Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Reduces electric energy consumption  

E-Print Network [OSTI]

BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

2

,"New Mexico Natural Gas Total Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","331...

3

,"New York Natural Gas Total Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","12312014"...

4

Electrical appliance energy consumption control methods and electrical energy consumption systems  

DOE Patents [OSTI]

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

2008-09-02T23:59:59.000Z

5

Electrical appliance energy consumption control methods and electrical energy consumption systems  

DOE Patents [OSTI]

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

2006-03-07T23:59:59.000Z

6

Fact #840: September 29, 2014 World Renewable Electricity Consumption...  

Broader source: Energy.gov (indexed) [DOE]

40: September 29, 2014 World Renewable Electricity Consumption is Growing Fact 840: September 29, 2014 World Renewable Electricity Consumption is Growing Electricity generated...

7

Trends in Renewable Energy Consumption and Electricity  

Reports and Publications (EIA)

Presents a summary of the nations renewable energy consumption in 2010 along with detailed historical data on renewable energy consumption by energy source and end-use sector. Data presented also includes renewable energy consumption for electricity generation and for non-electric use by energy source, and net summer capacity and net generation by energy source and state. The report covers the period from 2006 through 2010.

2012-01-01T23:59:59.000Z

8

Abstract--Numerous studies have shown that households' consumption is an important part of the total energy consumed  

E-Print Network [OSTI]

consumption and for about 50% of the total electricity consumption [1]. Therefore it is important to explore one of them. The interviewees preferred receiving electricity consumption feedback from a bill, a web1 Abstract--Numerous studies have shown that households' consumption is an important part

Beigl, Michael

9

Power to the Plug: An Introduction to Energy, Electricity, Consumption...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Below is...

10

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network [OSTI]

Currently, total electricity consumption of furnaces isthe total furnace electricity consumption and are primarilyto calculate the electricity consumption during cooling

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

11

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

ABORATORY Estimating Total Energy Consumption and Emissionscomponent of Chinas total energy consumption mix. However,about 19% of Chinas total energy consumption, while others

Fridley, David G.

2008-01-01T23:59:59.000Z

12

Total and Peak Energy Consumption Minimization of Building HVAC Systems Using Model Predictive Control  

E-Print Network [OSTI]

combination of the total energy consumption and the peakalso reduces the total energy consumption of the occupancyTotal and Peak Energy Consumption Minimization of Building

Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

2012-01-01T23:59:59.000Z

13

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

Estimating Total Energy Consumption and Emissions of Chinasof Chinas total energy consumption mix. However, accuratelyof Chinas total energy consumption, while others estimate

Fridley, David G.

2008-01-01T23:59:59.000Z

14

Electricity Demand and Energy Consumption Management System  

E-Print Network [OSTI]

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

15

Electrical energy consumption control apparatuses and electrical energy consumption control methods  

DOE Patents [OSTI]

Electrical energy consumption control apparatuses and electrical energy consumption control methods are described. According to one aspect, an electrical energy consumption control apparatus includes processing circuitry configured to receive a signal which is indicative of current of electrical energy which is consumed by a plurality of loads at a site, to compare the signal which is indicative of current of electrical energy which is consumed by the plurality of loads at the site with a desired substantially sinusoidal waveform of current of electrical energy which is received at the site from an electrical power system, and to use the comparison to control an amount of the electrical energy which is consumed by at least one of the loads of the site.

Hammerstrom, Donald J.

2012-09-04T23:59:59.000Z

16

Household activities through various lenses: crossing surveys, diaries and electric consumption  

E-Print Network [OSTI]

comparison between electricity consumption and behavioralU.S. residential electricity consumption Energy Policy, 42(of the residential electricity consumption. Energy Policy,

Durand-Daubin, Mathieu

2013-01-01T23:59:59.000Z

17

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

18 Figure 6 Primary Energy Consumption by End-Use in24 Figure 7 Primary Energy Consumption by Fuel in Commercialbased on total primary energy consumption (source energy),

Fridley, David G.

2008-01-01T23:59:59.000Z

18

Prediction of Electric Load using Kohonen Maps -Application to the Polish Electricity Consumption  

E-Print Network [OSTI]

Prediction of Electric Load using Kohonen Maps - Application to the Polish Electricity Consumption on Kohonen maps is proposed. This method is applied to the prediction of the Polish electricity consumption of the electric load is specific. For each day, we have 24 values (or more) of the electricity consumption

Verleysen, Michel

19

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

3A. Total Electricity Consumption and Expenditures for All Buildings, 2003 All Buildings Using Electricity Electricity Consumption Electricity Expenditures Number of Buildings...

20

Reducing Occupant-Controlled Electricity Consumption in Campus Buildings  

E-Print Network [OSTI]

2010 Reducing Occupant-Controlled Electricity Consumption in Campus Buildings Kill­09 and is expected to spend more than $17.1 million in 2009­10. In an effort to reduce electricity consumption; 1 EXECUTIVE SUMMARY UC Berkeley spent $16.39 million on purchased electricity in 2008

Doudna, Jennifer A.

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN  

E-Print Network [OSTI]

PWP-085 TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN CALIFORNIA, California 94720-5180 www.ucei.org #12;TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING** Abstract This study analyzes state and regional electricity supply and demand trends for the eleven states

California at Berkeley. University of

22

On Minimizing the Energy Consumption of an Electrical Vehicle  

E-Print Network [OSTI]

Apr 20, 2011 ... The problem that we focus on, is the minimization of the energy consumption of an electrical vehicle achievable on a given driving cycle.

Abdelkader Merakeb

2011-04-20T23:59:59.000Z

23

MEW Efforts in Reducing Electricity and Water Consumption in Government and Private Sectors in Kuwait  

E-Print Network [OSTI]

of Engineers, membership No. 1715. MEW EFFORTS IN REDUCING ELECTRICITY AND WATER CONSUMPTION IN GOVERNMENT AND PRIVATE SECTORS IN KUWAIT Eng. Iqbal Al-Tayar Manager ? Technical Supervision Department Planning and Training Sector Ministry... of Electricity & Water (MEW) - Kuwait Historical Background - Electricity ? In 1913, the first electric machine was installed in Kuwait to operate 400 lambs for Al-Saif Palace. ? In 1934, two electric generators were installed with a total capacity of 60 k...

Al-Tayar, I.

2011-01-01T23:59:59.000Z

24

Broad Initiatives/Sharp Focus- Cuts Electricity Consumption 15%  

E-Print Network [OSTI]

Analysis of electrical consumption can payout in reduced energy costs. Continuous monitoring of electrical usage coupled with improvements and optimization in system(s) operations can have a favorable impact on annual operating expenditures. Further...

Gialanella, V.

25

One of These Homes is Not Like the Other: Residential Energy Consumption Variability  

E-Print Network [OSTI]

consumption. Total energy consumption (in thousand BTUs) waselectricity and total energy consumption. Because all homesin gas, electric, and total energy consumption. Removing

Kelsven, Phillip

2013-01-01T23:59:59.000Z

26

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Table C22. Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace...

27

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

28

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of...

29

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

30

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

31

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

32

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

33

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.  

E-Print Network [OSTI]

is fraction of total electricity consumption for commercialy) ! calculate total electricity consumption for the end-useis fraction of total electricity consumption for residential

Coughlin, Katie

2013-01-01T23:59:59.000Z

34

New York Natural Gas Total Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYearDecadeYearDecadeandTotal Consumption

35

Oklahoma Natural Gas Total Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) YearTotal Consumption (Million

36

Tennessee Natural Gas Total Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24.Total Consumption (Million

37

Massachusetts Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170Feet)Total Consumption

38

Missouri Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15YearThousand CubicTotal Consumption

39

Rhode Island Natural Gas Total Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWest Virginia"Total Consumption (Million Cubic Feet) Rhode

40

Delaware Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year (MillionTotal Consumption

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Vermont Natural Gas Total Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198SeparationTotal Consumption (Million Cubic

42

Air-Conditioning Effect Estimation for Mid-Term Forecasts of Tunisian Electricity Consumption  

E-Print Network [OSTI]

Air-Conditioning Effect Estimation for Mid-Term Forecasts of Tunisian Electricity Consumption Tunisian electricity consumption (the residential sector represents 68% of this class of consumers). Nevertheless, with the Tunisian electricity consumption context, models elaborating which take account weather

Boyer, Edmond

43

Impacts of Electric Vehicles on Primary Energy Consumption and Petroleum Displacement  

E-Print Network [OSTI]

These studiesprojected electricity consumption EVs and theMPG) and EV electricity consumption (in Kwh per mile).weight of increases. 3.2. Electricity Consumption EVs of To

Wang, Quanlu; Delucchi, Mark A.

1991-01-01T23:59:59.000Z

44

A regression approach to infer electricity consumption of legacy telecom equipment  

E-Print Network [OSTI]

A regression approach to infer electricity consumption of legacy telecom equipment [Extended and communications technology accounts for a significant fraction of worldwide electricity consumption. Given inferring the electricity consumption of different components of the installed base of telecommu- nications

Fisher, Kathleen

45

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

were used to calculate the energy mix in manufacturing,of Chinas total energy consumption mix. However, accuratelyof Chinas total energy consumption mix. However, accurately

Fridley, David G.

2008-01-01T23:59:59.000Z

46

Electric Power Consumption of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.Wyoming ElectricityCapacity ConductorA.

47

Lifestyle Factors in U.S. Residential Electricity Consumption  

SciTech Connect (OSTI)

A multivariate statistical approach to lifestyle analysis of residential electricity consumption is described and illustrated. Factor analysis of selected variables from the 2005 U.S. Residential Energy Consumption Survey (RECS) identified five lifestyle factors reflecting social and behavioral choices associated with air conditioning, laundry usage, personal computer usage, climate zone of residence, and TV use. These factors were also estimated for 2001 RECS data. Multiple regression analysis using the lifestyle factors yields solutions accounting for approximately 40% of the variance in electricity consumption for both years. By adding the associated household and market characteristics of income, local electricity price and access to natural gas, variance accounted for is increased to approximately 54%. Income contributed only {approx}1% unique variance to the 2005 and 2001 models, indicating that lifestyle factors reflecting social and behavioral choices better account for consumption differences than income. This was not surprising given the 4-fold range of energy use at differing income levels. Geographic segmentation of factor scores is illustrated, and shows distinct clusters of consumption and lifestyle factors, particularly in suburban locations. The implications for tailored policy and planning interventions are discussed in relation to lifestyle issues.

Sanquist, Thomas F.; Orr, Heather M.; Shui, Bin; Bittner, Alvah C.

2012-03-30T23:59:59.000Z

48

Essays on the Impact of Climate Change and Building Codes on Energy Consumption and the Impact of Ozone on Crop Yield  

E-Print Network [OSTI]

on Residen- iv tial Electricity Consumption 8 Introduction 9Observed residential electricity consumption 2003 to 2006total residential electricity consumption for 2006 by five-

Aroonruengsawat, Anin

2010-01-01T23:59:59.000Z

49

Domestic electricity consumption is con-tinuously increasing and now accounts  

E-Print Network [OSTI]

Domestic electricity consumption is con- tinuously increasing and now accounts for about one third") enable detailed electricity consumption infor- mation to be captured, processed, and communicated electricity consumption infor- mation in real-time, enabling occupants to better understand their electricity

50

Model for electric energy consumption in eastern Saudi Arabia  

SciTech Connect (OSTI)

Electrical energy consumption in the eastern province of Saudi Arabia is modeled as a function of weather data, global solar radiation, population, and gross domestic product per capita. Five years of data have been used to develop the energy consumption model. Variable selection in the regression model is carried out by using the general stepping-regression technique. Model adequacy is determined from a residual analysis technique. Model validation aims to determine if the model will function successfully in its intended operating field. In this regard, new energy consumption data for a sixth year are collected, and the results predicted by the regression model are compared with the new data set. Finally, the sensitivity of the model is examined. It is found that the model is strongly influenced by the ambient temperature.

Al-Garni, A.Z.; Al-Nassar, Y.N.; Zubair, S.M.; Al-Shehri, A. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia)

1997-05-01T23:59:59.000Z

51

The electricity consumption impacts of commercial energy management systems  

SciTech Connect (OSTI)

An investigation of energy management systems (EMS) in large commercial and institutional buildings in North Carolina was undertaken to determine how EMS currently affect electricity consumption and what their potential is for being used to reduce on-peak electricity demand. A survey was mailed to 5000 commercial customers; the 430 responses were tabulated and analyzed; EMS vendors were interviewed, and 30 sites were investigated in detail. The detailed assessments included a site interview and reconstruction of historic billing data to evaluate EMS impact, if any. The results indicate that well-tuned EMS can result in a 10 to 40 percent reduction in billed demand, and smaller reductions in energy.

Buchanan, S.; Taylor, R.; Paulos, S.; Warren, W.; Hay, J.

1989-02-01T23:59:59.000Z

52

Forecast of the electricity consumption by aggregation of specialized experts; application to Slovakian and French  

E-Print Network [OSTI]

Forecast of the electricity consumption by aggregation of specialized experts; application-term forecast of electricity consumption based on ensemble methods. That is, we use several possibly independent´erieure and CNRS. hal-00484940,version1-19May2010 #12;Forecast of the electricity consumption by aggregation

53

Table 16. Total Energy Consumption, Projected vs. Actual Projected  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary statistics for0b.Total:1Total

54

West Virginia Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010 2011 2012Decade Year-0Total

55

Wisconsin Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010from2009 201060 5.56Total

56

Table 12. Total Coal Consumption, Projected vs. Actual Projected  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary statistics for0 Tablea.Total

57

Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary: Reported provedReal2.1Total

58

Table 8. Total Natural Gas Consumption, Projected vs. Actual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary:Principal shale gas::Total

59

New Mexico Natural Gas Total Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYearDecadeYear Jan Feb Mar Apr May JunTotal

60

North Carolina Natural Gas Total Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecade Year-0 Year-18 2.4156.09 5.50 4.60 4.71Total

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Ohio Natural Gas Total Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (Million CubicDecade Year-0 Year-1Total

62

Pennsylvania Natural Gas Total Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0SalesElements)5.88 4.563,594Total

63

Alabama Natural Gas Total Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) BaseSep-14 Oct-14 Nov-14 Dec-14Total

64

Alaska Natural Gas Total Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan Feb Mar Apr MayThousand7,766Total

65

Arkansas Natural Gas Total Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)YearIndustrial Consumers2009 2010Total

66

South Carolina Natural Gas Total Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) YearPriceThousandThousand479,7416.18 5.69 5.07 5.23 4.41Total

67

South Dakota Natural Gas Total Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) Decade Year-0 Year-1Year JanTotal

68

Kentucky Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15Industrial Consumers2009 20102,846Total

69

Louisiana Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 011,816 20,970 29,517Total

70

Maine Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-14 Oct-14Decade Year-0Total

71

Minnesota Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15Thousand Cubic Feet)Total

72

Montana Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384FuelYear Jan Feb Mar AprTotal

73

Colorado Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 (Million Cubic2009 20104,169Total

74

Connecticut Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 (Million Cubic5.51 4.62Total

75

Florida Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013Fuel2009 2010Total

76

Indiana Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan Feb Mar Apr May JunTotal

77

California Natural Gas Total Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,643 10,998Decade Year-0 Year-1Total

78

Washington Natural Gas Total Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions89 5.87 5.38 5.15 4.79Total

79

Table 16. Total Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c : U.S.Welcome to the1,033 15:b.b. Total Energy

80

Table 4. Total Petroleum Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c : U.S.Welcome toTotala. ImportedTotal

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Overview of the Electrical Energy Segment of the Energy Information Administration/ Manufacturing Consumption Report  

E-Print Network [OSTI]

, liquefied petroleum gas, coke and breeze, coal, and electricity, only the electricity segment is overviewed. Along with pure electrical energy consumption information, newly available data covers methods that manufacturers used to purchase and modify...

Lockhead, S.

82

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

technology at coal-fired power plants, total SO 2 emissionsemission coefficients for electric power and direct-use coal.Coal Similarly, without improvements in sulfur capture at power plants, SO 2 emissions

Fridley, David G.

2008-01-01T23:59:59.000Z

83

Estimates of Energy Consumption by Building Type and End Use at U.S. Army Installations  

E-Print Network [OSTI]

4. Figure 5-5. 1993 Electricity Consumption Estimates by EndkWh/ft ) 1993 Electricity Consumption Estimates by End Useof Total) 1993 Electricity Consumption Estimates by End Use

Konopacki, S.J.

2010-01-01T23:59:59.000Z

84

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

SciTech Connect (OSTI)

Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

2008-03-01T23:59:59.000Z

85

Total energy cycle energy use and emissions of electric vehicles.  

SciTech Connect (OSTI)

A total energy cycle analysis (TECA) of electric vehicles (EV) was recently completed. The EV energy cycle includes production and transport of fuels used in power plants to generate electricity, electricity generation, EV operation, and vehicle and battery manufacture. This paper summarizes the key assumptions and results of the EVTECA. The total energy requirements of EVS me estimated to be 24-35% lower than those of the conventional, gasoline-fueled vehicles they replace, while the reductions in total oil use are even greater: 55-85%. Greenhouse gases (GHG) are 24-37% lower with EVs. EVs reduce total emissions of several criteria air pollutants (VOC, CO, and NO{sub x}) but increase total emissions of others (SO{sub x}, TSP, and lead) over the total energy cycle. Regional emissions are generally reduced with EVs, except possibly SO{sub x}. The limitations of the EVTECA are discussed, and its results are compared with those of other evaluations of EVs. In general, many of the results (particularly the oil use, GHG, VOC, CO, SO{sub x}, and lead results) of the analysis are consistent with those of other evaluations.

Singh, M. K.

1999-04-29T23:59:59.000Z

86

Improving Device-level Electricity Consumption Breakdowns in Private Households Using ON/OFF Events  

E-Print Network [OSTI]

recommen- dations on how to reduce the overall energy consumption of the household. In this paper, we build Descriptors H.4 [Information Systems Applications]: Miscellaneous 1. INTRODUCTION The energy sectorImproving Device-level Electricity Consumption Breakdowns in Private Households Using ON/OFF Events

87

Eawag: Swiss Federal Institute of Aquatic Science and Technology Electricity consumption in the public  

E-Print Network [OSTI]

in the public municipal sector (rough estimates, 1995) 4 Factsheet: Water and energy This information sheet inhabitant (around 3 watts, based on household consumption). · In the public municipal sector, water suppliesEawag: Swiss Federal Institute of Aquatic Science and Technology Electricity consumption

Wehrli, Bernhard

88

Evolutionary Tuning of Building Models to Monthly Electrical Consumption  

E-Print Network [OSTI]

% of the world's primary energy and contributes 21% of the world's greenhouse gas emissions (DOE Buildings Data Book 2011). The largest sector of energy consumption is the ~119 million buildings in the US which New, PhD Theodore Chandler Member ASHRAE ABSTRACT Building energy models of existing buildings

Wang, Xiaorui "Ray"

89

A Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission, and Consumption  

E-Print Network [OSTI]

A Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission, and Consumption Anna Nagurney and Dmytro Matsypura Department of Finance and Operations Management Isenberg School, Berlin, Germany, pp. 3-27. Abstract: A supply chain network perspective for electric power production

Nagurney, Anna

90

A new "In-Use Energy consumption" indicator for the design of energy efficient electr(on)ics  

E-Print Network [OSTI]

A new "In-Use Energy consumption" indicator for the design of energy efficient electr(on)ics Lucie(on)ic equipment is proposed for illustration purposes. Keywords: Energy efficiency; energy consumption; electric version received 23 February 2011) One of the challenging environmental issues faced by the electr

Paris-Sud XI, Université de

91

Issues in International Energy Consumption Analysis: Electricity Usage in  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricity GenerationIndustryIndia's

92

Evolutionary Tuning of Building Models to Monthly Electrical Consumption  

SciTech Connect (OSTI)

Building energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Calibrating models is costly because it is currently an art which requires significant manual effort by an experienced and skilled professional. An automated methodology could significantly decrease this cost and facilitate greater adoption of energy simulation capabilities into the marketplace. The Autotune project is a novel methodology which leverages supercomputing, large databases of simulation data, and machine learning to allow automatic calibration of simulations to match measured experimental data on commodity hardware. This paper shares initial results from the automated methodology applied to the calibration of building energy models (BEM) for EnergyPlus (E+) to reproduce measured monthly electrical data.

Garrett, Aaron [Jacksonville State University] [Jacksonville State University; New, Joshua Ryan [ORNL] [ORNL; Chandler, Theodore [Jacksonville State University] [Jacksonville State University

2013-01-01T23:59:59.000Z

93

Developing a tool to estimate water withdrawal and consumption in electricity generation in the United States.  

SciTech Connect (OSTI)

Freshwater consumption for electricity generation is projected to increase dramatically in the next couple of decades in the United States. The increased demand is likely to further strain freshwater resources in regions where water has already become scarce. Meanwhile, the automotive industry has stepped up its research, development, and deployment efforts on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Large-scale, escalated production of EVs and PHEVs nationwide would require increased electricity production, and so meeting the water demand becomes an even greater challenge. The goal of this study is to provide a baseline assessment of freshwater use in electricity generation in the United States and at the state level. Freshwater withdrawal and consumption requirements for power generated from fossil, nonfossil, and renewable sources via various technologies and by use of different cooling systems are examined. A data inventory has been developed that compiles data from government statistics, reports, and literature issued by major research institutes. A spreadsheet-based model has been developed to conduct the estimates by means of a transparent and interactive process. The model further allows us to project future water withdrawal and consumption in electricity production under the forecasted increases in demand. This tool is intended to provide decision makers with the means to make a quick comparison among various fuel, technology, and cooling system options. The model output can be used to address water resource sustainability when considering new projects or expansion of existing plants.

Wu, M.; Peng, J. (Energy Systems); ( NE)

2011-02-24T23:59:59.000Z

94

Total and Peak Energy Consumption Minimization of Building HVAC Systems Using Model Predictive Control  

E-Print Network [OSTI]

optimal control design for HVAC systems, in Proc. Dynamicelectricity consumption in hvac using learning- based model-algorithm design for hvac systems in energy efficient

Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

2012-01-01T23:59:59.000Z

95

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

water heating Technologies Electric heater Gas boilerCoal Boiler Small cogen Stove District heating Heat pumpElectric water heater Gas boiler Coal Boiler Small cogen Oil

Fridley, David G.

2008-01-01T23:59:59.000Z

96

Modeling Water Withdrawal and Consumption for Electricity Generation in the United States  

E-Print Network [OSTI]

Water withdrawals for thermoelectric cooling account for a significant portion of total water use in the United States. Any change in electrical energy generation policy and technologies has the potential to have a major ...

Strzepek, Kenneth M.

2012-06-15T23:59:59.000Z

97

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

Geothermal Heat Pump Central AC by NG Electric water heaterwater heating Technologies Electric heater Gas boiler Coal Boiler Small cogen Stove District heating Heat pumpHeat Pump* *COP Reference Case Alternative Case Table 10 Office Buildings: Water Heating Efficiency Boiler Gas Boiler Small Cogen Electric Water Heater

Fridley, David G.

2008-01-01T23:59:59.000Z

98

Potential Energy Total electric potential energy, U, of a system of  

E-Print Network [OSTI]

Potential Energy Total electric potential energy, U, of a system of charges is obtained from of work done by the field, W*= -W. Bring q1 from , W *= 0 since no electric F yet #12;Potential Energy Total electric potential energy, U, of a system of charges is obtained from the work done by an external

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

99

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

Primary Electricity Coal Final energy use in buildings is9 million tonnes of coal equivalent energy could be saved byproportion of energy consumed from coal, coke, liquid fuels,

Fridley, David G.

2008-01-01T23:59:59.000Z

100

Data Visualization for Quality-Check Purposes of Monitored Electricity Consumption in All Office Buildings in the ESL Database  

E-Print Network [OSTI]

This report comprises an effort to visualize the monitored electricity consumption in all office buildings (not including the office buildings comprising other functions as classrooms and laboratories, for instance) in the ESL database. This data...

Sreshthaputra, A.; Abushakra, B.; Haberl, J. S.; Claridge, D. E.

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Abstract--Control strategies have been developed for Hybrid Electric Vehicles (HEV) that minimize fuel consumption while  

E-Print Network [OSTI]

is typically the ubiquitous internal combustion engine, tailpipe emissions must also be considered. This paper consumption and engine out emissions. If catalysts or other after treatments are used, minimization of engine sum of fuel consumption and tailpipe emissions for an HEV equipped with a dual mode Electrically

Peng, Huei

102

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Housing Units (millions) Home Appliances Usage Indicators City Town Suburbs Rural Energy Information Administration 2005 Residential Energy Consumption Survey:...

103

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

of Central Government Buildings. Available at: http://Energy Commission, PIER Building End-Use Energy Efficiencythe total lifecycle of a building such as petroleum and

Fridley, David G.

2008-01-01T23:59:59.000Z

104

U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass GasPropane, No.1SalesConsumption of

105

Predicting Future Hourly Residential Electrical Consumption: A Machine Learning Case Study  

SciTech Connect (OSTI)

Whole building input models for energy simulation programs are frequently created in order to evaluate specific energy savings potentials. They are also often utilized to maximize cost-effective retrofits for existing buildings as well as to estimate the impact of policy changes toward meeting energy savings goals. Traditional energy modeling suffers from several factors, including the large number of inputs required to characterize the building, the specificity required to accurately model building materials and components, simplifying assumptions made by underlying simulation algorithms, and the gap between the as-designed and as-built building. Prior works have attempted to mitigate these concerns by using sensor-based machine learning approaches to model energy consumption. However, a majority of these prior works focus only on commercial buildings. The works that focus on modeling residential buildings primarily predict monthly electrical consumption, while commercial models predict hourly consumption. This means there is not a clear indicator of which techniques best model residential consumption, since these methods are only evaluated using low-resolution data. We address this issue by testing seven different machine learning algorithms on a unique residential data set, which contains 140 different sensors measurements, collected every 15 minutes. In addition, we validate each learner's correctness on the ASHRAE Great Energy Prediction Shootout, using the original competition metrics. Our validation results confirm existing conclusions that Neural Network-based methods perform best on commercial buildings. However, the results from testing our residential data set show that Feed Forward Neural Networks, Support Vector Regression (SVR), and Linear Regression methods perform poorly, and that Hierarchical Mixture of Experts (HME) with Least Squares Support Vector Machines (LS-SVM) performs best - a technique not previously applied to this domain.

Edwards, Richard E [ORNL; New, Joshua Ryan [ORNL; Parker, Lynne Edwards [ORNL

2012-01-01T23:59:59.000Z

106

Total..........................................................  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Usage Indicators UrbanRural Location (as Self-Reported) City Town Suburbs Rural Energy Information Administration 2005 Residential Energy Consumption Survey:...

107

Table A17. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61 "Total Inputs

108

Table A20. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61 "Total PAD

109

Table A22. Total First Use (formerly Primary Consumption) of Combustible Ener  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61 "Total PAD1.First

110

Table A30. Total Primary Consumption of Energy for All Purposes by Value of  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61QuantityA3. PAD0. Total

111

"Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 International PetroleumFuel Oil8Status Total Total

112

"Table A11. Total Primary Consumption of Combustible Energy for Nonfuel"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 103. Relative Standard Errors for Table N8.3;"0. Total1. Total

113

Table A39. Total Expenditures for Purchased Electricity and Steam  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5

114

Table 15. Total Electricity Sales, Projected vs. Actual Projected  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary statistics for0b.Total

115

Table 15. Total Electricity Sales, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c : U.S.Welcome to the1,033 15:b.b. Total

116

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.6

117

Impacts of Electric Vehicles on Primary Energy Consumption and Petroleum Displacement  

E-Print Network [OSTI]

L.von 2. The EV primary energy consumption relative to that~ Fig. 3. The EV primary energy consumption relative to thatVehicles on Primary Energy Consumption and Petroleum

Wang, Quanlu; Delucchi, Mark A.

1991-01-01T23:59:59.000Z

118

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.6 54,346.75.12024779961

119

Table A1. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61 " "

120

Table A1. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61 " "2"

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Table A13. Total Consumption of Offsite-Produced Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61 " "2"3.

122

Table A14. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61 "

123

Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61Quantity ofNonfuel

124

Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61Quantity

125

Table A32. Total Consumption of Offsite-Produced Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61QuantityA3.

126

Table A33. Total Primary Consumption of Energy for All Purposes by Employment  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61QuantityA3.Primary

127

Table A9. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " " (EstimatesA9.

128

"Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 International PetroleumFuel Oil8Status Total Delivered

129

"Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 International PetroleumFuel Oil8Status Total Delivered

130

"Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 International PetroleumFuel Oil8Status Total Delivered

131

"Table A15. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 103. Relative Standard Errors for Table N8.3;"0. Total1.

132

An evaluation of total body electrical conductivity to estimate body composition of largemouth bass  

E-Print Network [OSTI]

Information about body composition of fish is important for the assessment and management of fish stocks. Measurement of total body electrical conductivity (TOBEC) recently has been used to estimate the body composition of several fish species in a...

Barziza, Daniel Eugene

1998-01-01T23:59:59.000Z

133

Table 6a. Total Electricity Consumption per Effective Occupied Square Foot,  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24. U.S. VehicleFoot,

134

Table 6b. Relative Standard Errors for Total Electricity Consumption per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24. U.S. VehicleFoot,Effective

135

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network [OSTI]

global and country-specific estimates of total energyglobal and country-specific estimates of total energytotal global electricity consumption is about 5,000 TWh 68 , the energy

Park, Won Young

2011-01-01T23:59:59.000Z

136

Profiling Real-Time Electricity Consumption Data for Process Monitoring and Control  

SciTech Connect (OSTI)

Today, smart meters serve as key assets to utilities and their customers because they are capable of recording and communicating real-time energy usage data; thus, enabling better understanding of energy usage patterns. Other potential benefits of smart meters data include the ability to improve customer experience, grid reliability, outage management, and operational efficiency. Despite these tangible benefits, many utilities are inundated by data and remain uncertain about how to extract additional value from these deployed assets outside of billing operations. One way to overcome this challenge is the development of new metrics for classifying utility customers. Traditionally, utilities classified their customers based on their business nature (residential, commercial, and industrial) and/or their total annual consumption. While this classification is useful for some operational functions, it is too limited for designing effective monitoring and control strategies. In this paper, a data mining methodology is proposed for clustering and profiling smart meters data in order to form unique classes of customers exhibiting similar usage patterns. The developed clusters could help utilities in identifying opportunities for achieving some of the benefits of smart meters data.

Omitaomu, Olufemi A [ORNL

2013-01-01T23:59:59.000Z

137

Please cite this article in press as: T. Zhang, et al., Modelling electricity consumption in office buildings: An agent based approach. Energy Buildings (2011), doi:10.1016/j.enbuild.2011.07.007  

E-Print Network [OSTI]

Please cite this article in press as: T. Zhang, et al., Modelling electricity consumption in office behaviour, to simulate the electricity consumption in office buildings. Based on a case study, we use office electricity consumption problems. This paper theoretically contributes to an integration

Aickelin, Uwe

138

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

49 3.3.3. Pre-installation electricity consumption of CSIE. Kahn (2011). Electricity Consumption and Durable Housing:on Electricity Consumption .

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

139

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh)...

140

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network [OSTI]

consumption, long lifetime on batteries, low sample rates,instead of replying on batteries. At the same time, we arelow power operation on batteries is not required, since the

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Total..............................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7 111.1

142

Total................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7 111.1..

143

Total........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7 111.1..

144

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7

145

Total...........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7Q Table

146

Total...........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7Q TableQ

147

Total...........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7Q

148

Total...........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7Q26.7

149

Total............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7

150

Total............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7

151

Total.............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.7 28.8 20.6

152

Total..............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.7 28.8

153

Total..............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.7 28.8,171

154

Total...............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.7

155

Total...............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.70.7 21.7

156

Total...............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.70.7

157

Total...............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.70.747.1

158

Total...............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.70.747.1Do

159

Total................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.70.747.1Do

160

Total.................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Total.................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4 12.5 12.5

162

Total.................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4 12.5

163

Total..................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4 12.578.1

164

Total..................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4

165

Total..................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4. 111.1 14.7

166

Total...................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4. 111.1

167

Total...................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4. 111.115.2

168

Total...................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4.

169

Total...................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7

170

Total...................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,033 1,618

171

Total....................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,033 1,61814.7

172

Total.......................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,033

173

Total.......................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.6 17.7

174

Total.......................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.6 17.74.2

175

Total........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.6

176

Total........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.615.1 5.5

177

Total........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.615.1

178

Total........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.615.10.7

179

Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies  

SciTech Connect (OSTI)

Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

2011-03-01T23:59:59.000Z

180

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

battery Utility electricity consumption Electricity providedis expressed in electricity consumption of the electricis expressed in electricity consumption of the electric

Stadler, Michael

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Modeling diffusion of electrical appliances in the residential sector  

E-Print Network [OSTI]

in forecasting electricity consumption in the residentialmodeling, since household electricity consumption is largelyup forecasting of electricity consumption by combining

McNeil, Michael A.

2010-01-01T23:59:59.000Z

182

Energy Consumption Characteristics of Light Manufacturing Facilities in The Northern Plains: A Study of Detailed Data from 10 Industrial Energy Audits Conducted in 1993  

E-Print Network [OSTI]

was $0.46/ccf of natural gas and $O.053IkWh of electricity. Natural Gas Consumption Of the total natural gas consumption, steam processes used the largest quantity with 48 percent, followed closely by space heating with 45 percent. The remaining 7... natural gas consumption. The large space heating loads warranted extensive evaluation of the building's thermal envelope for improved heat loss resistance. Electrical Consumption The electricity consumption for the plants (Table 3) was divided...

Twedt, M.; Bassett, K.

183

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network [OSTI]

energy flows in the building electrical load tree. . . . . . . . . . . . . . . . . . . . . . . .intrinsic property of energy load trees is additivity - thevisualization of energy flows in the load tree, as shown in

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

184

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network [OSTI]

architecture that provides fine-grained real-time visibility into building energy consumption enables significant and sustainablearchitecture, to create actionable views of energy usages, which lead to significant and sustainablearchitecture for local energy generation, distribution, and sharing. IEEE Conference on Global Sustainable

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

185

Household activities through various lenses: crossing surveys, diaries and electric consumption  

E-Print Network [OSTI]

result brings more evidence of the diaries relevance to understand electricity time of use,results show an overall consistency of the three tools regarding the measurement of the intensity and time of use

Durand-Daubin, Mathieu

2013-01-01T23:59:59.000Z

186

Naval ship propulsion and electric power systems selection for optimal fuel consumption  

E-Print Network [OSTI]

Although propulsion and electric power systems selection is an important part of naval ship design, respective decisions often have to be made without detailed ship knowledge (resistance, propulsors, etc.). Propulsion and ...

Sarris, Emmanouil

2011-01-01T23:59:59.000Z

187

Effect of automotive electrical system changes on fuel consumption using incremental efficiency methodology  

E-Print Network [OSTI]

There has been a continuous increase in automotive electric power usage. Future projections show no sign of it decreasing. Therefore, the automotive industry has a need to either improve the current 12 Volt automotive ...

Hardin, Christopher William

2004-01-01T23:59:59.000Z

188

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network [OSTI]

3 System Architecture 3.1 Building as a2.1 Energy Flows in Buildings . . . . . . . . 2.1.1 Electric2.3.2 Networking . . . . . . . . . . . . 2.4 Building Energy

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

189

The Energy Box : comparing locally automated control strategies of residential electricity consumption under uncertainty  

E-Print Network [OSTI]

The Energy Box is an always-on background processor automating the temporal management of one's home or small business electrical energy usage. Cost savings are achieved in a variety of environments, ranging from at pricing ...

Livengood, Daniel James

2011-01-01T23:59:59.000Z

190

Adapting state and national electricity consumption forecasting methods to utility service areas. Final report  

SciTech Connect (OSTI)

This report summarizes the experiences of six utilities (Florida Power and Light Co., Municipal Electric Authority of Georgia, Philadelphia Electric Co., Public Service Co. of Colorado, Sacramento Municipal Utility District, and TVA) in adapting to their service territories models that were developed for forecasting loads on a national or regional basis. The models examined were of both end-use and econometric design and included the three major customer classes: residential, commercial, and industrial.

Swift, M.A.

1984-07-01T23:59:59.000Z

191

Smart Beijing: Correlation of Urban Electrical Energy Consumption with Urban Environmental Sensing for Optimizing Distribution Planning  

E-Print Network [OSTI]

parameters (air quality, noise pollution, traffic levels, water quality, etc.) in a distributed manner and create anomolies in pollution levels in specific locations, such as sporting events, rallies and fairs pollution and a series of other social problems. The urban electrical energy development has also been

Beigl, Michael

192

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network [OSTI]

a forecast for total energy consumption in network standbyconsiderable impact on total energy consumption from TVs.factors affecting total energy consumption. Although further

Park, Won Young

2011-01-01T23:59:59.000Z

193

Issues in International Energy Consumption Analysis: Electricity Usage in Indias Housing Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricity

194

"Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 103. Relative Standard Errors for Table N8.3;"0. Total

195

"Table A2. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 103. Relative Standard Errors for Table N8.3;"0. Total1.6.7..

196

One of These Homes is Not Like the Other: Residential Energy Consumption Variability  

E-Print Network [OSTI]

estimates of gas and electricity consumption were preparedestimates the gas and electricity consumption in a typicalthat lacked electricity consumption data were discarded for

Kelsven, Phillip

2013-01-01T23:59:59.000Z

197

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

198

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network [OSTI]

Solar Energy Center ABSTRACT Currently, total electricity consumption of furnacesFurnace Blower Electricity: National and Regional Savings Potential Victor Franco, James Lutz, Alex Lekov, and Lixing Gu (Florida Solar

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

199

ECE 331 -Biomedical Instrumentation Department of Electrical & Computer Engineering, UBC Implant Design & Total Hip Arthroplasty  

E-Print Network [OSTI]

ECE 331 - Biomedical Instrumentation Department of Electrical & Computer Engineering, UBC Lab #6 screw from the implant once it is successfully implanted. #12;ECE 331 - Biomedical Instrumentation

Pulfrey, David L.

200

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

202

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

203

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

7A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

204

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

205

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

206

Power consumption monitoring using additional monitoring device  

SciTech Connect (OSTI)

Today, emphasis is placed on reducing power consumption. Computers are large consumers; therefore it is important to know the total consumption of computing systems. Since their optimal functioning requires quite strict environmental conditions, without much variation in temperature and humidity, reducing energy consumption cannot be made without monitoring environmental parameters. Thus, the present work uses a multifunctional electric meter UPT 210 for power consumption monitoring. Two applications were developed: software which carries meter readings provided by electronic and programming facilitates remote device and a device for temperature monitoring and control. Following temperature variations that occur both in the cooling system, as well as the ambient, can reduce energy consumption. For this purpose, some air conditioning units or some computers are stopped in different time slots. These intervals were set so that the economy is high, but the work's Datacenter is not disturbed.

Tru?c?, M. R. C., E-mail: radu.trusca@itim-cj.ro; Albert, ?., E-mail: radu.trusca@itim-cj.ro; Tudoran, C., E-mail: radu.trusca@itim-cj.ro; Soran, M. L., E-mail: radu.trusca@itim-cj.ro; F?rca?, F., E-mail: radu.trusca@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Abrudean, M. [Technical University of Cluj-Napoca, Cluj-Napoca (Romania)] [Technical University of Cluj-Napoca, Cluj-Napoca (Romania)

2013-11-13T23:59:59.000Z

207

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network [OSTI]

LPG is a major energy source, while coal and electricity arethe total residential energy and coal is the dominant fuel.1 Residential Energy consumption by End-use Coal Renewables

Zhou, Nan

2010-01-01T23:59:59.000Z

208

2013 Total Electric Industry- Average Retail Price (cents/kWh)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region, ReferenceG (2005)Average Retail

209

Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series6,979 893 January30. Total

210

Please cite this article in press as: R.E. Edwards, et al., Predicting future hourly residential electrical consumption: A machine learning case study, Energy Buildings (2012), doi:10.1016/j.enbuild.2012.03.010  

E-Print Network [OSTI]

, how- ever, whether these techniques can translate to residential buildings, since the energy usage and commercial buildings consitute the largest sec- tor of U.S. primary energy consumption at 40% [1]. Building electrical consumption: A machine learning case study, Energy Buildings (2012), doi:10.1016/j.enbuild.2012

Parker, Lynne E.

211

& CONSUMPTION US HYDROPOWER PRODUCTION  

E-Print Network [OSTI]

ENERGY PRODUCTION & CONSUMPTION US HYDROPOWER PRODUCTION In the United States hydropower supplies 12% of the nation's electricity. Hydropower produces more than 90,000 megawatts of electricity, which is enough to meet the needs of 28.3 million consumers. Hydropower accounts for over 90% of all electricity

212

Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61 "Total Inputs of

213

Table A19. Components of Total Electricity Demand by Census Region and  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61 "Total

214

Table A26. Components of Total Electricity Demand by Census Region, Census Di  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61 "TotalComponents

215

Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61QuantityA3. PAD0.Total

216

Table A34. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61QuantityA3.PrimaryTotal

217

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

E-Print Network [OSTI]

for 90% of household electricity consumption in China. Usinggives an annual electricity consumption of 12kWh assumingto look at is electricity consumption at the household

Letschert, Virginie

2010-01-01T23:59:59.000Z

218

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

the fraction of total energy consumption attributable toFraction of Total Energy Consumption Background Although thewindow fraction of total energy consumption. We believe that

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

219

Video game console usage and national energy consumption: Results from a field-metering study  

E-Print Network [OSTI]

about half of the total energy consumption from Wii consolescan estimate total national energy consumption due to videoof on mode energy consumption to the total AEC. For most

Desroches, Louis-Benoit

2013-01-01T23:59:59.000Z

220

Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series6,979 893 January3

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series6,979 893 January30.

222

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series6,979 893Type"

223

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series6,979 893Type" "

224

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series6,979 893Type"

225

Table A41. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series6,9792" "9.A41.

226

Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series6,9792"

227

Table A52. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series6,9792"1. Number of2.

228

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " " (Estimates in

229

Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " " (Estimates in

230

Estimation of body composition in channel catfish utilizing relative weight and total body electrical conductivity  

E-Print Network [OSTI]

) of channel catfish based on TOBEC, total length (L), and weight (W) measurements (Ps 0. 0001). . 31 7 Individual fish codes, body measurements, and observed (0) and predicted (P) ash and lean body mass components for channel catfish used to evaluate... on measurements such as weight, length, or body condition factors have been previously employed to estimate body composition (Brown and Murphy, 1991). In bluegill (Lepomis macrochirus), components such as lipid, protein, ash, and dry weight have been...

Jaramillo, Francisco

1993-01-01T23:59:59.000Z

231

Energy-efficiency standards for homes have the potential to reduce energy consumption and peak electrical demand.  

E-Print Network [OSTI]

The Issue Energy-efficiency standards for homes have the potential to reduce energy consumption HVAC system efficiency, including problems with airflows, refrigerant system components, and ductwork standards, but little data is available on the actu- al energy performance of new homes. The Solution

232

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series6,979 893 January30.2"

233

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series6,979 893Type"2"

234

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " " (Estimates in Btu

235

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " " (Estimates in by

236

"Table A16. Components of Total Electricity Demand by Census Region, Industry"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 103. Relative Standard Errors for Table N8.3;"0. Total1.6.

237

Future Air Conditioning Energy Consumption in Developing Countries and what can be done about it: The Potential of Efficiency in the Residential Sector  

E-Print Network [OSTI]

2004) Survey on Electricity Consumption Characteristics ofof residential electricity consumption in rapidly developingbusiness as usual electricity consumption by country/region

McNeil, Michael A.; Letschert, Virginie E.

2008-01-01T23:59:59.000Z

238

The technology path to deep greenhouse gas emissions cuts by 2050: The pivotal role of electricity  

E-Print Network [OSTI]

consumption (EJ) Primary energy consumption and emissions,Total all sectors Primary energy consumption and emissions,

Williams, J.H.

2013-01-01T23:59:59.000Z

239

Modelling the impact of user behaviour on heat energy consumption  

E-Print Network [OSTI]

strategies impact on energy consumption in residentialBEHAVIOUR ON HEAT ENERGY CONSUMPTION Nicola Combe 1 ,2 ,nearly 60% of domestic energy consumption and 27% of total

Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

2011-01-01T23:59:59.000Z

240

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

242

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square...

243

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

244

Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 1: technical report  

SciTech Connect (OSTI)

This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume I contains the major results, a discussion of the conceptual framework of the study, and summaries of the vehicle, utility, fuel production, and manufacturing analyses. It also contains summaries of comments provided by external peer reviewers and brief responses to these comments.

Cuenca, R.; Formento, J.; Gaines, L.; Marr, B.; Santini, D.; Wang, M. [Argonne National Lab., IL (United States); Adelman, S.; Kline, D.; Mark, J.; Ohi, J.; Rau, N. [National Renewable Energy Lab., Golden, CO (United States); Freeman, S.; Humphreys, K.; Placet, M. [Pacific Northwest National Lab., Richland, WA (United States)

1998-01-01T23:59:59.000Z

245

One of These Homes is Not Like the Other: Residential Energy Consumption Variability  

E-Print Network [OSTI]

the total annual energy consumption. The behavior patternsin total residential energy consumption per home, even whenthe variability in energy consumption can vary by factors of

Kelsven, Phillip

2013-01-01T23:59:59.000Z

246

Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes  

E-Print Network [OSTI]

contributor to annual electricity consumption, and certainplay in Other electricity consumption in new homes, andor range. Other electricity consumption was derived by

Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

2007-01-01T23:59:59.000Z

247

Eliminating Electricity Deficit through Energy Efficiency in India: An Evaluation of Aggregate Economic and Carbon Benefits  

E-Print Network [OSTI]

The cumulative electricity consumption deficit amounts toper unit of electricity consumption than the overalldata on value added and electricity consumption by sectors

Sathaye, Jayant

2010-01-01T23:59:59.000Z

248

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

by natural gas. Electricity consumption by a furnace blowerto the annual electricity consumption of a major appliance.not account for the electricity consumption of the appliance

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

249

Residential Behavioral Savings: An Analysis of Principal Electricity End Uses in British Columbia  

E-Print Network [OSTI]

of residential end use electricity consumption for Britishresidential electricity consumption by end use Apply theresidential end use electricity consumption using a

Tiedemann, Kenneth Mr.

2013-01-01T23:59:59.000Z

250

Electric Motor Remanufacturing and Energy Savings Sahil Sahni1  

E-Print Network [OSTI]

Electric Motor Remanufacturing and Energy Savings Sahil Sahni1 , Avid Boustani1 , Timothy Gutowski to this study. #12;Contents 1 Introduction to Electric Motors 1 1.1 Motor Classifications of Figures 1 Motor System Electricity Consumption by Industrial Sectors (TWh) for 1994. A total of 691

Gutowski, Timothy

251

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

charging kW Utility electricity consumption Electricityis expressed in electricity consumption of the electricis expressed in electricity consumption of the electric

Stadler, Michael

2009-01-01T23:59:59.000Z

252

Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey  

SciTech Connect (OSTI)

The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

Davis, J.; Swenson, A.

1998-07-01T23:59:59.000Z

253

The Wealth-Consumption Ratio  

E-Print Network [OSTI]

We derive new estimates of total wealth, the returns on total wealth, and the wealth effect on consumption. We estimate the prices of aggregate risk from bond yields and stock returns using a no-arbitrage model. Using these ...

Verdelhan, Adrien Frederic

254

The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency  

E-Print Network [OSTI]

B. Atanasiu (2006). Electricity Consumption and Efficiencywill see their electricity consumption rise significantly.the bulk of household electricity consumption in developing

Letschert, Virginie

2010-01-01T23:59:59.000Z

255

World energy consumption  

SciTech Connect (OSTI)

Historical and projected world energy consumption information is displayed. The information is presented by region and fuel type, and includes a world total. Measurements are in quadrillion Btu. Sources of the information contained in the table are: (1) history--Energy Information Administration (EIA), International Energy Annual 1992, DOE/EIA-0219(92); (2) projections--EIA, World Energy Projections System, 1994. Country amounts include an adjustment to account for electricity trade. Regions or country groups are shown as follows: (1) Organization for Economic Cooperation and Development (OECD), US (not including US territories), which are included in other (ECD), Canada, Japan, OECD Europe, United Kingdom, France, Germany, Italy, Netherlands, other Europe, and other OECD; (2) Eurasia--China, former Soviet Union, eastern Europe; (3) rest of world--Organization of Petroleum Exporting Countries (OPEC) and other countries not included in any other group. Fuel types include oil, natural gas, coal, nuclear, and other. Other includes hydroelectricity, geothermal, solar, biomass, wind, and other renewable sources.

NONE

1995-12-01T23:59:59.000Z

256

US WSC TX Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but...

257

US ESC TN Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

an average of 79 million Btu per year, about 12% less than the U.S. average. * Average electricity consumption for Tennessee households is 33% higher than the national average...

258

Utilizing Mobility to Minimize the Total Communication and Motion Energy  

E-Print Network [OSTI]

Utilizing Mobility to Minimize the Total Communication and Motion Energy Consumption of a Robotic costs. However, simplified path loss models are utilized to model the communication channels. In Yan Operation Yuan Yan and Yasamin Mostofi Department of Electrical and Computer Engineering University

Mostofi, Yasamin

259

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

6A. Electricity Expenditures by Census Region for All Buildings, 2003 Total Electricity Expenditures (million dollars) Electricity Expenditures (dollars) per kWh per Square Foot...

260

Electric Power Quarterly, October-December 1984  

SciTech Connect (OSTI)

The Electric Power Quarterly (EPQ) provides electric utilities' plant-level information about the cost, quantity, and quality of fossil fuel receipts, net generation, fuel consumption, and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. In this report, data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Federal Energy Regulatory Commission (FERC) Form 423 are presented on a plant-by-plant basis.

Not Available

1985-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Electric Power Quarterly, January-March 1986  

SciTech Connect (OSTI)

The ''Electric Power Quarterly (EPQ)'' provides information on electric utilities at the plant level. The information concerns the following: cost, quantity, and quality of fossil fuel receipts; net generation; fuel consumption; and fuel stocks. The ''EPQ'' contains monthly data and quarterly totals for the reporting quarter. In this report, data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Federal Energy Regulatory Commission (FERC) Form 423 are presented on a plant-by-plant basis.

Not Available

1986-07-21T23:59:59.000Z

262

Electric Power Quarterly, July-September 1984  

SciTech Connect (OSTI)

The Electric Power Quarterly (EPQ) provides electric utilities' plant-level information about the cost, quantity, and quality of fossil fuel receipts, net generation, fuel consumption, and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. In this report, data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Federal Energy Regulatory Commission (FERC) Form 423 are presented on a plant-by-plant basis.

Not Available

1985-01-01T23:59:59.000Z

263

The Reality and Future Scenarios of Commercial Building Energy Consumption in China  

E-Print Network [OSTI]

the total primary energy consumption in 2000. Furthermore,The Commercial Primary Energy Consumption by Sector GDP

Zhou, Nan

2008-01-01T23:59:59.000Z

264

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network [OSTI]

USA. CEC, 2012. Electricity Consumption by Planning Area [of customer gross electricity consumption, for three levelsresponse reduces electricity consumption, sometimes through

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

265

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Total Building Energy Consumption (Trillion BTU/yr) Area,

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

266

Manuscript submitted to Electricity Journal 6/2/2006 Steven Letendre Richard Perez  

E-Print Network [OSTI]

Manuscript submitted to Electricity Journal 6/2/2006 Steven Letendre Richard Perez The Prometheus of the U.S. electric grid has become increasingly complex as it has been called upon to accommodate growth in total electricity consumption of 75%, accompanied by an increase in non-coincident peak demand in excess

Perez, Richard R.

267

Classification of Energy Consumption in Buildings with Outlier Detection  

E-Print Network [OSTI]

. Then a canonical variate analysis is employed to describe latent variables of daily electricity consumption is used to predict the daily electricity consumption profiles. A case study, based on a mixed use consumption data within a buildings energy management system. Electrical peak load forecasting plays

Yao, Xin

268

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings...

269

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

270

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace...

271

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

272

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

273

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

274

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total...

275

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network [OSTI]

i n g s 2.1 Total Energy Consumption i n Japan's Residentialhouses. 2.1 Total Energy Consumption in Japan's Residentialorder to reduce total energy consumption. Figure 2 suggests

2006-01-01T23:59:59.000Z

276

Total plastic strain and electrical resistivity in high purity aluminum cyclically strained at 4.2 K  

E-Print Network [OSTI]

at any point and travel clockwise (relative to the center of the loop) around the loop until returning to the start point. The total strain for one cycle is two times the strain range (25c) and the total elastic and plastic strain are 26e, and 26ev... is the summation of the plastic strain per cycle for each hysteresis loop. C. Edd Current Deca Method of Resistivit Measurement One way to measure the resistivity of a metal is the eddy current decay method. This technique is based upon the time dependent decay...

Gehan, James Terence

1988-01-01T23:59:59.000Z

277

ELECTRIC  

Office of Legacy Management (LM)

you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

278

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption  

E-Print Network [OSTI]

backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are neededCost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure online 22 October 2012 Keywords: Plug-in hybrid electric vehicle Charging infrastructure Battery size a b

Michalek, Jeremy J.

279

Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 4: peer review comments on technical report  

SciTech Connect (OSTI)

This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume IV includes copies of all the external peer review comments on the report distributed for review in July 1997.

NONE

1998-01-01T23:59:59.000Z

280

Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 2: appendices A-D to technical report  

SciTech Connect (OSTI)

This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline- powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume II contains additional details on the vehicle, utility, and materials analyses and discusses several details of the methodology.

NONE

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Eliminating Electricity Deficit through Energy Efficiency in India: An Evaluation of Aggregate Economic and Carbon Benefits  

E-Print Network [OSTI]

devoted to the power sector, electricity deficits continuethe sector by the sectors electricity consumption. In thewhile data on electricity consumption by sector are taken

Sathaye, Jayant

2010-01-01T23:59:59.000Z

282

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

or fewer than 20 buildings were sampled. NNo responding cases in sample. Notes: Statistics for the "Energy End Uses" category represent total consumption in buildings that...

283

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A, C, and E of the 2003 Commercial Buildings Energy Consumption Survey....

284

Table ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2012, United States  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use Energy ExpenditureET1.

285

Furnace Blower Electricity: National and Regional Savings Potential  

SciTech Connect (OSTI)

Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

2008-05-16T23:59:59.000Z

286

Electric Power Quarterly, October-December 1985. [Glossary  

SciTech Connect (OSTI)

The Electric Power Quarterly (EPQ) provides information on electric utilities at the plant level. The information concerns the following: cost, quantity, and quality of fossil fuel receipts; net generation; fuel consumption; and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. Data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Federal Energy Regulatory Commission (FERC) Form 423 are presented on a plant-by-plant basis.

Not Available

1986-05-05T23:59:59.000Z

287

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

roughly 2.7% of total US energy consumption. The final tworoughly 1.5% of total US energy consumption. The final twoSpace Conditioning Energy Consumption in US Buildings Annual

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

288

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

recently. In 2006, total energy consumption reached 2,4577.5% per year, total energy consumption in 2010 will reachof Enterprises Total Energy Consumption Mtce pe tro iro le

Price, Lynn

2008-01-01T23:59:59.000Z

289

Constraining Energy Consumption of China's Largest Industrial Enterprises Through the Top-1000 Energy-Consuming Enterprise Program  

E-Print Network [OSTI]

recently. In 2005, total energy consumption reached 2,2257.5% per year, total energy consumption in 2010 will reachof Enterprises and Total Energy Consumption by Sector of the

Price, Lynn; Wang, Xuejun

2007-01-01T23:59:59.000Z

290

Household energy consumption and expenditures 1993  

SciTech Connect (OSTI)

This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

NONE

1995-10-05T23:59:59.000Z

291

US SoAtl VA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

an average of 86 million Btu per year, about 4% less than the U.S. average. * Average electricity consumption and costs are higher for Virginia households than the national...

292

US MidAtl NY Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

consume an average of 103 million Btu per year, 15% more than the U.S. average. * Electricity consumption in New York homes is much lower than the U.S. average, because...

293

US SoAtl GA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

household (2,067) in Georgia are similar to the U.S. household averages. * Per household electricity consumption in Georgia is among the highest in the country, but similar to...

294

Electricity Monthly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and fuel consumption In this section, we look at the resources used to produce electricity. Generating units are chosen to run primarily on their operating costs, of which...

295

2013 Total Electric Industry- Customers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H. I.Plasma Camp View largerCustomers (Data

296

Electric power quarterly, July-September 1986  

SciTech Connect (OSTI)

The Electric Power Quarterly (EPQ) provides information on electric utilities at the plant level. The information concerns the following: cost, quantity, and quality of fossil fuel receipts; net generation; fuel consumption; and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. In this report, data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Form 423 are presented on a plant-by-plant basis. The EPQ presents a quarterly summary of disturbances and unusual occurrences affecting the electric power industry collected by the Office of International Affairs and Energy Emergencies (IE) on Form IE-417.

Not Available

1987-02-04T23:59:59.000Z

297

Emissions and Fuel Consumption Test Results from a Plug-In Hybrid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus Emissions and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus 2010 DOE Vehicle...

298

Demonstration Of A Monitoring Lamp To Visualize The Energy Consumption In Houses  

E-Print Network [OSTI]

the sources of consumption. Automated monitoring of the electricity consumption in a house is quite a recent or numbers, but simply alert residents that something relevant to their electricity consumption is chang- ingDemonstration Of A Monitoring Lamp To Visualize The Energy Consumption In Houses Christophe Gisler1

Paris-Sud XI, Université de

299

Automated Continuous Commissioning of Commercial Buildings  

E-Print Network [OSTI]

electricity consumption ..the total building electricity consumption between measured87 Figure 49 Total electricity consumption end use breakdown

Bailey, Trevor

2013-01-01T23:59:59.000Z

300

An analysis of residential energy consumption in a temperate climate  

SciTech Connect (OSTI)

Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common energy package.'' Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

Clark, Y.Y.; Vincent, W.

1987-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Impact of Extended Daylight Saving Time on National Energy Consumption Report to Congress  

SciTech Connect (OSTI)

The Energy Policy Act of 2005 (Pub. L. No. 109-58; EPAct 2005) amended the Uniform Time Act of 1966 (Pub. L. No. 89-387) to increase the portion of the year that is subject to Daylight Saving Time. (15 U.S.C. 260a note) EPAct 2005 extended the duration of Daylight Saving Time in the spring by changing its start date from the first Sunday in April to the second Sunday in March, and in the fall by changing its end date from the last Sunday in October to the first Sunday in November. (15 U.S.C. 260a note) EPAct 2005 also called for the Department of Energy to evaluate the impact of Extended Daylight Saving Time on energy consumption in the United States and to submit a report to Congress. (15 U.S.C. 260a note) This report presents the results of impacts of Extended Daylight Saving Time on the national energy consumption in the United States. The key findings are: (1) The total electricity savings of Extended Daylight Saving Time were about 1.3 Tera Watt-hour (TWh). This corresponds to 0.5 percent per each day of Extended Daylight Saving Time, or 0.03 percent of electricity consumption over the year. In reference, the total 2007 electricity consumption in the United States was 3,900 TWh. (2) In terms of national primary energy consumption, the electricity savings translate to a reduction of 17 Trillion Btu (TBtu) over the spring and fall Extended Daylight Saving Time periods, or roughly 0.02 percent of total U.S. energy consumption during 2007 of 101,000 TBtu. (3) During Extended Daylight Saving Time, electricity savings generally occurred over a three- to five-hour period in the evening with small increases in usage during the early-morning hours. On a daily percentage basis, electricity savings were slightly greater during the March (spring) extension of Extended Daylight Saving Time than the November (fall) extension. On a regional basis, some southern portions of the United States exhibited slightly smaller impacts of Extended Daylight Saving Time on energy savings compared to the northern regions, a result possibly due to a small, offsetting increase in household air conditioning usage. (4) Changes in national traffic volume and motor gasoline consumption for passenger vehicles in 2007 were determined to be statistically insignificant and therefore, could not be attributed to Extended Daylight Saving Time.

Belzer, D. B.; Hadley, S. W.; Chin, S-M.

2008-10-01T23:59:59.000Z

302

Factors of material consumption  

E-Print Network [OSTI]

Historic consumption trends for materials have been studied by many researchers, and, in order to identify the main drivers of consumption, special attention has been given to material intensity, which is the consumption ...

Silva Daz, Pamela Cristina

2012-01-01T23:59:59.000Z

303

Abstract The measurement of the total losses of electrical ma-chines is of most interest to designers for verifying their calcula-  

E-Print Network [OSTI]

, Calorimetric Method, Calorimetry. INTRODUCTION Heat run tests performed on electric machines to determine. Keywords: Temperature Measurement, Machine Testing, Losses in Electrical Machines, Loss Measurement. It is a well-known fact that the operating temperature of an electric machine has a very strong relationship

Szabados, Barna

304

State energy data report 1996: Consumption estimates  

SciTech Connect (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

NONE

1999-02-01T23:59:59.000Z

305

Profiling, Prediction, and Capping of Power Consumption in Consolidated Environments  

E-Print Network [OSTI]

.2% of the overall electricity consumption in the U.S. More alarmingly, if current practices for the designProfiling, Prediction, and Capping of Power Consumption in Consolidated Environments Jeonghwan Choi be able to charac- terize the power consumption of groups of co-located ap- plications

Urgaonkar, Bhuvan

306

Profiling, Prediction, and Capping of Power Consumption in Consolidated Environments  

E-Print Network [OSTI]

- puting platforms (or data centers) accounts for 1.2% of the overall electricity consumption in the UProfiling, Prediction, and Capping of Power Consumption in Consolidated Environments Jeonghwan Choi the power consumption of groups of co-located applications. Such characterization is crucial for effective

Urgaonkar, Bhuvan

307

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

Chinas total primary energy consumption in 2005, along withof Chinas total primary energy consumption (Lin et al. ,accounted for, the primary energy consumption of the Top-

Price, Lynn

2008-01-01T23:59:59.000Z

308

Constraining Energy Consumption of China's Largest Industrial Enterprises Through the Top-1000 Energy-Consuming Enterprise Program  

E-Print Network [OSTI]

Chinas total primary energy consumption in 2005, along withthe industrial sector primary energy consumption was 1,416of Chinas total primary energy consumption (Lin et al. ,

Price, Lynn; Wang, Xuejun

2007-01-01T23:59:59.000Z

309

Fuel consumption model for FREFLO  

E-Print Network [OSTI]

above, Biggs and Akcelik (1985) proposed a model of the following form: f = fsito + &Pr + z[apr)o o (5) where, Po = total drag power P, = inertia power a = instantaneous acceleration 8, = fuel consumption per unit power 8, = fuel consumption per... that is additional to S, P, . This component is expressed as SzaP, , where &z is considered to be a secondary efficiency parameter that relates fuel to the product of inertia power and acceleration rate, for positive accelerations. This term allows for the effects...

Rao, Kethireddipalli Srinivas

1992-01-01T23:59:59.000Z

310

Electric Power Quarterly, January-March 1983  

SciTech Connect (OSTI)

The Electric Power Quarterly (EPQ), a new series in the EIA statistical publications, provides electric utilities' plant-level information about the cost, quantity, and quality of fossil fuel receipts, net generation, fuel consumption and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. The data presented in this report were collected and published by the EIA to fulfill its responsibilities as specified in the Federal Energy Administration Act of 1974 (P.L. 93-275). This edition of the EPQ contains monthly data for the first quarter of 1983. In this report, data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented for the first time on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Federal Energy Regulatory Commission (FERC) Form 423 are presented on a plant-by-plant basis.

Not Available

1983-07-01T23:59:59.000Z

311

Exposing Datapath Elements to Reduce Microprocessor Energy Consumption  

E-Print Network [OSTI]

to Reduce Microprocessor Energy Consumption by Mark Jerome Hampton Submitted to the Department of ElectricalExposing Datapath Elements to Reduce Microprocessor Energy Consumption by Mark Jerome Hampton B Submitted to the Department of Electrical Engineering and Computer Science in partial ful llment

312

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

sum to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A, C, and E of the 2003 Commercial Buildings Energy Consumption Survey....

313

Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis  

E-Print Network [OSTI]

27% of the total US energy consumption and 72% of theof Figures Figure 2-1 U.S. energy consumption by source andU.S. (FHWA, Figure 2-1 U.S. energy consumption by source and

Scora, George Alexander

2011-01-01T23:59:59.000Z

314

Measured effect of wind generation on the fuel consumption of an isolated diesel power system  

SciTech Connect (OSTI)

The Block Island Power Company (BIPCO), on Block Island, Rhode Island, operates an isolated electric power system consisting of diesel generation and an experimental wind turbine. The 150-kW wind turbine, designated MOD-OA by the U.S. Department of Energy is typically operated in parallel with two diesel generators to serve an average winter load of 350 kW. Wind generation serves up to 60% of the system demand depending on wind speed and total system load. Results of diesel fuel consumption measurements are given for the diesel units operated in parallel with the wind turbine and again without the wind turbine. The fuel consumption data are used to calculate the amount of fuel displaced by wind energy. Results indicate that the wind turbine displaced 25,700 lbs. of the diesel fuel during the test period, representing a calculated reduction in fuel consumption of 6.7% while generating 11% of the total electrical energy. The amount of displaced fuel depends on operating conditions and system load. It is also shown that diesel engine throttle activity resulting from wind gusts which rapidly change the wind turbine output do not significantly influence fuel consumption.

Stiller, P.; Scott, G.; Shaltens, R.

1983-06-01T23:59:59.000Z

315

Lakeland Electric SGIG Consumer Behavior Study Interim (Year...  

Office of Environmental Management (EM)

efficiency and reduce electric consumption during peak times; Educating customers on pricing options, usage patterns, and peak times to enable them to make changes in consumption...

316

State energy data report 1994: Consumption estimates  

SciTech Connect (OSTI)

This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

NONE

1996-10-01T23:59:59.000Z

317

On the Interplay of Parallelization, Program Performance, and Energy Consumption  

E-Print Network [OSTI]

to either minimize the total energy consumption or minimize the energy-delay product. The impact of staticOn the Interplay of Parallelization, Program Performance, and Energy Consumption Sangyeun Cho through parallel execution of applications, suppressing the power and energy consumption remains an even

Marchal, Loris

318

INCREASED FOOD AND ENERGY CONSUMPTION OF LACTATING NORTHERN FUR SEALS,  

E-Print Network [OSTI]

respectively. Fish accounted for 66.4% of food biomass (69.4% of total energy consumption); squidINCREASED FOOD AND ENERGY CONSUMPTION OF LACTATING NORTHERN FUR SEALS, CALWRHINUS URSINUS MICHAEL A on ter- restrial mammals have specifically shown increased energy consumption by lactating females

319

Changing Trends: A Brief History of the US Household Consumption of Energy, Water, Food, Beverages and Tobacco  

E-Print Network [OSTI]

in energy consumption. Patterns of Consumption--Historic Trends Electricity & Gas We'll start with historicChanging Trends: A Brief History of the US Household Consumption of Energy, Water, Food, Beverages analysis of consumption patterns of different commodities in the U.S. shed light on the consumption

320

Manufacturing consumption of energy 1994  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

NONE

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Capping the Brown Energy Consumption of Internet Services at Low Cost  

E-Print Network [OSTI]

Capping the Brown Energy Consumption of Internet Services at Low Cost Kien T. Le Ricardo Bianchini Consumption of Data Centers 0 20 40 60 80 100 120 140 2000 2006 2011 Electricity consumption of US DCs Billion Energy Consumption · Improving efficiency does not promote green energy or guarantee limits on brown

322

One of These Homes is Not Like the Other: Residential Energy Consumption Variability  

E-Print Network [OSTI]

behavior patterns in which American households use energy causes wide variations in total residential energy consumption per home,

Kelsven, Phillip

2013-01-01T23:59:59.000Z

323

Issues in International Energy Consumption Analysis: Electricity...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

a bottom-up approach in their research paper from the Lawrence Berkeley National Lab (LBNL) in 2009, Residential and Transport Energy Use in India: Past Trend and Future Outlook....

324

Reducing Transient and Steady State Electricity Consumption  

E-Print Network [OSTI]

, single-stage heat pump air conditioner (AC). To study this setup, we have built the Berkeley Retrofitted that are used by HVAC equipment. Many homes use a single- stage heat pump that cools air at a constant rate , Fellow IEEE, and Claire Tomlin, Fellow IEEE ABSTRACT | Heating, ventilation, and air conditioning (HVAC

Culler, David E.

325

Electric Power Consumption of Natural Gas (Summary)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471 2,1146,872,533 7,387,184 7,573,863

326

Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China  

E-Print Network [OSTI]

CIS, cumulative electricity consumption could be reduced bythat impacts total electricity consumption are taken intoscenario, cumulative electricity consumption through 2030

Zhou, Nan

2011-01-01T23:59:59.000Z

327

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network [OSTI]

total fuel and electricity consumption under laboratoryto decrease the electricity consumption of furnaces, mainlytotal fuel and electricity consumption under laboratory

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

328

HomeSim: Comprehensive, Smart, Residential Electrical Energy Simulation and Scheduling  

E-Print Network [OSTI]

HomeSim: Comprehensive, Smart, Residential Electrical Energy Simulation and Scheduling J. Venkatesh.edu + {jc.junqua, phmorin} @us.panasonic.com Abstract-- Residential energy constitutes 38% of the total energy consumption in the United States [1]. Although a number of building simulators have been proposed

Simunic, Tajana

329

Electric power monthly  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

NONE

1995-08-01T23:59:59.000Z

330

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network [OSTI]

ENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . .28 ENERGY CONSUMPTION

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

331

Retail electricity competition  

E-Print Network [OSTI]

We analyze a number of unstudied aspects of retail electricity competition. We first explore the implications of load profiling of consumers whose traditional meters do not allow for measurement of their real time consumption, ...

Joskow, Paul L.

2004-01-01T23:59:59.000Z

332

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

offsets the sizable electricity savings. References TitleElectricity and Natural Gas Efficiency Improvements forfueled by natural gas. Electricity consumption by a furnace

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

333

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

and corresponding direct electricity sector costs, includingand avoids electricity-sector water consumption. At the sameNew Wind Fig. 5. Electricity sector capacity by technology

Hand, Maureen

2008-01-01T23:59:59.000Z

334

Game Theoretic Models of Electricity Theft Detection in Smart Utility Networks  

E-Print Network [OSTI]

for monitoring and billing of electricity consumption can avoid sending their employees to read the meters on meters [4]. Although these techniques reduce unmeasured and unbilled consumption of electricity. Electricity theft in distribution networks Historically, widespread energy theft is characteristic

Sastry, S. Shankar

335

Bounds on the Energy Consumption of Computational Andrew Gearhart  

E-Print Network [OSTI]

Bounds on the Energy Consumption of Computational Kernels Andrew Gearhart Electrical Engineering Fall 2014 #12;Bounds on the Energy Consumption of Computational Kernels Copyright 2014 by Andrew Scott, little consideration was given to the potential energy efficiency of algorithms them- selves. A dominant

California at Berkeley, University of

336

Energy Consumption of Transponders  

E-Print Network [OSTI]

Energy Consumption of Transponders Lei Shi Apr. 26, 2011 #12;Contents · Energy Efficient Ethernet · Energy Efficient EPON · Core Network ­ MLR: Reach and Energy Cost #12;Ethernet Energy Consumption is usually over 5 W · Energy Efficient Ethernet (EEE), uses a Low Power Idle mode to reduce energy

California at Davis, University of

337

Modeling diffusion of electrical appliances in the residential sector  

E-Print Network [OSTI]

energy consumption which includes the developing world. ThisWorld Energy Projection System (WEPS), for example, forecasts total energy consumptionto growth in energy consumption. The World Energy Outlook (

McNeil, Michael A.

2010-01-01T23:59:59.000Z

338

A Parallel Statistical Learning Approach to the Prediction of Building Energy Consumption Based on Large Datasets  

E-Print Network [OSTI]

A Parallel Statistical Learning Approach to the Prediction of Building Energy Consumption Based consumption of buildings based on historical performances is an important approach to achieve energy consumption plays an important role in the total energy consumption of end use. Energy efficiency in building

Paris-Sud XI, Université de

339

Electric power monthly  

SciTech Connect (OSTI)

The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed for the North American Electric Reliability Council (NERC) regions. Additionally, statistics by company and plant are published in the EPM on capability of new plants, new generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel.

Not Available

1992-05-01T23:59:59.000Z

340

Table 2a. Electricity Consumption and Electricity Intensities, per Square  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5.257 272Production331998,

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

TOTAL Full-TOTAL Full-  

E-Print Network [OSTI]

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

342

Energy-consumption modelling  

SciTech Connect (OSTI)

A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

Reiter, E.R.

1980-01-01T23:59:59.000Z

343

An analysis of residential energy consumption in a temperate climate. Volume 2  

SciTech Connect (OSTI)

Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common ``energy package.`` Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

Clark, Y.Y.; Vincent, W.

1987-06-01T23:59:59.000Z

344

Energy consumption in thermomechanical pulping  

SciTech Connect (OSTI)

Various components of refining energy were determined experimentally and compared with those calculated on the basis of the dimensions of morphological elements of wood. The experimentally determined fiberization energy of spruce was 6 to 60 times larger than the calculated value and that of birch 3 to 15 times larger. The energy consumed in reducing the Canadian standard freeness of isolated fibers from 500 to 150 ml was found to be approximately 1/3 of the total fiber development energy for both spruce and birch TMP. Chip size affected the refining energy consumption; the total energy dropped by approximately 30% when chip size was reduced from 16 mm to 3 mm in the case of spruce and approximately 40% for birch. 6 refs.

Marton, R.; Tsujimoto, N.; Eskelinen, E.

1981-08-01T23:59:59.000Z

345

Reduction of Water Consumption  

E-Print Network [OSTI]

Cooling systems using water evaporation to dissipate waste heat, will require one pound of water per 1,000 Btu. To reduce water consumption, a combination of "DRY" and "WET" cooling elements is the only practical answer. This paper reviews...

Adler, J.

346

Wyoming Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14YearYear Jan Feb

347

Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary statisticsRecoverable

348

Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary

349

Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary: Reported proved

350

Table 4. Total Petroleum Consumption, Projected vs. Actual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary:

351

Nevada Natural Gas Total Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYear Jan Feb MarYearYearDecade Year-0

352

New Hampshire Natural Gas Total Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYear Jan FebYearDecade Year-0 Year-1

353

New Jersey Natural Gas Total Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYear JanDecade Year-0 Year-1 Year-2

354

North Dakota Natural Gas Total Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade Year-0 Year-1 Year-2 Year-3Decade

355

Oregon Natural Gas Total Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0 Year-1 Year-2 (Million

356

Arizona Natural Gas Total Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan FebForeignDecadeDecade Year-0

357

Texas Natural Gas Total Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14 (MillionSep-14

358

Iowa Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0YearDecade Year-0 Year-1

359

Kansas Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0ExtensionsYearSep-14

360

Maryland Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade Year-0Thousand

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Michigan Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3Year Jan Feb2008Decade

362

Mississippi Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb (Million2008Decade

363

U.S. Natural Gas Total Consumption (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear Jan Feb Mar Apr May Jun Jul AugYear Jan Feb

364

U.S. Natural Gas Total Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear Jan Feb Mar Apr May Jun Jul AugYear Jan

365

U.S. Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8,Coal Stocks255,035Year Jan Feb MarYear

366

District of Columbia Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623and CommercialCubicCubic-- --

367

Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003of Energy2009 2010

368

Georgia Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5 57.1

369

Hawaii Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.588,219Thousand Cubic

370

Idaho Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade (Million Cubic Feet)Decade

371

Illinois Natural Gas Total Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0DecadeWithdrawalsDecade Year-0

372

U.S. Natural Gas Total Consumption (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass Gas (Million Cubic

373

Utah Natural Gas Total Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321 (MillionDecade Year-0

374

Virginia Natural Gas Total Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases (Billion CubicYear7.14 6.59

375

Table 12. Total Coal Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c : U.S.Welcome to the1,033 15:b. Coal

376

Table 8. Total Natural Gas Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c : U.S.WelcomeDomesticb. Natural Gas

377

Nebraska Natural Gas Total Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough Monthly2.FuelFuelProcessedDecade

378

Electricity savings potentials in the residential sector of Bahrain  

SciTech Connect (OSTI)

Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

Akbari, H. [Lawrence Berkeley National Lab., CA (United States); Morsy, M.G.; Al-Baharna, N.S. [Univ. of Bahrain, Manama (Bahrain)

1996-08-01T23:59:59.000Z

379

Present coal potential of Turkey and coal usage in electricity generation  

SciTech Connect (OSTI)

Total coal reserve (hard coal + lignite) in the world is 984 billion tons. While hard coal constitutes 52% of the total reserve, lignite constitutes 48% of it. Turkey has only 0.1% of world hard coal reserve and 1.5% of world lignite reserves. Turkey has 9th order in lignite reserve, 8th order in lignite production, and 12th order in total coal (hard coal and lignite) consumption. While hard coal production meets only 13% of its consumption, lignite production meets lignite consumption in Turkey. Sixty-five percent of produced hard coal and 78% of produced lignite are used for electricity generation. Lignites are generally used for electricity generation due to their low quality. As of 2003, total installed capacity of Turkey was 35,587 MW, 19% (6,774 MW) of which is produced from coal-based thermal power plants. Recently, use of natural gas in electricity generation has increased. While the share of coal in electricity generation was about 50% for 1986, it is replaced by natural gas today.

Yilmaz, A.O. [Karadeniz Technical University, Trabzon (Turkey). Mining Engineering Department

2009-07-01T23:59:59.000Z

380

Energy management of HEV to optimize fuel consumption and pollutant emissions  

E-Print Network [OSTI]

AVEC'12 Energy management of HEV to optimize fuel consumption and pollutant emissions Pierre Michel, several energy management strategies are proposed to optimize jointly the fuel consumption and pollutant-line strategy are given. Keywords: Hybrid Electric Vehicle (HEV), energy management, pollution, fuel consumption

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Electric power monthly, May 1993  

SciTech Connect (OSTI)

The Electric Power Monthly (EPM) is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

Not Available

1993-05-25T23:59:59.000Z

382

Electric power monthly, April 1993  

SciTech Connect (OSTI)

The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

Not Available

1993-05-07T23:59:59.000Z

383

Estimation of food consumption  

SciTech Connect (OSTI)

The research reported in this document was conducted as a part of the Hanford Environmental Dose Reconstruction (HEDR) Project. The objective of the HEDR Project is to estimate the radiation doses that people could have received from operations at the Hanford Site. Information required to estimate these doses includes estimates of the amounts of potentially contaminated foods that individuals in the region consumed during the study period. In that general framework, the objective of the Food Consumption Task was to develop a capability to provide information about the parameters of the distribution(s) of daily food consumption for representative groups in the population for selected years during the study period. This report describes the methods and data used to estimate food consumption and presents the results developed for Phase I of the HEDR Project.

Callaway, J.M. Jr.

1992-04-01T23:59:59.000Z

384

Managing the Cost, Energy Consumption, and Carbon Footprint of Internet Services  

E-Print Network [OSTI]

Managing the Cost, Energy Consumption, and Carbon Footprint of Internet Services Kien Le , Ozlem electricity consumptions translate into large carbon footprints, since most of the electricity in the US such as government imposed Kyoto- style carbon limits. Extensive simulations and real experiments show that our

Martonosi, Margaret

385

Efficiency alone as a solution to increasing energy consumption  

E-Print Network [OSTI]

A statistical analysis was performed to determine the effect of efficiency on the total US energy consumption of automobiles and refrigerators. Review of literature shows that there are many different opinions regarding ...

Haidorfer, Luke

2005-01-01T23:59:59.000Z

386

Total Imports  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008 (Next1,Product: Total9,216 9,178

387

SCENARIO ANALYSES OF CALIFORNIA'S ELECTRICITY SYSTEM: PRELIMINARY  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION SCENARIO ANALYSES OF CALIFORNIA'S ELECTRICITY SYSTEM: PRELIMINARY Bender Acting Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION B. B. Blevins Executive Director.................................................................................................... 22 CHAPTER 3 - Natural Gas Market Clearing Price Implications of Reduced Consumption from the Power

388

Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels  

SciTech Connect (OSTI)

This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

Patinkin, L.

1983-12-01T23:59:59.000Z

389

End use energy consumption data base: transportation sector  

SciTech Connect (OSTI)

The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

Hooker, J.N.; Rose, A.B.; Greene, D.L.

1980-02-01T23:59:59.000Z

390

2013 Total Electric Industry- Revenue (Thousands Dollars)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue (Thousands Dollars) (Data

391

2013 Total Electric Industry- Sales (Thousand Megawatthours)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue (Thousands Dollars)

392

Regional Per Capita Solar Electric Footprint for the United States  

SciTech Connect (OSTI)

In this report, we quantify the state-by-state per-capita 'solar electric footprint' for the United States. We use state-level data on population, electricity consumption, economic activity and solar insolation, along with solar photovoltaic (PV) array packing density data to develop a range of estimates of the solar electric footprint. We find that the solar electric footprint, defined as the land area required to supply all end-use electricity from solar photovoltaics, is about 181 m2 per person in the United States. Two key factors that influence the magnitude of the state-level solar electric footprint include how industrial energy is allocated (based on location of use vs. where goods are consumed) and the assumed distribution of PV configurations (flat rooftop vs. fixed tilt vs. tracking). The solar electric footprint is about 0.6% of the total land area of the United States with state-level estimates ranging from less than 0.1% for Wyoming to about 9% for New Jersey. We also compare the solar electric footprint to a number of other land uses. For example, we find that the solar electric footprint is equal to less than 2% of the land dedicated to cropland and grazing in the United States.

Denholm, P.; Margolis, R.

2007-12-01T23:59:59.000Z

393

Rice consumption in China  

E-Print Network [OSTI]

of Agricultural Economics. products has shifted away from staple grains and toward meat, dairy products, eggs, and other secondary foods. Rapid growth of animal production and the government's present target for increased production of specific non-grain crops... could lead to a, large shortage of the coarse grain needed for development of animal husbandry. If per capita. rice consumption grows slowly, there is the potential for excess capacity in rice production if the annual rice production growth rate...

Lan, Jin

1989-01-01T23:59:59.000Z

394

PowerPedia A smartphone application for community-based electricity feedback  

E-Print Network [OSTI]

current consumption in real-time ­ How does my current consumption compare to my historical consumption1 PowerPedia ­ A smartphone application for community-based electricity feedback Smartphone 2010 Consumption highly depends on user behavior (more than factor 2). Energy consumption is intransparent

395

Energy notes: Energy in natural processes and human consumption, some numbers H A&S 220c Fall 2004 19x2004  

E-Print Network [OSTI]

Energy notes: Energy in natural processes and human consumption, some numbers H A&S 220c Fall 2004 consumption rate per capita U.S. 102 Electric razor 101 Energy Content of Fuels (in Joules) Energy Unit Joules person (Note: MWE is an abbreviation for megawatts-electrical output) Global Energy Consumption Global

396

Margins up; consumption down  

SciTech Connect (OSTI)

The results of a survey of dealers in the domestic fuel oil industry are reported. Wholesale prices, reacting to oversupply, decreased as did retail prices; retail prices decreased at a slower rate so profit margins were larger. This trend produced competitive markets as price-cutting became the method for increasing a dealer's share of the profits. Losses to other fuels decreased, when the figures were compared to earlier y; and cash flow was very good for most dealers. In summary, profits per gallon of oil delivered increased, while the consumption of gasoline per customer decreased. 22 tables.

Mantho, M.

1983-09-01T23:59:59.000Z

397

Transportation Energy Consumption Surveys  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1Energy Consumption (RTECS)

398

Control Mechanisms for Residential Electricity Demand in SmartGrids  

E-Print Network [OSTI]

Email: lvs2@lehigh.edu Abstract--We consider mechanisms to optimize electricity consumption both within subscription plan. Such methods for controlling electricity consumption are part of demand response, whichControl Mechanisms for Residential Electricity Demand in SmartGrids Shalinee Kishore Department

Snyder, Larry

399

Electric power monthly, August 1993  

SciTech Connect (OSTI)

The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

Not Available

1993-08-13T23:59:59.000Z

400

Electric power monthly, September 1993  

SciTech Connect (OSTI)

The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

Not Available

1993-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Steam-Electric Power-Plant-Cooling Handbook  

SciTech Connect (OSTI)

The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

1982-02-01T23:59:59.000Z

402

Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE)  

E-Print Network [OSTI]

Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE) Electrical energy can be generated from renewable resources the potential to meet the worldwide demand of electricity and they contribute to the total generation

Suo, Zhigang

403

The greenhouse gases HFCs, PFCs Danish consumption and emissions, 2007  

E-Print Network [OSTI]

The greenhouse gases HFCs, PFCs and SF6 Danish consumption and emissions, 2007 Tomas Sander Poulsen AND EMISSION OF F-GASES 7 1.1.1 Consumption 7 1.1.2 Emission 7 1.1.3 Trends in total GWP contribution from F 21 4 EMISSION OF F-GASES 23 4.1.1 Emissions of HFCs from refrigerants 23 4.1.2 Emissions of HFCs from

404

Modeling diffusion of electrical appliances in the residential sector  

E-Print Network [OSTI]

Efficiency Standards in the Residential Electricity Sector.France. USDOE (2001). Residential Energy Consumption Survey,long-term response of residential cooling energy demand to

McNeil, Michael A.

2010-01-01T23:59:59.000Z

405

California Energy and Consumption Projections 2005-2050  

E-Print Network [OSTI]

State NG US NG Imports State Nuclear US Nuclear Imports Biomass Solar Wind Small Hydro 1.0 Quad BTUs 4 Hydro Renewable Energy Biomass Solar Wind Geothermal #12;Model Energy Consumption in Quads Take the 2005 by Source Year 2005 Year 2050 Natural Gas (Heating) Gas/Diesel (Heating/Trans) Hydro (Electricity) Coal

Keller, Arturo A.

406

Insulating and sheathing materials of electric and optical cables - Common test methods - Part 5-1: Methods specific to filling compounds - Drop-point - Separation of oil - Lower temperature brittleness - Total acid number - Absence of corrosive components - Permittivity at 23 C - DC resistivity at 23 C and 100 C  

E-Print Network [OSTI]

Specifies the test methods for filling compounds of electric cables used with telecommunication equipment. Gives the methods for drop-point, separation of oil, lower temperature brittleness, total acid number, absence of corrosive components, permittivity at 23 C, d.c. resistivity at 23C and 100C.

International Electrotechnical Commission. Geneva

2004-01-01T23:59:59.000Z

407

Monitoring and optimization of energy consumption of base transceiver stations  

E-Print Network [OSTI]

The growth and development of the mobile phone network has led to an increased demand for energy by the telecommunications sector, with a noticeable impact on the environment. Monitoring of energy consumption is a great tool for understanding how to better manage this consumption and find the best strategy to adopt in order to maximize reduction of unnecessary usage of electricity. This paper reports on a monitoring campaign performed on six Base Transceiver Stations (BSs) located central Italy, with different technology, typology and technical characteristics. The study focuses on monitoring energy consumption and environmental parameters (temperature, noise, and global radiation), linking energy consumption with the load of telephone traffic and with the air conditioning functions used to cool the transmission equipment. Moreover, using experimental data collected, it is shown, with a Monte Carlo simulation based on power saving features, how the BS monitored could save energy.

Spagnuolo, Antonio; Vetromile, Carmela; Formosi, Roberto; Lubritto, Carmine

2015-01-01T23:59:59.000Z

408

Organotin intake through fish consumption in Finland  

SciTech Connect (OSTI)

Background: Organotin compounds (OTCs) are a large class of synthetic chemicals with widely varying properties. Due to their potential adverse health effects, their use has been restricted in many countries. Humans are exposed to OTCs mostly through fish consumption. Objectives: The aim of this study was to describe OTC exposure through fish consumption and to assess the associated potential health risks in a Finnish population. Methods: An extensive sampling of Finnish domestic fish was carried out in the Baltic Sea and freshwater areas in 2005-2007. In addition, samples of imported seafood were collected in 2008. The chemical analysis was performed in an accredited testing laboratory during 2005-2008. Average daily intake of the sum of dibutyltin (DBT), tributyltin (TBT), triphenyltin (TPhT) and dioctyltin (DOT) ({Sigma}OTCs) for the Finnish population was calculated on the basis of the measured concentrations and fish consumption rates. Results: The average daily intake of {Sigma}OTCs through fish consumption was 3.2 ng/kg bw day{sup -1}, which is 1.3% from the Tolerable Daily Intake (TDI) of 250 ng/kg bw day{sup -1} set by the European Food Safety Authority. In total, domestic wild fish accounted for 61% of the {Sigma}OTC intake, while the intake through domestic farmed fish was 4.0% and the intake through imported fish was 35%. The most important species were domestic perch and imported salmon and rainbow trout. Conclusions: The Finnish consumers are not likely to exceed the threshold level for adverse health effects due to OTC intake through fish consumption.

Airaksinen, Riikka, E-mail: Riikka.Airaksinen@thl.fi [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland)] [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland); Rantakokko, Panu; Turunen, Anu W.; Vartiainen, Terttu [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland)] [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland); Vuorinen, Pekka J.; Lappalainen, Antti; Vihervuori, Aune [Finnish Game and Fisheries Research Institute, Helsinki (Finland)] [Finnish Game and Fisheries Research Institute, Helsinki (Finland); Mannio, Jaakko [Finnish Environment Institute, Helsinki (Finland)] [Finnish Environment Institute, Helsinki (Finland); Hallikainen, Anja [Finnish Food Safety Authority Evira, Helsinki (Finland)] [Finnish Food Safety Authority Evira, Helsinki (Finland)

2010-08-15T23:59:59.000Z

409

Electric power monthly, May 1994  

SciTech Connect (OSTI)

The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Statistics by company and plant are published on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

Not Available

1994-05-01T23:59:59.000Z

410

Electric power monthly, April 1994  

SciTech Connect (OSTI)

The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the U.S., Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. This April 1994 issue contains 1993 year-end data and data through January 1994.

Not Available

1994-04-01T23:59:59.000Z

411

Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost  

E-Print Network [OSTI]

Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue- ple users cooperate to perform load demand scheduling in order to minimize the electricity generation between electricity consumption and generation. On the consumption side, electric demand ramps up

Pedram, Massoud

412

Stackelberg Game based Demand Response for At-Home Electric Vehicle Charging  

E-Print Network [OSTI]

Member, IEEE Abstract--Consumer electricity consumption can be controlled through electricity prices and customers respond accordingly with their electricity consumption levels. In particular, the demands as a game [7]. Note that in reality, electricity retailers are significantly regulated by governments

Bahk, Saewoong

413

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network [OSTI]

LPG is a major energy source, while coal and electricity areoil coal Figure 14 Residential Primary Energy Consumption bytotal primary energy supply in 2000, coal will drop to about

Zhou, Nan

2010-01-01T23:59:59.000Z

414

Texas LoanSTAR Monitoring & Analysis Program- Characterizing Loanstar Buildings & Energy Consumption  

E-Print Network [OSTI]

costs and savings, and the connected loads. Nine buildings are analyzed in additional detail, including indices that look at the maximum-minimum and mean electricity, chilled water, and steam/hot water consumption for the first year of recorded...

Challa, V.; Athar, A.; Abbas, M.; Claridge, D.; Haberl, J.

415

How El Nino affects energy consumption: a study at national and regional levels  

E-Print Network [OSTI]

for home heating purposes. Hydroelectricity may also be affected by ENSO in the southeastern US but the results at this time are inconclusive. At the national level, ENSO influences the consumption of nuclear electricity....

Collins, Kathleen Jo

2009-06-02T23:59:59.000Z

416

Electric power monthly, October 1991. [CONTAINS GLOSSARY  

SciTech Connect (OSTI)

This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, statistics at the company and plant level are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel. 4 figs., 63 tabs.

Not Available

1991-10-11T23:59:59.000Z

417

Electric Power Monthly, September 1991. [CONTAINS GLOSSARY  

SciTech Connect (OSTI)

This publication provides monthly statistics at the national, Census division, and state levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, statistics at the company and plant level are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel. 4 figs., 63 tabs.

Not Available

1991-09-12T23:59:59.000Z

418

EvaluatingMobilePhonesasEnergyConsumptionFeedbackDevices MarkusWeiss*  

E-Print Network [OSTI]

EvaluatingMobilePhonesasEnergyConsumptionFeedbackDevices MarkusWeiss* ,ClaireManagement,ETHZurich Abstract. With smart electricity meters being widely deployed, data on residential energy usage of mobile phones as an interface to provide feedback on overall and de- vice-related energy consumption

419

Strip, Bind, and Search: A Method for Identifying Abnormal Energy Consumption in Buildings  

E-Print Network [OSTI]

towards reducing the building's en- ergy consumption is to prevent electricity waste due to the improperStrip, Bind, and Search: A Method for Identifying Abnormal Energy Consumption in Buildings Romain, operators are relying more on historical data pro- cessing to uncover opportunities for energy-savings. How

California at Berkeley, University of

420

Nonparametric models for electricity load forecasting  

E-Print Network [OSTI]

Electricity consumption is constantly evolving due to changes in people habits, technological innovations1 Nonparametric models for electricity load forecasting JANUARY 23, 2015 Yannig Goude, Vincent at University Paris-Sud 11 Orsay. His research interests are electricity load forecasting, more generally time

Genève, Université de

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Affording Gas and Electricity: Self Disconnection and  

E-Print Network [OSTI]

Affording Gas and Electricity: Self Disconnection and Rationing by Prepayment and Low Income Credit interview schedule................................... liv #12;2 Fuel Usage and Consumption Patterns of Low electricity, but this seems to be because gas prepayers have lower average income than electricity prepayers

Feigon, Brooke

422

In Njeri Wamukonya, ed., Electricity Reform  

E-Print Network [OSTI]

electricity consumption in industrial countries has caused major air pollution problems. In fact, power plants maintain that governing the electricity industry according to market dynamics, rather than socioIn Njeri Wamukonya, ed., Electricity Reform: Social and Environmental Challenges Roskilde, Denmark

Delaware, University of

423

Exceeding Energy Consumption Design Expectations  

E-Print Network [OSTI]

) the building consumed 208.7 kWh m-2 yr-1, 83% of the expected energy consumption (250 kWh m-2 yr-1). This dropped further to 176.1 kWh m-2 yr-1 in 2012 (70% below expected). Factors affecting building energy consumption have been discussed and appraised...

Castleton, H. F.; Beck, S. B. M.; Hathwat, E. A.; Murphy, E.

2013-01-01T23:59:59.000Z

424

Electric power monthly, July 1995 - with data for April 1995  

SciTech Connect (OSTI)

This publication provides statistical data on net generation, fuel consumption, fossil fuel stocks, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on fossil fuel stocks and costs are also included.

NONE

1995-07-01T23:59:59.000Z

425

Electric power monthly, March 1998 with data for December 1997  

SciTech Connect (OSTI)

The Electric Power Monthly (EPM) provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. 63 tabs.

NONE

1998-03-01T23:59:59.000Z

426

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network [OSTI]

buildings. Measured electricity consumption Figure 3 showsthe measured total electricity consumption of the buildingmonths of 2005. The electricity consumption per floor area

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

427

Building Energy Monitoring and Analysis  

E-Print Network [OSTI]

Figure9?Annualelectricityconsumptioncomparisonofthetotalannualelectricityconsumption,BuildingsAandBmostly measure electricity consumption, cooling loads,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

428

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network [OSTI]

of the total electricity consumption by BPM furnaces. Thisbecause furnace electricity consumption is significant.of furnace electricity consumption. Therefore, accurate

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

429

Impacts of China's Current Appliance Standards and Labeling Program to 2020  

E-Print Network [OSTI]

grams reduce total electricity consumption in 2020 by anof residential electricity consumption in 2020. The reportThe projected electricity consumption in China in 2020 is

Fridley, David; Aden, Nathaniel; Zhou, Nan; Lin, Jiang

2007-01-01T23:59:59.000Z

430

Benchmarking and Equipment and Controls Assessment for a 'Big Box' Retail Chain  

E-Print Network [OSTI]

annual results for electricity consumption and peak demandTampa Average Electricity Consumption, Annual Normalizeddifferences in electricity consumption. The Total Source

Haves, Philip

2008-01-01T23:59:59.000Z

431

Key China Energy Statistics 2012  

E-Print Network [OSTI]

Consumption Total Primary Energy Consumption by Source AAGRFuel Wind Total Primary Energy Consumption by Source SharesPrimary Energy Production per Capita (2009) tce/capita Electricity Consumption

Levine, Mark

2013-01-01T23:59:59.000Z

432

Electricity Monthly Update - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

increased electric demand and wholesale and retail prices over last February. Coal consumption rose across the U.S. and out competed natural gas on price in the East. A gas...

433

Energy consumption of building 39  

E-Print Network [OSTI]

The MIT community has embarked on an initiative to the reduce energy consumption and in accordance with the Kyoto Protocol. This thesis seeks to further expand our understanding of how the MIT campus consumes energy and ...

Hopeman, Lisa Maria

2007-01-01T23:59:59.000Z

434

Energy Consumption Profile for Energy  

E-Print Network [OSTI]

317 Chapter 12 Energy Consumption Profile for Energy Harvested WSNs T. V. Prabhakar, R Venkatesha.............................................................................................318 12.2 Energy Harvesting ...................................................................................318 12.2.1 Motivations for Energy Harvesting...............................................319 12

Langendoen, Koen

435

Progressive consumption : strategic sustainable excess  

E-Print Network [OSTI]

Trends in the marketplace show that urban dwellers are increasingly supporting locally produced foods. This thesis argues for an architecture that responds to our cultures consumptive behaviors. Addressing the effects of ...

Bonham, Daniel J. (Daniel Joseph MacLeod)

2007-01-01T23:59:59.000Z

436

Location Student Fac/Staff Disabled Special OLLI Reserved Electric Carpool Park and Pay 30 Minute Loading Maint/Service State Vehicle Motorcycle Control* S / L** P / T / LD*** Location Total Alumni House 1 1 17 D L P 19  

E-Print Network [OSTI]

Loading Maint/Service State Vehicle Motorcycle Control* S / L** P / T / LD*** Location Total Alumni House = Surface Lot *** P = Permanent, T = Temporary, LD = Leased Structure 5,631 Motorcycle space count is not included in "Total Spaces" count and is an es mate of how many motorcycles can park in each area Surface

de Lijser, Peter

437

Manufacturing consumption of energy 1991  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

Not Available

1994-12-01T23:59:59.000Z

438

Development of renewable energy Challenges for the electrical grids  

E-Print Network [OSTI]

, Geothermal energy... · The Voice of the Renewable Energy sector for Government & public authorities, TSOs energy consumption · Electricity : new RES capacities ­ 19 000 MW onshore wind ­ 6 000 MW offshore wind #12;RES Development Objectives (Electricity) Objectif 2020 : RES in global energy consumption 2010

Canet, Léonie

439

Demonstrating Fuel Consumption and Emissions Reductions with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control Demonstrating Fuel Consumption and Emissions Reductions with Next Generation...

440

Optimal consumption in a growth model with the Cobb-Douglas production function  

E-Print Network [OSTI]

} be a consumption policies per capita such that ct is progressively measurable w.r.t. the filtration Ft = (Bs, s t), 0 ct 1, 0 t T, (1.3) and we denote by A the class of all consumption policies {ct} per capita. 3 t [0, T], 0 c(t) 1, ctzt/yt = the totality of consumption rate per person, F(z, y) = the Cobb

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download6 Electricity: Sales to31 199323

442

Electric power monthly, July 1994  

SciTech Connect (OSTI)

The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels. Data on quantity, quality, and cost of fossil fuels lag data on net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour by 1 month. This difference in reporting appears in the US, Census division, and State level tables. However, for purposes of comparison, plant-level data are presented for the earlier month.

Not Available

1994-07-01T23:59:59.000Z

443

Electric power monthly, October 1993  

SciTech Connect (OSTI)

The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

Not Available

1993-10-20T23:59:59.000Z

444

Electric Power Monthly, July 1990  

SciTech Connect (OSTI)

The Electric Power Monthly (EPM) is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, and average revenue per kilowatthour of electricity sold. Data on net generation are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, company and plant level information are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost in fuel. Quantity, quality, and cost of fuel data lag the net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour data by 1 month. This difference in reporting appears in the national, Census division, and State level tables. However, at the plant level, all statistics presented are for the earlier month for the purpose of comparison. 12 refs., 4 figs., 48 tabs.

Not Available

1990-10-12T23:59:59.000Z

445

Electric power monthly, January 1994  

SciTech Connect (OSTI)

The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

Not Available

1994-01-26T23:59:59.000Z

446

Electric power monthly, February 1994  

SciTech Connect (OSTI)

The Electric Power Monthly (EMP) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

Not Available

1994-02-16T23:59:59.000Z

447

Agent Cooperatives for Effective Power Consumption Shifting Charilaos Akasiadis and Georgios Chalkiadakis  

E-Print Network [OSTI]

reduced electricity price rates, given their different load shifting capabilities. This allows even agents of household energy pricing. In addition, due to in- creased levels of consumer uncertainty regarding imminent applicable scheme for electricity consumption shifting and effective de- mand curve flattening. The scheme

Chalkiadakis, Georgios

448

Agent Cooperatives for Effective Power Consumption Shifting Charilaos Akasiadis and Georgios Chalkiadakis  

E-Print Network [OSTI]

reduced electricity price rates, given their different load shifting capabilities. This allows even agents- ization of household energy pricing. In addition, due to in- creased levels of consumer uncertainty applicable scheme for electricity consumption shifting and effective de- mand curve flattening. The scheme

Chalkiadakis, Georgios

449

Cost and quality of fuels for electric utility plants 1991  

SciTech Connect (OSTI)

Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, ``Monthly Power Plant Report.`` These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990.

Not Available

1992-08-04T23:59:59.000Z

450

Cost and quality of fuels for electric utility plants 1991  

SciTech Connect (OSTI)

Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, Monthly Power Plant Report.'' These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990.

Not Available

1992-08-04T23:59:59.000Z

451

Optimal Energy Consumption Scheduling Using Mechanism Design for the Future Smart Grid  

E-Print Network [OSTI]

Optimal Energy Consumption Scheduling Using Mechanism Design for the Future Smart Grid Pedram may need to collect various information about users and their energy consumption behavior, which can the total energy cost. Our design requires that each user provides some information about its energy demand

Wong, Vincent

452

Virginia Tech Comprehensive Power-based Fuel Consumption Model: Model Development and Testing  

E-Print Network [OSTI]

The transportation sector consumes approximately 30% of the total energy in the United States, which is mostlyVirginia Tech Comprehensive Power-based Fuel Consumption Model: Model Development and Testing, Moran, Saerens, and Van den Bulck 2 ABSTRACT Existing fuel consumption and emission models suffer from

Rakha, Hesham A.

453

Electric power monthly, February 1998 with data for November 1997  

SciTech Connect (OSTI)

The Electric Power Monthly (EPM) provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 63 tabs.

NONE

1998-02-01T23:59:59.000Z

454

Today in Energy - commercial consumption & efficiency  

Reports and Publications (EIA)

Short, timely articles with graphs about recent commercial consumption and efficiency issues and trends.

2028-01-01T23:59:59.000Z

455

On Minimizing the Energy Consumption of an Electrical Vehicle  

E-Print Network [OSTI]

4.2 Heuristics Alternative. Our Branch-and-Bound code uses the data corresponding to the computations of the matrices M?. The exact ..... plotted in the center of its corresponding sample time of 2s. These numerical .... J. Bernard, S. Delprat, T.M. Guerra, F. Buechi, Fuel Cell Hybrid Vehicles: Global. Optimization based on...

2011-04-19T23:59:59.000Z

456

The effect of tree shade on home summer electrical consumption  

E-Print Network [OSTI]

materials. As compared to a rural soil surface (i. e. natural or disturbed soil surfaces either vegetated or bare), typical city surfaces such as concrete and asphalt have greater densities and higher heat capacities (Duckworth and Sandberg 1954) which...

Rudie, Raymond Joseph

1982-01-01T23:59:59.000Z

457

Table 2b. Relative Standard Errors for Electricity Consumption and  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5.257

458

Fact #840: September 29, 2014 World Renewable Electricity Consumption is  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFYOxide Emission Standards,Growing | Department

459

Effects of Feedback on Residential Electricity Consumption: A Literature Review  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuring DopamineEnergy,6.DavidE-print

460

Standby power consumption in U.S. residences  

SciTech Connect (OSTI)

{open_quotes}Leaking electricity{close_quotes} is the electricity consumed by appliances while they are switched {open_quotes}off{close_quote} or not performing their principal function. Leaking electricity represents approximately 5 % of U.S. residential electricity. This is a relatively new phenomenon and is a result of proliferation of electronic equipment in homes. The standby losses in TVs, VCRs, compact audio systems, and cable boxes account for almost 40% of all leaking electricity. There is a wide range in standby losses in each appliance group. For example, standby losses in compact audio systems range from 2.1 to 28.6 W, even though their features are identical. In some cases, leaking electricity while switched off was only slightly less than energy consumption in the on mode. New features in these appliances may greatly increase leaking electricity, such as electronic program guides in TVs and cable boxes. In the standby mode, these new features require many extra components energized to permit the downloading of information. Several techniques are available to cut standby losses, most without using any new technologies. Simple redesign of circuits to avoid energizing unused components appears to save the most energy. A separate power supply, precisely designed for the actual power needed, is another solution. A switch mode power supply can substitute for the less efficient linear power supply. Switch mode power supplies cut no-load and standby losses by 60-80%. The combination of these techniques can cut leaking electricity by greater than 75%.

Huber, W.

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

ES 2. CA nursing home electricity pattern: July weekday lowJanuary and July weekday electricity and total heat (space +CA school weekday total electricity (inclusive of cooling)

Stadler, Michael

2009-01-01T23:59:59.000Z

462

Piston ring pack design effects on production spark ignition engine oil consumption : a simulation analysis  

E-Print Network [OSTI]

One of the most significant contributors to an engine's total oil consumption is the piston ring-pack. As a result, optimization of the ring pack is becoming more important for engine manufacturers and lubricant suppliers. ...

Senzer, Eric B

2007-01-01T23:59:59.000Z

463

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network [OSTI]

on biomass for rural energy consumption as discussed aboverural China, total rural primary energy use is only 1.84EJ,Biomass is the major energy in rural areas. For lighting, an

Zhou, Nan

2010-01-01T23:59:59.000Z

464

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

Building Heating Loads (Trillion BTU/yr) Total BuildingCooling Loads (Trillion BTU/yr) Non. Wind Infilt SHGC Wind.Energy Consumption (Trillion BTU/yr) Area, Window Window

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

465

Electric Power Monthly, June 1990  

SciTech Connect (OSTI)

The EPM is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, electricity sales, and average revenue per kilowatthour of electricity sold. Data on net generation are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, company and plant level information are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel. Quantity, quality, and cost of fuel data lag the net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour data by 1 month. This difference in reporting appears in the national, Census division, and State level tables. However, at the plant level, all statistics presented are for the earlier month for the purpose of comparison. 40 tabs.

Not Available

1990-09-13T23:59:59.000Z

466

Measured electric hot water standby and demand loads from Pacific Northwest homes  

SciTech Connect (OSTI)

The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

Pratt, R.G.; Ross, B.A.

1991-11-01T23:59:59.000Z

467

The effects of utility DSM programs on electricity costs and prices  

SciTech Connect (OSTI)

More and more US utilities are running more and larger demand-side management (DSM) programs. Assessing the cost-effectiveness of these programs raises difficult questions for utilities and their regulators. Should these programs aim to minimize the total cost of providing electric-energy services or should they minimize the price of electricity This study offers quantitative estimates on the tradeoffs between total costs and electricity prices. This study uses a dynamic model to assess the effects of energy-efficiency programs on utility revenues, total resource costs, electricity prices, and electricity consumption for the period 1990 to 2010. These DSM programs are assessed under alternative scenarios. In these cases, fossil-fuel prices, load growth, the amount of excess capacity the utility has in 1990, planned retirements of power plants, the financial treatment of DSM programs, and the costs of energy- efficient programs vary. These analyses are conducted for three utilities: a base'' that is typical of US utilities; a surplus'' utility that has excess capacity, few planned retirements, and slow growth in fossil-fuel prices and incomes; and a deficit'' utility that has little excess capacity, many planned retirements, and rapid growth in fossil-fuel prices and incomes. 28 refs.

Hirst, E.

1991-11-01T23:59:59.000Z

468

The effects of utility DSM programs on electricity costs and prices  

SciTech Connect (OSTI)

More and more US utilities are running more and larger demand-side management (DSM) programs. Assessing the cost-effectiveness of these programs raises difficult questions for utilities and their regulators. Should these programs aim to minimize the total cost of providing electric-energy services or should they minimize the price of electricity? This study offers quantitative estimates on the tradeoffs between total costs and electricity prices. This study uses a dynamic model to assess the effects of energy-efficiency programs on utility revenues, total resource costs, electricity prices, and electricity consumption for the period 1990 to 2010. These DSM programs are assessed under alternative scenarios. In these cases, fossil-fuel prices, load growth, the amount of excess capacity the utility has in 1990, planned retirements of power plants, the financial treatment of DSM programs, and the costs of energy- efficient programs vary. These analyses are conducted for three utilities: a ``base`` that is typical of US utilities; a ``surplus`` utility that has excess capacity, few planned retirements, and slow growth in fossil-fuel prices and incomes; and a ``deficit`` utility that has little excess capacity, many planned retirements, and rapid growth in fossil-fuel prices and incomes. 28 refs.

Hirst, E.

1991-11-01T23:59:59.000Z

469

Allocation, incentives and distortions: the impact of EU ETS emissions allowance allocations to the electricity sector  

E-Print Network [OSTI]

in electricity prices (Harrison and Radov 2002) could trigger higher electricity consumption, production, further increasing CO2 emissions. This approach will also have consequences on neighbouring jurisdictions. Figure 2 illustrates a case with two... into the electricity prices limits investment in energy efficiency and results in higher electricity consumption. Thus electricity production and national CO2 emissions increase. If all European countries implement such policies the suggested higher CO2 emissions...

Neuhoff, Karsten; Keats, Kim; Sato, Misato

470

Choosing an electrical energy future for the Pacific Northwest: an Alternative Scenario  

SciTech Connect (OSTI)

An Alternative Scenario for the electric energy future of the Pacific Northwest is presented. The Scenario includes an analysis of each major end use of electricity in the residential, commercial, manufacturing, and agricultural sectors. This approach affords the most direct means of projecting the likely long-term growth in consumption and the opportunities for increasing the efficiency with which electricity is used in each instance. The total demand for electricity by these end uses then provides a basis for determining whether additional central station generation is required to 1995. A projection of total demand for electricity depends on the combination of many independent variables and assumptions. Thus, the approach is a resilient one; no single assumption or set of linked assumptions dominates the analysis. End-use analysis allows policymakers to visualize the benefits of alternative programs, and to make comparison with the findings of other studies. It differs from the traditional load forecasts for the Pacific Northwest, which until recently were based largely on straightforward extrapolations of historical trends in the growth of electrical demand. The Scenario addresses the supply potential of alternative energy sources. Data are compiled for 1975, 1985, and 1995 in each end-use sector.

Cavanagh, R.C.; Mott, L.; Beers, J.R.; Lash, T.L.

1980-08-01T23:59:59.000Z

471

Electric power annual 1997. Volume 1  

SciTech Connect (OSTI)

The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1 -- with a focus on US electric utilities -- contains final 1997 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1997 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold (based on a monthly sample: Form EIA-826, ``Monthly Electric Utility Sales and Revenue Report with State Distributions``). Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA.

NONE

1998-07-01T23:59:59.000Z

472

Electric power monthly, January 1991. [Contains glossary  

SciTech Connect (OSTI)

This publication provides monthly statistics at the national, Census division, and state levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, and average revenue per kilowatthour of electricity sold. Data on net generation are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, company and plant level information are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel. 4 figs., 48 tabs.

Not Available

1991-01-17T23:59:59.000Z

473

KEEPING THE FUTURE BRIGHT 2004 Canadian Electricity Human Resource Sector Study  

E-Print Network [OSTI]

supply 8 Electricity consumption 9 Supply and demand projections 9 Electricity exports and importsKEEPING THE FUTURE BRIGHT 2004 Canadian Electricity Human Resource Sector Study #12;This project Electricity Association The Canadian Electricity Association (CEA), founded in 1891, is the national forum

474

Electric power monthly, May 1995 with data for February 1995  

SciTech Connect (OSTI)

The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisiommakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuel, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

NONE

1995-05-24T23:59:59.000Z

475

Electric power monthly, December 1997 with data for September 1997  

SciTech Connect (OSTI)

The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 63 tabs.

NONE

1997-12-01T23:59:59.000Z

476

AVTA: 2010 Electric Vehicles International Neighborhood Electric...  

Energy Savers [EERE]

10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

477

Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects  

SciTech Connect (OSTI)

This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus,

Clark, Corrie E. [Environmental Science Division] [Environmental Science Division; Harto, Christopher B. [Environmental Science Division] [Environmental Science Division; Schroeder, Jenna N. [Environmental Science Division] [Environmental Science Division; Martino, Louis E. [Environmental Science Division] [Environmental Science Division; Horner, Robert M. [Environmental Science Division] [Environmental Science Division

2013-11-05T23:59:59.000Z

478

Extracting Operating Modes from Building Electrical Load Data: Preprint  

SciTech Connect (OSTI)

Empirical techniques for characterizing electrical energy use now play a key role in reducing electricity consumption, particularly miscellaneous electrical loads, in buildings. Identifying device operating modes (mode extraction) creates a better understanding of both device and system behaviors. Using clustering to extract operating modes from electrical load data can provide valuable insights into device behavior and identify opportunities for energy savings. We present a fast and effective heuristic clustering method to identify and extract operating modes in electrical load data.

Frank, S.; Polese, L. G.; Rader, E.; Sheppy, M.; Smith, J.

2012-01-01T23:59:59.000Z

479

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region, Reference

480

Electricity Reliability  

E-Print Network [OSTI]

Electricity Delivery and Energy Reliability High Temperature Superconductivity (HTS) Visualization in the future because they have virtually no resistance to electric current, offering the possibility of new electric power equipment with more energy efficiency and higher capacity than today's systems

Note: This page contains sample records for the topic "total electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 All Buildings* Sum of Major Fuel Consumption Number of Buildings (thousand)...

482

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 All Buildings Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace...

483

Essays on aggregate and individual consumption fluctuations  

E-Print Network [OSTI]

This thesis consists of three essays on aggregate and individual consumption fluctuations. Chapter 1 develops a quantitative model to explore aggregate and individual consumption dynamics when the income process exhibits ...

Hwang, Youngjin

2006-01-01T23:59:59.000Z

484

Electric Power Monthly with data for July 1997  

SciTech Connect (OSTI)

This publication provides monthly statistics at the state, census division, and U.S. levels for net generation; fossil fuel consumption and stocks, quantity, and quality of fossil fuels; cost of fossil fuels; electricity retail sales; associated revenue; and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council regions. Statistics on net generation are published by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The monthly update is summarized, and industry developments are briefly described. 57 tabs.

NONE

1997-10-01T23:59:59.000Z

485

Environmental Assessment of the US Department of Energy Electric and Hybrid Vehicle Program  

SciTech Connect (OSTI)

This environmental assessment (EA) focuses on the long-term (1985-2000) impacts of the US Department of Energy (DOE) electric and hybrid vehicle (EHV) program. This program has been designed to accelerate the development of EHVs and to demonstrate their commercial feasibility as required by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (P.L. 94-413), as amended (P.L. 95-238). The overall goal of the program is the commercialization of: (1) electric vehicles (EVs) acceptable to broad segments of the personal and commercial vehicle markets, (2) hybrid vehicles (HVs) with range capabilities comparable to those of conventional vehicles (CVs), and (3) advanced EHVs completely competitive with CVs with respect to both cost and performance. Five major EHV projects have been established by DOE: market demonstration, vehicle evaluation and improvement, electric vehicle commercialization, hybrid vehicle commercialization, and advanced vehicle development. Conclusions are made as to the effects of EV and HV commercialization on the: consumption and importation of raw materials; petroleum and total energy consumption; ecosystems impact from the time of obtaining raw material through vehicle use and materials recycling; environmental impacts on air and water quality, land use, and noise; health and safety aspects; and socio-economic factors. (LCL)

Singh, M.K.; Bernard, M.J. III; Walsh, R.F

1980-11-01T23:59:59.000Z

486

Electric power monthly January 1997 with data for October 1996  

SciTech Connect (OSTI)

This publication presents monthly electricity statistical data. Information is included on U.S. electric utility net generation, consumption of fossil fuels, and fossil-fuel stocks; U.S. electric utility sales; receipts and cost of fossil fuels at utilities; and monthly plant aggregates. A glossary is included.

NONE

1997-01-01T23:59:59.000Z

487

Electricity Markets Meet the Home through Demand Response Lazaros Gkatzikis  

E-Print Network [OSTI]

Electricity Markets Meet the Home through Demand Response Lazaros Gkatzikis CERTH, University) programs motivate home users through dynamic pricing to shift electricity consumption from peak demand periods. In this paper, we introduce a day ahead electricity market where the operator sets the prices

488

State energy data report 1992: Consumption estimates  

SciTech Connect (OSTI)

This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

Not Available

1994-05-01T23:59:59.000Z

489

Monitoring Energy Consumption In Wireless Sensor Networks  

E-Print Network [OSTI]

Monitoring Energy Consumption In Wireless Sensor Networks Matthias Witt, Christoph Weyer, it may impair the ability of the sensor network to function. Therefore, minimizing energy consumption energy consumption in both standby and active modes is the basis of wireless networks. Energy preserving

Turau, Volker

490

Energy Consumption of Personal Computing Including Portable  

E-Print Network [OSTI]

Energy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1 consumption, questions are being asked about the energy contribution of computing equipment. Al- though studies have documented the share of energy consumption by this type of equipment over the years, research

Namboodiri, Vinod

491

Ethanol Consumption by Rat Dams During Gestation,  

E-Print Network [OSTI]

Ethanol Consumption by Rat Dams During Gestation, Lactation and Weaning Increases Ethanol examined effects of ethanol consumption in rat dams during gestation, lactation, and weaning on voluntary ethanol consumption by their adolescent young. We found that exposure to an ethanol-ingesting dam

Galef Jr., Bennett G.

492

Mathematical models of natural gas consumption  

E-Print Network [OSTI]

Mathematical models of natural gas consumption Kristian Sabo, Rudolf Scitovski, Ivan of natural gas consumption Kristian Sabo, Rudolf Scitovski, Ivan Vazler , Marijana Zeki-Susac ksabo of natural gas consumption hourly fore- cast on the basis of hourly movement of temperature and natural gas

Scitovski, Rudolf

493

Energy Conservation and Efficiency Improvement for the Electric Motors Operating in U.S. Oil Fields  

E-Print Network [OSTI]

Because of its versatility, electricity consumption continues to grow all over the world more rapidly than any other energy form. The portion of the United States' primary energy supply used as electricity has expanded from near zero at the turn...

Ula, S.; Cain, W.; Nichols, T.

494

Electric power monthly: April 1996, with data for January 1996  

SciTech Connect (OSTI)

The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatt hour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. 64 tabs.

NONE

1996-04-01T23:59:59.000Z

495

Electric Power Monthly, September 1995: With data for June 1995  

SciTech Connect (OSTI)

The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

NONE

1995-09-01T23:59:59.000Z

496

Total Light Management  

Broader source: Energy.gov [DOE]

Presentation covers total light management, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

497

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

498

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network [OSTI]

Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources a significant effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 15

499

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network [OSTI]

Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.0 pounds

500

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network [OSTI]

Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.5 pounds