Sample records for total electricity consumption

  1. Reduces electric energy consumption

    E-Print Network [OSTI]

    BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

  2. ,"New Mexico Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","331...

  3. ,"New York Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","2272015"...

  4. Residential Energy Consumption Survey Results: Total Energy Consumptio...

    Open Energy Info (EERE)

    Residential Energy Consumption Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) The Residential Energy Consumption Survey (RECS) is a national survey...

  5. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOE Patents [OSTI]

    Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

    2008-09-02T23:59:59.000Z

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  6. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOE Patents [OSTI]

    Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

    2006-03-07T23:59:59.000Z

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  7. Issues in International Energy Consumption Analysis: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Issues in International Energy Consumption Analysis: Electricity Usage in India's Housing Sector November 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of...

  8. Trends in Renewable Energy Consumption and Electricity

    Reports and Publications (EIA)

    2012-01-01T23:59:59.000Z

    Presents a summary of the nations renewable energy consumption in 2010 along with detailed historical data on renewable energy consumption by energy source and end-use sector. Data presented also includes renewable energy consumption for electricity generation and for non-electric use by energy source, and net summer capacity and net generation by energy source and state. The report covers the period from 2006 through 2010.

  9. Abstract--Numerous studies have shown that households' consumption is an important part of the total energy consumed

    E-Print Network [OSTI]

    Beigl, Michael

    consumption and for about 50% of the total electricity consumption [1]. Therefore it is important to explore one of them. The interviewees preferred receiving electricity consumption feedback from a bill, a web1 Abstract--Numerous studies have shown that households' consumption is an important part

  10. Furnace Blower Electricity: National and Regional Savings Potential

    E-Print Network [OSTI]

    Franco, Victor; Florida Solar Energy Center

    2008-01-01T23:59:59.000Z

    Currently, total electricity consumption of furnaces isthe total furnace electricity consumption and are primarilyto calculate the electricity consumption during cooling

  11. Power to the Plug: An Introduction to Energy, Electricity, Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Below is...

  12. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    Estimating Total Energy Consumption and Emissions of Chinasof Chinas total energy consumption mix. However, accuratelyof Chinas total energy consumption, while others estimate

  13. Electricity Demand and Energy Consumption Management System

    E-Print Network [OSTI]

    Sarmiento, Juan Ojeda

    2008-01-01T23:59:59.000Z

    This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

  14. On Minimizing the Energy Consumption of an Electrical Vehicle

    E-Print Network [OSTI]

    2011-04-19T23:59:59.000Z

    Problem, Branch-and-Bound, Electrical Vehicle, Energy Consumption. ... Electrical vehicle uses an electrical energy source for its displacement which can.

  15. Electrical energy consumption control apparatuses and electrical energy consumption control methods

    DOE Patents [OSTI]

    Hammerstrom, Donald J.

    2012-09-04T23:59:59.000Z

    Electrical energy consumption control apparatuses and electrical energy consumption control methods are described. According to one aspect, an electrical energy consumption control apparatus includes processing circuitry configured to receive a signal which is indicative of current of electrical energy which is consumed by a plurality of loads at a site, to compare the signal which is indicative of current of electrical energy which is consumed by the plurality of loads at the site with a desired substantially sinusoidal waveform of current of electrical energy which is received at the site from an electrical power system, and to use the comparison to control an amount of the electrical energy which is consumed by at least one of the loads of the site.

  16. Household activities through various lenses: crossing surveys, diaries and electric consumption

    E-Print Network [OSTI]

    Durand-Daubin, Mathieu

    2013-01-01T23:59:59.000Z

    comparison between electricity consumption and behavioralU.S. residential electricity consumption Energy Policy, 42(of the residential electricity consumption. Energy Policy,

  17. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    electricity, oil and coal consumption, offset by increasedsaved in electricity, oil and gas consumption, offset by 2.4energy consumption by fuel type. Natural gas, oil and some

  18. Illinois Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (MillionTotal Consumption

  19. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Table C13. Total Electricity Consumption and Expenditures for Non-Mall Buildings, 2003 All Buildings* Using Electricity Electricity Consumption Electricity Expenditures Number of...

  20. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    3A. Total Electricity Consumption and Expenditures for All Buildings, 2003 All Buildings Using Electricity Electricity Consumption Electricity Expenditures Number of Buildings...

  1. Prediction of Electric Load using Kohonen Maps -Application to the Polish Electricity Consumption

    E-Print Network [OSTI]

    Verleysen, Michel

    Prediction of Electric Load using Kohonen Maps - Application to the Polish Electricity Consumption on Kohonen maps is proposed. This method is applied to the prediction of the Polish electricity consumption of the electric load is specific. For each day, we have 24 values (or more) of the electricity consumption

  2. Reducing Occupant-Controlled Electricity Consumption in Campus Buildings

    E-Print Network [OSTI]

    Doudna, Jennifer A.

    2010 Reducing Occupant-Controlled Electricity Consumption in Campus Buildings Kill­09 and is expected to spend more than $17.1 million in 2009­10. In an effort to reduce electricity consumption; 1 EXECUTIVE SUMMARY UC Berkeley spent $16.39 million on purchased electricity in 2008

  3. TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN

    E-Print Network [OSTI]

    California at Berkeley. University of

    PWP-085 TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN CALIFORNIA, California 94720-5180 www.ucei.org #12;TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING** Abstract This study analyzes state and regional electricity supply and demand trends for the eleven states

  4. Fact #840: September 29, 2014 World Renewable Electricity Consumption...

    Broader source: Energy.gov (indexed) [DOE]

    Of the selected countriesregions shown, Europe has consistently had the highest consumption of renewable electricity. However, China has shown dramatic growth in the...

  5. Optimization Online - Electricity markets with flexible consumption as ...

    E-Print Network [OSTI]

    Quentin Louveaux

    2015-06-01T23:59:59.000Z

    Jun 1, 2015 ... Electricity markets with flexible consumption as nonatomic congestion games. Quentin Louveaux (q.louveaux ***at*** ulg.ac.be) Sbastien...

  6. On Minimizing the Energy Consumption of an Electrical Vehicle

    E-Print Network [OSTI]

    Abdelkader Merakeb

    2011-04-20T23:59:59.000Z

    Apr 20, 2011 ... The problem that we focus on, is the minimization of the energy consumption of an electrical vehicle achievable on a given driving cycle.

  7. North Carolina Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawalsElements)Total Consumption (Million

  8. Broad Initiatives/Sharp Focus- Cuts Electricity Consumption 15%

    E-Print Network [OSTI]

    Gialanella, V.

    Analysis of electrical consumption can payout in reduced energy costs. Continuous monitoring of electrical usage coupled with improvements and optimization in system(s) operations can have a favorable impact on annual operating expenditures. Further...

  9. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01T23:59:59.000Z

    is fraction of total electricity consumption for commercialy) ! calculate total electricity consumption for the end-useis fraction of total electricity consumption for residential

  10. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of...

  11. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

  12. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  13. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  14. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Table C22. Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace...

  15. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

  16. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  17. California Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590Fuel ConsumptionNov-14 Dec-14YearTotal

  18. Washington Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58 810 0CubicFeet)Total Consumption

  19. Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residential Energy Consumption,

  20. Idaho Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million Cubic Feet) Idaho

  1. Nebraska Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (Million CubicTotal Consumption

  2. New Hampshire Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan FebFeet)Total Consumption

  3. New Jersey Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan1 0.2Total Consumption (Million

  4. Ohio Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul9 20102009 2010Total Consumption

  5. Oklahoma Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May JunFeet)Total Consumption (Million

  6. Air-Conditioning Effect Estimation for Mid-Term Forecasts of Tunisian Electricity Consumption

    E-Print Network [OSTI]

    Boyer, Edmond

    Air-Conditioning Effect Estimation for Mid-Term Forecasts of Tunisian Electricity Consumption Tunisian electricity consumption (the residential sector represents 68% of this class of consumers). Nevertheless, with the Tunisian electricity consumption context, models elaborating which take account weather

  7. Impacts of Electric Vehicles on Primary Energy Consumption and Petroleum Displacement

    E-Print Network [OSTI]

    Wang, Quanlu; Delucchi, Mark A.

    1991-01-01T23:59:59.000Z

    These studiesprojected electricity consumption EVs and theMPG) and EV electricity consumption (in Kwh per mile).weight of increases. 3.2. Electricity Consumption EVs of To

  8. A regression approach to infer electricity consumption of legacy telecom equipment

    E-Print Network [OSTI]

    Fisher, Kathleen

    A regression approach to infer electricity consumption of legacy telecom equipment [Extended and communications technology accounts for a significant fraction of worldwide electricity consumption. Given inferring the electricity consumption of different components of the installed base of telecommu- nications

  9. Lifestyle Factors in U.S. Residential Electricity Consumption

    SciTech Connect (OSTI)

    Sanquist, Thomas F.; Orr, Heather M.; Shui, Bin; Bittner, Alvah C.

    2012-03-30T23:59:59.000Z

    A multivariate statistical approach to lifestyle analysis of residential electricity consumption is described and illustrated. Factor analysis of selected variables from the 2005 U.S. Residential Energy Consumption Survey (RECS) identified five lifestyle factors reflecting social and behavioral choices associated with air conditioning, laundry usage, personal computer usage, climate zone of residence, and TV use. These factors were also estimated for 2001 RECS data. Multiple regression analysis using the lifestyle factors yields solutions accounting for approximately 40% of the variance in electricity consumption for both years. By adding the associated household and market characteristics of income, local electricity price and access to natural gas, variance accounted for is increased to approximately 54%. Income contributed only {approx}1% unique variance to the 2005 and 2001 models, indicating that lifestyle factors reflecting social and behavioral choices better account for consumption differences than income. This was not surprising given the 4-fold range of energy use at differing income levels. Geographic segmentation of factor scores is illustrated, and shows distinct clusters of consumption and lifestyle factors, particularly in suburban locations. The implications for tailored policy and planning interventions are discussed in relation to lifestyle issues.

  10. Essays on the Impact of Climate Change and Building Codes on Energy Consumption and the Impact of Ozone on Crop Yield

    E-Print Network [OSTI]

    Aroonruengsawat, Anin

    2010-01-01T23:59:59.000Z

    on Residen- iv tial Electricity Consumption 8 Introduction 9Observed residential electricity consumption 2003 to 2006total residential electricity consumption for 2006 by five-

  11. Domestic electricity consumption is con-tinuously increasing and now accounts

    E-Print Network [OSTI]

    Domestic electricity consumption is con- tinuously increasing and now accounts for about one third") enable detailed electricity consumption infor- mation to be captured, processed, and communicated electricity consumption infor- mation in real-time, enabling occupants to better understand their electricity

  12. Hawaii Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TOTotal Consumption (Million

  13. Table 16. Total Energy Consumption, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled:a.TotalTotal EnergyTotal

  14. Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residential EnergyTotal Delivered::Total

  15. Forecast of the electricity consumption by aggregation of specialized experts; application to Slovakian and French

    E-Print Network [OSTI]

    Forecast of the electricity consumption by aggregation of specialized experts; application-term forecast of electricity consumption based on ensemble methods. That is, we use several possibly independent´erieure and CNRS. hal-00484940,version1-19May2010 #12;Forecast of the electricity consumption by aggregation

  16. Table 16. Total Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled:a.TotalTotal Energy

  17. Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residential EnergyTotal Delivered

  18. Table 4. Total Petroleum Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residentialtightb. ImportedTotal

  19. Table 8. Total Natural Gas Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:1 Table 7:Total

  20. Indiana Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal2009 2010 2011 2012 2013 2014Year JanTotal

  1. Iowa Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0 Year-1Decade Year-0Total

  2. Kansas Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYear Jan FebNov-14Total

  3. Maine Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 07,755,432Commercial10.99 12.28Total

  4. Maryland Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.05.03 5.68 4.61 5.60YearTotal

  5. Michigan Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3Exports (NoYear Jan2009 20103,253Total

  6. Minnesota Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)Commercial Consumers (NumberTotal

  7. Mississippi Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet) PriceLiquids,35 922 858 868Total

  8. Montana Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic32,876 10,889Decade03 4.83 4.53Total

  9. Rhode Island Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Yeara3,663 (MillionTotal

  10. South Carolina Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet) (Million CubicTotal

  11. Arkansas Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14Sales (BillionFuel6,531 2,3525,628Total

  12. Connecticut Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain,606,602andDecadeCommercial78 4.88Total

  13. West Virginia Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(Million CubicDecade Year-0 Year-1Total

  14. Wisconsin Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear JanThousand Cubic28Total

  15. Texas Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul Aug Sep2009 201081,843Total

  16. Virginia Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year JanDecade Year-0 Year-1 Year-2 (MillionDecadeYearTotal

  17. Table 12. Total Coal Consumption, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled NameplateTotal Coal

  18. Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residentialtight oil plays:

  19. Table 4. Total Petroleum Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residentialtightb.

  20. Table 8. Total Natural Gas Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:1 Table 7:

  1. U.S. Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe Outlook269,023Year Jan Feb Mar AprYear JanYear

  2. Florida Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar Apr May2009Total

  3. Georgia Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPriceIndustrial Consumers48Total

  4. U.S. Natural Gas Total Consumption (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,932 130,90267 4.48 3.95 2.66 NA

  5. U.S. Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,932 130,90267 4.48 3.95 2.66

  6. Nevada Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (MillionYearNADecadeand2009DecadeTotal

  7. New York Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (Million Cubic Feet)Nov-14YearTotal

  8. Oregon Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear Jan FebYear Jan Feb Mar Apr MayTotal

  9. Pennsylvania Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYearAdditionsLiquidsRepressuringDecadeTotal

  10. Overview of the Electrical Energy Segment of the Energy Information Administration/ Manufacturing Consumption Report

    E-Print Network [OSTI]

    Lockhead, S.

    1999-01-01T23:59:59.000Z

    , liquefied petroleum gas, coke and breeze, coal, and electricity, only the electricity segment is overviewed. Along with pure electrical energy consumption information, newly available data covers methods that manufacturers used to purchase and modify...

  11. Overview of the Electrical Energy Segment of the Energy Information Administration/ Manufacturing Consumption Report

    E-Print Network [OSTI]

    Lockhead, S.

    , liquefied petroleum gas, coke and breeze, coal, and electricity, only the electricity segment is overviewed. Along with pure electrical energy consumption information, newly available data covers methods that manufacturers used to purchase and modify...

  12. 2013 Total Electric Industry- Sales (Megawatthours

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi" ,"Plant","Primary1. TotalRevenue for

  13. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    technology at coal-fired power plants, total SO 2 emissionsemission coefficients for electric power and direct-use coal.Coal Similarly, without improvements in sulfur capture at power plants, SO 2 emissions

  14. Estimates of Energy Consumption by Building Type and End Use at U.S. Army Installations

    E-Print Network [OSTI]

    Konopacki, S.J.

    2010-01-01T23:59:59.000Z

    4. Figure 5-5. 1993 Electricity Consumption Estimates by EndkWh/ft ) 1993 Electricity Consumption Estimates by End Useof Total) 1993 Electricity Consumption Estimates by End Use

  15. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    SciTech Connect (OSTI)

    Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

    2008-03-01T23:59:59.000Z

    Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

  16. "Table A11. Total Primary Consumption of Combustible Energy for Nonfuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1.30. Total Consumption

  17. Total energy cycle energy use and emissions of electric vehicles.

    SciTech Connect (OSTI)

    Singh, M. K.

    1999-04-29T23:59:59.000Z

    A total energy cycle analysis (TECA) of electric vehicles (EV) was recently completed. The EV energy cycle includes production and transport of fuels used in power plants to generate electricity, electricity generation, EV operation, and vehicle and battery manufacture. This paper summarizes the key assumptions and results of the EVTECA. The total energy requirements of EVS me estimated to be 24-35% lower than those of the conventional, gasoline-fueled vehicles they replace, while the reductions in total oil use are even greater: 55-85%. Greenhouse gases (GHG) are 24-37% lower with EVs. EVs reduce total emissions of several criteria air pollutants (VOC, CO, and NO{sub x}) but increase total emissions of others (SO{sub x}, TSP, and lead) over the total energy cycle. Regional emissions are generally reduced with EVs, except possibly SO{sub x}. The limitations of the EVTECA are discussed, and its results are compared with those of other evaluations of EVs. In general, many of the results (particularly the oil use, GHG, VOC, CO, SO{sub x}, and lead results) of the analysis are consistent with those of other evaluations.

  18. Improving Device-level Electricity Consumption Breakdowns in Private Households Using ON/OFF Events

    E-Print Network [OSTI]

    recommen- dations on how to reduce the overall energy consumption of the household. In this paper, we build Descriptors H.4 [Information Systems Applications]: Miscellaneous 1. INTRODUCTION The energy sectorImproving Device-level Electricity Consumption Breakdowns in Private Households Using ON/OFF Events

  19. Eawag: Swiss Federal Institute of Aquatic Science and Technology Electricity consumption in the public

    E-Print Network [OSTI]

    Wehrli, Bernhard

    in the public municipal sector (rough estimates, 1995) 4 Factsheet: Water and energy This information sheet inhabitant (around 3 watts, based on household consumption). · In the public municipal sector, water suppliesEawag: Swiss Federal Institute of Aquatic Science and Technology Electricity consumption

  20. Table A39. Total Expenditures for Purchased Electricity and Steam

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of ElectricityPrimaryTotal9.

  1. Effects of Feedback on Residential Electricity Consumption: A...

    Office of Scientific and Technical Information (OSTI)

    Haberkorn (1976-77) investigated feedback, information, and arebate system in 12 (6 control and 6 experimental) apartments where electricity was used for lighting, appliances,...

  2. Evolutionary Tuning of Building Models to Monthly Electrical Consumption

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    % of the world's primary energy and contributes 21% of the world's greenhouse gas emissions (DOE Buildings Data Book 2011). The largest sector of energy consumption is the ~119 million buildings in the US which New, PhD Theodore Chandler Member ASHRAE ABSTRACT Building energy models of existing buildings

  3. A Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission, and Consumption

    E-Print Network [OSTI]

    Nagurney, Anna

    A Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission, and Consumption Anna Nagurney and Dmytro Matsypura Department of Finance and Operations Management Isenberg School, Berlin, Germany, pp. 3-27. Abstract: A supply chain network perspective for electric power production

  4. Table 15. Total Electricity Sales, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled:a.Total Electricity

  5. Fact #840: September 29, 2014 World Renewable Electricity Consumption is

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartmentLast Ten YearsU.S. Consumption in

  6. A new "In-Use Energy consumption" indicator for the design of energy efficient electr(on)ics

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A new "In-Use Energy consumption" indicator for the design of energy efficient electr(on)ics Lucie(on)ic equipment is proposed for illustration purposes. Keywords: Energy efficiency; energy consumption; electric version received 23 February 2011) One of the challenging environmental issues faced by the electr

  7. Table A30. Total Primary Consumption of Energy for All Purposes by Value of

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of Electricity Sold to0.

  8. Table A32. Total Consumption of Offsite-Produced Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of Electricity

  9. Table A33. Total Primary Consumption of Energy for All Purposes by Employment

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of ElectricityPrimary

  10. Developing a tool to estimate water withdrawal and consumption in electricity generation in the United States.

    SciTech Connect (OSTI)

    Wu, M.; Peng, J. (Energy Systems); ( NE)

    2011-02-24T23:59:59.000Z

    Freshwater consumption for electricity generation is projected to increase dramatically in the next couple of decades in the United States. The increased demand is likely to further strain freshwater resources in regions where water has already become scarce. Meanwhile, the automotive industry has stepped up its research, development, and deployment efforts on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Large-scale, escalated production of EVs and PHEVs nationwide would require increased electricity production, and so meeting the water demand becomes an even greater challenge. The goal of this study is to provide a baseline assessment of freshwater use in electricity generation in the United States and at the state level. Freshwater withdrawal and consumption requirements for power generated from fossil, nonfossil, and renewable sources via various technologies and by use of different cooling systems are examined. A data inventory has been developed that compiles data from government statistics, reports, and literature issued by major research institutes. A spreadsheet-based model has been developed to conduct the estimates by means of a transparent and interactive process. The model further allows us to project future water withdrawal and consumption in electricity production under the forecasted increases in demand. This tool is intended to provide decision makers with the means to make a quick comparison among various fuel, technology, and cooling system options. The model output can be used to address water resource sustainability when considering new projects or expansion of existing plants.

  11. Evolutionary Tuning of Building Models to Monthly Electrical Consumption

    SciTech Connect (OSTI)

    Garrett, Aaron [Jacksonville State University] [Jacksonville State University; New, Joshua Ryan [ORNL] [ORNL; Chandler, Theodore [Jacksonville State University] [Jacksonville State University

    2013-01-01T23:59:59.000Z

    Building energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Calibrating models is costly because it is currently an art which requires significant manual effort by an experienced and skilled professional. An automated methodology could significantly decrease this cost and facilitate greater adoption of energy simulation capabilities into the marketplace. The Autotune project is a novel methodology which leverages supercomputing, large databases of simulation data, and machine learning to allow automatic calibration of simulations to match measured experimental data on commodity hardware. This paper shares initial results from the automated methodology applied to the calibration of building energy models (BEM) for EnergyPlus (E+) to reproduce measured monthly electrical data.

  12. Monitoring Electricity Consumption in the Tertiary Sector- A Project within the Intelligent Energy Europe Program

    E-Print Network [OSTI]

    Plesser, S.; Fisch, M. N.; Gruber, E.; Schlomann, B.

    The electricity consumption in the tertiary sector in the EU is still increasing and a further increase is expected of more than 2 % per year during the next 15 years. This sector includes companies and institutions of public and private services...

  13. Total and Peak Energy Consumption Minimization of Building HVAC Systems Using Model Predictive Control

    E-Print Network [OSTI]

    Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

    2012-01-01T23:59:59.000Z

    optimal control design for HVAC systems, in Proc. Dynamicelectricity consumption in hvac using learning- based model-algorithm design for hvac systems in energy efficient

  14. Modeling Water Withdrawal and Consumption for Electricity Generation in the United States

    E-Print Network [OSTI]

    Strzepek, Kenneth M.

    2012-06-15T23:59:59.000Z

    Water withdrawals for thermoelectric cooling account for a significant portion of total water use in the United States. Any change in electrical energy generation policy and technologies has the potential to have a major ...

  15. Potential Energy Total electric potential energy, U, of a system of

    E-Print Network [OSTI]

    Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

    Potential Energy Total electric potential energy, U, of a system of charges is obtained from of work done by the field, W*= -W. Bring q1 from , W *= 0 since no electric F yet #12;Potential Energy Total electric potential energy, U, of a system of charges is obtained from the work done by an external

  16. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    Geothermal Heat Pump Central AC by NG Electric water heaterwater heating Technologies Electric heater Gas boiler Coal Boiler Small cogen Stove District heating Heat pumpHeat Pump* *COP Reference Case Alternative Case Table 10 Office Buildings: Water Heating Efficiency Boiler Gas Boiler Small Cogen Electric Water Heater

  17. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    Primary Electricity Coal Final energy use in buildings is9 million tonnes of coal equivalent energy could be saved byproportion of energy consumed from coal, coke, liquid fuels,

  18. "Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1.30. Total Consumption of

  19. Data Visualization for Quality-Check Purposes of Monitored Electricity Consumption in All Office Buildings in the ESL Database

    E-Print Network [OSTI]

    Sreshthaputra, A.; Abushakra, B.; Haberl, J. S.; Claridge, D. E.

    2000-01-01T23:59:59.000Z

    This report comprises an effort to visualize the monitored electricity consumption in all office buildings (not including the office buildings comprising other functions as classrooms and laboratories, for instance) in the ESL database. This data...

  20. Abstract--Control strategies have been developed for Hybrid Electric Vehicles (HEV) that minimize fuel consumption while

    E-Print Network [OSTI]

    Peng, Huei

    is typically the ubiquitous internal combustion engine, tailpipe emissions must also be considered. This paper consumption and engine out emissions. If catalysts or other after treatments are used, minimization of engine sum of fuel consumption and tailpipe emissions for an HEV equipped with a dual mode Electrically

  1. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    of Central Government Buildings. Available at: http://Energy Commission, PIER Building End-Use Energy Efficiencythe total lifecycle of a building such as petroleum and

  2. U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecade Year-0Sales (Billion CubicConsumption

  3. Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"18.1.TotalNonfuel

  4. Table A9. Total Primary Consumption of Energy for All Purposes by Census

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of2" "Total8.7.A9.

  5. Table C4. Total End-Use Energy Consumption Estimates, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. Coal Stocks at Manufacturing:: TotalC4. Total

  6. "Table A15. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1.30. Total

  7. "Table A47. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal"1" " (Estimates5.6. Total7.7.

  8. Predicting Future Hourly Residential Electrical Consumption: A Machine Learning Case Study

    SciTech Connect (OSTI)

    Edwards, Richard E [ORNL; New, Joshua Ryan [ORNL; Parker, Lynne Edwards [ORNL

    2012-01-01T23:59:59.000Z

    Whole building input models for energy simulation programs are frequently created in order to evaluate specific energy savings potentials. They are also often utilized to maximize cost-effective retrofits for existing buildings as well as to estimate the impact of policy changes toward meeting energy savings goals. Traditional energy modeling suffers from several factors, including the large number of inputs required to characterize the building, the specificity required to accurately model building materials and components, simplifying assumptions made by underlying simulation algorithms, and the gap between the as-designed and as-built building. Prior works have attempted to mitigate these concerns by using sensor-based machine learning approaches to model energy consumption. However, a majority of these prior works focus only on commercial buildings. The works that focus on modeling residential buildings primarily predict monthly electrical consumption, while commercial models predict hourly consumption. This means there is not a clear indicator of which techniques best model residential consumption, since these methods are only evaluated using low-resolution data. We address this issue by testing seven different machine learning algorithms on a unique residential data set, which contains 140 different sensors measurements, collected every 15 minutes. In addition, we validate each learner's correctness on the ASHRAE Great Energy Prediction Shootout, using the original competition metrics. Our validation results confirm existing conclusions that Neural Network-based methods perform best on commercial buildings. However, the results from testing our residential data set show that Feed Forward Neural Networks, Support Vector Regression (SVR), and Linear Regression methods perform poorly, and that Hierarchical Mixture of Experts (HME) with Least Squares Support Vector Machines (LS-SVM) performs best - a technique not previously applied to this domain.

  9. MEW Efforts in Reducing Electricity and Water Consumption in Government and Private Sectors in Kuwait

    E-Print Network [OSTI]

    Al-Tayar, I.

    2011-01-01T23:59:59.000Z

    ,154 Achievements from Energy Audit Program Building Year Peak Power Reduction (%) Energy Saving (%) MEW and MPW buildings in South Surra 2004 38 20 Public Authority for Civil Information 2004 5 12 Al-Fanar Shopping Mall 2004 15 8 Peak Power Reduction...W. ? In 1949, the first power generation plant was established in Merghab with a total capacity of 60 kW. ? In 1951, Kuwait established the General Department of Electricity and then the Ministry of Electricity & Water in 1961. ? < 1925 - rain water...

  10. Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"1 " "

  11. Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"1 " "2"

  12. Table A1. Total Primary Consumption of Energy for All Purposes by Census

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"1 "

  13. Table A1. Total Primary Consumption of Energy for All Purposes by Census

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"1 "2" "

  14. Table A13. Total Consumption of Offsite-Produced Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"1 "2"

  15. Table A14. Total First Use (formerly Primary Consumption) of Energy for All P

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"1 "2"4.

  16. Table A17. Total First Use (formerly Primary Consumption) of Energy for All P

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"1

  17. Table A20. Total First Use (formerly Primary Consumption) of Energy for All P

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"18.

  18. Table A22. Total First Use (formerly Primary Consumption) of Combustible Ener

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"18.1. Quantity ofFirst

  19. Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest

  20. "Table A3. Total Primary Consumption of Combustible Energy for Nonfuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1.30.2"

  1. "Table A45. Selected Energy Operating Ratios for Total Energy Consumption"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal"1" " (Estimates5. Selected

  2. "Table A46. Selected Energy Operating Ratios for Total Energy Consumption"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal"1" " (Estimates5.

  3. "Table A48. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal"1" " (Estimates5.6.

  4. "Table A50. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal"1" " (Estimates5.6.8.

  5. "Table A51. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal"1" " (Estimates5.6.8.1.

  6. "Table A8. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal"1" "Shell Storage Capacity

  7. "Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8 WaterRegionalListTotal

  8. "Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8Total Delivered

  9. "Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8Total

  10. An evaluation of total body electrical conductivity to estimate body composition of largemouth bass

    E-Print Network [OSTI]

    Barziza, Daniel Eugene

    1998-01-01T23:59:59.000Z

    Information about body composition of fish is important for the assessment and management of fish stocks. Measurement of total body electrical conductivity (TOBEC) recently has been used to estimate the body composition of several fish species in a...

  11. Estimation of body composition in channel catfish utilizing relative weight and total body electrical conductivity

    E-Print Network [OSTI]

    Jaramillo, Francisco

    1993-01-01T23:59:59.000Z

    ESTIMATION OF BODY COMPOSITION IN CHANNEL CATFISH UTILIZING RELATIVE WEIGHT AND TOTAL BODY ELECTRICAL CONDUCTIVITY A Thesis by FRANCISCO JARAMILLO, JR. Submitted to the Office of Graduate Studies of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1993 Major Subject: Wildlife and Fisheries Sciences ESTIMATION OF BODY COMPOSITION IN CHANNEL CATFISH UTILIZING RELATIVE WEIGHT AND TOTAL BODY ELECTRICAL CONDUCTIVITY A Thesis...

  12. Table 6a. Total Electricity Consumption per Effective Occupied Square Foot,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S. Vehicle FuelFoot,

  13. Table 6b. Relative Standard Errors for Total Electricity Consumption per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S. Vehicle FuelFoot,Effective

  14. A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings

    E-Print Network [OSTI]

    Jiang, Xiaofan

    2010-01-01T23:59:59.000Z

    consumption, typical load (power) profile, and time spent inby plug-load meters provides detailed power profiles of

  15. Profiling Real-Time Electricity Consumption Data for Process Monitoring and Control

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A [ORNL

    2013-01-01T23:59:59.000Z

    Today, smart meters serve as key assets to utilities and their customers because they are capable of recording and communicating real-time energy usage data; thus, enabling better understanding of energy usage patterns. Other potential benefits of smart meters data include the ability to improve customer experience, grid reliability, outage management, and operational efficiency. Despite these tangible benefits, many utilities are inundated by data and remain uncertain about how to extract additional value from these deployed assets outside of billing operations. One way to overcome this challenge is the development of new metrics for classifying utility customers. Traditionally, utilities classified their customers based on their business nature (residential, commercial, and industrial) and/or their total annual consumption. While this classification is useful for some operational functions, it is too limited for designing effective monitoring and control strategies. In this paper, a data mining methodology is proposed for clustering and profiling smart meters data in order to form unique classes of customers exhibiting similar usage patterns. The developed clusters could help utilities in identifying opportunities for achieving some of the benefits of smart meters data.

  16. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01T23:59:59.000Z

    49 3.3.3. Pre-installation electricity consumption of CSIE. Kahn (2011). Electricity Consumption and Durable Housing:on Electricity Consumption .

  17. Please cite this article in press as: T. Zhang, et al., Modelling electricity consumption in office buildings: An agent based approach. Energy Buildings (2011), doi:10.1016/j.enbuild.2011.07.007

    E-Print Network [OSTI]

    Aickelin, Uwe

    Please cite this article in press as: T. Zhang, et al., Modelling electricity consumption in office behaviour, to simulate the electricity consumption in office buildings. Based on a case study, we use office electricity consumption problems. This paper theoretically contributes to an integration

  18. Electricity Markets Meet the Home through Demand Response Lazaros Gkatzikis

    E-Print Network [OSTI]

    ) programs motivate home users through dynamic pricing to shift electricity consumption from peak demand incentives to the users, usually in the form of dynamic pricing, to reduce their electricity consumption. For example, the residential sector in UK accounts for 31% of the total electricity consumption

  19. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh)...

  20. Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of Electricity SoldTotal

  1. Table A34. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of ElectricityPrimaryTotal

  2. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    battery Utility electricity consumption Electricity providedis expressed in electricity consumption of the electricis expressed in electricity consumption of the electric

  3. Energy Consumption Characteristics of Light Manufacturing Facilities in The Northern Plains: A Study of Detailed Data from 10 Industrial Energy Audits Conducted in 1993

    E-Print Network [OSTI]

    Twedt, M.; Bassett, K.

    was $0.46/ccf of natural gas and $O.053IkWh of electricity. Natural Gas Consumption Of the total natural gas consumption, steam processes used the largest quantity with 48 percent, followed closely by space heating with 45 percent. The remaining 7... natural gas consumption. The large space heating loads warranted extensive evaluation of the building's thermal envelope for improved heat loss resistance. Electrical Consumption The electricity consumption for the plants (Table 3) was divided...

  4. Modeling diffusion of electrical appliances in the residential sector

    E-Print Network [OSTI]

    McNeil, Michael A.

    2010-01-01T23:59:59.000Z

    in forecasting electricity consumption in the residentialmodeling, since household electricity consumption is largelyup forecasting of electricity consumption by combining

  5. Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    SciTech Connect (OSTI)

    Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

    2011-03-01T23:59:59.000Z

    Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

  6. A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings

    E-Print Network [OSTI]

    Jiang, Xiaofan

    2010-01-01T23:59:59.000Z

    architecture that provides fine-grained real-time visibility into building energy consumption enables significant and sustainablearchitecture, to create actionable views of energy usages, which lead to significant and sustainablearchitecture for local energy generation, distribution, and sharing. IEEE Conference on Global Sustainable

  7. Naval ship propulsion and electric power systems selection for optimal fuel consumption

    E-Print Network [OSTI]

    Sarris, Emmanouil

    2011-01-01T23:59:59.000Z

    Although propulsion and electric power systems selection is an important part of naval ship design, respective decisions often have to be made without detailed ship knowledge (resistance, propulsors, etc.). Propulsion and ...

  8. Effect of automotive electrical system changes on fuel consumption using incremental efficiency methodology

    E-Print Network [OSTI]

    Hardin, Christopher William

    2004-01-01T23:59:59.000Z

    There has been a continuous increase in automotive electric power usage. Future projections show no sign of it decreasing. Therefore, the automotive industry has a need to either improve the current 12 Volt automotive ...

  9. Household activities through various lenses: crossing surveys, diaries and electric consumption

    E-Print Network [OSTI]

    Durand-Daubin, Mathieu

    2013-01-01T23:59:59.000Z

    result brings more evidence of the diaries relevance to understand electricity time of use,results show an overall consistency of the three tools regarding the measurement of the intensity and time of use

  10. A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings

    E-Print Network [OSTI]

    Jiang, Xiaofan

    2010-01-01T23:59:59.000Z

    3 System Architecture 3.1 Building as a2.1 Energy Flows in Buildings . . . . . . . . 2.1.1 Electric2.3.2 Networking . . . . . . . . . . . . 2.4 Building Energy

  11. The Energy Box : comparing locally automated control strategies of residential electricity consumption under uncertainty

    E-Print Network [OSTI]

    Livengood, Daniel James

    2011-01-01T23:59:59.000Z

    The Energy Box is an always-on background processor automating the temporal management of one's home or small business electrical energy usage. Cost savings are achieved in a variety of environments, ranging from at pricing ...

  12. MEW Efforts in Reducing Electricity and Water Consumption in Government and Private Sectors in Kuwait

    E-Print Network [OSTI]

    Al-Tayar, I.

    2011-01-01T23:59:59.000Z

    and shallow wells ? 1925 - 1951 - water imported from Shatt Al-Arab, Iraq ? 1951 - public water supply service established and managed by the State ? 1951 - KOC installs a small desalination plant ? 1960 - discovery of fresh water at Al...-Raudhatain ? 1970 - to date - rapid increase of desalination capacity Historical Background - Water Electricity Generation and Water Desalination No . Power Station Establishe d Electricity Generation Water Production Year Million kW Million emperor...

  13. Adapting state and national electricity consumption forecasting methods to utility service areas. Final report

    SciTech Connect (OSTI)

    Swift, M.A.

    1984-07-01T23:59:59.000Z

    This report summarizes the experiences of six utilities (Florida Power and Light Co., Municipal Electric Authority of Georgia, Philadelphia Electric Co., Public Service Co. of Colorado, Sacramento Municipal Utility District, and TVA) in adapting to their service territories models that were developed for forecasting loads on a national or regional basis. The models examined were of both end-use and econometric design and included the three major customer classes: residential, commercial, and industrial.

  14. Sharing the Total Cost of Ownership of Electric Vehicles: A Study on the Application of Game Theory

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Sharing the Total Cost of Ownership of Electric Vehicles: A Study on the Application of Game Theory, illustrated by a practical example in which the system of interest is a commercial electric vehicle in its their position in different markets. Like in other industries, car manufacturers are also affected

  15. "Table A2. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1.30. Total6. Components.

  16. Houston's Smart Grid: Transforming the Future of Electric Distribution & Energy Consumption

    E-Print Network [OSTI]

    Bartel, W.

    2012-01-01T23:59:59.000Z

    % saved 52% on event days 13 What?s Next? Smart Meters Were Just The Beginning HAN Devices Smart Appliances Smart Meter Texas Portal Intelligent Grid Phase 1: Customer Insight Smart Meters Storage Electric vehicles Phase 2...: Customer Engagement Micro Grids Aggregated Demand Management Phase 3: Customer Co-Creator of Value 2010 2020 2014 2013 2012 2011 Price control / load control Advanced Grid 14 We can?t do it alone Per the DOE Grant Agreement,: ?If you...

  17. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate -5 20054 Share of635 U.S. Electric

  18. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate -5 20054 Share of635 U.S. Electric6

  19. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate -5 20054 Share of635 U.S. Electric67

  20. One of These Homes is Not Like the Other: Residential Energy Consumption Variability

    E-Print Network [OSTI]

    Kelsven, Phillip

    2013-01-01T23:59:59.000Z

    estimates of gas and electricity consumption were preparedestimates the gas and electricity consumption in a typicalthat lacked electricity consumption data were discarded for

  1. "Table A3. Total Primary Consumption of Combustible Energy for Nonfuel Purposes by Census Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1.30.2" "Nonfuel

  2. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  3. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  4. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    LPG is a major energy source, while coal and electricity arethe total residential energy and coal is the dominant fuel.1 Residential Energy consumption by End-use Coal Renewables

  5. Table A52. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType"A50. Total2. Total

  6. The frequency of total use of manual and automatic low-consumption fixtures in the Langford Architecture Building at Texas A&M University

    E-Print Network [OSTI]

    Chung, Woo Sung

    2006-10-30T23:59:59.000Z

    . The performance of low-consumption fixtures has become an important issue for facilities managers because the water saving by retrofitting low-consumption fixtures is significant. The fixtures in the Langford Architecture Building A, Texas A&M University were used...

  7. Considering the total cost of electricity from sunlight and the alternatives

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fthenakis, Vasilis

    2015-03-01T23:59:59.000Z

    Photovoltaic (PV) electricity generation has grown to about 17 GW in the United States, corresponding to one tenth of the global capacity. Most deployment in the country has happened during the last 6 years. Reflecting back in time, in early 2008 this author and his collaborators James Mason and Ken Zweibel, published in Scientific American and in Energy Policy a Solar Grand Plan demonstrating the feasibility of renewable energy in providing 69% of the U.S. electricity demand by 2050, while reducing CO2 emissions by 60% from 2005 levels; the PV contribution to this plan was assessed to be 250 GWmoreby 2030, and 2,900 GW by 2050 [1]. The DOEs more detailed SunShot vision study, released in 2012, showed the possibility of having 300 GW of PV installed in the United States by 2030, and 630 GW by 2050.less

  8. Considering the total cost of electricity from sunlight and the alternatives

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fthenakis, Vasilis [Brookhaven National Lab. (BNL), Upton, NY (United States); Columbia Univ., New York, NY (United States)

    2015-03-01T23:59:59.000Z

    Photovoltaic (PV) electricity generation has grown to about 17 GW in the United States, corresponding to one tenth of the global capacity. Most deployment in the country has happened during the last 6 years. Reflecting back in time, in early 2008 this author and his collaborators James Mason and Ken Zweibel, published in Scientific American and in Energy Policy a Solar Grand Plan demonstrating the feasibility of renewable energy in providing 69% of the U.S. electricity demand by 2050, while reducing CO2 emissions by 60% from 2005 levels; the PV contribution to this plan was assessed to be 250 GW by 2030, and 2,900 GW by 2050 [1]. The DOEs more detailed SunShot vision study, released in 2012, showed the possibility of having 300 GW of PV installed in the United States by 2030, and 630 GW by 2050.

  9. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01T23:59:59.000Z

    for 90% of household electricity consumption in China. Usinggives an annual electricity consumption of 12kWh assumingto look at is electricity consumption at the household

  10. & CONSUMPTION US HYDROPOWER PRODUCTION

    E-Print Network [OSTI]

    ENERGY PRODUCTION & CONSUMPTION US HYDROPOWER PRODUCTION In the United States hydropower supplies 12% of the nation's electricity. Hydropower produces more than 90,000 megawatts of electricity, which is enough to meet the needs of 28.3 million consumers. Hydropower accounts for over 90% of all electricity

  11. Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType"A50. Total Inputs

  12. Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"1 "2"4.Total

  13. Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of2" "Total Inputs

  14. "Table A16. Components of Total Electricity Demand by Census Region, Industry"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1.30. Total6. Components of

  15. "Table A46. Total Expenditures for Purchased Electricity, Steam, and Natural"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal"1" " (Estimates5.6. Total

  16. "Table A48. Total Expenditures for Purchased Electricity, Steam, and Natural"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal"1" " (Estimates5.6.8. Total

  17. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources &7,0171" "

  18. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources &7,0171"

  19. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType" " and

  20. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType" " and "

  1. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType" " and

  2. Table A41. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType"

  3. Future Air Conditioning Energy Consumption in Developing Countries and what can be done about it: The Potential of Efficiency in the Residential Sector

    E-Print Network [OSTI]

    McNeil, Michael A.; Letschert, Virginie E.

    2008-01-01T23:59:59.000Z

    2004) Survey on Electricity Consumption Characteristics ofof residential electricity consumption in rapidly developingbusiness as usual electricity consumption by country/region

  4. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources &7,0171" "0.

  5. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources &7,0171"2"

  6. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType" " and2"

  7. Table A19. Components of Total Electricity Demand by Census Region and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"18. Quantity

  8. Table A26. Components of Total Electricity Demand by Census Region, Census Di

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"18.1.

  9. Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of

  10. Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of2" " (Estimates

  11. Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of2" " (Estimates

  12. Table E1. Primary Energy, Electricity, and Total Energy Price Estimates, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputsTotal Stocks DefinitionsWeekly.

  13. Table E8. Primary Energy, Electricity, and Total Energy Expenditure Estimates, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputsTotal Stocks4.

  14. "Table A38. Total Expenditures for Purchased Electricity, Steam, and Natural Gas"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1.30.2"Quantity6.7.8.

  15. Energy-efficiency standards for homes have the potential to reduce energy consumption and peak electrical demand.

    E-Print Network [OSTI]

    Standards for Resi- dential Buildings. Data gathered in the field on lighting, heat- ing, ventilationThe Issue Energy-efficiency standards for homes have the potential to reduce energy consumption standards, but little data is available on the actu- al energy performance of new homes. The Solution

  16. Modelling the impact of user behaviour on heat energy consumption

    E-Print Network [OSTI]

    Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

    2011-01-01T23:59:59.000Z

    strategies impact on energy consumption in residentialBEHAVIOUR ON HEAT ENERGY CONSUMPTION Nicola Combe 1 ,2 ,nearly 60% of domestic energy consumption and 27% of total

  17. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  18. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

  19. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 1: technical report

    SciTech Connect (OSTI)

    Cuenca, R.; Formento, J.; Gaines, L.; Marr, B.; Santini, D.; Wang, M. [Argonne National Lab., IL (United States); Adelman, S.; Kline, D.; Mark, J.; Ohi, J.; Rau, N. [National Renewable Energy Lab., Golden, CO (United States); Freeman, S.; Humphreys, K.; Placet, M. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-01-01T23:59:59.000Z

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume I contains the major results, a discussion of the conceptual framework of the study, and summaries of the vehicle, utility, fuel production, and manufacturing analyses. It also contains summaries of comments provided by external peer reviewers and brief responses to these comments.

  20. One of These Homes is Not Like the Other: Residential Energy Consumption Variability

    E-Print Network [OSTI]

    Kelsven, Phillip

    2013-01-01T23:59:59.000Z

    the total annual energy consumption. The behavior patternsin total residential energy consumption per home, even whenthe variability in energy consumption can vary by factors of

  1. Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes

    E-Print Network [OSTI]

    Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

    2007-01-01T23:59:59.000Z

    contributor to annual electricity consumption, and certainplay in Other electricity consumption in new homes, andor range. Other electricity consumption was derived by

  2. Eliminating Electricity Deficit through Energy Efficiency in India: An Evaluation of Aggregate Economic and Carbon Benefits

    E-Print Network [OSTI]

    Sathaye, Jayant

    2010-01-01T23:59:59.000Z

    The cumulative electricity consumption deficit amounts toper unit of electricity consumption than the overalldata on value added and electricity consumption by sectors

  3. Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.

    E-Print Network [OSTI]

    Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

    2006-01-01T23:59:59.000Z

    by natural gas. Electricity consumption by a furnace blowerto the annual electricity consumption of a major appliance.not account for the electricity consumption of the appliance

  4. Residential Behavioral Savings: An Analysis of Principal Electricity End Uses in British Columbia

    E-Print Network [OSTI]

    Tiedemann, Kenneth Mr.

    2013-01-01T23:59:59.000Z

    of residential end use electricity consumption for Britishresidential electricity consumption by end use Apply theresidential end use electricity consumption using a

  5. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    charging kW Utility electricity consumption Electricityis expressed in electricity consumption of the electricis expressed in electricity consumption of the electric

  6. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Percentage Btu Region map map showing electricity regions The chart above compares coal consumption in March 2014 and March 2015 by region and shows that coal consumption for...

  7. Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey

    SciTech Connect (OSTI)

    Davis, J.; Swenson, A.

    1998-07-01T23:59:59.000Z

    The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

  8. Please cite this article in press as: R.E. Edwards, et al., Predicting future hourly residential electrical consumption: A machine learning case study, Energy Buildings (2012), doi:10.1016/j.enbuild.2012.03.010

    E-Print Network [OSTI]

    Parker, Lynne E.

    2012-01-01T23:59:59.000Z

    electrical consumption: A machine learning case study, Energy Buildings (2012), doi:10.1016/j.enbuild.2012.03.010 ARTICLE IN PRESSG Model ENB-3661; No.of Pages13 Energy and Buildings xxx (2012) xxxxxx Contents lists available at SciVerse ScienceDirect Energy and Buildings journal homepage: www

  9. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01T23:59:59.000Z

    B. Atanasiu (2006). Electricity Consumption and Efficiencywill see their electricity consumption rise significantly.the bulk of household electricity consumption in developing

  10. The Wealth-Consumption Ratio

    E-Print Network [OSTI]

    Verdelhan, Adrien Frederic

    We derive new estimates of total wealth, the returns on total wealth, and the wealth effect on consumption. We estimate the prices of aggregate risk from bond yields and stock returns using a no-arbitrage model. Using these ...

  11. Utilizing Mobility to Minimize the Total Communication and Motion Energy

    E-Print Network [OSTI]

    Mostofi, Yasamin

    Utilizing Mobility to Minimize the Total Communication and Motion Energy Consumption of a Robotic costs. However, simplified path loss models are utilized to model the communication channels. In Yan Operation Yuan Yan and Yasamin Mostofi Department of Electrical and Computer Engineering University

  12. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    6A. Electricity Expenditures by Census Region for All Buildings, 2003 Total Electricity Expenditures (million dollars) Electricity Expenditures (dollars) per kWh per Square Foot...

  13. US WSC TX Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but...

  14. US ESC TN Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    an average of 79 million Btu per year, about 12% less than the U.S. average. * Average electricity consumption for Tennessee households is 33% higher than the national average...

  15. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    End Use: December 2014 Retail ratesprices and consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are...

  16. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    E-Print Network [OSTI]

    Darghouth, Naim Richard

    2013-01-01T23:59:59.000Z

    USA. CEC, 2012. Electricity Consumption by Planning Area [of customer gross electricity consumption, for three levelsresponse reduces electricity consumption, sometimes through

  17. Window-Related Energy Consumption in the US Residential and Commercial Building Stock

    E-Print Network [OSTI]

    Apte, Joshua; Arasteh, Dariush

    2008-01-01T23:59:59.000Z

    2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Total Building Energy Consumption (Trillion BTU/yr) Area,

  18. Manuscript submitted to Electricity Journal 6/2/2006 Steven Letendre Richard Perez

    E-Print Network [OSTI]

    Perez, Richard R.

    Manuscript submitted to Electricity Journal 6/2/2006 Steven Letendre Richard Perez The Prometheus of the U.S. electric grid has become increasingly complex as it has been called upon to accommodate growth in total electricity consumption of 75%, accompanied by an increase in non-coincident peak demand in excess

  19. Residential Energy Consumption Survey Results: Total Energy Consumption,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,Maze - Making the Path

  20. Classification of Energy Consumption in Buildings with Outlier Detection

    E-Print Network [OSTI]

    Yao, Xin

    . Then a canonical variate analysis is employed to describe latent variables of daily electricity consumption is used to predict the daily electricity consumption profiles. A case study, based on a mixed use consumption data within a buildings energy management system. Electrical peak load forecasting plays

  1. Total plastic strain and electrical resistivity in high purity aluminum cyclically strained at 4.2 K

    E-Print Network [OSTI]

    Gehan, James Terence

    1988-01-01T23:59:59.000Z

    important implications to the electrical behavior of aluminum reported here. B. Conce ts of Strain Controlled Tests The following section is a description of one type of mechanical test used to investigate fatigue characteristics in materials. While other... Stress 72 73 76 78 79 LIST OF TABLES Ta. ble Page I. Stopping Points and Parameter Settings of the Mechanical Test . 39 II. Test Variables of Experiments III. Rate of Mechanical Cycling and Average Number of Data Points Collected by Computer...

  2. Table ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2012, United States

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputsTotal Stocks4.E9. Total End-UseET1.

  3. "Table A25. Components of Total Electricity Demand by Census Region, Census Division, Industry"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1.30. Total6.

  4. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 2: appendices A-D to technical report

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline- powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume II contains additional details on the vehicle, utility, and materials analyses and discusses several details of the methodology.

  5. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 4: peer review comments on technical report

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume IV includes copies of all the external peer review comments on the report distributed for review in July 1997.

  6. Eliminating Electricity Deficit through Energy Efficiency in India: An Evaluation of Aggregate Economic and Carbon Benefits

    E-Print Network [OSTI]

    Sathaye, Jayant

    2010-01-01T23:59:59.000Z

    devoted to the power sector, electricity deficits continuethe sector by the sectors electricity consumption. In thewhile data on electricity consumption by sector are taken

  7. Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure online 22 October 2012 Keywords: Plug-in hybrid electric vehicle Charging infrastructure Battery size a b s t r a c t Federal electric vehicle (EV) policies in the United States currently include vehicle

  8. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

  9. Furnace Blower Electricity: National and Regional Savings Potential

    SciTech Connect (OSTI)

    Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

    2008-05-16T23:59:59.000Z

    Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

  10. Electric Metering | Department of Energy

    Energy Savers [EERE]

    The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power outlets. The purpose is to measure...

  11. Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Buildings Total energy consumption trends for the JapaneseFigure 9. Total energy consumption trends i n the JapaneseFigure 10. Energy consumption intensity trends i n Japanese

  12. Household energy consumption and expenditures 1993

    SciTech Connect (OSTI)

    NONE

    1995-10-05T23:59:59.000Z

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  13. 2013 Total Electric Industry- Customers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand8)

  14. US SoAtl VA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    an average of 86 million Btu per year, about 4% less than the U.S. average. * Average electricity consumption and costs are higher for Virginia households than the national...

  15. US MidAtl NY Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    consume an average of 103 million Btu per year, 15% more than the U.S. average. * Electricity consumption in New York homes is much lower than the U.S. average, because...

  16. US SoAtl GA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    household (2,067) in Georgia are similar to the U.S. household averages. * Per household electricity consumption in Georgia is among the highest in the country, but similar to...

  17. Automated Continuous Commissioning of Commercial Buildings

    E-Print Network [OSTI]

    Bailey, Trevor

    2013-01-01T23:59:59.000Z

    electricity consumption ..the total building electricity consumption between measured87 Figure 49 Total electricity consumption end use breakdown

  18. administration gasohol consumption: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chris Wells; Young Mie Kim; Hernando Rojas 2012-01-01 3 Overview of the Electrical Energy Segment of the Energy Information Administration Manufacturing Consumption Report...

  19. Emissions and Fuel Consumption Test Results from a Plug-In Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus Emissions and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus 2010 DOE Vehicle...

  20. Demonstration Of A Monitoring Lamp To Visualize The Energy Consumption In Houses

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the sources of consumption. Automated monitoring of the electricity consumption in a house is quite a recent or numbers, but simply alert residents that something relevant to their electricity consumption is chang- ingDemonstration Of A Monitoring Lamp To Visualize The Energy Consumption In Houses Christophe Gisler1

  1. Impact of Extended Daylight Saving Time on National Energy Consumption Report to Congress

    SciTech Connect (OSTI)

    Belzer, D. B.; Hadley, S. W.; Chin, S-M.

    2008-10-01T23:59:59.000Z

    The Energy Policy Act of 2005 (Pub. L. No. 109-58; EPAct 2005) amended the Uniform Time Act of 1966 (Pub. L. No. 89-387) to increase the portion of the year that is subject to Daylight Saving Time. (15 U.S.C. 260a note) EPAct 2005 extended the duration of Daylight Saving Time in the spring by changing its start date from the first Sunday in April to the second Sunday in March, and in the fall by changing its end date from the last Sunday in October to the first Sunday in November. (15 U.S.C. 260a note) EPAct 2005 also called for the Department of Energy to evaluate the impact of Extended Daylight Saving Time on energy consumption in the United States and to submit a report to Congress. (15 U.S.C. 260a note) This report presents the results of impacts of Extended Daylight Saving Time on the national energy consumption in the United States. The key findings are: (1) The total electricity savings of Extended Daylight Saving Time were about 1.3 Tera Watt-hour (TWh). This corresponds to 0.5 percent per each day of Extended Daylight Saving Time, or 0.03 percent of electricity consumption over the year. In reference, the total 2007 electricity consumption in the United States was 3,900 TWh. (2) In terms of national primary energy consumption, the electricity savings translate to a reduction of 17 Trillion Btu (TBtu) over the spring and fall Extended Daylight Saving Time periods, or roughly 0.02 percent of total U.S. energy consumption during 2007 of 101,000 TBtu. (3) During Extended Daylight Saving Time, electricity savings generally occurred over a three- to five-hour period in the evening with small increases in usage during the early-morning hours. On a daily percentage basis, electricity savings were slightly greater during the March (spring) extension of Extended Daylight Saving Time than the November (fall) extension. On a regional basis, some southern portions of the United States exhibited slightly smaller impacts of Extended Daylight Saving Time on energy savings compared to the northern regions, a result possibly due to a small, offsetting increase in household air conditioning usage. (4) Changes in national traffic volume and motor gasoline consumption for passenger vehicles in 2007 were determined to be statistically insignificant and therefore, could not be attributed to Extended Daylight Saving Time.

  2. An analysis of residential energy consumption in a temperate climate

    SciTech Connect (OSTI)

    Clark, Y.Y.; Vincent, W.

    1987-06-01T23:59:59.000Z

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common energy package.'' Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  3. Scenario development in China's electricity sector

    SciTech Connect (OSTI)

    Steenhof, P.A.; Fulton, W. [Carleton University, Ottawa, ON (Canada). Dept. of Geography & Environmental Studies

    2007-07-15T23:59:59.000Z

    The continuing growth of China's electricity sector will affect global environmental and economic sustainability due to its impacts on greenhouse gas emissions and global resource depletion. In 2005, the generation of electricity in China resulted in the emissions of 2290 million metric tonnes of carbon dioxide (approximately 53% of the nation's total) and required 779 million metric tonnes of coal (approximately 50% of China's total coal consumption). These figures are expected to increase with China's economic growth. In order to gauge the range in which fuel consumption and CO{sub 2} emissions could grow a scenario-based conceptual model has been developed by the authors (published in this journal). The application and analysis of this shows that under a business as usual (BAU) scenario, electricity generation could contribute upwards of 56% of China's energy related greenhouse gas emissions by 2020. Meanwhile, consumption of coal will also increase, growing to nearly 60% of total national demand by 2020. However, variations in a number of key drivers could produce significant deviation from the BAU scenario. With accelerated economic output, even with greater technological advances and greater potential to bring natural gas on stream, carbon dioxide emissions would rise 10% above the BAU. Alternatively, in a scenario where China's economy grows at a tempered pace, less investment would be available for advanced technologies, developing natural gas infrastructure, or nuclear energy. In this scenario, reduced economic growth and electricity demand would thereby be countered by reduced efficiency and a higher contribution of coal.

  4. Factors of material consumption

    E-Print Network [OSTI]

    Silva Daz, Pamela Cristina

    2012-01-01T23:59:59.000Z

    Historic consumption trends for materials have been studied by many researchers, and, in order to identify the main drivers of consumption, special attention has been given to material intensity, which is the consumption ...

  5. State energy data report 1996: Consumption estimates

    SciTech Connect (OSTI)

    NONE

    1999-02-01T23:59:59.000Z

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

  6. Bounds on the Energy Consumption of Computational Andrew Gearhart

    E-Print Network [OSTI]

    California at Berkeley, University of

    Bounds on the Energy Consumption of Computational Kernels Andrew Gearhart Electrical Engineering not necessarily reflect the position or the policy of the sponsors. #12;Bounds on the Energy Consumption Fall 2014 #12;Bounds on the Energy Consumption of Computational Kernels Copyright 2014 by Andrew Scott

  7. Lakeland Electric SGIG Consumer Behavior Study Interim (Year...

    Office of Environmental Management (EM)

    efficiency and reduce electric consumption during peak times; Educating customers on pricing options, usage patterns, and peak times to enable them to make changes in consumption...

  8. State energy data report 1994: Consumption estimates

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

  9. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    CIS, cumulative electricity consumption could be reduced bythat impacts total electricity consumption are taken intoscenario, cumulative electricity consumption through 2030

  10. Residential Two-Stage Gas Furnaces - Do They Save Energy?

    E-Print Network [OSTI]

    Lekov, Alex; Franco, Victor; Lutz, James

    2006-01-01T23:59:59.000Z

    total fuel and electricity consumption under laboratoryto decrease the electricity consumption of furnaces, mainlytotal fuel and electricity consumption under laboratory

  11. Changing Trends: A Brief History of the US Household Consumption of Energy, Water, Food, Beverages and Tobacco

    E-Print Network [OSTI]

    in energy consumption. Patterns of Consumption--Historic Trends Electricity & Gas We'll start with historicChanging Trends: A Brief History of the US Household Consumption of Energy, Water, Food, Beverages analysis of consumption patterns of different commodities in the U.S. shed light on the consumption

  12. One of These Homes is Not Like the Other: Residential Energy Consumption Variability

    E-Print Network [OSTI]

    Kelsven, Phillip

    2013-01-01T23:59:59.000Z

    behavior patterns in which American households use energy causes wide variations in total residential energy consumption per home,

  13. HomeSim: Comprehensive, Smart, Residential Electrical Energy Simulation and Scheduling

    E-Print Network [OSTI]

    Simunic, Tajana

    HomeSim: Comprehensive, Smart, Residential Electrical Energy Simulation and Scheduling J. Venkatesh.edu + {jc.junqua, phmorin} @us.panasonic.com Abstract-- Residential energy constitutes 38% of the total energy consumption in the United States [1]. Although a number of building simulators have been proposed

  14. Connected Consumption: The hidden networks of consumption

    E-Print Network [OSTI]

    Reed, David P.

    In this paper, we present the Connected Consumption Network (CCN) that allows a community of consumers to collaboratively sense the market from a mobile device, enabling more informed financial decisions in geo-local ...

  15. Reducing Transient and Steady State Electricity Consumption

    E-Print Network [OSTI]

    Culler, David E.

    , single-stage heat pump air conditioner (AC). To study this setup, we have built the Berkeley Retrofitted that are used by HVAC equipment. Many homes use a single- stage heat pump that cools air at a constant rate , Fellow IEEE, and Claire Tomlin, Fellow IEEE ABSTRACT | Heating, ventilation, and air conditioning (HVAC

  16. Electric Power Consumption of Natural Gas (Summary)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877SouthwestWisconsinStatementA. Summer net601,343

  17. Electric Power Consumption of Natural Gas (Summary)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOrigin State1,237

  18. Electric power monthly

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  19. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    and corresponding direct electricity sector costs, includingand avoids electricity-sector water consumption. At the sameNew Wind Fig. 5. Electricity sector capacity by technology

  20. Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.

    E-Print Network [OSTI]

    Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

    2006-01-01T23:59:59.000Z

    offsets the sizable electricity savings. References TitleElectricity and Natural Gas Efficiency Improvements forfueled by natural gas. Electricity consumption by a furnace

  1. Retail electricity competition

    E-Print Network [OSTI]

    Joskow, Paul L.

    2004-01-01T23:59:59.000Z

    We analyze a number of unstudied aspects of retail electricity competition. We first explore the implications of load profiling of consumers whose traditional meters do not allow for measurement of their real time consumption, ...

  2. Using EPECs to model bilevel games in restructured electricity ...

    E-Print Network [OSTI]

    An alternative complementarity problem approach to EPECs in electricity ... To dispatch generation and consumption, the ISO determines the quantities of...

  3. Modeling diffusion of electrical appliances in the residential sector

    E-Print Network [OSTI]

    McNeil, Michael A.

    2010-01-01T23:59:59.000Z

    energy consumption which includes the developing world. ThisWorld Energy Projection System (WEPS), for example, forecasts total energy consumptionto growth in energy consumption. The World Energy Outlook (

  4. Electric power monthly

    SciTech Connect (OSTI)

    Not Available

    1992-05-01T23:59:59.000Z

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed for the North American Electric Reliability Council (NERC) regions. Additionally, statistics by company and plant are published in the EPM on capability of new plants, new generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel.

  5. An analysis of residential energy consumption in a temperate climate. Volume 2

    SciTech Connect (OSTI)

    Clark, Y.Y.; Vincent, W.

    1987-06-01T23:59:59.000Z

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common ``energy package.`` Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  6. Table 2a. Electricity Consumption and Electricity Intensities, per Square

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 January1998,

  7. Energy-consumption modelling

    SciTech Connect (OSTI)

    Reiter, E.R.

    1980-01-01T23:59:59.000Z

    A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

  8. Present coal potential of Turkey and coal usage in electricity generation

    SciTech Connect (OSTI)

    Yilmaz, A.O. [Karadeniz Technical University, Trabzon (Turkey). Mining Engineering Department

    2009-07-01T23:59:59.000Z

    Total coal reserve (hard coal + lignite) in the world is 984 billion tons. While hard coal constitutes 52% of the total reserve, lignite constitutes 48% of it. Turkey has only 0.1% of world hard coal reserve and 1.5% of world lignite reserves. Turkey has 9th order in lignite reserve, 8th order in lignite production, and 12th order in total coal (hard coal and lignite) consumption. While hard coal production meets only 13% of its consumption, lignite production meets lignite consumption in Turkey. Sixty-five percent of produced hard coal and 78% of produced lignite are used for electricity generation. Lignites are generally used for electricity generation due to their low quality. As of 2003, total installed capacity of Turkey was 35,587 MW, 19% (6,774 MW) of which is produced from coal-based thermal power plants. Recently, use of natural gas in electricity generation has increased. While the share of coal in electricity generation was about 50% for 1986, it is replaced by natural gas today.

  9. Energy consumption in thermomechanical pulping

    SciTech Connect (OSTI)

    Marton, R.; Tsujimoto, N.; Eskelinen, E.

    1981-08-01T23:59:59.000Z

    Various components of refining energy were determined experimentally and compared with those calculated on the basis of the dimensions of morphological elements of wood. The experimentally determined fiberization energy of spruce was 6 to 60 times larger than the calculated value and that of birch 3 to 15 times larger. The energy consumed in reducing the Canadian standard freeness of isolated fibers from 500 to 150 ml was found to be approximately 1/3 of the total fiber development energy for both spruce and birch TMP. Chip size affected the refining energy consumption; the total energy dropped by approximately 30% when chip size was reduced from 16 mm to 3 mm in the case of spruce and approximately 40% for birch. 6 refs.

  10. Kentucky Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet)Year Jan Feb Mar

  11. Louisiana Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1569 02,208,9204.49

  12. Massachusetts Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0Feet) (Million

  13. Missouri Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)SameThousand

  14. South Dakota Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6 (MillionDecadeDecade

  15. Tennessee Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S.DecadeFuel2009 2010Decade

  16. Alabama Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u oDecade Year-0 Year-1

  17. Alaska Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B uYear

  18. Arizona Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14DecadeDecade Year-0 Year-1

  19. Colorado Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (MillionFeet)2008 2009Decade

  20. Delaware Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0

  1. District of Columbia Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0CubicCubic Feet)Cubic-- -- --

  2. Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1. Refiner/Reseller2009 2010 2011Overview

  3. Wyoming Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Million

  4. U.S. Natural Gas Total Consumption (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecade Year-0 Year-1 Year-2Feet)

  5. Utah Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion CubicYear Jan2008Year

  6. Vermont Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreasesCommercial Consumers (NumberDecade

  7. Table 12. Total Coal Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled Nameplate

  8. New Mexico Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New Mexico NaturalDecade Year-0

  9. North Dakota Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996

  10. Reduction of Water Consumption

    E-Print Network [OSTI]

    Adler, J.

    Cooling systems using water evaporation to dissipate waste heat, will require one pound of water per 1,000 Btu. To reduce water consumption, a combination of "DRY" and "WET" cooling elements is the only practical answer. This paper reviews...

  11. Capping the Brown Energy Consumption of Internet Services at Low Cost

    E-Print Network [OSTI]

    energy Trend: Cap the brown energy consumption of large electricity consumers (data centers) CappingCapping the Brown Energy Consumption of Internet Services at Low Cost Kien T. Le Ricardo Bianchini Energy Consumption Improving efficiency does not promote green energy or guarantee limits on brown

  12. Energy management of HEV to optimize fuel consumption and pollutant emissions

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    AVEC'12 Energy management of HEV to optimize fuel consumption and pollutant emissions Pierre Michel, several energy management strategies are proposed to optimize jointly the fuel consumption and pollutant-line strategy are given. Keywords: Hybrid Electric Vehicle (HEV), energy management, pollution, fuel consumption

  13. End-use energy consumption estimates for US commercial buildings, 1989

    SciTech Connect (OSTI)

    Belzer, D.B.; Wrench, L.E.; Marsh, T.L. [Pacific Northwest Lab., Richland, WA (United States)

    1993-11-01T23:59:59.000Z

    An accurate picture of how energy is used in the nation`s stock of commercial buildings can serve a variety of program planning and policy needs within the Department of Energy, by utilities, and other groups seeking to improve the efficiency of energy use in the building sector. This report describes an estimation of energy consumption by end use based upon data from the 1989 Commercial Building Energy Consumption Survey (CBECS). The methodology used in the study combines elements of engineering simulations and statistical analysis to estimate end-use intensities for heating, cooling, ventilation, lighting, refrigeration, hot water, cooking, and miscellaneous equipment. Billing data for electricity and natural gas were first decomposed into weather and nonweather dependent loads. Subsequently, Statistical Adjusted Engineering (SAE) models were estimated by building type with annual data. The SAE models used variables such as building size, vintage, climate region, weekly operating hours, and employee density to adjust the engineering model predicted loads to the observed consumption. End-use consumption by fuel was estimated for each of the 5,876 buildings in the 1989 CBECS. The report displays the summary results for eleven separate building types as well as for the total US commercial building stock.

  14. Electric power monthly, May 1993

    SciTech Connect (OSTI)

    Not Available

    1993-05-25T23:59:59.000Z

    The Electric Power Monthly (EPM) is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  15. Electric power monthly, April 1993

    SciTech Connect (OSTI)

    Not Available

    1993-05-07T23:59:59.000Z

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  16. Managing the Cost, Energy Consumption, and Carbon Footprint of Internet Services

    E-Print Network [OSTI]

    Martonosi, Margaret

    Managing the Cost, Energy Consumption, and Carbon Footprint of Internet Services Kien Le , Ozlem electricity consumptions translate into large carbon footprints, since most of the electricity in the US such as government imposed Kyoto- style carbon limits. Extensive simulations and real experiments show that our

  17. Fact #749: October 15, 2012 Petroleum and Natural Gas Consumption...

    Broader source: Energy.gov (indexed) [DOE]

    map below shows the amount of petroleum and natural gas consumed in the transportation sector by state for 2010. The pie charts for each state are scaled based on total consumption...

  18. Efficiency alone as a solution to increasing energy consumption

    E-Print Network [OSTI]

    Haidorfer, Luke

    2005-01-01T23:59:59.000Z

    A statistical analysis was performed to determine the effect of efficiency on the total US energy consumption of automobiles and refrigerators. Review of literature shows that there are many different opinions regarding ...

  19. The political economy of electricity market liberalization

    E-Print Network [OSTI]

    Erdogdu, Erkan

    2012-05-17T23:59:59.000Z

    science. As a final point, the study suggests that EU or OECD membership, the existence of electricity market reform idea, population density, electricity consumption, income level, educational level, imports of goods and services (as % of GDP) and country...

  20. Estimation of food consumption

    SciTech Connect (OSTI)

    Callaway, J.M. Jr.

    1992-04-01T23:59:59.000Z

    The research reported in this document was conducted as a part of the Hanford Environmental Dose Reconstruction (HEDR) Project. The objective of the HEDR Project is to estimate the radiation doses that people could have received from operations at the Hanford Site. Information required to estimate these doses includes estimates of the amounts of potentially contaminated foods that individuals in the region consumed during the study period. In that general framework, the objective of the Food Consumption Task was to develop a capability to provide information about the parameters of the distribution(s) of daily food consumption for representative groups in the population for selected years during the study period. This report describes the methods and data used to estimate food consumption and presents the results developed for Phase I of the HEDR Project.

  1. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    SciTech Connect (OSTI)

    Patinkin, L.

    1983-12-01T23:59:59.000Z

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  2. TOTAL M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total Spring 2010

    E-Print Network [OSTI]

    Hayes, Jane E.

    202 51 *total new freshmen 684: 636 Lexington campus, 48 Paducah campus MS Total 216 12 5 17 2 0 2 40 248 247 648 45 210 14 *total new freshmen 647: 595 Lexington campus, 52 Paducah campus MS Total 192 14

  3. End use energy consumption data base: transportation sector

    SciTech Connect (OSTI)

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01T23:59:59.000Z

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  4. 2013 Total Electric Industry- Revenue (Thousands Dollars)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y M

  5. Regional Per Capita Solar Electric Footprint for the United States

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.

    2007-12-01T23:59:59.000Z

    In this report, we quantify the state-by-state per-capita 'solar electric footprint' for the United States. We use state-level data on population, electricity consumption, economic activity and solar insolation, along with solar photovoltaic (PV) array packing density data to develop a range of estimates of the solar electric footprint. We find that the solar electric footprint, defined as the land area required to supply all end-use electricity from solar photovoltaics, is about 181 m2 per person in the United States. Two key factors that influence the magnitude of the state-level solar electric footprint include how industrial energy is allocated (based on location of use vs. where goods are consumed) and the assumed distribution of PV configurations (flat rooftop vs. fixed tilt vs. tracking). The solar electric footprint is about 0.6% of the total land area of the United States with state-level estimates ranging from less than 0.1% for Wyoming to about 9% for New Jersey. We also compare the solar electric footprint to a number of other land uses. For example, we find that the solar electric footprint is equal to less than 2% of the land dedicated to cropland and grazing in the United States.

  6. The United States Industrial Electric Motor Systems Market Opportunities Assessment: Key Results

    E-Print Network [OSTI]

    Rosenberg, M.

    industry groups (SICs) are derived from the Manufacturing Energy Consumption Survey: 1994 (MECS) and various surveys conducted by the Bureau of the Census. Information on the breakdown of that energy by application and motor size, as well..., and total onsite electricity generation, minus sales and transfers off site. See MECS 1994. Other sources; Department of Agriculture, 1992, Census of Mineral Industries, 1992, ADL 1980, EPRI 1988, EPRI 1992. 206 ESL-IE-99-05-30 Proceedings from...

  7. Energy notes: Energy in natural processes and human consumption, some numbers H A&S 220c Fall 2004 19x2004

    E-Print Network [OSTI]

    Energy notes: Energy in natural processes and human consumption, some numbers H A&S 220c Fall 2004 consumption rate per capita U.S. 102 Electric razor 101 Energy Content of Fuels (in Joules) Energy Unit Joules person (Note: MWE is an abbreviation for megawatts-electrical output) Global Energy Consumption Global

  8. Control Mechanisms for Residential Electricity Demand in SmartGrids

    E-Print Network [OSTI]

    Snyder, Larry

    Email: lvs2@lehigh.edu Abstract--We consider mechanisms to optimize electricity consumption both within subscription plan. Such methods for controlling electricity consumption are part of demand response, whichControl Mechanisms for Residential Electricity Demand in SmartGrids Shalinee Kishore Department

  9. PROJECT GOALS Use electricity accounts and Building Management System

    E-Print Network [OSTI]

    PROJECT GOALS Use electricity accounts and Building Management System (BMS) data to describe and annual rates of consumption. DESCRIPTION Approximately 82 per cent of the NGA electricity consumption can. Fluctuations in heat or humidity are therefore likely to have a significant influence on electricity

  10. Electric power monthly, August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-13T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  11. Electric power monthly, September 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-17T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  12. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect (OSTI)

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01T23:59:59.000Z

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  13. Margins up; consumption down

    SciTech Connect (OSTI)

    Mantho, M.

    1983-09-01T23:59:59.000Z

    The results of a survey of dealers in the domestic fuel oil industry are reported. Wholesale prices, reacting to oversupply, decreased as did retail prices; retail prices decreased at a slower rate so profit margins were larger. This trend produced competitive markets as price-cutting became the method for increasing a dealer's share of the profits. Losses to other fuels decreased, when the figures were compared to earlier y; and cash flow was very good for most dealers. In summary, profits per gallon of oil delivered increased, while the consumption of gasoline per customer decreased. 22 tables.

  14. CSV File Documentation: Consumption

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption The State Energy Data System

  15. Office Buildings - Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul Aug SepDecadeEnergy Consumption

  16. CCPPolicyBriefing Electricity

    E-Print Network [OSTI]

    Feigon, Brooke

    the pattern of consumer-related and consumption-related costs. The research uses household level data from and plays an important role in the potential South East Europe regional energy market, and is emerging. Electricity is mainly used for lighting, power and air conditioning Turkish households. Heating requirements

  17. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as an Indicator ofEnergy Consumption2003

  18. Energy consumption of personal computer workstations

    SciTech Connect (OSTI)

    Szydlowski, R.F.; Chvala, W.D. Jr.

    1994-02-01T23:59:59.000Z

    The explosive growth of the information age has had a profound effect on the appearance of today`s office. Although the telephone still remains an important part of the information exchange and processing system within an office, other electronic devices are now considered required equipment within this environment. This office automation equipment includes facsimile machines, photocopiers, personal computers, printers, modems, and other peripherals. A recent estimate of the installed base indicated that 42 million personal computers and 7.3 million printers are in place, consuming 18.2 billion kWh/yr-and this installed base is growing (Luhn 1992). From a productivity standpoint, it can be argued that this equipment greatly improves the efficiency of those working in the office. But of primary concern to energy system designers, building managers, and electric utilities is the fact that this equipment requires electric energy. Although the impact of each incremental piece of equipment is small, installation of thousands of devices per building has resulted in office automation equipment becoming the major contributor to electric consumption and demand growth in commercial buildings. Personal computers and associated equipment are the dominant part of office automation equipment. In some cases, this electric demand growth has caused office buildings electric and cooling systems to overload.

  19. The greenhouse gases HFCs, PFCs Danish consumption and emissions, 2007

    E-Print Network [OSTI]

    The greenhouse gases HFCs, PFCs and SF6 Danish consumption and emissions, 2007 Tomas Sander Poulsen AND EMISSION OF F-GASES 7 1.1.1 Consumption 7 1.1.2 Emission 7 1.1.3 Trends in total GWP contribution from F 21 4 EMISSION OF F-GASES 23 4.1.1 Emissions of HFCs from refrigerants 23 4.1.2 Emissions of HFCs from

  20. Insulating and sheathing materials of electric and optical cables - Common test methods - Part 5-1: Methods specific to filling compounds - Drop-point - Separation of oil - Lower temperature brittleness - Total acid number - Absence of corrosive components - Permittivity at 23 C - DC resistivity at 23 C and 100 C

    E-Print Network [OSTI]

    International Electrotechnical Commission. Geneva

    2004-01-01T23:59:59.000Z

    Specifies the test methods for filling compounds of electric cables used with telecommunication equipment. Gives the methods for drop-point, separation of oil, lower temperature brittleness, total acid number, absence of corrosive components, permittivity at 23 C, d.c. resistivity at 23C and 100C.

  1. Electricity demand as frequency controlled reserves, ENS (Smart...

    Open Energy Info (EERE)

    implementation, data analyses, etc., a technology will be developed in which the electricity consumption will be used as a frequencycontrolled reserve (DFR). References...

  2. Electricity demand as frequency controlled reserves, ForskEL...

    Open Energy Info (EERE)

    controlled reserve (DFR) implementation, a system that automatically stops or starts electricity consumption in response to system frequency variations. References "EU...

  3. Modeling diffusion of electrical appliances in the residential sector

    E-Print Network [OSTI]

    McNeil, Michael A.

    2010-01-01T23:59:59.000Z

    Efficiency Standards in the Residential Electricity Sector.France. USDOE (2001). Residential Energy Consumption Survey,long-term response of residential cooling energy demand to

  4. Monitoring and optimization of energy consumption of base transceiver stations

    E-Print Network [OSTI]

    Spagnuolo, Antonio; Vetromile, Carmela; Formosi, Roberto; Lubritto, Carmine

    2015-01-01T23:59:59.000Z

    The growth and development of the mobile phone network has led to an increased demand for energy by the telecommunications sector, with a noticeable impact on the environment. Monitoring of energy consumption is a great tool for understanding how to better manage this consumption and find the best strategy to adopt in order to maximize reduction of unnecessary usage of electricity. This paper reports on a monitoring campaign performed on six Base Transceiver Stations (BSs) located central Italy, with different technology, typology and technical characteristics. The study focuses on monitoring energy consumption and environmental parameters (temperature, noise, and global radiation), linking energy consumption with the load of telephone traffic and with the air conditioning functions used to cool the transmission equipment. Moreover, using experimental data collected, it is shown, with a Monte Carlo simulation based on power saving features, how the BS monitored could save energy.

  5. Electric power monthly, April 1994

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the U.S., Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. This April 1994 issue contains 1993 year-end data and data through January 1994.

  6. Electric power monthly, May 1994

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Statistics by company and plant are published on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  7. Stackelberg Game based Demand Response for At-Home Electric Vehicle Charging

    E-Print Network [OSTI]

    Bahk, Saewoong

    Member, IEEE Abstract--Consumer electricity consumption can be controlled through electricity prices and customers respond accordingly with their electricity consumption levels. In particular, the demands as a game [7]. Note that in reality, electricity retailers are significantly regulated by governments

  8. Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost

    E-Print Network [OSTI]

    Pedram, Massoud

    is to perform demand side management (DSM) [1], which aims at matching the consum- ers' electricity demand between electricity consumption and generation. On the consumption side, electric demand ramps upDistributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue

  9. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    LPG is a major energy source, while coal and electricity areoil coal Figure 14 Residential Primary Energy Consumption bytotal primary energy supply in 2000, coal will drop to about

  10. Electric power monthly, October 1991. [CONTAINS GLOSSARY

    SciTech Connect (OSTI)

    Not Available

    1991-10-11T23:59:59.000Z

    This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, statistics at the company and plant level are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel. 4 figs., 63 tabs.

  11. Electric Power Monthly, September 1991. [CONTAINS GLOSSARY

    SciTech Connect (OSTI)

    Not Available

    1991-09-12T23:59:59.000Z

    This publication provides monthly statistics at the national, Census division, and state levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, statistics at the company and plant level are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel. 4 figs., 63 tabs.

  12. EvaluatingMobilePhonesasEnergyConsumptionFeedbackDevices MarkusWeiss*

    E-Print Network [OSTI]

    EvaluatingMobilePhonesasEnergyConsumptionFeedbackDevices MarkusWeiss* ,ClaireManagement,ETHZurich Abstract. With smart electricity meters being widely deployed, data on residential energy usage of mobile phones as an interface to provide feedback on overall and de- vice-related energy consumption

  13. Minimizing Energy Consumption in IR-UWB Based Wireless Sensor Networks

    E-Print Network [OSTI]

    Heinzelman, Wendi

    Minimizing Energy Consumption in IR-UWB Based Wireless Sensor Networks Tianqi Wang, Wendi communications systems, where transmit power can be flexibly adjusted to minimize the energy consumption [3] [4 Heinzelman and Alireza Seyedi Department of Electrical and Computer Engineering, University of Rochester

  14. Nonparametric models for electricity load forecasting

    E-Print Network [OSTI]

    Genève, Université de

    Electricity consumption is constantly evolving due to changes in people habits, technological innovations1 Nonparametric models for electricity load forecasting JANUARY 23, 2015 Yannig Goude, Vincent at University Paris-Sud 11 Orsay. His research interests are electricity load forecasting, more generally time

  15. Affording Gas and Electricity: Self Disconnection and

    E-Print Network [OSTI]

    Feigon, Brooke

    Affording Gas and Electricity: Self Disconnection and Rationing by Prepayment and Low Income Credit interview schedule................................... liv #12;2 Fuel Usage and Consumption Patterns of Low electricity, but this seems to be because gas prepayers have lower average income than electricity prepayers

  16. In Njeri Wamukonya, ed., Electricity Reform

    E-Print Network [OSTI]

    Delaware, University of

    electricity consumption in industrial countries has caused major air pollution problems. In fact, power plants maintain that governing the electricity industry according to market dynamics, rather than socioIn Njeri Wamukonya, ed., Electricity Reform: Social and Environmental Challenges Roskilde, Denmark

  17. Illinois Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (MillionTotal ConsumptionYear

  18. Illinois Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (MillionTotal ConsumptionYearYear

  19. Electric power monthly, July 1995 - with data for April 1995

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This publication provides statistical data on net generation, fuel consumption, fossil fuel stocks, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on fossil fuel stocks and costs are also included.

  20. Exceeding Energy Consumption Design Expectations

    E-Print Network [OSTI]

    Castleton, H. F.; Beck, S. B. M.; Hathwat, E. A.; Murphy, E.

    2013-01-01T23:59:59.000Z

    ) the building consumed 208.7 kWh m-2 yr-1, 83% of the expected energy consumption (250 kWh m-2 yr-1). This dropped further to 176.1 kWh m-2 yr-1 in 2012 (70% below expected). Factors affecting building energy consumption have been discussed and appraised...

  1. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    buildings. Measured electricity consumption Figure 3 showsthe measured total electricity consumption of the buildingmonths of 2005. The electricity consumption per floor area

  2. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    Figure9?Annualelectricityconsumptioncomparisonofthetotalannualelectricityconsumption,BuildingsAandBmostly measure electricity consumption, cooling loads,

  3. BPM Motors in Residential Gas Furnaces: What are the Savings?

    E-Print Network [OSTI]

    Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

    2006-01-01T23:59:59.000Z

    of the total electricity consumption by BPM furnaces. Thisbecause furnace electricity consumption is significant.of furnace electricity consumption. Therefore, accurate

  4. Impacts of China's Current Appliance Standards and Labeling Program to 2020

    E-Print Network [OSTI]

    Fridley, David; Aden, Nathaniel; Zhou, Nan; Lin, Jiang

    2007-01-01T23:59:59.000Z

    grams reduce total electricity consumption in 2020 by anof residential electricity consumption in 2020. The reportThe projected electricity consumption in China in 2020 is

  5. Benchmarking and Equipment and Controls Assessment for a 'Big Box' Retail Chain

    E-Print Network [OSTI]

    Haves, Philip

    2008-01-01T23:59:59.000Z

    annual results for electricity consumption and peak demandTampa Average Electricity Consumption, Annual Normalizeddifferences in electricity consumption. The Total Source

  6. Illinois Natural Gas Consumption by End Use

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million381 -260 74 127

  7. Electric power monthly, March 1998 with data for December 1997

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    The Electric Power Monthly (EPM) provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. 63 tabs.

  8. Electricity Monthly Update - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    increased electric demand and wholesale and retail prices over last February. Coal consumption rose across the U.S. and out competed natural gas on price in the East. A gas...

  9. The New Rules for Purchasing Electric Power

    E-Print Network [OSTI]

    Stern, K.

    others, largely because of its size and electricity consumption per customer. Industry today sees these changes manifested in a variety of ways, several of which represent alternative power costs. These include: - conventional published tariffs...

  10. Development of renewable energy Challenges for the electrical grids

    E-Print Network [OSTI]

    Canet, Léonie

    , Geothermal energy... · The Voice of the Renewable Energy sector for Government & public authorities, TSOs energy consumption · Electricity : new RES capacities ­ 19 000 MW onshore wind ­ 6 000 MW offshore wind #12;RES Development Objectives (Electricity) Objectif 2020 : RES in global energy consumption 2010

  11. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    E-Print Network [OSTI]

    Darghouth, Naim Richard

    2013-01-01T23:59:59.000Z

    Berkeley, CA, USA. CEC, 2012. Electricity Consumption byUSA. E3, 2010c. Greenhouse Gas Modeling of Californias Electricity

  12. Optimal consumption in a growth model with the Cobb-Douglas production function

    E-Print Network [OSTI]

    } be a consumption policies per capita such that ct is progressively measurable w.r.t. the filtration Ft = (Bs, s t), 0 ct 1, 0 t T, (1.3) and we denote by A the class of all consumption policies {ct} per capita. 3 t [0, T], 0 c(t) 1, ctzt/yt = the totality of consumption rate per person, F(z, y) = the Cobb

  13. Producing Quail for Home Consumption

    E-Print Network [OSTI]

    Thornberry, Fredrick D.

    1998-08-21T23:59:59.000Z

    Hobby and backyard producers are becoming interested in producing quail for home consumption. This publication gives tips on housing and brooding, nutrition, lighting, cannibalism, health and slaughter. It includes three recipes....

  14. Energy consumption of building 39

    E-Print Network [OSTI]

    Hopeman, Lisa Maria

    2007-01-01T23:59:59.000Z

    The MIT community has embarked on an initiative to the reduce energy consumption and in accordance with the Kyoto Protocol. This thesis seeks to further expand our understanding of how the MIT campus consumes energy and ...

  15. Progressive consumption : strategic sustainable excess

    E-Print Network [OSTI]

    Bonham, Daniel J. (Daniel Joseph MacLeod)

    2007-01-01T23:59:59.000Z

    Trends in the marketplace show that urban dwellers are increasingly supporting locally produced foods. This thesis argues for an architecture that responds to our cultures consumptive behaviors. Addressing the effects of ...

  16. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  17. Electric power monthly, July 1994

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels. Data on quantity, quality, and cost of fossil fuels lag data on net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour by 1 month. This difference in reporting appears in the US, Census division, and State level tables. However, for purposes of comparison, plant-level data are presented for the earlier month.

  18. Data Center Power Consumption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Consumption Data Center Power Consumption Presentation covers the FUPWG Fall Meeting, held on November 28-29, 2007 in San Diego, California. fupwgsandiegomainers.pdf More...

  19. New York: Weatherizing Westbeth Reduces Energy Consumption |...

    Energy Savers [EERE]

    New York: Weatherizing Westbeth Reduces Energy Consumption New York: Weatherizing Westbeth Reduces Energy Consumption August 21, 2013 - 12:00am Addthis The New York State Homes and...

  20. Demonstrating Fuel Consumption and Emissions Reductions with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control Demonstrating Fuel Consumption and Emissions Reductions with Next Generation...

  1. Electric power monthly, October 1993

    SciTech Connect (OSTI)

    Not Available

    1993-10-20T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  2. Electric Power Monthly, July 1990

    SciTech Connect (OSTI)

    Not Available

    1990-10-12T23:59:59.000Z

    The Electric Power Monthly (EPM) is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, and average revenue per kilowatthour of electricity sold. Data on net generation are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, company and plant level information are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost in fuel. Quantity, quality, and cost of fuel data lag the net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour data by 1 month. This difference in reporting appears in the national, Census division, and State level tables. However, at the plant level, all statistics presented are for the earlier month for the purpose of comparison. 12 refs., 4 figs., 48 tabs.

  3. Electric power monthly, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-26T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  4. Electric power monthly, February 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-16T23:59:59.000Z

    The Electric Power Monthly (EMP) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  5. Agent Cooperatives for Effective Power Consumption Shifting Charilaos Akasiadis and Georgios Chalkiadakis

    E-Print Network [OSTI]

    Chalkiadakis, Georgios

    reduced electricity price rates, given their different load shifting capabilities. This allows even agents of household energy pricing. In addition, due to in- creased levels of consumer uncertainty regarding imminent applicable scheme for electricity consumption shifting and effective de- mand curve flattening. The scheme

  6. Agent Cooperatives for Effective Power Consumption Shifting Charilaos Akasiadis and Georgios Chalkiadakis

    E-Print Network [OSTI]

    Chalkiadakis, Georgios

    reduced electricity price rates, given their different load shifting capabilities. This allows even agents- ization of household energy pricing. In addition, due to in- creased levels of consumer uncertainty applicable scheme for electricity consumption shifting and effective de- mand curve flattening. The scheme

  7. Virginia Tech Comprehensive Power-based Fuel Consumption Model: Model Development and Testing

    E-Print Network [OSTI]

    Rakha, Hesham A.

    The transportation sector consumes approximately 30% of the total energy in the United States, which is mostlyVirginia Tech Comprehensive Power-based Fuel Consumption Model: Model Development and Testing, Moran, Saerens, and Van den Bulck 2 ABSTRACT Existing fuel consumption and emission models suffer from

  8. Energy-consumption and carbon-emission analysis of vehicle and component manufacturing.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Burnham, A.; Wang, M.; Energy Systems

    2010-10-12T23:59:59.000Z

    A model is presented for calculating the environmental burdens of the part manufacturing and vehicle assembly (VMA) stage of the vehicle life cycle. The approach is bottom-up, with a special focus on energy consumption and CO{sub 2} emissions. The model is applied to both conventional and advanced vehicles, the latter of which include aluminum-intensive, hybrid electric, plug-in hybrid electric and all-electric vehicles. An important component of the model, a weight-based distribution function of materials and associated transformation processes (casting, stamping, etc.), is developed from the United States Council for Automotive Research Generic Vehicle Life Cycle Inventory Study. As the approach is bottom-up, numerous transformation process data and plant operational data were extracted from the literature for use in representing the many operations included in the model. When the model was applied to conventional vehicles, reliable estimates of cumulative energy consumption (34 GJ/vehicle) and CO{sub 2} emission (2 tonnes/vehicle) were computed for the VMA life-cycle stage. The numerous data sets taken from the literature permitted the development of some statistics on model results. Because the model explicitly includes a greater coverage of relevant manufacturing processes than many earlier studies, our energy estimates are on the higher end of previously published values. Limitations of the model are also discussed. Because the material compositions of conventional vehicles within specific classes (cars, light duty trucks, etc.) are sensibly constant on a percent-by-weight basis, the model can be reduced to a simple linear form for each class dependent only on vehicle weight. For advanced vehicles, the material/transformation process distribution developed above needs to be adjusted for different materials and components. This is particularly so for aluminum-intensive and electric-drive vehicles. In fact, because of their comparatively high manufacturing energy, batteries required for an electric vehicle can significantly add to the energy burden of the VMA stage. Overall, for conventional vehicles, energy use and CO{sub 2} emissions from the VMA stage are about 4% of their total life-cycle values. They are expected to be somewhat higher for advanced vehicles.

  9. Electric power monthly, February 1998 with data for November 1997

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    The Electric Power Monthly (EPM) provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 63 tabs.

  10. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    ES 2. CA nursing home electricity pattern: July weekday lowJanuary and July weekday electricity and total heat (space +CA school weekday total electricity (inclusive of cooling)

  11. Measured electric hot water standby and demand loads from Pacific Northwest homes

    SciTech Connect (OSTI)

    Pratt, R.G.; Ross, B.A.

    1991-11-01T23:59:59.000Z

    The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

  12. The effects of utility DSM programs on electricity costs and prices

    SciTech Connect (OSTI)

    Hirst, E.

    1991-11-01T23:59:59.000Z

    More and more US utilities are running more and larger demand-side management (DSM) programs. Assessing the cost-effectiveness of these programs raises difficult questions for utilities and their regulators. Should these programs aim to minimize the total cost of providing electric-energy services or should they minimize the price of electricity This study offers quantitative estimates on the tradeoffs between total costs and electricity prices. This study uses a dynamic model to assess the effects of energy-efficiency programs on utility revenues, total resource costs, electricity prices, and electricity consumption for the period 1990 to 2010. These DSM programs are assessed under alternative scenarios. In these cases, fossil-fuel prices, load growth, the amount of excess capacity the utility has in 1990, planned retirements of power plants, the financial treatment of DSM programs, and the costs of energy- efficient programs vary. These analyses are conducted for three utilities: a base'' that is typical of US utilities; a surplus'' utility that has excess capacity, few planned retirements, and slow growth in fossil-fuel prices and incomes; and a deficit'' utility that has little excess capacity, many planned retirements, and rapid growth in fossil-fuel prices and incomes. 28 refs.

  13. The effects of utility DSM programs on electricity costs and prices

    SciTech Connect (OSTI)

    Hirst, E.

    1991-11-01T23:59:59.000Z

    More and more US utilities are running more and larger demand-side management (DSM) programs. Assessing the cost-effectiveness of these programs raises difficult questions for utilities and their regulators. Should these programs aim to minimize the total cost of providing electric-energy services or should they minimize the price of electricity? This study offers quantitative estimates on the tradeoffs between total costs and electricity prices. This study uses a dynamic model to assess the effects of energy-efficiency programs on utility revenues, total resource costs, electricity prices, and electricity consumption for the period 1990 to 2010. These DSM programs are assessed under alternative scenarios. In these cases, fossil-fuel prices, load growth, the amount of excess capacity the utility has in 1990, planned retirements of power plants, the financial treatment of DSM programs, and the costs of energy- efficient programs vary. These analyses are conducted for three utilities: a ``base`` that is typical of US utilities; a ``surplus`` utility that has excess capacity, few planned retirements, and slow growth in fossil-fuel prices and incomes; and a ``deficit`` utility that has little excess capacity, many planned retirements, and rapid growth in fossil-fuel prices and incomes. 28 refs.

  14. Piston ring pack design effects on production spark ignition engine oil consumption : a simulation analysis

    E-Print Network [OSTI]

    Senzer, Eric B

    2007-01-01T23:59:59.000Z

    One of the most significant contributors to an engine's total oil consumption is the piston ring-pack. As a result, optimization of the ring pack is becoming more important for engine manufacturers and lubricant suppliers. ...

  15. Window-Related Energy Consumption in the US Residential and Commercial Building Stock

    E-Print Network [OSTI]

    Apte, Joshua; Arasteh, Dariush

    2008-01-01T23:59:59.000Z

    Building Heating Loads (Trillion BTU/yr) Total BuildingCooling Loads (Trillion BTU/yr) Non. Wind Infilt SHGC Wind.Energy Consumption (Trillion BTU/yr) Area, Window Window

  16. Standby power consumption in U.S. residences

    SciTech Connect (OSTI)

    Huber, W.

    1997-12-01T23:59:59.000Z

    {open_quotes}Leaking electricity{close_quotes} is the electricity consumed by appliances while they are switched {open_quotes}off{close_quote} or not performing their principal function. Leaking electricity represents approximately 5 % of U.S. residential electricity. This is a relatively new phenomenon and is a result of proliferation of electronic equipment in homes. The standby losses in TVs, VCRs, compact audio systems, and cable boxes account for almost 40% of all leaking electricity. There is a wide range in standby losses in each appliance group. For example, standby losses in compact audio systems range from 2.1 to 28.6 W, even though their features are identical. In some cases, leaking electricity while switched off was only slightly less than energy consumption in the on mode. New features in these appliances may greatly increase leaking electricity, such as electronic program guides in TVs and cable boxes. In the standby mode, these new features require many extra components energized to permit the downloading of information. Several techniques are available to cut standby losses, most without using any new technologies. Simple redesign of circuits to avoid energizing unused components appears to save the most energy. A separate power supply, precisely designed for the actual power needed, is another solution. A switch mode power supply can substitute for the less efficient linear power supply. Switch mode power supplies cut no-load and standby losses by 60-80%. The combination of these techniques can cut leaking electricity by greater than 75%.

  17. Allocation, incentives and distortions: the impact of EU ETS emissions allowance allocations to the electricity sector

    E-Print Network [OSTI]

    Neuhoff, Karsten; Keats, Kim; Sato, Misato

    in electricity prices (Harrison and Radov 2002) could trigger higher electricity consumption, production, further increasing CO2 emissions. This approach will also have consequences on neighbouring jurisdictions. Figure 2 illustrates a case with two... into the electricity prices limits investment in energy efficiency and results in higher electricity consumption. Thus electricity production and national CO2 emissions increase. If all European countries implement such policies the suggested higher CO2 emissions...

  18. Choosing an electrical energy future for the Pacific Northwest: an Alternative Scenario

    SciTech Connect (OSTI)

    Cavanagh, R.C.; Mott, L.; Beers, J.R.; Lash, T.L.

    1980-08-01T23:59:59.000Z

    An Alternative Scenario for the electric energy future of the Pacific Northwest is presented. The Scenario includes an analysis of each major end use of electricity in the residential, commercial, manufacturing, and agricultural sectors. This approach affords the most direct means of projecting the likely long-term growth in consumption and the opportunities for increasing the efficiency with which electricity is used in each instance. The total demand for electricity by these end uses then provides a basis for determining whether additional central station generation is required to 1995. A projection of total demand for electricity depends on the combination of many independent variables and assumptions. Thus, the approach is a resilient one; no single assumption or set of linked assumptions dominates the analysis. End-use analysis allows policymakers to visualize the benefits of alternative programs, and to make comparison with the findings of other studies. It differs from the traditional load forecasts for the Pacific Northwest, which until recently were based largely on straightforward extrapolations of historical trends in the growth of electrical demand. The Scenario addresses the supply potential of alternative energy sources. Data are compiled for 1975, 1985, and 1995 in each end-use sector.

  19. Electric Power Monthly, June 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-13T23:59:59.000Z

    The EPM is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, electricity sales, and average revenue per kilowatthour of electricity sold. Data on net generation are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, company and plant level information are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel. Quantity, quality, and cost of fuel data lag the net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour data by 1 month. This difference in reporting appears in the national, Census division, and State level tables. However, at the plant level, all statistics presented are for the earlier month for the purpose of comparison. 40 tabs.

  20. The effect of tree shade on home summer electrical consumption

    E-Print Network [OSTI]

    Rudie, Raymond Joseph

    1982-01-01T23:59:59.000Z

    materials. As compared to a rural soil surface (i. e. natural or disturbed soil surfaces either vegetated or bare), typical city surfaces such as concrete and asphalt have greater densities and higher heat capacities (Duckworth and Sandberg 1954) which...

  1. Table 2b. Relative Standard Errors for Electricity Consumption and

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773

  2. Issues in International Energy Consumption Analysis: Electricity Usage in

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14 Dec-14Has|

  3. Effects of Feedback on Residential Electricity Consumption: A Literature Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11ComputationalEdNERSC:Effect

  4. Electric power annual 1997. Volume 1

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1 -- with a focus on US electric utilities -- contains final 1997 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1997 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold (based on a monthly sample: Form EIA-826, ``Monthly Electric Utility Sales and Revenue Report with State Distributions``). Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA.

  5. "Annual Electric Power Industry Report (EIA-861 data file)

    U.S. Energy Information Administration (EIA) Indexed Site

    data updated Table 7. Electric Power Industry Emissions Estimates, 1990- 2012 - Total emission rates added Table 10. Supply and Disposition of Electricity, 1990- 2012 - Data issues...

  6. Location Student Fac/Staff Disabled Special OLLI Reserved Electric Carpool Park and Pay 30 Minute Loading Maint/Service State Vehicle Motorcycle Control* S / L** P / T / LD*** Location Total Alumni House 1 1 17 D L P 19

    E-Print Network [OSTI]

    de Lijser, Peter

    Loading Maint/Service State Vehicle Motorcycle Control* S / L** P / T / LD*** Location Total Alumni House 1 1 17 D L P 19 A North 1,101 5 D L P 1,101 A South 280 D L P 280 A South Fac/Staff 166 2 8 14 3 D L P 190 Arts Drive 9 D L P 9 Byrnes Circle 12

  7. San Diego Solar Panels Generate Clean Electricity Along with Clean Water

    Broader source: Energy.gov [DOE]

    Thanks to San Diego's ambitious solar energy program, the Otay Water Treatment Plant may soon be able to do that with net zero electricity consumption.

  8. Electric power monthly, January 1991. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-01-17T23:59:59.000Z

    This publication provides monthly statistics at the national, Census division, and state levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, and average revenue per kilowatthour of electricity sold. Data on net generation are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, company and plant level information are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel. 4 figs., 48 tabs.

  9. KEEPING THE FUTURE BRIGHT 2004 Canadian Electricity Human Resource Sector Study

    E-Print Network [OSTI]

    supply 8 Electricity consumption 9 Supply and demand projections 9 Electricity exports and importsKEEPING THE FUTURE BRIGHT 2004 Canadian Electricity Human Resource Sector Study #12;This project Electricity Association The Canadian Electricity Association (CEA), founded in 1891, is the national forum

  10. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect (OSTI)

    Clark, Corrie E. [Environmental Science Division] [Environmental Science Division; Harto, Christopher B. [Environmental Science Division] [Environmental Science Division; Schroeder, Jenna N. [Environmental Science Division] [Environmental Science Division; Martino, Louis E. [Environmental Science Division] [Environmental Science Division; Horner, Robert M. [Environmental Science Division] [Environmental Science Division

    2013-11-05T23:59:59.000Z

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus,

  11. Electric power monthly, December 1997 with data for September 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 63 tabs.

  12. Electric power monthly, May 1995 with data for February 1995

    SciTech Connect (OSTI)

    NONE

    1995-05-24T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisiommakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuel, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  13. Extracting Operating Modes from Building Electrical Load Data: Preprint

    SciTech Connect (OSTI)

    Frank, S.; Polese, L. G.; Rader, E.; Sheppy, M.; Smith, J.

    2012-01-01T23:59:59.000Z

    Empirical techniques for characterizing electrical energy use now play a key role in reducing electricity consumption, particularly miscellaneous electrical loads, in buildings. Identifying device operating modes (mode extraction) creates a better understanding of both device and system behaviors. Using clustering to extract operating modes from electrical load data can provide valuable insights into device behavior and identify opportunities for energy savings. We present a fast and effective heuristic clustering method to identify and extract operating modes in electrical load data.

  14. Environmental Assessment of the US Department of Energy Electric and Hybrid Vehicle Program

    SciTech Connect (OSTI)

    Singh, M.K.; Bernard, M.J. III; Walsh, R.F

    1980-11-01T23:59:59.000Z

    This environmental assessment (EA) focuses on the long-term (1985-2000) impacts of the US Department of Energy (DOE) electric and hybrid vehicle (EHV) program. This program has been designed to accelerate the development of EHVs and to demonstrate their commercial feasibility as required by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (P.L. 94-413), as amended (P.L. 95-238). The overall goal of the program is the commercialization of: (1) electric vehicles (EVs) acceptable to broad segments of the personal and commercial vehicle markets, (2) hybrid vehicles (HVs) with range capabilities comparable to those of conventional vehicles (CVs), and (3) advanced EHVs completely competitive with CVs with respect to both cost and performance. Five major EHV projects have been established by DOE: market demonstration, vehicle evaluation and improvement, electric vehicle commercialization, hybrid vehicle commercialization, and advanced vehicle development. Conclusions are made as to the effects of EV and HV commercialization on the: consumption and importation of raw materials; petroleum and total energy consumption; ecosystems impact from the time of obtaining raw material through vehicle use and materials recycling; environmental impacts on air and water quality, land use, and noise; health and safety aspects; and socio-economic factors. (LCL)

  15. AVTA: 2010 Electric Vehicles International Neighborhood Electric...

    Energy Savers [EERE]

    10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

  16. Electric Power Monthly with data for July 1997

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    This publication provides monthly statistics at the state, census division, and U.S. levels for net generation; fossil fuel consumption and stocks, quantity, and quality of fossil fuels; cost of fossil fuels; electricity retail sales; associated revenue; and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council regions. Statistics on net generation are published by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The monthly update is summarized, and industry developments are briefly described. 57 tabs.

  17. Electric power monthly January 1997 with data for October 1996

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This publication presents monthly electricity statistical data. Information is included on U.S. electric utility net generation, consumption of fossil fuels, and fossil-fuel stocks; U.S. electric utility sales; receipts and cost of fossil fuels at utilities; and monthly plant aggregates. A glossary is included.

  18. Total Light Management

    Broader source: Energy.gov [DOE]

    Presentation covers total light management, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  19. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  20. Essays on aggregate and individual consumption fluctuations

    E-Print Network [OSTI]

    Hwang, Youngjin

    2006-01-01T23:59:59.000Z

    This thesis consists of three essays on aggregate and individual consumption fluctuations. Chapter 1 develops a quantitative model to explore aggregate and individual consumption dynamics when the income process exhibits ...

  1. Energy Conservation and Efficiency Improvement for the Electric Motors Operating in U.S. Oil Fields

    E-Print Network [OSTI]

    Ula, S.; Cain, W.; Nichols, T.

    Because of its versatility, electricity consumption continues to grow all over the world more rapidly than any other energy form. The portion of the United States' primary energy supply used as electricity has expanded from near zero at the turn...

  2. Electric power monthly: April 1996, with data for January 1996

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatt hour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. 64 tabs.

  3. Electric Power Monthly, September 1995: With data for June 1995

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  4. State energy data report 1992: Consumption estimates

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

  5. Measured electric hot water standby and demand loads from Pacific Northwest homes. End-Use Load and Consumer Assessment Program

    SciTech Connect (OSTI)

    Pratt, R.G.; Ross, B.A.

    1991-11-01T23:59:59.000Z

    The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

  6. Energy Consumption ESPRIMO E7935 E80+

    E-Print Network [OSTI]

    Ott, Albrecht

    Computers is also taking significant effort to reduce the energy consumption in data centres by providingEnergy Consumption ESPRIMO E7935 E80+ White Paper Issue: September 2008 In order to strengthen all important energy information about their products. With the publication of energy consumption

  7. Ethanol Consumption by Rat Dams During Gestation,

    E-Print Network [OSTI]

    Galef Jr., Bennett G.

    Ethanol Consumption by Rat Dams During Gestation, Lactation and Weaning Increases Ethanol examined effects of ethanol consumption in rat dams during gestation, lactation, and weaning on voluntary ethanol consumption by their adolescent young. We found that exposure to an ethanol-ingesting dam

  8. DYNAMIC MANAGEMENT OF POWER CONSUMPTION Tajana Simunic

    E-Print Network [OSTI]

    Simunic, Tajana

    Chapter 1 DYNAMIC MANAGEMENT OF POWER CONSUMPTION Tajana Simunic HP Labs Abstract Power consumption by adapting to changes in environment are proposed: dynamic power management and dynamic voltage scaling. Dynamic power management (DPM) algorithms aim to reduce the power consumption at the system level

  9. Mathematical models of natural gas consumption

    E-Print Network [OSTI]

    Scitovski, Rudolf

    Mathematical models of natural gas consumption Kristian Sabo, Rudolf Scitovski, Ivan of natural gas consumption Kristian Sabo, Rudolf Scitovski, Ivan Vazler , Marijana Zeki-Susac ksabo of natural gas consumption hourly fore- cast on the basis of hourly movement of temperature and natural gas

  10. Energy Consumption of Personal Computing Including Portable

    E-Print Network [OSTI]

    Namboodiri, Vinod

    Energy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1 consumption, questions are being asked about the energy contribution of computing equipment. Al- though studies have documented the share of energy consumption by this type of equipment over the years, research

  11. Monitoring Energy Consumption In Wireless Sensor Networks

    E-Print Network [OSTI]

    Turau, Volker

    Monitoring Energy Consumption In Wireless Sensor Networks Matthias Witt, Christoph Weyer, it may impair the ability of the sensor network to function. Therefore, minimizing energy consumption energy consumption in both standby and active modes is the basis of wireless networks. Energy preserving

  12. Autonomous Demand Side Management Based on Game-Theoretic Energy Consumption

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    Autonomous Demand Side Management Based on Game-Theoretic Energy Consumption Scheduling distributed demand side energy management strategy requires each user to simply apply its best response-average ratio of the total energy demand, the total energy costs, as well as each user's individual daily

  13. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    LBNL-pend TV Energy Consumption Trends and Energy-EfficiencyTrends and Energy Consumption ..TV Technology Trends and Energy Consumption. 1.2.3. Factors

  14. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    and Low Power Mode Energy Consumption, Energy Efficiency inEnergy Consumption ..26 3.1.3. 3D TV Energy Consumption and Efficiency

  15. Per Capita Consumption The NMFS calculation of per capita consumption is

    E-Print Network [OSTI]

    Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources a significant effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 15

  16. Per Capita Consumption The NMFS calculation of per capita consumption is

    E-Print Network [OSTI]

    Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.0 pounds

  17. Per Capita Consumption The NMFS calculation of per capita consumption is

    E-Print Network [OSTI]

    Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.5 pounds

  18. Per Capita Consumption The NMFS calculation of per capita consumption is

    E-Print Network [OSTI]

    Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.3 pounds

  19. Per Capita Consumption The NMFS calculation of per capita consumption is

    E-Print Network [OSTI]

    Per Capita Consumption 84 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.3 pounds

  20. Electric power monthly, December 1996 with data for September 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The report presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatt hour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 57 tabs.

  1. Electric power monthly, July 1999, with data for April 1999

    SciTech Connect (OSTI)

    NONE

    1999-07-01T23:59:59.000Z

    The Electric Power Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the Electric Power Monthly (EPM). This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatt hour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 1 fig., 64 tabs.

  2. 2010-11 Electrical Engineering BSE/EPES 4-year Flow Chart Concentration in Electrical Power and Energy Systems

    E-Print Network [OSTI]

    Zhang, Junshan

    2010-11 Electrical Engineering BSE/EPES 4-year Flow Chart Concentration in Electrical Power and Energy Systems NOTE 1: The program in Electrical Engineering requires a total of 15 hours of technical

  3. 2011-12 Electrical Engineering BSE/EPES 4-year Flow Chart Concentration in Electrical Power and Energy Systems

    E-Print Network [OSTI]

    Zhang, Junshan

    2011-12 Electrical Engineering BSE/EPES 4-year Flow Chart Concentration in Electrical Power and Energy Systems NOTE 1: The program in Electrical Engineering requires a total of 15 hours of technical

  4. Electricity Reliability

    E-Print Network [OSTI]

    electric power equipment with more energy efficiency and higher capacity than today's systems of modernizing the electric grid to meet the nations's need for reliable, electric power, enhancing security continues to increase within the electricity infrastructure. DOE is conducting research, development

  5. Plug-in electric vehicle introduction in the EU

    E-Print Network [OSTI]

    Sisternes, Fernando J. de $q (Fernando Jos Sisternes Jimnez)

    2010-01-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs) could significantly reduce gasoline consumption and greenhouse gas (GHG) emissions in the EU's transport sector. However, PEV well-towheel (WTW) emissions depend on improvements in vehicle ...

  6. Denton Municipal Electric- GreenSense Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Denton Municipal Electric pays residential and small commercial customers to reduce energy demand and consumption in order to reduce the utility bills of DME customers, reduce peak load, reduce...

  7. Electrical ship demand modeling for future generation warships

    E-Print Network [OSTI]

    Sievenpiper, Bartholomew J. (Bartholomew Jay)

    2013-01-01T23:59:59.000Z

    The design of future warships will require increased reliance on accurate prediction of electrical demand as the shipboard consumption continues to rise. Current US Navy policy, codified in design standards, dictates methods ...

  8. Further Findings Concerning Electrical Energy Monitoring in an Industrial Plant

    E-Print Network [OSTI]

    Lewis, D. R.; Dorhofer, F. J.; Heffington, W. M.

    1995-01-01T23:59:59.000Z

    The Energy Systems Laboratory (ESL) at Texas A&M University has monitored the real-time electrical energy consumption, demand, and power factor of a large metal fabrication plant in Houston, Texas for twelve months. Monthly reports that present...

  9. Further Findings Concerning Electrical Energy Monitoring in an Industrial Plant

    E-Print Network [OSTI]

    Lewis, D. R.; Dorhofer, F. J.; Heffington, W. M.

    The Energy Systems Laboratory (ESL) at Texas A&M University has monitored the real-time electrical energy consumption, demand, and power factor of a large metal fabrication plant in Houston, Texas for twelve months. Monthly reports that present...

  10. Total Synthesis of (?)-Himandrine

    E-Print Network [OSTI]

    Movassaghi, Mohammad

    We describe the first total synthesis of (?)-himandrine, a member of the class II galbulimima alkaloids. Noteworthy features of this chemistry include a diastereoselective Diels?Alder reaction in the rapid synthesis of the ...

  11. MISCELLANEOUS ELECTRICITY USE IN THE U.S. RESIDENTIAL SECTOR

    E-Print Network [OSTI]

    energy consumption) were responsible for 53% of miscellaneous consumption in 1995: #12;ii CLBNL-40295 UC-1600 MISCELLANEOUS ELECTRICITY USE IN THE U.S. RESIDENTIAL SECTOR M. C. Sanchez, J. G. Koomey, M. M. Moezzi, A. K. Meier, and W. Huber Energy Analysis Department Environmental Energy

  12. Water value in power generation: Experts distinguish water use and consumption

    E-Print Network [OSTI]

    Kalisek, D

    2013-01-01T23:59:59.000Z

    Winter 2013 tx H2O 11 ] Story by Danielle Kalisek In Grimes County, the sun sets over Gibbons Creek Reservoir, the cooling water supply for an adjacent power plant. Photo by Leslie Lee. WATER VALUE IN POWER GENERATION Experts distinguish... water use and consumption Having enough water available for municipal and agricultural needs is o#23;en discussed; however, having the water needed to generate electric power and the electricity needed to treat and transport water is a struggle all...

  13. Water value in power generation: Experts distinguish water use and consumption

    E-Print Network [OSTI]

    Kalisek, D

    2013-01-01T23:59:59.000Z

    Winter 2013 tx H2O 11 ] Story by Danielle Kalisek In Grimes County, the sun sets over Gibbons Creek Reservoir, the cooling water supply for an adjacent power plant. Photo by Leslie Lee. WATER VALUE IN POWER GENERATION Experts distinguish... water use and consumption Having enough water available for municipal and agricultural needs is o#23;en discussed; however, having the water needed to generate electric power and the electricity needed to treat and transport water is a struggle all...

  14. Third Generation Flywheels for electric storage

    SciTech Connect (OSTI)

    Ricci, Michael, R.; Fiske, O. James

    2008-02-29T23:59:59.000Z

    Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel the "Power Ring" with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing a radial gap shear-force levitator that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

  15. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    9. Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

  16. --No Title--

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    5. Electricity Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  17. --No Title--

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    0. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  18. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    8. Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

  19. --No Title--

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    7. Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of...

  20. INTRODUCTION Ukiah Electric Utility

    E-Print Network [OSTI]

    INTRODUCTION Ukiah Electric Utility Renewable Energy Resources Procurement Plan Per Senate Billlx 2 renewable energy resources, including renewable energy credits, as a specified percentage of Ukiah's total,2011 to December 31, 2013, Ukiah shall procure renewable energy resources equivalent to an average of at least

  1. Consumption-based accounting of CO2 emissions

    E-Print Network [OSTI]

    Davis, S. J; Caldeira, K.

    2010-01-01T23:59:59.000Z

    gross world product, E is global energy consumption, Authorworld GDP, f = F/E is carbon intensity of energy consumption,

  2. The Restructuring and Privatisation of the Peruvian Electricity Distribution Market

    E-Print Network [OSTI]

    Anaya, K L

    (Bonifaz, 2001). Electrolima, the main electricity distribution company, was responsible for 57 per cent of the national electricity consumption and had its own generation installation for electricity production (Araoz, et al., 2001). The nationwide... www.eprg.group.cam.ac.uk E P R G W O R K IN G P A P E R Abstract The Restructuring and Privatisation of the Peruvian Electricity Distribution Market EPRG Working Paper 1009 Cambridge Working Paper in Economics 1017 Karim L. Anaya...

  3. Electric Power Monthly, August 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-11-29T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  4. Total Energy Monitor

    SciTech Connect (OSTI)

    Friedrich, S

    2008-08-11T23:59:59.000Z

    The total energy monitor (TE) is a thermal sensor that determines the total energy of each FEL pulse based on the temperature rise induced in a silicon wafer upon absorption of the FEL. The TE provides a destructive measurement of the FEL pulse energy in real-time on a pulse-by-pulse basis. As a thermal detector, the TE is expected to suffer least from ultra-fast non-linear effects and to be easy to calibrate. It will therefore primarily be used to cross-calibrate other detectors such as the Gas Detector or the Direct Imager during LCLS commissioning. This document describes the design of the TE and summarizes the considerations and calculations that have led to it. This document summarizes the physics behind the operation of the Total Energy Monitor at LCLS and derives associated engineering specifications.

  5. Electric Currents Electric Current

    E-Print Network [OSTI]

    Yu, Jaehoon

    ;Problem 3: At $0.095/kWh, what does it cost to leave a 25W porch light on day and night for a year = 219000 Watt- hour = 219kWh. So, total cost = 219 x$0.095 = $20.8 #12;Problem 4: A 100 W light bulb has of charge per unit time: = . Unit of current: Ampere (A). The purpose of a battery is to produce

  6. University of Hawai`i Watt Watcher: Energy Consumption Data Analysis

    E-Print Network [OSTI]

    University of Hawai`i Watt Watcher: Energy Consumption Data Analysis Phase I Interim Report Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under of the United States Government. Neither the United States Government nor any agency thereof, nor any

  7. University of Hawai`i Watt Watcher: Energy Consumption Data Analysis

    E-Print Network [OSTI]

    University of Hawai`i Watt Watcher: Energy Consumption Data Analysis Phase I Final Report Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Award No. DE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither

  8. DRAM Decay: Using Decay Counters to Reduce Energy Consumption in DRAMs

    E-Print Network [OSTI]

    Lee, Hsien-Hsin "Sean"

    DRAM Decay: Using Decay Counters to Reduce Energy Consumption in DRAMs Mrinmoy Ghosh Hsien-Hsin S. Lee School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, GA 30332 technology they use. For each refresh in a DRAM row, the stored information in each cell is read out

  9. Electric power monthly, June 1995 with data for March 1995

    SciTech Connect (OSTI)

    NONE

    1995-06-19T23:59:59.000Z

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 68 tabs.

  10. Electric power monthly with data for January 1997

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  11. Electric power monthly, September 1996, with data for June 1996

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatt hour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  12. Electric power monthly with data for December 1996

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  13. Electric power monthly with data for October 1995

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  14. Total Precipitable Water

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

  15. Permitting of Consumptive Uses of Water (Florida)

    Broader source: Energy.gov [DOE]

    Local water management districts are required to establish programs and regulations to provide for the permitting of consumptive uses of water. Such permitting programs are subject to the...

  16. Heavy Oil Consumption Reduction Program (Quebec, Canada)

    Broader source: Energy.gov [DOE]

    This program helps heavy oil consumers move toward sustainable development while improving their competitive position by reducing their consumption. Financial assistance is offered to carry out...

  17. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    have the end use, not consumption specifically for that particular end use. HVAC Heating, Ventilation, and Air Conditioning. Due to rounding, data may not sum to...

  18. Electric power monthly, May 1998, with data for February 1998

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974. The EPM provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. 30 refs., 58 tabs.

  19. Electric power monthly, August 1998, with data for May 1998

    SciTech Connect (OSTI)

    NONE

    1998-08-01T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. 9 refs., 57 tabs.

  20. Electric power monthly, March 1999 with data for December 1998

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be sued in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. 63 tabs.

  1. Estimating carbon dioxide emission factors for the California electric power sector

    SciTech Connect (OSTI)

    Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

    2002-08-01T23:59:59.000Z

    The California Climate Action Registry (''Registry'') was initially established in 2000 under Senate Bill 1771, and clarifying legislation (Senate Bill 527) was passed in September 2001. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) has been asked to provide technical assistance to the California Energy Commission (CEC) in establishing methods for calculating average and marginal electricity emissions factors, both historic and current, as well as statewide and for sub-regions. This study is exploratory in nature. It illustrates the use of three possible approaches and is not a rigorous estimation of actual emissions factors. While the Registry will ultimately cover emissions of all greenhouse gases (GHGs), presently it is focusing on carbon dioxide (CO2). Thus, this study only considers CO2, which is by far the largest GHG emitted in the power sector. Associating CO2 emissions with electricity consumption encounters three major complications. First, electricity can be generated from a number of different primary energy sources, many of which are large sources of CO2 emissions (e.g., coal combustion) while others result in virtually no CO{sub 2} emissions (e.g., hydro). Second, the mix of generation resources used to meet loads may vary at different times of day or in different seasons. Third, electrical energy is transported over long distances by complex transmission and distribution systems, so the generation sources related to electricity usage can be difficult to trace and may occur far from the jurisdiction in which that energy is consumed. In other words, the emissions resulting from electricity consumption vary considerably depending on when and where it is used since this affects the generation sources providing the power. There is no practical way to identify where or how all the electricity used by a certain customer was generated, but by reviewing public sources of data the total emission burden of a customer's electricity supplier can b e found and an average emissions factor (AEF) calculated. These are useful for assigning a net emission burden to a facility. In addition, marginal emissions factors (MEFs) for estimating the effect of changing levels of usage can be calculated. MEFs are needed because emission rates at the margin are likely to diverge from the average. The overall objective of this task is to develop methods for estimating AEFs and MEFs that can provide an estimate of the combined net CO2 emissions from all generating facilities that provide electricity to California electricity customers. The method covers the historic period from 1990 to the present, with 1990 and 1999 used as test years. The factors derived take into account the location and time of consumption, direct contracts for power which may have certain atypical characteristics (e.g., ''green'' electricity from renewable resources), resource mixes of electricity providers, import and export of electricity from utility owned and other sources, and electricity from cogeneration. It is assumed that the factors developed in this way will diverge considerably from simple statewide AEF estimates based on standardized inventory estimates that use conventions inconsistent with the goals of this work. A notable example concerns the treatment of imports, which despite providing a significant share of California's electricity supply picture, are excluded from inventory estimates of emissions, which are based on geographical boundaries of the state.

  2. Electricity pricing for conservation and load shifting

    SciTech Connect (OSTI)

    Orans, Ren; Woo, C.K.; Horii, Brian; Chait, Michele; DeBenedictis, Andrew

    2010-04-15T23:59:59.000Z

    The electricity industry is facing the challenge of increasing costs of reliably meeting demand growth and fully complying with legislative renewable portfolio standards and greenhouse gas reduction targets. However, an electric utility's existing tariffs often don't have rates that increase with consumption volume or vary by time of use, thus not fully exploiting the potential benefits from customer conservation and load shifting. (author)

  3. Electric power monthly, September 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-12-17T23:59:59.000Z

    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  4. Alabama Natural Gas % of Total Electric Utility Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l dIncreases4 16 18 19

  5. Table 15. Total Electricity Sales, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled:a.

  6. "2013 Total Electric Industry- Customers"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49.Transportation" "(Data

  7. "2013 Total Electric Industry- Revenue (Thousands Dollars)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49.Transportation" "(DataRevenue

  8. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  9. Electric power monthly, February 1999 with data for November 1998

    SciTech Connect (OSTI)

    NONE

    1999-02-01T23:59:59.000Z

    The Electric Power Monthly presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Statistics are provided for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatt-hour of electricity sold.

  10. Using Iterative Compilation to Reduce Energy Consumption

    E-Print Network [OSTI]

    Gheorghita, Valentin

    or to re- duce power. Most transformations require loop re- structuring. Although a large number.v.gheorghita,h.corporaal,a.a.basten}@tue.nl Keywords: Iterative Compilation, Program Optimization, Energy Consumption, Program Transformation. Abstract. This is emphasized by new demands added to compilers, like reducing static code size, energy consumption or power

  11. World synthetic rubber consumption is growing

    SciTech Connect (OSTI)

    Not Available

    1987-03-04T23:59:59.000Z

    Worldwide consumption of new rubber, both synthetic and natural, has increased. This report includes a prediction of even more growth in the rubber market which was made by the International Institute of Synthetic Rubber Producers (IISRP), based in Houston. Figures are given for worldwide consumption.

  12. Household Vehicles Energy Consumption 1991

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200DecadeCubic Feet)Historical1

  13. Household Vehicles Energy Consumption 1991

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200DecadeCubic

  14. Household Vehicles Energy Consumption 1991

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200DecadeCubic1. Introduction The

  15. Firewood consumption in a Nepali village

    SciTech Connect (OSTI)

    Fox, J.

    1984-05-01T23:59:59.000Z

    People's dependence on firewood as a primary source of energy is causing serious deforestation problems in many developing countries. Reliable information on firewood consumption rates is needed to develop afforestation plans and to control deforestation. This study compares three methods used to determine firewood consumption in a Nepali village. Cultural and environmental factors that affect firewood consumption in the village are also examined. The weight survey proved to be the most accurate method used. The less precise daily recall and annual recall surveys overestimated actual firewood consumption by factors of 1.76 and 1.95, respectively. Overestimates are attributed to both physical and social factors. In view of the good agreement between daily and annual recall surveys, and the much greater ease of conducting the latter, annual recall surveys are recommended as the most practical method of monitoring firewood consumption rates. Validating the survey with occasional weighted measurements is suggested as a means of improving accuracy.

  16. Idaho Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million Cubic Feet)Decade Year-0

  17. Idaho Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million Cubic Feet)Decade

  18. Illinois Natural Gas Industrial Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million381 -260Decade Year-0

  19. Illinois Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million381Withdrawals

  20. Illinois Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million Cubic Feet)Plant Fuel