Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Determination of Total Solids in Biomass and Total Dissolved...  

NLE Websites -- All DOE Office Websites (Extended Search)

Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 3312008 A. Sluiter, B. Hames, D. Hyman, C. Payne,...

2

Assessment of the validity of conductivity as an estimate of total dissolved solids in heavy-duty coolants  

SciTech Connect

Conductivity is widely used in the analysis of heavy-duty coolants to estimate total dissolved solids. TDS is of concern in heavy-duty coolants because the practice of adding supplemental coolant additives (SCAs) to the coolant can lead to overloading and to subsequent water pump seal weepage and failure. Conductivity has the advantage of being quick and easy to measure and the equipment is inexpensive. However, questions are continually raised as to whether conductivity truly is a valid method of estimating TDS and, if so, over what concentration range. The introduction of new chemistries in heavy-duty coolants and new extended service interval (ESI) technologies prompts a critical assessment. Conductivity and TDS measurements for all of the coolants and SCAs used in heavy-duty engines in North America will be presented. The effects of glycol concentration on conductivity will also be examined.

Carr, R.P. [Penray Companies, Inc., Wheeling, IL (United States)

1999-08-01T23:59:59.000Z

3

Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam  

SciTech Connect

At the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam. Dissolved atmospheric gas supersaturation generated by spill from Bonneville Dam may diminish survival of chum (Oncorhynchus keta) salmon when sac fry are still present in the gravel downstream from Bonneville Dam. However, no previous work has been conducted to determine whether total dissolved gas (TDG) levels are elevated during spring spill operations within incubation habitats. The guidance used by hydropower system managers to provide protection for pre-emergent chum salmon fry has been to limit TDG to 105% after allowing for depth compensation. A previous literature review completed in early 2006 shows that TDG levels as low as 103% have been documented to cause mortality in sac fry. Our study measured TDG in the incubation environment to evaluate whether these levels were exceeded during spring spill operations. Total dissolved gas levels were measured within chum salmon spawning areas near Ives Island and Multnomah Falls on the Columbia River. Water quality sensors screened at egg pocket depth and to the river were installed at both sites. At each location, we also measured dissolved oxygen, temperature, specific conductance, and water depth to assist with the interpretation of TDG results. Total dissolved gas was depth-compensated to determine when levels were high enough to potentially affect sac fry. This report provides detailed descriptions of the two study sites downstream of Bonneville Dam, as well as the equipment and procedures employed to monitor the TDG levels at the study sites. Results of the monitoring at both sites are then presented in both text and graphics. The findings and recommendations for further research are discussed, followed by a listing of the references cited in the report.

Arntzen, Evan V.; Geist, David R.; Panther, Jennifer L.; Dawley, Earl

2007-01-30T23:59:59.000Z

4

Total Synthesis of Convex Polyhedral Hydrocarbons The Platonic Solids  

E-Print Network (OSTI)

O H H Total Synthesis of Convex Polyhedral Hydrocarbons The Platonic Solids O O t-BuO3C Br O O Br Br Ph PhPh Ph PhPh Ph Ph COOH HOOC Total Synthesis of Convex Polyhedral Hydrocarbons The Five Matter Icosahedron Water · Polyhedron: a closed surface made up of polygonal regions. · Regular

Stoltz, Brian M.

5

Effects of Total Dissolved Gas on Chum Salmon Fry Incubating in the Lower Columbia River  

SciTech Connect

This report describes research conducted by Pacific Northwest National Laboratory in FY 2007 for the U.S. Army Corps of Engineers, Portland District, to characterize the effects of total dissolved gas (TDG) on the incubating fry of chum salmon (Onchorhynchus keta) in the lower Columbia River. The tasks conducted and results obtained in pursuit of three objectives are summarized: * to conduct a field monitoring program at the Ives Island and Multnomah Falls study sites, collecting empirical data on TDG to obtain a more thorough understanding of TDG levels during different river stage scenarios (i.e., high-water year versus low-water year) * to conduct laboratory toxicity tests on hatchery chum salmon fry at gas levels likely to occur downstream from Bonneville Dam * to sample chum salmon sac fry during Bonneville Dam spill operations to determine if there is a physiological response to TDG levels. Chapter 1 discusses the field monitoring, Chapter 2 reports the findings of the laboratory toxicity tests, and Chapter 3 describes the field-sampling task. Each chapter contains an objective-specific introduction, description of the study site and methods, results of research, and discussion of findings. Literature cited throughout this report is listed in Chapter 4. Additional details on the study methdology and results are provided in Appendixes A through D.

Arntzen, Evan V.; Hand, Kristine D.; Geist, David R.; Murray, Katherine J.; Panther, Jenny; Cullinan, Valerie I.; Dawley, Earl M.; Elston, Ralph A.

2008-01-30T23:59:59.000Z

6

Prediction of Total Dissolved Gas (TDG) at Hydropower Dams throughout the Columbia  

SciTech Connect

The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. The entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin cause elevated levels of total dissolved gas (TDG) saturation. Physical processes that affect TDG exchange at hydropower facilities have been characterized throughout the CRB in site-specific studies and at real-time water quality monitoring stations. These data have been used to develop predictive models of TDG exchange which are site specific and account for the fate of spillway and powerhouse flows in the tailrace channel and resultant transport and exchange in route to the downstream dam. Currently, there exists a need to summarize the findings from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow for the formulation of optimal water regulation schedules subject to water quality constraints for TDG supersaturation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases.

Pasha, MD Fayzul K [ORNL] [ORNL; Hadjerioua, Boualem [ORNL] [ORNL; Stewart, Kevin M [ORNL] [ORNL; Bender, Merlynn [Bureau of Reclamation] [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers] [U.S. Army Corps of Engineers

2012-01-01T23:59:59.000Z

7

Total Dissolved Gas Effects on Incubating Chum Salmon Below Bonneville Dam  

SciTech Connect

At the request of the U.S. Army Corps of Engineers (USACE; Portland District), Pacific Northwest National Laboratory (PNNL) undertook a project in 2006 to look further into issues of total dissolved gas (TDG) supersaturation in the lower Columbia River downstream of Bonneville Dam. In FY 2008, the third year of the project, PNNL conducted field monitoring and laboratory toxicity testing to both verify results from 2007 and answer some additional questions about how salmonid sac fry respond to elevated TDG in the field and the laboratory. For FY 2008, three objectives were 1) to repeat the 2006-2007 field effort to collect empirical data on TDG from the Ives Island and Multnomah Falls study sites; 2) to repeat the static laboratory toxicity tests on hatchery chum salmon fry to verify 2007 results and to expose wild chum salmon fry to incremental increases in TDG, above those of the static test, until external symptoms of gas bubble disease were clearly present; and 3) to assess physiological responses to TDG levels in wild chum salmon sac fry incubating below Bonneville Dam during spill operations. This report summarizes the tasks conducted and results obtained in pursuit of the three objectives. Chapter 1 discusses the field monitoring, Chapter 2 reports the findings of the laboratory toxicity tests, and Chapter 3 describes the field-sampling task. Each chapter contains an objective-specific introduction, description of the study site and methods, results of research, and discussion of findings. Literature cited throughout this report is listed in Chapter 4. Additional details on the monitoring methodology and results are provided in Appendices A and B included on the compact disc bound inside the back cover of the printed version of this report.

Arntzen, Evan V.; Hand, Kristine D.; Carter, Kathleen M.; Geist, David R.; Murray, Katherine J.; Dawley, Earl M.; Cullinan, Valerie I.; Elston, Ralph A.; Vavrinec, John

2009-01-29T23:59:59.000Z

8

The effects of total dissolved gas on chum salmon fry survival, growth, gas bubble disease, and seawater tolerance  

SciTech Connect

Chum salmon Oncorhynchus keta alevin developing in gravel habitats downstream of Bonneville Dam on the Columbia River are exposed to elevated levels of total dissolved gas (TDG) when water is spilled at the dam to move migrating salmon smolts downstream to the Pacific Ocean. Current water quality criteria for the management of dissolved gas in dam tailwaters were developed primarily to protect salmonid smolts and are assumed to be protective of alevin if adequate depth compensation is provided. We studied whether chum salmon alevin exposed to six levels of dissolved gas ranging from 100% to 130% TDG at three development periods between hatch and emergence (hereafter early, middle, and late stage) suffered differential mortality, growth, gas bubble disease, or seawater tolerance. Each life stage was exposed for 50 d (early stage), 29 d (middle stage), or 16 d (late stage) beginning at 13, 34, and 37 d post-hatch, respectively, through 50% emergence. The mortality for all stages from exposure to emergence was estimated to be 8% (95% confidence interval (CI) of 4% to 12%) when dissolved gas levels were between 100% and 117% TDG. Mortality significantly increased as dissolved gas levels rose above 117% TDG,; with the lethal concentration that produced 50% mortality (LC50 ) was estimated to be 128.7% TDG (95% CI of 127.2% to 130.2% TDG) in the early and middle stages. By contrast, there was no evidence that dissolved gas level significantly affected growth in any life stage except that the mean wet weight at emergence of early stage fish exposed to 130% TDG was significantly less than the modeled growth of unexposed fish. The proportion of fish afflicted with gas bubble disease increased with increasing gas concentrations and occurred most commonly in the nares and gastrointestinal tract. Early stage fish exhibited higher ratios of filament to lamellar gill chloride cells than late stage fish, and these ratios increased and decreased for early and late stage fish, respectively, as gas levels increased; however, there were no significant differences in mortality between life stages after 96 h in seawater. The study results suggest that current water quality guidelines for the management of dissolved gas appear to offer a conservative level of protection to chum salmon alevin incubating in gravel habitat downstream of Bonneville Dam.

Geist, David R.; Linley, Timothy J.; Cullinan, Valerie I.; Deng, Zhiqun

2013-02-01T23:59:59.000Z

9

A data reconnaissance on the effect of suspended-sediment concentrations on dissolved-solids concentrations in rivers and tributaries in the Upper Colorado River Basin  

Science Journals Connector (OSTI)

Summary The Colorado River is one of the most important sources of water in the western United States, supplying water to over 35 million people in the U.S. and 3 million people in Mexico. High dissolved-solids loading to the River and tributaries are derived primarily from geologic material deposited in inland seas in the mid-to-late Cretaceous Period, but this loading may be increased by human activities. High dissolved solids in the River causes substantial damages to users, primarily in reduced agricultural crop yields and corrosion. The Colorado River Basin Salinity Control Program was created to manage dissolved-solids loading to the River and has focused primarily on reducing irrigation-related loading from agricultural areas. This work presents a reconnaissance of existing data from sites in the Upper Colorado River Basin (UCRB) in order to highlight areas where suspended-sediment control measures may be useful in reducing dissolved-solids concentrations. Multiple linear regression was used on data from 164 sites in the UCRB to develop dissolved-solids models that include combinations of explanatory variables of suspended sediment, flow, and time. Results from the partial t-test, overall likelihood ratio, and partial likelihood ratio on the models were used to group the sites into categories of strong, moderate, weak, and no-evidence of a relation between suspended-sediment and dissolved-solids concentrations. Results show 68 sites have strong or moderate evidence of a relation, with drainage areas for many of these sites composed of a large percentage of clastic sedimentary rocks. These results could assist water managers in the region in directing field-scale evaluation of suspended-sediment control measures to reduce UCRB dissolved-solids loading.

Fred D Tillman; David W. Anning

2014-01-01T23:59:59.000Z

10

Evaluation of Membrane Processes for Reducing Total Dissolved Solids Discharged to the Truckee River  

E-Print Network (OSTI)

for endangered species. Reverse osmosis RO and nanofiltration NF , in conjunction with ultrafiltration UF also have to be removed from the effluent in order to maintain their TMDLs. Reverse osmosis RO

11

Determination of Total Solids and Ash in Algal Biomass: Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solids and Ash in Algal Biomass Laboratory Analytical Procedure (LAP) Issue Date: December 2, 2013 S. Van Wychen and L. M. L. Laurens Technical Report NRELTP-5100-60956 December...

12

Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP)  

SciTech Connect

This procedure describes the methods used to determine the amount of moisture or total solids present in a freeze-dried algal biomass sample, as well as the ash content. A traditional convection oven drying procedure is covered for total solids content, and a dry oxidation method at 575?C is covered for ash content.

Van Wychen, S.; Laurens, L. M. L.

2013-12-01T23:59:59.000Z

13

Table 19. Reported proved nonproducing reserves of crude oil, lease condensate, nonassociated gas, associated dissolved gas, and total gas (wet after lease separation), 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Reported proved nonproducing reserves of crude oil, lease condensate, : Reported proved nonproducing reserves of crude oil, lease condensate, nonassociated gas, associated dissolved gas, and total gas (wet after lease separation), 2011 a Lease Nonassociated Associated Total Crude Oil Condensate Gas Dissolved Gas Gas State and Subdivision (Million bbls) (Million bbls) (Bcf) (Bcf) (Bcf) Alaska 566 0 288 63 351 Lower 48 States 8,483 880 104,676 13,197 117,873 Alabama 1 0 101 1 102 Arkansas 0 0 5,919 0 5,919 California 542 2 267 128 395 Coastal Region Onshore 248 0 0 20 20 Los Angeles Basin Onshore 69 0 0 23 23 San Joaquin Basin Onshore 163 0 265 54 319 State Offshore 62 2 2 31 33 Colorado 208 30 5,316 1,478 6,794 Florida 4 0 4 0 4 Kansas 4 0 244 39 283 Kentucky 0 0 75 0 75 Louisiana 152 29 14,905 257 15,162 North 30 10 13,820 12 13,832 South Onshore 113 17 1,028 232 1,260 State Offshore 9 2 57 13 70 Michigan 0

14

Process for separating dissolved solids from a liquid using an anti-solvent and multiple effect evaporators  

DOE Patents (OSTI)

A process and system are disclosed for treating aluminum salt cake containing water soluble halide salts by contacting the salt cake with water to dissolve water soluble halide salts forming a saturated brine solution. Transporting a portion of about 25% of the saturated brine solution to a reactor and introducing into the saturated brine solution at least an equal volume of a water-miscible low-boiling organic material such as acetone to precipitate a portion of the dissolved halide salts forming a three-phase mixture of an aqueous-organic-salt solution phase and a precipitated salt phase and an organic rich phase. The precipitated salt phase is separated from the other phases and the organic rich phase is recycled to the reactor. The remainder of the saturated brine solution is sent to a multiple effect evaporator having a plurality of stages with the last stage thereof producing low grade steam which is used to boil off the organic portion of the solution which is recycled. 3 figs.

Daniels, E.J.; Jody, B.J.; Bonsignore, P.V.

1994-07-19T23:59:59.000Z

15

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

16

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

17

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

18

Computed solid phases limiting the concentration of dissolved constituents in basalt aquifers of the Columbia Plateau in eastern Washington. Geochemical modeling and nuclide/rock/groundwater interaction studies  

SciTech Connect

A speciation-solubility geochemical model, WATEQ2, was used to analyze geographically-diverse, ground-water samples from the aquifers of the Columbia Plateau basalts in eastern Washington. The ground-water samples compute to be at equilibrium with calcite, which provides both a solubility control for dissolved calcium and a pH buffer. Amorphic ferric hydroxide, Fe(OH)/sub 3/(A), is at saturation or modestly oversaturated in the few water samples with measured redox potentials. Most of the ground-water samples compute to be at equilibrium with amorphic silica (glass) and wairakite, a zeolite, and are saturated to oversaturated with respect to allophane, an amorphic aluminosilicate. The water samples are saturated to undersaturated with halloysite, a clay, and are variably oversaturated with regard to other secondary clay minerals. Equilibrium between the ground water and amorphic silica presumably results from the dissolution of the glassy matrix of the basalt. The oversaturation of the clay minerals other than halloysite indicates that their rate of formation lags the dissolution rate of the basaltic glass. The modeling results indicate that metastable amorphic solids limit the concentration of dissolved silicon and suggest the same possibility for aluminum and iron, and that the processes of dissolution of basaltic glass and formation of metastable secondary minerals are continuing even though the basalts are of Miocene age. The computed solubility relations are found to agree with the known assemblages of alteration minerals in the basalt fractures and vesicles. Because the chemical reactivity of the bedrock will influence the transport of solutes in ground water, the observed solubility equilibria are important factors with regard to chemical-retention processes associated with the possible migration of nuclear waste stored in the earth's crust.

Deutsch, W.J.; Jenne, E.A.; Krupka, K.M.

1982-08-01T23:59:59.000Z

19

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

20

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

22

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

23

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

24

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

25

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

26

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

27

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

28

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

29

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

30

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

31

Dissolved state of chromium in seawater  

Science Journals Connector (OSTI)

... dissolved in a small amount of diluted nitric acid. The resulting solution was used for flameless atomic absorption analysis. The total amount of inorganic Cr(III) present was determined from ...

Eiichiro Nakayama; Hiroyuki Tokoro; Tooru Kuwamoto; Taitiro Fujinaga

1981-04-30T23:59:59.000Z

32

Adjustment of Total Suspended Solids Data for Use in Sediment Studies G. Douglas Glysson (1), John R. Gray (2), and Lisa M. Conge (2)  

E-Print Network (OSTI)

and ancillary data are the underpinnings for assessment and remediation of sediment-impaired waters. The U widespread pollutant in the Nation's rivers and streams, affecting aquatic habitat, drinking water treatment-sediment data has been produced using the total suspended solids (TSS) laboratory analysis method. An evaluation

Torgersen, Christian

33

DOE/LX/07-0341&D1 Secondary Document Gold DIssolver Tank DMSA...  

NLE Websites -- All DOE Office Websites (Extended Search)

DIssolver Tank DMSA C-400-03 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 48 DATE OF ORIGINAL SAR: 082487 DATE OF SAR REVISIONS: 061410 REGULATORY...

34

Process for coal liquefaction in staged dissolvers  

DOE Patents (OSTI)

There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a pasting oil, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. In accordance with the improved process, the first dissolver is operated at a higher temperature than the second dissolver. This temperature sequence produces improved product selectivity and permits the incorporation of sufficient hydrogen in the solvent for adequate recycle operations.

Roberts, George W. (Emmaus, PA); Givens, Edwin N. (Bethlehem, PA); Skinner, Ronald W. (Allentown, PA)

1983-01-01T23:59:59.000Z

35

The Minnesota Filter: A Tool for Capturing Stormwater Dissolved Phosphorus  

E-Print Network (OSTI)

of urban storm water best management practices, U.S. Environmental Protection Agency, Washington, D.C. #12 in Agricultural Runoff. Journal of Environmental Quality 21(1), 30-35. U.S. EPA. (1999) Preliminary data summary treatment practices provide: ­ Filtration (solids) ­ Infiltration (solids, dissolved?) ­ Sedimentation

Minnesota, University of

36

Unsteady-state material balance model for a continuous rotary dissolver  

SciTech Connect

The unsteady-state continuous rotary dissolver material balance code (USSCRD) is a useful tool with which to study the performance of the rotary dissolver under a wide variety of operating conditions. The code does stepwise continuous material balance calculations around each dissolver stage and the digester tanks. Output from the code consists of plots and tabular information on the stagewise concentration profiles of UO{sub 2}, PuO{sub 2}, fission products, Pu(NO{sub 3}){sub 4}, UO{sub 2}(NO{sub 3}){sub 2}, fission product nitrates, HNO{sub 3}, H{sub 2}O, stainless steel, total particulate, and total fuel in pins. Other information about material transfers, stagewise liquid volume, material inventory, and dissolution performance is also provided. This report describes the development of the code, its limitations, key operating parameters, usage procedures, and the results of the analysis of several sets of operating conditions. Of primary importance in this work was the estimation of the steady-state heavy metal inventory in a 0.5-t/d dissolver drum. Values ranging from {similar_to}12 to >150 kg of U + Pu were obtained for a variety of operating conditions. Realistically, inventories are expected to be near the lower end of this range. Study of the variation of operating parameters showed significant effects on dissolver product composition from intermittent solids feed. Other observations indicated that the cycle times for the digesters and shear feed should be closely coupled in order to avoid potential problems with off-specification product. 19 references, 14 tables.

Lewis, B.E.

1984-09-01T23:59:59.000Z

37

Long-term patterns of dissolved organic carbon in lakes across ...  

Science Journals Connector (OSTI)

... dynamics of dissolved organic carbon (DOC) in 55 lakes during ice-free periods in five regions across eastern Canada in relation to total solar radiation (

38

Dredged-material disposal and total suspended matter offshore from Galveston, Texas  

E-Print Network (OSTI)

studies in such a program focus on water quality in general and the determination of heavy metals and dissolved oxygen in particular. The interdependence of these three types of study is illustrated by the chemist's use of suspended solids...DREDGED-MATERIAL DISPOSAL AND TOTAL SUSPENDED MATTER OFFSHORE FROM GALVESTON, TEXAS A Thesis by Thomas Edward Cool Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER...

Cool, Thomas Edward

1976-01-01T23:59:59.000Z

39

Process for coal liquefaction by separation of entrained gases from slurry exiting staged dissolvers  

DOE Patents (OSTI)

There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a solvent, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals are separated from the condensed dissolver effluent. In accordance with the improved process, fresh hydrogen is fed to each dissolver and the entrained gas from each dissolver is separated from the slurry phase and removed from the reactor system before the condensed phase is passed to the next dissolver in the series. In accordance with another process, the feeds to the dissolvers are such that the top of each downstream dissolver is used as a gas-liquid separator.

Givens, Edwin N. (Bethlehem, PA); Ying, David H. S. (Macungie, PA)

1983-01-01T23:59:59.000Z

40

DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS  

SciTech Connect

The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

NA

2004-11-22T23:59:59.000Z

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Effectiveness of Native Species Buffer Zones for Nonstructural Treatment of Urban Runoff  

E-Print Network (OSTI)

streptococci, fecal coliforms, dissolved nitrate, total nitrate, dissolved total phosphorus, total phosphorus, dissolved ammonia, total ammonia, dissolved total Kjeldahl nitrogen, total Kjeldahl nitrogen, total lead, and total suspended solids. Four different...

Glick, Roger H.; Wolfe, Mary Leigh; Thurow, Thomas L.

42

Extraction and Quantitative Analysis of Iodine in Solid and Solution Matrixes  

SciTech Connect

129I is a contaminant of interest in the vadose zone and groundwater at numerous federal and privately-owned facilities. Several techniques have been utilized to extract iodine from solid matrices; however, all of them rely on two fundamental approaches: liquid extraction or chemical/heat facilitated volatilization. While these methods are typically chosen for their ease of implementation, they do not totally dissolve the solid. Because some of the iodine partitions onto the soil, extraction methods that do not result in total sample dissolution could underestimate the total iodine content of solid samples. We defined a method that produces complete solid dissolution and conducted laboratory tests to assess its efficacy to completely extract iodine from solid matrices. Testing consisted of potassium nitrate/potassium hydroxide fusion of the sample, followed by sample dissolution in a mixture of sulfuric acid and sodium bisulfite. Direct analysis of the dissolved sample was performed via inductively coupled plasma mass spectrometry (Perkin Elmer Elan DRC II) using a tertiary amine (Spectrasol CFA-C) carrier solution. The fusion extraction method resulted in complete sample dissolution of all solid matrices tested: sediment, glass samples containing low-levels of iodine, as well as tank waste material collected from the Hanford Site. Quantitative analysis of iodine (127I and 129I) showed better than ? 10% accuracy for certified reference standards, with the linear operating range extending more than three orders of magnitude (0.005 to 5 ug/L). Extraction and analysis of four replicates of standard reference material (San Joaquin Soil) from the National Institute of Standards and Technology, Gaithersburg, MD, resulted in an average recovery of 98% with a relative percent deviation of 6%. This simple and cost-effective technique can be applied to solid samples of varying matrices with little or no adaptation.

Brown, Christopher F.; Geiszler, Keith N.; Vickerman, Tanya S.

2005-11-01T23:59:59.000Z

43

Excretion of dissolved organic carbon by eelgrass  

Science Journals Connector (OSTI)

Abstract. The release of dissolved organic carbon (DOC) by eelgrass (Zosteru marina) and its epiphytic ... tive agreement between the U.S. Energy Research.

2000-01-05T23:59:59.000Z

44

2, 537549, 2005 Dissolved iron input  

E-Print Network (OSTI)

the semblance of a dissolved load are coagulated and settled as their freshwater carrier is mixed with seawater of the iron load from the suspended and dissolved mobile fraction to storage in the sediments was measured masses beyond the mixing zone, a process known as the "marine biological carbon pump". This export5

Paris-Sud XI, Université de

45

Compositional controls on melting and dissolving a salt into a ternary melt  

Science Journals Connector (OSTI)

...dissolves into a multi-component...mechanism for heat and mass transport, building from the classical...for much lower heat fluxes than...greater latent heat. (c) Dissolution...solid into a multi-component...developed a family of similarity...

2007-01-01T23:59:59.000Z

46

Native vegetation as nonstructural treatment of urban runoff  

E-Print Network (OSTI)

measured; fecal streptococci, fecal coliforms, dissolved nitrate, total nitrate, dissolved total phosphorus, total phosphorus, dissolved ammonia, total ammonia, dissolved total Kjeldahl nitrogen, total Kjeldahl nitrogen, total lead, and total suspended... was juniper litter and scattered Texas wintergrass (Stipa leucotrzcha). Only total suspended solids, total lead, total Kjeldahl nitrogen, total nitrate, total phosphorus, dissolved nitrate, and dissolved total phosphorus were influenced at the 0. 10...

Glick, Roger Holden

1992-01-01T23:59:59.000Z

47

Delaware Solid Waste Authority (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

48

TOTAL Full-TOTAL Full-  

E-Print Network (OSTI)

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

49

Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars  

DOE Patents (OSTI)

A method is described for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

Black, S.K.; Hames, B.R.; Myers, M.D.

1998-03-24T23:59:59.000Z

50

Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars  

DOE Patents (OSTI)

A method for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

Black, Stuart K. (Denver, CO); Hames, Bonnie R. (Westminster, CO); Myers, Michele D. (Dacono, CO)

1998-01-01T23:59:59.000Z

51

Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation,...

52

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

53

Electrodialysis-ion exchange for the separation of dissolved salts  

SciTech Connect

The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. This report describes the process of electrodialysis-ion exchange (EDIX) for treating aqueous wastes streams consisting of nitrates, sodium, organics, heavy metals, and radioactive species.

Baroch, C.J.; Grant, P.J.

1995-12-31T23:59:59.000Z

54

Simulation of a continuous rotary dissolver  

SciTech Connect

This paper describes the simulation of a rotating, multistage chemical reactor that dissolves spent nuclear fuel for reprocessing in a breeder cycle. The continuous, time-dependent process model of a dissolver was developed using the Advanced Continuous Simulation Language (ACSL) to calculate various temperatures and the masses of the chemical constituents of the solution in each stage. The Gear integration algorithm (Gear 1971) was used to accommodate the stiff dynamics. An arrangement of interacting discrete sections was employed to cause fresh fuel to be added and dissolver rotations to occur at appropriate times. By changing various constants, the model can simulate the effect of different fuel compositions and operational scenarios. The model code is a valuable tool for analysis of the performance of the dissolution system and has been instrumental in its design. 5 refs., 7 figs.

Carnal, C.L.; Hardy, J.E.; Lewis, B.E.

1989-01-01T23:59:59.000Z

55

PII S0016-7037(99)00361-0 Dissolved and particulate carbohydrates in contrasting marine sediments  

E-Print Network (OSTI)

PII S0016-7037(99)00361-0 Dissolved and particulate carbohydrates in contrasting marine sediments D) and mid-Atlantic shelf/slope break (continental margin) sediments. Particulate carbohydrates (PCHOs) rep- resented 5­9% of the total sediment particulate organic carbon (POC), and PCHO remineralization appeared

Burdige, David

56

Fractionation of Dissolved Solutes and Chromophoric Dissolved Organic Matter During Experimental Sea Ice Formation.  

E-Print Network (OSTI)

In the past decade there has been an overall decrease in Arctic Ocean sea ice cover. Changes to the ice cover have important consequences for organic carbon cycling, especially over the continental shelves. When sea ice is formed, dissolved organic...

Smith, Stephanie 1990-

2012-04-16T23:59:59.000Z

57

Dissolved and particulate aluminum in the Columbia River and coastal waters of Oregon and Washington: behavior in near-field and far-field plumes  

E-Print Network (OSTI)

1 Dissolved and particulate aluminum in the Columbia River and coastal waters of Oregon) and particulate (leachable and total) aluminum was examined in the Columbia River and estuary, in near Influence on Shelf Ecosystems (RISE) cruise of May/June 2006. Dissolved and particulate aluminum (Al

Hickey, Barbara

58

Status report on solid control in leachates  

SciTech Connect

Sludge pretreatment will involve some combination of washing and leaching with sodium hydroxide solutions to remove soluble salts and amphoteric material such as alumina. It is of paramount importance to prevent gelation and uncontrolled solid formation in tanks, transfer lines, and process equipment. An evaluation of results of washing and caustic leaching indicates that washing is more effective in dissolving sludge solids than subsequent sodium hydroxide treatment. Only aluminum and chromium were removed more effectively by caustic leaching than by water washing.

Beahm, E.C.; Weber, C.F.; Lee, D.D.; Dillow, T.A.; Hunt, R.D. [Oak Ridge National Lab., TN (United States); Keswa, C.M.; Osseo-Asare, K.; Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)

1998-07-01T23:59:59.000Z

59

Evaluation and validation of criticality codes for fuel dissolver calculations  

SciTech Connect

During the past ten years an OECD/NEA Criticality Working Group has examined the validity of criticality safety computational methods. International calculation tools which were shown to be valid in systems for which experimental data existed were demonstrated to be inadequate when extrapolated to fuel dissolver media. The spread of the results in the international calculation amounted to {plus minus} 12,000 pcm in the realistic fuel dissolver exercise n{degrees} 19 proposed by BNFL, and to {plus minus} 25,000 pcm in the benchmark n{degrees} 20 in which fissile material in solid form is surrounded by fissile material in solution. A theoretical study of the main physical parameters involved in fuel dissolution calculations was performed, i.e. range of moderation, variation of pellet size and the fuel double heterogeneity effect. The APOLLO/P{sub IC} method developed to treat latter effect, permits us to supply the actual reactivity variation with pellet dissolution and to propose international reference values. The disagreement among contributors' calculations was analyzed through a neutron balance breakdown, based on three-group microscopic reaction rates solicited from the participants. The results pointed out that fast and resonance nuclear data in criticality codes are not sufficiently reliable. Moreover the neutron balance analysis emphasized the inadequacy of the standard self-shielding formalism (NITAWL in the international SCALE package) to account for {sup 238}U resonance mutual self-shielding in the pellet-fissile liquor interaction. Improvements in the up-dated 1990 contributions, as do recent complementary reference calculations (MCNP, VIM, ultrafine slowing-down CGM calculation), confirm the need to use rigorous self-shielding methods in criticality design-oriented codes. 6 refs., 11 figs., 3 tabs.

Santamarina, A.; Smith, H.J. (CEA Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France)); Whitesides, G.E. (Oak Ridge National Lab., TN (United States))

1991-01-01T23:59:59.000Z

60

A method for measuring dissolved gases in pore waters  

Science Journals Connector (OSTI)

Sep 5, 1973 ... Pore water intended for dissolved gas analysis is .... solubility values for 35gc, 21

2000-01-02T23:59:59.000Z

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

IMPROVEMENTS IN MODELLING DISSOLVED OXYGEN IN ACTIVATED SLUDGE SYSTEMS  

E-Print Network (OSTI)

1 IMPROVEMENTS IN MODELLING DISSOLVED OXYGEN IN ACTIVATED SLUDGE SYSTEMS Jacek Makinia*, Scott A in a full-scale activated sludge reactor. The Activated Sludge Model No. 1 was used to describe for dissolved oxygen. KEYWORDS Activated sludge; dispersion; dissolved oxygen dynamics; mass transfer

Wells, Scott A.

62

Photochemical and microbial degradation of dissolved lignin phenols: Implications for the fate of terrigenous dissolved organic matter in  

E-Print Network (OSTI)

Photochemical and microbial degradation of dissolved lignin phenols: Implications for the fate level characterizations of dissolved lignin were conducted in Mississippi River plume waters to study degradation were the primary factors affecting lignin concentrations. At salinities >25 psu, photooxidation

Hernes, Peter J.

63

Total Dissolved Gas submodel parameter calibration for use with CRiSP  

E-Print Network (OSTI)

gas levels · included dissipation of gases in reservoirs · included entrainment of powerhouse waters which allows for powerhouse-passed water to become gassed by spill water. The entrainment parameter that powerhouse water is either always or never mixed. CRiSP parameters generally reflect changes in the dam

Washington at Seattle, University of

64

EMSL - solids  

NLE Websites -- All DOE Office Websites (Extended Search)

solids en Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 C. http:www.emsl.pnl.govemslwebpublicationsiodine-solubility-low-activity-waste-borosilicate-...

65

Quantification of the Interaction of Tc with Dissolved Boom Clay Humic Substances  

Science Journals Connector (OSTI)

To elucidate the Tc geochemical behavior in reducing environments relevant to geological disposal and in the presence of humic substances (HS), experiments were set up that resulted for the first time in the determination of an interaction constant for Tc with dissolved humic substances. ... A number of lab-scale Boom Clay (a possible geological underground High-Level Radioactive Waste storage site in Mol, Belgium) batch experiments were set up, combining both different initial Tc(VII) concentrations and different solid/liquid ratios. ... Appendix:? Reactions and Stability Constants for Tc in a Reducing Environment ...

A. Maes; C. Bruggeman; K. Geraedts; J. Vancluysen

2003-01-18T23:59:59.000Z

66

,"Colorado Associated-Dissolved Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

67

On dissolved phosphorus in the Gulf of Mexico  

E-Print Network (OSTI)

: Oceanography ON DISSOLVED PHOSPHOHUS IN THE GULF OF I~1~XICO A Tbesls by DAVID JOHN liRIGHT Approved as to style and content by: l && ~ ~Ohs ' ~f'". . r ead of epact tmen rN 1 tv&ay 1970 ABSTRACT On Dissolved Phosphorus 1n the Gulf of Nexico. (Nay... 1970) David J. Wright, B. S. , Oregon State University; D1rected by: Dr. Lela N. Jeffrey Dissolved phosphorus (P) in the mid-Gulf of Nexico water column during November ranged from 6. l to 79 micro- grams Pjl. In mid-Gulf dissolved inorganic...

Wright, David John

1970-01-01T23:59:59.000Z

68

New Mexico Associated-Dissolved Natural Gas, Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) New Mexico Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade...

69

,"New Mexico Associated-Dissolved Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

70

,"New York Associated-Dissolved Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

71

,"California State Offshore Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

72

Texas State Offshore Associated-Dissolved Natural Gas, Wet After...  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

73

,"California Federal Offshore Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

74

,"Louisiana State Offshore Associated-Dissolved Natural Gas,...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

75

,"Texas State Offshore Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

76

,"Federal Offshore California Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

77

,"California Associated-Dissolved Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

78

Dissolved Organic Carbon Thresholds Affect Mercury Bioaccumulation in Arctic Lakes  

Science Journals Connector (OSTI)

Barkay, T.; Gillman, M.; Turner, R. R.Effects of dissolved organic carbon and salinity on bioavailability of mercury Appl. ... Barkay, Tamar; Gillman, Mark; Turner, Ralph R. ...

Todd D. French; Adam J. Houben; Jean-Pierre W. Desforges; Linda E. Kimpe; Steven V. Kokelj; Alexandre J. Poulain; John P. Smol; Xiaowa Wang; Jules M. Blais

2014-02-13T23:59:59.000Z

79

,"New York Associated-Dissolved Natural Gas Proved Reserves,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annua...

80

Variations in dissolved gas compositions of reservoir fluids...  

Open Energy Info (EERE)

A. E.; Copp, J. F. . 111991. Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field. Proceedings of () ; () : Sixteenth workshop on...

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Barge Truck Total  

Annual Energy Outlook 2012 (EIA)

Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

82

STUDIES ON THE USE OF CARBON DIOXIDE DISSOLVED IN REFRIGERATED BRINE FOR THE PRESERVATION OF WHOLE FISH  

E-Print Network (OSTI)

of water by species of low oil content, such as sole and cod, and an increase in total salt. Con- trolling, NO. Z, 1971. Use of carbon dioxide gas dissolved in re- frigerated seawater seemed promising as an in experiments on holding fish in tanks, carbon dioxide decreased the rate at which their quality was degraded

83

Dissolved organic matter in Chesapeake Bay sediment pore waters  

E-Print Network (OSTI)

Dissolved organic matter in Chesapeake Bay sediment pore waters David J. Burdige * Department of recent studies of dissolved organic matter (DOM) in Chesapeake Bay sediment pore waters are summar- ized water DOM. This analysis shows that much of the DOM accumulating in sediment pore waters appears

Burdige, David

84

Constraining oceanic dust deposition using surface ocean dissolved Al  

E-Print Network (OSTI)

Constraining oceanic dust deposition using surface ocean dissolved Al Qin Han,1 J. Keith Moore,1; accepted 7 December 2007; published 12 April 2008. [1] We use measurements of ocean surface dissolved Al (DEAD) model to constrain dust deposition to the oceans. Our Al database contains all available

Zender, Charles

85

Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 23 25 1990's 25 23 30 46 56 44 38 30 28 27 2000's 29 26 31 32 32 29 18 20 19 29 2010's 38 48 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After

86

Kinetic control of dissolved phosphate in natural rivers - American ...  

Science Journals Connector (OSTI)

gas adsorption onto solid surfaces. Since the process of solution P exchange with solids ...... OVIATT, AND S. S. HALE. 1980. Phosphorus re- generation and the...

2000-03-03T23:59:59.000Z

87

California Federal Offshore Associated-Dissolved Natural Gas, Wet After  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 249 1980's 307 1,110 1,249 1,312 1,252 1990's 1,229 995 987 976 1,077 1,195 1,151 498 437 488 2000's 500 490 459 456 412 776 756 752 702 731 2010's 722 711 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

88

Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 733 1980's 883 758 719 824 774 689 577 569 491 432 1990's 408 437 352 328 357 326 347 281 228 227 2000's 214 159 214 269 193 153 192 179 148 77 2010's 72 77 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

89

Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 1980's 34 12 27 31 14 25 41 13 28 39 1990's 22 14 11 9 11 32 28 31 17 54 2000's 19 19 20 14 12 14 19 15 9 78 2010's 10 104 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

90

Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,038 1980's 1,374 1,228 1,060 959 867 710 691 691 616 581 1990's 573 572 624 502 611 879 824 850 794 713 2000's 652 488 561 450 362 384 347 365 223 362 2010's 334 318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

91

Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 166 1980's 194 184 174 194 189 157 150 145 157 145 1990's 67 136 133 93 85 104 89 56 38 41 2000's 39 30 38 37 40 46 44 37 12 20 2010's 29 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

92

California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 307 1980's 265 265 325 344 256 254 261 243 220 233 1990's 228 220 196 135 145 109 120 129 116 233 2000's 244 185 197 173 188 269 208 211 150 168 2010's 178 172 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

93

Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 51 1980's 122 89 81 108 77 91 98 97 101 68 1990's 86 66 61 53 55 53 51 42 52 67 2000's 70 85 94 112 130 161 195 219 197 312 2010's 302 270 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

94

Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 765 1980's 916 1,040 832 775 690 632 567 488 249 237 1990's 241 192 160 120 134 133 255 287 183 260 2000's 186 168 159 139 107 98 90 73 78 53 2010's 73 98 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

95

Dissolved gaseous mercury behavior in shallow water estuaries  

E-Print Network (OSTI)

The formation of dissolved gaseous mercury (DGM) can be an important pathway for mercury removal from an aquatic environment. DGM evasional fluxes from an aquatic system can account for up to 95% of atmospheric Hg and its deposition pathways. While...

Landin, Charles Melchor

2009-05-15T23:59:59.000Z

96

Microbial production and consumption of marine dissolved organic matter  

E-Print Network (OSTI)

Marine phytoplankton are the principal producers of oceanic dissolved organic matter (DOM), the organic substrate responsible for secondary production by heterotrophic microbes in the sea. Despite the importance of DOM in ...

Becker, Jamie William

2013-01-01T23:59:59.000Z

97

Dissolved Organic Matter Kinetically Controls Mercury Bioavailability to Bacteria  

Science Journals Connector (OSTI)

Predicting the bioavailability of inorganic mercury (Hg) to bacteria that produce the potent bioaccumulative neurotoxin monomethylmercury remains one of the greatest challenges in predicting the environmental fate and transport of Hg. Dissolved organic ...

Sophie A. Chiasson-Gould; Jules M. Blais; Alexandre J. Poulain

2014-02-13T23:59:59.000Z

98

Measurements of dissolved nonmethane hydrocarbons in sea water  

Science Journals Connector (OSTI)

An automated stripping technique for the measurement of dissolved hydrocarbons in sea water is presented together with some results obtained ... cruise from Europe to Brazil. The sea water concentrations of NMHC ...

C. Plass; R. Koppmann; J. Rudolph

99

California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas,  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 175 1980's 207 162 103 114 162 185 149 155 158 141 1990's 110 120 100 108 108 115 112 143 153 174 2000's 203 194 218 196 184 186 161 154 81 91 2010's 92 102 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

100

Dissolved gaseous mercury behavior in shallow water estuaries  

E-Print Network (OSTI)

DISSOLVED GASEOUS MERCURY BEHAVIOR IN SHALLOW WATER ESTUARIES A Thesis by CHARLES MELCHOR LANDIN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 2007 Major Subject: Oceanography DISSOLVED GASEOUS MERCURY BEHAVIOR IN SHALLOW WATER ESTUARIES A Thesis by CHARLES MELCHOR LANDIN Submitted to the Office of Graduate Studies of Texas A...

Landin, Charles Melchor

2008-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The Total Energy Content  

Science Journals Connector (OSTI)

The important message of RG theory [1] is that we have to attribute a specific symmetry to the continuous or infinite solid. Also, magnets with long range magnetic order show properties of an infinite system. Usi...

Dr. Ulrich Kbler; Dr. Andreas Hoser

2010-01-01T23:59:59.000Z

102

Characteristics of solid hold up and circulation rate in the CFB reactor with 3-loops  

Science Journals Connector (OSTI)

The effects of the Uo..., PA/[PA+SA] ratio, total solid inventory and fluidizing velocity of loopseal on the axial solid holdup and the solid circulation rate have been determined with different particle sizes (1...

Jong-Min Lee; Jae-Sung Kim; Jong-Jin Kim

2001-11-01T23:59:59.000Z

103

Isolation and Quantification of Dissolved Lignin from Natural Waters Using Solid-Phase Extraction  

E-Print Network (OSTI)

) in preparation for CuO oxidation. Capillary GC coupled to selected-ion monitoring mass spectrometry (SIM and quantification of trace levels of lignin in seawater. The low blanks and quick cleanup of C18 cartridges support and diagenetic state of vascular plant material9-11 and thus "fingerprint" riverine DOM. Such "fingerprinting

Louchouarn, Patrick

104

Dissolved Oxygen in Allen CreekDissolved Oxygen in Allen Creek Dissolved oxygen (DO) enters the water by diffusion from air, as a by-product of photosynthesis and  

E-Print Network (OSTI)

Dissolved Oxygen in Allen CreekDissolved Oxygen in Allen Creek Dissolved oxygen (DO) enters and rapids. There is an inverse relationship between temperature and DO, i.e. colder water holds more oxygen it supplies oxygen to aquatic organisms. Higher DO levels also give the water a better taste. Figure 2. During

Tyler, Christy

105

Variations of Total Domination  

Science Journals Connector (OSTI)

The study of locatingdominating sets in graphs was pioneered by Slater[186, 187...], and this concept was later extended to total domination in graphs. A locatingtotal dominating set, abbreviated LTD-set, in G

Michael A. Henning; Anders Yeo

2013-01-01T23:59:59.000Z

106

Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 11 14 12 19 17 13 17 19 19 22 1990's 8 10 8 6 47 27 24 26 20 29 2000's 27 25 25 25 19 30 36 34 34 32 2010's 111 98 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Kentucky Associated-Dissolved Natural Gas Proved Reserves, Wet After

107

Florida Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Florida Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 108 1980's 122 99 86 64 90 81 69 62 69 57 1990's 53 45 55 59 117 110 119 112 106 100 2000's 93 96 102 92 88 87 50 110 1 7 2010's 30 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Florida Associated-Dissolved Natural Gas Proved Reserves, Wet After

108

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

109

Total Space Heat-  

Annual Energy Outlook 2012 (EIA)

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

110

Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 181 1980's 200 259 206 173 208 167 190 219 177 236 1990's 510 682 762 1,162 1,088 1,072 1,055 533 772 781 2000's 960 1,025 1,097 1,186 1,293 1,326 1,541 1,838 2,010 1,882 2010's 2,371 2,518 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

111

California Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,961 1980's 3,345 2,660 2,663 2,546 2,507 1990's 2,400 2,213 2,093 1,982 1,698 1,619 1,583 1,820 1,879 2,150 2000's 2,198 1,922 1,900 1,810 2,006 2,585 2,155 2,193 1,917 2,314 2010's 2,282 2,532 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

112

Free Zinc Ion and Dissolved Orthophosphate Effects on  

E-Print Network (OSTI)

historic heavy-metal mining and smelting areas. The lake transitions longitudinally from mesotrophic toxic response by phytoplankton and higher- trophic-level organisms due to elevated dissolved-metal of nutrients, toxicants, and sediment from two major riverine inputs; the St. Joe River from the south

113

Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,360 2,391 2,128 1,794 1,741 1990's 1,554 1,394 1,167 926 980 1,001 1,039 1,016 911 979 2000's 807 796 670 586 557 588 561 641 1,235 1,072 2010's 679 639 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

114

SolidSolid Interactions on Active Adsorbents  

Science Journals Connector (OSTI)

... on the different grades of alumina provide a measure of the relative activities of such adsorbents. When the solid-solid adsorption processes were essentially complete, the absorbance maxima were virtually ...

PHILIP ANTHONY; HARRY ZEITLIN

1960-09-10T23:59:59.000Z

115

In Situ Bioreduction of Uranium (VI) to Submicromolar Levels and Reoxidation by Dissolved Oxygen  

SciTech Connect

Groundwater within Area 3 of the U.S. Department of Energy (DOE) Environmental Remediation Sciences Program (ERSP) Field Research Center at Oak Ridge, TN (ORFRC) contains up to 135 {micro}M uranium as U(VI). Through a series of experiments at a pilot scale test facility, we explored the lower limits of groundwater U(VI) that can be achieved by in-situ biostimulation and the effects of dissolved oxygen on immobilized uranium. Weekly 2 day additions of ethanol over a 2-year period stimulated growth of denitrifying, Fe(III)-reducing, and sulfate-reducing bacteria, and immobilization of uranium as U(IV), with dissolved uranium concentrations decreasing to low levels. Following sulfite addition to remove dissolved oxygen, aqueous U(VI) concentrations fell below the U.S. Environmental Protection Agency maximum contaminant limit (MCL) for drinking water (<30 {micro}g L{sup -1} or 0.126 {micro}M). Under anaerobic conditions, these low concentrations were stable, even in the absence of added ethanol. However, when sulfite additions stopped, and dissolved oxygen (4.0-5.5 mg L{sup -1}) entered the injection well, spatially variable changes in aqueous U(VI) occurred over a 60 day period, with concentrations increasing rapidly from <0.13 to 2.0 {micro}M at a multilevel sampling (MLS) well located close to the injection well, but changing little at an MLS well located further away. Resumption of ethanol addition restored reduction of Fe(III), sulfate, and U(VI) within 36 h. After 2 years of ethanol addition, X-ray absorption near-edge structure spectroscopy (XANES) analyses indicated that U(IV) comprised 60-80% of the total uranium in sediment samples. At the completion of the project (day 1260), U concentrations in MLS wells were less than 0.1 {micro}M. The microbial community at MLS wells with low U(VI) contained bacteria that are known to reduce uranium, including Desulfovibrio spp. and Geobacter spp., in both sediment and groundwater. The dominant Fe(III)-reducing species were Geothrix spp.

Wu, Weimin [ORNL; Carley, Jack M [ORNL; Luo, Jian [Stanford University; Ginder-Vogel, Matthew A. [Stanford University; Cardenas, Erick [Michigan State University, East Lansing; Leigh, Mary Beth [Michigan State University, East Lansing; Hwang, Chaichi [Miami University, Oxford, OH; Kelly, Shelly D [Argonne National Laboratory (ANL); Ruan, Chuanmin [ORNL; Wu, Liyou [University of Oklahoma, Norman; Van Nostrand, Joy [University of Oklahoma, Norman; Gentry, Terry J [ORNL; Lowe, Kenneth Alan [ORNL; Mehlhorn, Tonia L [ORNL; Carroll, Sue L [ORNL; Luo, Wensui [ORNL; Fields, Matthew Wayne [Miami University, Oxford, OH; Gu, Baohua [ORNL; Watson, David B [ORNL; Kemner, Kenneth M [Argonne National Laboratory (ANL); Marsh, Terence [Michigan State University, East Lansing; Tiedje, James [Michigan State University, East Lansing; Zhou, Jizhong [University of Oklahoma, Norman; Fendorf, Scott [Stanford University; Kitanidis, Peter K. [Stanford University; Jardine, Philip M [ORNL; Criddle, Craig [ORNL

2007-01-01T23:59:59.000Z

116

How Dissolved Metal Ions Interact in Solution | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

One Giant Leap for Radiation Biology? One Giant Leap for Radiation Biology? What's in the Cage Matters in Iron Antimonide Thermoelectric Materials Novel Experiments on Cement Yield Concrete Results Watching a Glycine Riboswitch "Switch" Polyamorphism in a Metallic Glass Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed How Dissolved Metal Ions Interact in Solution MAY 2, 2007 Bookmark and Share Researchers at the Department of Energy's Argonne National Laboratory and the University of Notre Dame have successfully applied X-ray scattering techniques to determine how dissolved metal ions interact in solution. Researchers from the U.S. Department of Energy's Argonne National

117

California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,253 1980's 2,713 2,664 2,465 2,408 2,270 2,074 2,006 2,033 1,947 1,927 1990's 1,874 1,818 1,738 1,676 1,386 1,339 1,304 1,494 1,571 1,685 2000's 1,665 1,463 1,400 1,365 1,549 2,041 1,701 1,749 1,632 2,002 2010's 1,949 2,179 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

118

Rapid extraction of dissolved inorganic carbon from seawater and groundwater samples for radiocarbon dating  

E-Print Network (OSTI)

The focus of this thesis is the design and development of a system for rapid extraction of dissolved inorganic carbon from seawater and groundwater samples for radiocarbon dating. The Rapid Extraction of Dissolved Inorganic ...

Gospodinova, Kalina Doneva

2012-01-01T23:59:59.000Z

119

Vapour nucleation in a cryogenicfluiddissolvednitrogen mixture during rapid depressurization  

Science Journals Connector (OSTI)

...the dissolved nitrogen comes out of the...effect of dissolved nitrogen was not addressed...non-condensable gas (nitrogen) in a cryogenic...g. superheated water or pure refrigerants...to estimate the solubility of nitrogen in...

1999-01-01T23:59:59.000Z

120

Mobilization of optically invisible dissolved organic matter in response to rainstorm events  

E-Print Network (OSTI)

Mobilization of optically invisible dissolved organic matter in response to rainstorm events and includes optically invisible dissolved organic matter (iDOM) that accounts for a large proportion (4

Chappell, Nick A

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

SAMPLE RESULTS FROM MCU SOLIDS OUTAGE  

SciTech Connect

Savannah River National Laboratory (SRNL) has received several solid and liquid samples from MCU in an effort to understand and recover from the system outage starting on April 6, 2014. SRNL concludes that the presence of solids in the Salt Solution Feed Tank (SSFT) is the likely root cause for the outage, based upon the following discoveries ? A solids sample from the extraction contactor #1 proved to be mostly sodium oxalate ? A solids sample from the scrub contactor#1 proved to be mostly sodium oxalate ? A solids sample from the Salt Solution Feed Tank (SSFT) proved to be mostly sodium oxalate ? An archived sample from Tank 49H taken last year was shown to contain a fine precipitate of sodium oxalate ? A solids sample from the extraction contactor #1 drain pipe from extraction contactor#1 proved to be mostly sodium aluminosilicate ? A liquid sample from the SSFT was shown to have elevated levels of oxalate anion compared to the expected concentration in the feed Visual inspection of the SSFT indicated the presence of precipitated or transferred solids, which were likely also in the Salt Solution Receipt Tank (SSRT). The presence of the solids coupled with agitation performed to maintain feed temperature resulted in oxalate solids migration through the MCU system and caused hydraulic issues that resulted in unplanned phase carryover from the extraction into the scrub, and ultimately the strip contactors. Not only did this carryover result in the Strip Effluent (SE) being pushed out of waste acceptance specification, but it resulted in the deposition of solids into several of the contactors. At the same time, extensive deposits of aluminosilicates were found in the drain tube in the extraction contactor #1. However it is not known at this time how the aluminosilicate solids are related to the oxalate solids. The solids were successfully cleaned out of the MCU system. However, future consideration must be given to the exclusion of oxalate solids into the MCU system. There were 53 recommendations for improving operations recently identified. Some additional considerations or additional details are provided below as recommendations. ? From this point on, IC-Anions analyses of the DSSHT should be part of the monthly routine analysis in order to spot negative trends in the oxalate leaving the MCU system. Care must be taken to monitor the oxalate content to watch for sudden precipitation of oxalate salts in the system. ? Conduct a study to optimize the cleaning strategy at ARP-MCU through decreasing the concentration or entirely eliminating the oxalic acid. ? The contents of the SSFT should remain unagitated. Routine visual observation should be maintained to ensure there is not a large buildup of solids. As water with agitation provided sufficient removal of the solids in the feed tank, it should be considered as a good means for dissolving oxalate solids if they are found in the future. ? Conduct a study to improve prediction of oxalate solubility in salt batch feed materials. As titanium and mercury have been found in various solids in this report, evaluate if either element plays a role in oxalate solubility during processing. ? Salt batch characterization focuses primarily on characterization and testing of unaltered Tank 21H material; however, non-typical feeds are developed through cleaning, washing, and/or sump transfers. As these solutions are processed through MCU, they may precipitate solids or reduce performance. Salt batch characterization and testing should be expanded to encompass a broader range of feeds that may be processed through ARPMCU.

Peters, T.; Washington, A.; Oji, L.; Coleman, C.; Poirier, M.

2014-09-22T23:59:59.000Z

122

21 briefing pages total  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

123

Dissolved Oxygen Sensing in a Flow Stream using Molybdenum Chloride Optical Indicators  

E-Print Network (OSTI)

Dissolved Oxygen Sensing in a Flow Stream using Molybdenum Chloride Optical Indicators Reza Loloee1@msu.edu Abstract--Dissolved oxygen concentration is considered the most important water quality variable in fish culture. Reliable and continuous (24/7) oxygen monitoring of dissolved oxygen (DO) in the 1 ­ 11 mg

Ghosh, Ruby N.

124

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

125

Summary Max Total Units  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

126

Total Precipitable Water  

SciTech Connect

The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

None

2012-01-01T23:59:59.000Z

127

Total Sustainability Humber College  

E-Print Network (OSTI)

1 Total Sustainability Management Humber College November, 2012 SUSTAINABILITY SYMPOSIUM Green An Impending Global Disaster #12;3 Sustainability is NOT Climate Remediation #12;Our Premises "We cannot, you cannot improve it" (Lord Kelvin) "First rule of sustainability is to align with natural forces

Thompson, Michael

128

Estimates of New and Total Productivity in Central Long Island Sound from In Situ Measurements of Nitrate and Dissolved Oxygen  

E-Print Network (OSTI)

Biogeochemical cycles in estuaries are regulated by a diverse set of physical and biological variables that operate over a variety of time scales. Using in situ optical sensors, we conducted a high-frequency time-series ...

Raymond, Peter A.

129

Nonaqueous composition for slip casting or cold forming refractory material into solid shapes  

SciTech Connect

A composition is described for slip casting or cold forming non-oxide refractory material(s) into solid shape comprising finely divided solid refractory materials selected from the group consisting of metal boride, refractory carbide, nitride, silicide and a refractory metal of tungsten, molybdenum, tantalum and chromium suspended in a nonaqueous liquid slip composition consisting essentially of a deflocculent composed of a vinyl chloride-vinyl acetate resin dissolved in an organic solvent.

Montgomery, L.C.

1993-08-24T23:59:59.000Z

130

Biogeochemical cycling in an organic-rich coastal marine basin: 11. The sedimentary cycling of dissolved, free amino acids  

SciTech Connect

In the anoxic sediments of Cape Lookout Bight, NC, concentrations of total dissolved free amino acids (TDFAAs) are highest near the sediment-water interface, and decrease to non-zero, asymptotic concentrations at depths greater than 20 cm. TDFAAs in the overlying waters are <1 {mu}M. Dissolved free amino acid (DFAA) profiles often show a secondary subsurface maximum in the region between the 1 and 5 mM sulfate isopleths. This phenomenon appears to be related to the transition in the sediments of this region from sulfate reduction to methanogenesis. A steady-state diagenetic model which quantifies the processes affecting DFAAs in these sediments yields rates of DFAA production and consumption that agree reasonably well with independent estimates of these quantities in Cape Lookout Bight and other anoxic marine sediments. The combined results of modelling pore water DFAA and sedimentary amino acid profiles indicate that significant exchange of amino acids occurs between the sediments and pore waters. These results demonstrate that the biogeochemistry of dissolved free amino acids in the pore waters of Cape Lookout Bight sediments is dominated by internal transformations (i.e. production from sedimentary amino acids, microbial remineralization, and reincorporation back into the sediments). There is some uncertainty in the magnitude of the flux of DFAAs across the sediment-water interface, although it appears to be of secondary importance when compared to the other sedimentary processes affecting DFAAs.

Burdige, D.J.; Martens, C.S. (Univ. of North Carolina, Chapel Hill (USA))

1990-11-01T23:59:59.000Z

131

Total isomerization gains flexibility  

SciTech Connect

Isomerization extends refinery flexibility to meet changing markets. TIP (Total Isomerization Process) allows conversion of paraffin fractions in the gasoline boiling region including straight run naptha, light reformate, aromatic unit raffinate, and hydrocrackate. The hysomer isomerization is compared to catalytic reforming. Isomerization routes are graphed. Cost estimates and suggestions on the use of other feedstocks are given. TIP can maximize gas production, reduce crude runs, and complement cat reforming. In four examples, TIP reduces reformer severity and increases reformer yield.

Symoniak, M.F.; Holcombe, T.C.

1983-05-01T23:59:59.000Z

132

On the collision dynamics of a water droplet containing an additive on a heated solid surface  

Science Journals Connector (OSTI)

...etry and the medium (liquid, gas, dispersion) through which...namely, rubber, iron and fine sand. An equation was developed...temperatures for water at We = 74. hydrate droplets, at 20 ms after impact...2001 The effect of dissolving gases or solids in water droplets...

2002-01-01T23:59:59.000Z

133

Bead and Process for Removing Dissolved Metal Contaminants  

SciTech Connect

A bead is provided which comprises or consists essentially of activated carbon immobilized by crosslinked poly (carboxylic acid) binder, sodium silicate binder, or polyamine binder. The bead is effective to remove metal and other ionic contaminants from dilute aqueous solutions. A method of making metal-ion sorbing beads is provided, comprising combining activated carbon, and binder solution (preferably in a pin mixer where it is whipped), forming wet beads, and heating and drying the beads. The binder solution is preferably poly(acrylic acid) and glycerol dissolved in water and the wet beads formed from such binder solution are preferably heated and crosslinked in a convection oven.

Summers, Bobby L., Jr.; Bennett, Karen L.; Foster, Scott A.

2005-01-18T23:59:59.000Z

134

Solid-State Lighting: Solid-State Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid-State Lighting Search Solid-State Lighting Search Search Help Solid-State Lighting HOME ABOUT THE PROGRAM R&D PROJECTS MARKET-BASED PROGRAMS SSL BASICS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES EERE » Building Technologies Office » Solid-State Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards.

135

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

136

Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data  

SciTech Connect

Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

2007-06-25T23:59:59.000Z

137

Funding Opportunity for Solid-State Lighting Advanced Technology R&D 2014  

Energy.gov (U.S. Department of Energy (DOE))

On December 6, 2013, DOE announced solid-state lighting funding opportunity DE-FOA-0000973, "Solid-State Lighting Advanced Technology R&D - 2014." A total of up to $10 million in funding is...

138

Leaching induced concentration profiles in the solid phase of cement  

SciTech Connect

Analysis of the solid phase of portland cement specimens by energy dispersive x-ray spectrometry before and after leaching provided elemental profiles within the cement. Releases of potassium were calculated from the solid phase profiles and were compared to releases determined from leachate analyses of potassium and cesium-137. The fraction of potassium released in the leachate was found to correlate closely to that of cesium-137 under varying time and temperature conditions, despite the different manner in which each was originally contained in the cement. Agreement was obtained among potassium releases as determined from the solid, potassium in the leachate and cesium-137 in the leachate. These correlations allowed the use of potassium as an analog for cesium-137 in cement. Profiles of potassium in the solid showed varying degrees of depletion. A specimen, sectioned immediately after leaching for 471 days, showed complete removal of potassium to 9 mm depth from the specimens surface. From 9 mm to the center of the specimen, an apparently linear increase in concentration was observed. Specimens that had been air dried prior to sectioning had profiles that were produced by evaporative transport of dissolved species toward the surface. Carbonation of the surface appears to have retarded migration of the dissolved material. This prevented it from reaching the outer edge and resulted in increased potassium concentrations several mm inside the surface. 9 refs., 10 figs., 2 tabs.

Fuhrmann, M.; Colombo, P.

1987-04-01T23:59:59.000Z

139

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

140

Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

A Solid Oxide Fuel Cell (SOFC) is typically composed of two porous electrodes, interposed between an electrolyte made of a particular solid oxide ceramic material. The system originates from the work of Nernst...

Nigel M. Sammes; Roberto Bove; Jakub Pusz

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Laser cooling of solids  

SciTech Connect

We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

2008-01-01T23:59:59.000Z

142

Improved solid aerosol generator  

DOE Patents (OSTI)

An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

Prescott, D.S.; Schober, R.K.; Beller, J.

1988-07-19T23:59:59.000Z

143

Table EA-1. Stream-water dissolved Mn at basin outflow of perennial stream at Inspiration Dam illustrating decreases in dissolved Mn in response to remediation efforts. Dissolved Mn in  

E-Print Network (OSTI)

-Jul-98 2.8E-04 24-Nov-98 3.6E-04 11-Feb-99 1.2E-05 Remedial ground-water pumping begins 24-Mar-99 8.9E) and ground-water (GW) chemistry data for streambed sediment sampling sites. Dissolved concentrations in moleTable EA-1. Stream-water dissolved Mn at basin outflow of perennial stream at Inspiration Dam

144

Solid-State Lighting: Solid-State Lighting Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Videos to Solid-State Lighting Videos to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Videos on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Videos on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Videos on Google Bookmark Solid-State Lighting: Solid-State Lighting Videos on Delicious Rank Solid-State Lighting: Solid-State Lighting Videos on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Videos on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Solid-State Lighting Videos On this page you can access DOE Solid-State Lighting (SSL) Program videos. Photo of a museum art gallery with LED lights in track fixtures overhead. The City of Los Angeles LED Streetlight Program

145

Solid-State Lighting: Solid-State Lighting Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

About the About the Program Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting Contacts to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Contacts on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Contacts on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Google Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Delicious Rank Solid-State Lighting: Solid-State Lighting Contacts on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Contacts on AddThis.com... Contacts Partnerships Solid-State Lighting Contacts For information about Solid-State Lighting, contact James Brodrick Lighting Program Manager Building Technologies Office U.S. Department of Energy

146

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

147

Thermodynamic modeling for organic solid precipitation  

SciTech Connect

A generalized predictive model which is based on thermodynamic principle for solid-liquid phase equilibrium has been developed for organic solid precipitation. The model takes into account the effects of temperature, composition, and activity coefficient on the solubility of wax and asphaltenes in organic solutions. The solid-liquid equilibrium K-value is expressed as a function of the heat of melting, melting point temperature, solubility parameter, and the molar volume of each component in the solution. All these parameters have been correlated with molecular weight. Thus, the model can be applied to crude oil systems. The model has been tested with experimental data for wax formation and asphaltene precipitation. The predicted wax appearance temperature is very close to the measured temperature. The model not only can match the measured asphaltene solubility data but also can be used to predict the solubility of asphaltene in organic solvents or crude oils. The model assumes that asphaltenes are dissolved in oil in a true liquid state, not in colloidal suspension, and the precipitation-dissolution process is reversible by changing thermodynamic conditions. The model is thermodynamically consistent and has no ambiguous assumptions.

Chung, T.H.

1992-12-01T23:59:59.000Z

148

The influence of forestry activity on the structure of dissolved organic matter in lakes: Implications for mercury photoreactions  

SciTech Connect

It is well known that dissolved organic matter (DOM) increases in lakes associated with forestry activity but characterization of the DOM structure is incomplete. Twenty-three lakes with a wide range of forestry activities located in central Quebec, Canada were sampled and analyzed for dissolved organic carbon (DOC) concentration, DOC fluorescence, and ultra violet-visible (UV-VIS) absorption spectra. The results show that DOC increases (as does the associated DOC fluorescence) with increased logging (slope = 0.122, r{sup 2} = 0.581, p < 0.001; and slope = 0.283, r{sup 2} = 0.308, p < 0.01, respectively) in the 23 lakes sampled however, the aromaticity of the DOM does not change with changes in logging as found by UV-VIS ratios, absorbance slope in the UV region, and DOC normalized fluorescence (slope = 1.42 x 10{sup -2}, r{sup 2} = 0.331, p < 0.01). The DOM from four of these lakes was concentrated using reverse osmosis (RO) followed by freeze-drying. The structures of the concentrated dissolved organic matter (DOM) samples were analyzed using X-ray analysis of near edge structures (XANES), X-ray diffraction (XRD), and {sup 13}C solid-state nuclear magnetic resonance ({sup 13}C NMR) analysis. XANES analysis of functional groups in the four concentrated samples shows that there are significant differences in reduced sulphur between the samples, however there was no clear relationship with forestry activity in the associated catchment. XRD data showed the presence of amorphous sulphide minerals associated with the DOM concentrate that may be important sites for mercury binding. The {sup 13}C NMR spectra of these samples show that the percentage of carbon present in carboxylic functional groups increases with increasing logging. Such structures are important for binding photo-reducible mercury and their presence may limit mercury photo-reduction and volatilization. We propose a mechanism by which increased logging leads to increased carboxylic groups in DOM and thereby increased weak binding of photo-reducible mercury. These results, in part, explain the decrease in dissolved gaseous mercury (DGM) production rates with increased logging found in our previous work.

O'Driscoll, N.J.; Siciliano, S.D.; Peak, D.; Carignan, R.; Lean, D.R.S. (UDM); (Ottawa); (Saskatchewan)

2008-06-09T23:59:59.000Z

149

Effect of raw material and Kraft Pulping Conditions on Characteristics of Dissolved Lignin.  

E-Print Network (OSTI)

?? Lignin is one of the main components in wood and during the chemical pulping processes it is degraded and dissolved into the cooking liquor. (more)

Svrd, Antonia

2014-01-01T23:59:59.000Z

150

Spatial and temporal variability of absorption by dissolved material at a continental shelf  

E-Print Network (OSTI)

. The storms were associated with sediment resuspension events and were accompanied by an increase during sediment resuspension events. 1. Introduction Colored dissolved organic material (CDOM) absorption

Boss, Emmanuel S.

151

,"U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

152

Chlorine Decay and Disinfection By-product Formation of Dissolved Organic Carbon Fractions with Goethite.  

E-Print Network (OSTI)

??Water from the raw water intake at Barberton, Ohio water treatment plant was collected on two separate dates and fractionated into operationally defined dissolved organic (more)

Wannamaker, Christopher L.

2008-01-01T23:59:59.000Z

153

Effects of Photoirradiation on the Adsorption of Dissolved Organic Matter to Goethite.  

E-Print Network (OSTI)

??EFFECTS OF PHOTOIRRADIATION ON THE ADSORPTION OF DISSOLVED ORGANIC MATTER TO GEOTHITE Abstract by Christina Ann Progess Previous research has shown that intermediate and high (more)

Progess, Christina Ann

2003-01-01T23:59:59.000Z

154

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

155

Subdue solids in towers  

SciTech Connect

Many distillation, absorption, and stripping columns operate with solids present in the system. The presence of solids may be either intentional or unintentional. But, in all cases, the solids must be handled or tolerated by the vapor/liquid mass-transfer equipment. Such solids should be dealt with by a combination of four methods. From most favorable to least favorable, these are: (1) keep the solids out; (2) keep the solids moving; (3) put the solids somewhere harmless; and (4) make it easier to clean the hardware. The key precept for all these approaches is the realization that solids present in a system just don't disappear. In this article, the authors review the techniques and design issues involved in making a vapor/liquid mass-transfer system operate with solids present. They assume that the solids cannot be kept out, eliminating the first choice. The type of mass-transfer service does not matter. The same principles apply equally well to distillation, adsorption, and stripping. They include equipment design criteria based on the methods outlined above, as well as detailed recommendations for each of the major equipment choices that can be made for mass-transfer devices. Then, they illustrate the approach via an example--a vinyl chloride monomer (VCM) unit having solids as an inherent part of its feed.

Sloley, A.W.; Martin, G.R.

1995-01-01T23:59:59.000Z

156

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

157

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

158

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

159

Solid-State Lighting: Solid-State Lighting Manufacturing Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Solid-State Lighting Manufacturing Workshop to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Google Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Delicious Rank Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools Solid-State Lighting Manufacturing Workshop Nearly 200 lighting industry leaders, chip makers, fixture and component

160

Aqueous alteration of municipal solid waste ash  

SciTech Connect

Municipal solid waste (MSW) ash is composed largely of amorphous oxides and approximately 20% minerals including halite, magnetite, hematite, quartz, gypsum, calcite, and rutile. It is also enriched in toxic trace metals by up to three orders of magnitude over average soil. The thermodynamic stabilities and rates of dissolution of the minerals and glasses in MSW ash will determine whether the ash is an environmental problem. The authors have used batch reactors at 20, 40, and 60 C over time periods up to 60 days to simulate longer reaction times for ash under cooler landfill conditions. Soluble salts are most quickly dissolved, giving solutions dominated by Ca[sup 2+], Na[sup +], K[sup +], SO[sub 2][sup 2[minus

Kirby, C.S.; Rimstidt, J.D. (Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States))

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Solid friction in gel electrophoresis S. F. Burlatskya)  

E-Print Network (OSTI)

Solid friction in gel electrophoresis S. F. Burlatskya) and John M. Deutch Department of Chemistry 1995 We study the influence of solid frictional forces acting on polymer chains moving in a random environment. We show that the total reduction in the chain tension resulting from the small friction between

Deutch, John

162

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... havior of the ratio of total quanta to total energy (Q : W) within the spectral region of photosynthetic ..... For blue-green waters, where hRmax lies.

2000-01-02T23:59:59.000Z

163

Solid-State Lighting: Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards. Register Now for DOE's 11th Annual SSL R&D Workshop January 28-30, join other SSL R&D professionals from industry, government, and academia to learn, share, and shape the future of lighting.

164

Dissolved Gas in the Snake and Columbia Rivers Modeled by CRiSP  

E-Print Network (OSTI)

Dissolved Gas in the Snake and Columbia Rivers 1969-1984 Modeled by CRiSP Pamela Shaw Columbia Basin Research School of Fisheries, UW #12;Introduction These dissolved gas profiles for 1969-1984 were created using CRiSP and historic spill and flow data. In CRiSP the gas going into the tailwater

Washington at Seattle, University of

165

Flowsheet modifications for dissolution of sand, slag, and crucible residues in the F-canyon dissolvers  

SciTech Connect

An initial flowsheet for the dissolution of sand, slag, and crucible (SS{ampersand}C) was developed for the F- Canyon dissolvers as an alternative to dissolution in FB-Line. In that flowsheet, the sand fines were separated from the slag chunks and crucible fragments. Those two SS{ampersand}C streams were packaged separately in mild-steel cans for dissolution in the 6.4D dissolver. Nuclear safety constraints limited the dissolver charge to approximately 350 grams of plutonium in two of the three wells of the dissolver insert and required 0.23M (molar) boron as a soluble neutron poison in the 9.3M nitric acid/0.013M fluoride dissolver solution. During the first dissolution of SS{ampersand}C fines, it became apparent that a significant amount of the plutonium charged to the 6.4D dissolver did not dissolve in the time predicted by previous laboratory experiments. The extended dissolution time was attributed to fluoride complexation by boron. An extensive research and development (R{ampersand}D) program was initiated to investigate the dissolution chemistry and the physical configuration of the dissolver insert to understand what flowsheet modifications were needed to achieve a viable dissolution process.

Rudisill, T.S.; Karraker, D.G.; Graham, F.R.

1997-12-01T23:59:59.000Z

166

The potential source of dissolved aluminum from resuspended sediments to the North Atlantic deep water  

SciTech Connect

Laboratory and field studies were conducted to investigate the significance of resuspended sediments as a source of dissolved Al to the deep northwest Atlantic. Sediment resuspension experiments demonstrate the effect on dissolved Al concentration (initially 11 nM) of adding natural suspended sediments (ca. 0.1-10 mg/L) to seawater. The concentration of dissolved Al increased by the resuspension of sediments; for example, addition of 0.15 mg/L sediments caused dissolved Al to increase by 10 nM. Distributions of dissolved and leachable particulate Al off the tail of the Grand Banks, near the high-energy western boundary current, show elevated levels in the near-bottom waters. The authors suggest that resuspended sediments associated with nepheloid layers along the western boundary of the North Atlantic are a source of dissolved Al. Strong western boundary currents provide the energy to resuspend and maintain intense nepheloid layers of sediments. Continued resuspension and deposition of sediments within the nepheloid layer promotes the release of Al from sediments to the overlying water. The Al-rich terrigenous sediments that predominate along the deep boundary of the Denmark Strait, Labrador Sea, Newfoundland and off Nova Scotia constitute a potentially significant source of dissolved Al. Release of Al from resuspended sediments associated with nepheloid layers at a more northern location (e.g., Denmark Strait) may contribute to the near-linear increase in dissolved Al with depth observed in the deep northwest Atlantic.

Moran, S.B.; Moore, R.M. (Dalhousie Univ., Halifax, Nova Scotia (Canada))

1991-10-01T23:59:59.000Z

167

1 In situ Ramanbased measurements of high dissolved methane 2 concentrations in hydraterich ocean sediments  

E-Print Network (OSTI)

sediments 3 Xin Zhang,1,2 Keith C. Hester,1,3 William Ussler,1 Peter M. Walz,1 Edward T. Peltzer,1 4 XX Month 2011. 6 [1] Ocean sediment dissolved CH4 concentrations are of 7 interest for possible dissolved 28 methane concentrations in hydraterich ocean sediments, Geophys. 29 Res. Lett., 38, LXXXXX, doi

Tian, Weidong

168

Constraining Oceanic dust deposition using surface 1 ocean dissolved Al 2  

E-Print Network (OSTI)

Constraining Oceanic dust deposition using surface 1 ocean dissolved Al 2 Qin Han, J. Keith Moore, Charles Zender, Chris Measures, David Hydes 3 Abstract 4 We use measurements of ocean surface dissolved Al and Deposition 6 (DEAD) model, to constrain dust deposition to the oceans. Our Al database contains 7 all

Zender, Charles

169

Dissolved oxygen stratification in two micro-tidal partially-mixed estuaries  

E-Print Network (OSTI)

Dissolved oxygen stratification in two micro-tidal partially-mixed estuaries Jing Lin a,*, Lian Xie online 21 August 2006 Abstract The controlling physical factors for vertical oxygen stratification that vertical stratification of dissolved oxygen (DO) concentration can be explained by the extended Hansen

Mallin, Michael

170

Dissolving brittle stars hint at implications of ocean acidification |  

NLE Websites -- All DOE Office Websites (Extended Search)

Sea urchins and brittle starfish on the seabed at Explorers Cove in Antarctica. The rate the starfish decay offers clues to ocean acidification. Photo courtesy of Shawn Harper. To view a larger version of the image, click on it. Sea urchins and brittle starfish on the seabed at Explorers Cove in Antarctica. The rate the starfish decay offers clues to ocean acidification. Photo courtesy of Shawn Harper. To view a larger version of the image, click on it. Sea urchins and brittle starfish on the seabed at Explorers Cove in Antarctica. The rate the starfish decay offers clues to ocean acidification. Photo courtesy of Shawn Harper. To view a larger version of the image, click on it. Dissolving brittle stars hint at implications of ocean acidification By Chelsea Leu * August 15, 2013 Tweet EmailPrint Under the sea ice of Explorers Cove, Antarctica, is a startling array of life. Brittle stars, sea urchins and scallops grow in profusion on the seafloor, a stark contrast to the icy moonscape on the continent's

171

The Transfer of Dissolved Cs-137 from Soil to Plants  

SciTech Connect

Rapidly maturing plants were grown simultaneously at the same experimental sites under natural conditions at the Chernobyl Exclusion Zone. Roots of the plants were side by side in the soil. During two seasons we selected samples of the plants and of the soils several times every season. Content of Cs-137 in the plant and in the soil solution extracted from the samples of soils was measured. Results of measurements of the samples show that, for the experimental site, Cs-137 content in the plant varies with date of the sample selection. The plant:soil solution Cs-137 concentration ratio depends strongly on the date of selection and also on the type of soil. After analysis of the data we conclude that Cs-137 plant uptake is approximately proportional to the content of dissolved Cs-137 in the soil per unit of volume, and the plant:soil solution Cs-137 concentration ratio for the soil is approximately proportional to the soil moisture. (authors)

Prorok, V.V.; Melnichenko, L.Yu. [Department of Physics, Taras Shevchenko National University of Kyiv, 2, build. 1 Acad. Glushkov prospect, Kyiv-680 MSP (Ukraine); Mason, C.F.V. [Research Applications Corporation, 148 Piedra Loop, Los Alamos, NM 87544 (United States); Ageyev, V.A.; Ostashko, V.V. [Institute for Nuclear Research, 47 Nauky prospect, Kyiv-680 MSP (Ukraine)

2006-07-01T23:59:59.000Z

172

EXAFS studies of sodium silicate glasses containing dissolved actinides  

SciTech Connect

Sodium silicate glasses containing dissolved Th, U, Np, and Pu have been studied using the EXAFS technique. Th/sup 4 +/, U/sup 4 +/, Np/sup 4 +/, and Pu/sup 4 +/ ions in the silicate glasses are 8-fold coordinated to oxygen neighbors. The higher valent U/sup 6 +/ and Np/sup 5 +/ ions have complex local symmetries. The U/sup 6 +/ ions appear in a uranyl configuration with 2 oxygen atoms at 1.85A and 4 at 2.25A from the U ion. The Np/sup 5 +/ local symmetry is more complex and difficult to determine uniquely. The U/sup 6 +/ glasses show substantial clustering of the uranium atoms. A structural model, with nearly planar uranyl sheets sandwiched between alkali and silica layers, is used to explain the U/sup 6 +/ EXAFS data. This model allows us to understand why U/sup 6 +/ ions are much more soluble in the glasses than the actinide 4/sup +/ ions. 4 references, 2 figures.

Knapp, G.S.; Veal, B.W.; Paulikas, A.P.; Mitchell, A.W.; Lam, D.J.; Klippert, T.E.

1984-07-01T23:59:59.000Z

173

Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 449 251 260 207 231 1990's 207 207 154 157 168 148 157 130 98 120 2000's 129 145 84 79 61 63 56 65 686 513 2010's 107 51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Associated-Dissolved Natural Gas Proved Reserves,

174

Characterization and biotoxicity assessment of dissolved organic matter in RO concentrate from a municipal wastewater reclamation reverse osmosis system  

Science Journals Connector (OSTI)

Abstract Reverse osmosis (RO) concentrate from municipal wastewater reclamation reverse osmosis (mWRRO) system containing organic compounds may associate with toxic risk, and its discharge might pose an environmental risk. To identify a basis for the selection of feasible technology in treating RO concentrates, the characteristics and biotoxicity of different fractions of dissolved organic matter (DOM) in RO concentrates from an mWRRO system were investigated. The results indicated that the hydrophilic neutrals (HIN), hydrophobic acids (HOA) and hydrophobic bases (HOB) accounted for 96% of the dissolved organic carbon (DOC) of the total DOM in the RO concentrate. According to the SEC chromatograph detected at 254nm wavelength of UV, the DOM with molecular weight (MW) 13kDa accounted for the majority of the basic and neutral fractions. The fluorescence spectra of the excitation emission matrix (EEM) indicated that most aromatic proteins, humic/fulvic acid-like and soluble microbial by-product-like substances existed in the fractions HOA and hydrophobic neutrals (HON). The genotoxicity and anti-estrogenic activity of the RO concentrate were 1795.657.2?g4-NQOL?1 and 2.190.05mgTAML?1, respectively. The HIN, HOA, and HOB contributed to the genotoxicity of the RO concentrate, and the HIN was with the highest genotoxic level of 1007.994.8?g4-NQOL?1. The HOA, HON, and HIN lead to the total anti-estrogenic activity of the RO concentrate, and HOA occupied approximately 60% of the total, which was 1.30.17mgTAML?1.

Ying-Xue Sun; Yue Gao; Hong-Ying Hu; Fang Tang; Zhe Yang

2014-01-01T23:59:59.000Z

175

Mujeres Hombres Total Hombres Total 16 5 21 0 10  

E-Print Network (OSTI)

Julio de 2011 Tipo de Discapacidad Sexo CENTRO 5-Distribución del estudiantado con discapacidad por centro, tipo de discapacidad, sexo y totales. #12;

Autonoma de Madrid, Universidad

176

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... ment of the total energy and vice versa. From a measurement of spectral irradi- ance ... unit energy (for the wavelength region specified).

2000-01-02T23:59:59.000Z

177

Photolytic processing of secondary organic aerosols dissolved in cloud droplets  

SciTech Connect

The effect of UV irradiation on the molecular composition of aqueous extracts of secondary organic aerosol (SOA) was investigated. SOA was prepared by the dark reaction of ozone and d-limonene at 0.05 - 1 ppm precursor concentrations and collected with a particle-into-liquid sampler (PILS). The PILS extracts were photolyzed by 300 - 400 nm radiation for up to 24 hours. Water-soluble SOA constituents were analyzed using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) at different stages of photolysis for all SOA precursor concentrations. Exposure to UV radiation increased the average O/C ratio and decreased the average double bond equivalent (DBE) of the dissolved SOA compounds. Oligomeric compounds were significantly reduced by photolysis relative to the monomeric compounds. Direct pH measurements showed that compounds containing carboxylic acids increased upon photolysis. Methanol reactivity analysis revealed significant photodissociation of molecules containing carbonyl groups and formation of carboxylic acids. Aldehydes, such as limononaldehyde, were almost completely removed. The removal of carbonylswas confirmed by the UV-Vis absorption spectroscopy of the SOA extracts where the absorbance in the carbonyl n??* band decreased significantly upon photolysis. The effective quantum yield (the number of carbonyls destroyed per photon absorbed) was estimated as ~ 0.03. The concentration of peroxides did not change significantly during photolysis as quantified with an iodometric test. Although organic peroxides were photolyzed, the likely end products of photolysis were smaller peroxides, including hydrogen peroxide, resulting in a no net change in the peroxide content.

Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

2011-05-26T23:59:59.000Z

178

Simulation of uranium aluminide dissolution in a continuous aluminum dissolver system  

SciTech Connect

This mission of the Idaho Chemical Processing Plant (ICPP) is to recover highly-enriched uranium from spent nuclear reactor fuel. One fuel type is dissolved in mercury-catalyzed nitric acid, and the uranium is extracted from the resulting dissolver product by an organic solvent. This fuel is composed of an aluminum-alloy-clad matrix of particulate uranium aluminide, which dissolves more slowly than the cladding. Because of the content of fissile {sup 235}U, suspended uranium aluminide or dissolved uranyl nitrate can form a critical mass under some circumstances. The dissolver and piping are geometrically favorable from the criticality standpoint, so the digester is where a criticality event would be most likely to occur. In the digester, the mass limit for {sup 235}U (as suspended uranium aluminide particles) is approximately 790 g. depending on the uranyl nitrate concentration. In a clear dissolver product (no suspended UAl{sub 3}), the concentration limit is 7 g {sup 235}U/L (as uranyl nitrate). Both limits are substantially below the lowest values at which a criticality event could possibly occur. This document a dynamic model of uranium aluminide dissolution in a continuous dissolver system, report typical calculated results, and advance appropriate conclusions.

Evans, D.R.; Farman, R.F.; Christian, J.D.

1990-02-28T23:59:59.000Z

179

Complexation of mercury by dissolved organic matter in surface waters of Galveston Bay, Texas  

Science Journals Connector (OSTI)

The chemical speciation of dissolved mercury in surface waters of Galveston Bay was determined using the concentrations of mercury-complexing ligands and conditional stability constants of mercury-ligand complexes. Two classes of natural ligands associated with dissolved organic matter were determined by a competitive ligand exchange-solvent solvent extraction (CLE-SSE) method: a strong class (Ls), ranging from 19 to 93 pM with an average conditional stability constant (KHgLs) of 1028, and a weak class (Lw) ranging from 1.4 to 9.8 nM with an average \\{KHgLs\\} of 1023. The range of conditional stability constants between mercury and natural ligands suggested that sulfides and thiolates are important binding sites for dissolved mercury in estuarine waters. A positive correlation between the estuarine distribution of dissolved glutathione and that of mercury-complexing ligands supported this suggestion. Thermodynamic equilibrium modeling using stability constants for HgL, HgClx, Hg(OH)x, and HgCl(OH) and concentrations of each ligand demonstrated that almost all of the dissolved mercury (>99%) in Galveston Bay was complexed by natural ligands associated with dissolved organic matter. The importance of low concentrations of high-affinity ligands that may originate in the biological system (i.e., glutathione and phytochelatin) suggests that the greater portion of bulk dissolved organic matter may not be important for mercury complexation in estuarine surface waters.

Seunghee Han; Gary A. Gill; Ronald D. Lehman; Key-Young Choe

2006-01-01T23:59:59.000Z

180

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

182

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

183

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

184

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

185

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

186

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

187

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

188

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

189

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

190

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

191

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

192

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

193

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

194

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

195

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

196

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

197

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

198

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

199

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

200

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

202

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

203

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

204

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

205

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

206

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

207

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

208

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

209

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

210

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

211

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

212

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.7 0.5 0.2 Million U.S. Housing Units Home Electronics Usage Indicators Table HC12.12 Home Electronics Usage Indicators by Midwest Census Region,...

213

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 1.8 1.2 0.5 Table HC11.10 Home Appliances Usage Indicators by Northeast Census Region, 2005 Million U.S. Housing Units Home Appliances...

214

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 2.8 1.1 0.7 Q 0.4 Million U.S. Housing Units Home Electronics Usage Indicators Table HC13.12 Home Electronics Usage Indicators by South Census Region,...

215

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 3.1 1.0 2.2 Table HC14.10 Home Appliances Usage Indicators by West Census Region, 2005 Million U.S. Housing Units Home Appliances...

216

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four Most Populated...

217

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 2.7 3.5 2.2 1.3 3.5 1.3 3.8 Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal...

218

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 13.2 3.4 2.0 1.4 Table HC12.10 Home Appliances Usage Indicators by Midwest Census Region, 2005 Million U.S. Housing Units Home Appliances...

219

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Census Region Northeast Midwest South West Million U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005...

220

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(as Self-Reported) City Town Suburbs Rural Million U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location,...

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 4.4 2.5 3.0 3.4 Table HC8.10 Home Appliances Usage Indicators by UrbanRural Location, 2005 Million U.S. Housing Units UrbanRural...

222

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.6 Q 0.5 Million U.S. Housing Units Home Electronics Usage Indicators Table HC14.12 Home Electronics Usage Indicators by West Census Region, 2005...

223

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 13.2 4.9 2.3 1.1 1.5 Table HC13.10 Home Appliances Usage Indicators by South Census Region, 2005 Million U.S. Housing Units South Census Region...

224

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 51.9 7.0 4.8 2.2 Not Asked (Mobile Homes or Apartment in Buildings with 5 or More Units)... 23.7...

225

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

Housing Units Living Space Characteristics Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Single-Family Units Detached...

226

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment... 1.2 Q Q N Q Have Main Space Heating Equipment... 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating...

227

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

228

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

229

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

230

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

231

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

232

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

233

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

234

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

235

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

236

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

237

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

238

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

239

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

240

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

242

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

243

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

244

Solid Waste Rules (New Hampshire)  

Energy.gov (U.S. Department of Energy (DOE))

The solid waste statute applies to construction and demolition debris, appliances, recyclables, and the facilities that collect, process, and dispose of solid waste. DES oversees the management of...

245

Solid Waste Management (North Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

The Solid Waste Program regulates safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement....

246

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

247

Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After  

U.S. Energy Information Administration (EIA) Indexed Site

2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 955 1980's 921 806 780 747 661 570 517 512 428 430 1990's 407 352 308 288 299 245 252 235 204 202 2000's 115 65 70 81 76 109 118 137 72 72 2010's 134 924 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

248

New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 151 1980's 156 150 146 180 194 181 214 213 259 178 1990's 184 156 127 107 97 119 108 106 98 92 2000's 115 99 103 89 90 98 82 87 86 82 2010's 105 143 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

249

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 367 1980's 414 335 325 360 341 391 410 471 475 442 1990's 455 469 309 289 286 277 301 310 209 321 2000's 348 303 359 299 290 308 317 368 321 601 2010's 631 909 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

250

Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 167 1980's 185 139 112 132 110 115 132 115 103 101 1990's 114 115 94 93 75 67 82 51 60 52 2000's 40 105 66 85 80 83 82 83 85 83 2010's 79 127 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

251

North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 201 1980's 239 253 248 257 267 331 293 276 266 313 1990's 334 243 266 274 275 263 255 257 261 250 2000's 264 270 315 316 320 343 357 417 484 1,070 2010's 1,717 2,511 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

252

Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,047 1980's 1,417 800 984 1,635 1,178 938 898 594 480 589 1990's 371 376 381 343 315 355 399 391 342 402 2000's 469 340 346 304 208 184 174 101 99 97 2010's 90 74 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

253

Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After  

Gasoline and Diesel Fuel Update (EIA)

4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,416 1980's 1,292 1,005 890 765 702 684 596 451 393 371 1990's 301 243 228 215 191 209 246 368 394 182 2000's 176 140 150 136 165 148 110 117 127 96 2010's 91 61 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

254

California State Offshore Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 226 1980's 160 244 232 221 206 1990's 188 55 59 63 59 56 47 54 39 58 2000's 86 80 85 76 85 89 85 79 54 53 2010's 63 79 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

255

Direct and indirect photoreactions of chromophoric dissolved organic matter : roles of reactive oxygen species and iron  

E-Print Network (OSTI)

Photochemical transformations of chromophoric dissolved organic matter (CDOM) are one of the principal processes controlling its fate in coastal waters. The photochemical decomposition of CDOM leads to the formation of a ...

Goldstone, Jared Verrill, 1971-

2002-01-01T23:59:59.000Z

256

Degradation of proton exchange membrane by Pt dissolved/deposited in fuel cells  

Science Journals Connector (OSTI)

An accelerated single cell test and single electrode cell test were carried out to investigate membrane degradation by Pt dissolved/deposited on the membrane. For a cell operating under accelerated conditions ...

Taehee Kim; Ho Lee; Woojong Sim; Jonghyun Lee

2009-09-01T23:59:59.000Z

257

Dissolved strontium in the subterranean estuary Implications for the marine strontium isotope budget  

E-Print Network (OSTI)

Dissolved strontium in the subterranean estuary ­ Implications for the marine strontium isotope concentrations among sites (0.1­24 lM Sr). Strontium isotope exchange was observed in the STE at five

258

Laser- and UV-LED-Induced Fluorescence Detection of Drinking Water and Water-Dissolved Organics  

Science Journals Connector (OSTI)

We have developed a deep-UV laser-induced fluorescence system for fluorescence detection of water-dissolved organic species. Deep-UV LEDs also were used as the excitation source....

Sharikova, Anna V; Killinger, Dennis K

259

Geochemistry of dissolved rare earth elements in the Equatorial Pacific Ocean  

Science Journals Connector (OSTI)

Seawater samples were collected from four locations in the Equatorial Pacific Ocean during the MR02-K06 cruise of the R/V Mirai...and analyzed for dissolved rare earth elements (REEs) using inductively coupled pl...

Zhong-Liang Wang; Masatoshi Yamada

2007-04-01T23:59:59.000Z

260

Hydrogen Permeation in Metals as a Function of Stress, Temperature and Dissolved Hydrogen Concentration  

Science Journals Connector (OSTI)

...February 1966 research-article Hydrogen Permeation in Metals as a Function of Stress, Temperature and Dissolved Hydrogen Concentration W. Beck J. O'M...of the diffusion of electrolytic hydrogen through membranes of: (1) polycrystalline...

1966-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 209 1980's 172 180 216 175 170 260 241 205 204 251 1990's 333 401 361 191 151 248 446 68 51 67 2000's 69 43 47 48 45 57 61 72 60 67 2010's 267 900 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

262

Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas,  

U.S. Energy Information Administration (EIA) Indexed Site

Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 474 320 541 522 532 494 1990's 446 407 691 574 679 891 794 1,228 1,224 1,383 2000's 1,395 1,406 1,267 1,119 886 547 378 377 465 629 2010's 689 539 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

263

West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 76 1980's 122 63 83 86 73 73 65 150 141 98 1990's 86 159 198 190 133 74 71 59 43 88 2000's 98 48 21 23 20 19 16 16 23 24 2010's 29 52 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

264

Biofuels : Upgraded New Solids  

Science Journals Connector (OSTI)

The main historical keywords for the three pathways are: Agglomeration: Briquettes are long-established upgraded solid fuels, especially based on coal. 1970s: first small scale pellet heating units build in t...

Dr. Marco Klemm; Ralf Schmersahl

2012-01-01T23:59:59.000Z

265

Biofuels : Upgraded New Solids  

Science Journals Connector (OSTI)

The main historical keywords for the three pathways are: Agglomeration: Briquettes are long-established upgraded solid fuels, especially based on coal. 1970s: first small scale pellet heating units build in t...

Dr. Marco Klemm; Ralf Schmersahl; Dr. Claudia Kirsten

2013-01-01T23:59:59.000Z

266

Solids Accumulation Scouting Studies  

SciTech Connect

The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of the solids mounds. The mounds were scanned after tank supernatant was removed. 4. Core sampler to determine the stainless steel solids distribution within the solids mounds. This sampler was designed and built to remove small sections of the mounds to evaluate concentrations of the stainless steel solids at different special locations. 5. Computer driven positioner that placed the laser rangefinders and the core sampler in appropriate locations over solids mounds that accumulated on the bottom of a scaled staging tank where mixing is poor. These devices and techniques were effective to estimate the movement, location, and concentrations of the solids representing heavier particles and could perform well at a larger scale The experiment contained two campaigns with each comprised of ten cycles to fill and empty the scaled staging tank. The tank was filled without mixing, but emptied, while mixing, in seven batches; the first six were of equal volumes of 13.1 gallons each to represent the planned fullscale batches of 145,000 gallons, and the last, partial, batch of 6.9 gallons represented a full-scale partial batch of 76,000 gallons that will leave a 72-inch heel in the staging tank for the next cycle. The sole difference between the two campaigns was the energy to mix the scaled staging tank, i.e., the nozzle velocity and jet rotational speed of the two jet pumps. Campaign 1 used 22.9 ft/s, at 1.54 rpm based on past testing and Campaign 2 used 23.9 ft/s at 1.75 rpm, based on visual observation of minimum velocity that allowed fast settling solids, i.e., sand and stainless steel, to accumulate on the scaled tank bottom.

Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

2012-09-26T23:59:59.000Z

267

Solid Cold - F  

NLE Websites -- All DOE Office Websites (Extended Search)

F. Progress in science F. Progress in science Aside from what it tells us about the thermodynamics of solids, this analysis by Einstein illustrates some important things about the way scientific progress is made. For one, it serves as a typical example of how discoveries about one phenomenon often help us understand others that had no obvious relation to it earlier. In this case, newly discovered properties of light suggested significant facts about solids-and about whether or not solids were made of atoms. Einstein thus found another significant relation between thermodynamics and optics besides the ones already known earlier. Another point this work illustrates is that progress doesn't always require understanding everything at once. It turned out that solids do act like

268

Solid state switch  

DOE Patents (OSTI)

A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

Merritt, Bernard T. (Livermore, CA); Dreifuerst, Gary R. (Livermore, CA)

1994-01-01T23:59:59.000Z

269

Table 13: Associated-dissolved natural gas proved reserves, reserves changes, an  

U.S. Energy Information Administration (EIA) Indexed Site

: Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" : Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

270

DISCOLORATION OF THE WETTED SURFACE IN THE 6.1D DISSOLVER  

SciTech Connect

During a camera inspection of a failed coil in the 6.1D dissolver, an orange discoloration was observed on a portion of the dissolver wall and coils. At the request of H-Canyon Engineering, the inspection video of the dissolver was reviewed by SRNL to assess if the observed condition (a non-uniform, orange-colored substance on internal surfaces) was a result of corrosion. Although the dissolver vessel and coil corrode during dissolution operations, the high acid conditions are not consistent with the formation of ferrous oxides (i.e., orange/rust-colored corrosion products). In a subsequent investigation, SRNL performed dissolution experiments to determine if residues from the nylon bags used for Pu containment could have generated the orange discoloration following dissolution. When small pieces of a nylon bag were placed in boiling 8 M nitric acid solutions containing other components representative of the H-Canyon process, complete dissolution occurred almost immediately. No residues were obtained even when a nylon mass to volume ratio greater than 100 times the 6.1D dissolver value was used. Degradation products from the dissolution of nylon bags are not responsible for the discoloration observed in the dissolver.

Rudisill, T.; Mickalonis, J.; Crapse, K.

2013-12-18T23:59:59.000Z

271

Total Sky Imager (TSI) Handbook  

SciTech Connect

The total sky imager (TSI) provides time series of hemispheric sky images during daylight hours and retrievals of fractional sky cover for periods when the solar elevation is greater than 10 degrees.

Morris, VR

2005-06-01T23:59:59.000Z

272

Solid state switch  

DOE Patents (OSTI)

A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

Merritt, B.T.; Dreifuerst, G.R.

1994-07-19T23:59:59.000Z

273

Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Solid Waste Management 0: Solid Waste Management Facilities (New York) Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Multi-Family Residential Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction, and the regulations provide details about permitting, construction, registration, and operation requirements. The regulations contain specific guidance for land

274

Japan still solid market  

Science Journals Connector (OSTI)

Japan still solid market ... Japan will continue to present a number of chemical marketing opportunities for U.S. companies, according to a study made for the U.S. Embassy in Tokyo. ... The share of imports of synthetic rubber in Japan's net supply has been dropping steadily since 1962, corresponding to rapidly rising local capacity. ...

1967-01-02T23:59:59.000Z

275

On-line fast response device and method for measuring dissolved gas in a fluid  

DOE Patents (OSTI)

A method and device for the measurement of dissolved gas within a fluid. The fluid, substantially a liquid, is pumped into a pipe. The flow of the fluid is temporally restricted, creating one or more low pressure regions. A measurement indicative of trapped air is taken before and after the restriction. The amount of dissolved air is calculated from the difference between the first and second measurements. Preferably measurements indicative of trapped air is obtained from one or more pressure transducers, capacitance transducers, or combinations thereof. In the alternative, other methods such as those utilizing x-rays or gamma rays may also be used to detect trapped air. Preferably, the fluid is a hydraulic fluid, whereby dissolved air in the fluid is detected.

Tutu, Narinder Kumar (Manorville, NY)

2011-01-11T23:59:59.000Z

276

PREDICTION OF DISSOLVER LIFETIMES THROUGH NON-DESTRUCTIVE EVALUATION AND LABORATORY TESTING  

SciTech Connect

Non-destructive evaluation was used as the primary method of monitoring the corrosion degradation of nuclear material dissolvers and assessing the remaining lifetimes. Materials were typically processed in nitric acid based (4-14M) solutions containing fluoride concentrations less than 0.2 M. The primary corrosion issue for the stainless steel dissolvers is the occurrence of localized corrosion near the tank bottom and the heat affected zones of the welds. Laboratory data for a range of operational conditions, including solution chemistry and temperature, was used to assess the impact of processing changes on the dissolver corrosion rate. Experimental and NDE-based general corrosion rates were found to be in reasonable agreement for standard dissolution chemistries consisting of nitric acid with fluorides and at temperatures less than 95 C. Greater differences were observed when chloride was present as an impurity and temperatures exceeded 100 C.

Mickalonis, J.; Woodsmall, T.; Hinz, W.; Edwards, T.

2011-10-03T23:59:59.000Z

277

Variations in dissolved gas compositions of reservoir fluids from the Coso  

Open Energy Info (EERE)

Variations in dissolved gas compositions of reservoir fluids from the Coso Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field Details Activities (1) Areas (1) Regions (0) Abstract: Gas concentrations and ratios in 110 analyses of geothermal fluids from 47 wells in the Coso geothermal system illustrate the complexity of this two-phase reservoir in its natural state. Two geographically distinct regions of single-phase (liquid) reservoir are present and possess distinctive gas and liquid compositions. Relationships in soluble and insoluble gases preclude derivation of these waters from a common parent by boiling or condensation alone. These two regions may

278

SOLID OXIDE PLANAR AND TUBULAR SOLID OXIDE FUEL  

E-Print Network (OSTI)

SOLID OXIDE PLANAR AND TUBULAR SOLID OXIDE FUEL CELLS Dynamic Simulation Approach Modular Approach · Parallel planes: PSOFC · Other: combustor, reformer Solid Oxide Fuel Cell Electrochemistry Cell Reactions · Slow pressure transients #12;Fuel Cell Assumptions · H2 electrochemically oxidized only · CO consumed

Mease, Kenneth D.

279

Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

280

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ARM - Measurement - Total cloud water  

NLE Websites -- All DOE Office Websites (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

282

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

283

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

284

Solid-State Lighting: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Contacts Printable Version Share this resource Send a link to Solid-State Lighting: Contacts to someone by E-mail Share Solid-State Lighting: Contacts on Facebook Tweet about Solid-State Lighting: Contacts on Twitter Bookmark Solid-State Lighting: Contacts on Google Bookmark Solid-State Lighting: Contacts on Delicious Rank Solid-State Lighting: Contacts on Digg Find More places to share Solid-State Lighting: Contacts on AddThis.com... Contacts Web site and program contacts are provided below. Website Contact Send us your comments, report problems, and/or ask questions about information on this site. Program Contacts Contact information for the Solid-State Lighting Program. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last Updated: 02/14

285

Municipal Solid Waste:  

U.S. Energy Information Administration (EIA) Indexed Site

Methodology for Allocating Municipal Solid Waste Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy May 2007 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy of the Department of Energy or any other organization. Contact This report was prepared by staff of the Renewable Information Team, Coal, Nuclear, and Renewables Division, Office of Coal, Nuclear, Electric and Alternate Fuels.

286

Solid Cold - A  

NLE Websites -- All DOE Office Websites (Extended Search)

By the early 20th century, the way in which temperatures of solid objects changed as they absorbed heat was considered strong evidence that matter was not made of atoms. Einstein used some recent discoveries about light to turn this assessment around. A B C D E F A. A puzzle, and a surprising solution Take equal masses of lead and aluminum. Heat them until their temperatures are both 10 degrees higher. Will it take the same amount of heat for each? Back in the 18th century, the chemist Joseph Black discovered that different materials required different amounts of heat to raise their temperatures by equal amounts. The amount by which the temperature of a material changes as it absorbs or gives off heat can even be used to help identify the material. Among solid materials near room temperature,

287

journal Solid State Ionics  

NLE Websites -- All DOE Office Websites (Extended Search)

Structural and transport properties of Nafion in hydrobromic Structural and transport properties of Nafion in hydrobromic acid solutions journal Solid State Ionics year month abstract p Proton exchange membranes are key solid state ion carriers in many relevant energy technologies including flow batteries fuel cells and solar fuel generators In many of these systems the membranes are in contact with electrolyte solutions In this paper we focus on the impact of different HBr a flow battery and exemplary acid electrolyte external concentrations on the conductivity of Nafion a perfluorosulfonic acid membrane that is commonly used in many energy related applications The peak and then decrease in conductivity is correlated with measured changes in the water and HBr content within the membrane In addition small angle x ray scattering is used to probe the nanostructure to

288

Solar solids reactor  

DOE Patents (OSTI)

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, Bernard D. (Chicago, IL)

1987-01-01T23:59:59.000Z

289

Solar solids reactor  

DOE Patents (OSTI)

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, B.D.

1986-02-24T23:59:59.000Z

290

U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,773 6,487 6,315 6,120 6,738 7,471 7,437 7,913 7,495 7,093 2000's 7,010 8,649 8,090 7,417 6,361 5,904 4,835 4,780 5,106 5,223 2010's 5,204 5,446 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

291

Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,304 1980's 2,134 1,871 1,789 1,582 1,488 1,792 1,573 1,380 1,338 1,273 1990's 1,106 995 853 649 678 720 627 599 630 599 2000's 492 483 427 368 389 427 415 503 471 506 2010's 499 490 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

292

Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,832 10,753 9,735 9,340 9,095 9,205 1990's 8,999 8,559 8,667 7,880 7,949 7,787 8,160 7,786 7,364 7,880 2000's 6,833 6,089 6,387 6,437 6,547 7,003 7,069 7,530 7,559 8,762 2010's 10,130 13,507 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

293

Methylation of Mercury by Bacteria Exposed to Dissolved, Nanoparticulate, and Microparticulate Mercuric Sulfides  

E-Print Network (OSTI)

Methylation of Mercury by Bacteria Exposed to Dissolved, Nanoparticulate, and Microparticulate in the environment is partly controlled by the bioavailability of inorganic divalent mercury (Hg(II)) to anaerobic matter to form chemical species that include organic-coated mercury sulfide nanoparticles as reaction

294

Changes in seal capacity of fractured claystone caprocks induced by dissolved and gaseous CO2 seepage  

E-Print Network (OSTI)

Changes in seal capacity of fractured claystone caprocks induced by dissolved and gaseous CO2; accepted 17 June 2008; published 31 July 2008. [1] Claystone caprocks are often the ultimate seal for CO2 underground storage when residual CO2 gas reaches the reservoir top due to buoyancy. Permeability changes

Luquot, Linda

295

Biogeochemical and hydrographic controls on chromophoric dissolved organic matter distribution in the Pacific Ocean  

E-Print Network (OSTI)

in the Pacific Ocean Chantal M. Swan a,?, David A. Siegel a,b , Norman B. Nelson a , Craig A. Carlson c , Elora Available online 19 September 2009 Keywords: CDOM AOU Pacific Water masses Hydrography Bio-optical a b s t r a c t Recent in situ observations of chromophoric dissolved organic material (CDOM) in the Pacific

Siegel, David A.

296

Occurrence and Implication of dissolved organic phosphorus (DOP) in tertiary wastewater Effluents Page 1 of 6  

E-Print Network (OSTI)

GU, APRIL Occurrence and Implication of dissolved organic phosphorus (DOP) in tertiary wastewater wastewater effluents L. Liu1 , D. S. Smith2 , M. Bracken3 , J.B. Neethling4 , H.D. Stensel5 and S. Murthy6 levels (e.g. TPwastewater treatment plants. A few previous studies (Benisch et al., 2007

Brody, James P.

297

Wastewater Discharge, Nutrient Loading, and Dissolved Oxygen Dynamics in a Shallow Texas Bay  

E-Print Network (OSTI)

In Oso Bay, a wastewater treatment plant acts as a source of eutrophication and may have measureable impact on the health of the bay. The objectives of this study were to create a model for modeling dissolved oxygen concentrations over time...

Schroer, Lee Allen

2014-05-07T23:59:59.000Z

298

Variable ageing and storage of dissolved organic components in the open ocean  

Science Journals Connector (OSTI)

... Seawater dissolved organic matter (DOM) is the largest reservoir of exchangeable organic carbon in the ... carbon cycling are thus limited by the need for information on temporal scales of carbon storage in DOM subcomponents, produced via the biological pump, relative to their recycling by ...

Ai Ning Loh; James E. Bauer; Ellen R. M. Druffel

2004-08-19T23:59:59.000Z

299

Whats in an EEM? Molecular Signatures Associated with Dissolved Organic Fluorescence in Boreal Canada  

Science Journals Connector (OSTI)

Molecular Signatures Associated with Dissolved Organic Fluorescence in Boreal Canada ... Of these three humic-like components, P3 was the most photolabile,(19) possibly because its excitation maximum extends furthest into the solar spectrum(30) (Table 1; SI Figure S1). ...

A. Stubbins; J.-F. Lapierre; M. Berggren; Y. T. Prairie; T. Dittmar; P. A. del Giorgio

2014-08-22T23:59:59.000Z

300

Did BP's oil-dissolving chemical make the spill By Kate Spinner  

E-Print Network (OSTI)

Did BP's oil-dissolving chemical make the spill worse? By Kate Spinner Published: Monday, May 30, 2011 at 8:47 p.m. BP succeeded in sinking the oil from its blown well out of sight -- and keeping much chemicals. But the impact on the ecosystem as a whole may have been more damaging than the oil alone

Belogay, Eugene A.

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

302

Solar total energy project Shenandoah  

SciTech Connect

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

303

Grantee Total Number of Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

304

Solid-State Lighting: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications to someone by Publications to someone by E-mail Share Solid-State Lighting: Publications on Facebook Tweet about Solid-State Lighting: Publications on Twitter Bookmark Solid-State Lighting: Publications on Google Bookmark Solid-State Lighting: Publications on Delicious Rank Solid-State Lighting: Publications on Digg Find More places to share Solid-State Lighting: Publications on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Publications The Solid-State Lighting (SSL) program produces a comprehensive portfolio of publications, ranging from overviews of the program's research

305

Solid-State Lighting: Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations to someone by Presentations to someone by E-mail Share Solid-State Lighting: Presentations on Facebook Tweet about Solid-State Lighting: Presentations on Twitter Bookmark Solid-State Lighting: Presentations on Google Bookmark Solid-State Lighting: Presentations on Delicious Rank Solid-State Lighting: Presentations on Digg Find More places to share Solid-State Lighting: Presentations on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Presentations This page provides links to the presentations given at the DOE Solid-State Lighting Workshops, as well as links to reference materials. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Workshop Presentations, Materials and Reports November 2013: Presentations from DOE SSL Market Introduction Workshop

306

PAPER www.rsc.org/pps | Photochemical & Photobiological Sciences Alteration of chromophoric dissolved organic matter by solar UV radiation  

E-Print Network (OSTI)

dissolved organic matter by solar UV radiation causes rapid changes in bacterial community composition dissolved organic carbon concentration. On two occasions during the austral summer, bacteria-free water of the lagoon was exposed to different regions of the solar spectrum (full solar radiation, UV-A + PAR, PAR

Sommaruga, Ruben

307

Net Production and Consumption of Fluorescent Colored Dissolved Organic Matter by Natural Bacterial Assemblages Growing on Marine Phytoplankton Exudates  

Science Journals Connector (OSTI)

...high-molecular-weight dissolved organic matter. Appl...structure and single-cell activity in marine...Sinha. 2005. Solar UV radiation-induced...2010. Microbial production of recalcitrant dissolved organic matter: long-term...matter during cell growth and decline...

Cristina Romera-Castillo; Hugo Sarmento; Xos Antn lvarez-Salgado; Josep M. Gasol; Celia Marras

2011-07-08T23:59:59.000Z

308

Rapid Analysis of Dissolved Methane, Ethylene, Acetylene and Ethane using Partition Coefficients and Headspace-Gas Chromatography  

Science Journals Connector (OSTI)

......stations due to over pressurization of storage tanks (8). Monitoring dissolved C1-C2...municipal wastewater outflow, or petroleum storage facility. The 250 mL sampling vials were...determination of methane dissolved in seawater. Anal.Chem.62: 24082412 (1990......

Jasmine S. Lomond; Anthony Z. Tong

2011-07-01T23:59:59.000Z

309

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

310

Solid-State Lighting Manufacturing Research and Development Round 4 (DE-FOA-0000792)  

Energy.gov (U.S. Department of Energy (DOE))

Closed Total DOE Funding: $11 million The objective of this Funding Opportunity Announcement (FOA) is to achieve cost reduction of solid-state lighting (SSL) for general illumination through improvements in manufacturing equipment, processes, or techniques.

311

Solid-State Lighting Manufacturing Research and Development Round 3 (DE-FOA-0000561)  

Energy.gov (U.S. Department of Energy (DOE))

Closed Total DOE Funding: $10 million The objective of this Funding Opportunity Announcement (FOA) is achieve cost reduction of solid-state lighting for general illumination through improvements in manufacturing equipment, processes, or techniques.

312

Pyrolysis of Municipal Solid Waste for Syngas Production by Microwave Irradiation  

Science Journals Connector (OSTI)

In the present study, we discuss the application of microwave-irradiated pyrolysis of municipal solid waste (MSW) for total recovery of useful gases and energy. The MSW pyrolysis under microwave irradiation hi...

Vidyadhar V. Gedam; Iyyaswami Regupathi

2012-03-01T23:59:59.000Z

313

Chemical Composition of Aquatic Dissolved Organic Matter in Five Boreal Forest Catchments Sampled in Spring and Fall Seasons  

SciTech Connect

The chemical composition and carbon isotope signature of aquatic dissolved organic matter (DOM) in five boreal forest catchments in Scandinavia were investigated. The DOM was isolated during spring and fall seasons using a reverse osmosis technique. The DOM samples were analyzed by elemental analysis, FT-IR, solid-state CP-MAS {sup 13}C-NMR, and C-1s NEXAFS spectroscopy. In addition, the relative abundance of carbon isotopes ({sup 12}C, {sup 13}C, {sup 14}C) in the samples was measured. There were no significant differences in the chemical composition or carbon isotope signature of the DOM sampled in spring and fall seasons. Also, differences in DOM composition between the five catchments were minor. Compared to reference peat fulvic and humic acids, all DOM samples were richer in O-alkyl carbon and contained less aromatic and phenolic carbon, as shown by FT-IR, {sup 13}C-NMR, and C-1s NEXAFS spectroscopy. The DOM was clearly enriched in {sup 14}C relative to the NBS oxalic acid standard of 1950, indicating that the aquatic DOM contained considerable amounts of organic carbon younger than about 50 years. The weight-based C:N ratios of 31 {+-} 6 and the {delta}{sup 13}Cvalues of -29 {+-} 2{per_thousand}indicate that the isolated DOM is of terrestrial rather than aquatic origin. We conclude that young, hydrophilic carbon compounds of terrestrial origin are predominant in the samples investigated, and that the composition of the aquatic DOM in the studied boreal forest catchments is rather stable during low to intermediate flow conditions.

Schumacher,M.; Christl, I.; Vogt, R.; Barmettler, K.; Jacobsen, C.; Kretzschmar, R.

2006-01-01T23:59:59.000Z

314

SOLIDS PRECIPITATION EVENT IN MCU CAUSAL ANALYSIS AND RECOMMENDATIONS FROM SOLIDS RECOVERY TEAM  

SciTech Connect

A process upset occurred in the Modular Caustic-Side Solvent Extraction Unit (MCU) facility on April 6th, 2014. During recovery efforts, a significant amount of solids were found in the Salt Solution Feed Tank (SSFT), Salt Solution Receipt Tanks (SSRTs), two extraction contactors, and scrub contactors. The solids were identified by Savannah River National Laboratory (SRNL) as primarily sodium oxalate and sodium alumina silicate (NAS) with the presence of some aluminum hydroxide. NAS solids have been present in the SSFT since simulant runs during cold chemical startup of MCU in 2007, and have not hindered operations since that time. During the process upset in April 2014, the oxalate solids partially blocked the aqueous outlet of the extraction contactors, causing salt solution to exit through the contactor organic outlet to the scrub contactors with the organic phase. This salt solution overwhelmed the scrub contactors and passed with the organic phase to the strip section of MCU. The partially reversed flow of salt solution resulted in a Strip Effluent (SE) stream that was high in Isopar L, pH and sodium. The primary cause of the excessive solids accumulation in the SSRTs and SSFT at MCU is attributed to an increase in the frequency of oxalic acid cleaning of the 512-S primary filter. Agitation in the SSRTs at MCU in response to cold weather likely provided the primary mechanism to transfer the solids to the contactors. Sources of the sodium oxalate solids are attributed to the oxalic acid cleaning solution used to clean the primary filter at the Actinide Removal Process (ARP) filtration at 512-S, as well as precipitation from the salt batch feed, which is at or near oxalate saturation. The Solids Recovery Team was formed to determine the cause of the solids formation and develop recommendations to prevent or mitigate this event in the future. A total of 53 recommendations were generated. These recommendations were organized into 4 focus areas: Improve understanding of oxalate equilibrium and kinetics in salt solutions Reduction/elimination of oxalic acid cleaning in 512-S Flowsheet optimization Improving diagnostic capability The recommendations implemented prior to resumption of MCU operations provide a risk mitigation or detection function through additional sampling and observation. The longer term recommendations provide a framework to increase the basic process knowledge of both oxalate chemistry and filtration behavior and then facilitate decisions that improve the salt flowsheet as a system.

Garrison, A.; Aponte, C.

2014-08-15T23:59:59.000Z

315

Total quality management implementation guidelines  

SciTech Connect

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

316

Solid state optical microscope  

DOE Patents (OSTI)

A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.

Young, I.T.

1983-08-09T23:59:59.000Z

317

Solid state optical microscope  

DOE Patents (OSTI)

A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

Young, Ian T. (Pleasanton, CA)

1983-01-01T23:59:59.000Z

318

Total Heart Transplant: A Modern Overview  

E-Print Network (OSTI)

use of the total artificial heart. New England Journal ofJ. (1997). Artificial heart transplants. British medicala total artificial heart as a bridge to transplantation. New

Lingampalli, Nithya

2014-01-01T23:59:59.000Z

319

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

320

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Natural Gas Total Liquids Extracted  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) Thousand Barrels) Data Series: Natural Gas Processed Total Liquids Extracted NGPL Production, Gaseous Equivalent Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 658,291 673,677 720,612 749,095 792,481 873,563 1983-2012 Alabama 13,381 11,753 11,667 13,065 1983-2010 Alaska 22,419 20,779 19,542 17,798 18,314 18,339 1983-2012 Arkansas 126 103 125 160 212 336 1983-2012 California 11,388 11,179 11,042 10,400 9,831 9,923 1983-2012 Colorado 27,447 37,804 47,705 57,924 1983-2010 Florida 103 16 1983-2008 Illinois 38 33 24 231 705 0 1983-2012

322

A Comparison of Load Estimates Using Total Suspended Solids and Suspended-Sediment Concentration Data  

E-Print Network (OSTI)

-sediment concentration (SSC) data and the ramifications of using each type of data to estimate sediment loads from paired TSS and SSC data, to annual loads computed by the U.S. Geological Survey (USGS) using traditional techniques and SSC data. Load estimates were compared for 10 stations where sufficient TSS and SSC

Torgersen, Christian

323

Total Petroleum Systems and Assessment Units (AU)  

E-Print Network (OSTI)

Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

Torgersen, Christian

324

Locating and total dominating sets in trees  

Science Journals Connector (OSTI)

A set S of vertices in a graph G = ( V , E ) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. We consider total dominating sets of minimum cardinality which have the additional property that distinct vertices of V are totally dominated by distinct subsets of the total dominating set.

Teresa W. Haynes; Michael A. Henning; Jamie Howard

2006-01-01T23:59:59.000Z

325

U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New  

Gasoline and Diesel Fuel Update (EIA)

Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 264 1980's 369 271 365 326 296 341 189 155 339 174 1990's 250 334 292 163 202 634 338 187 218 424 2000's 249 477 331 124 97 79 65 73 820 169 2010's 186 160 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas New Reservoir Discoveries in Old Fields, Wet After Lease Separation

326

Locating-total domination in graphs  

Science Journals Connector (OSTI)

In this paper, we continue the study of locating-total domination in graphs. A set S of vertices in a graph G is a total dominating set in G if every vertex of G is adjacent to a vertex in S . We consider total dominating sets S which have the additional property that distinct vertices in V ( G ) ? S are totally dominated by distinct subsets of the total dominating set. Such a set S is called a locating-total dominating set in G , and the locating-total domination number of G is the minimum cardinality of a locating-total dominating set in G . We obtain new lower and upper bounds on the locating-total domination number of a graph. Interpolation results are established, and the locating-total domination number in special families of graphs, including cubic graphs and grid graphs, is investigated.

Michael A. Henning; Nader Jafari Rad

2012-01-01T23:59:59.000Z

327

Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 27,217 1980's 28,567 28,676 30,814 30,408 30,356 31,092 30,893 30,732 6,269 6,198 1990's 6,927 6,729 6,723 6,494 6,487 6,265 6,080 7,716 7,275 7,209 2000's 6,768 6,592 6,376 6,267 6,469 6,362 8,886 10,752 6,627 8,093 2010's 7,896 8,535 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

328

New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,823 1980's 1,689 1,649 1,520 1,503 1,569 1,490 1,446 1,445 1,453 1,378 1990's 1,435 1,554 1,597 1,585 1,641 1,678 1,693 1,420 1,443 1,578 2000's 1,588 1,447 1,482 1,545 1,578 1,661 1,772 1,841 1,755 1,982 2010's 2,213 2,552 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

329

New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,672 1980's 1,533 1,499 1,374 1,323 1,375 1,309 1,232 1,232 1,194 1,200 1990's 1,251 1,398 1,470 1,478 1,544 1,559 1,585 1,314 1,345 1,486 2000's 1,473 1,348 1,379 1,456 1,488 1,563 1,690 1,754 1,669 1,900 2010's 2,108 2,409 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

330

Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 32,208 1980's 33,443 32,870 31,268 31,286 30,282 29,515 28,684 27,457 26,609 26,611 1990's 26,242 25,088 24,701 23,551 23,913 24,532 24,715 24,666 23,385 24,206 2000's 23,065 23,232 23,165 22,285 21,180 21,874 20,754 21,916 22,396 25,290 2010's 27,850 34,288 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

331

Solid state rapid thermocycling  

DOE Patents (OSTI)

The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.

Beer, Neil Reginald; Spadaccini, Christopher

2014-05-13T23:59:59.000Z

332

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

333

Energy Department Provides $7 Million for Solid-State Lighting Product  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Million for Solid-State Lighting 7 Million for Solid-State Lighting Product Development Energy Department Provides $7 Million for Solid-State Lighting Product Development June 6, 2006 - 2:15pm Addthis Funding to total $10 million with industry contribution WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will provide a total of $7 million for five cost-shared projects for solid-state lighting (SSL) product development. Solid-state lighting has the potential to more than double the efficiency of general lighting systems, reducing overall U.S. energy consumption and saving consumers money. Companies selected are from California, Massachusetts, and New York. They will provide a 30 percent average cost-share, demonstrating a strong industry commitment to the technology.

334

Energy Department Provides $7 Million for Solid-State Lighting Product  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Provides $7 Million for Solid-State Lighting Energy Department Provides $7 Million for Solid-State Lighting Product Development Energy Department Provides $7 Million for Solid-State Lighting Product Development June 6, 2006 - 2:15pm Addthis Funding to total $10 million with industry contribution WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will provide a total of $7 million for five cost-shared projects for solid-state lighting (SSL) product development. Solid-state lighting has the potential to more than double the efficiency of general lighting systems, reducing overall U.S. energy consumption and saving consumers money. Companies selected are from California, Massachusetts, and New York. They will provide a 30 percent average cost-share, demonstrating a strong industry commitment to the technology.

335

EM Calorimeters for SoLID at Jefferson Lab  

SciTech Connect

Several approved experiments at Jefferson Lab for the 12 GeV era will use the proposed Solenoid Large Intensity Device (SoLID) spectrometer. Two EM calorimeters with a total area of 15 square meters are required for electron identification and electron-pion separation. The challenge is to build calorimeters that can withstand high radiation doses in high magnetic field region and bring photon signals to low field region for readout. Several types of calorimeters were considered and we are favoring Shashlyk type as a result of balancing performance and cost. Our preliminary design and simulation of SoLID EM calorimeters are presented.

Z.W. Zhao, J. Huang, M. Meziane, X. Zheng, P.E. Reimer, D. Armstrong, T. Averett, W. Deconinck

2012-12-01T23:59:59.000Z

336

Chemical phenomena in solid-state voltammetry in polymer solvents  

SciTech Connect

This paper, aimed at delineating significant chemical effects in solid-state voltammetry, describes electrochemical oxidations and reductions of electroactive monomer solutes dissolved in and diffusing through rigid and semirigid polymer electrolyte solvents. Sorption of organic monomer vapors into poly(ethylene oxide) films yields polymer solvents whose chemistry is dominated by that of the sorbed monomer as shown by coordination and precipitation effects. The dynamics of plasticization-induced changes in transport rates are quite rapid. Physical diffusion in the polymer solvent in slow enough that electron hopping reactions measurably enhance charge transport rates; the effect was used to estimate a lower limit for the (Co(bpy)/sub 3/)/sup 2+/+/ self-exchange rate constant of 2 /times/ 10/sup 9/ M/sup /minus/1/ s/sup /minus/1/. It is possible to erect polymeric film transport barriers at the electrode/polymer solvent interface and to measure the rate of permeation of monomer complexes from the polymer solvent into the polymer transport barrier film. Polymeric films of Os and Ru polypyridine complexes can be electropolymerized from polymer solutions of the corresponding monomers. Solid-state voltammetry can be extended to other polymer solvents including sulfonated polystyrene, poly(vinyl chloride), Nafion, and poly(acrylamide) gel.

Geng, L.; Reed, R.A.; Kim, M.H.; Wooster, T.T.; Oliver, B.N.; Egekeze, J.; Kennedy, R.T.; Jorgenson, J.W.; Parcher, J.F.; Murray, R.W.

1989-03-01T23:59:59.000Z

337

Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

2007 Solid-State Lighting 2007 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2007 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2007 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the DOE Solid-State

338

Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

2006 Solid-State Lighting 2006 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2006 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2006 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the DOE Solid-State

339

Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Program » Solid-State Lighting » Program » Solid-State Lighting » Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop to someone by E-mail Share Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop on Facebook Tweet about Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop on Twitter Bookmark Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop on Google Bookmark Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop on Delicious Rank Solid-State Lighting: 2012 DOE Solid-State Lighting Market Introduction Workshop on Digg Find More places to share Solid-State Lighting: 2012 DOE Solid-State

340

NETL: News Release - Solid Oxide Fuel Cell Reaches One Year of Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

January 31, 2000 January 31, 2000 Solid Oxide Fuel Cell Reaches One Year of Operations Netherlands Test Boosts Confidence for Commercial Introduction by 2004 An experimental all solid-state fuel cell - the possible prototype for a future "combustion-less" power plant - has passed a key milestone in a joint public-private development effort. Schematic Diagram of Tubular Solid Oxide Fuel Cell The Siemens Westinghouse solid oxide fuel cell is a tubular arrangement of concentric ceramic electrodes and a solid-state electrolyte. Siemens-Westinghouse Power Corp., headquartered in Orlando, FL, announced this week that its 100-kilowatt solid oxide fuel cell power system, the world's largest, has completed one year of total operating time, the longest any fuel cell of this type and size has run. The milestone marked

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A preliminary evaluation model for reservoir hydrocarbon-generating potential established based on dissolved hydrocarbons in oilfield water  

Science Journals Connector (OSTI)

A large number of oilfield water samples were analyzed in this work. Research ... relationship between the concentrations and distribution of dissolved hydrocarbons suggested that the contents and composition of ...

Hongjing Zhao; Weilin Sun; Baotian He; Bowen Mei

2006-01-01T23:59:59.000Z

342

State Residential Commercial Industrial Transportation Total  

Gasoline and Diesel Fuel Update (EIA)

schedules 4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total 2012 Total Electric Industry- Average Retail Price (centskWh) (Data from...

343

Total cost model for making sourcing decisions  

E-Print Network (OSTI)

This thesis develops a total cost model based on the work done during a six month internship with ABB. In order to help ABB better focus on low cost country sourcing, a total cost model was developed for sourcing decisions. ...

Morita, Mark, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

344

The effect of mean cell residence time on the adsorbability of dissolved organic compounds found in petrochemical wastewaters  

E-Print Network (OSTI)

THF EFFECT OF MEAN CELL RESIDENCE TIME ON THE ADSORBABILITY OF DISSOLVED ORGANIC COMPOUNDS FOUND IN PETROCHEMICAL WASTEWATERS A Thesis by TIMOTHY LURING JOHNSON Submitted to the Graduate College of Texas A&M University ir, Partia. fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1979 Major Subject: Civil Engineering THE EFFECT OF MEAN CELL RESIDENCE TIME ON THE ADSORBABILITY OF DISSOLVED ORGANIC COMPOUNDS FOUND IN PETROCHEMICAL WASTENATERS A Thesis by TIMOTHY LORING...

Johnson, Timothy Loring

2012-06-07T23:59:59.000Z

345

Team Total Points Beta Theta Pi 2271  

E-Print Network (OSTI)

Bubbles 40 Upset City 30 Team Success 30 #12;Team Total Points Sly Tye 16 Barringer 15 Fire Stinespring 15

Buehrer, R. Michael

346

Coordination Chemistry in the Solid State  

Science Journals Connector (OSTI)

...February 1996 research-article Coordination Chemistry in the Solid State Peter G. Bruce Salts...form a vital bridge between coordination chemistry in solution and more classical solid-state chemistry. The solid coordination compounds are...

1996-01-01T23:59:59.000Z

347

Nanostructured Solid Oxide Fuel Cell Electrodes  

E-Print Network (OSTI)

post-Doping of Solid Oxide Fuel Cell Cathodes,? P.h.D.and V. I. Birss, in Solid Oxide Fuel Cells (SOFC IX), S. C.Nanostructured Solid Oxide Fuel Cell Electrodes By Tal Zvi

Sholklapper, Tal Zvi

2007-01-01T23:59:59.000Z

348

Stiffening solids with liquid inclusions  

E-Print Network (OSTI)

From bone and wood to concrete and carbon fibre, composites are ubiquitous natural and engineering materials. Eshelby's inclusion theory describes how macroscopic stress fields couple to isolated microscopic inclusions, allowing prediction of a composite's bulk mechanical properties from a knowledge of its microstructure. It has been extended to describe a wide variety of phenomena from solid fracture to cell adhesion. Here, we show experimentally and theoretically that Eshelby's theory breaks down for small liquid inclusions in a soft solid. In this limit, an isolated droplet's deformation is strongly size-dependent with the smallest droplets mimicking the behaviour of solid inclusions. Furthermore, in opposition to the predictions of conventional composite theory, we find that finite concentrations of small liquid inclusions enhance the stiffness of soft solids. A straight-forward extension of Eshelby's theory, accounting for the surface tension of the solid-liquid interface, explains our experimental observations. The counterintuitive effect of liquid-stiffening of solids is expected whenever droplet radii are smaller than an elastocapillary length, given by the ratio of the surface tension to Young's modulus of the solid matrix.

Robert W. Style; Rostislav Boltyanskiy; Benjamin Allen; Katharine E. Jensen; Henry P. Foote; John S. Wettlaufer; Eric R. Dufresne

2014-07-24T23:59:59.000Z

349

ELSEVIER Solid State Ionics 94 (1997) 17-25 Ceramic solid electrolytes  

E-Print Network (OSTI)

ELSEVIER Solid State Ionics 94 (1997) 17-25 SOLID STATE IoMcs Ceramic solid electrolytes John B electrolytes are best suited for solid reactants, as are found in most battery systems. Ceramic solid 78712-106.3. USA Abstract Strategies for the design of ceramic solid electrolytes are reviewed. Problems

Gleixner, Stacy

350

Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation No. 8 - Solid Waste Composting Facilities Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management Facilities which compost putrescible waste and/or leaf and yard waste are subject to these regulations. The regulations establish permitting, registration, and operational requirements for composting facilities. Operational requirements for putrescible waste facilities include siting, distance, and buffer requirements, as well as standards for avoiding harm to endangered species and contamination of air and water sources. Specific

351

Modulation of dissolved oxygen levels in a hypertidal estuary by sediment resuspension  

Science Journals Connector (OSTI)

Hyperconcentrated benthic layers, which form during neap tides, recruit much of the fine sediment population of the turbidity maximum of a hypertidal estuary. Measurements of tidal amplitude and suspended solids ...

W. R. Parker; L. D. Marshall; A. J. Parfitt

1994-01-01T23:59:59.000Z

352

Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

11 Solid-State Lighting R&D 11 Solid-State Lighting R&D Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Solid-State Lighting R&D Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2011 Solid-State Lighting R&D Workshop Materials

353

Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Solid-State Lighting DOE Solid-State Lighting Manufacturing Workshop to someone by E-mail Share Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Facebook Tweet about Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Twitter Bookmark Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Google Bookmark Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Delicious Rank Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on Digg Find More places to share Solid-State Lighting: DOE Solid-State Lighting Manufacturing Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools DOE Solid-State Lighting Manufacturing Workshop This page provides links to the presentations given at the 2009 DOE

354

Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 Solid-State Lighting 2010 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2010 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools 2010 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the Transformations

355

Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 Solid-State Lighting 2009 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2009 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2009 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the Transformations

356

Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

08 Solid-State Lighting 08 Solid-State Lighting Workshop Materials to someone by E-mail Share Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Facebook Tweet about Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Twitter Bookmark Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Google Bookmark Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Delicious Rank Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on Digg Find More places to share Solid-State Lighting: 2008 Solid-State Lighting Workshop Materials on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2008 Solid-State Lighting Workshop Materials This page provides links to the presentations given at the Transformations

357

Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

2014 DOE Solid-State Lighting 2014 DOE Solid-State Lighting R&D Workshop to someone by E-mail Share Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Facebook Tweet about Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Twitter Bookmark Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Google Bookmark Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Delicious Rank Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on Digg Find More places to share Solid-State Lighting: 2014 DOE Solid-State Lighting R&D Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools 2014 DOE Solid-State Lighting R&D Workshop logo for Next Generation Lighting Industry Alliance

358

Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR® Solid-State ENERGY STAR® Solid-State Lighting Workshop to someone by E-mail Share Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on Facebook Tweet about Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on Twitter Bookmark Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on Google Bookmark Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on Delicious Rank Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on Digg Find More places to share Solid-State Lighting: ENERGY STAR® Solid-State Lighting Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools ENERGY STAR® Solid-State Lighting Workshop Workshop Purpose: To prepare manufacturers for the launch of the ENERGY

359

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 Nevada - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 4 4 4 3 4 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 4 4 4 3 4

360

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Idaho - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Washington - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

362

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Maine - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

363

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Minnesota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

364

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 South Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

365

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 North Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

366

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Iowa - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

367

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Massachusetts - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

368

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Minnesota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

369

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 New Jersey - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

370

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Vermont - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

371

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Wisconsin - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

372

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 North Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

373

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 New Jersey - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

374

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Maryland - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 7 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells 35 28 43 43 34 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 35

375

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 New Hampshire - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

376

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Maryland - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 7 7 7 8 9 Production (million cubic feet) Gross Withdrawals From Gas Wells 28 43 43 34 44 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 28

377

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Missouri - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 53 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

378

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Massachusetts - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

379

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 South Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

380

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Rhode Island - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Solid-State Lighting: Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Financial Opportunities Printable Version Share this resource Send a link to Solid-State Lighting: Financial Opportunities to someone by E-mail Share Solid-State Lighting: Financial Opportunities on Facebook Tweet about Solid-State Lighting: Financial Opportunities on Twitter Bookmark Solid-State Lighting: Financial Opportunities on Google Bookmark Solid-State Lighting: Financial Opportunities on Delicious Rank Solid-State Lighting: Financial Opportunities on Digg Find More places to share Solid-State Lighting: Financial Opportunities on AddThis.com... Current Opportunities DOE Selections Related Opportunities Financial Opportunities DOE financial opportunities for solid-state lighting (SSL) include competitive solicitations, grants, and other federal funding mechanisms to

382

low-solids oil emulsion (drilling) mud  

Science Journals Connector (OSTI)

low-solids oil emulsion (drilling) mud, low-solids oil-in-water (drilling) mud ? l-in-Wasser-(Bohr)...m, (f) mit geringem Feststoffanteil

2014-08-01T23:59:59.000Z

383

Sandia National Laboratories: Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency, Events, News & Events, Solid-State Lighting The Solid-State Lighting Science (SSLS) Energy Frontier Research Center (EFRC) Director, Dr. Michael E. Coltrin,...

384

Municipal Solid Waste | Open Energy Information  

Open Energy Info (EERE)

Waste Jump to: navigation, search TODO: Add description List of Municipal Solid Waste Incentives Retrieved from "http:en.openei.orgwindex.php?titleMunicipalSolidWaste&oldid...

385

100 MHz NMR Thorium (Solids) | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

100 MHz NMR Thorium (Solids) 100 MHz NMR Thorium (Solids) Research applications Samples containing paramagnetics Soils (SOM and NOM) Metal oxide materials for catalysis...

386

Modeling the downstream improvements in dissolved oxygen from aeration of Cherokee and Douglas releases  

SciTech Connect

This report is an evaluation of downstream improvements in dissolved oxygen (DO) which can be anticipated as a result of different levels of aeration at Cherokee and Douglas Dams. The report describes (a) field studies undertaken to describe late summer conditions for model calibration and verification; (b) development and calibration of unsteady flow and water quality models for the tailwater reaches from Cherokee and Douglas Dams to the Holston and French Broad River confluence at the head of Fort Loudoun Reservoir; and (c) model predictions of DO in the tailwater reaches and at their confluence (after mixing) with and without aeration. 7 refs., 47 figs., 4 tabs.

Hauser, G.E.; Beard, L.M.; Brown, R.T.; McKinnon, M.K.

1983-09-01T23:59:59.000Z

387

Effects of CO2-Induced Seawater Acidification on Microbial Processes Involving Dissolved Organic Matter  

Science Journals Connector (OSTI)

Abstract We used laboratory experiments covering a wide range of carbon dioxide (CO2) induced seawater acidification to simulate ocean CO2 storage and assess the potential effects on heterotrophic microbial processes associated with labile dissolved organic matter (DOM). There was no noticeable effect of increased CO2 concentration on short-term decomposition of labile DOM or nutrient uptake. However, microbial activities producing new DOM were apparently enhanced under treatments with 2000 or 5000ppm CO2. Under these conditions, production of aggregates was inhibited in early stage. Both of acute and chronic effects should be included for assessment of biogeochemical cycle related to microbe process.

Namiha Yamada; Nobuo Tsurushima; Masahiro Suzumura

2013-01-01T23:59:59.000Z

388

Compare All CBECS Activities: Total Energy Use  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Use Total Energy Use Compare Activities by ... Total Energy Use Total Major Fuel Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 5.7 quadrillion Btu of all major fuels (electricity, natural gas, fuel oil, and district steam or hot water) in 1999. Office buildings used the most total energy of all the building types, which was not a surprise since they were the most common commercial building type and had an above average energy intensity. Figure showing total major fuel consumption by building type. If you need assistance viewing this page, please call 202-586-8800. Major Fuel Consumption per Building by Building Type Because there were relatively few inpatient health care buildings and they tend to be large, energy intensive buildings, their energy consumption per building was far above that of any other building type.

389

TotalView Parallel Debugger at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Totalview Totalview Totalview Description TotalView from Rogue Wave Software is a parallel debugging tool that can be run with up to 512 processors. It provides both X Windows-based Graphical User Interface (GUI) and command line interface (CLI) environments for debugging. The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more about some of the advanced TotalView features. Accessing Totalview at NERSC To use TotalView at NERSC, first load the TotalView modulefile to set the correct environment settings with the following command: % module load totalview Compiling Code to Run with TotalView In order to use TotalView, code must be compiled with the -g option. We

390

Solid Waste Management Rules (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These rules establish procedures and standards to protect public health and the environment by ensuring the safe, proper, and sustainable management of solid waste in Vermont. The rules apply to...

391

Solid Solubility in Laser Cladding  

Science Journals Connector (OSTI)

Laser cladding techniques have recently enjoyed attention in preparing ... solid solution formed due to rapid cooling in laser cladding. This model considers a diffusion mechanism for ... one-dimensional semi-inf...

J. Mazumder; A. Kar

1987-02-01T23:59:59.000Z

392

Solid-State Lighting Webcasts  

Energy.gov (U.S. Department of Energy (DOE))

Below you'll find links to information about past webcast presentations related to solid-state lighting, including presentation slides and question-and-answer sessions, where available.

393

The Combustion of Solid Biomass  

Science Journals Connector (OSTI)

The combustion of solid biomass is covered in this chapter. This covers the general mechanism of combustion, moisture evaporation, devolatilisation, the combustion of the volatiles gases and tars and finally char...

Jenny M. Jones; Amanda R. Lea-Langton

2014-01-01T23:59:59.000Z

394

Solid State Photovoltaic Research Branch  

SciTech Connect

This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

Not Available

1990-09-01T23:59:59.000Z

395

Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market  

NLE Websites -- All DOE Office Websites (Extended Search)

Office » Solid-State Lighting » Information Office » Solid-State Lighting » Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop to someone by E-mail Share Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop on Facebook Tweet about Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop on Twitter Bookmark Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop on Google Bookmark Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop on Delicious Rank Solid-State Lighting: The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop on Digg

396

Solid-State Lighting: 2011 Solid-State Lighting Market Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Solid-State Lighting 2011 Solid-State Lighting Market Introduction Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Solid-State Lighting Market Introduction Workshop Materials on AddThis.com... Conferences & Meetings

397

Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting GATEWAY Solid-State Lighting GATEWAY Demonstration Results to someone by E-mail Share Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Facebook Tweet about Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Twitter Bookmark Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Google Bookmark Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Delicious Rank Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Digg Find More places to share Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations FAQs Results

398

Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

July 2008 Solid-State Lighting July 2008 Solid-State Lighting Market Introduction Workshop Materials to someone by E-mail Share Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on Facebook Tweet about Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on Twitter Bookmark Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on Google Bookmark Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on Delicious Rank Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on Digg Find More places to share Solid-State Lighting: July 2008 Solid-State Lighting Market Introduction Workshop Materials on

399

Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Solid-State Lighting R&D 2012 Solid-State Lighting R&D Workshop Presentations and Materials to someone by E-mail Share Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on Facebook Tweet about Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on Twitter Bookmark Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on Google Bookmark Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on Delicious Rank Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on Digg Find More places to share Solid-State Lighting: 2012 Solid-State Lighting R&D Workshop Presentations and Materials on AddThis.com...

400

Solid-State Lighting: 2012 Solid-State Lighting Market Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Office » Solid-State Lighting » Information Office » Solid-State Lighting » Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: 2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials to someone by E-mail Share Solid-State Lighting: 2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Facebook Tweet about Solid-State Lighting: 2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Twitter Bookmark Solid-State Lighting: 2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Google Bookmark Solid-State Lighting: 2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Delicious Rank Solid-State Lighting: 2012 Solid-State Lighting Market

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium  

NLE Websites -- All DOE Office Websites (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium to someone by E-mail Share Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Facebook Tweet about Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Twitter Bookmark Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Google Bookmark Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Delicious Rank Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on Digg Find More places to share Solid-State Lighting: DOE Municipal Solid-State Street Lighting Consortium on AddThis.com... LED Lighting Facts

402

Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hosts Solid-State Lighting DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop to someone by E-mail Share Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Facebook Tweet about Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Twitter Bookmark Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Google Bookmark Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Delicious Rank Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Digg Find More places to share Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on

403

Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Solid-State Lighting R&D 2013 Solid-State Lighting R&D Workshop Presentations and Materials to someone by E-mail Share Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on Facebook Tweet about Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on Twitter Bookmark Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on Google Bookmark Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on Delicious Rank Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on Digg Find More places to share Solid-State Lighting: 2013 Solid-State Lighting R&D Workshop Presentations and Materials on AddThis.com...

404

Solid-State Lighting: Text-Alternative Version: Municipal Solid-State  

NLE Websites -- All DOE Office Websites (Extended Search)

Municipal Solid-State Street Lighting Consortium Kickoff to someone by Municipal Solid-State Street Lighting Consortium Kickoff to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Google Bookmark Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Delicious Rank Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on Digg Find More places to share Solid-State Lighting: Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff on

405

Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Solid-State Lighting 1 Solid-State Lighting Manufacturing R&D Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Solid-State Lighting Manufacturing R&D Workshop Materials on AddThis.com... Conferences & Meetings

406

Solid-State Lighting: Municipal Solid-State Street Lighting Consortium  

NLE Websites -- All DOE Office Websites (Extended Search)

Municipal Solid-State Street Municipal Solid-State Street Lighting Consortium Kickoff Webcast to someone by E-mail Share Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Facebook Tweet about Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Twitter Bookmark Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Google Bookmark Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Delicious Rank Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on Digg Find More places to share Solid-State Lighting: Municipal Solid-State Street Lighting Consortium Kickoff Webcast on AddThis.com... Conferences & Meetings

407

Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

April 2007 Solid-State Lighting April 2007 Solid-State Lighting Market Introduction Workshop Materials to someone by E-mail Share Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on Facebook Tweet about Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on Twitter Bookmark Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on Google Bookmark Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on Delicious Rank Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on Digg Find More places to share Solid-State Lighting: April 2007 Solid-State Lighting Market Introduction Workshop Materials on

408

Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials to someone by E-mail Share Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials on Facebook Tweet about Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials on Twitter Bookmark Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials on Google Bookmark Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials on Delicious Rank Solid-State Lighting: 2009 Solid-State Lighting Chicago Market Introduction Workshop Materials on Digg Find More places to share Solid-State Lighting: 2009 Solid-State

409

Solid-State Lighting: 2013 Solid-State Lighting Market Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Solid-State Lighting 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials to someone by E-mail Share Solid-State Lighting: 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Facebook Tweet about Solid-State Lighting: 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Twitter Bookmark Solid-State Lighting: 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Google Bookmark Solid-State Lighting: 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Delicious Rank Solid-State Lighting: 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials on Digg Find More places to share Solid-State Lighting: 2013 Solid-State

410

Pressure, temperature, and dissolved gas dependence of dielectric breakdown in water.  

Science Journals Connector (OSTI)

It has been shown experimentally that the optical breakdown strength of water is a pressure dependent quantity growing with increasing pressure. The dependence of the breakdown strength on temperature and dissolved gas concentration over a larger range of pressures will be observed. Using a custom fabricated pressure vessel and high?power Nd:YAG laser breakdown events will be generated and observed over a range of pressures from 0 to 25 kpsi. Observations of breakdown events will be made using a high?speed photodetector located behind the pressure vessels optical windows. Dissolved gas concentration will be controlled and varied using a custom water preparation system over a range from waters vapor pressure (?20 torr) to atmospheric pressure.Temperature will be monitored using a thermocouple attached to the pressure vessel and the temperature dependence will be measured over a range from 20 to 35 C. A comparison between current single detector methods and previous imaging methods of using breakdown to determine absolute pressure will then be made. [Work supported by Impulse Devices Inc.

Jonathan Sukovich; R. Glynn Holt

2010-01-01T23:59:59.000Z

411

Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate-Scale Hydrodynamic Model  

SciTech Connect

The Washington State Department of Ecology contracted with Pacific Northwest National Laboratory to develop an intermediate-scale hydrodynamic and water quality model to study dissolved oxygen and nutrient dynamics in Puget Sound and to help define potential Puget Sound-wide nutrient management strategies and decisions. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or dominate human impacts to dissolved oxygen levels in the sensitive areas. In this study, an intermediate-scale hydrodynamic model of Puget Sound was developed to simulate the hydrodynamics of Puget Sound and the Northwest Straits for the year 2006. The model was constructed using the unstructured Finite Volume Coastal Ocean Model. The overall model grid resolution within Puget Sound in its present configuration is about 880 m. The model was driven by tides, river inflows, and meteorological forcing (wind and net heat flux) and simulated tidal circulations, temperature, and salinity distributions in Puget Sound. The model was validated against observed data of water surface elevation, velocity, temperature, and salinity at various stations within the study domain. Model validation indicated that the model simulates tidal elevations and currents in Puget Sound well and reproduces the general patterns of the temperature and salinity distributions.

Yang, Zhaoqing; Khangaonkar, Tarang; Labiosa, Rochelle G.; Kim, Taeyun

2010-11-30T23:59:59.000Z

412

Water extraction kinetics of metals, arsenic and dissolved organic carbon from industrial contaminated poplar leaves  

Science Journals Connector (OSTI)

Abstract In industrial areas, tree leaves contaminated by metals and metalloids could constitute a secondary source of pollutants. In the present study, water extraction kinetics of inorganic elements (IE: Pb, Zn, Cd, As, Fe and Mn), dissolved organic carbon, pH and biological activity were studied for industrial contaminated poplar leaves. Moreover, the distribution of the IE through the size fractions of the associated top soil was measured. High quantities of Mn, Zn and As and polysaccharides were released in the solution from the strongly contaminated leaves. The kinetic of release varied with time and metal type. The solution pH decreased while dissolved organic contents increased with time after 30 days. Therefore, these contaminated leaves could constitute a source of more available organic metals and metalloids than the initial inorganic process particles. However, the distribution of the IE through the size fractions of the top soil suggested that a great part of the released IE was adsorbed, reducing in consequence their transfers and bioavailability. It's concluded that mobility/bioavailability and speciation of metals and metalloids released from the decomposition of polluted tree leaves depends on soil characteristics, pollutant type and litter composition, with consequences for environmental risk assessment.

Muhammad Shahid; Tiantian Xiong; Maryse Castrec-Rouelle; Tibo Leveque; Camille Dumat

2013-01-01T23:59:59.000Z

413

Quantification and characterization of dissolved organic nitrogen in wastewater effluents by electrodialysis treatment followed by size-exclusion chromatography with nitrogen detection  

Science Journals Connector (OSTI)

Abstract Dissolved organic nitrogen (DON) can act as a precursor of nitrogenous disinfection byproducts during oxidative water treatment. Quantification and characterization of DON are still challenging for waters with high concentrations of dissolved inorganic nitrogen (DIN, including ammonia, nitrate and nitrite) relative to total dissolved nitrogen (TDN) due to the cumulative analytical errors of independently measured nitrogen species (i.e., DON=TDN? NO 2 ? ? NO 3 ? ? NH 4 + /NH3) and interference of DIN species to TDN quantification. In this study, a novel electrodialysis (ED)-based treatment for selective DIN removal was developed and optimized with respect to type of ion-exchange membrane, sample pH, and ED duration. The optimized ED method was then coupled with size-exclusion chromatography with organic carbon, UV, and nitrogen detection (SEC-OCD-ND) for advanced DON analysis in wastewater effluents. Among the tested ion-exchange membranes, the PC-AR anion- and CMT cation-exchange membranes showed the lowest DOC loss (17%) during ED treatment of a wastewater effluent at ambient pH (8.0). A good correlation was found between the decrease of the DIN/TDN ratio and conductivity. Therefore, conductivity has been adopted as a convenient way to determine the optimal duration of the ED treatment. In the pH range of 7.08.3, ED treatment of various wastewater effluents with the PC-AR/CMT membranes showed that the relative residual conductivity could be reduced to less than 0.50 (DIN removal >90%; DIN/TDN ratio ?0.60) with lower DOC losses (6%) than the previous dialysis and nanofiltration methods (DOCloss >10%). In addition, the ED method is shorter (0.5h) than the previous methods (>124h). The relative residual conductivity was further reduced to ?0.20 (DIN removal >95%; DIN/TDN ratio?0.35) by increasing the ED duration to 0.7h (DOC loss=8%) for analysis by SEC-OCD-ND, which provided new information on distribution and ratio of organic carbon and nitrogen in different molecular weight fractions of effluent organic matter.

Kangmin Chon; Yunho Lee; Jacqueline Traber; Urs von Gunten

2013-01-01T23:59:59.000Z

414

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Tennessee - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 285 310 230 210 212 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,700 5,478 5,144 4,851 5,825 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

415

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Connecticut - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

416

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Oregon - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18 21 24 26 24 Production (million cubic feet) Gross Withdrawals From Gas Wells 409 778 821 1,407 1,344 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

417

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 District of Columbia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

418

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Oregon - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 21 24 26 24 27 Production (million cubic feet) Gross Withdrawals From Gas Wells 778 821 1,407 1,344 770 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

419

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Georgia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

420

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Delaware - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 District of Columbia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

422

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Tennessee - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 305 285 310 230 210 Production (million cubic feet) Gross Withdrawals From Gas Wells NA 4,700 5,478 5,144 4,851 From Oil Wells 3,942 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

423

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Nebraska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 186 322 285 276 322 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,331 2,862 2,734 2,092 1,854 From Oil Wells 228 221 182 163 126 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

424

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Georgia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

425

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Connecticut - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

426

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Florida - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 2,000 2,742 290 13,938 17,129 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

427

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Delaware - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

428

ARM - Measurement - Shortwave spectral total downwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

Shadowband Spectroradiometer SPEC-TOTDN : Shortwave Total Downwelling Spectrometer UAV-EGRETT : UAV-Egrett Value-Added Products VISST : Minnis Cloud Products Using Visst...

429

,"New York Natural Gas Total Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","12312014"...

430

Total Supplemental Supply of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources &...

431

Total Natural Gas Gross Withdrawals (Summary)  

Gasoline and Diesel Fuel Update (EIA)

Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to...

432

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Indiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 525 563 620 914 819 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,701 4,927 6,802 9,075 8,814 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

433

REVERSIBLE SOLID OXIDE CELLS Mogens Mogensen1  

E-Print Network (OSTI)

The reversibility of solid oxide fuel cells (SOFC), i.e. that they could also work in the solid oxide electrolyser1 REVERSIBLE SOLID OXIDE CELLS Mogens Mogensen1 , Søren Højgaard Jensen1,2 , Anne Hauch1,3 , Ib Chorkendorff2 and Torben Jacobsen3 1 Fuel Cell and Solid State Chemistry Department Risø National Laboratory

434

Solid Oxide Electrolysis Cells Performance and Durability  

E-Print Network (OSTI)

Title: Solid Oxide Electrolysis Cells ­ Performance and Durability Department: Fuel Cells and SolidSolid Oxide Electrolysis Cells ­ Performance and Durability Anne Hauch Risø-PhD-37(EN) Risø : Images from transmission electron microscopy investigation of the H2 electrode for the solid oxide cell

435

Conversion of organic solids to hydrocarbons  

DOE Patents (OSTI)

A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon. 5 Figs.

Greenbaum, E.

1995-05-23T23:59:59.000Z

436

Solid Waste Management (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Waste Management (Indiana) Solid Waste Management (Indiana) Solid Waste Management (Indiana) < Back Eligibility Agricultural Commercial Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Program Info State Indiana Program Type Environmental Regulations Provider Association of Indiana Solid Wastes Districts Inc. The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Indiana Department of Environmental Management and the Indiana Solid Waste Management Board are tasked with planning and adopting rules and regulations governing solid waste management practices. Provisions pertaining to landfill management and expansion, permitting,

437

Solid-State Lighting: The Second Annual DOE Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

The Second Annual DOE The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop to someone by E-mail Share Solid-State Lighting: The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop on Facebook Tweet about Solid-State Lighting: The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop on Twitter Bookmark Solid-State Lighting: The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop on Google Bookmark Solid-State Lighting: The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop on Delicious Rank Solid-State Lighting: The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop on Digg Find More places to share Solid-State Lighting: The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop on AddThis.com...

438

Solid-State Lighting: Meeting Materials from 2003 Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting Materials from 2003 Meeting Materials from 2003 Solid-State Lighting Program Planning Workshop to someone by E-mail Share Solid-State Lighting: Meeting Materials from 2003 Solid-State Lighting Program Planning Workshop on Facebook Tweet about Solid-State Lighting: Meeting Materials from 2003 Solid-State Lighting Program Planning Workshop on Twitter Bookmark Solid-State Lighting: Meeting Materials from 2003 Solid-State Lighting Program Planning Workshop on Google Bookmark Solid-State Lighting: Meeting Materials from 2003 Solid-State Lighting Program Planning Workshop on Delicious Rank Solid-State Lighting: Meeting Materials from 2003 Solid-State Lighting Program Planning Workshop on Digg Find More places to share Solid-State Lighting: Meeting Materials from 2003 Solid-State Lighting Program Planning Workshop on AddThis.com...

439

Solid-State Lighting: The Sixth Annual DOE Solid-State Lighting Market  

NLE Websites -- All DOE Office Websites (Extended Search)

The Sixth Annual DOE The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop to someone by E-mail Share Solid-State Lighting: The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop on Facebook Tweet about Solid-State Lighting: The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop on Twitter Bookmark Solid-State Lighting: The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop on Google Bookmark Solid-State Lighting: The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop on Delicious Rank Solid-State Lighting: The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop on Digg Find More places to share Solid-State Lighting: The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop on AddThis.com...

440

Solid-State Lighting: The Fifth Annual DOE Solid-State Lighting Market  

NLE Websites -- All DOE Office Websites (Extended Search)

The Fifth Annual DOE The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop to someone by E-mail Share Solid-State Lighting: The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop on Facebook Tweet about Solid-State Lighting: The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop on Twitter Bookmark Solid-State Lighting: The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop on Google Bookmark Solid-State Lighting: The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop on Delicious Rank Solid-State Lighting: The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop on Digg Find More places to share Solid-State Lighting: The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop on AddThis.com...

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Solid-State Lighting: The Eighth Annual DOE Solid-State Lighting Market  

NLE Websites -- All DOE Office Websites (Extended Search)

The Eighth Annual DOE The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop to someone by E-mail Share Solid-State Lighting: The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop on Facebook Tweet about Solid-State Lighting: The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop on Twitter Bookmark Solid-State Lighting: The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop on Google Bookmark Solid-State Lighting: The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop on Delicious Rank Solid-State Lighting: The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop on Digg Find More places to share Solid-State Lighting: The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop on AddThis.com...

442

Solid oxide electrochemical reactor science.  

SciTech Connect

Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

2010-09-01T23:59:59.000Z

443

Total Synthesis of Irciniastatin A (Psymberin)  

E-Print Network (OSTI)

Total Synthesis of Irciniastatin A (Psymberin) Michael T. Crimmins,* Jason M. Stevens, and Gregory, North Carolina 27599 crimmins@email.unc.edu Received July 21, 2009 ABSTRACT The total synthesis of a hemiaminal and acid chloride to complete the synthesis. In 2004, Pettit and Crews independently reported

444

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network (OSTI)

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA S RENSEN a generalization of previously proposed batch distillation schemes. A simple feedback control strategy for total re verify the simulations. INTRODUCTION Although batch distillation generally is less energy e cient than

Skogestad, Sigurd

445

J.Org. Chem. 1989,54, 1157-1161 1157 nitrogen. The residual solid was then dissolved in 1mL of 0.2  

E-Print Network (OSTI)

the excess reagent (C5H5N-HzO, 1:1, was added as necessary to maintain a biphasic extraction). The aqueous Autilizingthe additionof the lithium acetylide of 1-methoxy-1-buten-3-yne to 4(R

446

Preparation and orientation of solid  

Science Journals Connector (OSTI)

We have prepared solid 3He crystals under constant volume conditions and characterized them by neutron diffraction and transmission. The ultimate aim of the work was the preparation of samples suitable for neutron diffraction investigations of the antiferromagnetic nuclear ordering of solid 3He below 1mK. We describe results from different sample cells, and we have derived the relevant design parameters with respect to (a) the neutron signal and background requirements, (b) the requirements of experiments at ultra-low temperature and (c) the mechanical properties for work at high pressure. The techniques of the 3He crystal growth at pressure between 4 and 6MPa and at low temperature are described, together with a strategy for the crystal orientation and background reduction. As a result, large 3He single crystals of good quality were obtained. With such samples, neutron experiments on magnetic order in solid 3He at ultra-low temperature shift to the experimentally feasible regime.

V Boiko; S Matas; K Siemensmeyer

2008-01-01T23:59:59.000Z

447

Standard practices for dissolving glass containing radioactive and mixed waste for chemical and radiochemical analysis  

E-Print Network (OSTI)

1.1 These practices cover techniques suitable for dissolving glass samples that may contain nuclear wastes. These techniques used together or independently will produce solutions that can be analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), atomic absorption spectrometry (AAS), radiochemical methods and wet chemical techniques for major components, minor components and radionuclides. 1.2 One of the fusion practices and the microwave practice can be used in hot cells and shielded hoods after modification to meet local operational requirements. 1.3 The user of these practices must follow radiation protection guidelines in place for their specific laboratories. 1.4 Additional information relating to safety is included in the text. 1.5 The dissolution techniques described in these practices can be used for quality control of the feed materials and the product of plants vitrifying nuclear waste materials in glass. 1.6 These pr...

American Society for Testing and Materials. Philadelphia

2000-01-01T23:59:59.000Z

448

Solid-state lithium battery  

DOE Patents (OSTI)

The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

2014-11-04T23:59:59.000Z

449

Concentrations of dissolved radon-222 in water from selected wells and springs in Idaho, 1989-91  

SciTech Connect

Concentrations of dissolved radon-222, a naturally occurring radioactive gas, are found in water in Idaho. The U.S. Geological Survey collected water samples for radon-222 analyses from 338 Idaho wells and springs during 1989-91. These water samples were collected as part of ongoing monitoring programs with the Idaho Department of Water Resources and the U.S. Department of Energy. Concentrations of dissolved radon-222 in 372 of the water samples ranged from -58{+-}30 to 5,715{+-}66 picocuries per liter; the mean and median concentrations were 446{+-}35 and 242{+-}25 picocuries per liter, respectively.

Cecil, L.D.; Parliman, D.J.; Edwards, D.D.; Young, H.W.

1994-11-01T23:59:59.000Z

450

Compositional controls on melting and dissolving a salt into a ternary melt  

Science Journals Connector (OSTI)

...far-field fluid temperature, there is more...than is needed to supply latent heat, and...contribution to interface temperature through the need...the interface to supply latent heat. This...capture the dominant controls on the dissolution...associated with the temperatures of the solid and...

2007-01-01T23:59:59.000Z

451

Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Webcast: Municipal Solid-State Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool to someone by E-mail Share Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool on Facebook Tweet about Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool on Twitter Bookmark Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool on Google Bookmark Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool on Delicious Rank Solid-State Lighting: Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool on Digg

452

Solid-State Lighting: Hotel Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Program » Solid-State Lighting » Program » Solid-State Lighting » Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: Hotel Information to someone by E-mail Share Solid-State Lighting: Hotel Information on Facebook Tweet about Solid-State Lighting: Hotel Information on Twitter Bookmark Solid-State Lighting: Hotel Information on Google Bookmark Solid-State Lighting: Hotel Information on Delicious Rank Solid-State Lighting: Hotel Information on Digg Find More places to share Solid-State Lighting: Hotel Information on AddThis.com... Home Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Hotel Information Wyndham Grand Pittsburgh, 600 Commonwealth Place, Pittsburgh, PA 15222 The Wyndham Grand Pittsburgh room block has expired; however,

453

Anoxic Plume Attenuation in a Fluctuating Water Table System: Impact of 100-D Area In Situ Redox Manipulation on Downgradient Dissolved Oxygen Concentrations  

SciTech Connect

Anoxic Plume Attenuation in a Fluctuating Water Table System: Impact of 100-D Area In Situ Redox Manipulation on Downgradient Dissolved Oxygen Concentrations

Williams, Mark D.; Vermeul, Vincent R.; Oostrom, Martinus; Evans, John C.; Fruchter, Jonathan S.; Istok, J. D.; Humphrey, M. D.; Lanigan, David C.; Szecsody, James E.; White, Mark D.; Wietsma, Thomas W.; Cole, Charles R.

1999-06-14T23:59:59.000Z

454

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Illinois - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 45 51 50 40 40 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,188 E 1,438 E 1,697 2,114 2,125 From Oil Wells E 5 E 5 E 5 7 0 From Coalbed Wells E 0 E 0 0 0 0 From Shale Gas Wells 0

455

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

50 50 North Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 194 196 188 239 211 Production (million cubic feet) Gross Withdrawals From Gas Wells 13,738 11,263 10,501 14,287 22,261 From Oil Wells 54,896 45,776 38,306 27,739 17,434 From Coalbed Wells 0

456

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Mississippi - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 2,343 2,320 1,979 5,732 1,669 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,673 337,168 387,026 429,829 404,457 From Oil Wells 7,542 8,934 8,714 8,159 43,421 From Coalbed Wells 7,250

457

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,735 6,426 7,303 7,470 7,903 Production (million cubic feet) Gross Withdrawals From Gas Wells R 6,681 R 7,419 R 16,046 R 23,086 20,375 From Oil Wells 0 0 0 0 0 From Coalbed Wells R 86,275 R 101,567

458

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Michigan - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 9,712 9,995 10,600 10,100 11,100 Production (million cubic feet) Gross Withdrawals From Gas Wells R 80,090 R 16,959 R 20,867 R 7,345 18,470 From Oil Wells 54,114 10,716 12,919 9,453 11,620 From Coalbed Wells 0

459

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Montana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,925 7,095 7,031 6,059 6,477 Production (million cubic feet) Gross Withdrawals From Gas Wells R 69,741 R 67,399 R 57,396 R 51,117 37,937 From Oil Wells 23,092 22,995 21,522 19,292 21,777 From Coalbed Wells

460

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Mississippi - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,315 2,343 2,320 1,979 5,732 Production (million cubic feet) Gross Withdrawals From Gas Wells R 259,001 R 331,673 R 337,168 R 387,026 429,829 From Oil Wells 6,203 7,542 8,934 8,714 8,159 From Coalbed Wells

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Indiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,350 525 563 620 914 Production (million cubic feet) Gross Withdrawals From Gas Wells 3,606 4,701 4,927 6,802 9,075 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

462

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 New York - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,680 6,675 6,628 6,736 6,157 Production (million cubic feet) Gross Withdrawals From Gas Wells 54,232 49,607 44,273 35,163 30,495 From Oil Wells 710 714 576 650 629 From Coalbed Wells 0

463

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Texas - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 76,436 87,556 93,507 95,014 100,966 Production (million cubic feet) Gross Withdrawals From Gas Wells R 4,992,042 R 5,285,458 R 4,860,377 R 4,441,188 3,794,952 From Oil Wells 704,092 745,587 774,821 849,560 1,073,301

464

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Ohio - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 34,416 34,963 34,931 46,717 35,104 Production (million cubic feet) Gross Withdrawals From Gas Wells 79,769 83,511 73,459 30,655 65,025 From Oil Wells 5,072 5,301 4,651 45,663 6,684 From Coalbed Wells 0

465

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Colorado - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 25,716 27,021 28,813 30,101 32,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 496,374 459,509 526,077 563,750 1,036,572 From Oil Wells 199,725 327,619 338,565

466

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 South Dakota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 71 71 89 102 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 422 R 1,098 R 1,561 1,300 933 From Oil Wells 11,458 10,909 11,366 11,240 11,516 From Coalbed Wells 0 0

467

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Illinois - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 43 45 51 50 40 Production (million cubic feet) Gross Withdrawals From Gas Wells RE 1,389 RE 1,188 RE 1,438 RE 1,697 2,114 From Oil Wells E 5 E 5 E 5 E 5 7 From Coalbed Wells RE 0 RE

468

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Colorado - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 22,949 25,716 27,021 28,813 30,101 Production (million cubic feet) Gross Withdrawals From Gas Wells R 436,330 R 496,374 R 459,509 R 526,077 563,750 From Oil Wells 160,833 199,725 327,619

469

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Alaska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 239 261 261 269 277 Production (million cubic feet) Gross Withdrawals From Gas Wells 165,624 150,483 137,639 127,417 112,268 From Oil Wells 3,313,666 3,265,401 3,174,747 3,069,683 3,050,654

470

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Ohio - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 34,416 34,416 34,963 34,931 46,717 Production (million cubic feet) Gross Withdrawals From Gas Wells R 82,812 R 79,769 R 83,511 R 73,459 30,655 From Oil Wells 5,268 5,072 5,301 4,651 45,663 From Coalbed Wells

471

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Kentucky - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 16,563 16,290 17,152 17,670 14,632 Production (million cubic feet) Gross Withdrawals From Gas Wells 95,437 R 112,587 R 111,782 133,521 122,578 From Oil Wells 0 1,529 1,518 1,809 1,665 From Coalbed Wells 0

472

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Utah - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,197 5,578 5,774 6,075 6,469 Production (million cubic feet) Gross Withdrawals From Gas Wells R 271,890 R 331,143 R 340,224 R 328,135 351,168 From Oil Wells 35,104 36,056 36,795 42,526 49,947 From Coalbed Wells

473

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 California - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 1,540 1,645 1,643 1,580 1,308 Production (million cubic feet) Gross Withdrawals From Gas Wells 93,249 91,460 82,288 73,017 63,902 From Oil Wells R 116,652 R 122,345 R 121,949 R 151,369 120,880

474

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Utah - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,578 5,774 6,075 6,469 6,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,143 340,224 328,135 351,168 402,899 From Oil Wells 36,056 36,795 42,526 49,947 31,440 From Coalbed Wells 74,399

475

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Louisiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18,145 19,213 18,860 19,137 21,235 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,261,539 R 1,288,559 R 1,100,007 R 911,967 883,712 From Oil Wells 106,303 61,663 58,037 63,638 68,505

476

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Oklahoma - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 38,364 41,921 43,600 44,000 41,238 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,583,356 R 1,452,148 R 1,413,759 R 1,140,111 1,281,794 From Oil Wells 35,186 153,227 92,467 210,492 104,703

477

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 New Mexico - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 42,644 44,241 44,784 44,748 32,302 Production (million cubic feet) Gross Withdrawals From Gas Wells R 657,593 R 732,483 R 682,334 R 616,134 556,024 From Oil Wells 227,352 211,496 223,493 238,580 252,326

478

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 West Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 48,215 49,364 50,602 52,498 56,813 Production (million cubic feet) Gross Withdrawals From Gas Wells R 189,968 R 191,444 R 192,896 R 151,401 167,113 From Oil Wells 701 0 0 0 0 From Coalbed Wells

479

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Michigan - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 9,995 10,600 10,100 11,100 10,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 16,959 20,867 7,345 18,470 17,041 From Oil Wells 10,716 12,919 9,453 11,620 4,470 From Coalbed Wells 0

480

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 West Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 49,364 50,602 52,498 56,813 50,700 Production (million cubic feet) Gross Withdrawals From Gas Wells 191,444 192,896 151,401 167,113 397,313 From Oil Wells 0 0 0 0 1,477 From Coalbed Wells 0

Note: This page contains sample records for the topic "total dissolved solids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

80 80 Wyoming - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 27,350 28,969 25,710 26,124 26,180 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,649,284 R 1,764,084 R 1,806,807 R 1,787,599 1,709,218 From Oil Wells 159,039 156,133 135,269 151,871 152,589

482

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 New York - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,675 6,628 6,736 6,157 7,176 Production (million cubic feet) Gross Withdrawals From Gas Wells 49,607 44,273 35,163 30,495 25,985 From Oil Wells 714 576 650 629 439 From Coalbed Wells 0

483

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Wyoming - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 28,969 25,710 26,124 26,180 22,171 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,764,084 1,806,807 1,787,599 1,709,218 1,762,095 From Oil Wells 156,133 135,269 151,871 152,589 24,544

484

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,426 7,303 7,470 7,903 7,843 Production (million cubic feet) Gross Withdrawals From Gas Wells 7,419 16,046 23,086 20,375 21,802 From Oil Wells 0 0 0 0 9 From Coalbed Wells 101,567 106,408

485

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Kentucky - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 16,290 17,152 17,670 14,632 17,936 Production (million cubic feet) Gross Withdrawals From Gas Wells 112,587 111,782 133,521 122,578 106,122 From Oil Wells 1,529 1,518 1,809 1,665 0 From Coalbed Wells 0

486

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Pennsylvania - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 52,700 55,631 57,356 44,500 54,347 Production (million cubic feet) Gross Withdrawals From Gas Wells 182,277 R 188,538 R 184,795 R 173,450 242,305 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0

487

Total synthesis and study of myrmicarin alkaloids  

E-Print Network (OSTI)

I. Enantioselective Total Synthesis of Tricyclic Myrmicarin Alkaloids An enantioselective gram-scale synthesis of a key dihydroindolizine intermediate for the preparation of myrmicarin alkaloids is described. Key transformations ...

Ondrus, Alison Evelynn, 1981-

2009-01-01T23:59:59.000Z

488

Total synthesis of cyclotryptamine and diketopiperazine alkaloids  

E-Print Network (OSTI)

I. Total Synthesis of the (+)-12,12'-Dideoxyverticillin A The fungal metabolite (+)-12,12'-dideoxyverticillin A, a cytotoxic alkaloid isolated from a marine Penicillium sp., belongs to a fascinating family of densely ...

Kim, Justin, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

489

Provides Total Tuition Charge to Source Contribution  

E-Print Network (OSTI)

,262 1,938 TGR 4-20 0-3 2,871 2,871 - % of time appointed Hours of Work/Week Units TAL Provides Total

Kay, Mark A.

490

Enantioselective Total Synthesis of (?)-Acylfulvene and (?)- Irofulven  

E-Print Network (OSTI)

We report our full account of the enantioselective total synthesis of (?)-acylfulvene (1) and (?)-irofulven (2), which features metathesis reactions for the rapid assembly of the molecular framework of these antitumor ...

Movassaghi, Mohammad

491

A GENUINELY HIGH ORDER TOTAL VARIATION DIMINISHING ...  

E-Print Network (OSTI)

(TVD) schemes solving one-dimensional scalar conservation laws degenerate to first order .... where the total variation is measured by the standard bounded variation ..... interval Ij and into the jump discontinuities at cell interfaces, see [12].

492

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Texas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 87,556 93,507 95,014 100,966 96,617 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,285,458 4,860,377 4,441,188 3,794,952 3,619,901 From Oil Wells 745,587 774,821 849,560 1,073,301 860,675

493

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Alabama - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,860 6,913 7,026 7,063 6,327 Production (million cubic feet) Gross Withdrawals From Gas Wells 158,964 142,509 131,448 116,872 114,407 From Oil Wells 6,368 5,758 6,195 5,975 10,978

494

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Louisiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 19,213 18,860 19,137 21,235 19,792 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,288,559 1,100,007 911,967 883,712 775,506 From Oil Wells 61,663 58,037 63,638 68,505 49,380

495

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 South Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 71 89 102 100 95 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,098 1,561 1,300 933 14,396 From Oil Wells 10,909 11,366 11,240 11,516 689 From Coalbed Wells 0 0 0 0 0

496

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Kansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 17,862 21,243 22,145 25,758 24,697 Production (million cubic feet) Gross Withdrawals From Gas Wells 286,210 269,086 247,651 236,834 264,610 From Oil Wells 45,038 42,647 39,071 37,194 0 From Coalbed Wells 44,066

497

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Arkansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,592 6,314 7,397 8,388 8,538 Production (million cubic feet) Gross Withdrawals From Gas Wells 173,975 164,316 152,108 132,230 121,684 From Oil Wells 7,378 5,743 5,691 9,291 3,000

498

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 California - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 1,645 1,643 1,580 1,308 1,423 Production (million cubic feet) Gross Withdrawals From Gas Wells 91,460 82,288 73,017 63,902 120,579 From Oil Wells 122,345 121,949 151,369 120,880 70,900

499

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Oklahoma - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 41,921 43,600 44,000 41,238 40,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,452,148 1,413,759 1,140,111 1,281,794 1,394,859 From Oil Wells 153,227 92,467 210,492 104,703 53,720

500

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Alaska - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 261 261 269 277 185 Production (million cubic feet) Gross Withdrawals From Gas Wells 150,483 137,639 127,417 112,268 107,873 From Oil Wells 3,265,401 3,174,747 3,069,683 3,050,654 3,056,918