Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Wave properties of light Light is energy whose wavelength is the distance traveled in order to complete one cycle.  

E-Print Network [OSTI]

Wave properties of light Light is energy whose wavelength is the distance traveled in order to complete one cycle. The frequency of light refers to the number of cycles in one second. Low-energy light has a long wavelength and a low frequency. High-energy light has a short wavelength and a high

Zworski, Maciej

2

An analysis of the travel times of S waves to North American stations in the distance range 28░ to 82░  

Science Journals Connector (OSTI)

...i o-,.s ~.... ~ ,, ~ ,,/ \\Lt ~ ..... o'~ ', ,' , t / -%, o WWSS stoflons \\ / \\ \\ = CaHech slo'iions 1.6 Fzo. 2. Map of S Residuals for.U.S. Stations. TRAVEL TIMES OF S WAVES 767 l I I I I I I I I I I I i I I x x I...

H. A. Doyle; A. L. Hales

3

3Solar Energy and the Distance to Juno from the Sun As the Juno spacecraft travels to Jupiter,  

E-Print Network [OSTI]

spacecraft? Problem 2 ┬ş If the amount of solar energy falling on the Juno solar panels is determined by the inverse-square law, and the amount of solar energy generated by the solar panels at r = 1.0 AU is exactly 12,690 watts, what is the formula for the solar panel power at any distance defined by the function P

4

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

5

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

6

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

7

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

8

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

9

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

10

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

11

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

12

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

13

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

14

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

15

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

16

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

17

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

18

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

19

Solar Decathlon: How far did they travel? | Department of Energy  

Energy Savers [EERE]

Solar Decathlon: How far did they travel? Solar Decathlon: How far did they travel? Toggle Routes onoff Return to map Solar Decathlon Journeys Visualizing the distances that...

20

Travel Medicine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SCOPE OF PROBLEM SCOPE OF PROBLEM * 21% of U.S. Adult Population Travel for Business * 1.4 million International Travelers Daily * Numbers will Increase * Include Workers in Planning TRAVEL AND INFECTIOUS DISEASE * Endemic Exotic Diseases * Antimicrobial Resistance *Non-Specific Presentation of Disease * Emergence/ Re-emergence of Infectious Agents * Importation/ Exportation of Infection Mary L. Doyle, MPH, RN, COHN-S/CM DOE Headquarters January 17,2002 INTERNATIONAL TRAVEL * Economic Expansion * Globalization of Companies * Extended * Extended & Short-tenn Assignments * Multi-National Travel * Circle Globe in Three Days * Incubation Period for Infectious Diseases * Employee Needs Advice from OHN HEALTH ASSESSMENT * Potential Travel Illnesses * Employee Health Risks

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Graduate, Undergraduate Student Travel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Graduate, Undergraduate Travel Graduate, Undergraduate Student Travel Travel reimbursement process information for participants in the Graduate Research Assistant (GRA) and...

22

Jefferson Lab Travel - Training  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tabs Home Announcements Forms Foreign Travel Conferences Travel Reservations Training Travel Guidance Q 'n A print version Individual instruction on travel related topics...

23

MECHANICAL ENGINEERING TRAVEL AUTHORIZATION INFORMATION FORM  

E-Print Network [OSTI]

. ______________ Estimated Cost AMOUNT Transportation (Does not include USC vehicle) Subsistence Other Expenses (EXPLAINMECHANICAL ENGINEERING TRAVEL AUTHORIZATION INFORMATION FORM Requested) Estimated Total Cost Account(s) to be charged Dept. Fund Class Analytical Amount** Method of Travel Common

Sutton, Michael

24

Zero Energy Travel  

E-Print Network [OSTI]

It is fundamentally possible to travel with zero energy based on Newton Laws of Motion. According to the first law of motion, a body will continue to travel for infinite distance unless it is acted upon by another force. For a body in motion, the force which stops perpetual motion is friction. However, there are many circumstances that friction is zero, for example in space, where there is vacuum. On earth, gravity makes objects to be in constant contact with each other generating friction but technology exists to separate them in the air using powerful magnetic forces. At low speeds, the friction caused by air is minimal but we can create vacuum even on land for high speed travel. Another condition for travelling is for it to stop at its destination. On land, we can recover the kinetic energy back into electrical energy using brushless permanent magnet generators. These generators can also convert electric energy into kinetic energy in order to provide motion. This article reviews technologies that will allow us to travel with zero energy. It is easier to do it on land but in the air, it is not obvious.

Othman Ahmad; Aroland Kiring; Ali Chekima

2012-10-17T23:59:59.000Z

25

Travel | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Travel Travel Travel The Travel Services Team serves as the Headquarters POC for the following services: Headquarters Travel Management Center (TMC) Official Travel, Domestic and Foriegn Foreign Travel Management System (FTMS) Official Travel Regulations and Guidelines U.S. Passports and Visa Services (Official and Diplomatic) Non-Refundable Airfare Guidance International Insurance for DOE Officials (MEDEX) RezProfiler Instructions Car Rental Hotel Reservations Travel FAQs For questions about Travel Services or the Travel Management Center, see the Contact Us, Travel Services Section Travel Management Center (TMC) The Travel Services Team oversees the Travel Management Center (TMC), which is operated by ADTRAV Travel Management. Office Hours - 8:00 a.m. to 5:00 p.m. Office Location - Forrestal, Room GE-180

26

Web Reimbursement Create a Travel Authorization for BCD Travel  

E-Print Network [OSTI]

tickets purchased through BCD Travel directly to departmental General Ledger coding. Create TravelWeb Reimbursement Create a Travel Authorization for BCD Travel 7/19/2012 For Harvard Business Use Only Page 1 Create a Travel Authorization for BCD Travel HARVARD UNIVERSITY Create a Travel

Chen, Yiling

27

Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

drivers, number of vehicles in operation, and total vehicle miles traveled. Fact 842 Dataset Supporting Information Population and Vehicle Growth Comparison, 1950-2012 Year...

28

Travel Policy | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Policy Travel Policy Travel Policy for Contractor Personnel Travel Policy Changes October 1, 2009 Per Diem Adjustments for Meals Memo or EXAMPLE...

29

Travel Policy and Procedures  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To supplement the Federal Travel Regulation (41 CFR, Parts 300-304), the principal source of policy for Federal employee travel and relocation matters, and to establish DOE M 552.1-1, U.S. Department of Energy Travel Manual, dated 09-04-02, as the repository for supplementary travel requirements information for the Department of Energy (DOE). Cancels DOE 1500.2A and DOE 1500.4A. Canceled by DOE O 552.1A.

2002-09-04T23:59:59.000Z

30

Travel Policy and Procedures  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order supplements the Federal Travel Regulation as principal source of policy for Federal employee travel and relocation and establishes DOE M 552.1-1A, U.S. Department of Energy Travel Manual, dated 2-17-06, as the repository for supplementary travel requirements information. Cancels DOE O 552.1. Admin Chg 1, dated 10-1-08 cancels DOE O 552.1A.

2006-02-17T23:59:59.000Z

31

Travel Policy and Procedures  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order supplements the Federal Travel Regulation as principal source of policy for Federal employee travel and relocation and establishes DOE M 552.1-1A, U.S. Department of Energy Travel Manual, dated 2-17-06, as the DOE repository for supplementary travel requirements information. Cancels DOE O 552.1-1. Canceled by DOE O 552.1A Admin Chg 1.

2006-02-17T23:59:59.000Z

32

STUDENT TRAVEL POLICY APPLICABILITY  

E-Print Network [OSTI]

STUDENT TRAVEL POLICY APPLICABILITY The student travel policy is subject to the standardized the following funding sources: Activity and Services (A & S) fees, Revenues, and Auxiliary fund. The student travel policy incorporates by reference in the University Regulation 4.006 Student Government and Student

Fernandez, Eduardo

33

The relationship of travel agents and consumer travel magazines concerning the travel destinations of tourists using travel agencies  

E-Print Network [OSTI]

important. Also important are travel agents, those professionals who may play a large role in helping tourists determine their travel destinations. Another potentially important factor in determining travel destinations is consumer travel magazines...

Tomlinson, Beverly

2013-02-22T23:59:59.000Z

34

Official Foreign Travel  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes requirements and responsibilities governing official foreign travel by Federal and contractor employees. Cancels DOE O 551.1C.

2012-04-12T23:59:59.000Z

35

Aggregate vehicle travel forecasting model  

SciTech Connect (OSTI)

This report describes a model for forecasting total US highway travel by all vehicle types, and its implementation in the form of a personal computer program. The model comprises a short-run, econometrically-based module for forecasting through the year 2000, as well as a structural, scenario-based longer term module for forecasting through 2030. The short-term module is driven primarily by economic variables. It includes a detailed vehicle stock model and permits the estimation of fuel use as well as vehicle travel. The longer-tenn module depends on demographic factors to a greater extent, but also on trends in key parameters such as vehicle load factors, and the dematerialization of GNP. Both passenger and freight vehicle movements are accounted for in both modules. The model has been implemented as a compiled program in the Fox-Pro database management system operating in the Windows environment.

Greene, D.L.; Chin, Shih-Miao; Gibson, R. [Tennessee Univ., Knoxville, TN (United States)

1995-05-01T23:59:59.000Z

36

Fact #552: January 5, 2009 Vehicle Miles of Travel by Region  

Broader source: Energy.gov [DOE]

Total vehicle miles of travel (VMT) in the U.S. have declined from 2007 to 2008. The latest data available, September 2008, shows a 4.4% decline in travel that varies by region. Comparing September...

37

Travel Request Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lodging Lodging Transportation SNAP COLLABORATION MEETING JUNE 1 - 3, 2006 TRAVEL FUNDING REQUEST FORM If you require Travel funding support from LBNL to attend the SNAP Collaboration Meeting, please fill out the travel request form below and click on the "SEND" button. As an alternative, you can simply email the requested information on the form to snap@lbl.gov Deadline: Please submit your request NLT Wednesday, May 10, 2006. Disclaimer: Please note that the submission of this request does not automatically constitute funding approval. 1. First Name Last Name 2. Has this travel funding support been pre-approved by the SNAP management? Yes No 3. If answer to #2 is "Yes": a) Approval by whom? b) What was the maximum reimbursement amount from SNAP?

38

Interviewee Travel Regulations Scope  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3/2012 3/2012 Interviewee Travel Regulations Scope These regulations apply to the reimbursement of round-trip travel expenses incurred by interviewees. These regulations do not apply to applicants who live within a 50-mile radius of Los Alamos based on the Rand McNally Standard Highway Mileage Guide. Reimbursement With the exception of airfare, interviewees will be reimbursed for travel expenses according to Federal travel regulations. For interviewees, airfare reimbursement is limited to the lesser of the standard coach airfare or the actual amount paid. The lowest available airfare should be obtained based on the official business dates and locations. The reimbursement amount will be based on the most direct route available between the interviewee's residence and the laboratory. Costs incurred over the lowest available fare will be the

39

Official Foreign Travel  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) and National Nuclear Security Administration (NNSA) requirements and responsibilities governing official foreign travel by Federal and contractor employees. Cancels DOE O 551.1A. Canceled by DOE O 551.1C.

2003-08-19T23:59:59.000Z

40

Traveling-wave photodetector  

SciTech Connect (OSTI)

The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

Hietala, V.M.; Vawter, G.A.

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Transferring 2001 National Household Travel Survey  

SciTech Connect (OSTI)

Policy makers rely on transportation statistics, including data on personal travel behavior, to formulate strategic transportation policies, and to improve the safety and efficiency of the U.S. transportation system. Data on personal travel trends are needed to examine the reliability, efficiency, capacity, and flexibility of the Nation's transportation system to meet current demands and to accommodate future demand. These data are also needed to assess the feasibility and efficiency of alternative congestion-mitigating technologies (e.g., high-speed rail, magnetically levitated trains, and intelligent vehicle and highway systems); to evaluate the merits of alternative transportation investment programs; and to assess the energy-use and air-quality impacts of various policies. To address these data needs, the U.S. Department of Transportation (USDOT) initiated an effort in 1969 to collect detailed data on personal travel. The 1969 survey was the first Nationwide Personal Transportation Survey (NPTS). The survey was conducted again in 1977, 1983, 1990, 1995, and 2001. Data on daily travel were collected in 1969, 1977, 1983, 1990 and 1995. In 2001, the survey was renamed the National Household Travel Survey (NHTS) and it collected both daily and long-distance trips. The 2001 survey was sponsored by three USDOT agencies: Federal Highway Administration (FHWA), Bureau of Transportation Statistics (BTS), and National Highway Traffic Safety Administration (NHTSA). The primary objective of the survey was to collect trip-based data on the nature and characteristics of personal travel so that the relationships between the characteristics of personal travel and the demographics of the traveler can be established. Commercial and institutional travel were not part of the survey. Due to the survey's design, data in the NHTS survey series were not recommended for estimating travel statistics for categories smaller than the combination of Census division (e.g., New England, Middle Atlantic, and Pacific), MSA size, and the availability of rail. Extrapolating NHTS data within small geographic areas could risk developing and subsequently using unreliable estimates. For example, if a planning agency in City X of State Y estimates travel rates and other travel characteristics based on survey data collected from NHTS sample households that were located in City X of State Y, then the agency could risk developing and using unreliable estimates for their planning process. Typically, this limitation significantly increases as the size of an area decreases. That said, the NHTS contains a wealth of information that could allow statistical inferences about small geographic areas, with a pre-determined level of statistical certainty. The question then becomes whether a method can be developed that integrates the NHTS data and other data to estimate key travel characteristics for small geographic areas such as Census tract and transportation analysis zone, and whether this method can outperform other, competing methods.

Hu, Patricia S [ORNL; Reuscher, Tim [ORNL; Schmoyer, Richard L [ORNL; Chin, Shih-Miao [ORNL

2007-05-01T23:59:59.000Z

42

Traveling Faster than the Speed of Light in Non-Commutative Geometry  

E-Print Network [OSTI]

We study various dynamical aspects of solitons in non-commutative gauge theories and find surprising results. Among them is the observation that the solitons can travel faster than the speed of light for arbitrarily long distances.

Akikazu Hashimoto; N. Itzhaki

2000-12-11T23:59:59.000Z

43

ACADEMIC AFFAIRS TRAVEL POLICIES 10.1 GENERAL TRAVEL INFORMATION  

E-Print Network [OSTI]

must be shown on the TA. The form must be signed by the traveler, the Department Head, and the fund manager for the fund(s) listed. The Provost or his/her designee must approve TAs for Department Head that have been approved by the traveler and their Department Head to the Travel Office for review

44

Fact #612: March 1, 2010 The Distance of Trips to Work  

Broader source: Energy.gov [DOE]

The recently released Nationwide Household Travel Survey shows that nearly 60% of work trips are 10 miles or less in distance. Only 9% of work trips are over 30 miles. The average work trip...

45

Travel and Expense Update www.bc.edu/travel  

E-Print Network [OSTI]

international flights into the US. TSA Officers may ask travelers to power up devices such as laptops and phones will be charged). JetBlue ┬ş Changes at Logan Airport Please note, flights from BOS-DCA will no longer operate out one of our approved travel agencies. ┬Ě Flat fare of $99 (taxes not included) each way from Boston

Huang, Jianyu

46

Factors influencing self-drive vacation travellers' length of stay  

Science Journals Connector (OSTI)

The current research investigated the self-drive vacation travel market, examining determinants for demand for accommodations and the effects of external economic changes (e.g., fuel price fluctuation) on tourism. The study analysed data from two government data sources, a special survey module in the National Household Travel Survey which examined long distance trips, and the gas price index from the US Energy Information Administration. The present study compared two mainstream segments of the self-drive vacation market, which are self-drive vacation staying at commercial lodging facilities (SDV-lodging) and self-drive vacation staying at a friend or relative's accommodations (SDV-FR). Using the 2SLS model, the effects of the socio-demographic variables and travel-related variables were tested statistically. Statistical results showed that an endogeneity issue occurred in the SDV-lodging segment, revealing that 2SLS is better than the OLS estimation.

Sangchoul Yi; Jonathon Day; Liping A. Cai

2013-01-01T23:59:59.000Z

47

NEUP Student Travel Request Form | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Student Travel Request Form NEUP Student Travel Request Form NEUP Fellowship Travel Request Form Student Travel Request Form.pdf More Documents & Publications Investing in the next...

48

Handbook for Travellers in Norway  

Science Journals Connector (OSTI)

... of tourist invasion is curiously displayed by reference to the various editions of Murray's Handbooks. We have before us the tattered remnants of our old travelling companion and oracle- ... us the tattered remnants of our old travelling companion and oracle-Part 1 of the "Handbook for Northern Europe,"including Denmark, N orway, and Sweden (1849). We are ...

W. M. W.

1892-08-25T23:59:59.000Z

49

ADMINISTRATIVE RECORDS SCHEDULE 9: TRAVEL AND TRANSPORTATION...  

Broader source: Energy.gov (indexed) [DOE]

9: TRAVEL AND TRANSPORTATION RECORDS ADMINISTRATIVE RECORDS SCHEDULE 9: TRAVEL AND TRANSPORTATION RECORDS This schedule covers records documenting the movement of goods and persons...

50

ADMINISTRATIVE RECORDS SCHEDULE 9: TRAVEL AND TRANSPORTATION...  

Energy Savers [EERE]

9: TRAVEL AND TRANSPORTATION RECORDS (Revision 2) ADMINISTRATIVE RECORDS SCHEDULE 9: TRAVEL AND TRANSPORTATION RECORDS (Revision 2) This schedule covers records documenting the...

51

NREL: Climate Neutral Research Campuses - Business Travel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of business travel. Several options have emerged to reduce andor offset greenhouse gas (GHG) emissions related to business travel. These options include: Teleconferencing:...

52

TOTAL Full-TOTAL Full-  

E-Print Network [OSTI]

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

53

Stable operating regime for traveling wave devices  

DOE Patents [OSTI]

Autophase stability is provided for a traveling wave device (TWD) electron beam for amplifying an RF electromagnetic wave in walls defining a waveguide for said electromagnetic wave. An off-axis electron beam is generated at a selected energy and has an energy noise inherently arising from electron gun. The off-axis electron beam is introduced into the waveguide. The off-axis electron beam is introduced into the waveguide at a second radius. The waveguide structure is designed to obtain a selected detuning of the electron beam. The off-axis electron beam has a velocity and the second radius to place the electron beam at a selected distance from the walls defining the waveguide, wherein changes in a density of the electron beam due to the RF electromagnetic wave are independent of the energy of the electron beam to provide a concomitant stable operating regime relative to the energy noise.

Carlsten, Bruce E. (Los Alamos, NM)

2000-01-01T23:59:59.000Z

54

Project Information Form Project Title Intercity Travel in Northeaster Non-metropolitan Regions: What Roles do  

E-Print Network [OSTI]

) USDOT $73,000 Total Project Cost $73,000 Agency ID or Contract Number DTRT13-G-UTC29 Start and End DatesProject Information Form Project Title Intercity Travel in Northeaster Non-metropolitan Regions September 2014 to August 2016 Brief Description of Research Project Little is known about intercity travel

California at Davis, University of

55

Project Information Form Project Title Intercity Travel in Northeastern Non-metropolitan Regions: What Roles do  

E-Print Network [OSTI]

) USDOT $73,000 Total Project Cost $73,000 Agency ID or Contract Number DTRT13-G-UTC29 Start and End DatesProject Information Form Project Title Intercity Travel in Northeastern Non-metropolitan Regions September 2014 to August 2016 Brief Description of Research Project Little is known about intercity travel

California at Davis, University of

56

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

57

PROVOST'S TRAVEL GRANT FOR STUDY  

E-Print Network [OSTI]

Available for Summer 2013 Study Abroad Participants through the NIU Study Abroad Office Williston Hall 417 Office, Williston Hall 417, to be eligible for an award (NO EXCEPTIONS). 1. Study Abroad Travel Grant

Karonis, Nicholas T.

58

PROVOST'S TRAVEL GRANT FOR STUDY  

E-Print Network [OSTI]

Available for Spring 2014 Study Abroad Participants through the NIU Study Abroad Office Williston Hall 417 Office, Williston Hall 417, to be eligible for an award (NO EXCEPTIONS). 1. Study Abroad Travel Grant

Karonis, Nicholas T.

59

PROVOST'S TRAVEL GRANT FOR STUDY  

E-Print Network [OSTI]

Available for Spring 2013 Study Abroad Participants through the NIU Study Abroad Office Williston Hall 417 Office, Williston Hall 417, to be eligible for an award (NO EXCEPTIONS). 1. Study Abroad Travel Grant

Karonis, Nicholas T.

60

PROVOST'S TRAVEL GRANT FOR STUDY  

E-Print Network [OSTI]

the NIU Study Abroad Office Williston Hall 417 815-753-0700 niuabroad@niu.edu APPLICATION DEADLINE: APRIL Office, Williston Hall 417, to be eligible for an award (NO EXCEPTIONS). 1. Study Abroad Travel Grant

Karonis, Nicholas T.

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Solar Decathlon 2013: Going the Distance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Going the Distance Going the Distance Solar Decathlon 2013: Going the Distance September 17, 2013 - 4:26pm Addthis Toggle Routes on/off Return to map Ôćĺ Solar Decathlon Journeys Visualizing the distances that each Solar Decathlon house travelled Click competitors to toggle their journeys on and off. All routes and distances are approximate. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Solar Decathlon 2013: In our new blog series, we're going behind the scenes to show you what it takes to compete in the Solar Decathlon. First up: Meet the teams competing this year and learn how they were selected. Part two looks at how the teams must master the art of fundraising. What does it take to design an energy-efficient, solar-powered house? Part three looks at creating a winning design.

62

Sequentially pulsed traveling wave accelerator  

DOE Patents [OSTI]

A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

Caporaso, George J. (Livermore, CA); Nelson, Scott D. (Patterson, CA); Poole, Brian R. (Tracy, CA)

2009-08-18T23:59:59.000Z

63

U. S. DEPARTMENT OF ENERGY REQUEST AND AUTHORIZATION FOR OFFICIAL TRAVEL (Change of Station)  

Broader source: Energy.gov (indexed) [DOE]

REQUEST AND AUTHORIZATION FOR OFFICIAL TRAVEL (Change of Station) REQUEST AND AUTHORIZATION FOR OFFICIAL TRAVEL (Change of Station) (Do Not Remove Carbons) DOE F 1510.9 (07-93) (Previously CR-279A) (07-89 edition may be used) 1. Amendment 2. Division/Office Code 3. (Leave Blank) Authorization Number 4. Employee's Name (First name, middle initial and last name) 5. Spouse Plans To: 6. No. of Dependents Age 12 and Over Traveling with Employee (excluding spouse) 7. No. of Dependents Under 12 Traveling with Employee 8. No. of Dependents Age 12 and Over Traveling Separately (excluding spouse) 9. No. of Dependents Under 12 Traveling Separately 10. Estimate in Whole Dollars (For Administrative Services Use) 11. Present Duty Station i. Total Items e. thru h. 12. Date 1 - Yr. Agreement

64

A Theory of Travel Decision-Making with Applications for Modeling Active Travel Demand  

E-Print Network [OSTI]

A Theory of Travel Decision-Making with Applications for Modeling Active Travel Demand by Patrick interdisciplinary framework for a theory of travel decision-making with applications for travel demand modeling behavior that have a large influence on the development of the theory of travel decision

Bertini, Robert L.

65

Analysis of Automobile Travel Demand Elasticities with Respect to Travel Cost  

E-Print Network [OSTI]

Analysis of Automobile Travel Demand Elasticities with Respect to Travel Cost Oak Ridge National relationships between automobile travel demand and cost to analyze the elasticities of the demand for personal

66

Willingness to travel to avoid recreation conflicts in Danish forests  

Science Journals Connector (OSTI)

Abstract Conflicts among forest visitors have direct effects on the quality of a recreational experience. As the number of visitors to forests close to residential areas increases, as well as the number of different activities, so does the potential for perceived conflicts. According to the literature, expanding knowledge of conflict characteristics and their causes is important for recreation planners and managers who aim to reduce conflicts. In the present study, different forest user groups were identified and categorised according to their pursued activities, and for each group, causes of conflict were identified. Furthermore, a choice experiment was constructed to estimate the distance visitors are willing to travel to encounter few visitors as opposed to many visitors, and thereby potentially experience fewer conflicts. Comparing the marginal willingness to travel (WTT) of different user groups suggests that some groups have a WTT further than the average to reach a forest with ĹFewĺ visitors. The average WTT to reach a forest area with ĹFewĺ visitors. ĹMountain bikers,ĺ ĹPeace and nature loversĺ and ĹHorse ridersĺ are willing to travel 4ákm more than the average per visit to reach a less crowded forest. At the other end of the scale, we find that people who are doing physical exercise are willing to travel 2ákm less than the average to reach a less crowded forest.

Fatemeh Bakhtiari; Jette Bredahl Jacobsen; Frank S°ndergaard Jensen

2014-01-01T23:59:59.000Z

67

INTRODUCTION Whether from traveling in a vehicle or from racing across the playground at recess, the concept of speed is one  

E-Print Network [OSTI]

in steps that are factors of 10.) Finally, the notion of a maximum speed (the speed of light) is introduced. The primary points covered in the poster are: ┬Ě Speed is a measurement of the distance an object travels. ┬Ě Nothing can travel faster than the speed of light. Even the speed of the Earth in its orbit is much slower

68

Greenhouse Gas Mitigation Planning for Business Travel  

Broader source: Energy.gov [DOE]

Business travel is among the largest sources of Scope 3 greenhouse gas (GHG) emissions accounted for by Federal agencies. For some agencies, business travel can represent up to 60% of Scope 3...

69

Enabling time travel for the scholarly web  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enabling time travel for the scholarly web Enabling time travel for the scholarly web An international team of information scientists has begun a study to investigate how web links...

70

How many electric miles do Nissan Leafs and Chevrolet Volts in The EV Project travel?  

SciTech Connect (OSTI)

This paper presents travel statistics and metrics describing the driving behavior of Nissan Leaf and Chevrolet Volt drivers in the EV Project. It specifically quantifies the distance each group of vehicles drives each month. This paper will be published to INL's external website and will be accessible by the general public.

John Smart

2014-05-01T23:59:59.000Z

71

Visibility Distance of Pedestrians  

Science Journals Connector (OSTI)

... actual experiment the distance at which the driver of a motor vehicle can see a pedestrian who is walking along the side of a highway at night. The tests are ... Inst., March). The principal conclusions arrived at are that the visibility of a pedestrian walking along a highway at night is increased by roughly 50 per cent by showing ...

1935-07-13T23:59:59.000Z

72

Corporate CardsCorporate Cards Travel Card  

E-Print Network [OSTI]

Travel Card Preferred method of payment for University travel Not to be used for purchasing goods and services orNot to be used for purchasing goods and services or personal use ┬ş Please review the Travel PolicyPurchasing Card Program Preferred method of Purchasing low dollar goods andPreferred method of Purchasing low

Brownstone, Rob

73

Project Information Form Project Title White Paper on the Future of Passenger Travel Demand in the United  

E-Print Network [OSTI]

each agency or organization) DOT $26,383.66 Total Project Cost $26,383.66 Agency ID or Contract NumberProject Information Form Project Title White Paper on the Future of Passenger Travel Demand Project This white paper will summarize recent research findings pertaining to future passenger travel

California at Davis, University of

74

Flow calculations for Yucca Mountain groundwater travel time (GWTT-95)  

SciTech Connect (OSTI)

In 1983, high-level radioactive waste repository performance requirements related to groundwater travel time were defined by NRC subsystem regulation 10 CFR 60.113. Although DOE is not presently attempting to demonstrate compliance with that regulation, understanding of the prevalence of fast paths in the groundwater flow system remains a critical element of any safety analyses for a potential repository system at Yucca Mountain, Nevada. Therefore, this analysis was performed to allow comparison of fast-path flow against the criteria set forth in the regulation. Models developed to describe the conditions for initiation, propagation, and sustainability of rapid groundwater movement in both the unsaturated and saturated zones will form part of the technical basis for total- system analyses to assess site viability and site licensability. One of the most significant findings is that the fastest travel times in both unsaturated and saturated zones are in the southern portion of the potential repository, so it is recommended that site characterization studies concentrate on this area. Results support the assumptions regarding the importance of an appropriate conceptual model of groundwater flow and the incorporation of heterogeneous material properties into the analyses. Groundwater travel times are sensitive to variation/uncertainty in hydrologic parameters and in infiltration flux at upper boundary of the problem domain. Simulated travel times are also sensitive to poorly constrained parameters of the interaction between flow in fractures and in the matrix.

Altman, S.J.; Arnold, B.W.; Barnard, R.W.; Barr, G.E.; Ho, C.K.; McKenna, S.A.; Eaton, R.R.

1996-09-01T23:59:59.000Z

75

DISTANCES TO DARK CLOUDS: COMPARING EXTINCTION DISTANCES TO MASER PARALLAX DISTANCES  

SciTech Connect (OSTI)

We test two different methods of using near-infrared extinction to estimate distances to dark clouds in the first quadrant of the Galaxy using large near-infrared (Two Micron All Sky Survey and UKIRT Infrared Deep Sky Survey) surveys. Very long baseline interferometry parallax measurements of masers around massive young stars provide the most direct and bias-free measurement of the distance to these dark clouds. We compare the extinction distance estimates to these maser parallax distances. We also compare these distances to kinematic distances, including recent re-calibrations of the Galactic rotation curve. The extinction distance methods agree with the maser parallax distances (within the errors) between 66% and 100% of the time (depending on method and input survey) and between 85% and 100% of the time outside of the crowded Galactic center. Although the sample size is small, extinction distance methods reproduce maser parallax distances better than kinematic distances; furthermore, extinction distance methods do not suffer from the kinematic distance ambiguity. This validation gives us confidence that these extinction methods may be extended to additional dark clouds where maser parallaxes are not available.

Foster, Jonathan B.; Jackson, James M. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Stead, Joseph J.; Hoare, Melvin G. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Benjamin, Robert A., E-mail: jbfoster@bu.edu, E-mail: jackson@bu.edu, E-mail: J.J.Stead@leeds.ac.uk, E-mail: mgh@ast.leeds.ac.uk, E-mail: benjamin@astro.wisc.edu [Physics Department, University of Wisconsin Whitewater, Whitewater, WI 53190 (United States)

2012-06-01T23:59:59.000Z

76

Young media-induced travelers: online representations of media-induced travel conversations  

E-Print Network [OSTI]

participation and influence in the travel and tourism industry has received moderate attention both conceptually and empirically. Furthermore, despite the increasing availability of travel information online, youthsĺ predisposition toward media usage...

Scarpino, Michelle Renee

2009-05-15T23:59:59.000Z

77

Validating the Relationship Between Urban Form and Travel Behavior with Vehicle Miles Travelled  

E-Print Network [OSTI]

to the conventional travel impact assessment following the ITE?s (Institute of Transportation Engineers) Trip Generation Handbook, developments with higher levels of urban form measures will generate a greater travel impacts because they generate higher number...

Kakumani, Rajanesh

2010-01-14T23:59:59.000Z

78

Employer Based Travel Demand Management -Devising Options to Meet Employee Travel Needs  

E-Print Network [OSTI]

Employer Based Travel Demand Management - Devising Options to Meet Employee Travel Needs Bruce for presentation at the 2002 Annual Conference of the Canadian Institute of Transportation Engineers to be held May to Meet Employee Travel Needs Bruce Hellinga1 , Charles Lee2 , James Mallett3 , JoAnn Woodhall4 ABSTRACT

Hellinga, Bruce

79

Non-Motorized Travel Study.pub  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Motorized Travel Study: Motorized Travel Study: Identifying Factors that Influence Communities to Walk and Bike and to Examine Why, or Why Not, Travelers Walk and Bike in Their Communities Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract number DE-AC05-00OR22725 Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies Research Brief T he idea of livable communities suggests that people should have the option to utilize non-motorized travel (NMT), specifically walking and bicycling, to conduct their daily tasks. Forecasting personal travel by walk and bike is necessary as part of regional transportation planning, and requires fine

80

Barge Truck Total  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Employment centers and travel behavior: exploring the work commute of Mumbaiĺs rapidly motorizing middle class  

Science Journals Connector (OSTI)

Abstract In the Greater Mumbai Region (GMR), jobs and housing are agglomerating in nodes in the periphery of Mumbai City. However, current transportation investments focus on strengthening connections within Mumbai City, while these outlying nodes have received less attention. As housing and jobs move out, given limited travel choices, the need for mobility nudges many middle class Indian households into owning private vehicles. Using household travel survey data from the GMR, this paper develops an understanding of how workerĺs trips are different for those who commute to the city versus the exurbs. Socio-economic and transportation indicators for middle class workers going to the city versus the exurbs show that these populations are quite similar demographically. However, those traveling to the exurbs, on average, tend to be at a socio-economic disadvantage with respect to income, education and out-of-pocket travel burdens. Those traveling to exurban work locations have shorter travel times and trip distances, and make much higher use of walking, biking, rickshaws, and motorized two-wheelers compared to commuters to Mumbai City. Across the GMR, car users travel longer and farther compared to motorized two-wheeler users. On average, traveling by a private vehicle is faster than bus or rickshaw travel revealing advantages of private vehicle use. These mode choices in the middle class have resulted in rapid motorization and negative externalities such as traffic congestion and emissions. Evidence of large increases in motorized two-wheelers and cars in India suggests that these modes will likely keep growing, unless competing efficient travel options are supplied.

Manish Shirgaokar

2014-01-01T23:59:59.000Z

82

Policy Title: Travel HARVARD UNIVERSITY FINANCIAL POLICY Responsible Office: UFS  

E-Print Network [OSTI]

Policy Title: Travel HARVARD UNIVERSITY FINANCIAL POLICY Responsible Office: UFS Effective Date: July 1, 2010 Revision Date: July 14, 2010TRAVEL Policy Number: TR104 HARVARD UNIVERSITY FINANCIAL POLICY POLICY STATEMENT Harvard University reimburses for necessary and reasonable travel expenses

83

Evaluate Greenhouse Gas Emissions Profile for Business Travel  

Broader source: Energy.gov [DOE]

Developing a Federal agency's business travel greenhouse gas (GHG) emissions profile first involves getting a better understanding of the nature and patterns of travel within the organization. Not all travel can be avoided or effectively substituted with information technology solutions. By understanding where people are traveling by air, the purpose of travel, and what parts of the organization travel most frequently, the agency will be in a better position to develop solutions and program-level targets.

84

Application of Mutual Information Methods in Time-Distance Helioseismology  

E-Print Network [OSTI]

We apply a new technique, the mutual information (MI) from information theory, to time-distance helioseismology, and demonstrate that it can successfully reproduce several classic results based on the widely used cross-covariance method. MI quantifies the deviation of two random variables from complete independence, and represents a more general method for detecting dependencies in time series than the cross-covariance function, which only detects linear relationships. We provide a brief description of the MI-based technique and discuss the results of the application of MI to derive the solar differential profile, a travel-time deviation map for a sunspot and a time-distance diagram from quiet Sun measurements.

Keys, Dustin; Pevtsov, Alexei

2015-01-01T23:59:59.000Z

85

Traveled distance, stock and fuel efficiency of private vehicles in Canada: price elasticities and rebound effect  

Science Journals Connector (OSTI)

This paper presents estimates of the rebound effect and other elasticities for the Canadian light-duty vehicle fleet using panel data at the provincial level from 1990 to 2004. We estimate a simultaneous three-eq...

Philippe Barla; Bernard Lamonde; Luis F. Miranda-Moreno; Nathalie Boucher

2009-07-01T23:59:59.000Z

86

ORISE: CDC Travelers' Health Mobile App, Designed by ORISE, Gains...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Can I Eat This? Mobile App Helps International Travelers Make Safe Dining Choices CDC Travelers' Health app, designed by ORISE, gains attention on multiple websites How ORISE is...

87

Better World Club Travel Cool | Open Energy Information  

Open Energy Info (EERE)

responsible travel through partnerships. Company partners commit to promoting ecotourism. References: Better World Club Travel Cool1 This article is a stub. You can help...

88

Identify Strategies to Reduce Business Travel for Greenhouse Gas Mitigation  

Broader source: Energy.gov [DOE]

The tables below illustrate some of the more common strategies that can enable employees to travel less and travel more efficiently for business.

89

Climbing the cosmological distance ladder  

Science Journals Connector (OSTI)

......knowledge of cosmological distance - towards redshift 1000! Humankind's efforts to measure the distances of the planets, stars...the epoch when matter and radiation finally decoupled at the end of the hot Big Bang phase. Apparently we have reached a precision......

Michael Rowan-Robinson

2008-06-01T23:59:59.000Z

90

Travel Resources | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Travel Resources | National Nuclear Security Administration Travel Resources | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Travel Resources Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > Russia Tri-Lab S&T Collaborations > Travel

91

1 Calibration against independent human travel datasets  

E-Print Network [OSTI]

1 Calibration against independent human travel datasets 1.1 Calibration against United States at www.bts.gov. Although the BTS dataset is large, the movements were histogrammed 1 #12;with a low

Shull, Kenneth R.

92

An investigation of the information needs of air passengers traveling to the airport  

E-Print Network [OSTI]

, 1998). As the popularity of air travel continues to increase, the number of trips to and from the airport will inevitably rise also. Passengers will need accurate information about all modes on a total trip basis. This includes the modes of access...

Burdette, Debra Arlene

2000-01-01T23:59:59.000Z

93

Chapter 3. Vehicle-Miles Traveled  

U.S. Energy Information Administration (EIA) Indexed Site

3. Vehicle-Miles Traveled 3. Vehicle-Miles Traveled Chapter 3. Vehicle-Miles Traveled Vehicle-miles traveled--the number of miles that residential vehicles are driven--is probably the most important information collected by the Residential Transportation Energy Consumption Survey. Using the data on vehicle-miles traveled allows analysts to answer such questions as: "Are minivans driven more than passenger cars?" "Do people in the West drive more than people elsewhere?" "Do people conserve their new cars by driving them less?" "Who drives more--people in households with children, or other people?" "At what ages do people drive the most?" "How does growing income affect the amount of driving?" In addition to answering those kinds of questions, analysts also use the number of vehicle-miles traveled to compute estimated, on-road vehicle fuel consumption, economy, and expenditures, all of which have important implications for U.S. energy policy and national security (see Chapter 4).

94

A thermoacoustic traveling wave linear amplifier  

Science Journals Connector (OSTI)

This paper describes an experiment to show linear amplification of traveling sound waves in a duct using a thermoacoustic regenerator. As noted by Ceperley [J. Acoust. Soc. Am. 66 1508ľ1513 (1979)] a Stirling engine?type regenerator should act as an acoustic gain medium for traveling waves in a duct. This principle is used in thermoacoustic traveling wave engines to transfer power from heat reservoirs to acoustic energy. However it is difficult to produce finite gain for pure traveling wave impedance since viscous losses in the channels of the regenerator overcome the gain and previous workers have only been able to show reduced loss in such a system. Optimizing the regenerator design with numerical modeling and using a greater temperature difference suggest that a traveling wave thermal amplifier can produce 2 dB of real gain over two octaves for traveling waves in air. Such a device would amplify a broadband acoustic signal without electrical transducers. Design of the amplifier and experimental results will be shown.

Robert A. Hiller

2000-01-01T23:59:59.000Z

95

Thurston Regional Planning Council Helps Washingtonians Save on Travel Costs  

Office of Energy Efficiency and Renewable Energy (EERE)

Thurston County provides travel information for lower costs, improved safety, and faster response to challenges.

96

Flow Distances on Open Flow Networks  

E-Print Network [OSTI]

Open flow network is a weighted directed graph with a source and a sink, depicting flux distributions on networks in the steady state of an open flow system. Energetic food webs, economic input-output networks, and international trade networks, are open flow network models of energy flows between species, money or value flows between industrial sectors, and goods flows between countries, respectively. Flow distances (first-passage or total) between any given two nodes $i$ and $j$ are defined as the average number of transition steps of a random walker along the network from $i$ to $j$ under some conditions. They apparently deviate from the conventional random walk distance on a closed directed graph because they consider the openness of the flow network. Flow distances are explicitly expressed by underlying Markov matrix of a flow system in this paper. With this novel theoretical conception, we can visualize open flow networks, calculating centrality of each node, and clustering nodes into groups. We apply fl...

Guo, Liangzhu; Shi, Peiteng; Wang, Jun; Huang, Xiaohan; Zhang, Jiang

2015-01-01T23:59:59.000Z

97

Alternative Fuels Data Center: State Employee Travel Policy  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Employee Travel State Employee Travel Policy to someone by E-mail Share Alternative Fuels Data Center: State Employee Travel Policy on Facebook Tweet about Alternative Fuels Data Center: State Employee Travel Policy on Twitter Bookmark Alternative Fuels Data Center: State Employee Travel Policy on Google Bookmark Alternative Fuels Data Center: State Employee Travel Policy on Delicious Rank Alternative Fuels Data Center: State Employee Travel Policy on Digg Find More places to share Alternative Fuels Data Center: State Employee Travel Policy on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Employee Travel Policy All state agencies and institutions must develop and adopt travel policies that include strategies to reduce petroleum consumption, such as carpooling

98

Identify Strategies to Reduce Business Travel for Greenhouse Gas Mitigation  

Broader source: Energy.gov (indexed) [DOE]

Strategies to Reduce Business Travel for Greenhouse Gas Strategies to Reduce Business Travel for Greenhouse Gas Mitigation Identify Strategies to Reduce Business Travel for Greenhouse Gas Mitigation October 7, 2013 - 1:34pm Addthis YOU ARE HERE The tables below illustrate some of the more common strategies that can enable employees to travel less and travel more efficiently for business. The "Purpose of Travel" analysis in the previous step can be used with the guidance below to help determine what type of trips may be most appropriately substituted with each business travel alternative. Table 1. Strategies that Enable Employees to Travel Less Business Travel Strategy Best Potential Application Best Practices Web meetings/webinars, including option for video Purpose of travel: training, conferences.

99

A Travelling-Wave Uni-Travelling Photodiode for Continuous Wave Terahertz Generation  

E-Print Network [OSTI]

A Travelling-Wave Uni-Travelling Photodiode for Continuous Wave Terahertz Generation E. Rouvalis1 the performance of photodiodes both in terms of responsivity and frequency response. Thus, the resulting ultra-fast photodiode integrated with an antenna can be used as the photomixing element in order to generate

Haddadi, Hamed

100

AUTHORIZATION FOR LTI STUDENT TRAVEL Graduate student travel must be approved by the student's advisor prior to making travel arrangements. It is  

E-Print Network [OSTI]

's advisor prior to making travel arrangements. It is generally expected that the student's advisor, or other): __________________________________________________________________ __________________________________________________________________________________________ Advisor Name: _____________________________________________________________________________ Section 2: Advisor Approval I approve of the above student travel and will pay for (check all that apply): Conference

Eskenazi, Maxine

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

CSU Student Travel to Countries with Travel Advisories The U.S. Department of State publishes advisories discouraging travel to countries with  

E-Print Network [OSTI]

advisories discouraging travel to countries with heightened and sometimes uncontrollable risks necessity, duration, specific location, measures taken to mitigate risks, previous travel experience or faculty research grant monies) can only be released once the Office of International Programs (OIP

102

Greenhouse Gas Mitigation Planning for Business Travel | Department of  

Broader source: Energy.gov (indexed) [DOE]

Business Travel Business Travel Greenhouse Gas Mitigation Planning for Business Travel October 7, 2013 - 1:20pm Addthis Business travel is among the largest sources of Scope 3 greenhouse gas (GHG) emissions accounted for by Federal agencies. For some agencies, business travel can represent up to 60% of Scope 3 emissions, but represents about 20% of Scope 3 emissions for the Federal sector as whole. While other emissions categories have been the focus of efficiency improvements for several years, few agencies have been actively planning to manage business travel for GHG reduction purposes. Travel management due to budgetary constraints has typically been more common for Federal agencies in the past. Because air travel emissions are the biggest source of travel emissions for most agencies, this guidance focuses on planning for

103

Enabling time travel for the scholarly web  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enabling time travel for the scholarly web Enabling time travel for the scholarly web Enabling time travel for the scholarly web An international team of information scientists has begun a study to investigate how web links in scientific and other academic articles fail to lead to the resources being referenced. July 16, 2013 Herbert Van de Sompel, a Los Alamos National Laboratory information scientist, describes the information pathway involved in preventing "reference rot" in scientific material linked to the web. Herbert Van de Sompel, a Los Alamos National Laboratory information scientist, describes the information pathway involved in preventing "reference rot" in scientific material linked to the web. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "Increasingly, scientific papers contain links to web pages containing,

104

The health implications of inequalities in travel  

Science Journals Connector (OSTI)

Abstract The purpose of this paper is to examine whether some groups in society have poorer travel opportunities or are affected adversely by transport more than others with consequent implications for their health. The following potential inequalities in access to travel are considered: income, ethnicity, gender, rurality and disability. The impacts of two externalities of the transport system are considered: casualty rates and atmospheric emissions. Access to a car is found to be a key factor. Generally, the inequalities are decreasing over time as those with lower incomes increase their car ownership towards the levels of those with higher incomes.

Roger L. Mackett

2014-01-01T23:59:59.000Z

105

A traveling wave piezoelectric beam robot  

Science Journals Connector (OSTI)

In this paper, the operation principles of a traveling wave piezoelectric beam robot are presented. A prototype consisting of an aluminum beam structure, with two non-collocated piezoelectric patches bonded on its surface, was fabricated and tested to demonstrate the generation of a traveling wave on the beam based on the one mode excitation and the two mode excitation operation principles for propulsion. A numerical model was developed and used to study and optimize the generated motion of the piezoelectric beam robot. Experimental characterization of the robot for the two types of operation has been carried out, a comparison between them is made and results are given in this paper.

H Hariri; Y Bernard; A Razek

2014-01-01T23:59:59.000Z

106

Road less traveled vital to operational success  

SciTech Connect (OSTI)

PNNL's Monthly Economic Diversity column for the Tri-City Herald Business section. Excerpt follows: Things aren't always what they seem. Sometimes the path less traveled--although it can be exhausting if not scary to think about navigating its unknowns--really is the best way to go. And not just because Robert Frost said so. Patric Sazama, Regional Project Director for Impact Washington, would agree as well. He recently spoke to the Three Rivers Entrepreneur Network about achieving operational success by addressing the less tangible elements of an organization, the company's own less traveled path.

Madison, Alison L.

2012-01-08T23:59:59.000Z

107

Variations of Total Domination  

Science Journals Connector (OSTI)

The study of locatingľdominating sets in graphs was pioneered by Slaterá[186, 187...], and this concept was later extended to total domination in graphs. A locatingľtotal dominating set, abbreviated LTD-set, in G

Michael A. Henning; Anders Yeo

2013-01-01T23:59:59.000Z

108

Attitude and acceptance of offshore wind farmsŚThe influence of travel time and wind farm attributes  

Science Journals Connector (OSTI)

Generally people are more positive towards offshore wind farms compared to on-land wind farms. However, the attitudes are commonly assumed to be independent of experience with wind farms. Important relations between attitude and experience might therefore be disregarded. The present paper gives a novel contribution to this field. First of all, we give a thorough review of the studies that have analysed the relation between experience with wind turbines and attitude. In addition, we supplement the review by analysing the effect of travel distance to the nearest offshore wind farm and the wind farms attributes on attitude towards offshore wind farms. The results point towards that the travel time and the attributes of the nearest offshore wind farm influence the attitude significantly. Travel time has mixed effects on the attitude, whilst offshore wind farms with many turbines generate more positive attitudes compared to wind farms with fewer turbines.

Jacob Ladenburg; Bernd M÷ller

2011-01-01T23:59:59.000Z

109

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

110

Transmission line protection based on travelling waves  

Science Journals Connector (OSTI)

Major problem of tripping signal of a relay based on steady state component does not warranty faster tripping schemes for protection of extra high voltage transmission lines. Proposed work has made an attempt to find solution to the problem of fault ... Keywords: postfault voltage, relaying signals, surge impedence, transmission line protection, travelling waves

Anuradha S. Deshpande; Grishma S. Shah

2011-12-01T23:59:59.000Z

111

VTIS: A Volunteered Travelers Information System  

Science Journals Connector (OSTI)

VTIS is a dynamic notification system that takes in a user's route and calculates the time-delay imposed by disruptions to the normal traversal. The disruptions are calculated by using crowdsourced notifications. This is accomplished by the creation ... Keywords: ITS, crowdsource, data mining, traveler information system, twitter

Roland Varriale; Shuo Ma; Ouri Wolfson

2013-11-01T23:59:59.000Z

112

Travel Information 1 Symposium and Workshop location  

E-Print Network [OSTI]

/From IAD Washington Dulles International Airport (IAD) is 26 miles (41 km) from downtown Washington away. 2 Travel from local airports There are three local airports: IAD (Washington Dulles), BWI the metro to your hotel (see http://www.airwise.com/airports/us/dulles/by bus.html). For more information

Warnow,Tandy

113

Janelia Conference Travel Policy Updated January 2013  

E-Print Network [OSTI]

airport to Janelia Farm is Washington Dulles (IAD). The following represents maximum reimbursement based ......................................................$1,750 ┬Ě Middle East/Far East/Africa/Australia .......$2,500 Use of a taxi from Dulles Airport. Business-class is reimbursable on a case-by-case basis for international travelers. The most convenient

Eddy, Sean

114

The Machine Learning and Traveling Repairman Problem  

E-Print Network [OSTI]

The goal of the Machine Learning and Traveling Repairman Problem (ML&TRP) is to determine a route for a ôrepair crew,ö which repairs nodes on a graph. The repair crew aims to minimize the cost of failures at the nodes, but ...

Tulabandhula, Theja

115

TRAVELLING WAVES FOR A NONLOCAL DOUBLEOBSTACLE PROBLEM  

E-Print Network [OSTI]

, University of Utah, Salt Lake City, Utah 84112, USA Abstract Existence, uniqueness, and regularity properties of a natural free energy functional [2, 8, 9]. The equation t u = tanh {J u - h} - u, (3) for a similar to shifts in the independent variable z) travelling wave solution of (2) satisfying (8). Regularity

Fife, Paul

116

Traveling solar-wind bulk-velocity fluctuations and their effects on electron heating in the inner heliosphere  

E-Print Network [OSTI]

Ambient plasma electrons undergo strong heating in regions associated with compressive traveling interplanetary solar-wind bulk-velocity jumps due to their specific interactions with the jump-inherent electric fields. After thermalization of this energy gain per shock passage through the operation of the Buneman instability, strong electron heating occurs that substantially influences the radial electron temperature profile. We describe the reduction of the jump amplitude due to energy expended by the traveling jump structure. We consider three effects; namely energy loss due to heating of electrons, energy loss due to work done against the pick-up-ion pressure gradient, and an energy gain due to nonlinear jump steepening. Taking these effects into account, we show that the decrease in jump amplitude with solar distance is more pronounced when the initial jump amplitude is higher in the inner solar system. Independent of the initial jump amplitude, it eventually decreases with increasing distance to a value o...

Fahr, Hans J; Verscharen, Daniel

2014-01-01T23:59:59.000Z

117

Supplemental Guidance Regarding Compensatory Time Off for Travel |  

Broader source: Energy.gov (indexed) [DOE]

Supplemental Guidance Regarding Compensatory Time Off for Travel Supplemental Guidance Regarding Compensatory Time Off for Travel Supplemental Guidance Regarding Compensatory Time Off for Travel Questions and answers on issues that supplement the final regulations on compensatory time for travel issued by the Office of Personnel Management. In addition, a sample worksheet is attached to assist travelers in determining and documenting their travel time that may be credited for compensatory time for travel. This information will be incorporated in Appendix D of the DOE Handbook on Overtime when the handbook is updated. Supplemental Guidance Regarding Compensatory Time Off for Travel Responsible Contacts Bruce Murray HR Policy Advisor E-mail bruce.murray@hq.doe.gov Phone 202-586-3372 More Documents & Publications DOE Handbook on Overtime

118

The k-Canadian Travelers Problem with Communication  

Science Journals Connector (OSTI)

From the online point of view, this paper studies a variation of the k-Canadian Traveler Problem (k-CTP), in which there are multiple travelers who communicate with each other to share real-time information. The ...

Huili Zhang; Yinfeng Xu

2011-01-01T23:59:59.000Z

119

The k-Canadian Travelers Problem with communication  

Science Journals Connector (OSTI)

This paper studies a variation of the online k-Canadian Traveler Problem (k-CTP), in which there are multiple travelers who can communicate with each other, to share real-time blockage information of the edges. W...

Huili Zhang; Yinfeng Xu; Lan Qin

2013-08-01T23:59:59.000Z

120

G-PASS: Security Infrastructure for Grid Travelers  

Science Journals Connector (OSTI)

Grid travelers are special mobile processes responsible for ... virtual organizations (VOs). We propose a security infrastructure called G-PASS to provide security support for grid travelers during their trip and...

Tianchi Ma; Lin Chen; Cho-Li Wangů

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Epidemiology of Travel to the Developing World from Connecticut, USA  

Science Journals Connector (OSTI)

International travel has become a major pursuit of modern Americans, with visits to the developing world frequently included on their itineraries. It is estimated that more than 8 million Americans travel to t...

D. R. Hill

1989-01-01T23:59:59.000Z

122

Shortest Path Scheduler Use the solution to Traveling Salesman  

E-Print Network [OSTI]

: More beneficial to recharge node C, D before B. Spatial Laxity Filling (SLF): Recharge nodes near path due time. SLF: travelling cost 10% smaller than MRF. Reduce travelling cost by recharging nodes near

Wu, Jie

123

Carbon-friendly travel plan construction using an evolutionary algorithm  

Science Journals Connector (OSTI)

This paper discusses the use of an evolutionary algorithm to design workplace travel plans, to promote of car sharing and reduce carbon emissions from single-occupancy motor vehicles. Keywords: carbon-trading, emissions-trading, travel plan

Neil B. Urquhart

2007-07-01T23:59:59.000Z

124

Alternative Fuels Data Center: Vehicle Miles Traveled Tax Feasibility  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Miles Traveled Vehicle Miles Traveled Tax Feasibility Evaluation to someone by E-mail Share Alternative Fuels Data Center: Vehicle Miles Traveled Tax Feasibility Evaluation on Facebook Tweet about Alternative Fuels Data Center: Vehicle Miles Traveled Tax Feasibility Evaluation on Twitter Bookmark Alternative Fuels Data Center: Vehicle Miles Traveled Tax Feasibility Evaluation on Google Bookmark Alternative Fuels Data Center: Vehicle Miles Traveled Tax Feasibility Evaluation on Delicious Rank Alternative Fuels Data Center: Vehicle Miles Traveled Tax Feasibility Evaluation on Digg Find More places to share Alternative Fuels Data Center: Vehicle Miles Traveled Tax Feasibility Evaluation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

125

Forecasting 65+ travel : an integration of cohort analysis and travel demand modeling  

E-Print Network [OSTI]

Over the next 30 years, the Boomers will double the 65+ population in the United States and comprise a new generation of older Americans. This study forecasts the aging Boomers' travel. Previous efforts to forecast 65+ ...

Bush, Sarah, 1973-

2003-01-01T23:59:59.000Z

126

Micro-simulation of daily activity-travel patterns for travel demand forecasting  

Science Journals Connector (OSTI)

The development and initial validation results of a micro-simulator for the generation of daily activity-travel patterns are presented in this paper. The simulator assumes a sequential history and time-of-day ...

Ryuichi Kitamura; Cynthia Chen; Ram M. Pendyala; Ravi Narayanan

127

Microsoft Word - Student Travel Request Form.docx  

Broader source: Energy.gov (indexed) [DOE]

neup@inl.gov | Fax: (208) 526-8076 | Phone: (208) 526-1336 neup@inl.gov | Fax: (208) 526-8076 | Phone: (208) 526-1336 FELLOWSHIP TRAVEL REQUEST FORM Student Name: _____________________________ Date of Request: _________________________ University: ________________________________ Email Address: ___________________________ Phone: ___________________________________ In-State Travel Out-of-State Travel Event Name: ___________________________________________________________________________ Destination: ___________________________________________________________________________ Justification: ___________________________________________________________________________ *Presentation/Poster Title: _______________________________________________________________ Departure Date: _________________________ Return Date: _________________________

128

Irrigation of Liquid Manures with a Traveling Gun  

E-Print Network [OSTI]

Irrigation of Liquid Manures with a Traveling Gun Albert R. Jarrett, Professor, Agricultural Extension This fact sheet emphasizing how to check a traveling gun liquid manure system for appropriate the information in this fact sheet. A traveling gun is a sprinkler containing a large (>0.5-inch diameter) nozzle

Kaye, Jason P.

129

The k-canadian travelers problem with communication  

Science Journals Connector (OSTI)

From the online point of view, this paper studies a variation of the k-Canadian Traveler Problem (k-CTP), in which there are multiple travelers who communicate with each other to share real-time information. The objective is to find a route from ... Keywords: communication, competitive analysis, multiple travelers, online k-CTP

Huili Zhang; Yinfeng Xu

2011-05-01T23:59:59.000Z

130

Updated 9/13/12 1 Faculty Research Travel Grant  

E-Print Network [OSTI]

Updated 9/13/12 1 Faculty Research Travel Grant Application Guidelines The Colorado State University Office of International Programs (OIP) is pleased to offer a grant program to support travel and Instructions for Application Criteria 1. Faculty Research Travel Grants support new research activities

131

Transformation of spatial and perturbation derivatives of travel time  

E-Print Network [OSTI]

Transformation of spatial and perturbation derivatives of travel time at a general interface and perturbation parameters. We derive the explicit equations for transforming these travel┬ştime derivatives Hamiltonian function and are applicable to the transformation of travel┬ştime derivatives in both isotropic

Cerveny, Vlastislav

132

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

133

E-Print Network 3.0 - a-priori traveling salesman Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Probabilistic Traveling Summary: for the Probabilistic Traveling Salesman Problem Mauro Birattari Prasanna Balaprakash Thomas Stutzle Marco Dorigo... competitive. 1...

134

Telecommunications and travel demand and supply: Aggregate structural equation models for the US  

E-Print Network [OSTI]

a technology assessment of telecommunication- transportationRelationships between Telecommunications and Travel:forthcoming) Does telecommunications affect passenger travel

Choo, Sangho; Mokhtarian, Patricia L

2007-01-01T23:59:59.000Z

135

Recent developments in guided wave travel time tomography  

SciTech Connect (OSTI)

The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections. Guided wave tomography had been developed to create a map of the wall thickness using the travel times of guided waves. It can be used for both monitoring and for inspection of pipe-segments that are difficult to access, for instance at the location of pipe-supports. An important outcome of the tomography is the minimum remaining wall thickness, as this is critical in the scheduling of a replacement of the pipe-segment. In order to improve the sizing accuracy we have improved the tomography scheme. A number of major improvements have been realized allowing to extend the application envelope to pipes with a larger wall thickness and to larger distances between the transducer rings. Simulation results indicate that the sizing accuracy has improved and that is now possible to have a spacing of 8 meter between the source-ring and the receiver-ring. Additionally a reduction of the number of sensors required might be possible as well.

Zon, Tim van; Volker, Arno [TNO, Stieltjesweg 1, P.O. box 155 2600 AD Delft (Netherlands)

2014-02-18T23:59:59.000Z

136

Travel and tourism: Into a complex network  

E-Print Network [OSTI]

It is discussed how the worldwide tourist arrivals, about 10% of world's domestic product, form a largely heterogeneous and directed complex network. Remarkably the random network of connectivity is converted into a scale-free network of intensities. The importance of weights on network connections is brought into discussion. It is also shown how strategic positioning particularly benefit from market diversity and that interactions among countries prevail on a technological and economic pattern, questioning the backbones of traveling driving forces.

Miguens, J I L

2008-01-01T23:59:59.000Z

137

Quantum mechanics and the time travel paradox  

E-Print Network [OSTI]

The closed causal chains arising from backward time travel do not lead to paradoxes if they are self consistent. This raises the question as to how physics ensures that only self-consistent loops are possible. We show that, for one particular case at least, the condition of self consistency is ensured by the interference of quantum mechanical amplitudes associated with the loop. If this can be applied to all loops then we have a mechanism by which inconsistent loops eliminate themselves.

David T. Pegg

2005-06-17T23:59:59.000Z

138

EV Project Chevrolet Volt Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

42 Overall electrical energy consumption (AC Whmi) 231 Number of trips 676,414 Total distance traveled (mi) 5,753,009 Avg trip distance (mi) 8.3 Avg distance traveled per day...

139

EV Project Nissan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

2011 through March 2011 Vehicle Usage Number of trips 3,364 Total distance traveled (mi) 21,706 Avg trip distance (mi) 5.8 Avg distance traveled per day when the vehicle was...

140

EV Project Nissan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

through September 2012 Vehicle Usage Number of trips 813,430 Total distance traveled (mi) 5,837,173 Avg trip distance (mi) 7.2 Avg distance traveled per day when the vehicle was...

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EV Project Nissan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

2012 through June 2012 Vehicle Usage Number of trips 787,895 Total distance traveled (mi) 5,666,469 Avg trip distance (mi) 7.2 Avg distance traveled per day when the vehicle was...

142

EV Project Nissan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

through December 2012 Vehicle Usage Number of trips 969,853 Total distance traveled (mi) 6,724,952 Avg trip distance (mi) 6.9 Avg distance traveled per day when the vehicle was...

143

EV Project NIssan Leaf Vehicle Summary Report-Reporting period...  

Broader source: Energy.gov (indexed) [DOE]

through September 2011 Vehicle Usage Number of trips 536,548 Total distance traveled (mi) 3,718,272 Avg trip distance (mi) 6.9 Avg distance traveled per day when the vehicle was...

144

EV Project NIssan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

2012 through March 2012 Vehicle Usage Number of trips 773,602 Total distance traveled (mi) 5,558,155 Avg trip distance (mi) 7.2 Avg distance traveled per day when the vehicle was...

145

EV Project NIssan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

through December 2011 Vehicle Usage Number of trips 707,330 Total distance traveled (mi) 4,878,735 Avg trip distance (mi) 6.9 Avg distance traveled per day when the vehicle was...

146

EV Project NIssan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

2011 through June 2011 Vehicle Usage Number of trips 160,588 Total distance traveled (mi) 1,077,931 Avg trip distance (mi) 6.7 Avg distance traveled per day when the vehicle was...

147

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 29, 2012 - 12:19pm Addthis Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE’s vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were reduced by greater than 60 percent. Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE's vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were

148

Assess Potential Changes in Business Travel that Impact Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

Changes in Business Travel that Impact Greenhouse Changes in Business Travel that Impact Greenhouse Gas Emissions Assess Potential Changes in Business Travel that Impact Greenhouse Gas Emissions October 7, 2013 - 1:22pm Addthis YOU ARE HERE Step 1 For a Federal agency, changes in the demand for business travel can be difficult to predict. Changes in the nature of the agency's work may have a substantial impact on the demand for business travel. It is therefore important to account for these changes when planning for greenhouse gas (GHG) emissions reduction. Conditions that may contribute to a significant increase or decrease in the agency's business travel, beyond specific efforts to reduce business travel demand, include: Significant changes in the agency's budget Addition or completion of major program activities that require

149

Prioritize Greenhouse Gas Mitigation Strategies for Business Travel |  

Broader source: Energy.gov (indexed) [DOE]

Business Travel Business Travel Prioritize Greenhouse Gas Mitigation Strategies for Business Travel October 7, 2013 - 1:38pm Addthis YOU ARE HERE Based on the guidance in steps 3 in evaluating strategies and step 4 in estimating the cost of implementing those strategies, the agency can define a program of communications, policy and management, and technological and infrastructure support activities that it believes are necessary to support travel reductions. Because business travel can be such a challenging areas to address, effective travel reduction programs will ensure that all of these elements are in place to enable the desired outcomes. Prioritization of those business travel management strategies will instead focus on how broadly the program can be deployed across the agency. The

150

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 29, 2012 - 12:19pm Addthis Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE’s vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were reduced by greater than 60 percent. Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE's vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were

151

Going Green: Traveling in an Environmentally Responsible Manner |  

Broader source: Energy.gov (indexed) [DOE]

Green: Traveling in an Environmentally Responsible Manner Green: Traveling in an Environmentally Responsible Manner Going Green: Traveling in an Environmentally Responsible Manner September 27, 2010 - 7:30am Addthis John Lippert My wife and I recently took a trip to Virginia Beach. I wanted to visit a research center there. I spent a lot of time at the center, including attending a 3-hour conference session. So really-a main reason for the trip was not leisure. I do admit, however, that my wife and I couldn't go there over a long weekend without squeezing in some time for the ocean. Travel and tourism is one of America's largest industries, responsible for more than $1 trillion in the U.S. economy. According to the U.S. Travel Association, one out of every nine jobs in the United States depends on travel and tourism. The U.S. travel and tourism industry is made up of

152

Going Green: Traveling in an Environmentally Responsible Manner |  

Broader source: Energy.gov (indexed) [DOE]

Going Green: Traveling in an Environmentally Responsible Manner Going Green: Traveling in an Environmentally Responsible Manner Going Green: Traveling in an Environmentally Responsible Manner September 27, 2010 - 7:30am Addthis John Lippert My wife and I recently took a trip to Virginia Beach. I wanted to visit a research center there. I spent a lot of time at the center, including attending a 3-hour conference session. So really-a main reason for the trip was not leisure. I do admit, however, that my wife and I couldn't go there over a long weekend without squeezing in some time for the ocean. Travel and tourism is one of America's largest industries, responsible for more than $1 trillion in the U.S. economy. According to the U.S. Travel Association, one out of every nine jobs in the United States depends on travel and tourism. The U.S. travel and tourism industry is made up of

153

Extension arm for mobile travelers suit case  

DOE Patents [OSTI]

The invention is an apparatus for adjusting a luggage handle in relation to a luggage frame utilized to transport luggage by a traveler. The handle is connected to two extendable and retractable slide tube assemblies, the assemblies allow for the telescoping of the luggage handle to multiple positions in relation to a pair of fixed frame tubes connected to a luggage shell with wheels, to accommodate the height and personal stride of traveler. The luggage handle incorporates triggering buttons that allow ambidextrous and single-handed control of the height of the handle and slide tube assembly in relation to the luggage. The handle and slide tube assembly are connected by interior filaments to pulleys and filaments within two concentric light-weight slide tubes, which are inserted respectively into two fixed frame tubes, to allow a multitude of positions for the slide tubes to lock into the fixed frame tubes. The apparatus can be pushed or pulled by the traveler, and the support shell can accommodate multiple pieces of luggage.

Byington, Gerald A. (Knoxville, TN)

1999-01-01T23:59:59.000Z

154

Project Information Form Project Title White Paper on the Future of Passenger Travel Demand in the United  

E-Print Network [OSTI]

each agency or organization) Caltrans $26,383 Total Project Cost $26,383 Agency ID or Contract NumberProject Information Form Project Title White Paper on the Future of Passenger Travel Demand DTRT13-G-UTC29 Start and End Dates September 2014 to June 2015 Brief Description of Research Project

California at Davis, University of

155

The jet kinetic power, distance and inclination of GRS 1915+105  

E-Print Network [OSTI]

We apply a recently developed technique of calculating the minimum jet kinetic power to the major mass ejections of the black-hole binary GRS 1915+105 observed in radio wavelengths in 1994 and 1997. We derive for them the distance-dependent minimum power, the mass flow rate, the total energy content and the total mass. We find that a very fast increase of the jet power with the increasing distance combined with a known relation between the jet kinetic power and luminosity imply the source distance is 9 kpc.

Zdziarski, Andrzej A

2014-01-01T23:59:59.000Z

156

21 briefing pages total  

Broader source: Energy.gov (indexed) [DOE]

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

157

Foreign Travel Health & Wellness Information | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wellness Programs ┬╗ Foreign Travel Health Wellness Programs ┬╗ Foreign Travel Health & Wellness Information Foreign Travel Health & Wellness Information All travelers should take the following precautions, no matter the destination: Wash hands often with soap and water. Because motor vehicle crashes are a leading cause of injury among travelers, walk and drive defensively; avoid travel at night if possible and always use seat belts. Don't eat or drink dairy products unless you know they have been pasteurized. Never eat undercooked ground beef and poultry, raw eggs, and unpasteurized dairy products; raw shellfish is particularly dangerous to persons who have liver disease or compromised immune systems. Don't eat food purchased from street vendors; do not drink beverages with ice. Don't handle animals, including dogs and cats, to avoid bites and

158

ADMF-007 EOTA Pre-Travel Authorization 11_0221  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 EOTA Pre-Travel Authorization 11_0221 7 EOTA Pre-Travel Authorization 11_0221 11_0221 Deleted extraneous redundant areas and updated chart. EOTA - Business Form Document Title: EOTA Pre-Travel Authorization Form Document Number: ADMF-007 Rev. 11_0221 Document Owner: Approvers: Elizabeth Sousa Melissa Otero Backup Owner: Melissa Otero Referenced Documents: N/A Parent Document: Notify of Changes: ADMP-004, Travel Process ADM MGT 08_0314 Changed name to EOTA Pre-Travel..., added area to identify if a detailed trip report is required, moved FMT signature block. 08_0523 Changed form to mirror the Prime Contractor form as all information is necessary for all authorized travel. Revision History: Rev. Description of Change A Initial Release. 11_0105 Added a refundable/non-refundable approval 08_0606 Added Company Name to form. Merged cells to reveal required text for Yes/No approval.

159

Evaluate Greenhouse Gas Reduction Strategies for Business Travel  

Broader source: Energy.gov [DOE]

For reducing greenhouse gas emissions (GHG), this section provides guidance to Federal agencies on what strategies are typically available, when they are usually applicable, and best practices for supporting deployment. To reduce travel-related emissions, agencies can either conduct business using a means besides travel (i.e. travel less), or travel more efficiently by, for example, combining multiple objectives/trips into one. While these two options appear straightforward, reducing business travel emissions can be a difficult topic to approach with employees. A top-down travel management approach can have near-term benefits in terms of cost-savings and GHG reduction but may have unintended consequences when cuts are made across the board and will not likely be sustained by behavior change if budgets are later increased.

160

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Summary Max Total Units  

Broader source: Energy.gov (indexed) [DOE]

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

162

Total Precipitable Water  

SciTech Connect (OSTI)

The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

None

2012-01-01T23:59:59.000Z

163

Total Sustainability Humber College  

E-Print Network [OSTI]

1 Total Sustainability Management Humber College November, 2012 SUSTAINABILITY SYMPOSIUM Green An Impending Global Disaster #12;3 Sustainability is NOT Climate Remediation #12;Our Premises "We cannot, you cannot improve it" (Lord Kelvin) "First rule of sustainability is to align with natural forces

Thompson, Michael

164

Petroleum Reduction Strategies to Reduce Vehicle Miles Traveled  

Broader source: Energy.gov [DOE]

For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to reduce vehicle miles traveled, as well as guidance and best practices for each strategy.

165

Do Telecommunications Affect Passenger Travel or Vica Versa?  

E-Print Network [OSTI]

3. Mokhtarian, P. L. Telecommunications and Travel: The Caseand S. Marvin. Telecommunications and the City: Electronicand B. Wellenius. Telecommunications & Economic Development,

Choo, Sangho; Mokhtarian, Patricia L

2006-01-01T23:59:59.000Z

166

Going Mental: Everyday Travel and the Cognitive Map  

E-Print Network [OSTI]

and Tommy Gńrling. 2004. ôCognitive Maps and Urban Travel,öTechnologies and the Cognitive Walking Experience,ö WalkingForthcoming. Regardless, cognitive mapping and spatial

Mondschein, Andrew; Blumenberg, Evelyn; Taylor, Brian D.

2013-01-01T23:59:59.000Z

167

PIA - Foreign Travel Management System (FTMS) | Department of...  

Office of Environmental Management (EM)

(FTMS) PIA - Foreign Travel Management System (FTMS) More Documents & Publications PIA - INL PeopleSoft - Human Resource System PIA - INL SECURITY INFORMATION MANAGEMENT SYSTEM...

168

Energy Secretary Bodman Travels to Moscow, Baku, Kiev to Discuss...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

WASHINGTON, DC -- Secretary of Energy Samuel Bodman next week will travel to Moscow, Russia; Baku, Azerbaijan; and Kiev, Ukraine, where he will hold discussions with senior...

169

Secretary Bodman To Travel to Vienna, Austria for Second GNEP...  

Broader source: Energy.gov (indexed) [DOE]

on Sunday, September 16, 2007, with partner countries: China, France, Japan, and Russia. Secretary Bodman To Travel to Vienna, Austria for Second GNEP Ministerial and IAEA...

170

Travel Policy for Contractor Personnel | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Travel Policy for Contractor Personnel Version Number: 3 Document Number: Policy 48300.005 Effective Date: 022013 File (public): Policy48300.005rev3.pdf...

171

Brain teasers traveling exhibit opens at Los Alamos National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brain teasers exhibit opens at museum Brain Teasers traveling exhibit opens at Los Alamos National Laboratory's Bradbury Science Museum The interactive exhibit is a collection of...

172

Effective traveling-wave excitation below the speed of light  

Science Journals Connector (OSTI)

We demonstrate that effective traveling-wave excitation of high-gain amplifiers requires velocities that are remarkably slower than the velocity of light. Experiments with a...

Tommasini, Riccardo; Fill, Ernst E

2001-01-01T23:59:59.000Z

173

Total isomerization gains flexibility  

SciTech Connect (OSTI)

Isomerization extends refinery flexibility to meet changing markets. TIP (Total Isomerization Process) allows conversion of paraffin fractions in the gasoline boiling region including straight run naptha, light reformate, aromatic unit raffinate, and hydrocrackate. The hysomer isomerization is compared to catalytic reforming. Isomerization routes are graphed. Cost estimates and suggestions on the use of other feedstocks are given. TIP can maximize gas production, reduce crude runs, and complement cat reforming. In four examples, TIP reduces reformer severity and increases reformer yield.

Symoniak, M.F.; Holcombe, T.C.

1983-05-01T23:59:59.000Z

174

Scattering theory without large-distance asymptotics  

E-Print Network [OSTI]

In conventional scattering theory, to obtain an explicit result, one imposes a precondition that the distance between target and observer is infinite. With the help of this precondition, one can asymptotically replace the Hankel function and the Bessel function with the sine functions so that one can achieve an explicit result. Nevertheless, after such a treatment, the information of the distance between target and observer is inevitably lost. In this paper, we show that such a precondition is not necessary: without losing any information of distance, one can still obtain an explicit result of a scattering rigorously. In other words, we give an rigorous explicit scattering result which contains the information of distance between target and observer. We show that at a finite distance, a modification factor --- the Bessel polynomial --- appears in the scattering amplitude, and, consequently, the cross section depends on the distance, the outgoing wave-front surface is no longer a sphere, and, besides the phase...

Liu, Tong; Dai, Wu-Sheng

2014-01-01T23:59:59.000Z

175

Revision Date: 02.10.2009 MATERIAL & DISBURSEMENT SERVICES, TRAVEL SERVICES  

E-Print Network [OSTI]

Revision Date: 02.10.2009 MATERIAL & DISBURSEMENT SERVICES, TRAVEL SERVICES Web Travel Purpose: The web travel system is an electronic solution for departments to submit for approval and generate, and Travel Reimbursements. Web travel is also used in conjunction with the Central Airfare Billing System

Crews, Stephen

176

Optical distance measurement device and method thereof  

DOE Patents [OSTI]

A system and method of efficiently obtaining distance measurements of a target. A modulated optical beam may be used to determine the distance to the target. A first beam splitter may be used to split the optical beam and a second beam splitter may be used to recombine a reference beam with a return ranging beam. An optical mixing detector may be used in a receiver to efficiently detect distance measurement information.

Bowers, Mark W. (Patterson, CA)

2003-05-27T23:59:59.000Z

177

THE IMPACTS OF TELECOMMUNICATIONS TECHNOLOGIES ON NONWORK TRAVEL BEHAVIOR  

E-Print Network [OSTI]

THE IMPACTS OF TELECOMMUNICATIONS TECHNOLOGIES ON NONWORK TRAVEL BEHAVIOR by Susan L. Handy and Tom Potential new telecommunications technologies and services could have dramatic impacts on travel behavior otherwise involved a trip. But telecommunications technologies may lead to other types of impacts as well

Handy, Susan L.

178

OFFICE OF ACADEMIC AFFAIRS Doctoral Student Travel Program  

E-Print Network [OSTI]

of these awards will be expected to adhere to the Higher Education Travel Rule. If two or more students plan different papers, posters, etc., those students will be expected to share expenses and the award $1000. All requests must comply with the Higher Education Travel Rule. Award Procedures The department

Mohaghegh, Shahab

179

The k-Canadian Travelers Problem with communication  

Science Journals Connector (OSTI)

This paper studies a variation of the online k-Canadian Traveler Problem (k-CTP), in which there are multiple travelers who can communicate with each other, to share real-time blockage information of the edges. We study two different ... Keywords: Communication, Competitive analysis, Online k-CTP

Huili Zhang; Yinfeng Xu; Lan Qin

2013-08-01T23:59:59.000Z

180

An investigation of induced travel at mixed-use developments  

E-Print Network [OSTI]

are replacing trips on the external street network. In this investigation, travel survey data were analyzed to determine the nature and extent of induced travel at mixed-use developments. The study site was a 75-acre suburban infill mixed-use development...

Sperry, Benjamin Robert

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Travelling waves and spatial hierarchies in measles epidemics  

E-Print Network [OSTI]

Travelling waves and spatial hierarchies in measles epidemics B. T. Grenfell*, O. N. Bj├╣rnstad ............................................................................................................................................................................................................................................................................ Spatio-temporal travelling waves are striking manifestations of predator┬▒prey and host┬▒parasite dynamics. However, few systems are well enough documented both to detect repeated waves and to explain

182

Supply Chain Management Purchasing, Direct Pay and Travel  

E-Print Network [OSTI]

CBA section can be purchased with a CBA. Signatures Required for Travel (Dean's office policySupply Chain Management Purchasing, Direct Pay and Travel Purchasing ┬ş all purchases made by the University are governed by policy Note: Four uses of State General Funds are always prohibited: the purchase

183

RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY  

E-Print Network [OSTI]

RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY UC Davis-Caltrans Air Avenue Davis, CA 95616 Prepared for The California Department of Transportation Mike Brady, Air Quality control measure. #12;RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY

Levinson, David M.

184

Light Properties Light travels at the speed of light `c'  

E-Print Network [OSTI]

LIGHT!! #12;Light Properties Light travels at the speed of light `c' C = 3 x 108 m/s Or 190.nasa.gov #12;The speed of light The speed of light `c' is equal to the frequency ` times the wavelength,000 miles/second!! Light could travel around the world about 8 times in one second #12;What is light?? Light

Mojzsis, Stephen J.

185

University Of Aberdeen Sustainable Travel Plan 2013_2017 V1 0.Docx Page 1 of 18 University of Aberdeen Sustainable Travel Plan  

E-Print Network [OSTI]

. The development of a sustainable travel plan is a significant element in the fulfilment of our commitmentUniversity Of Aberdeen Sustainable Travel Plan 2013_2017 V1 0.Docx Page 1 of 18 University of Aberdeen Sustainable Travel Plan 2013-2017 Author: Christopher Osbeck, Travel Plan Co-ordinator Current

Levi, Ran

186

University Statement on Carbon Offsetting for Travel July 2011 Travel contributes significantly to the emissions of the University. We all have a role to play in  

E-Print Network [OSTI]

to the emissions of the University. We all have a role to play in reducing our own and the organisations carbonUniversity Statement on Carbon Offsetting for Travel July 2011 Travel contributes significantly footprint: reducing our travel emissions by travelling less or by choosing more sustainable modes should

Haase, Markus

187

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

188

Supplemental Guidance Regarding Compensatory Time Off for Travel  

Broader source: Energy.gov (indexed) [DOE]

SUPPLEMENTAL GUIDANCE SUPPLEMENTAL GUIDANCE REGARDING COMPENSATORY TIME OFF FOR TRAVEL (Revised October 27, 2008) Following are questions and answers on issues that supplement the final regulations effective this date on compensatory time for travel issued by the Office of Personnel Management on April 17, 2007. In addition, a sample worksheet is attached to assist travelers in determining and documenting their travel time that may be credited for compensatory time for travel. This information will be incorporated in Appendix D of the DOE Handbook on Overtime when the handbook is updated. Q1. Who is eligible for this benefit? A1. All employees are eligible except the following: the Secretary, SESs, employees covered by other forms of overtime compensation, including law enforcement

189

Checklist for Medical Issues When Traveling Overseas | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Benefits ┬╗ Wellness Programs ┬╗ Foreign Travel Health Benefits ┬╗ Wellness Programs ┬╗ Foreign Travel Health & Wellness Information ┬╗ Checklist for Medical Issues When Traveling Overseas Checklist for Medical Issues When Traveling Overseas Before the Trip A written confirmation from an appropriate manager, i.e., a Travel Authorization or memorandum, that identifies the employee and country(ies) that will be visited should be provided the medical support staff 4-8 weeks prior to the trip or, if less than 4 weeks, as soon as management or the employee becomes aware of it. The medical staff will identify what vaccinations are recommended for each country and discuss the current health issues for each country with the employee. Some vaccinations take several weeks to become effective. The medical staff will review and update the employee's routine

190

Petroleum Reduction Strategies to Reduce Vehicle Miles Traveled |  

Broader source: Energy.gov (indexed) [DOE]

Reduce Vehicle Miles Traveled Reduce Vehicle Miles Traveled Petroleum Reduction Strategies to Reduce Vehicle Miles Traveled October 7, 2013 - 11:52am Addthis YOU ARE HERE: Step 3 For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to reduce vehicle miles traveled, as well as guidance and best practices for each strategy. Table 1. Determining When and How to Promote the Use of Strategies to Reduce Vehicle Miles Traveled Strategy When Applicable Best Practices Consolidate trips Applicable to all vehicles, regardless of ownership or vehicle and fuel type Target vehicle operators who take longer trips Seek vehicle operator input and collaboration to identify regular or occasional trips that involve similar routes. Determine whether trips on multiple days or times can be consolidated into a single trip.

191

Determination of Total Solids in Biomass and Total Dissolved...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 3312008 A. Sluiter, B. Hames, D. Hyman, C. Payne,...

192

Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids.  

SciTech Connect (OSTI)

Using the 'total energy cycle' methodology, we compare U.S. near term (to {approx}2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO{sub x}), fine particulate (PM2.5) and sulfur oxides (SO{sub x}) values are presented. We also isolate the PHEV emissions contribution from varying kWh storage capability of battery packs in HEVs and PHEVs from {approx}16 to 64 km of charge depleting distance. Sensitivity analysis is conducted with respect to the effect of replacing the battery once during the vehicle's life. The paper includes one appendix that examines several recent studies of interactions of PHEVs with patterns of electric generation and one that provides definitions, acronyms, and fuel consumption estimation steps.

Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.; Energy Systems

2008-01-01T23:59:59.000Z

193

Travelling on a budget: predictions and ecological evidence for bottlenecks in the annual cycle of long-distance migrants  

Science Journals Connector (OSTI)

...species inhabiting high Arctic and marine habitats have lower parasites...grounds as possible to avoid wear and tear. Is there ecological...grounds to avoid fading and wear and tear on their plumage...malaria in shorebird species using marine and freshwater habitats. Oikos...

2008-01-01T23:59:59.000Z

194

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

195

Telecommunications and travel demand and supply: Aggregate structural equation models for the US  

E-Print Network [OSTI]

relationships between telecommunications and travel:S. , Marvin, S. , 1996. Telecommunications and the City:assessment of telecommunication-transportation interactions.

Choo, Sangho; Mokhtarian, Patricia L

2008-01-01T23:59:59.000Z

196

E-Print Network 3.0 - automobile travel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: automobile travel Page: << < 1 2 3 4 5 > >> 1 APPLICATION FOR A GRADUATE STUDENT TRAVEL GRANT...

197

E-Print Network 3.0 - advanced traveler information systems Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by Explorit Topic List Advanced Search Sample search results for: advanced traveler information systems Page: << < 1 2 3 4 5 > >> 1 Page 1 of 2 Travel Advance Requirements...

198

Methodological Issues in the Estimation of the Travel, Energy, and Air Quality Impacts of Telecommuting  

E-Print Network [OSTI]

have analyzed the air quality and energy impacts, but mostits travel, air quality, and energy impacts, and illustrateTHE TRAVEL, ENERGY, AND AIR QUALITY IMPACTS OF TELECOMMUTING

Mokhtarian, Patricia; Handy, Susan; Salomon, Ilan

1995-01-01T23:59:59.000Z

199

Consumer Responses to Stereotypical vs. Non-Stereotypical Depictions of Women in Travel Advertising.  

E-Print Network [OSTI]

??Women are active travel consumers, yet travel advertising notoriously depicts women stereotypically. If consumers react negatively to these stereotypical portrayals in advertising, they may disregardů (more)

McDonald, Jessica Eran

2010-01-01T23:59:59.000Z

200

TravInfo Evaluation (Technology Element) Traveler Information Center (TIC) Study: Operator Response Time Analysis  

E-Print Network [OSTI]

Traveler Information Center (TIC) Study Operator Inte$aceTraveler Information Center (TIC) Study Operator ZnterjizceInformation Center (TIC) Study (Technology Evaluation

Miller, Mark A.; Loukakos, Dimitri

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Trav Info Evaluation (Technology Element ) Traveler Information Center (TIC) Study: System Reliability and Communications Interface  

E-Print Network [OSTI]

Traveler Information Center (TIC) Study (September 1996 -Information Center (TIC) Study (Technology EvaluationTraveler Information Center (TIC) Study: System Reliability

Miller, Mark; Loukakos, Dimitri

1998-01-01T23:59:59.000Z

202

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Business Travel  

Broader source: Energy.gov [DOE]

Once business travel reduction strategies have been identified, a Federal agency may evaluate the cost of implementing those measures and any potential savings from avoided travel.

203

E-Print Network 3.0 - air travel restrictions Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Department of Physics, Boston College Collection: Physics ; Materials Science 5 International Travel Checklist Compliance with Laws Summary: for your air travel, are you in...

204

E-Print Network 3.0 - activity-based travel demand Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Approach to Household Travel Choice by Kara... Fall 1998 12;A Utility-Theory-Consistent System-of-Demand-Equations Approach to Household Travel... the...

205

Pepsico Research Travel Fellowships for Russia, Eurasia, and East-Central Europe  

E-Print Network [OSTI]

Pepsico Research Travel Fellowships for Russia, Eurasia, and East-Central Europe Pepsi travel to Russia, Eurasia, and East-Central Europe, for the purposes of conducting research

Qian, Ning

206

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

207

Superconducting travelling wave ring with high gradient accelerating section  

SciTech Connect (OSTI)

Use of a superconducting traveling wave accelerating (STWA) structure instead of a standing wave cavity has major advantages in increasing the accelerating gradient in the ILC. In contrast with standing wave cavity STWA requires feedback loop, which sends wave from the structure output to input, making a superconducting traveling wave ring (STWR). One or few input couplers need to excite STWR and compensate power dissipations due to beam loading. To control traveling wave regime in the structure two independent knobs can be used for tuning both resonant ring frequency and backward wave. We discuss two variants of the STWR with one and two feed couplers.

Avrakhov, P.; Solyak, N.; /Fermilab

2007-06-01T23:59:59.000Z

208

Faster than light motion does not imply time travel  

E-Print Network [OSTI]

Seeing the many examples in the literature of causality violations based on faster-than- light (FTL) signals one naturally thinks that FTL motion leads inevitably to the possibility of time travel. We show that this logical inference is invalid by demonstrating a model, based on (3+1)-dimensional Minkowski spacetime, in which FTL motion is permitted (in every direction without any limitation on speed) yet which does not admit time travel. Moreover, the Principle of Relativity is true in this model in the sense that all observers are equivalent. In short, FTL motion does not imply time travel after all.

H. AndrÚka; J. X. Madarßsz; I. NÚmeti; M. Stannett; G. SzÚkely

2014-07-09T23:59:59.000Z

209

Faster than light motion does not imply time travel  

E-Print Network [OSTI]

Seeing the many examples in the literature of causality violations based on faster-than- light (FTL) signals one naturally thinks that FTL motion leads inevitably to the possibility of time travel. We show that this logical inference is invalid by demonstrating a model, based on (3+1)-dimensional Minkowski spacetime, in which FTL motion is permitted (in every direction without any limitation on speed) yet which does not admit time travel. Moreover, the Principle of Relativity is true in this model in the sense that all observers are equivalent. In short, FTL motion does not imply time travel after all.

AndrÚka, H; NÚmeti, I; Stannett, M; SzÚkely, G

2014-01-01T23:59:59.000Z

210

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect (OSTI)

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

211

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

212

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

213

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

214

Researchers test novel power system for space travel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power system for space travel Power system for space travel Researchers test novel power system for space travel The research team recently demonstrated the first use of a heat pipe to cool a small nuclear reactor and power a Stirling engine. November 26, 2012 John Bounds of Los Alamos National Laboratory's Advanced Nuclear Technology Division makes final adjustments on the DUFF experiment, a demonstration of a simple, robust fission reactor prototype that could be used as a power system for space travel. DUFF is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965. John Bounds of Los Alamos National Laboratory's Advanced Nuclear Technology Division makes final adjustments on the DUFF experiment, a demonstration of a simple, robust fission reactor prototype that could be used as a power

215

Deputy Secretary Poneman to Travel to Russia | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Poneman to Travel to Russia Poneman to Travel to Russia Deputy Secretary Poneman to Travel to Russia December 3, 2010 - 12:00am Addthis Washington, D.C. - On Monday, December 6, U.S. Deputy Secretary of Energy Daniel Poneman will travel to Russia as part of the ongoing cooperation between the two countries on nuclear security and peaceful nuclear energy issues. On Tuesday, Deputy Secretary Poneman will co-chair the U.S.-Russia Nuclear Energy and Nuclear Security Working Group Plenary Meeting with Director General of the State Atomic Energy Corporation "Rosatom" Sergei Kiriyenko. The Working Group was established under the U.S.-Russia Bilateral Presidential Commission at the July 2009 Presidential Summit. Last fall, Director Kiriyenko visited the United States for the first meetings of the

216

Novel power system demonstrated for space travel | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel power system demonstrated for space travel | National Nuclear Novel power system demonstrated for space travel | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Novel power system demonstrated for space travel Novel power system demonstrated for space travel Posted By Office of Public Affairs John Bounds, Los Alamos National Laboratory

217

Sec. Chu Travels to Houston | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sec. Chu Travels to Houston Sec. Chu Travels to Houston Sec. Chu Travels to Houston February 2, 2012 - 5:19pm Addthis The Houston Medical Center Thermal Energy Corporation Control Room. | Photo Courtesy of the Texas Medical Center The Houston Medical Center Thermal Energy Corporation Control Room. | Photo Courtesy of the Texas Medical Center Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs Secretary Chu traveled to Houston, Texas, today to meet with executives from various oil and gas companies, host a State of the Union Town Hall with students from Houston Community College, and tour the Texas Medical Center -- which recently completed a series of major energy efficiency upgrades. As part of his blueprint to build an economy to last, President Obama has

218

Novel power system demonstrated for space travel | National Nuclear  

National Nuclear Security Administration (NNSA)

Novel power system demonstrated for space travel | National Nuclear Novel power system demonstrated for space travel | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Novel power system demonstrated for space travel Novel power system demonstrated for space travel Posted By Office of Public Affairs John Bounds, Los Alamos National Laboratory

219

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

WIPP Representative for Cutting Travel Costs, Greenhouse WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 1, 2012 - 12:00pm Addthis Secretary Chu presents the Secretary of Energy's Appreciation Award to Judy A. McLemore. Secretary Chu presents the Secretary of Energy's Appreciation Award to Judy A. McLemore. WASHINGTON, D.C. - A representative of the Waste Isolation Pilot Plant (WIPP) near Carlsbad, N.M., on Tuesday received the Secretary of Energy's Appreciation Award for her efforts to improve sustainability and reduce travel costs and the number of fleet vehicles. Judy A. McLemore, who works for URS Regulatory and Environmental Services, based in Carlsbad, was honored for helping advance DOE's management and

220

Travelling in Towns is Necessary but not Impossible  

Science Journals Connector (OSTI)

... peak travel hours by offering employers who ask their people to work eccentric hours a rebate on local taxes-one of the most obvious diseconomies of the present balance between private ...

1973-01-26T23:59:59.000Z

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Odometer Versus Self-Reported Estimates of Vehicle Miles Traveled  

Reports and Publications (EIA)

The findings described here compare odometer readings with self-reported estimates of Vehicle Miles Traveled (VMT) to investigate to what extent self-reported VMT is a reliable surrogate for odometer-based VMT.

2000-01-01T23:59:59.000Z

222

Mission Travelers: Relationship-building and Crosscultural Adaptation  

E-Print Network [OSTI]

to interact with local residents. They want to communicate with local residents in the host community and build a relationship with them. Therefore, for STM travelers their relationship with local residnets really matters. Many tourism scholars have argued...

Lee, Yoon Jung

2012-10-19T23:59:59.000Z

223

Why People Travel? Examining Perceived Benefits of Tourism  

E-Print Network [OSTI]

. Thus, the primary purpose of this research was to examine the effects of perceived tourism benefits on travel behavior based on the model of attitude importance. Since existing scales of tourism benefits failed to incorporate some important items...

Chen, Chun-Chu

2012-11-14T23:59:59.000Z

224

Online traveling salesman problem with deadlines and service flexibility  

Science Journals Connector (OSTI)

Considering the customer psychology while waiting to be served, we introduce a more reasonable form of deadlines into online traveling salesman problem (OL-TSP) with service flexibility. The salesman can choos...

Xingang Wen; Yinfeng Xu; Huili Zhang

2013-08-01T23:59:59.000Z

225

Understanding transit travel behavior : value added by smart cards  

E-Print Network [OSTI]

Travel behavior represents a particularly complex area of research in transportation given the interaction between transport supply characteristics and the user perceptions which guide his/her decisions. Thanks to the ...

Gupta, Saumya, S.M. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

226

DEVELOPING CORRIDOR-LEVEL TRUCK TRAVEL TIME ESTIMATES AND OTHER  

E-Print Network [OSTI]

by comparing estimated travel times during a winter weather-induced delay. The analysis showed that corridor given on increased sensor spacing and filter improvement. Finally, potential performance metrics

Bertini, Robert L.

227

U.S. Department of Energy Travel Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To supplement information contained in the Federal Travel Regulation (FTR) by providing further clarification and establishing Department of Energy (DOE) policy on matters that the FTR left to Agency discretion. Canceled by DOE M 552.1-1A.

2002-09-04T23:59:59.000Z

228

U.S. Department of Energy Travel Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Manual supplements information in the Federal Travel Regulation (FTR) by providing further clarification and establishing Department of Energy (DOE) policy on matters that the FTR left to Agency discretion. Cancels DOE M 552.1-1.

2006-02-17T23:59:59.000Z

229

Results of the Fall 2007 UC Davis Campus Travel Assessment  

E-Print Network [OSTI]

36 Figure 6-8 Yolo TMA Commuteritĺs the largest employer in Yolo County. People travel fromEmployee LIM Figure 6-8 Yolo TMA Commuter Club awareness

Congleton, Christopher

2009-01-01T23:59:59.000Z

230

Considering Risk-Taking Behavior in Travel Time Reliability  

E-Print Network [OSTI]

wide distribution of preferences for speed and reliability.Distribution of Motoristsĺ Preference for Travel Time and Reliability:time, reliability and cost have normal distributions, i.e. ,

2005-01-01T23:59:59.000Z

231

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... havior of the ratio of total quanta to total energy (Q : W) within the spectral region of photosynthetic ..... For blue-green waters, where hRmax lies.

2000-01-02T23:59:59.000Z

232

Scattering theory without large-distance asymptotics  

E-Print Network [OSTI]

In conventional scattering theory, to obtain an explicit result, one imposes a precondition that the distance between target and observer is infinite. With the help of this precondition, one can asymptotically replace the Hankel function and the Bessel function with the sine functions so that one can achieve an explicit result. Nevertheless, after such a treatment, the information of the distance between target and observer is inevitably lost. In this paper, we show that such a precondition is not necessary: without losing any information of distance, one can still obtain an explicit result of a scattering rigorously. In other words, we give an rigorous explicit scattering result which contains the information of distance between target and observer. We show that at a finite distance, a modification factor --- the Bessel polynomial --- appears in the scattering amplitude, and, consequently, the cross section depends on the distance, the outgoing wave-front surface is no longer a sphere, and, besides the phase shift, there is an additional phase (the argument of the Bessel polynomial) appears in the scattering wave function.

Tong Liu; Wen-Du Li; Wu-Sheng Dai

2014-03-22T23:59:59.000Z

233

Statistical sampling plans for travel time measurement in urban areas  

E-Print Network [OSTI]

, Hallenbeck, and Schroeder conducted a study to compare statistically the travel time data collected with the two different techniques. The study was conducted on three arterial streets in Bellevue, a suburb of Seattle, Washington, and the evaluation..., Hallenbeck, and Schroeder conducted a study to compare statistically the travel time data collected with the two different techniques. The study was conducted on three arterial streets in Bellevue, a suburb of Seattle, Washington, and the evaluation...

Turner, Shawn

2012-06-07T23:59:59.000Z

234

Department of Mathematics Graduate Student Travel/Research Grant Application Instructions  

E-Print Network [OSTI]

Department of Mathematics Graduate Student Travel/Research Grant Application Instructions --Reverse side ´┐Ż Travel/Research Grant Application-- All graduate students enrolled in the PhD program are eligible for a department travel grant of up to $1,500. The Travel Grant funds are to be used for academic

Wolfe, Patrick J.

235

Section: Travel Revised Date: 07/26/2011 Procedure: 5.2.5  

E-Print Network [OSTI]

Unit Business Representative (UBR) Refer Purchasing Card questions to the Accounts Payable Office x5404Section: Travel Revised Date: 07/26/2011 Procedure: 5.2.5 Purchasing Card for Travel For travel) or an institutional liability purchasing card (PCard) for all reimbursable airfare, travel agency service fees, hotel

Saldin, Dilano

236

Travel Reminder The holiday season is a hectic time for international travel. Airports, consulates and ports of entry are  

E-Print Network [OSTI]

and ports of entry are extremely busy due to the large number of travelers and increased security measures passports at most ports of entry as part of the increased security measures effective under the Western

Oklahoma, University of

237

Distance transforms on anisotropic surfaces for surface roughness measurement  

Science Journals Connector (OSTI)

The Distance Transform on Curved Space (DTOCS) calculates distances along a gray-level height map surface In this article, the DTOCS is generalized for surfaces represented as real altitude data in an anisotropic grid The distance transform combined ...

Leena Ikonen; Toni Kuparinen; Eduardo Villanueva; Pekka Toivanen

2006-10-01T23:59:59.000Z

238

Award Number: Federal Non-Federal Federal Non-Federal Total  

Broader source: Energy.gov (indexed) [DOE]

Prescribed by OMB Circular A-102 Prescribed by OMB Circular A-102 Previous Edition Usable Total (5) f. Contractual g. Construction Section B - Budget Categories Catalog of Federal Domestic Assistance Number Grant Program Function or Activity Estimated Unobligated Funds e. Supplies i. Total Direct Charges (sum of 6a-6h) Grant Program, Function or Activity Object Class Categories Authorized for Local Reproduction h. Other a. Personnel b. Fringe Benefits c. Travel d. Equipment 6. j. Indirect Charges k. Totals (sum of 6i-6j) Program Income Applicant Name: Budget Information - Non Construction Programs OMB Approval No. 0348-0044 New or Revised Budget Section A - Budget Summary

239

Award Number: Federal Non-Federal Federal Non-Federal Total  

Broader source: Energy.gov (indexed) [DOE]

j. Indirect Charges j. Indirect Charges k. Totals (sum of 6i-6j) Program Income Applicant Name: Budget Information - Non Construction Programs OMB Approval No. 0348-0044 New or Revised Budget Section A - Budget Summary i. Total Direct Charges (sum of 6a-6h) Grant Program, Function or Activity Object Class Categories Authorized for Local Reproduction h. Other a. Personnel b. Fringe Benefits c. Travel d. Equipment 6. Total (5) f. Contractual g. Construction Section B - Budget Categories Catalog of Federal Domestic Assistance Number Grant Program Function or Activity Estimated Unobligated Funds e. Supplies Prescribed by OMB Circular A-102 Previous Edition Usable

240

Mujeres Hombres Total Hombres Total 16 5 21 0 10  

E-Print Network [OSTI]

Julio de 2011 Tipo de Discapacidad Sexo CENTRO 5-Distribuci├│n del estudiantado con discapacidad por centro, tipo de discapacidad, sexo y totales. #12;

Autonoma de Madrid, Universidad

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... ment of the total energy and vice versa. From a measurement of spectral irradi- ance ... unit energy (for the wavelength region specified).

2000-01-02T23:59:59.000Z

242

Geodesic distances in Liouville quantum gravity  

E-Print Network [OSTI]

In order to study the quantum geometry of random surfaces in Liouville gravity, we propose a definition of geodesic distance associated to a Gaussian free field on a regular lattice. This geodesic distance is used to numerically determine the Hausdorff dimension associated to shortest cycles of 2d quantum gravity on the torus coupled to conformal matter fields, showing agreement with a conjectured formula by Y. Watabiki. Finally, the numerical tools are put to test by quantitatively comparing the distribution of lengths of shortest cycles to the corresponding distribution in large random triangulations.

Jan Ambjorn; Timothy Budd

2014-11-12T23:59:59.000Z

243

The Luminosity Distance in Perturbed FLRW Spacetimes  

E-Print Network [OSTI]

We derive an expression for the luminosity distance in FLRW spacetimes affected by scalar perturbations. Our expression is complete to linear order and is expressed entirely in terms of standard cosmological parameters and observational quantities. We illustrate the result by calculating the RMS scatter in the usual luminosity distance in flat (Omega_m,Omega_Lambda) = (1.0,0.0) and (0.3,0.7) cosmologies. In both cases the scatter is appreciable at high redshifts, and rises above 11% at z = 2, where it may be the dominant noise term in the Hubble diagram based on SN Ia.

Ted Pyne; Mark Birkinshaw

2003-10-29T23:59:59.000Z

244

Distances toDistances to HVCsHVCs usingusing blue horizontal branch starsblue horizontal branch stars  

E-Print Network [OSTI]

)(Wisconsin) ElseElse StarkenburgStarkenburg ((KapteynKapteyn Lab)Lab) Lucy Frey (Case)Lucy Frey (Case) andand)Mario Mateo (Michigan) Heather Morrison (Case)Heather Morrison (Case) John Norris (MSSSO)John Norris (MSSSODan OravetzOravetz, Lucy Frey (Case), Lucy Frey (Case) #12;Distances are important:Distances are important

Peletier, Reynier

245

TRANSFORMATIONAL LEADERSHIP AND ALTRUISM: ROLE OF POWER DISTANCE IN A HIGH POWER DISTANCE CULTURE  

E-Print Network [OSTI]

Using a sample of 105 manager-subordinate dyads from a high power distance culture, the effects of power distance and transformational leadership on follower altruism were studied. Findings show a significant positive relationship between power distance and transformational leadership and between transformational leadership and follower altruism. The dimensions on which cultures differ have been identified earlier (Hofstede, 1980). The objective of this study is to look at the effect of a dimension on other variables, in a culture that is high on that dimension. Our contention is that in cultures that score high on the power distance dimension of Hofstede (1980) model, if managers maintain a high power distance between themselves and their followers, their transformational leadership would be enhanced, and transformational leadership in turn will enhance altruistic behavior of followers. Merely knowing the dimensions on which cultures differ is not enough. That knowledge has to be used to predict how an alignment with that dimension would affect other variables.

Ankush Punj; Venkat R. Krishnan

246

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

247

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

248

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

249

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

250

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

251

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

252

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

253

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

254

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

255

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

256

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

257

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

258

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

259

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

260

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

262

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

263

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

264

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

265

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

266

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

267

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

268

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

269

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

270

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

271

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

272

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

273

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

274

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

275

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

276

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

277

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

278

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.7 0.5 0.2 Million U.S. Housing Units Home Electronics Usage Indicators Table HC12.12 Home Electronics Usage Indicators by Midwest Census Region,...

279

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 1.8 1.2 0.5 Table HC11.10 Home Appliances Usage Indicators by Northeast Census Region, 2005 Million U.S. Housing Units Home Appliances...

280

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 2.8 1.1 0.7 Q 0.4 Million U.S. Housing Units Home Electronics Usage Indicators Table HC13.12 Home Electronics Usage Indicators by South Census Region,...

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 3.1 1.0 2.2 Table HC14.10 Home Appliances Usage Indicators by West Census Region, 2005 Million U.S. Housing Units Home Appliances...

282

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four Most Populated...

283

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 2.7 3.5 2.2 1.3 3.5 1.3 3.8 Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal...

284

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 13.2 3.4 2.0 1.4 Table HC12.10 Home Appliances Usage Indicators by Midwest Census Region, 2005 Million U.S. Housing Units Home Appliances...

285

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Census Region Northeast Midwest South West Million U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005...

286

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(as Self-Reported) City Town Suburbs Rural Million U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location,...

287

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 4.4 2.5 3.0 3.4 Table HC8.10 Home Appliances Usage Indicators by UrbanRural Location, 2005 Million U.S. Housing Units UrbanRural...

288

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.6 Q 0.5 Million U.S. Housing Units Home Electronics Usage Indicators Table HC14.12 Home Electronics Usage Indicators by West Census Region, 2005...

289

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 13.2 4.9 2.3 1.1 1.5 Table HC13.10 Home Appliances Usage Indicators by South Census Region, 2005 Million U.S. Housing Units South Census Region...

290

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 51.9 7.0 4.8 2.2 Not Asked (Mobile Homes or Apartment in Buildings with 5 or More Units)... 23.7...

291

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

Housing Units Living Space Characteristics Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Single-Family Units Detached...

292

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment... 1.2 Q Q N Q Have Main Space Heating Equipment... 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating...

293

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

294

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

295

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

296

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

297

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

298

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

299

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

300

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

302

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

303

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

304

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

305

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

306

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

307

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

308

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

309

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

310

Sensor Network Localization, Euclidean Distance Matrix ...  

E-Print Network [OSTI]

paper is to view SNL as a (nearest) Euclidean Distance Matrix, EDM, completion problem that ... simply corresponds to a given fixed clique for the graph of the EDM problem. We next ...... The tests were done using MATLAB 7.4. The method forá...

2008-11-17T23:59:59.000Z

311

Nucleon - Nucleon Interactions at Short Distances  

E-Print Network [OSTI]

Despite the progress made in understanding the NN interactions at long distances based on effective field theories, the understanding of the dynamics of short range NN interactions remains as elusive as ever. One of the most fascinating properties of short range interaction is its repulsive nature which is responsible for the stability of strongly interacting matter. The relevant distances, $\\le 0.5$ fm, in this case are such that one expects the onset of quark-gluon degrees of freedom with interaction being dominated by QCD dynamics. We review the current status of the understanding of the QCD dynamics of NN interactions at short distances, highlight outstanding questions and outline the theoretical foundation of QCD description of hard NN processes. We present examples of how the study of the hard elastic NN interaction can reveal the symmetry structure of valence quark component of the nucleon wave function and how the onset of pQCD regime is correlated with the onset of color transparency phenomena in hard $pp$ scattering in the nuclear medium. The discussions show how the new experimental facilities can help to advance the knowledge about the QCD nature of nuclear forces at short distances.

Misak M Sargsian

2014-03-04T23:59:59.000Z

312

Fuzzy prototype model and semantic distance  

Science Journals Connector (OSTI)

It is a challenge to provide an intelligent product suggestion for these new customers without previous shopping records in the supermarket application. To solve such a problem, we design a hybrid fuzzy expert system for recommendation using the improved ... Keywords: Fuzzy c means, Fuzzy decision tree, Fuzzy prototype, Recommendation system, Semantic coordinate, Semantic distance

Dong (Walter) Xie; Jim F. Baldwin

2007-11-01T23:59:59.000Z

313

Earth Mover's Distance Based Local Discriminant Basis  

E-Print Network [OSTI]

Earth Mover's Distance Based Local Discriminant Basis Bradley Marchand and Naoki Saito Abstract in time and frequency. Its goal, given Bradley Marchand Naval Surface Warfare Center, Panama City Division, e-mail: bradley.marchand@navy.mil Naoki Saito Department of Mathematics, University of California

Saito, Naoki

314

EUCLIDEAN DISTANCE MATRIX COMPLETION PROBLEMS June ...  

E-Print Network [OSTI]

Jun 6, 2010 ... This is sometimes called the energy function (e.g., [6, 7]). Note that ... the specified entries are from the measurement of interatomic distances, mostly the ..... If hij = 1 for i, j = 1,...,n (i.e., unit weights), then (5.3) simplifies to n. ?.

2010-06-06T23:59:59.000Z

315

Distance Education Graduate Program in Environmental Science  

E-Print Network [OSTI]

management, related to water quality, climate change, ecosystem restoration, and public health. Research Remediation 3) Carbon Dynamics and Ecosystem Services 4) Wetlands and Aquatic Ecosystems 5) Landscape Analysis, range lands, urban lands, wetlands or aquatic systems. This distance education track is designed

Ma, Lena

316

Secretary Chu to Travel to Houston Today | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

to Travel to Houston Today to Travel to Houston Today Secretary Chu to Travel to Houston Today July 8, 2010 - 12:00am Addthis Washington, D.C. - At the direction of President Obama, as part of the Administration's ongoing oil spill response efforts U.S. Energy Secretary Steven Chu is making his fifth trip to Houston today to continue to help identify strategies for containing the oil and ultimately killing the well. Secretary Chu and his scientific team are coordinating their work with National Incident Commander Admiral Thad Allen, who is leading the administration-wide response and directing all interagency activities. Information on the work that the Secretary, Department of Energy staff and independent scientists have done to date on the oil spill response can be found on DOE's BP Oil Spill page.

317

Have You Seen Renewable Energy Projects While Traveling? | Department of  

Broader source: Energy.gov (indexed) [DOE]

Seen Renewable Energy Projects While Traveling? Seen Renewable Energy Projects While Traveling? Have You Seen Renewable Energy Projects While Traveling? July 7, 2011 - 8:32am Addthis Since we blog about energy efficiency and renewable energy, it seems fitting that we would notice it even when we're not at work. This past Tuesday, Chris shared his first-hand views of Hawaii's renewable energy efforts while on vacation, including wind and solar, and did some post-vacation research that revealed some great information about how Hawaii is using renewable resources to achieve 70% clean energy by 2030. We're curious: Have you ever been on vacation or a business trip and noticed how another state is using renewable energy? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your

318

MONDAY: Secretary Chu Travels to New Jersey and Philadelphia | Department  

Broader source: Energy.gov (indexed) [DOE]

MONDAY: Secretary Chu Travels to New Jersey and Philadelphia MONDAY: Secretary Chu Travels to New Jersey and Philadelphia MONDAY: Secretary Chu Travels to New Jersey and Philadelphia September 24, 2010 - 12:00am Addthis WASHINGTON - On Monday, September 27, 2010, U.S. Energy Secretary Steven Chu and Representative Rush Holt will tour Applied Photovoltaics. With help from a Recovery Act-funded $1.1 million clean energy manufacturing tax credit, Applied Photovoltaics will manufacture solar energy modules for use in building-integrated photovoltaics. In the afternoon, Secretary Chu will tour the Princeton Plasma Physics Laboratory and speak to employees. He will then join Pennsylvania Governor Ed Rendell, Philadelphia Mayor Michael Nutter and other officials in an event highlighting the Energy Innovation Hub for energy-efficient buildings

319

Secretary Chu Travels to Memphis | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Travels to Memphis Travels to Memphis Secretary Chu Travels to Memphis January 31, 2011 - 2:33pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What does this project do? The Sharp solar manufacturing plant has produced more than 2 million solar panels since 2002, increased its staff from 300 to 480 employees over the last year, and produces enough solar paneling to power more than 140,000 homes. Worldwide, FedEx Express is operating 329 hybrid and 19 all-electric vehicles, reducing fuel use by almost 300,000 gallons and carbon dioxide emissions by approximately 3,000 metric tons. Hero_CHU_Sharp Secretary Steven Chu with Sharp executive T.C. Jones, standing in front of some of Sharp's solar panels. Following the State of the Union on Tuesday and his online town hall on

320

The Department of Energy's Management of Foreign Travel, IG-0872  

Broader source: Energy.gov (indexed) [DOE]

The Department of Energy's Management of Foreign Travel DOE/IG-0872 October 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 October 16, 2012 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Management Alert: "The Department of Energy's Management of Foreign Travel" INTRODUCTION The Department of Energy and its workforce of 116,000 Federal and contractor personnel have numerous international exchanges and interactions at different levels and for a variety of important programmatic and other purposes. The Office of Inspector General is currently reviewing the Department's management of international offices and foreign assignments. As

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

An integrative model of consumers' intentions to purchase travel online  

Science Journals Connector (OSTI)

Abstract Grounded in the Theory of Reasoned Action, the Theory of Planned Behaviour, the Technology Acceptance Model and on the Innovation Diffusions Theory, this study proposes and empirically tests an integrated model to explore which factors affect intentions to purchase travel online. Partial Least Squares Structural Equation Modelling was conducted to assess the hypotheses. The empirical results, obtained in a sample of 1732 Internet users, indicate that intentions to purchase travel online are mostly determined by attitude, compatibility and perceived risk. The theoretical contributions of this study and the practical implications are discussed and future research directions are detailed.

Suzanne Amaro; Paulo Duarte

2015-01-01T23:59:59.000Z

322

QCD traveling waves at non-asymptotic energies  

E-Print Network [OSTI]

Using consistent truncations of the BFKL kernel, we derive analytical traveling-wave solutions of the Balitsky-Kovchegov saturation equation for both fixed and running coupling. A universal parametrization of the ``interior'' of the wave front is obtained and compares well with numerical simulations of the original Balitsky-Kovchegov equation, even at non-asymptotic energies. Using this universal parametrization, we find evidence for a traveling-wave pattern of the dipole amplitude determined from the gluon distribution extracted from deep inelastic scattering data.

C. Marquet; R. Peschanski; G. Soyez

2005-10-03T23:59:59.000Z

323

Ozone heating and the destabilization of traveling waves during summer  

SciTech Connect (OSTI)

The effects of ozone heating on the linear stability of lower stratospheric traveling waves of the summertime, extratropical circulation are examined. Based on coupled equations for the quasigeostrophic potential vorticity and ozone volume mixing ratio, it is shown that the diabatic heating arising from ozone advection can offset the damping due to Newtonian cooling, leading to wave amplification and significant changes in the structure and zonally rectified fluxes of the wave fields in both the lower stratosphere and troposphere. The vertical profile of the zonal mean wind plays a crucial role in determining whether the ozone heating destabilizes eastward and/or westward traveling disturbances.

Nathan, T.R.; Cordero, E.C.; Li, L. [Univ. of California, Davis, CA (United States)] [Univ. of California, Davis, CA (United States)

1994-07-01T23:59:59.000Z

324

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

325

Greenhouse Gas Implications of Fleet Electrification Based on Big Data-Informed Individual Travel Patterns  

Science Journals Connector (OSTI)

Greenhouse Gas Implications of Fleet Electrification Based on Big Data-Informed Individual Travel Patterns ... The results indicate that 1) the largest gasoline displacement (1.1 million gallons per year) can be achieved by adopting PHEVs with modest electric range (approximately 80 miles) with current battery cost, limited public charging infrastructure, and no government subsidy; 2) reducing battery cost has the largest impact on increasing the electrification rate of vehicle mileage traveled (VMT), thus increasing gasoline displacement, followed by diversified charging opportunities; 3) government subsidies can be more effective to increase the VMT electrification rate and gasoline displacement if targeted to PHEVs with modest electric ranges (80 to 120 miles); and 4) while taxi fleet electrification can increase greenhouse gas emissions by up to 115 kiloton CO2-eq per year with the current grid in Beijing, emission reduction of up to 36.5 kiloton CO2-eq per year can be achieved if the fuel cycle emission factor of electricity can be reduced to 168.7 g/km. ... (31) We scale up our results obtained from the present data set to reflect total emissions of the entire taxi fleet electrified by PHEVs with different battery size, assuming eight years of taxi service time. ...

Hua Cai; Ming Xu

2013-07-19T23:59:59.000Z

326

Long working distance incoherent interference microscope  

DOE Patents [OSTI]

A full-field imaging, long working distance, incoherent interference microscope suitable for three-dimensional imaging and metrology of MEMS devices and test structures on a standard microelectronics probe station. A long working distance greater than 10 mm allows standard probes or probe cards to be used. This enables nanometer-scale 3-dimensional height profiles of MEMS test structures to be acquired across an entire wafer while being actively probed, and, optionally, through a transparent window. An optically identical pair of sample and reference arm objectives is not required, which reduces the overall system cost, and also the cost and time required to change sample magnifications. Using a LED source, high magnification (e.g., 50.times.) can be obtained having excellent image quality, straight fringes, and high fringe contrast.

Sinclair, Michael B. (Albuquerque, NM); De Boer, Maarten P. (Albuquerque, NM)

2006-04-25T23:59:59.000Z

327

Cosmic equation of state from combined angular diameter distances: Does the tension with luminosity distances exist?  

E-Print Network [OSTI]

Using a relatively complete observational data concerning four angular diameter distance (ADD) measurements and %synthetic combined SN+GRB observations representing current luminosity distance (LD) data, this paper investigates the %tension between compatibility of these two cosmological distances considering three classes of dark energy equation of state (EoS) reconstruction. In particular, we use strongly gravitationally lensed systems from various large systematic gravitational lens surveys and galaxy clusters, which yield the Hubble constant independent ratio between two angular diameter distances $D_{ls}/D_s$ data. Our results demonstrate that, with more general categories of standard ruler data, ADD and LD data are compatible at $1\\sigma$ level. Secondly, we note that consistency between ADD and LD data %are blind is maintained irrespective of the EoS parameterizations: there is a good match between the universally explored CPL model and other formulations of cosmic equation of state. Especially for the...

Cao, Shuo

2014-01-01T23:59:59.000Z

328

OFA2013_Storage@Distance.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NERSC Storage Systems Group NERSC Storage Systems Group Storage at a Distance --- 1 --- Open F abrics A lliance U ser D ay What is storage at a distance? * Data i s n ot l ocal t o t he u ser/resource * Processing a nd w orkflow n eeds a re n ear r eal---7me - Don't w ant t o w ait u n9l d ata t ransfer i s c omplete - Need t o s ee r esults, m ake a djustments, a nd t ry a gain * Network w ill b ecome p art o f t he i nstruments - Telescopes a nd t heir d ata - Sequencers a nd t heir g enome d ata - Light s ources a nd t heir d ata * Is t here a n a rchitecture/protocol t hat i s n ecessary today for successfully providing storage at a distance? - Ethernet v s. I B - ROCE v s. R DMA v s. I P --- 2 --- Open F abrics A lliance U ser D ay Use case 1: Instruments (beam lines) * ShiB w ork ( 24hr c overage) - Scien9sts fl y i n a nd u se t he i nstrument

329

Travel Recommender Systems Francesco Ricci, eCommerce and Tourism  

E-Print Network [OSTI]

Travel Recommender Systems Francesco Ricci, eCommerce and Tourism Research Laboratory Recommender and tourism,3 the two most successful recommender system technologies (see Figure 1) are Triplehop's Trip Society Technologies for Tourism," Report of the Strategic Advisory Group on the 5th Framework Program

Ricci, Francesco

330

Topological horseshoes in travelling waves of discretized nonlinear wave equations  

SciTech Connect (OSTI)

Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.

Chen, Yi-Chiuan, E-mail: YCChen@math.sinica.edu.tw [Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan (China)] [Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan (China); Chen, Shyan-Shiou, E-mail: sschen@ntnu.edu.tw [Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan (China)] [Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Yuan, Juan-Ming, E-mail: jmyuan@pu.edu.tw [Department of Financial and Computational Mathematics, Providence University, Shalu, Taichung 43301, Taiwan (China)] [Department of Financial and Computational Mathematics, Providence University, Shalu, Taichung 43301, Taiwan (China)

2014-04-15T23:59:59.000Z

331

Philosophy Graduate Student Travel Grants Who Can Apply?  

E-Print Network [OSTI]

Philosophy Graduate Student Travel Grants Who Can Apply? Offered to continuing graduate students enrolled in a graduate program in the Department of Philosophy at the University of Calgary for the purpose during the period April 1, 2011 ┬ş March 31, 2012. How Do I Apply? Complete the Application for Philosophy

Habib, Ayman

332

Philosophy Graduate Student Travel Grants Who Can Apply?  

E-Print Network [OSTI]

Philosophy Graduate Student Travel Grants Who Can Apply? Offered to continuing graduate students enrolled in a graduate program in the Department of Philosophy at the University of Calgary for the purpose during the period April 1, 2013 ┬ş March 31, 2014. How Do I Apply? Complete the Application for Philosophy

Calgary, University of

333

Rank Synopses for Efficient Time Travel on the Web Graph  

E-Print Network [OSTI]

Rank Synopses for Efficient Time Travel on the Web Graph Klaus Berberich, Srikanta Bedathur}@mpi-inf.mpg.de ProblemProblem SolutionSolution ExperimentsExperiments Step 1: PageRank Normalization We normalize PageRank scores computed on Gt ( Vt, Et ) (i.e., the graph at time t ) dividing by the lower bound PageRank score

334

Author's personal copy Unhealthy travelers present challenges to  

E-Print Network [OSTI]

Author's personal copy Unhealthy travelers present challenges to sustainable primate ecotourism: Ecotourism can function as a powerful tool for species conservation. However, a significant proportion.03.004 #12;Author's personal copy Introduction Ecotourism accounts for a significant proportion of all

Muehlenbein, Michael

335

Online traveling salesman problem with deadline and advanced information  

Science Journals Connector (OSTI)

We consider the online version of the traveling salesman problem, where instances are not known in advance. Requests are released over time regardless whether the server is en route or not. This problem has been described as online TSP. Current literature ... Keywords: Advanced information, Competitive ratio, Deadlines, Online routing problems

Xingang Wen; Yinfeng Xu; Huili Zhang

2012-12-01T23:59:59.000Z

336

Equity Evaluation of Vehicle Miles Traveled Fees in Texas  

E-Print Network [OSTI]

to the infrastructure but the money needed to maintain and improve roadways is not being adequately generated. One proposed alternative to the gas tax is the creation of a vehicle miles traveled (VMT) fee; with equity being a crucial issue to consider. This research...

Larsen, Lisa Kay

2012-10-19T23:59:59.000Z

337

Revised: 2/21/13 Prospective Graduate Student Travel Grant  

E-Print Network [OSTI]

Revised: 2/21/13 Prospective Graduate Student Travel Grant From the Office of Graduate Studies Departments and interdisciplinary programs are invited to request a grant from the Office of Graduate Studies to assist with outstanding prospective graduate student campus visits. The purpose of this grant is to help

338

WITH A LITTLE HELP FROM MY Student Travel Awards  

E-Print Network [OSTI]

WITH A LITTLE HELP FROM MY FRIENDS OF THE #12;Student Travel Awards Ogugua Anene-Maidoh, Carmen de III, Benjamin Stengel, and Matthew Greseth #12;Oh I get by with a little help from my friends Holly Fest Bake Sale #12;Mmm, I get with a little help from my friends Friends Cafe #12;Mmm, I'm gonna try

339

Selectively-undercut traveling-wave electroabsorption modulators  

E-Print Network [OSTI]

. Piprek, and J. Bowers, "Selective undercut etching of InGaAs and InGaAsP quantum wells for improved-wet-etching-active-region traveling-wave electro- absorption modulator," in in Proceedings IEEE LEOS 18, 2005, pp. 426┬ş427. 6. Y- absorption modulators based on undercut-etching the active-region," IEEE Photon. Technol. Lett. 17, 2065

Coldren, Larry A.

340

Apparatus and method for measuring and imaging traveling waves  

DOE Patents [OSTI]

An apparatus is provided for imaging traveling waves in a medium. The apparatus includes a vibration excitation source configured to impart traveling waves within a medium. An emitter is configured to produce two or more wavefronts, at least one wavefront modulated by a vibrating medium. A modulator is configured to modulate another wavefront in synchronization with the vibrating medium. A sensing media is configured to receive in combination the modulated one wavefront and the another wavefront and having a detection resolution within a limited bandwidth. The another wavefront is modulated at a frequency such that a difference frequency between the one wavefront and the another wavefront is within a response range of the sensing media. Such modulation produces an image of the vibrating medium having an output intensity that is substantially linear with small physical variations within the vibrating medium for all vibration frequencies above the sensing media's response bandwidth. A detector is configured to detect an image of traveling waves in the vibrating medium resulting from interference between the modulated one wavefront and the another wavefront when combined in association with the sensing media. The traveling wave can be used to characterize certain material properties of the medium. Furthermore, a method is provided for imaging and characterizing material properties according to the apparatus.

Telschow, Kenneth L. (Idaho Falls, ID); Deason, Vance A. (Idaho Falls, ID)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Wunderlich, Kaufman, and Smith LINK TRAVEL TIME PREDICTION FOR  

E-Print Network [OSTI]

Wunderlich, Kaufman, and Smith 1 LINK TRAVEL TIME PREDICTION FOR DECENTRALIZED ROUTE GUIDANCE@att.com Robert L. Smith University of Michigan Department of Industrial and Operations Engineering Ann Arbor, MI-dating process is utilized to insure the discovery of a stable #12;Wunderlich, Kaufman, and Smith 2 routing after

Smith, Robert L.

342

Total Sky Imager (TSI) Handbook  

SciTech Connect (OSTI)

The total sky imager (TSI) provides time series of hemispheric sky images during daylight hours and retrievals of fractional sky cover for periods when the solar elevation is greater than 10 degrees.

Morris, VR

2005-06-01T23:59:59.000Z

343

International Studies Office Student travel to Guatemala, Honduras, El Salvador and Nicaragua Restricted  

E-Print Network [OSTI]

International Studies Office Student travel to Guatemala, Honduras, El Salvador and Nicaragua Committee for Education Abroad has restricted student travel to Guatemala, Honduras, El Salvador Salvador, Honduras, and Nicaragua may follow the guidelines documented at: Procedures. The decision

Acton, Scott

344

Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends have Changed Since 2008  

Broader source: Energy.gov [DOE]

As the U.S. population has doubled from 1950 to 2012, the number of vehicles has grown nearly 6-fold and vehicle travel even more than that. The number of vehicles and vehicle travel peaked in 2007...

345

Energy Secretary Steven Chu to Travel to Bay Area to Highlight...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chu to Travel to Bay Area to Highlight State of the Union Address, Commitment to Clean Energy Energy Secretary Steven Chu to Travel to Bay Area to Highlight State of the Union...

346

E-Print Network 3.0 - advanced traveler information Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by Explorit Topic List Advanced Search Sample search results for: advanced traveler information Page: << < 1 2 3 4 5 > >> 1 Page 1 of 2 Travel Advance Requirements Summary: Page 1...

347

E-Print Network 3.0 - air travelers switzerland Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Travel Reimbursement Policy UT-B Contracts Div Page 1 of 2 Summary: or the first U.S. airport at which the traveler's flight arrives. (iii) "International air transportation... )...

348

Fact #729: May 28, 2012 Secondary Household Vehicles Travel Fewer Miles  

Broader source: Energy.gov [DOE]

When a household has more than one vehicle, the secondary vehicles travel fewer miles than the primary vehicle. In a two-vehicle household, the second vehicle travels less than half of the miles...

349

Variable neighborhood search algorithm for heterogeneous traveling repairmen problem with time windows  

Science Journals Connector (OSTI)

The focus of this paper is generalized traveling repairman problem (TRP), a special case of the well known and well studied traveling salesman problem (TSP). Because of its specific objective function, that minimizes the sum of overall time all clients ... Keywords: Heterogeneous traveling repairmen problem with time windows, Operations planning, Variable neighborhood search

Nenad Bjeli?; Milorad Vidovi?; Draen Popovi?

2013-11-01T23:59:59.000Z

350

Faculty Travel Grant Program Terms Revised: LS 11-06-12 Page 1  

E-Print Network [OSTI]

Faculty Travel Grant Program Terms Revised: LS 11-06-12 Page 1 Office of Research Services Phone: (250) 807 9412 UBC Okanagan Campus Internal Grants Program Terms FACULTY TRAVEL GRANT Value: Up to $1 the deadline will be moved to 4 pm of the first working day that follows. Faculty Travel Grant Details Purpose

Michelson, David G.

351

Faculty Travel Grant Program Terms Revised: AW 09-18-13 Page 1  

E-Print Network [OSTI]

Faculty Travel Grant Program Terms Revised: AW 09-18-13 Page 1 Office of Research Services Phone: (250) 807 9412 UBC Okanagan Campus Internal Grants Program Terms FACULTY TRAVEL GRANT Value: Up to $1 the deadline will be moved to 4 pm of the first working day that follows. Faculty Travel Grant Details Purpose

Handy, Todd C.

352

Syracuse University Department of Chemistry 2014-2015 Graduate Student Travel Grant Proposal  

E-Print Network [OSTI]

Syracuse University ´┐Ż Department of Chemistry 2014-2015 Graduate Student Travel Grant Proposal may be made per student per fiscal year (July 1 to June 30). Travel grants will normally not exceed. #12;Syracuse University ´┐Ż Department of Chemistry 2014-2015 Graduate Student Travel Grant Proposal

Doyle, Robert

353

Math. Nachr. 232 (2001), 39 93 On the Structure of Spectra of Modulated Travelling Waves  

E-Print Network [OSTI]

Math. Nachr. 232 (2001), 39 ┬ş 93 On the Structure of Spectra of Modulated Travelling Waves By Bj; accepted June 29, 2000) Abstract. Modulated travelling waves are solutions to reaction┬şdiffusion equations, the point spectrum, and the essential spectrum of the linearization about a modulated travelling wave

Gallay, Thierry

354

Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations  

E-Print Network [OSTI]

Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution the utility of radar travel time tomography (RTT) and electrical-resistivity tomography (ERT) for estimating to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations, J. Geophys

Singha, Kamini

355

Euro Working Group on Transportation 2014 Estimating Travel Time Distribution under different Traffic  

E-Print Network [OSTI]

Euro Working Group on Transportation 2014 Estimating Travel Time Distribution under different result in an increase in travel time variability and in a decrease in reliability. Reliability becomes of the distribution of travel time is needed to properly estimate these values. Congestion distorts the distribution

Boyer, Edmond

356

Rank Distance Bicodes and their Generalization  

E-Print Network [OSTI]

This book has four chapters. In chapter one we just recall the notion of RD codes, MRD codes, circulant rank codes and constant rank codes and describe their properties. In chapter two we introduce few new classes of codes and study some of their properties. In this chapter we introduce the notion of fuzzy RD codes and fuzzy RD bicodes. Rank distance m-codes are introduced in chapter three and the property of m-covering radius is analysed. Chapter four indicates some applications of these new classes of codes.

W. B. Vasantha Kandasamy; Florentin Smarandache; N. Suresh Babu; R. S. Selvaraj

2010-04-16T23:59:59.000Z

357

MonthlyReport  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

74 74 Number of trips 399 Distance traveled (mi) 148 Percent of total distance traveled (%) 73% Average Trip Distance (mi) 0.4 Average Driving Speed (mph) 6.3 Average Stops per mile 35.5 Percent of Regen Braking Energy Recovery (%) 11% City Trips ( < 5 stops/mile & <37 mph avg) DC electrical energy consumption (DC Wh/mi) 423 Number of trips 27 Distance traveled (mi) 54 Percent of total distance traveled (%) 27% Average Trip Distance (mi) 2.0 Average Driving Speed (mph) 20.7 Average Stops per mile 3.5 Percent of Regen Braking Energy Recovery (%) 15% Highway Trips ( 37 mph avg) DC electrical energy consumption (DC Wh/mi) 0 Number of trips 0 Distance traveled (mi) 0 Percent of total distance traveled (%) 0% Average Trip Distance (mi) 0.0 Average Driving Speed (mph)

358

MonthlyReport  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 Number of trips 493 Distance traveled (mi) 189 Percent of total distance traveled (%) 38% Average Trip Distance (mi) 0.4 Average Driving Speed (mph) 4.9 Average Stops per mile 28.7 Percent of Regen Braking Energy Recovery (%) 15% City Trips ( < 5 stops/mile & <37 mph avg) DC electrical energy consumption (DC Wh/mi) 377 Number of trips 67 Distance traveled (mi) 275 Percent of total distance traveled (%) 56% Average Trip Distance (mi) 4.1 Average Driving Speed (mph) 17.9 Average Stops per mile 3.7 Percent of Regen Braking Energy Recovery (%) 13% Highway Trips ( 37 mph avg) DC electrical energy consumption (DC Wh/mi) 438 Number of trips 1 Distance traveled (mi) 29 Percent of total distance traveled (%) 6% Average Trip Distance (mi) 28.7 Average Driving Speed (mph)

359

MonthlyReport  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

505 505 Number of trips 601 Distance traveled (mi) 245 Percent of total distance traveled (%) 62% Average Trip Distance (mi) 0.4 Average Driving Speed (mph) 5.4 Average Stops per mile 34.8 Percent of Regen Braking Energy Recovery (%) 15% City Trips ( < 5 stops/mile & <37 mph avg) DC electrical energy consumption (DC Wh/mi) 373 Number of trips 35 Distance traveled (mi) 124 Percent of total distance traveled (%) 31% Average Trip Distance (mi) 3.5 Average Driving Speed (mph) 23.0 Average Stops per mile 3.7 Percent of Regen Braking Energy Recovery (%) 13% Highway Trips ( 37 mph avg) DC electrical energy consumption (DC Wh/mi) 319 Number of trips 3 Distance traveled (mi) 25 Percent of total distance traveled (%) 6% Average Trip Distance (mi) 8.5 Average Driving Speed (mph)

360

MonthlyReport  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

613 613 Number of trips 89 Distance traveled (mi) 9 Percent of total distance traveled (%) 30% Average Trip Distance (mi) 0.1 Average Driving Speed (mph) 7.0 Average Stops per mile 44.5 Percent of Regen Braking Energy Recovery (%) 9% City Trips ( < 5 stops/mile & <37 mph avg) DC electrical energy consumption (DC Wh/mi) 487 Number of trips 8 Distance traveled (mi) 5 Percent of total distance traveled (%) 16% Average Trip Distance (mi) 0.6 Average Driving Speed (mph) 25.0 Average Stops per mile 3.8 Percent of Regen Braking Energy Recovery (%) 6% Highway Trips ( 37 mph avg) DC electrical energy consumption (DC Wh/mi) 487 Number of trips 7 Distance traveled (mi) 16 Percent of total distance traveled (%) 54% Average Trip Distance (mi) 2.3 Average Driving Speed (mph)

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

MonthlyReport  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 Number of trips 1,610 Distance traveled (mi) 372 Percent of total distance traveled (%) 72% Average Trip Distance (mi) 0.2 Average Driving Speed (mph) 5.2 Average Stops per mile 32.1 Percent of Regen Braking Energy Recovery (%) 13% City Trips ( < 5 stops/mile & <37 mph avg) DC electrical energy consumption (DC Wh/mi) 383 Number of trips 114 Distance traveled (mi) 144 Percent of total distance traveled (%) 28% Average Trip Distance (mi) 1.3 Average Driving Speed (mph) 18.3 Average Stops per mile 3.8 Percent of Regen Braking Energy Recovery (%) 16% Highway Trips ( 37 mph avg) DC electrical energy consumption (DC Wh/mi) 549 Number of trips 5 Distance traveled (mi) 2 Percent of total distance traveled (%) 0% Average Trip Distance (mi) 0.4 Average Driving Speed (mph)

362

MonthlyReport  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

530 530 Number of trips 1,308 Distance traveled (mi) 495 Percent of total distance traveled (%) 69% Average Trip Distance (mi) 0.4 Average Driving Speed (mph) 5.6 Average Stops per mile 31.4 Percent of Regen Braking Energy Recovery (%) 15% City Trips ( < 5 stops/mile & <37 mph avg) DC electrical energy consumption (DC Wh/mi) 471 Number of trips 91 Distance traveled (mi) 175 Percent of total distance traveled (%) 24% Average Trip Distance (mi) 1.9 Average Driving Speed (mph) 16.6 Average Stops per mile 3.8 Percent of Regen Braking Energy Recovery (%) 13% Highway Trips ( 37 mph avg) DC electrical energy consumption (DC Wh/mi) 357 Number of trips 2 Distance traveled (mi) 49 Percent of total distance traveled (%) 7% Average Trip Distance (mi) 24.7 Average Driving Speed (mph)

363

Travelers Rest, South Carolina: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Travelers Rest, South Carolina: Energy Resources Travelers Rest, South Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.9676167┬░, -82.4434548┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9676167,"lon":-82.4434548,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

Spent fuel utilization in a compact traveling wave reactor  

SciTech Connect (OSTI)

In recent years, several innovative designs of nuclear reactors are proposed. One of them is Traveling Wave Reactor (TWR). The unique characteristic of a TWR is the capability of breeding its own fuel in the reactor. The reactor is fueled by mostly depleted, natural uranium or spent nuclear fuel and a small amount of enriched uranium to initiate the fission process. Later on in the core, the reactor gradually converts the non-fissile material into the fissile in a process like a traveling wave. In this work, a TWR with spent nuclear fuel blanket was studied. Several parameters such as reactivity coefficients, delayed neutron fraction, prompt neutron generation lifetime, and fission power, were analyzed. The discharge burnup composition was also analyzed. The calculation is performed by a continuous energy Monte Carlo code McCARD.

Hartanto, Donny; Kim, Yonghee [Korea Advanced Institute of Science and Technology 373-1 Kusong-dong, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

2012-06-06T23:59:59.000Z

365

A precision piezodriven micropositioner mechanism with large travel range  

Science Journals Connector (OSTI)

A micropositioning stage with large travel range has been designed and built. The stage combines a piezoelectric driving element flexure pivoted multiple ScottľRussell linkage and a parallel guiding spring. Quality engineering techniques are used to optimize the configuration of the device in order to achieve the maximum displacement gain and the minimum angular deviation. A simple open-loop compensator is applied to reduce the hysteresis of the dynamic response of the stage. The experiment shows that the stage achieved a vacuum-compatible device with a travel of greater than 100 ?m a resolution of 0.04 ?m and an angular deviation of less than 31.1 ?rad. The first natural frequency of the stage is 80 Hz and the settling time is approximately 50 ms. Compared with the uncontrolled condition the controlled hysteresis is reduced significantly.

S. H. Chang; B. C. Du

1998-01-01T23:59:59.000Z

366

EV Project Chevrolet Volt Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

fuel economy (mpg) 155 Overall electrical energy consumption (AC Whmi) 242 Number of trips 147,886 Total distance traveled (mi) 1,184,265 Avg trip distance (mi) 8.0 Avg distance...

367

EV Project Nissan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

40 Reporting period: January 2013 through March 2013 Vehicle Usage Number of trips 1,075,251 Total distance traveled (mi) 7,563,354 Avg trip distance (mi) 7.0 Avg distance...

368

Inspection of the Secretary of Energy`s foreign travel  

SciTech Connect (OSTI)

On December 9, 1995, the Secretary of Energy requested that the Department`s Inspector General (IG) conduct a thorough examination of all Secretarial foreign travel from 1993 to December 1995 to include the purpose of each trip, the activities of each Federal participant in each trip, the funding of each trip, and claims for reimbursements for expenses by Federal trip participants. The Secretary also requested that the review include an assessment of travel authorization, voucher, traveler reimbursement, and auditing systems employed by the Department to identify steps that could be taken to reduce errors and improve accounting oversight. Additionally, the Secretary requested that the Inspector General conduct a thorough examination of the establishment and filling of the Department`s Ombudsman position. The Office of Inspector General (OIG) initiated a review into these matters and assigned primary responsibility for the review to the Office of Inspections. The purpose of this inspection was to conduct a thorough examination of the 16 Secretarial foreign trips from June 1993 to December 1995. This report focuses on the four trade missions because of their extent and cost. We examined a number of Departmental management systems and processes involved in planning and executing the 16 foreign trips. To determine the actual cost of the 16 trips, it was necessary to determine who participated in the trips and to identify the individual travel costs. We were required to perform extensive reviews of records and conduct a large number of interviews because the Department could not provide any specific documents that could accurately account for who actually participated on the 16 trips. Having identified who participated, it was then necessary to examine key aspects of the Department`s management systems. Our report contains 31 recommendations for corrective action.

NONE

1996-10-07T23:59:59.000Z

369

How Do You Go Green When You Travel? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Go Green When You Travel? Go Green When You Travel? How Do You Go Green When You Travel? September 30, 2010 - 7:30am Addthis On Monday, John told you about green travel and a program in his area that allows lodging facilities to verify that they are practicing green activities. Many of the activities, however, require that travelers take the step to be green. Choices such as less frequent linen service are opportunities to save water and energy while traveling. How do you go green when you travel? E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles How Do You Reduce the Amount of Energy Used by Your Televisions? How Would You Use a Smart Meter to Manage Your Energy Use? How Has a Ceiling Fan Affected the Way You Heat and Cool Your Home

370

Analysis of influence of fuel price on individual activity-travel time expenditure  

Science Journals Connector (OSTI)

Abstract Fluctuation in fuel prices may lead to adaptations in people?s activity-travel behavior. Compared to other triggers of behavioral change, the impact of fuel prices has received only scant attention in the literature, especially with respect to short-run change in activity-travel behavior. To gain insight into this issue, travel diaries of a representative sample of individuals in the Netherlands who use the car for daily travel were analyzed. Seemingly unrelated regression analysis was used to examine the effects of fuel price on people?s travel time expenditures for different kinds of activities, differentiating between weekdays and weekends. The results indicate that fuel price is negatively correlated with travel time expenditures by car, and that this relationship differs between weekdays and weekends. When faced with increasing fuel prices, people seem to prefer reducing travel time expenditure by car for compulsory trips more than for leisure trips.

Dujuan Yang; Harry Timmermans

2013-01-01T23:59:59.000Z

371

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Business Travel  

Broader source: Energy.gov [DOE]

To evaluate a greenhouse gas (GHG) emissions profile, most of the information required to support air travel demand management is currently available through Federal agency-level travel information systems, such as GovTrip. However, that information may not be distributed to programs, regional offices, and sites, which are in the best position to evaluate opportunities to reduce travel. Considerations that may help the agency determine the level at which data should be collected and analyzed include: Where are budgets and policies regarding travel made and modified? What travel approval processes are in place, and who makes the final approval for travel? The data elements defined in Table 1 below will help these decision-makers to better understand travel patterns and track change over time.

372

Gain and efficiency of a short traveling wave heat engine  

Science Journals Connector (OSTI)

Gain and efficiency equations are derived for a traveling wave heat engine which has a regenerator that is SHORT compared to an acoustic wavelength. A traveling wave heat engine is a modified Stirling engine in which acoustical waves replace the usual pistons and energy is transformed from thermal to acoustical forms and vice?versa depending on the wave direction. A previous paper examined the energy transformation process for isothermal wave propagation in an infinite regenerator having a temperature gradient [P. H. Ceperley J. Acoust. Soc. Am. 7 2 1688ľ1694 (1982)]. Similar to that paper the present paper assumes: small amplitude waves nonturbulent flow a constant heat exchange coefficient and no regenerator end effects. In contrast the present paper assumes that the wave impedance is NOT determined by the regeneratorsĺs properties but is instead set by the acoustical circuit exterior to the regenerator. In this paper the normalized power gain and efficiency are calculated and graphed as functions of dimensionless variables. For acoustical impedances of freely propagating waves and a Prandtl number of 0.7 the efficiency is limited to 10% of Carnot efficiency due to viscous losses in the regenerator. Higher efficiencies are possible with higher impedances e.g. if the impedance is multiplied by 10 79% of Carnot efficiencies are possible. Methods of achieving such impedances are discussed. Traveling waveheat pumps are similarly modeled and have comparable potential efficiencies.

Peter H. Ceperley

1985-01-01T23:59:59.000Z

373

Gain and efficiency of a short traveling wave heat engine  

Science Journals Connector (OSTI)

Gain and efficiency equations are derived and evaluated for a traveling wave heat engine having a regenerator of short length compared with an acoustic wavelength. A traveling wave heat engine is a modified Stirling engine in which acoustic waves replace the usual pistons and energy is transferred between thermal and acoustic forms depending on the wave direction [P. H. Ceperley J. Acoust. Soc. Am. 66 1508ľ1513 (1979)]. This paper is similar to another paper on gain and efficiency [P. H. Ceperley J. Acoust. Soc. Am. 72 1688ľ1694 (1982)] except that the present paper assumes that the wave impedance is not determined by the regenerator's properties but instead by the acoustic circuit exterior to the regenerator. For acoustic impedance of freely propagating traveling waves in air the efficiency is limited to 11% of Carnot efficiency due to visious heating in the regenerator. This can be greatly increased by going to higher impedances; e.g. 79% is possible at ten times greater impedance.

Peter H. Ceperley

1984-01-01T23:59:59.000Z

374

Preliminaries Conserved Interval Distance between Non-trivial  

E-Print Network [OSTI]

Outline Preliminaries Results Conclusion Conserved Interval Distance between Non-trivial Genomes.Rizzi@unitn.it August the 16th Guillaume Blin, Romeo Rizzi Conserved Interval Distance between Non-trivial Genomes #12 Guillaume Blin, Romeo Rizzi Conserved Interval Distance between Non-trivial Genomes #12;Outline

Blin, Guillaume

375

GEODESIC FRCHET DISTANCE WITH POLYGONAL OBSTACLES Atlas F. Cook IV  

E-Print Network [OSTI]

GEODESIC FR├?CHET DISTANCE WITH POLYGONAL OBSTACLES Atlas F. Cook IV Carola Wenk Abstract We present the first algorithm to compute the geodesic Fr├ęchet distance between two polygonal curves in a plane of from a point source). This shortest path map supports geodesic distance queries from any point s ab

Texas at San Antonio, University of

376

Performance Period Total Fee Paid  

Broader source: Energy.gov (indexed) [DOE]

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

377

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

378

ARM - Measurement - Total cloud water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

379

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

380

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Testing the consistency between cosmological measurements of distance and age  

E-Print Network [OSTI]

We present a model independent method to test the consistency between cosmological measurements of distance and age, assuming the distance duality relation. We use type Ia supernovae, baryon acoustic oscillations, and observational Hubble data, to reconstruct the luminosity distance D_L(z), the angle averaged distance D_V(z) and the Hubble rate H(z), using Gaussian processes regression technique. We obtain estimate of the distance duality relation in the redshift range 0.1

Nair, Remya; Jain, Deepak

2015-01-01T23:59:59.000Z

382

Lay Member of Council Mrs Jill Burgess Mrs Burgess started her career in 1972 entering the Travel and Tourism Industry  

E-Print Network [OSTI]

and Tourism Industry gaining professional entry into the Institute of Travel and Tourism. In 1991 she

Harman, Neal.A.

383

Travel In the ĺHood: Ethnic Neighborhoods and Mode Choice  

E-Print Network [OSTI]

Asian Other Total Hispanic Household-Weighted Homeownershipsqmi) Average Household Size Percent Black Percent Hispanic

Blumenberg, Evelyn; Smart, Michael

2009-01-01T23:59:59.000Z

384

A NEW COSMOLOGICAL DISTANCE MEASURE USING ACTIVE GALACTIC NUCLEI  

SciTech Connect (OSTI)

Accurate distances to celestial objects are key to establishing the age and energy density of the universe and the nature of dark energy. A distance measure using active galactic nuclei (AGNs) has been sought for more than 40 years, as they are extremely luminous and can be observed at very large distances. We report here the discovery of an accurate luminosity distance measure using AGNs. We use the tight relationship between the luminosity of an AGN and the radius of its broad-line region established via reverberation mapping to determine the luminosity distances to a sample of 38 AGNs. All reliable distance measures up to now have been limited to moderate redshift-AGNs will, for the first time, allow distances to be estimated to z {approx} 4, where variations of dark energy and alternate gravity theories can be probed.

Watson, D.; Denney, K. D.; Vestergaard, M. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Oe (Denmark); Davis, T. M. [School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072 (Australia)

2011-10-20T23:59:59.000Z

385

_MainReportPerVehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 Overall AC electrical energy consumption (AC Wh/mi)┬╣ 64 Overall DC electrical energy consumption (DC Wh/mi)┬▓ 31 Total number of trips 831 Total distance traveled (mi) 7,559 Trips in Charge Depleting (CD) mode┬│ Gasoline fuel economy (mpg) 35 DC electrical energy consumption (DC Wh/mi) 54 Number of trips 541 Percent of trips city | highway 79% | 21% Distance traveled (mi) 3,402 Percent of total distance traveled 45%

386

_MainReportPerVehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 Overall AC electrical energy consumption (AC Wh/mi)┬╣ 45 Overall DC electrical energy consumption (DC Wh/mi)┬▓ 22 Total number of trips 1,585 Total distance traveled (mi) 14,910 Trips in Charge Depleting (CD) mode┬│ Gasoline fuel economy (mpg) 34 DC electrical energy consumption (DC Wh/mi) 49 Number of trips 883 Percent of trips city | highway 81% | 19% Distance traveled (mi) 4,778 Percent of total distance traveled 32%

387

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

388

Solar total energy project Shenandoah  

SciTech Connect (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

389

Grantee Total Number of Homes  

Broader source: Energy.gov (indexed) [DOE]

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

390

Resonantly phase-matched Josephson junction traveling wave parametric amplifier  

E-Print Network [OSTI]

We develop a technique to overcome phase-mismatch in Josephson-junction traveling wave parametric amplifiers in order to achieve high gain over a broad bandwidth. Using "resonant phase matching," we design a compact superconducting device consisting of a transmission line with subwavelength resonant inclusions that simultaneously achieves a gain of 20 dB, an instantaneous bandwidth of 3 GHz, and a saturation power of -98 dBm. Such an amplifier is well-suited to cryogenic broadband microwave measurements such as the multiplexed readout of quantum coherent circuits based on superconducting, semiconducting, or nano-mechanical elements as well as traditional astronomical detectors.

Kevin O'Brien; Chris Macklin; Irfan Siddiqi; Xiang Zhang

2014-06-09T23:59:59.000Z

391

Development of strategic business network for local travel industry  

Science Journals Connector (OSTI)

This paper applies the strategy framework presented in Raupp and Schober (2000) to scrutinise the current operational form and future development of a travel industry network in Northern Finland. First, we studied how well the suggested theory corresponds to the operational dimensions of an actual cooperative network. We then utilised the theory to determine what types of strategies would best suit the firms in achieving their common future goals. Results show that the suggested framework is a useful tool in analysing different dimensions of strategic operations of actual networks.

Timo Koivumaki; Rauli Svento

2007-01-01T23:59:59.000Z

392

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

393

Why are bloggers willing to share their thoughts via travel blogs?  

Science Journals Connector (OSTI)

Since the success of Web 2.0 technology, travel blogs have played an important role for travellers when planning their trips because they usually consult articles published on travel blogs before deciding on their travel destination. However, past researchers have mainly focused on the study of blog participants instead of the bloggers themselves. Why bloggers are willing to share their thoughts on travel blogs seems to be an interesting and important topic. Our study shows that four positive factors including perceived usefulness, reputation, altruism, and trust influenced the attitudes toward sharing, which accounted for 54% of the variance. Another positive factor is the subjective norm, which influenced the intention on sharing via the travel blog, which accounted for 69% of the variance.

Kuo-Chang Ting; Ping-Ho Ting; Po-Wen Hsiao

2014-01-01T23:59:59.000Z

394

Total quality management implementation guidelines  

SciTech Connect (OSTI)

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

395

Total Heart Transplant: A Modern Overview  

E-Print Network [OSTI]

use of the total artificial heart. New England Journal ofJ. (1997). Artificial heart transplants. British medicala total artificial heart as a bridge to transplantation. New

Lingampalli, Nithya

2014-01-01T23:59:59.000Z

396

E-Print Network 3.0 - asymmetric traveling salesman Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

problem such as maximum weight Summary: (time permitting) Approximation Algorithms: Set Cover, Traveling Salesman Edited March 2006 (html, css Source: Saniie, Jafar -...

397

Travel, work, and telecommunications: a view of the electronics revolution and its potential impacts  

E-Print Network [OSTI]

Jovanis P. (1983) Telecommunications and alternative workple TRAVEL, WORK, AND TELECOMMUNICATIONS: A VIEW OF THEon opportunities for telecommunications to replace, or

Garrison, William L.; Deakin, Elizabeth

2006-01-01T23:59:59.000Z

398

Secretary Bodman to Travel to the Middle East to Advance International...  

Office of Environmental Management (EM)

efficiency. Secretary Bodman will depart on Monday, January 14, 2008 and travel to Jordan, Saudi Arabia, United Arab Emirates, Qatar and Egypt. "To increase global energy...

399

Understanding Sustainable Transportation Choices: Shifting Routine Automobile Travel to Walking and Bicycling  

E-Print Network [OSTI]

and G.F. Ulfarsson. ôCurbing Automobile Use for Sustainablebe able to shift routine automobile travel to pedestrian andChanges in Respondent Automobile Mode Shares Under Different

Schneider, Robert James

2011-01-01T23:59:59.000Z

400

Optimization Online - A Note on the Ichoua et al (2003) Travel Time ...  

E-Print Network [OSTI]

Feb 2, 2012 ... Abstract: In this paper we exploit some properties of the travel time model proposed by Ichoua et al (2003), on which most of the currentá...

Guerriero Emanuela

2012-02-02T23:59:59.000Z

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

E-Print Network 3.0 - air travel business Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

or the first U.S. airport at which the traveler's flight arrives. (iii) "International air transportation... ) The Seller must use U.S.-flag air carriers for...

402

What's Youth Got to Do with It? Exploring the Travel Behavior of Teens and Young Adults  

E-Print Network [OSTI]

access in Hispanic and Black households, personal travel wasBlack NH Asian Hispanic NH Other Household CharacteristicsHH Non-Hispanic Asian (2009 Only) Household Characteristics

Blumenberg, Evelyn; Taylor, Brian D.; Smart, Michael; Ralph, Kelcie; Wander, Madeline; Brumbagh, Stephen

2012-01-01T23:59:59.000Z

403

Highway travel and fuel comsumption from 1970 to 1980  

SciTech Connect (OSTI)

The change in fuel price and availability (1970-80) has had a profound impact on the way and the extent of travel. Within the decade there were two precipitous increases in fuel price among a posture of steadily rising energy costs. In response to these price increases, a number of public policies were enacted. For instance, the 55-mph speed limit was imposed in 1974. At the end of that same year, the Federal Energy Administration and the Energy Policy and Conservation Act (EPCA) were formulated to prescribe certain conservation guidelines for states to follow in formulating their own programs. Specifically, EPCA established a program for the development of plans designed for the promotion of energy conservation and a reduction of the energy demand growth rate. Parallel to the conservation measures are technological improvements in vehicle fuel consumption. EPCA mandated that automobile manufacturers achieve fuel efficiency incrementally through 1985 to reach an average fuel economy of 27.5 mpg. This article reviews the historical impact of these factors from 1970 through 1980. Its objective is to observe the relative significance of each of these energy-saving alternatives on the growth rate of travel and fuel use. This historical perspective is particularly interesting since it presents the before-and-after effects of two ''crises'' occurring during this 10-year period. 1 figure, 10 tables.

Chan, Y.

1985-01-01T23:59:59.000Z

404

Three-cell traveling wave superconducting test structure  

E-Print Network [OSTI]

Use of a superconducting traveling wave accelerating (STWA) structure with a small phase advance per cell rather than a standing wave structure may provide a significant increase of the accelerating gradient in the ILC linac. For the same surface electric and magnetic fields the STWA achieves an accelerating gradient 1.2 larger than TESLA-like standing wave cavities. The STWA allows also longer acceleration cavities, reducing the number of gaps between them. However, the STWA structure requires a SC feedback waveguide to return the few hundreds of MW of circulating RF power from the structure output to the structure input. A test single-cell cavity with feedback was designed, manufactured and successfully tested demonstrating the possibility of a proper processing to achieve a high accelerating gradient. These results open way to take the next step of the TW SC cavity development: to build and test a traveling-wave three-cell cavity with a feedback waveguide. The latest results of the single-cell cavity tests...

Avrakhov, Pavel; Kazakov, Sergey; Solyak, Nikolay; Wu, Genfa; Yakovlev, Vyacheslav P

2011-01-01T23:59:59.000Z

405

_MainReport  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Overall AC electrical energy consumption (AC Wh/mi) 175 Average Trip Distance 12.2 Total distance traveled (mi) 272,366 Average Ambient Temperature (deg F) 54.1 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 368 Distance traveled (mi) 129,389 Percent of total distance traveled 47.5% Average driving style efficiency (distance weighted)┬╣ 75% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 36.0 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 142,977 Percent of total distance traveled 52.4% Average driving style efficiency (distance weighted)┬╣ 77% City┬│ Highway┬│ Percent of miles in EV operation (%) 65.1% 31.1% Percent Number of trips 85.5% 14.5% Average trip distance (mi)

406

MonthlyReport  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4.8 4.8 Overall AC electrical energy consumption (AC Wh/mi) 185 Average Trip Distance 13.1 Total distance traveled (mi) 208,165 Average Ambient Temperature (deg F) 77.6 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 369 Distance traveled (mi) 104,687 Percent of total distance traveled 50.3% Average driving style efficiency (distance weighted)┬╣ 87% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 37.2 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 103,478 Percent of total distance traveled 49.7% Average driving style efficiency (distance weighted)┬╣ 82% City┬│ Highway┬│ Percent of miles in EV operation (%) 69.8% 33.9% Percent Number of trips 85.0% 15.0% Average trip distance (mi)

407

_MainReport  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.5 2.5 Overall AC electrical energy consumption (AC Wh/mi) 166 Average Trip Distance 12.1 Total distance traveled (mi) 385,849 Average Ambient Temperature (deg F) 78.2 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 332 Distance traveled (mi) 193,336 Percent of total distance traveled 50.1% Average driving style efficiency (distance weighted)┬╣ 85% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 36.2 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 192,512 Percent of total distance traveled 49.9% Average driving style efficiency (distance weighted)┬╣ 79% City┬│ Highway┬│ Percent of miles in EV operation (%) 67.2% 31.5% Percent Number of trips 86.7% 13.3% Average trip distance (mi)

408

_MainReport  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7.8 7.8 Overall AC electrical energy consumption (AC Wh/mi) 180 Average Trip Distance 12.8 Total distance traveled (mi) 346,409 Average Ambient Temperature (deg F) 51.5 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 384 Distance traveled (mi) 161,982 Percent of total distance traveled 46.8% Average driving style efficiency (distance weighted)┬╣ 74% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 36.1 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 184,427 Percent of total distance traveled 53.2% Average driving style efficiency (distance weighted)┬╣ 76% City┬│ Highway┬│ Percent of miles in EV operation (%) 63.8% 28.4% Percent Number of trips 85.7% 14.3% Average trip distance (mi)

409

_MainReport  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 Overall AC electrical energy consumption (AC Wh/mi) 174 Average Trip Distance 12.6 Total distance traveled (mi) 1,243,988 Average Ambient Temperature (deg F) 63.2 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 352 Distance traveled (mi) 615,161 Percent of total distance traveled 49.5% Average driving style efficiency (distance weighted)┬╣ 80% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 35.4 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 628,828 Percent of total distance traveled 50.5% Average driving style efficiency (distance weighted)┬╣ 78% City┬│ Highway┬│ Percent of miles in EV operation (%) 66.8% 31.7% Percent Number of trips 85.5% 14.5% Average trip distance (mi)

410

_MainReport  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

71.0 71.0 Overall AC electrical energy consumption (AC Wh/mi) 169 Average Trip Distance 12.5 Total distance traveled (mi) 1,661,080 Average Ambient Temperature (deg F) 67.1 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 340 Distance traveled (mi) 826,775 Percent of total distance traveled 49.8% Average driving style efficiency (distance weighted)┬╣ 81% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 35.7 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 834,306 Percent of total distance traveled 50.2% Average driving style efficiency (distance weighted)┬╣ 78% City┬│ Highway┬│ Percent of miles in EV operation (%) 66.9% 31.6% Percent Number of trips 85.8% 14.2% Average trip distance (mi)

411

_MainReport  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 Overall AC electrical energy consumption (AC Wh/mi) 170 Average Trip Distance 12.4 Total distance traveled (mi) 2,041,556 Average Ambient Temperature (deg F) 64.4 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 345 Distance traveled (mi) 1,002,495 Percent of total distance traveled 49.1% Average driving style efficiency (distance weighted)┬╣ 80% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 35.9 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 1,039,061 Percent of total distance traveled 50.9% Average driving style efficiency (distance weighted)┬╣ 78% City┬│ Highway┬│ Percent of miles in EV operation (%) 66.2% 31.0% Percent Number of trips 86.0% 14.0% Average trip distance (mi)

412

_MainReport  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.1 1.1 Overall AC electrical energy consumption (AC Wh/mi) 182 Average Trip Distance 11.8 Total distance traveled (mi) 355,058 Average Ambient Temperature (deg F) 46.0 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 416 Distance traveled (mi) 155,080 Percent of total distance traveled 43.7% Average driving style efficiency (distance weighted)┬╣ 69% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 34.4 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 199,978 Percent of total distance traveled 56.3% Average driving style efficiency (distance weighted)┬╣ 74% City┬│ Highway┬│ Percent of miles in EV operation (%) 60.5% 27.0% Percent Number of trips 86.3% 13.7% Average trip distance (mi)

413

_MainReport  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6.6 6.6 Overall AC electrical energy consumption (AC Wh/mi) 171 Average Trip Distance 11.9 Total distance traveled (mi) 370,316 Average Ambient Temperature (deg F) 53.8 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 371 Distance traveled (mi) 170,860 Percent of total distance traveled 46.1% Average driving style efficiency (distance weighted)┬╣ 75% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 35.9 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 199,456 Percent of total distance traveled 53.9% Average driving style efficiency (distance weighted)┬╣ 77% City┬│ Highway┬│ Percent of miles in EV operation (%) 63.2% 28.1% Percent Number of trips 86.7% 13.3% Average trip distance (mi)

414

_MainReport  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 Overall AC electrical energy consumption (AC Wh/mi) 157 Average Trip Distance 12.3 Total distance traveled (mi) 407,245 Average Ambient Temperature (deg F) 67.9 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 338 Distance traveled (mi) 189,426 Percent of total distance traveled 46.5% Average driving style efficiency (distance weighted)┬╣ 82% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 36.5 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 217,819 Percent of total distance traveled 53.5% Average driving style efficiency (distance weighted)┬╣ 79% City┬│ Highway┬│ Percent of miles in EV operation (%) 65.2% 28.3% Percent Number of trips 86.5% 13.5% Average trip distance (mi)

415

_MainReport  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

73.7 73.7 Overall AC electrical energy consumption (AC Wh/mi) 170 Average Trip Distance 12.6 Total distance traveled (mi) 370,987 Average Ambient Temperature (deg F) 71.0 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 341 Distance traveled (mi) 185,282 Percent of total distance traveled 49.9% Average driving style efficiency (distance weighted)┬╣ 83% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 36.9 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 185,705 Percent of total distance traveled 50.1% Average driving style efficiency (distance weighted)┬╣ 79% City┬│ Highway┬│ Percent of miles in EV operation (%) 68.0% 32.4% Percent Number of trips 85.4% 14.6% Average trip distance (mi)

416

Hazardous Waste Minimum Distance Requirements (Connecticut) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Minimum Distance Requirements (Connecticut) Minimum Distance Requirements (Connecticut) Hazardous Waste Minimum Distance Requirements (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection These regulations set minimum distance requirements between certain types of facilities that generate, process, store, and dispose of hazardous waste

417

Geodesic Distance in Fisher Information Space and Holographic Entropy Formula  

E-Print Network [OSTI]

In this short note, we examine geodesic distance in Fisher information space in which the metric is defined by the entanglement entropy in CFT_(1+1). It is obvious in this case that the geodesic distance at a constant time is a function of the entropy data embedded into the information space. In a special case, the geodesic equation can be solved analytically, and we find that the distance agrees well with the Ryu-Takayanagi formula. Then, we can understand how the distance looks at the embeded quantum information. The result suggests that the Fisher metric is an efficient tool for constructing the holographic spacetime.

Hiroaki Matsueda

2014-08-28T23:59:59.000Z

418

Geodesic Distance in Planar Graphs: An Integrable Approach  

E-Print Network [OSTI]

We discuss the enumeration of planar graphs using bijections with suitably decorated trees, which allow for keeping track of the geodesic distances between faces of the graph. The corresponding generating functions obey non-linear recursion relations on the geodesic distance. These are solved by use of stationary multi-soliton tau-functions of suitable reductions of the KP hierarchy. We obtain a unified formulation of the (multi-) critical continuum limit describing large graphs with marked points at large geodesic distances, and obtain integrable differential equations for the corresponding scaling functions. This provides a continuum formulation of two-dimensional quantum gravity, in terms of the geodesic distance.

P. Di Francesco

2005-06-27T23:59:59.000Z

419

Distance and overcurrent protection of feeders at distribution substation.  

E-Print Network [OSTI]

??The ???Distance and Overcurrent Protection of Feeders at Distribution Substation??? report will discuss protection of distribution feeders at a substation. The paper will discuss theů (more)

Chedid, Youssef Pierre

2014-01-01T23:59:59.000Z

420

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

422

Natural Gas Total Liquids Extracted  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) Thousand Barrels) Data Series: Natural Gas Processed Total Liquids Extracted NGPL Production, Gaseous Equivalent Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 658,291 673,677 720,612 749,095 792,481 873,563 1983-2012 Alabama 13,381 11,753 11,667 13,065 1983-2010 Alaska 22,419 20,779 19,542 17,798 18,314 18,339 1983-2012 Arkansas 126 103 125 160 212 336 1983-2012 California 11,388 11,179 11,042 10,400 9,831 9,923 1983-2012 Colorado 27,447 37,804 47,705 57,924 1983-2010 Florida 103 16 1983-2008 Illinois 38 33 24 231 705 0 1983-2012

423

Total Petroleum Systems and Assessment Units (AU)  

E-Print Network [OSTI]

Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

Torgersen, Christian

424

Locating and total dominating sets in trees  

Science Journals Connector (OSTI)

A set S of vertices in a graph G = ( V , E ) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. We consider total dominating sets of minimum cardinality which have the additional property that distinct vertices of V are totally dominated by distinct subsets of the total dominating set.

Teresa W. Haynes; Michael A. Henning; Jamie Howard

2006-01-01T23:59:59.000Z

425

_MainReportPerVehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

45 45 Overall DC electrical energy consumption (DC Wh/mi)┬▓ 29 Total number of trips 1,839 Total distance traveled (mi) 21,089 Trips in Charge Depleting (CD) mode┬│ Gasoline fuel economy (mpg) 39 DC electrical energy consumption (DC Wh/mi) 61 Number of trips 654 Percent of trips city | highway 66% | 34% Distance traveled (mi) 5,717 Percent of total distance traveled 27% Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes Gasoline fuel economy (mpg) 38 DC electrical energy consumption (DC Wh/mi) 57 Number of trips 117 Percent of trips city | highway 39% | 62% Distance traveled (mi) 3,683 Percent of total distance traveled 17% Trips in Charge Sustaining (CS) mode Gasoline fuel economy (mpg) 33 Number of trips 1,068 Percent of trips city | highway 71% | 30% Distance traveled (mi)

426

_MainReportPerVehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

36 36 Overall DC electrical energy consumption (DC Wh/mi)┬▓ 18 Total number of trips 1,290 Total distance traveled (mi) 13,023 Trips in Charge Depleting (CD) mode┬│ Gasoline fuel economy (mpg) 39 DC electrical energy consumption (DC Wh/mi) 58 Number of trips 432 Percent of trips city | highway 75% | 25% Distance traveled (mi) 2,835 Percent of total distance traveled 22% Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes Gasoline fuel economy (mpg) 41 DC electrical energy consumption (DC Wh/mi) 48 Number of trips 52 Percent of trips city | highway 31% | 69% Distance traveled (mi) 1,613 Percent of total distance traveled 12% Trips in Charge Sustaining (CS) mode Gasoline fuel economy (mpg) 34 Number of trips 806 Percent of trips city | highway 73% | 27% Distance traveled (mi)

427

_MainReportPerVehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

49 49 Overall DC electrical energy consumption (DC Wh/mi)┬▓ 27 Total number of trips 927 Total distance traveled (mi) 9,301 Trips in Charge Depleting (CD) mode┬│ Gasoline fuel economy (mpg) 39 DC electrical energy consumption (DC Wh/mi) 66 Number of trips 313 Percent of trips city | highway 68% | 32% Distance traveled (mi) 2,138 Percent of total distance traveled 23% Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes Gasoline fuel economy (mpg) 41 DC electrical energy consumption (DC Wh/mi) 63 Number of trips 46 Percent of trips city | highway 30% | 70% Distance traveled (mi) 1,462 Percent of total distance traveled 16% Trips in Charge Sustaining (CS) mode Gasoline fuel economy (mpg) 34 Number of trips 568 Percent of trips city | highway 75% | 25% Distance traveled (mi)

428

_MainReportPerVehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

50 50 Overall DC electrical energy consumption (DC Wh/mi)┬▓ 22 Total number of trips 730 Total distance traveled (mi) 9,164 Trips in Charge Depleting (CD) mode┬│ Gasoline fuel economy (mpg) 40 DC electrical energy consumption (DC Wh/mi) 61 Number of trips 225 Percent of trips city | highway 68% | 32% Distance traveled (mi) 1,768 Percent of total distance traveled 19% Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes Gasoline fuel economy (mpg) 36 DC electrical energy consumption (DC Wh/mi) 53 Number of trips 40 Percent of trips city | highway 23% | 78% Distance traveled (mi) 1,638 Percent of total distance traveled 18% Trips in Charge Sustaining (CS) mode Gasoline fuel economy (mpg) 35 Number of trips 465 Percent of trips city | highway 70% | 30% Distance traveled (mi)

429

_MainReportPerVehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

53 53 Overall DC electrical energy consumption (DC Wh/mi)┬▓ 34 Total number of trips 1,515 Total distance traveled (mi) 15,617 Trips in Charge Depleting (CD) mode┬│ Gasoline fuel economy (mpg) 37 DC electrical energy consumption (DC Wh/mi) 65 Number of trips 739 Percent of trips city | highway 74% | 26% Distance traveled (mi) 4,915 Percent of total distance traveled 31% Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes Gasoline fuel economy (mpg) 38 DC electrical energy consumption (DC Wh/mi) 58 Number of trips 93 Percent of trips city | highway 38% | 62% Distance traveled (mi) 2,842 Percent of total distance traveled 18% Trips in Charge Sustaining (CS) mode Gasoline fuel economy (mpg) 33 Number of trips 683 Percent of trips city | highway 72% | 28% Distance traveled (mi)

430

Locating-total domination in graphs  

Science Journals Connector (OSTI)

In this paper, we continue the study of locating-total domination in graphs. A set S of vertices in a graph G is a total dominating set in G if every vertex of G is adjacent to a vertex in S . We consider total dominating sets S which have the additional property that distinct vertices in V ( G ) ? S are totally dominated by distinct subsets of the total dominating set. Such a set S is called a locating-total dominating set in G , and the locating-total domination number of G is the minimum cardinality of a locating-total dominating set in G . We obtain new lower and upper bounds on the locating-total domination number of a graph. Interpolation results are established, and the locating-total domination number in special families of graphs, including cubic graphs and grid graphs, is investigated.

Michael A. Henning; Nader Jafari Rad

2012-01-01T23:59:59.000Z

431

PLANETARY NEBULAE IN THE ELLIPTICAL GALAXY NGC 4649 (M 60): KINEMATICS AND DISTANCE REDETERMINATION  

SciTech Connect (OSTI)

Using a slitless spectroscopy method with (1) the 8.2 m Subaru telescope and its FOCAS Cassegrain spectrograph and (2) the ESO Very Large Telescope unit 1 (Antu) and its FORS2 Cassegrain spectrograph, we have detected 326 planetary nebulae (PNs) in the giant Virgo elliptical galaxy NGC 4649 (M 60) and measured their radial velocities. After rejecting some PNs more likely to belong to the companion galaxy NGC 4647, we have built a catalog with kinematic information for 298 PNs in M 60. Using these radial velocities, we have concluded that they support the presence of a dark matter halo around M 60. Based on an isotropic, two-component Hernquist model, we estimate the dark matter halo mass within 3R{sub e} to be 4 x 10{sup 11} M{sub sun}, which is almost one-half of the total mass of about 10{sup 12} M{sub sun} within 3R{sub e}. This total mass is similar to that estimated from globular cluster, XMM-Newton, and Chandra observations. The dark matter becomes dominant outside. More detailed dynamical modeling of the PN data is being published in a companion paper. We have also measured the m(5007) magnitudes of many of these PNs and built a statistically complete sample of 218 PNs. The resulting PN luminosity function (PNLF) was used to estimate a distance modulus of 30.7 {+-} 0.2 mag, equivalent to 14 {+-} 1 Mpc. This confirms an earlier PNLF distance measurement based on a much smaller sample. The PNLF distance modulus remains smaller than the surface brightness fluctuation distance modulus by 0.4 mag.

Teodorescu, A. M.; Mendez, R. H. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Bernardi, F. [Dipartimento di Matematica, Universita di Pisa, Largo B. Pontecorvo 5, 56127 Pisa (Italy); Thomas, J.; Das, P.; Gerhard, O., E-mail: ana@ifa.hawaii.edu, E-mail: mendez@ifa.hawaii.edu [Max Planck Institut fuer Extraterrestrische Physik, P.O. Box 1603, D-85740 Garching bei Muenchen (Germany)

2011-07-20T23:59:59.000Z

432

Introduction The median problem for the reversal distance in  

E-Print Network [OSTI]

genomes E. Ohlebusch, M.I. Abouelhoda, K. Hockel, J. Stallkamp University of Ulm, Germany CPM 2005 The median problem for the reversal distance in circular bacterial genomes #12;Introduction Methods Conclusion General Problem Distances Specific Problem Median Problem Given 3 genomes G1, G2, and G3, find

Lonardi, Stefano

433

Estimating Distances Using Least Cost Path Algorithms Rodney J. Dyer  

E-Print Network [OSTI]

Estimating Distances Using Least Cost Path Algorithms Rodney J. Dyer February 27, 2012 Overview This vignette covers the methods necessary to take a raster and estimate the least cost path distance between points. In doing so, this will cover: 1. Load in a 'raster blank' 2. Modify the raster to change relative

Dyer, Rodney J.

434

Ris-R-1518(EN) The necessary distance between large  

E-Print Network [OSTI]

Ris├Ş-R-1518(EN) The necessary distance between large wind farms offshore - study Sten Frandsen. As it is often the need for offshore wind farms, the model handles a regular array-geometry with straight rows distance between large wind farms in the offshore environment. The main results are given in Section 1

435

How to project `circular' manifolds using geodesic distances?  

E-Print Network [OSTI]

How to project `circular' manifolds using geodesic distances? John Aldo Lee, Michel Verleysen,verleysen}@dice.ucl.ac.be Abstract. Recent papers have clearly shown the advantage of using the geodesic distance instead strongly crumpled manifolds have to be un- folded. Nevertheless, neither the Euclidean nor the geodesic

Verleysen, Michel

436

Parallel algorithms for approximation of distance maps on parametric surfaces  

E-Print Network [OSTI]

results demonstrate up to four orders of magnitude improvement in execution time compared to the state(n) numerical algorithm for first-order approximation of geodesic distances on geometry images, where n charts, parallel algorithms, GPU, SIMD 1. INTRODUCTION Approximation of geodesic distances on curved

Kimmel, Ron

437

RESEARCH NOTE DISTANCE CHEMORECEPTION AND THE DETECTION OF  

E-Print Network [OSTI]

RESEARCH NOTE DISTANCE CHEMORECEPTION AND THE DETECTION OF CONSPECIFICS IN OCTOPUS BIMACULOIDES. They detect odours on contact using chemosensory cells on their lips and suckers (Budelmann, 1996). They can also detect water-borne odours (distance chemoreception) using receptors in their olfactory organs

Boal, Jean

438

Keep Your Enemies Close: Distance Bounding Against Smartcard Relay Attacks  

E-Print Network [OSTI]

Keep Your Enemies Close: Distance Bounding Against Smartcard Relay Attacks Saar Drimer and Steven J by an implementation of the relay attack that has been tested on live systems. Once designers appreciate the risk to the smartcard standard, based on a distance bounding protocol, which provides adequate resistance to the relay

Xu, Wenyuan

439

Determination of the linkage relationships and the gene-centromere genetic distances for endopeptidase structural genes in hexaploid wheat  

E-Print Network [OSTI]

357307 contribute to band 4 Calculation of gene-centromere genet 'c distance for 7BI. using region I (RI) recombinant progeny Genetic distance bet~~een EP-Bly and Ep-Blz and the frequency of region II (RII) cro. over progeny LIST OF FIGURES... ram Phenot e Total ChrolQo some Co~st. it ut ion 42 43 41 41+telo 42+telo 40+telo and/or not ~f ~1* 8 IU VI IX Chromosome ?BL 42. 17 Centromere ~Ey-El Kp-Blz Chromosome 7AL K -Alz 6. 67 3 90 RII ~E-Alx l0. 67 Figure 8. Linkage...

McMillin, David Edwin

2012-06-07T23:59:59.000Z

440

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

ABE@IllinoisAgricultural and Biological Engineering Alumni Newsletter. Spring 2009 Rausch Travels to Brazil with  

E-Print Network [OSTI]

Rausch Travels to Brazil with ACES Academy for Global Engagement Kent Rausch, Ph.D. '93 AgE, an associate, an overarching theme in the College has been biofuels," said Rausch. "So our class chose to go to Brazil, since of Rausch Travels to Brazil ...Continued http://abe.illinois.edu Page 2 Mato Grosso. "Mato Grosso could

Gilbert, Matthew

442

GUIDELINES FOR PROFESSIONAL DEVELOPMENT-RELATED TRAVEL, SAEM 1 STUDENT AFFAIRS & ENROLLMENT MANAGEMENT  

E-Print Network [OSTI]

, subsistence, etc. for off-site travel will be as follows: a. Training, education, or development FOR PROFESSIONAL DEVELOPMENT-RELATED TRAVEL, SAEM 2 e. Participation in the off-site event will result in increased or the campus. 4. Release time from work to pursue off-site professional development activities should also

443

SOLITARY-WAVE AND MULTI-PULSED TRAVELING-WAVE SOLUTIONS OF BOUSSINESQ SYSTEMS  

E-Print Network [OSTI]

SOLITARY-WAVE AND MULTI-PULSED TRAVELING-WAVE SOLUTIONS OF BOUSSINESQ SYSTEMS MIN CHEN Department words: water wave, Boussinesq system, traveling wave, homoclinic orbit, multi-pulsed solution 1. Introduction This paper studies solitary-wave and multi-pulsed solutions of the Boussinesq systems t + ux + (u

Chen, Min

444

Method for migrating seismic data by using ray tracing in determining two way travel times  

SciTech Connect (OSTI)

A method is described for depth migrating ray traces before stacking comprising the steps of: receiving raw seismic data signals representing acoustic waves generated by a plurality of sources and detected by a plurality of receivers, each of said sources and said receivers having a surface position; generating a set of one way travel times for each surface position to all image points; storing said one way travel times; identifying a set of one way travel times from one source surface position to each of said image points; identifying a second set of one way travel times from one receiver surface position to each of said image points; calculating a two way travel time set to said image points by summing said set of one way travel times for said one source surface position and said second set of one way travel times for said one receiver surface position to each of said image points; mapping a seismic trace associated with a source and receiver combination represented by said two way travel time set; and displaying said map of said seismic trace associated with said source and receiver combination.

Wang, Sheinshion; Sinton, J.B.; Hanson, D.W.

1993-07-20T23:59:59.000Z

445

Traveling Waves from the Arclength Parameterization: Vortex Sheets with Surface Tension  

E-Print Network [OSTI]

Traveling Waves from the Arclength Parameterization: Vortex Sheets with Surface Tension Benjamin for the vortex sheet with surface tension. We use the angle- arclength description of the interface rather than prove that there exist traveling vortex sheets with surface tension bifurcating from equilibrium. We

Wright, J. Douglas

446

Important Health Insurance Information for Retirees and Dependent Children Travelling Outside their Province of  

E-Print Network [OSTI]

in writing to SSQ and must be accompanied by written confirmation of continued provincial health careImportant Health Insurance Information for Retirees and Dependent Children Travelling Outside their Province of Residence Memorial University's travel health plan, supplied by SSQ Insurance Company Inc

deYoung, Brad

447

Payments to Nonresident Aliens Accounts Payable & Travel 2/09/14 Page 1 of 3  

E-Print Network [OSTI]

Payments to Nonresident Aliens Accounts Payable & Travel 2/09/14 Page 1 of 3 UCSF - Controller's Office - Accounts Payable - 01/09/2014 AP Independent Personal Service Payments to Nonresident Aliens-employee, nonresident aliens: ┬Ě Honoraria- UCOP Honoraria Policy ┬Ě Travel Expense Reimbursement Federal and

Yamamoto, Keith

448

[Type text] [Type text] Approved by Faculty Graduate Student Travel Grant Policy  

E-Print Network [OSTI]

[Type text] [Type text] Approved by Faculty Graduate Student Travel Grant Policy Computer Science Department To support graduate student research publications, the Computer Science Department will support dates will coincide with the Senate Scholarly Activities Committee (SSAC) Travel Grant application due

Delene, David J.

449

CREECA Graduate Student Conference Presentation and Research Travel Awards Application deadline: February 11, 2013  

E-Print Network [OSTI]

of Wisconsin-Madison invites applications from qualified graduate and professional school students in 2012 Awards of up to $1,000 All applicants must be master's, doctoral or professional school students in good for domestic travel. Students whose travel is fully funded through other sources (e.g. a fellowship, grant

Scharer, John E.

450

On the estimation of arterial route travel time distribution with Markov chains  

E-Print Network [OSTI]

cost, and inherent distributed characteristics lead to tackling GPS-equipped vehicle challenges, Nikolas Geroliminis School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Probe vehicle Travel time distribution Travel time variability a b s t r a c t Recent advances

Moret, Bernard

451

Uni-Traveling-Carrier Photodiodes with Increased Output Response and Low Intermodulation  

E-Print Network [OSTI]

Uni-Traveling-Carrier Photodiodes with Increased Output Response and Low Intermodulation Distortion-traveling-carrier photodiodes have been fabricated and tested to investigate the influence of the doping profile in several of the device layers on saturation characteristics and linearity. Two particular photodiode (PD) structures

Bowers, John

452

SPECTRAL STABILITY FOR SUBSONIC TRAVELING PULSES OF THE BOUSSINESQ `ABC' SYSTEM  

E-Print Network [OSTI]

SPECTRAL STABILITY FOR SUBSONIC TRAVELING PULSES OF THE BOUSSINESQ `ABC' SYSTEM SEVDZHAN HAKKAEV-pulsed traveling wave solutions. In [11], Chen-Chen-Nguyen consider another relevant case, namely the BBM system system as well as its relations to the single BBM equation. Date: March 5, 2013. 2000 Mathematics Subject

Stefanov, Atanas G.

453

SPECTRAL STABILITY FOR SUBSONIC TRAVELING PULSES OF THE BOUSSINESQ `ABC' SYSTEM  

E-Print Network [OSTI]

SPECTRAL STABILITY FOR SUBSONIC TRAVELING PULSES OF THE BOUSSINESQ `ABC' SYSTEM SEVDZHAN HAKKAEV-pulsed traveling wave solutions. In [11], Chen-Chen-Nguyen consider another relevant case, namely the BBM system, as well as in more general situations. In [2], the authors explore the existence theory for the BBM system

Stanislavova, Milena

454

System of two Hamilton-Jacobi equations for complex-valued travel time  

E-Print Network [OSTI]

System of two Hamilton-Jacobi equations for complex-valued travel time Lud#20;ek Klime#20;s. In real space, the eikonal equation for complex{valued travel time represents the system of two Hamilton of this system of Hamilton{Jacobi equations does not propagate along rays, and has to be solved by more global

Cerveny, Vlastislav

455

Physica D 156 (2001) 1938 Destabilization and localization of traveling waves  

E-Print Network [OSTI]

Physica D 156 (2001) 19┬ş38 Destabilization and localization of traveling waves by an advected field amplitude traveling waves arising in a supercritical Hopf bifurcation, that are coupled to a slowly varying, real field. The field is advected by the waves and, in turn, affects their stability via a coupling

Roxin, Alex

456

Traveling waves in yeast extract and in cultures of Dictyostelium discoideum  

E-Print Network [OSTI]

Traveling waves in yeast extract and in cultures of Dictyostelium discoideum Stefan C. Mu traveling reaction-diffusion waves occur in response to oscillatory reactions. Glycolytic degradation of sugar in a yeast extract leads to the spontaneous formation of NADH and proton waves. Manipula- tion

Steinbock, Oliver

457

The TauPToo~kit:Flexib/e Seismic Travel-time and Ray-path Utilities  

E-Print Network [OSTI]

The TauPToo~kit:Flexib/e Seismic Travel-time and Ray-path Utilities H. Philip Crotwell, Thomas studies. These factors highlight the need for versatile utilities that allow the calculation of travel to implement this approach. We used Maple (Heal etal., 1996), a symbolic mathematics utility, to help convert

Cerveny, Vlastislav

458

Search thousands of travel therapy destinations at: http://www.advanced-medical.net  

E-Print Network [OSTI]

Search thousands of travel therapy destinations at: http://www.advanced-medical.net Why do new grads travel with Advanced Medical? Mentorship: With accomplished mentors, new grad friendly facilities, and robust clinical support, trust Advanced Medical to take your professional growth seriously. Advanced

Weber, David J.

459

Assess Potential Changes in Business Travel that Impact Greenhouse Gas Emissions  

Broader source: Energy.gov [DOE]

For a Federal agency, changes in the demand for business travel can be difficult to predict. Changes in the nature of the agency's work may have a substantial impact on the demand for business travel. It is therefore important to account for these changes when planning for greenhouse gas (GHG) emissions reduction.

460

The Landscape of the Traveling Salesman Problem Peter F. Stadler y  

E-Print Network [OSTI]

The Landscape of the Traveling Salesman Problem Peter F. Stadler y Max Planck Institut f The landscapes of Traveling Salesman Problems are investigated by ran┬ş dom walk techniques. The autocorrelation functions for different metrics on the space of tours are calculated. The landscape turns out to be AR(1

Stadler, Peter F.

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

RESEARCH COUNCIL TRAVEL, SUBSISTENCE AND EXPENSES POLICY Page 1 of 23  

E-Print Network [OSTI]

to consider and try to minimise environmental impact of journeys made on behalf of the Research Council (see and Expenses Policy v0.3 Final RESEARCH COUNCIL TRAVEL, SUBSISTENCE AND EXPENSES POLICY Content Policy statement 1. Principles 2. Definition of terms 3. Claim Forms 4. Travel claims 5. Accommodation 6. Other

Subramanian, Sriram

462

Brain teasers traveling exhibit opens at Los Alamos National Laboratory's  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brain teasers exhibit opens at museum Brain teasers exhibit opens at museum Brain Teasers traveling exhibit opens at Los Alamos National Laboratory's Bradbury Science Museum The interactive exhibit is a collection of more than 20 puzzles and mind benders. December 4, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact

463

Tiny travelers from deep space could assist in healing Fukushima's  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fukushima Daiichi nuclear reactors Fukushima Daiichi nuclear reactors Tiny travelers from deep space could assist in healing Fukushima's nuclear scar Researchers have devised a method to use cosmic rays to gather detailed information from inside the damaged cores of the Fukushima Daiichi nuclear reactors. October 17, 2012 Los Alamos National Laboratory Muon Radiography team members stand in front of the damaged Fukushima Daiichi reactor complex during a visit to determine evaluate whether Los Alamos' Scattering Method for cosmic-ray radiography could be used to image the location of nuclear materials within the reactor buildings. Los Alamos National Laboratory Muon Radiography team members stand in front of the damaged Fukushima Daiichi reactor complex during a visit to determine evaluate whether Los Alamos' Scattering Method for cosmic-ray

464

Secretary Bodman Travels to Russia to Advance Energy Security | Department  

Broader source: Energy.gov (indexed) [DOE]

Russia to Advance Energy Security Russia to Advance Energy Security Secretary Bodman Travels to Russia to Advance Energy Security March 15, 2006 - 12:20pm Addthis Promotes Transparent Markets and Clean Energy Technologies; Participates in G8 Energy Ministerial and Delivers Remarks on the Global Nuclear Energy Partnership MOSCOW, RUSSIA-U.S. Secretary of Energy Samuel W. Bodman today began a two-day visit to Russia where he will lead the U.S. delegation to the G8 Energy Ministerial. During his visit the Secretary will promote greater energy security through the use of advanced energy technologies, the promotion of stable and transparent investment climates, and increased conservation and energy efficiency. Secretary Bodman will also deliver remarks to the Carnegie Center on the Global Nuclear Energy Partnership

465

Simulation and Analysis of Superconducting Traveling-Wave Parametric Amplifiers  

E-Print Network [OSTI]

Superconducting parametric amplifiers have great promise for quantum-limited readout of superconducting qubits and detectors. Until recently, most superconducting parametric amplifiers had been based on resonant structures, limiting their bandwidth and dynamic range. Broadband traveling-wave parametric amplifiers based both on the nonlinear kinetic inductance of superconducting thin films and on Josephson junctions are in development. By modifying the dispersion property of the amplifier circuit, referred to as dispersion engineering, the gain can be greatly enhanced and the size can be reduced. We present two theoretical frameworks for analyzing and understanding such parametric amplifiers: (1) generalized coupled-mode equations and (2) a finite difference time domain (FDTD) model combined with a small signal analysis. We show how these analytical and numerical tools may be used to understand device performance.

Saptarshi Chaudhuri; Jiansong Gao; Kent Irwin

2015-01-11T23:59:59.000Z

466

Decelerating and bunching molecules with pulsed traveling optical lattices  

SciTech Connect (OSTI)

We investigate the deceleration and bunching of cold molecules in a pulsed supersonic jet using a far-off-resonant optical lattice traveling with a constant velocity. Using an analytical treatment, we show that by choosing the lattice velocity equal to half the supersonic beam velocity and by optimizing the pulse duration, a significant fraction ({approx}33%) of translationally cold (1 K) CO molecules from a supersonic molecular beam can be decelerated to zero velocity, and simultaneously bunched in velocity space. Due to the large difference of polarizability to mass ratio between the buffer gas and the CO molecules in the pulsed jet, the buffer gas can be precluded from the fraction of stationary molecules by choosing a suitable pulse duration. Furthermore, we find that spatial bunching within the optical lattice is induced and the position of the bunch within the lattice can be chosen by varying the lattice velocity.

Dong Guangjiong; Lu Weiping; Barker, P.F. [Department of Physics, School of Engineering Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

2004-01-01T23:59:59.000Z

467

Neutron damage reduction in a traveling wave reactor  

SciTech Connect (OSTI)

Traveling wave reactors are envisioned to run on depleted or natural uranium with no need for enrichment or reprocessing, and in a manner which requires little to no operator intervention. If feasible, this type of reactor has significant advantages over conventional nuclear power systems. However, a practical implementation of this concept is challenging as neutron irradiation levels many times greater than those in conventional reactors appear to be required for a fission wave to propagate. Radiation damage to the fuel and cladding materials presents a significant obstacle to a practical design. One possibility for reducing damage is to soften the neutron energy spectrum. Here we show that using a uranium oxide fuel form will allow a shift in the neutron spectrum that can result in at least a three fold decrease in dpa levels for fuel cladding and structural steels within the reactor compared with the dpa levels expected when using a uranium metal fuel. (authors)

Osborne, A. G.; Deinert, M. R. [Dept. of Mechanical Engineering, Univ. of Texas at Austin, Austin, TX (United States)

2012-07-01T23:59:59.000Z

468

Secretary Bodman Travels to Saudi Arabia to Discuss Global Energy  

Broader source: Energy.gov (indexed) [DOE]

Saudi Arabia to Discuss Global Energy Saudi Arabia to Discuss Global Energy Investments Secretary Bodman Travels to Saudi Arabia to Discuss Global Energy Investments January 19, 2007 - 10:38am Addthis Furthers Strategic Energy Dialogue between the Nations and Highlights U.S. - Saudi Scientific Innovation RIYADH, SAUDI ARABIA - U.S. Secretary of Energy Samuel W. Bodman today continued his six-nation visit to the Middle East and Europe with a two-day stop in Saudi Arabia where he met with Saudi Arabia's Minister of Petroleum and Mineral Resources Ali Ibrahim Al-Naimi to discuss joint energy cooperation. Secretary Bodman also toured the King Abdul-Aziz City for Science and Technology (KACST) and will tour the King Abdullah University of Science and Technology during his visit. "The United States and Saudi Arabia enjoy a relationship of global

469

Secretary Bodman Travels to the Middle East | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the Middle East the Middle East Secretary Bodman Travels to the Middle East November 10, 2005 - 2:22pm Addthis Four-nation swing to emphasize domestic energy needs and goals WASHINGTON, DC - Secretary of Energy Samuel W. Bodman embarked upon a four-nation tour through the Middle East to enhance the United States' relationship with major oil-producing nations, promote economic liberalization and increased foreign investment in the region, and reaffirm U.S. energy policy goals. "Both consumers and producers of energy depend on a vibrant, growing world economy. By working together we can increase the energy and economic security of the United States and our international partners and pursue continued growth and prosperity in developed and developing nations," Secretary Bodman said.

470

Using revealed preferences to estimate the Value of Travel Time to recreation sites  

Science Journals Connector (OSTI)

Abstract The opportunity Value of Travel Time (VTT) is one of the most important elements of the total cost of recreation day-trips and arguably the most difficult to estimate. Most studies build upon the theoretical framework proposed by Becker (1965) by using a combination of revealed and stated preference data to estimate a value of time which is uniform in all activities and under all circumstances. This restriction is relaxed by DeSerpa's (1971) model which allows the value of saving time to be activity-specific. We present the first analysis which uses actual driving choices between open access and toll roads to estimate a VTT specific for recreation trips, thereby providing a value which conforms to both Becker's and DeSerpa's theoretical models. Using these findings we conduct a Monte Carlo simulation to identify generalizable results for subsequent valuation studies. Our results indicate that 3/4 of the wage rate provides a reasonable approximation of the average VTT for recreation trips, while the commonly implemented assumption of 1/3 of the wage rate generates downward biased results.

Carlo Fezzi; Ian J. Bateman; Silvia Ferrini

2014-01-01T23:59:59.000Z

471

Compact Formulations of the Steiner Traveling Salesman Problem ...  

E-Print Network [OSTI]

one often encounters the following variant of the TSP. ... We will follow CornuÚjols et al. ...... Now, ga represents the total load (if any) that is carried along.

2012-03-16T23:59:59.000Z

472

REQUEST TO TRAVEL FORM Group: ___________________________________ Funding Board/Department: _________________  

E-Print Network [OSTI]

: _________________________ Website/Address: __________________________________ Payment Method: ___________________ (Credit Card __________________________________ Rental Vehicle Cost per day: $________+ Tax $______ ( ___% tax rate) = $_________total *Attach list: ______________________________________________ Tax ID#___________________________ Cost of Hotel per night: $___________+ Tax $______ ( ___% tax rate

Fernandez, Eduardo

473

Jordan Thayer and Wheeler Ruml (UNH) Distance Estimates For Search 1 / 40 Using Distance Estimates In Heuristic Search  

E-Print Network [OSTI]

Jordan Thayer and Wheeler Ruml (UNH) Distance Estimates For Search ┬ş 1 / 40 Using Distance Estimates In Heuristic Search Jordan T. Thayer and Wheeler Ruml jtd7, ruml at cs.unh.edu slides at: http Search Bounded Suboptimal Anytime Search Summary Backup Slides Jordan Thayer and Wheeler Ruml (UNH

Ruml, Wheeler

474

Impact of fuel price on vehicle miles traveled (VMT): do the poor respond in the same way as the rich?  

Science Journals Connector (OSTI)

The effects of fuel price on travel demand for different income groups ... choices and constraints by examining the variation of fuel price elasticity of vehicle miles travelled (VMT) ... in VMT as a result of im...

Tingting Wang; Cynthia Chen

2014-01-01T23:59:59.000Z

475

State Residential Commercial Industrial Transportation Total  

Gasoline and Diesel Fuel Update (EIA)

schedules 4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total 2012 Total Electric Industry- Average Retail Price (centskWh) (Data from...

476

Total cost model for making sourcing decisions  

E-Print Network [OSTI]

This thesis develops a total cost model based on the work done during a six month internship with ABB. In order to help ABB better focus on low cost country sourcing, a total cost model was developed for sourcing decisions. ...

Morita, Mark, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

477

Team Total Points Beta Theta Pi 2271  

E-Print Network [OSTI]

Bubbles 40 Upset City 30 Team Success 30 #12;Team Total Points Sly Tye 16 Barringer 15 Fire Stinespring 15

Buehrer, R. Michael

478

Do Telecommunications Affect Passenger Travel or Vice Versa? Structural Equation Models of Aggregate U.S. Time Series Data Using Composite Indexes  

E-Print Network [OSTI]

D.C. , 1992. The Telecommunications and Travel Behavior3. Mokhtarian, P. L. Telecommunications and Travel: The Caseand S. Marvin. Telecommunications and the City: Electronic

Choo, Sangho; Mokhtarian, Patricia L

2005-01-01T23:59:59.000Z

479

A Constraint on the Distance Scale to Cosmological Gamma-Ray Bursts  

Science Journals Connector (OSTI)

If ?-ray bursts are cosmological in origin, the sources are expected to trace the large-scale structure of luminous matter in the universe. I use a new likelihood method that compares the counts-in-cells distribution of ?-ray bursts in the BATSE 3B catalog with that expected from the known large-scale structure of the universe, in order to place a constraint on the distance scale to cosmological bursts. I find, at the 95% confidence level, that the comoving distance to the "edge" of the burst distribution is greater than 630 h-1 Mpc (z > 0.25), and that the nearest burst is farther than 40 h-1 Mpc. The median distance to the nearest burst is 170 h-1 Mpc, implying that the total energy released in ?-rays during a burst event is of order 3 ? 1051 h-2 ergs. None of the bursts that have been observed by BATSE are in nearby galaxies, nor is a signature from the Coma Cluster or the "Great Wall" likely to be seen in the data at present.

Jean

1996-01-01T23:59:59.000Z

480

Image Segmentation Using Active Contours and Evidential Distance  

Science Journals Connector (OSTI)

We proposed a new segmentation based on Active Contours (AC) for vector-valued image that incorporates evidential distance. The proposed method combine both Belief Functions (BFs) and probability functions in ...

Foued Derraz; Antonio Pintiů

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total distance traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Verification of speckle contrast measurement interrelation with observation distance  

Science Journals Connector (OSTI)

The speckle contrasts of two types of laser projectors were measured at various observation distances and observation lens pinhole diameters using a quantitative measurement technique. We found that the speckl...

Koji Suzuki; Tatsuo Fukui; Shigeo Kubota; Yasunori Furukawa

2014-01-01T23:59:59.000Z

482

Cepheid Variables and their Application to the Cosmological Distance Scale  

E-Print Network [OSTI]

In the current era of ôprecision cosmologyö, measuring the expansion rate of the Universe (Hubble constant, or H0) more accurately and precisely helps to better constrain the properties of dark energy. Cepheid-based distances are a critical step...

Hoffmann, Samantha L

2013-05-02T23:59:59.000Z

483

TOWARD THE MINIMUM INNER EDGE DISTANCE OF THE HABITABLE ZONE  

E-Print Network [OSTI]

We explore the minimum distance from a host star where an exoplanet could potentially be habitable in order not to discard close-in rocky exoplanets for follow-up observations. We find that the inner edge of the Habitable ...

Zsom, Andras

484

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 Nevada - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 4 4 4 3 4 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 4 4 4 3 4

485

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Idaho - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

486

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Washington - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

487

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Maine - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

488

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Minnesota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

489

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 South Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

490

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 North Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

491

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Iowa - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

492

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Massachusetts - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

493

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Minnesota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

494

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 New Jersey - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

495

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Vermont - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

496

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Wisconsin - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

497

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 North Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

498

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 New Jersey - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

499

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Maryland - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 7 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells 35 28 43 43 34 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 35

500

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 New Hampshire - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0