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures for major energy sources. Complete sets of RSE tables (What is an RSE?) are also available in PDF format 1999 Summary Tables for all principal building activities Summary Tables For All Principal Building Activities Number of Buildings (thousand) Floorspace (million square feet) Square Feet per Building (thousand) Median Age of Building (years)

391

Conceptual design study on incorporating a 25-ton/day pyrolysis unit into an operating total energy system. Final report  

DOE Green Energy (OSTI)

The results of a conceptual design study on incorporating a pyrolysis unit into an existing total energy plant are presented. The objectives of this study were to examine the institutional, technical and economic factors affecting the incorporation of a 25-ton/day pyrolysis unit into the Indian Creek Total Energy Plant. The Indian Creek total energy plant is described. Results of the conceptual design are presented. A survey of the availability of waste materials and a review of health and safety ordinances are included. The technical aspects of the pyrolysis system are discussed, including the results of the review of facilities requirements for the pyrolysis unit, the analysis of necessary system modification, and an estimate of the useful energy contribution by the pyrolysis unit. Results of the life-cycle cost analysis of the pyrolysis unit are presented. The major conclusions are that: there appears to be no institutional or technical barriers to constructing a waste pyrolysis unit at the Indian Creek Total Energy Plant; pyrolysis gas can be consumed in the engines and the boilers by utilizing venturi mixing devices; the engines can consume only 5% of the output of the 25-ton/day pyrolysis unit; Therefore, consumption of pyrolysis gas will be controlled by boiler energy demand patterns; a waste pyrolysis unit is not cost effective at the current natural gas price of $0.90/10/sup 6/ Btu; and pyrolysis is economically attractive at natural gas prices above $3.00/10/sup 6/ Btu.

None

1976-12-13T23:59:59.000Z

392

"Table B29. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" 9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",64783,60028,15996,32970,3818,4907 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,1779,2672,484,"Q" "5,001 to 10,000 ..............",6585,5786,1686,3068,428,"Q" "10,001 to 25,000 .............",11535,10387,3366,5807,536,"Q" "25,001 to 50,000 .............",8668,8060,2264,4974,300,325

393

Table C1. Total Energy Consumption by Major Fuel for Non-Mall ...  

U.S. Energy Information Administration (EIA)

Plumbing System Upgrade ... Building Newer than 1980 ... 2003 Commercial Buildings Energy Consumption Survey: ...

394

Relationship Between Surface Free Energy and Total Work of Fracture of Asphalt Binder and Asphalt Binder-Aggregate Interfaces  

E-Print Network (OSTI)

Performance of asphalt mixtures depends on the properties of its constituent materials, mixture volumetrics, and external factors such as load and environment. An important material property that influences the performance of an asphalt mixture is the surface free energy of the asphalt binder and the aggregate. Surface free energy, which is a thermodynamic material property, is directly related to the adhesive bond energy between the asphalt binder and the aggregate as well as the cohesive bond energy of the asphalt binder. This thermodynamic material property has been successfully used to select asphalt binders and aggregates that have the necessary compatibility to form strong bonds and resist fracture. Surface free energy, being based on thermodynamics, assumes the asphalt binder is a brittle elastic material. In reality, the asphalt binder is not brittle and dissipates energy during loading and unloading. The total work of fracture is the culmination of all energy inputted into the sample to create two new surfaces of unit area and is dependent on the test geometry and testing conditions (e.g., temperature, loading rate, specimen size, etc.). The magnitude of the bond energy (either adhesive or cohesive) can be much smaller in magnitude when compared to the total work of fracture measured using mechanical tests (i.e., peel test, pull-off test, etc.). Despite the large difference in magnitude, there exists evidence in the literature supporting the use of the bond energy to characterize the resistance of composite systems to cohesive and/or adhesive failures. If the bond energy is to be recognized as a useful screening tool by the paving industry, the relationship between the bond energy and total work of fracture needs to be understood and verified. The effect of different types of modifications (addition of polymers, addition of anti-strip agents, and aging) on the surface free energy components of various asphalt binders was explored in order to understand how changes in the surface free energy components are related to the performance of the asphalt mixtures. After the asphalt binder-aggregate combination was explored, the next step was to study how the surface free energy of water was affected by contact with the asphalt binder-aggregate interface. Aggregates, which have a pH of greater than seven, will cause the pH of water that contacts them to increase. A change in the pH of the contacting water could indicate a change in its overall surface free energy, which might subsequently increase or decrease the water's moisture damage potential. With surface free energy fully explored, the total work of fracture was measured using pull-off tests for asphalt binder-aggregate combinations with known surface free energy components. In order to fully explore the relationship between bond energy and total work of fracture, temperature, loading rate, specimen geometry, and moisture content were varied in the experiments. The results of this work found that modifications made to the asphalt binder can have significant positive or negative effects on its surface free energy components and bond energy. Moreover, the results from the pull-off tests demonstrated that a relationship exists between bond energy (from surface free energy) and total work of fracture (from pull-off tests), and that surface free energy can be used to estimate the performance of asphalt binder-aggregate combinations.

Howson, Jonathan Embrey

2011-08-01T23:59:59.000Z

395

FY 2007 Total System Life Cycle Cost, Pub 2008 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management's (OCRWM) May 2007 total system cost estimate for the disposal of the Nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TSLCC analysis provides a basis for assessing the adequacy of the Nuclear Waste Fund (NWF) Fee as required by Section 302 of the Nuclear Waste Policy Act of 1982 (NWPA), as amended. In addition, the TSLCC analysis provides a basis for the calculation of the Government's share of disposal costs for government-owned and managed SNF and HLW. The TSLCC estimate includes both historical costs and

396

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" "Total United States" "RSE Column Factors:","NF",0.4,1.6,1.5,0.7,1,1.6,"NF" "TOTAL INPUTS",15027,2370,414,139,5506,105,1184,5309,3 "Boiler Fuel","--","W",296,40,2098,18,859,"--",3.6

397

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:"," NF",0.5,1.3,1.4,0.8,1.2,1.2," NF" "TOTAL INPUTS",16515,2656,441,152,6141,99,1198,5828,2.7 "Indirect Uses-Boiler Fuel"," --",28,313,42,2396,15,875," --",4

398

Fort Hood solar total energy project: technical support and systems integration. Third semiannual report, May 1, 1979-October 31, 1979  

DOE Green Energy (OSTI)

Work on the Fort Hood STES which was planned by DOE as a Large Scale Experiment for the Solar Total Energy Program is described. The history of the design evolution and management of the project which began in 1973 is summarized. The project was discontinued by DOE in December 1979. Supporting studies underway at the time are reported including: (1) reassessment of energy loads, (2) revised system concept, (3) plant sizing calculations, and (4) insolation variation measurement planning. (WHK)

Not Available

1980-02-01T23:59:59.000Z

399

Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrtyTotal | Open Energy  

Open Energy Info (EERE)

ElctrtyTotal ElctrtyTotal Jump to: navigation, search This is a property of type String. Electricity, total Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2ElctrtyTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 71.2214478303 + Sweden Building 05K0002 + 95.9357541899 + Sweden Building 05K0003 + 72.2496632241 + Sweden Building 05K0004 + 65.8830409357 + Sweden Building 05K0005 + 54.2477876106 + Sweden Building 05K0006 + 58.7608028994 + Sweden Building 05K0007 + 61.5607534672 + Sweden Building 05K0008 + 40.3846153846 + Sweden Building 05K0009 + 56.4810818587 + Sweden Building 05K0010 + 152.219679634 + Sweden Building 05K0011 + 25.5555555556 + Sweden Building 05K0012 + 35.8807888323 + Sweden Building 05K0013 + 61.3267863536 +

400

Table 1. Total Energy Consumption in U.S. Households by Origin ...  

U.S. Energy Information Administration (EIA)

Wood (million cords) ..... 21.4 19.8 0.8 0.6 0.3 19.3 Million Btu per Household3 Total Btu Consumption per Household, Fuels Used: Electricity Primary ...

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(billion cu ft)","(1000 bbls)","(1000 short tons)","(trillion Btu)","Factors" ,,,,,,,,,,, ,"Total United States"

402

Expenditures on Children by Families | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Expenditures on Children by Families Expenditures on Children by Families Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data Expenditures on Children by Families Dataset Summary Description This dataset provides expenditures on Children by Families provides estimates of the cost of raising children from birth through age 17 for major budgetary components. Tags {children,families,expenditures,cost,budget,household,income,single-parent,husband-wife} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness 0 No votes yet Ease of Access 0 No votes yet Dataset Additional Information Last Updated 2012 Publisher Food and Nutrition Service, Department of Agriculture Contact Name Contact Email Mark.Lino@cnpp.usda.gov

403

Lawrence Livermore Laboratory geothermal energy program. A status report on the development of the Total-Flow concept  

DOE Green Energy (OSTI)

The technology development activities of the Geothermal Energy Program at the Lawrence Livermore Laboratory are summarized. Significant progress toward development of the Total-Flow concept was made during FY 1978. The results show that the original goal of 70% engine efficiency for the Total-Flow impulse turbine is achievable, that a Total-Flow system is competitive economically with conventional systems, and that the Total-Flow concept offers the benefit of more efficient utilization of geothermal resources for electric power production. The evaluation of several liquid expanders designed for low-temperature (including geopressured) resources suggests that if development were continued, these expanders could be used in combination with conventional systems to increase overall system efficiency. Although the program was terminated before complete field testing of prototype systems could be carried out, the concepts have been adopted in other countries (Japan and Mexico), where development is continuing.

Austin, A.L.; Lundberg, A.W.

1978-10-02T23:59:59.000Z

404

Commercial applications of solar total energy systems. Volume 3. Conceptual designs and market analyses. Final report  

DOE Green Energy (OSTI)

The overall objective of this program was to assess the feasibility of using solar energy to provide a significant fraction of the energy needs of commercial buildings that have energy demands greater than 200 kWe. The STES concept trade studies, sensitivity parameters, performance characteristics, and selected concepts are discussed. Market penetration rate estimates are provided, and technology advancements and utilization plans are discussed. Photovoltaic STES configurations and Rankine cycle thermal STES systems are considered. (WHK)

Boobar, M.G.; McFarland, B.L.; Nalbandian, S.J.; Willcox, W.W.; French, E.P.; Smith, K.E.

1978-07-01T23:59:59.000Z

405

Table A13. Total Consumption of Offsite-Produced Energy for...  

U.S. Energy Information Administration (EIA) Indexed Site

of energy originally produced offsite," "acquired as a result of a purchase or transfer and consumed onsite for the" "production of heat and power. This definition is...

406

United States - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

Petroleum prices, supply and demand information from the Energy Information Administration - EIA ... Industrial Sector Energy Expenditure Estimates, 2011

407

Property:Building/SPPurchasedEngyNrmlYrMwhYrElctrtyTotal | Open Energy  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/SPPurchasedEngyNrmlYrMwhYrElctrtyTotal Jump to: navigation, search This is a property of type String. Electricity, total Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrElctrtyTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1400.0 + Sweden Building 05K0002 + 686.9 + Sweden Building 05K0003 + 321.8 + Sweden Building 05K0004 + 1689.9 + Sweden Building 05K0005 + 122.6 + Sweden Building 05K0006 + 843.1 + Sweden Building 05K0007 + 1487.0 + Sweden Building 05K0008 + 315.0 + Sweden Building 05K0009 + 1963.0 + Sweden Building 05K0010 + 66.52 + Sweden Building 05K0011 + 391.0 + Sweden Building 05K0012 + 809.65 +

408

Property:Building/SPPurchasedEngyForPeriodMwhYrElctrtyTotal | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrElctrtyTotal SPPurchasedEngyForPeriodMwhYrElctrtyTotal Jump to: navigation, search This is a property of type String. Electricity, total Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrElctrtyTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1399.0 + Sweden Building 05K0002 + 686.9 + Sweden Building 05K0003 + 321.8 + Sweden Building 05K0004 + 1689.9 + Sweden Building 05K0005 + 122.6 + Sweden Building 05K0006 + 843.1 + Sweden Building 05K0007 + 1487.0 + Sweden Building 05K0008 + 315.0 + Sweden Building 05K0009 + 1963.0 + Sweden Building 05K0010 + 66.52 + Sweden Building 05K0011 + 391.0 + Sweden Building 05K0012 + 809.65 + Sweden Building 05K0013 + 1199.0 + Sweden Building 05K0014 + 227.66 +

409

Table A1. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ","Coke and"," "," " " "," ",,"Net","Residual","Distillate","Natural Gas(d)"," ","Coal","Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row"

410

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Net","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

411

Property:Building/SPPurchasedEngyNrmlYrMwhYrTotal | Open Energy Information  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrTotal SPPurchasedEngyNrmlYrMwhYrTotal Jump to: navigation, search This is a property of type String. Total Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4355.0 + Sweden Building 05K0002 + 1530.1 + Sweden Building 05K0003 + 872.1 + Sweden Building 05K0004 + 4466.9 + Sweden Building 05K0005 + 768.6 + Sweden Building 05K0006 + 3031.1 + Sweden Building 05K0007 + 3479.0 + Sweden Building 05K0008 + 1336.0 + Sweden Building 05K0009 + 4876.0 + Sweden Building 05K0010 + 131.52 + Sweden Building 05K0011 + 1501.0 + Sweden Building 05K0012 + 2405.65 + Sweden Building 05K0013 + 3436.6002445 + Sweden Building 05K0014 + 389.66 + Sweden Building 05K0015 + 270.0 +

412

Property:Building/SPPurchasedEngyForPeriodMwhYrTotal | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrTotal SPPurchasedEngyForPeriodMwhYrTotal Jump to: navigation, search This is a property of type String. Total Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4228.0 + Sweden Building 05K0002 + 1501.1 + Sweden Building 05K0003 + 847.1 + Sweden Building 05K0004 + 4360.9 + Sweden Building 05K0005 + 727.6 + Sweden Building 05K0006 + 2915.1 + Sweden Building 05K0007 + 3385.0 + Sweden Building 05K0008 + 1282.0 + Sweden Building 05K0009 + 4739.0 + Sweden Building 05K0010 + 127.52 + Sweden Building 05K0011 + 1436.0 + Sweden Building 05K0012 + 2334.65 + Sweden Building 05K0013 + 3323.0 + Sweden Building 05K0014 + 381.66 + Sweden Building 05K0015 + 257.0 +

413

Bounds on the Solar Antineutrino total Flux and Energy spectrum from the SK experiment  

E-Print Network (OSTI)

A search for inverse beta decay electron antineutrinos has been carried out using the 825 days sample of solar data obtained at SK. The absence of a significant signal, that is, contributions to the total SK background and their angular variations has set upper bounds on a) the absolute flux of solar antineutrinos originated from ${}^8 B$ neutrinos $\\Phi_{\\bar{\

E. Torrente-Lujan

1999-11-23T23:59:59.000Z

414

Table A1. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," ",," "," "," "," "," "," "," "," ","RSE" "SIC"," ",,"Net","Residual","Distillate "," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry"," Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

415

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

of energy consumed from coal, coke, liquid fuels, naturalwas expressed in terms of coal equivalency. 2.1.8.1 Tnational fuel inputs of coal, natural gas and petroleum were

Fridley, David G.

2008-01-01T23:59:59.000Z

416

Property:Building/SPBreakdownOfElctrcityUseKwhM2Total | Open Energy  

Open Energy Info (EERE)

SPBreakdownOfElctrcityUseKwhM2Total" SPBreakdownOfElctrcityUseKwhM2Total" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 71.4577086539 + Sweden Building 05K0002 + 110.926946534 + Sweden Building 05K0003 + 72.9096074806 + Sweden Building 05K0004 + 66.0248923654 + Sweden Building 05K0005 + 54.8654809632 + Sweden Building 05K0006 + 65.291976787 + Sweden Building 05K0007 + 65.5403331042 + Sweden Building 05K0008 + 41.6418235453 + Sweden Building 05K0009 + 56.5413268466 + Sweden Building 05K0010 + 150.269021739 + Sweden Building 05K0011 + 27.5018481341 + Sweden Building 05K0012 + 37.9937990385 + Sweden Building 05K0013 + 68.8990371973 + Sweden Building 05K0014 + 166.794253904 + Sweden Building 05K0015 + 71.0813662687 + Sweden Building 05K0016 + 38.5267410327 +

417

Property:Building/SPPurchasedEngyPerAreaKwhM2Total | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyPerAreaKwhM2Total" SPPurchasedEngyPerAreaKwhM2Total" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 221.549575215 + Sweden Building 05K0002 + 213.701117318 + Sweden Building 05K0003 + 195.801526718 + Sweden Building 05K0004 + 174.148148148 + Sweden Building 05K0005 + 340.088495575 + Sweden Building 05K0006 + 211.255924171 + Sweden Building 05K0007 + 144.028151521 + Sweden Building 05K0008 + 171.282051282 + Sweden Building 05K0009 + 140.296360236 + Sweden Building 05K0010 + 300.961098398 + Sweden Building 05K0011 + 98.1045751634 + Sweden Building 05K0012 + 106.609793929 + Sweden Building 05K0013 + 175.776187637 + Sweden Building 05K0014 + 291.160427408 + Sweden Building 05K0015 + 174.193548387 + Sweden Building 05K0016 + 145.793794187 +

418

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

,,,,,,,,"Coal" ,,,,,,,,"Coal" " Part 1",,,,,,,,"(excluding" " (Estimates in Btu or Physical Units)",,,,,"Distillate",,,"Coal Coke" ,,,,,"Fuel Oil",,,"and" ,,,"Net","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel","(billion","LPG","(1000 Short","Other","Row" "Code(a)","End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors",

419

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

420

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

1",,,,,,,"Coal" 1",,,,,,,"Coal" " (Estimates in Btu or Physical Units)",,,,,,,"(excluding" ,,,,"Distillate",,,"Coal Coke" ,,"Net",,"Fuel Oil",,,"and" ,,"Electricity(a)","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" ,"Total","(million","Fuel Oil","Fuel","(billion","LPG","(1000 short","Other","Row" "End-Use Categories","(trillion Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors"

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Commercial applications of solar total energy systems. Third quarterly progress report, November 1, 1976--January 31, 1977  

DOE Green Energy (OSTI)

The application of Solar Total Energy System (STES) to the commercial sector (e.g., office buildings, shopping centers, retail stores, etc.) in the United States is investigated. Candidate solar-thermal and solar-photovoltaic concepts are considered for providing on-site electrical power generation as well as thermal energy for both heating and cooling applications. The solar-thermal concepts include the use of solar concentrators (distributed or central-receiver) for collection of the thermal energy for conversion to electricity by means of a Rankine-cycle or Brayton-cycle power-conversion system. Recoverable waste heat from the power-generation process is utilized to help meet the building thermal-energy demand. Evaluation methodology is identified to allow ranking and/or selection of the most cost-effective concept for commercial-building applications.

Not Available

1977-09-01T23:59:59.000Z

422

Commercial applications of solar total energy systems. Second quarterly progress report, August 1, 1976--October 31, 1976  

DOE Green Energy (OSTI)

This report investigates the application of the Solar Total Energy System (STES) to the commercial sector (e.g., office buildings, shopping centers, retail stores, etc.) in the United States. Candidate solar thermal and solar photovoltaic concepts are considered for providing on-site electrical power generation as well as thermal energy for both heating and cooling applications. The solar thermal concepts include the use of solar concentrators (distributed or central receiver) for collection of the thermal energy for conversion to electricity by means of a Rankine cycle or Brayton cycle power conversion system. Recoverable waste heat from the power generation process is utilized to help meet the building thermal energy demand. Evaluation methodology is identified to allow ranking and/or selection of the most cost-effective concept for commercial building applications.

Not Available

1977-04-25T23:59:59.000Z

423

Direct measurement of the 15N(p,gamma)16O total cross section at novae energies  

E-Print Network (OSTI)

The 15N(p,gamma)16O reaction controls the passage of nucleosynthetic material from the first to the second carbon-nitrogen-oxygen (CNO) cycle. A direct measurement of the total 15N(p,gamma)16O cross section at energies corresponding to hydrogen burning in novae is presented here. Data have been taken at 90-230 keV center-of-mass energy using a windowless gas target filled with nitrogen of natural isotopic composition and a bismuth germanate summing detector. The cross section is found to be a factor two lower than previously believed.

D Bemmerer; A Caciolli; R Bonetti; C Broggini; F Confortola; P Corvisiero; H Costantini; Z Elekes; A Formicola; Zs Fulop; G Gervino; A Guglielmetti; C Gustavino; Gy Gyurky; M Junker; B Limata; M Marta; R Menegazzo; P Prati; V Roca; C Rolfs; C Rossi Alvarez; E Somorjai; O Straniero

2009-02-04T23:59:59.000Z

424

High energy Gamma-Ray Bursts as a result of the collapse and total annihilation of neutralino clumps  

E-Print Network (OSTI)

Rare astrophysical events - cosmological gamma-ray bursts with energies over GeV - are considered as an origin of information about some SUSY parameters. The model of generation of the powerful gamma-ray bursts is proposed. According to this model the gamma-ray burst represents as a result of the collapse and the total annihilation of the neutralino clump. About 80 % of the clump mass radiates during about 100 second at the final stage of annihilation. The annihilation spectrum and its characteristic energies are calculated in the framework of Split Higgsino model.

R. S. Pasechnik; V. A. Beylin; V. I. Kuksa; G. M. Vereshkov

2006-02-20T23:59:59.000Z

425

"Table A33. Total Quantity of Purchased Energy Sources by Census Region, Census Division,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region, Census Division," Quantity of Purchased Energy Sources by Census Region, Census Division," " and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,"Natural",,,"Coke" " ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000 ","(1000","(trillion","Row" "Economic Characteristics(a)","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","Btu)","Factors"

426

Performance Profiles of Major Energy Producers - Energy ...  

U.S. Energy Information Administration (EIA)

Research and Development Expenditures: Table 12. Income Taxes: Table 13. U.S. Taxes Other Than Income Taxes: Table 14. U.S. Energy Operating Statistics: Table 15.

427

Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 3: appendix E to technical report, comprehensive EVTECA results tables  

DOE Green Energy (OSTI)

This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume III presents the results of the total energy cycle model runs, which are summarized in Volume I.

NONE

1998-01-01T23:59:59.000Z

428

Short-Term Energy Outlook - Energy Information Administration  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration | Short-Term Energy and Winter Fuels Outlook October 2013 2 Projected Winter Fuel Expenditures by Fuel and Region

429

Annual Energy Review - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

State Energy Data System ... 2.10 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979 PDF XLS GRAPH: 2 ...

430

Connecticut/EZFeed Policies | Open Energy Information  

Open Energy Info (EERE)

Gas Nuclear Photovoltaics Tidal Energy Wave Energy Wind energy StateProvince The EXP Job Creation Incentive Program provides loans towards expenditures related to training,...

431

"State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production"  

U.S. Energy Information Administration (EIA) Indexed Site

P2. Energy Production Estimates in Trillion Btu, 2011 " P2. Energy Production Estimates in Trillion Btu, 2011 " "State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production" ,"Coal a",,"Natural Gas b",,"Crude Oil c",,,,"Biofuels d",,"Other e",,"Total" ,"Trillion Btu" "Alabama",468.671,,226.821,,48.569,,411.822,,0,,245.307,,245.307,,1401.191 "Alaska",33.524,,404.72,,1188.008,,0,,0,,15.68,,15.68,,1641.933 "Arizona",174.841,,0.171,,0.215,,327.292,,7.784,,107.433,,115.217,,617.734 "Arkansas",2.985,,1090.87,,34.087,,148.531,,0,,113.532,,113.532,,1390.004 "California",0,,279.71,,1123.408,,383.644,,25.004,,812.786,,837.791,,2624.553

432

Delaware - Rankings - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Puerto Rico US Virgin Islands: Overview; Data; Economy; Prices; Reserves & Supply; Distribution & Marketing; Consumption & Expenditures; Environment; Analysis; Energy ...

433

U.S. Energy Information Administration - EIA - Independent ...  

U.S. Energy Information Administration (EIA)

Puerto Rico US Virgin Islands: Overview; Data; Economy; Prices; Reserves & Supply; Distribution & Marketing; Consumption & Expenditures; Environment; Analysis; Energy ...

434

Estimated Rare Earth Reserves and Deposits | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Facilities Department of Energy Facilities Recovery Act Smart Grid Projects Recovery Act Smart Grid Projects 2009 Energy Expenditure Per Person 2009 Energy...

435

Performance Contracting and Energy Efficiency in the State Government Market  

E-Print Network (OSTI)

10 Table 9. Baseline annual energy consumption (million10. Baseline annual energy consumption of State governmenton aggregate energy consumption, expenditures and energy

Bharvirkar, Ranjit

2008-01-01T23:59:59.000Z

436

Google Crisis Map for Hurricane Sandy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Facilities Department of Energy Facilities Recovery Act Smart Grid Projects Recovery Act Smart Grid Projects 2009 Energy Expenditure Per Person 2009 Energy...

437

Lower residential energy use reduces home energy expenditures as ...  

U.S. Energy Information Administration (EIA)

This Week in Petroleum Weekly Petroleum Status Report Weekly Natural Gas Storage ... households spent $1,945 on heating, cooling, appliances, electronics, and ...

438

2009 Energy Expenditure Per Person | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Manufacturing Facilities Wind Manufacturing Facilities Testing America's Wind Turbines Testing America's Wind Turbines U.S. Hydropower Potential from Existing Non-powered Dams...

439

2009 Energy Expenditure Per Person | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OPEN 2012 Projects Clean Cities Coalition Regions Clean Cities Coalition Regions Google Crisis Map for Hurricane Sandy Google Crisis Map for Hurricane Sandy Alternative...

440

Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 2. System performance and supporting studies. Final report  

DOE Green Energy (OSTI)

The preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas, is presented. System performance analysis and evaluation are described. Feedback of completed performance analyses on current system design and operating philosophy is discussed. The basic computer simulation techniques and assumptions are described and the resulting energy displacement analysis is presented. Supporting technical studies are presented. These include health and safety and reliability assessments; solar collector component evaluation; weather analysis; and a review of selected trade studies which address significant design alternatives. Additional supporting studies which are generally specific to the installation site are reported. These include solar availability analysis; energy load measurements; environmental impact assessment; life cycle cost and economic analysis; heat transfer fluid testing; meteorological/solar station planning; and information dissemination. (WHK)

None,

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Minority energy assessment report  

SciTech Connect

The purpose of this research is to project household energy consumption, energy expenditure, and energy expenditure as share of income for five population groups from 1991 to 2009. The approach uses the Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory for the US Department of Energy's Office of Minority Economic Impact. The MEAM provides a framework that can be used to forecast regional energy consumption and energy expenditure for majority, black, Hispanic, poor, and nonpoor households. The forecasts of key macroeconomic and energy variables used as exogenous variables in the MEAM were obtained from the Data Resources, Inc., Macromodel and Energy Model. Generally, the projections of household energy consumption, expenditure, and energy expenditure as share of income vary across population groups and census regions.

Teotia, A.P.S.; Poyer, D.A.; Lampley, L.; Anderson, J.L.

1992-12-01T23:59:59.000Z

442

Energy Information Administration  

U.S. Energy Information Administration (EIA)

Assessment of consumption and expenditure data collected from energy suppliers against bill data obtained from interviewed households: Case study with 2009

443

Solar total energy-large scale experiment, Shenandoah, Georgia site. Annual report, June 1977--June 1978. [For Bleyle Knitwear Plant  

DOE Green Energy (OSTI)

The site was described in terms of location, suitably, accessibility, and other factors. Detailed descriptions of the Solar Total Energy-Large Scale Experiment Application (STE-LSE) (Bleyle of America, Inc., Knitwear Plant), the DOE owned Meteorology Station operating at the site, and the instrumentation provided by the Georgia Power Company to measure energy usage within the knitwear plant are included. A detailed report of progress is given at the Shenandoah Site, introduced by the STE-LSE schedule and the Cooperative Agreement work tasks. Progress is described in terms of the following major task areas: site/application; instrumentation/data acquisition; meteorology station; site to STES interface; information dissemination. A brief overview of milestones to be accomplished is given, followed by these appendices: solar easement agreement, interface drawing set, and additional site background data. (MHR)

None,

1978-06-01T23:59:59.000Z

444

Energy Usage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Usage Energy Usage How much do you spend per year compared to others? A state-by-state map of per capita energy expenditures. Subtopics Storage Consumption Transmission Smart Grid...

445

Application analysis of solar total energy systems to the residential sector. Volume III, conceptual design. Final report  

DOE Green Energy (OSTI)

The objective of the work described in this volume was to conceptualize suitable designs for solar total energy systems for the following residential market segments: single-family detached homes, single-family attached units (townhouses), low-rise apartments, and high-rise apartments. Conceptual designs for the total energy systems are based on parabolic trough collectors in conjunction with a 100 kWe organic Rankine cycle heat engine or a flat-plate, water-cooled photovoltaic array. The ORC-based systems are designed to operate as either independent (stand alone) systems that burn fossil fuel for backup electricity or as systems that purchase electricity from a utility grid for electrical backup. The ORC designs are classified as (1) a high temperature system designed to operate at 600/sup 0/F and (2) a low temperature system designed to operate at 300/sup 0/F. The 600/sup 0/F ORC system that purchases grid electricity as backup utilizes the thermal tracking principle and the 300/sup 0/F ORC system tracks the combined thermal and electrical loads. Reject heat from the condenser supplies thermal energy for heating and cooling. All of the ORC systems utilize fossil fuel boilers to supply backup thermal energy to both the primary (electrical generating) cycle and the secondary (thermal) cycle. Space heating is supplied by a central hot water (hydronic) system and a central absorption chiller supplies the space cooling loads. A central hot water system supplies domestic hot water. The photovoltaic system uses a central electrical vapor compression air conditioning system for space cooling, with space heating and domestic hot water provided by reject heat from the water-cooled array. All of the systems incorporate low temperature thermal storage (based on water as the storage medium) and lead--acid battery storage for electricity; in addition, the 600/sup 0/F ORC system uses a therminol-rock high temperature storage for the primary cycle. (WHK)

Not Available

1979-07-01T23:59:59.000Z

446

State Energy Data System (SEDS) Complete Dataset through 2009 | OpenEI  

Open Energy Info (EERE)

Energy Data System (SEDS) Complete Dataset through 2009 Energy Data System (SEDS) Complete Dataset through 2009 Dataset Summary Description The State Energy Data System (SEDS) is compiled by the U.S. Energy Information Administration's (EIA); it is a comprehensive database of energy statistics by state (and includes totals for the entire US). SEDS includes estimates of energy production, consumption, prices, and expenditures broken down by energy source and sector. Annual estimates are available from 1960 - 2009 for production and consumption estimates and from 1970 - 2009 for price and expenditure estimates. The multi-dimensional nature of this EIA dataset allows users to make comparisons across States, energy sources, sectors, and over time. Related Links Link to state SEDS SEDS documentation Complete SEDS data tables and files

447

DOE/EIA-0482 Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

82 Energy Information Administration Residential energy Consumption Survey: Trends in Consumption and Expenditures , 1978-1984 L This publication is available from the...

448

Residential Energy Usage by Origin of Householder  

U.S. Energy Information Administration (EIA)

Home > Energy Users > Residential Home Page > Energy Usage by Origin of Householder. Consumption and Expenditures. NOTE: To View and/or Print PDF's ...

449

Energy effects of heat-island reduction strategies in Toronto, Canada  

E-Print Network (OSTI)

energy expenditure Savings reflective roof savings shade tree savings wind shield savings indirect savings combined savings Residential gas price

Akbari, Hashem; Konopacki, Steven

2003-01-01T23:59:59.000Z

450

Highlights of the solar total energy systems, distributed collector systems, and research and development projects. Semiannual review, 26-27 January 1976, Atlanta, Georgia  

DOE Green Energy (OSTI)

The highlights of the ERDA Solar Thermal Branch Semiannual Review held in Atlanta, Georgia, on January 26-27, 1976, are presented. Status and plans for Total Energy Systems, Distributed Collectors, and Research and Development Projects are reviewed. (WHK)

Latta, A.F.

1976-03-26T23:59:59.000Z

451

Extreme Value Statistics of the Total Energy in an Intermediate-Complexity Model of the Midlatitude Atmospheric Jet. Part I: Stationary Case  

Science Conference Proceedings (OSTI)

A baroclinic model of intermediate complexity for the atmospheric jet at middle latitudes is used as a stochastic generator of atmosphere-like time series. In this case, time series of the total energy of the system are considered. Statistical ...

Mara Felici; Valerio Lucarini; Antonio Speranza; Renato Vitolo

2007-07-01T23:59:59.000Z

452

Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 4: peer review comments on technical report  

DOE Green Energy (OSTI)

This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume IV includes copies of all the external peer review comments on the report distributed for review in July 1997.

NONE

1998-01-01T23:59:59.000Z

453

Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 2: appendices A-D to technical report  

DOE Green Energy (OSTI)

This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline- powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume II contains additional details on the vehicle, utility, and materials analyses and discusses several details of the methodology.

NONE

1998-01-01T23:59:59.000Z

454

Note on R&D expenditures and fixed capital formation  

Science Conference Proceedings (OSTI)

In this paper we deal with the fixed capital nature of the means of production and labour employed in research and development which generate scientific and technological knowledge. We argue that these R&D current expenditures typically have the ... Keywords: Capital, Innovation, Research

Mario Marchi; Maurizio Rocchi

2010-11-01T23:59:59.000Z

455

ORIGINAL PAPER Differential sperm expenditure by male sailfin mollies,  

E-Print Network (OSTI)

Introduction It is increasingly evident that sperm production is costly to males (Dewsbury 1982; Nakatsuru expected outcome of costly sperm production is differential control of sperm production and expenditure strategies that reduce costs associated with spermatogenesis. This is especially true when males

Gabor, Caitlin - Department of Biology, Texas State University

456

Special Inquiry on the Office of the Chief Financial Officer's Information Technology Expenditures, OAS-RA-L-12-01  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Special Inquiry on the Office of the Special Inquiry on the Office of the Chief Financial Officer's Information Technology Expenditures OAS-RA-L-12-01 November 2011 Department of Energy Washington, DC 20585 November 28, 2011 MEMORANDUM FOR THE DEPUTY SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Special Report on "Inquiry on the Office of the Chief Financial Officer's Information Technology Expenditures" INTRODUCTION The Office of the Chief Financial Officer (OCFO) is responsible for ensuring the effective management and financial integrity of Department of Energy programs, projects, and resources. To achieve its mission, the OCFO develops, implements, and monitors policies and systems related to areas such as budget administration, program analysis, and strategic planning. The

457

The Balance of Kinetic and Total Energy Simulated by the OSU Two-Level Atmospheric General Circulation Model for January and July  

Science Conference Proceedings (OSTI)

The horizontal structure of the balances of kinetic energy and total energy simulated by the Oregon State University (OSU) two-level atmospheric general circulation model are studied for January and July on the basis of a three-year simulation ...

Jough-Tai Wang; Jeong-Woo Kim; W. Lawrence Gates

1984-05-01T23:59:59.000Z

458

Sourcebook on the production of electricity from geothermal energy. Draft: Chapter 4, Section 4. 4. Status of the development of the total flow system for electric power production from geothermal energy. [Includes glossary  

DOE Green Energy (OSTI)

Discussion is presented under the following section headings: introduction; characteristics of wellhead fluid; energy conversion concepts (including subsections, the flashed steam system, the total flow concept, and comparison of total flow expanders); brine chemistry effects; a possible total flow system design; and references, bibliography, glossary, and figures. (JGB)

Austin, A.L.; Ryley, D.J.

1978-04-01T23:59:59.000Z

459

Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 1. System criteria and design description. Final report  

DOE Green Energy (OSTI)

This volume documents the preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas. Current system, subsystem, and component designs are described and additional studies which support selection among significant design alternatives are presented. Overall system requirements which form the system design basis are presented. These include program objectives; performance and output load requirements; industrial, statutory, and regulatory standards; and site interface requirements. Material in this section will continue to be issued separately in the Systems Requirements Document and maintained current through revision throughout future phases of the project. Overall system design and detailed subsystem design descriptions are provided. Consideration of operation and maintenance is reflected in discussion of each subsystem design as well as in an integrated overall discussion. Included are the solar collector subsystem; the thermal storage subsystem, the power conversion sybsystem (including electrical generation and distribution); the heating/cooling and domestic hot water subsystems; overall instrumentation and control; and the STES building and physical plant. The design of several subsystems has progressed beyond the preliminary stage; descriptions for such subsystems are therefore provided in more detail than others to provide complete documentation of the work performed. In some cases, preliminary design parameters require specific verificaton in the definitive design phase and are identified in the text. Subsystem descriptions will continue to be issued and revised separately to maintain accuracy during future phases of the project. (WHK)

None,

1979-01-01T23:59:59.000Z

460

national total  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL Brazil BR Cayman Islands CJ ... World Total ww NA--Table Posted: December 8, ...

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Minority energy assessment report. Fall 1992  

SciTech Connect

The purpose of this research is to project household energy consumption, energy expenditure, and energy expenditure as share of income for five population groups from 1991 to 2009. The approach uses the Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory for the US Department of Energy`s Office of Minority Economic Impact. The MEAM provides a framework that can be used to forecast regional energy consumption and energy expenditure for majority, black, Hispanic, poor, and nonpoor households. The forecasts of key macroeconomic and energy variables used as exogenous variables in the MEAM were obtained from the Data Resources, Inc., Macromodel and Energy Model. Generally, the projections of household energy consumption, expenditure, and energy expenditure as share of income vary across population groups and census regions.

Teotia, A.P.S.; Poyer, D.A.; Lampley, L.; Anderson, J.L.

1992-12-01T23:59:59.000Z

462

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

4 4 Cost of a Generic Quad Used in the Residential Sector ($2010 Billion) (1) Residential 1980 10.45 1981 11.20 1982 11.58 1983 11.85 1984 11.65 1985 11.43 1986 10.90 1987 10.55 1988 10.18 1989 9.98 1990 10.12 1991 9.94 1992 9.78 1993 9.77 1994 9.78 1995 9.44 1996 9.44 1997 9.59 1998 9.23 1999 8.97 2000 9.57 2001 10.24 2002 9.33 2003 10.00 2004 10.32 2005 11.10 2006 11.60 2007 11.61 2008 12.29 2009 11.65 2010 9.98 2011 9.99 2012 9.87 2013 9.77 2014 9.76 2015 9.88 2016 9.85 2017 9.83 2018 9.86 2019 9.88 2020 9.91 2021 10.00 2022 10.09 2023 10.11 2024 10.12 2025 10.09 2026 10.10 2027 10.13 2028 10.11 2029 10.06 2030 10.06 2031 10.13 2032 10.23 2033 10.34 2034 10.45 2035 10.57 Note(s): 1) See Table 1.5.1 for generic quad definition. This table provides the consumer cost of a generic quad in the buildings sector. Use this table to estimate the average consumer cost savings resulting from the savings of a generic (primary) quad in the buildings sector. 2) Price of

463

Price and Expenditure Technical Notes - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Appropriately, coal imports and exports in the industrial sector do not include end-user taxes. ... refrigeration, cooking, and running a vari-ety of ...

464

1997 Consumption and Expenditures Tables - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

heating or cooling degree-days are a measure of how cold or how hot a location is over ... To obtain the RSE percentage for any table cell, multiply ...

465

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

West National Space Heating 1,050 721 371 352 575 Air-Conditioning 199 175 456 262 311 Water Heating 373 294 313 318 320 Refrigerators 194 145 146 154 157 Other Appliances and...

466

EIA's SEDS provides detailed data on energy use and expenditures ...  

U.S. Energy Information Administration (EIA)

Tools; Glossary All Reports ... weather; gasoline; capacity; exports; nuclear; forecast; View All Tags ...

467

Household Energy Consumption and Expenditures 1993 -- Index Page  

U.S. Energy Information Administration (EIA) Indexed Site

Fax: (202) 586-0018 URL: http:www.eia.govemeurecs1d.html If you are having any technical problems with this site, please contact the EIA Webmaster at wmaster@eia.doe.gov...

468

EA-1823: Rockford Solar, Rockford, Illinois | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

would authorize 4,025,000 million in grant expenditures. The total cost of Rockford Solar Partner's proposed project would be approximately 127 million. Public Comment...

469

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1988  

SciTech Connect

This is the third report submitted to Congress under Public Law 99-240, The Low-Level Radioactive Waste Policy Amendments Act of 1985'' (the Act). This section of the Act requires the Department of Energy to summarize the annual expenditures made by states and compacts of funds disbursed from the Department's Surcharge Escrow Account, and to assess the compliance of these expenditures with the specified limitations. This report covers expenditures made during calendar year 1988 from funds disbursed to states and compacts following the July 1, 1986, and January 1, 1988, milestones. The next milestone in the Act is January 1, 1990, following which the accumulated surcharge deposits in the Department's Surcharge Escrow Account will again be disbursed. The Act authorizes states with operating low-level radioactive waste disposal sites (sited states) to collect surcharges on disposal of waste from generators located in compact regions currently without disposal sites (non-sited compacts) and in states that do not have sites and that are not members of compacts (nonmember states). The Act requires the sited states to make a monthly deposit to the Department of Energy's Surcharge Escrow Account of 25 percent of the surcharges they collect. Following each milestone date, the Department is required to disburse these funds, with accrued interest, back to those non-sited compacts and nonmember states found in compliance with the milestone requirements for new disposal site development. 4 tabs.

Not Available

1989-06-01T23:59:59.000Z

470

Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Energy Module Oil and Gas Supply Module Household Expenditures Module Natural Gas Transmission and Distribution Module Residential Demand Module Petroleum Market Module...

471

Residential Energy Consumption Survey (RECS) - Analysis ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... For example, the average energy expenditure for a New Jersey household was $3,065, ...

472

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

473

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

474

Extreme Value Statistics of the Total Energy in an Intermediate-Complexity Model of the Midlatitude Atmospheric Jet. Part II: Trend Detection and Assessment  

Science Conference Proceedings (OSTI)

A baroclinic model for the atmospheric jet at middle latitudes is used as a stochastic generator of nonstationary time series of the total energy of the system. A linear time trend is imposed on the parameter TE, descriptive of the forced equator-...

Mara Felici; Valerio Lucarini; Antonio Speranza; Renato Vitolo

2007-07-01T23:59:59.000Z

475

Stock mechanics: theory of conservation of total energy and predictions of coming short-term fluctuations of Dow Jones Industrials Average (DJIA)  

E-Print Network (OSTI)

Predicting absolute magnitude of fluctuations of price, even if their sign remains unknown, is important for risk analysis and for option prices. In the present work, we display our predictions about absolute magnitude of daily fluctuations of the Dow Jones Industrials Average (DJIA), utilizing the original theory of conservation of total energy, for the coming 500 days.

Tuncay, C

2006-01-01T23:59:59.000Z

476

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

477

Iron and Steel Energy Intensities  

U.S. Energy Information Administration (EIA) Indexed Site

If you are having trouble, call 202-586-8800 for help. Home > >Energy Users > Energy Efficiency Page > Iron and Steel Energy Intensities First Use of Energy Blue Bullet First Use/Value of Production Blue Bullet First Use/Ton of steel End Uses of Consumption Blue Bullet Total End Use/Value of Production Blue Bullet Total End Use/Ton of Steel Boiler Fuel as End Use Blue Bullet Boiler Fuel /Value of Production Blue Bullet Boiler Fuel /Ton of Steel Process Heating as End Use Blue Bullet Process Heating Fuel /Ton of Steel Blue Bullet Process Heating /Value of Production Machine Drive as End Use Blue Bullet Machine Drive Fuel/Ton of Steel Blue Bullet Machine Drive Fuel /Value of Production Expenditures Blue Bullet Purchased Fuel /Ton of Steel Blue Bullet Purchased Fuel /Value of Production

478

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1993: Report to Congress  

SciTech Connect

This is the eighth report submitted to Congress in accordance with section 5(d)(2)(E)(ii)(II) of the Low-Level Radioactive Waste Policy Act (the Act). This section of the Act directs the Department of Energy (DOE) to summarize the annual expenditures of funds disbursed from the DOE surcharge escrow account and to assess compliance of these expenditures with the following limitations specified in the Act: establish low-level radioactive waste disposal facilities; mitigate the impact of low-level radioactive waste disposal facilities on the host State; regulate low-level radioactive waste disposal facilities; or ensure the decommissioning, closure, and care during the period of institutional control of low-level radioactive waste disposal facilities. In addition to placing these limitations on the use of these funds, the Act also requires all nonsited compact regions and nonmember States to provide DOE with an itemized report of their expenditures on December 31 of each year in which funds are expended. Within six months after receiving the individual reports, the Act requires the Secretary of Energy to furnish Congress with a summary of the reported expenditures and an assessment of compliance with the specified usage limitations. This report fulfills that requirement.

Not Available

1994-06-01T23:59:59.000Z

479

Energy Efficient Reduced Complexity Multi-Service, Multi-Channel Scheduling Techniques.  

E-Print Network (OSTI)

??The need for energy efficient communications is essential in current and next-generation wireless communications systems. A large component of energy expenditure in mobile devices is (more)

Dechene, Dan J

2011-01-01T23:59:59.000Z

480

DOE/EIA-0318/1 Nonresidential Buildings Energy Consumption Survey...  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonresidential Buildings Energy Consumption Survey: 1979 Consumption and Expenditures D Part I: Natural Gas and Electricity March 1983 Energy Information Administration...

Note: This page contains sample records for the topic "total energy expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Table AC7. Average Expenditures for Air-Conditioning by Equipment ...  

U.S. Energy Information Administration (EIA)

Central System 5 Table AC7. Average Expenditures for Air-Conditioning by Equipment Type, 2005 Dollars per Household Type of Air-Conditioning Equipment

482

Relationships between U.S. Consumer Expenditures on Communications and Travel: 1984-2002  

E-Print Network (OSTI)

and new and old communications technologies). The first fourchanges in new communications technology on personal vehiclePV items on old communications technology expenditures. The

Choo, Sangho; Lee, Taihyeong; Mokhtarian, Patricia L

2006-01-01T23:59:59.000Z

483

Table WH11. Expenditures Intensity by Main Water Heating Fuel Used ...  

U.S. Energy Information Administration (EIA)

Main Water Heating Fuel Used (Dollars/number of household members) Electricity Table WH11. Expenditures Intensity by Main Water Heating Fuel Used, 2005

484

U.S. household expenditures for gasoline account for nearly 4% of ...  

U.S. Energy Information Administration (EIA)

Electricity. Sales, revenue and prices, power plants, fuel use, ... a rise in average gasoline prices has led to higher overall household gasoline expenditures.

485

Caloric expenditure and substrate utilization in underwater treadmill running versus land-based treadmill running.  

E-Print Network (OSTI)

??The objective of this study is to compare the caloric expenditure and oxidative sources of underwater treadmill running and land-based treadmill running at maximal and (more)

Schaal, Courtney

2009-01-01T23:59:59.000Z

486

U.S. household expenditures for gasoline account for nearly 4% ...  

U.S. Energy Information Administration (EIA)

Gasoline expenditures in 2012 for the average U.S. household reached $2,912, or just under 4% of income before taxes, according to EIA estimates.

487

Energy R and D in Germany  

SciTech Connect

Germany's total national (i.e., combined public and private sector) funding for R&D stood at $42 billion in 1997. The private sector accounted for nearly 62% ($24 billion) of the total, while the public sector accounted for approximately 38%. Since the late 1970s, when the public and private sectors each funded roughly half of Germany's R&D, the private sector has steadily assumed a larger and larger role as the dominant supporter of R&D activity, while overall government funding has remained essentially flat for much of the past two decades. In addition to declining relative to private R&D expenditures, public R&D expenditures in Germany declined by 4% in real terms between 1991 and 1997, to approximately $15 billion. The reduction in R&D investments in the public sector can be attributed in large part to the financial challenges associated with German reunification and related shifts in social priorities including efforts to address high unemployment and to rebuild basic infrastructure in the eastern states. R&D expenditures have also declined as a percentage of the total public budget, from a peak of 3.4% in 1985 to 2.7% in 1996. Energy R&D has been the hardest hit of all major socioeconomic areas of R&D expenditure funded by the German government. Between 1981 and 1997, public energy R&D fell from approximately $1.6 billion to $400 million--a 75% real decline. The $850 million reduction in Germany's fission R&D budget (which constituted two-thirds of government R&D investment in 1985) explains some 90% of the funding decline. Negative public perceptions regarding the safety and environmental impacts of nuclear energy have reduced nuclear power's viability as a long-term energy option for Germany. Discussions of a complete nuclear phaseout are now under way. At the same time, the German government has slashed its investments in fossil energy R&D by more than 90%. While energy efficiency and renewable energy technologies have fared relatively well in comparison with other energy technology areas, government support for all areas of energy R&D has declined in absolute terms since 1990. Remaining public and private sector energy R&D investments focus increasingly technology demonstration and commercialization efforts with relatively short time horizons.

Runci, PJ

1999-11-01T23:59:59.000Z

488

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

2 2 Principal Commercial Building Types, as of 2003 (Percent of Total Floorspace) (1) Office 17% 17% 19% Mercantile 16% 14% 18% Retail 6% 9% 5% Enclosed & Strip Malls 10% 4% 13% Education 14% 8% 11% Warehouse and Storage 14% 12% 7% Lodging 7% 3% 7% Service 6% 13% 4% Public Assembly 5% 6% 5% Religious Worship 5% 8% 2% Health Care 4% 3% 8% Inpatient 3% 0% 6% Outpatient 2% 2% 2% Food Sales 2% 5% 5% Food Service 2% 6% 6% Public Order and Safety 2% 1% 2% Other 2% 2% 4% Vacant 4% 4% 1% Total 100% 100% 100% Note(s): Source(s): Total Floorspace Total Buildings Primary Energy Consumption 1) For primary energy intensities by building type, see Table 3.1.13. Total CBECS 2003 commercial building floorspace is 71.7 billion SF. EIA, 2003 Commercial Buildings Energy Consumption Survey: Consumption and Expenditures Tables, Oct. 2006, Table C1A

489

Application of an Energy Management System to a Distribution Center  

E-Print Network (OSTI)

Capital outlays for energy management must be economically attractive to warrant an expenditure. An energy management system has one of the most economic returns for an investment decision, if applied effectively. The Quaker Oats Company installed such a System in its Dallas Distribution Center. In one year the electric bills were reduced by a total of $17,668.91. Electric consumption (KWH) was reduced by thirty-one percent, electrical demand (KW) was reduced by thirty-six percent while plant operations expanded. This paper discusses the control strategies employed by the energy management system and provided the resultant savings that was obtained from the first year of operation.

Warnick, T.

1984-01-01T23:59:59.000Z

490

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

E-Print Network (OSTI)

Department of Energy. Washington, DC. Report No. LBNL-47463.Expenditures, October, 1998. Washington, DC. Report No. DOE/Program (CLASP). Washington, DC. (Table 2-1). Report No.

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-01-01T23:59:59.000Z

491

Demand-Side Management and Energy Efficiency Revisited  

E-Print Network (OSTI)

of electricity consumption reported by utility n in year telectricity consumption due to energy e?ciency DSM expenditures across utilities and years

Auffhammer, Maximilian; Blumstein, Carl; Fowlie, Meredith

2007-01-01T23:59:59.000Z

492

Fuel.vp  

Gasoline and Diesel Fuel Update (EIA)

0: Total Energy Consumption, Price, and Expenditure Estimates, 2011 State Consumption Prices Expenditures Residential a Commercial a Industrial a,b Transportation Total b...

493

The comparative impact of the market penetration of energy-efficient measures: A sensitivity analysis of its impact on minority households  

SciTech Connect

A sensitivity study was made of the potential market penetration of residential energy efficiency as energy service ratio (ESR) improvements occurred in minority households, by age of house. The study followed a Minority Energy Assessment Model analysis of the National Energy Strategy projections of household energy consumption and prices, with majority, black, and Hispanic subgroup divisions. Electricity and total energy consumption and expenditure patterns were evaluated when the households` ESR improvement followed a logistic negative growth (i.e., market penetration) path. Earlier occurrence of ESR improvements meant greater discounted savings over the 22-year period.

Bozinovich, L.V.; Poyer, D.A.; Anderson, J.L.

1993-12-01T23:59:59.000Z

494

Analyticity of the self-energy in total momentum of an atom coupled to the quantized radiation field  

E-Print Network (OSTI)

We study a neutral atom with a non-vanishing electric dipole moment coupled to the quantized electromagnetic field. For a sufficiently small dipole moment and small momentum, the one-particle (self-) energy of an atom is proven to be a real-analytic function of its momentum. The main ingredient of our proof is a suitable form of the Feshbach-Schur spectral renormalization group.

Jrmy Faupin; Juerg Froehlich; Baptiste Schubnel

2013-08-12T23:59:59.000Z

495

Alternative Energy Producers Credit (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

The Alternative Energy Producers Credit for 35% of the eligible expenditures on renewable energy generation facilities to be claimed as a tax credit. However, this credit is reduced by the amount...