Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Total supply chain cost model  

E-Print Network [OSTI]

Sourcing and outsourcing decisions have taken on increased importance within Teradyne to improve efficiency and competitiveness. This project delivered a conceptual framework and a software tool to analyze supply chain ...

Wu, Claudia

2005-01-01T23:59:59.000Z

2

Delivering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files Data Files 1B&WDelegations,Delegations,Delivering

3

Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary: Reported provedReal2.1Total

4

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

Services & Testing Contract September 2014 Contractor: Contract Number: Contract Type: Advanced Technologies & Labs International Inc. DE-AC27-10RV15051 Cost Plus Award Fee...

5

Project Functions and Activities Definitions for Total Project Cost  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter provides guidelines developed to define the obvious disparity of opinions and practices with regard to what exactly is included in total estimated cost (TEC) and total project cost (TPC).

1997-03-28T23:59:59.000Z

6

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

Office - Oak Ridge, TN Contract Name: Transuranic Waste Processing Contract Sep-14 2,433,940 Cost Plus Award Fee 150,664,017 Fee Information Minimum Fee 2,039,246 Maximum Fee...

7

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

LLC (UCOR) DE-SC-0004645 April 29, 2011 - July 13, 2016 Contract Number: Maximum Fee Cost Plus Award Fee 1,640,839,964 Fee Information Minimum Fee 0 EM Contractor Fee Site:...

8

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

FY2011 FY2012 Fee Information Minimum Fee Maximum Fee September 2014 Contract Number: Cost Plus Incentive Fee Contractor: 3,260,603,765 Contract Period: EM Contractor Fee Site:...

9

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

Wastren-EnergX Mission Support LLC Contract Number: DE-CI0000004 Contract Type: Cost Plus Award Fee 128,879,762 Contract Period: December 2009 - July 2015 Fee Information...

10

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

- September 2015 September 2014 Contractor: Contract Number: Contract Type: Idaho Treatment Group LLC DE-EM0001467 Cost Plus Award Fee Fee Information 444,161,295 Contract Period:...

11

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

Cumulative Fee Paid 22,200,285 Wackenhut Services, Inc. DE-AC30-10CC60025 Contractor: Cost Plus Award Fee 989,000,000 Contract Period: Contract Type: January 2010 - December...

12

Total Estimated Contract Cost:) Performance Period Total Fee...  

Office of Environmental Management (EM)

Washington Closure LLC DE-AC06-05RL14655 Contractor: Contract Number: Contract Type: Cost Plus Incentive Fee 2,366,753,325 Fee Information 0 Maximum Fee 319,511,699...

13

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

Number: Contract Type: Contract Period: 0 Minimum Fee Maximum Fee Washington River Protection Solutions LLC DE-AC27-08RV14800 Cost Plus Award Fee 5,553,789,617 Fee Information...

14

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

& Wilcox Conversion Services, LLC Contract Number: DE-AC30-11CC40015 Contract Type: Cost Plus Award Fee Fee Available 4,324,912 408,822,369 Contract Period: December 2010 -...

15

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

0 Contractor: Bechtel National Inc. Contract Number: DE-AC27-01RV14136 Contract Type: Cost Plus Award Fee Maximum Fee* 595,123,540 Fee Available 102,622,325 10,714,819,974...

16

Total Cost of Ownership Considerations in Global Sourcing Processes  

E-Print Network [OSTI]

Total Cost of Ownership Considerations in Global Sourcing Processes Robert Alard, Philipp Bremen and microeconomic aspects which can also be largely used independently. Keywords: Global Supply Networks, Total Cost of Ownership, Global Total Cost of Ownership, Global Procurement, Outsourcing, Supplier Evaluation, Country

Paris-Sud XI, Université de

17

"Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 International PetroleumFuel Oil8Status Total Delivered

18

"Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 International PetroleumFuel Oil8Status Total Delivered

19

"Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 International PetroleumFuel Oil8Status Total Delivered

20

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

Fee Paid 127,390,991 Contract Number: Fee Available Contract Period: Contract Type: Cost Plus Award Fee 4,104,318,749 28,500,000 31,597,837 0 39,171,018 32,871,600 EM...

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 th ,Top Value AddedTotal Energy

22

Developing a total replacement cost index for suburban office projects  

E-Print Network [OSTI]

Understanding the components of replacement costs for office developments, and how these components combine to create total development costs is essential for success in office real estate development. Surprisingly, the ...

Hansen, David John, S.M. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

23

COST SHARING Cost sharing is the portion of total project costs of a sponsored agreement that is not bourn by  

E-Print Network [OSTI]

1 COST SHARING Cost sharing is the portion of total project costs of a sponsored agreement. There are primarily three types of cost sharing that may occur on sponsored projects: Mandatory cost sharing. For example, the National Science Foundation requires mandatory cost sharing for some of its projects. COST

Cui, Yan

24

CIGNA Study Uncovers Relationship of Disabilities to Total Benefits Costs  

Broader source: Energy.gov [DOE]

The findings of a new study reveal an interesting trend. Integrating disability programs with health care programs can potentially lower employers' total benefits costs and help disabled employees get back to work sooner and stay at work.

25

"Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 International PetroleumFuel Oil8Status Total Total

26

Alabama Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan Feb Mar AprDecadeYear Jan0.8 0.8 0.9

27

,"Alabama Share of Total U.S. Natural Gas Delivered to Consumers"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved Reserves (BillionShare of Total U.S. Natural Gas

28

Vermont Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198SeparationTotal Consumptionper0.1 0.1 0.1

29

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling...

30

A Total Cost of Ownership Model for Low Temperature PEM Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications A Total Cost of Ownership Model for Low Temperature PEM...

31

Development of a total landed cost and risk analysis model for global strategic sourcing  

E-Print Network [OSTI]

Total landed cost and supply chain risk analysis are methods that many companies use to assess strategic sourcing decisions. For this project, landed cost is defined as those costs associated with material movement from a ...

Feller, Brian (Brian C.)

2008-01-01T23:59:59.000Z

32

Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

SciTech Connect (OSTI)

This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

Ramsden, T.

2013-04-01T23:59:59.000Z

33

Robust Optimization Strategies for Total Cost Control in Project ...  

E-Print Network [OSTI]

Feb 13, 2010 ... We describe robust optimization procedures for controlling total ... probability of meeting the overall project budget, compared to less than 45%...

2010-02-13T23:59:59.000Z

34

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Technical Report NRELTP-5600-56408...

35

A Total Cost of Ownership Model for Low Temperature PEM Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

LBNL-6772E A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications Max Wei, Timothy Lipman 1 , Ahmad Mayyas 1 ,...

36

Update of Hydrogen from Biomass - Determination of the Delivered...  

Office of Environmental Management (EM)

Update of Hydrogen from Biomass - Determination of the Delivered Cost of Hydrogen: Milestone Completion Report Update of Hydrogen from Biomass - Determination of the Delivered Cost...

37

Total..............................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7 111.1

38

Total................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7 111.1..

39

Total........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7 111.1..

40

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Total...........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7Q Table

42

Total...........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7Q TableQ

43

Total...........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7Q

44

Total...........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7Q26.7

45

Total............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7

46

Total............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7

47

Total.............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.7 28.8 20.6

48

Total..............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.7 28.8

49

Total..............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.7 28.8,171

50

Total...............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.7

51

Total...............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.70.7 21.7

52

Total...............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.70.7

53

Total...............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.70.747.1

54

Total...............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.70.747.1Do

55

Total................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.70.747.1Do

56

Total.................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6

57

Total.................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4 12.5 12.5

58

Total.................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4 12.5

59

Total..................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4 12.578.1

60

Total..................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Total..................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4. 111.1 14.7

62

Total...................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4. 111.1

63

Total...................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4. 111.115.2

64

Total...................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4.

65

Total...................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7

66

Total...................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,033 1,618

67

Total....................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,033 1,61814.7

68

Total.......................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,033

69

Total.......................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.6 17.7

70

Total.......................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.6 17.74.2

71

Total........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.6

72

Total........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.615.1 5.5

73

Total........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.615.1

74

Total........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.615.10.7

75

Total Cost Per MwH for all common large scale power generation...  

Open Energy Info (EERE)

or ash heap, the cost of the gas out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in...

76

Total cost analysis of process time reduction as a green machining strategy  

E-Print Network [OSTI]

on the use of life cycle assessment (LCA) to quantifyLife Cycle Cost Analysis and LCA, in: International Journal of Life Cycle Assessment,

Helu, Moneer; Behmann, Benjamin; Meier, Harald; Dornfeld, David; Lanza, Gisela; Schulze, Volker

2012-01-01T23:59:59.000Z

77

Using a total landed cost model to foster global logistics strategy in the electronics industry  

E-Print Network [OSTI]

Global operation strategies have been widely used in the last several decades as many companies and industries have taken advantage of lower production costs. However, in choosing a location, companies often only consider ...

Jearasatit, Apichart

2010-01-01T23:59:59.000Z

78

A cost/benefit model for insertion of technological innovation into a total quality management program  

E-Print Network [OSTI]

This study provides economic justification for insertion of technological innovation into a total quality management (TQM) program in a remanufacturing environment. One of the core principles of TQM is continuous improvement. A preferred metric...

Ratliff, William L

1997-01-01T23:59:59.000Z

79

Hydrogen Pathway Cost Distributions Jim Uihlein  

E-Print Network [OSTI]

Components Feedstock Production Delivery Total Delivered Hydrogen Cost Biomass Central Pipeline Distribution produce hydrogen at 300 psi · Liquefaction or pipeline compression included in delivery · Delivery costsHydrogen Pathway Cost Distributions Jim Uihlein Fuel Pathways Integration Tech Team January 25

80

Delivering SKA Science  

E-Print Network [OSTI]

The SKA will be capable of producing a stream of science data products that are Exa-scale in terms of their storage and processing requirements. This Google-scale enterprise is attracting considerable international interest and excitement from within the industrial and academic communities. In this chapter we examine the data flow, storage and processing requirements of a number of key SKA survey science projects to be executed on the baseline SKA1 configuration. Based on a set of conservative assumptions about trends for HPC and storage costs, and the data flow process within the SKA Observatory, it is apparent that survey projects of the scale proposed will potentially drive construction and operations costs beyond the current anticipated SKA1 budget. This implies a sharing of the resources and costs to deliver SKA science between the community and what is contained within the SKA Observatory. A similar situation was apparent to the designers of the LHC more than 10 years ago. We propose that it is time for...

Quinn, Peter; Bird, Ian; Dodson, Richard; Szalay, Alex; Wicenec, Andreas

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Addressing Genetics Delivering Health  

E-Print Network [OSTI]

Addressing Genetics Delivering Health A strategy for advancing the dissemination and application of genetics knowledge throughout our health professions Funded by Hilary Burton September 2003 Executive education of health workers q providing strategic overview of education programme q collaborating

Rambaut, Andrew

82

Compressed Air Systems Optimized: What Do You Really Need and How to Get It at the Lowest Total Cost  

E-Print Network [OSTI]

it in the field. We discuss all the proven supply side optimization strategies with real examples and results. ISO air quality standards are discussed and how their interpretation impacts the cost of operating compressed air systems. We offer best practice methods...

McAuley, J. G.; McAuley, J.

2010-01-01T23:59:59.000Z

83

A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications  

SciTech Connect (OSTI)

A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

2014-06-23T23:59:59.000Z

84

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

Elec Del Cali: Del Investment Cost Delivery Cost OperatingCost Feedstock Cost Investment Cost Delivery Cost Operatingcosts Annualized investment cost, 1000$/yr Total annualized

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

85

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

Costs Annualized Investment Cost, 1000$/yr Total AnnualizedH2 Fueling Stations Investment Cost Cost ($/yr) OperatingH2 Fueling Stations Investment Cost Cost ($/kg) Operating

Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

2006-01-01T23:59:59.000Z

86

Hemophilia A Pseudoaneurysm in a Patient with High Responding Inhibitors Complicating Total Knee Arthroplasty: Embolization: A Cost-Reducing Alternative to Medical Therapy  

SciTech Connect (OSTI)

Joint hemorrhages are very common in patients with severe hemophilia. Inhibitors in patients with hemophilia are allo-antibodies that neutralize the activity of the clotting factor. After total knee replacement, rare intra-articular bleeding complications might occur that do not respond to clotting factor replacement. We report a 40-year-old male with severe hemophilia A and high responding inhibitors presenting with recurrent knee joint hemorrhage after bilateral knee prosthetic surgery despite adequate clotting factor treatment. There were two episodes of marked postoperative hemarthrosis requiring extensive use of subsititution therapy. Eleven days postoperatively, there was further hemorrhage into the right knee. Digital subtraction angiography diagnosed a complicating pseudoaneurysm of the inferior lateral geniculate artery and embolization was successfully performed. Because clotting factor replacement therapy has proved to be excessively expensive and prolonged, especially in patients with inhibitors, we recommend the use of cost-effective early angiographic embolization.

Kickuth, Ralph, E-mail: ralph.kickuth@insel.ch; Anderson, Suzanne [Inselspital, University of Berne, Institute of Diagnostic, Interventional and Pediatric Radiology (Switzerland); Peter-Salonen, Kristiina; Laemmle, Bernhard [Inselspital, University of Berne, Department of Hematology (Switzerland); Eggli, Stefan [Inselspital, University of Berne, Department of Orthopedic Surgery (Switzerland); Triller, Juergen [Inselspital, University of Berne, Institute of Diagnostic, Interventional and Pediatric Radiology (Switzerland)

2006-12-15T23:59:59.000Z

87

Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary statisticsRecoverable

88

Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary

89

Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary: Reported proved

90

Abstract--In an open access power market, power tracing is a very important issue as it can help allocate the total cost of  

E-Print Network [OSTI]

it a desired method for transmission pricing. This work has been supported by the National Science increasing complexity and the associated computations costs. Index Terms--Electricity market, transmission pricing, Short Run Marginal Cost (SRMC). I. INTRODUCTION LECTRICITY MARKET design and operation have

Cañizares, Claudio A.

91

Development of a Method Using BIM Technology to Determine the Utility Bill and Total Cost of Ownership of a Single-family Home  

E-Print Network [OSTI]

they will or will not benefit from BIM. A ROI can be found by using a formula to establish the first year ROI that includes particular variables, such as the proposed systems cost, labor costs, the training time, expected percentage loss, and the percentage expected to gain... and labor. I used the wall areas to compute quantities, and made educated estimates. The RSMeans books were very good sources for all the building elements in both homes. Within the books they broke down the cost of materials and labor and explained...

McGarity, Ashley

2010-07-14T23:59:59.000Z

92

Treatment Resin Reduces Costs, Materials in Hanford Groundwater...  

Office of Environmental Management (EM)

Treatment Resin Reduces Costs, Materials in Hanford Groundwater Cleanup - Efficiency delivered more than 6 million in cost savings, 3 million in annual savings Treatment Resin...

93

Cutting-Edge Savannah River Site Project Avoids Millions in Costs, Removes Chemical Solvents from Underground: Project avoided costs totaling more than $15 million, removed tons of chemical solvents from beneath the Savannah River Site  

Broader source: Energy.gov [DOE]

AIKEN, S.C. Workers recently completed a multiyear project that removed more than 33,000 gallons of non-radioactive chemical solvents from beneath a portion of the Savannah River Site (SRS), preventing those pollutants from entering the local water table and helping the site avoid costs of more than $15 million.

94

Underfloor air distribution (UFAD) cost study: analysis of first cost tradeoffs in UFAD systems  

E-Print Network [OSTI]

Thermal Quality: Total HVAC Cost Trend Table 5. Wall Thermal20. Climate: Total HVAC Cost Trend HVAC Category Cost ($/the total perimeter HVAC cost trend for increased density of

Webster, Tom; Benedek, Corinne; Bauman, Fred

2006-01-01T23:59:59.000Z

95

How to Reduce Energy Supply Costs  

E-Print Network [OSTI]

Rising energy costs have many businesses looking for creative ways to reduce their energy usage and lower the costs of energy delivered to their facilities. This paper explores innovative renewable and alternative energy technologies that can help...

Swanson, G.

2007-01-01T23:59:59.000Z

96

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012 Greenbuy Program.Definition and Scope FY2002 $15,829

97

Project Profile: Transformational Approach to Reducing the Total...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics Project Profile: Transformational Approach to Reducing the Total System Costs of...

98

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

of Reciprocating Hydrogen Compressor Costs: (Industry)Summary of Diaphragm Hydrogen Compressor Costs (Industry)vs. delivered hydrogen, compressor type, storage pressure).

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

99

Startup Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter discusses startup costs for construction and environmental projects, and estimating guidance for startup costs.

1997-03-28T23:59:59.000Z

100

Get Daily Energy Analysis Delivered to Your Website | Department...  

Broader source: Energy.gov (indexed) [DOE]

Get Daily Energy Analysis Delivered to Your Website Get Daily Energy Analysis Delivered to Your Website August 8, 2011 - 3:39pm Addthis Get Daily Energy Analysis Delivered to Your...

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Delivered by Ingenta to: Argonne National Laboratory  

E-Print Network [OSTI]

Delivered by Ingenta to: Argonne National Laboratory IP : 164.54.84.139 Wed, 02 Sep 2009 22, 35 56126 Pisa, Italy 4 Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA 5 Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA 6 Center

Haskel, Daniel

102

Chemical Imaging Initiative Delivering New Capabilities for  

E-Print Network [OSTI]

Chemical Imaging Initiative Delivering New Capabilities for In Situ, Molecular-Scale Imaging A complete, precise and realistic view of chemical, materials and biochemical processes and an understanding sources and mathematical models. At Pacific Northwest National Laboratory, the Chemical Imaging Initiative

103

2003 Mercury Computer Systems, Inc. Delivered Performance  

E-Print Network [OSTI]

© 2003 Mercury Computer Systems, Inc. Delivered Performance Predictions and Trends for RISC Applications Luke Cico (lcico@mc.com) Mark Merritt (mmerritt@mc.com) Mercury Computer Systems, Inc. Chelmsford, MA 01824 #12;© 2003 Mercury Computer Systems, Inc. Goals of PresentationGoals of Presentation

Kepner, Jeremy

104

Deputy Secretary Poneman Delivers Remarks on Nuclear Power at...  

Energy Savers [EERE]

Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo American Center in Japan Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo American Center in...

105

Delivering Renewable Hydrogen: A Focus on Near-Term Applications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Delivering Renewable Hydrogen: A Focus on Near-Term Applications Delivering Renewable Hydrogen: A Focus on Near-Term Applications Agenda for the Delvering Renewable Hydrogen...

106

Portsmouth Site Delivers First Radioactive Waste Shipment to...  

Office of Environmental Management (EM)

Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas...

107

EECBG Success Story: New Sustainability Manager Delivers Savings...  

Broader source: Energy.gov (indexed) [DOE]

Manager Delivers Savings for Delray Beach EECBG Success Story: New Sustainability Manager Delivers Savings for Delray Beach July 30, 2010 - 2:04pm Addthis Metal halide light...

108

Assistant Secretary Patricia Hoffman to Deliver Keynote Address...  

Energy Savers [EERE]

Patricia Hoffman to Deliver Keynote Address at IEEE PES Conference on Innovative Smart Grid Technologies Assistant Secretary Patricia Hoffman to Deliver Keynote Address at...

109

TOTAL Full-TOTAL Full-  

E-Print Network [OSTI]

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

110

LIFE Cost of Electricity, Capital and Operating Costs  

SciTech Connect (OSTI)

Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

Anklam, T

2011-04-14T23:59:59.000Z

111

Sandia National Laboratories: produce and deliver hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetimepower-to-gasproduce and deliver hydrogen

112

Operating Costs Estimates Cost Indices  

E-Print Network [OSTI]

to update costs of specific equipment, raw material or labor or CAPEX and OPEX of entire plants Cost Indices

Boisvert, Jeff

113

Cost of a Ride: The Effects of Densities on Fixed-Guideway Transit Ridership and Capital Costs  

E-Print Network [OSTI]

transit exceeded capital cost estimates by 40% duringfound that capital costs exceeded estimates by an averagesystems. We estimate the total capital cost, average weekday

Guerra, Erick; Cervero, Robert

2010-01-01T23:59:59.000Z

114

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect (OSTI)

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

115

Total Imports  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008 (Next1,Product: Total9,216 9,178

116

Data Center Celebrates 20 Years of Delivering Savings | Department...  

Broader source: Energy.gov (indexed) [DOE]

Data Center Celebrates 20 Years of Delivering Savings Data Center Celebrates 20 Years of Delivering Savings September 23, 2011 - 2:30pm Addthis Find Stations Plan a Route Location:...

117

West Virginia Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010from Sameper Thousand14 6886

118

Wisconsin Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010from2009Vehicle2.9 2.8 2.6

119

Wyoming Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14Thousand Cubic

120

Alaska Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan Feb Mar119,0392008 2009 2010 20114

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Arizona Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan(Million Cubic Feet) Quantity of8

122

South Carolina Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) YearPriceThousandThousand479,7416.18 5.69per Thousand Cubic6 0.6

123

South Dakota Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) Decade Year-0DecadeThousand3 0.3 0.3

124

Tennessee Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2per Thousand Cubic Feet)(Million1.4

125

Texas Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667 28,167 38,048

126

U.S. Natural Gas % of Total Commercial Delivered for the Account of Others  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 QInternational Falls,49,797.6

127

U.S. Natural Gas % of Total Industrial Delivered for the Account of Others  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 QInternational Falls,49,797.6(Percent)

128

U.S. Natural Gas % of Total Residential Consumers Delivered for the Account  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 QInternational Falls,49,797.6(Percent)of

129

Indiana Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan Feb MarYearper0 0 0 0 03.1

130

Iowa Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0YearDecadeThousand Cubic

131

Kansas Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0Month Previous YearThousand1 3 2 4 64

132

Kentucky Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15IndustrialVehicleThousand Cubic20 55 101

133

Louisiana Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289886,084 889,5705,02044 1498580.8

134

Maine Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0 0.0 0.0 0.0 0.0 0.0

135

Maryland Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade

136

Massachusetts Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81Feet) Vehicle

137

Michigan Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3YearDecade Year-0per9 6 0 07.0

138

Minnesota Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15Thousand CubicYear

139

Mississippi Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year JanThousand Cubic

140

Missouri Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15YearThousandDecade(Million Cubic3 2.2

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Montana Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384FuelYear125 137 186 192 216 2294

142

Colorado Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180 208 283 607

143

Connecticut Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 (MillionDecade(Dollars0.9 0.9

144

Delaware Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42YearDelaware Natural2 0.2 0.2

145

District of Columbia Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623and2,819 143,436 144,151 145,5243

146

Florida Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0Thousand Cubic Feet) Decade3 0.3

147

Georgia Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5 57.1CubicVehicle Fuel2.4 2.5 2.9 2.4

148

Hawaii Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.588,219ThousandThousand Cubic0.0 0.0

149

Idaho Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade (Million CubicDecadeThousand0.6 0.5

150

Illinois Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0 0 1996-2005 Lease9.5 9.2 8.7 8.9

151

U.S. Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass GasPropane, No.1Sales (Billion

152

Utah Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321Working40 235 257 258 3683 1.4

153

Virginia Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases (BillionSeparation 2,3780 0 0(Million6

154

Washington Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions89 5.87Same1.7 1.8 1.6 1.8

155

Oregon Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794 2011-2013Decade Year-0(Million Cubic0.9

156

Pennsylvania Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029Cubic(Dollars per Thousand Cubic 0 0 0 0884.7

157

Rhode Island Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousand Cubic Feet)2009 2010 2011Thousand Cubic Feet) Decade4

158

Arkansas Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 8021 1 2 22008 2009 2010 2011 2012 20137

159

California Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 (Million0,515,162180,648(Million

160

Nebraska Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb MarthroughYear Jan Feb Mar AprThousand9 0.8 0.8 0.8

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nevada Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb MarthroughYear Jan FebandDecadeThousand8 0.8 0.8 0.9

162

New Hampshire Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb MarthroughYear JanYear JanFeet)1 0.2 0.1 0.1 0.2

163

New Jersey Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb MarthroughYear(Million Cubicper Thousand4.5 4.7 4.6

164

New Mexico Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan FebFeet) Decade Year-0Decade556,905(Million Cubic367

165

New York Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan FebFeet)SalesYear Jan Feb Mar0 0 0 0 0 08.1 8.5 8.2

166

North Carolina Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan FebFeet)SalesYearDecade Year-0Feet)per

167

North Dakota Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 12 73 9Sep-14Feet)Thousand24 3682

168

Ohio Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 125 2006Year Jan Feb MarThousand0 0 06.3

169

Oklahoma Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 125Feet)Same Month923,65029

170

Project Functions and Activities Definitions for Total Project...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

exactly is included in total estimated cost (TEC) and total project cost (TPC). g4301-1chp6.pdf -- PDF Document, 46 KB Writer: John Makepeace Subjects: Administration Management...

171

Improved supplier selection and cost management for globalized automotive production  

E-Print Network [OSTI]

For many manufacturing and automotive companies, traditional sourcing decisions rely on total landed cost models to determine the cheapest supplier. Total landed cost models calculate the cost to purchase a part plus all ...

Franken, Joseph P., II (Joseph Philip)

2012-01-01T23:59:59.000Z

172

Cost per-User as Key Factor in Project Prioritization: A Case Study of the San Francisco Bay Area  

E-Print Network [OSTI]

The total estimated investment cost of network-related. ll0Vdistribution of capital investment costs and consequentlyThe total estimated investment cost of service-related

Nuworsoo, Cornelius; Parks, Kamala; Deakin, Elizabeth

2006-01-01T23:59:59.000Z

173

Cost Estimator  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve as a senior cost and schedule estimator who is responsible for preparing life-cycle cost and schedule estimates and analyses associated with the...

174

Operating Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

1997-03-28T23:59:59.000Z

175

Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model  

E-Print Network [OSTI]

= the efficiency of the propane space heater (BTU-delivered/the efficiency of the heater, and the cost of propane. The

Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

2000-01-01T23:59:59.000Z

176

DOE Fuel Cell Technologies Office Record 13013: H2 Delivery Cost...  

Office of Environmental Management (EM)

current, and projected costs for delivering and dispensing hydrogen. DOE Hydrogen and Fuel Cells Program Record 13013 More Documents & Publications Hydrogen Delivery Roadmap US...

177

Research and Development of a Low Cost Solar Collector  

SciTech Connect (OSTI)

This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic trough. And the cost reduction obtained by the Optimized Parabolic Trough compared to the

Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

2012-08-01T23:59:59.000Z

178

Avoidable waste management costs  

SciTech Connect (OSTI)

This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

1995-01-01T23:59:59.000Z

179

Industrial heat pumps - types and costs  

SciTech Connect (OSTI)

Confusion about energy savings and economics is preventing many potentially beneficial applications for industrial heat pumps. The variety of heat pumps available and the lack of a standard rating system cause some of this confusion. The authors illustrate how a simple categorization based on coefficient of performance (COP) can compare the cost of recovering waste energy with heat pumps. After evaluating examples in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs, they compare heat pumps from the various categories on the basis of economics. 6 references, 6 figures, 1 table.

Chappell, R.N.; Bliem, C.J. Jr.; Mills, J.I.; Demuth, O.J.; Plaster, D.S.

1985-08-01T23:59:59.000Z

180

Cost analysis guidelines  

SciTech Connect (OSTI)

The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy`s (DOE`s) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies.

Strait, R.S.

1996-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Smart Grid: Creating Jobs while Delivering Reliable,Environmentally...  

Open Energy Info (EERE)

Smart Grid: Creating Jobs while Delivering Reliable, Environmentally-friendly Energy Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(2017)...

182

Future oil and gas: Can Iran deliver?  

SciTech Connect (OSTI)

Iran`s oil and gas production and exports constitute the country`s main source of foreign exchange earnings. The future level of these earnings will depend on oil prices, global demand for Iranian exports, the country`s productive capability and domestic consumption. The size of Iranian oil reserves suggests that, in principle, present productive capacity could be maintained and expanded. However, the greatest share of production in coming years still will come from fields that already have produced for several decades. In spite of significant remaining reserves, these fields are not nearly as prolific as they were in their early years. The operations required for further development are now more complicated and, in particular, more costly. These fields` size also implies that improving production, and instituting secondary and tertiary recovery methods (such as gas injection), will require mega-scale operations. This article discusses future oil and gas export revenues from the Islamic Republic of Iran, emphasizing the country`s future production and commenting on the effects of proposed US sanctions.

Takin, M. [Centre for Global Energy Studies, London (United Kingdom)

1996-11-01T23:59:59.000Z

183

Cost and quality of fuels for electric utility plants 1991  

SciTech Connect (OSTI)

Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, ``Monthly Power Plant Report.`` These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990.

Not Available

1992-08-04T23:59:59.000Z

184

Cost and quality of fuels for electric utility plants 1991  

SciTech Connect (OSTI)

Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, Monthly Power Plant Report.'' These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990.

Not Available

1992-08-04T23:59:59.000Z

185

Creating an Energy Strategy that Delivers Cost Savings While Optimizing Asset Utilization  

E-Print Network [OSTI]

, switching to Powder River Basin (PRB) coal. Consider petroleum coke as being a potential opportunity fuel. Increasingly, our refineries are switching to heavier crude oils coming from Alberta, which dramatically increases the supply of petroleum... or RECs, or, simply based on environmental benefits. For larger facilities, consider switching from natural gas to coal. The benefit here is in capturing the price spread between coal and natural gas. Alternatively, for those facilities already...

Sears, A.

2006-01-01T23:59:59.000Z

186

U.S. Army Corps of Engineers Delivers Cost and Schedule Validation...  

Energy Savers [EERE]

102-ton door was set on top of the 85-ton door that was installed at the end of December. Hanford Waste Treatment Plant Sets Massive Protective Shield door in Pretreatment Facility...

187

ORISE: Delivering Cost Savings and Customer Service with Off-the-Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory |CHEMPACK Mapping Application ORISECenterMakingDOE

188

Microsoft Word - IG Testimony - UCLANL Cost Incurred- Long9 delivered.doc  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORTMAMayCross Reference4 DepartmentFinaland

189

U.S. Army Corps of Engineers Delivers Cost and Schedule Validation for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartment of1: OracleHanford Waste Treatment Plant

190

Update of Hydrogen from Biomass - Determination of the Delivered Cost of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2 ...... 13:27 FAXChallenges NOW,

191

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

total installed capital cost (TIC) 1% Of TIC 25% Estimate ofcost estimates for six station types SMR 100 a Equipment capital

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

192

Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

vehicles more affordable and convenient to own and drive than today's gasoline-powered vehicles within the next 10 years. WHAT U.S. Energy Secretary Steven Chu to deliver...

193

Delivering Document Management Systems Through the ASP Model  

E-Print Network [OSTI]

Delivering Document Management Systems Through the ASP Model Borko Furht, Florida Atlantic, Boca Raton, Florida Introduction Electronic Document Management Systems (DMS) are commercial off and short records, such as name, address, account number, and social security number. Document management

Furht, Borko

194

Hollings Manufacturing Extension Partnership: Delivering Measurable Results to Manufacturing Clients  

E-Print Network [OSTI]

of services, from innovation strategies to process improvements to green manufacturing. MEP also worksHollings Manufacturing Extension Partnership: Delivering Measurable Results to Manufacturing Clients MEP · MANUFACTURING EXTENSION PARTNERSHIP NationalInstituteofStandardsandTechnology March2013

Perkins, Richard A.

195

Types of Costs Types of Cost Estimates  

E-Print Network [OSTI]

Types of Costs Types of Cost Estimates Methods to estimate capital costs MIN E 408: Mining% accuracy. 2-5% of pre-production capital Types of Cost Estimates #12;3. Definitive Based on definitive-even $ Production Level Fixed Cost Break-even $ Production Level Cost-Revenue Relationships Capital Costs (or

Boisvert, Jeff

196

Types of Costs Types of Cost Estimates  

E-Print Network [OSTI]

05-1 Types of Costs Types of Cost Estimates Methods to estimate capital costs MIN E 408-Revenue Relationships Capital Costs (or first cost or capital investment): Expenditures made to acquire or develop capital assets Three main classes of capital costs: 1. Depreciable Investment: Investment allocated

Boisvert, Jeff

197

REQUEST FOR INDIRECT COST WAIVER I. Project Director  

E-Print Network [OSTI]

REQUEST FOR INDIRECT COST WAIVER I. Project Director: Department: Project Title: Project Sponsor without fully recovering the institutional indirect costs which will be incurred in conducting the project COSTS 1. FULL: OF I. A. C. 2. PARTIAL: OF H. B. K. TOTAL PROJECT COSTS L. INDIRECT COSTS TO BE WAIVED, J

Krovi, Venkat

198

Brush Busters: How to Estimate Costs for Controlling Small Mesquite  

E-Print Network [OSTI]

rapidly as plant size increases. ? Costs can escalate rapidly if you apply leaf or stem sprays using excessive pressure or nozzles with large orifices. ? Labor is usually a major component of total cost with Brush Busters methods. Costs escalate rapidly... and Figure 2 estimates costs for the stem spray method). Each figure consists of three graphs. The upper graph shows the cost for the spray only. The center graph shows total cost for spray plus labor at $6 per hour. The bottom graph shows total cost...

Ueckert, Darrell; McGinty, Allan

1999-04-15T23:59:59.000Z

199

U.S. Total Refiner Acquisition Cost of Crude Oil  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear Jan Feb2009 2010 2011Decade Year-0

200

Property:Geothermal/TotalProjectCost | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:PlugNumberOfArraProjectTypeTopic2 Jump to:

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Total Estimated Contract Cost: Contract Option Period: Maximum Fee  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012 Greenbuy Program.Definition and Scope Answer/Comment

202

Total Estimated Contract Cost: Contract Option Period: Performance  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012 Greenbuy Program.Definition and Scope

203

IPAS exists to deliver breakthrough science, drive innovation and thus  

E-Print Network [OSTI]

IPAS exists to deliver breakthrough science, drive innovation and thus enable illuminated decision making for a safer, healthier & wealthier world #12;Director's Welcome Our vision is to make IPAS from many areas of science. IPAS has been created to bring together physicists, chemists and biologists

204

Estimating Specialty Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Specialty costs are those nonstandard, unusual costs that are not typically estimated. Costs for research and development (R&D) projects involving new technologies, costs associated with future regulations, and specialty equipment costs are examples of specialty costs. This chapter discusses those factors that are significant contributors to project specialty costs and methods of estimating costs for specialty projects.

1997-03-28T23:59:59.000Z

205

Industrial heat pumps: types and costs  

SciTech Connect (OSTI)

Many potentially beneficial applications for industrial heat pumps are not being pursued because of confusion regarding both energy savings and economics. Part of this confusion stems from the variety of heat pumps available and the fact that the measure of merit, the coefficient of performance (COP), is commonly defined in at least three different ways. In an attempt to circumvent this problem, a simple categorization was developed based on the commonly accepted COP definitions. Using this categorization, the cost of recovering waste energy with heat pumps was examined. Examples were evaluated in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs. Heat pumps from the various categories were then compared on the basis of economics.

Chappell, R.N.; Bliem, C.J. Jr.; Mills, J.I.; Demuth, O.J.; Plaster, D.S.

1985-03-01T23:59:59.000Z

206

Industrial heat pumps - types and costs  

SciTech Connect (OSTI)

Many potentially beneficial applications for industrial heat pumps are not being pursued because of confusion regarding both energy savings and economics. Part of this confusion stems from the variety of heat pumps available and the fact that the measure of merit, the coefficient of performance (COP) is commonly defined in at least three different ways. In an attempt to circumvent this problem, a simple categorization was developed based on the commonly accepted COP definitions. Using this categorization, the cost of recovering waste energy with heat pumps was examined. Examples were evaluated in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs. Heat pumps from the various categories were then compared on the basis of economics. 6 refs., 7 figs.

Chappell, R.N.; Bliem, C.J. Jr.; Mills, J.I.; Demuth, O.J.; Plaster, D.S.

1985-01-01T23:59:59.000Z

207

Pla de Formaci Indicadors Formaci PAS I PDI Formaci especfica PDI TOTAL  

E-Print Network [OSTI]

Pla de Formació Indicadors Formació PAS I PDI Formació específica PDI TOTAL 1. Accions formatives cost total del pla inclou cost de material: llibres, fotocòpies, etc). (*) S`ha de tenir present que el cost total del pla i el nombre d'admesos 14. Inversió per hora: la relació entre el cost total del

Oro, Daniel

208

The power gain is the ratio of the power delivered to the load to the power delivered to the input of the amplifier [2].  

E-Print Network [OSTI]

1 The power gain is the ratio of the power delivered to the load to the power delivered to the input of the amplifier [2]. 2 The transducer gain is the ratio of the power delivered to the load to the available power of the source [2] and is a function of the source impedance. If the source impedance has

Groppi, Christopher

209

Employee Replacement Costs  

E-Print Network [OSTI]

Employee Replacement Costs Arindrajit Dube, Eric Freeman andproperties of employee replacement costs, using a panel2008. We establish that replacement costs are sub- stantial

Dube, Arindrajit; Freeman, Eric; Reich, Michael

2010-01-01T23:59:59.000Z

210

New fuel injector design lowers cost  

SciTech Connect (OSTI)

This article describes the Bendix Deka injector series. Bendix engineers have been striving to lessen costs of all portions of the injection equipment, especially single and multipoint injectors. Results of these efforts are advanced, thin-edged orifice and floating unitized armature designs. External configurations of both multipoint and single point Bendix Deka injectors are such that they can directly replace existing products. Both injector types are designed to be able to deliver any calibration within the currently-known requirements. Flow tolerances for Deka injectors match all known requirements, representing a good economic balance between performance and cost. Materials were carefully chosen for wear and corrosion resistance.

De Grace, L.G.; Bata, G.T.

1985-03-01T23:59:59.000Z

211

Unit costs of waste management operations  

SciTech Connect (OSTI)

This report provides estimates of generic costs for the management, disposal, and surveillance of various waste types, from the time they are generated to the end of their institutional control. Costs include monitoring and surveillance costs required after waste disposal. Available data on costs for the treatment, storage, disposal, and transportation of spent nuclear fuel and high-level radioactive, low-level radioactive, transuranic radioactive, hazardous, mixed (low-level radioactive plus hazardous), and sanitary wastes are presented. The costs cover all major elements that contribute to the total system life-cycle (i.e., ``cradle to grave``) cost for each waste type. This total cost is the sum of fixed and variable cost components. Variable costs are affected by operating rates and throughput capacities and vary in direct proportion to changes in the level of activity. Fixed costs remain constant regardless of changes in the amount of waste, operating rates, or throughput capacities. Key factors that influence cost, such as the size and throughput capacity of facilities, are identified. In many cases, ranges of values for the key variables are presented. For some waste types, the planned or estimated costs for storage and disposal, projected to the year 2000, are presented as graphics.

Kisieleski, W.E.; Folga, S.M.; Gillette, J.L.; Buehring, W.A.

1994-04-01T23:59:59.000Z

212

Design and prototyping of a low-cost portable mechanical ventilator  

E-Print Network [OSTI]

This paper describes the design and prototyping of a low-cost portable mechanical ventilator for use in mass casualty cases and resource-poor environments. The ventilator delivers breaths by compressing a conventional ...

Powelson, Stephen K. (Stephen Kirby)

2010-01-01T23:59:59.000Z

213

Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...  

Broader source: Energy.gov (indexed) [DOE]

* Deliver eight 2 Ah coated stack & control cells by Oct- 12 for DOE testing * Provide cost analysis of these cells by Dec-12 * Evaluate design options for new current collector...

214

Smart Grid Update: Delivering More Reliable and Efficient Power...  

Energy Savers [EERE]

prevented. Customers can control when and how they use electricity to save money. New pricing programs offer lower energy costs to customers who shift consumption to off-peak...

215

Obama Administration Delivers More than $60 Million for Weatherization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

17,000 homes, lowering energy costs for low-income families that need it, reducing pollution, and creating green jobs across the country. "These awards demonstrate the Obama...

216

Obama Administration Delivers More than $101 Million for Weatherizatio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

29,200 homes, lowering energy costs for low-income families that need it, reducing pollution, and creating green jobs across the country. "These awards demonstrate the Obama...

217

Obama Administration Delivers More Than $66 Million for Weatherization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

26,300 homes, lowering energy costs for low-income families that need it, reducing pollution, and creating green jobs across the country. "These awards demonstrate the Obama...

218

Low Cost Heliostat Development  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

219

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

220

Total Light Management  

Broader source: Energy.gov [DOE]

Presentation covers total light management, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

222

Evaluation of Novel and Low-Cost Materials for Bipolar Plates in PEM Fuel Cells.  

E-Print Network [OSTI]

??Bipolar plate material and fabrication costs make up a significant fraction of the total cost in a polymer electrolyte membrane fuel cell stack. In an (more)

Desrosiers, Kevin Campbell

2002-01-01T23:59:59.000Z

223

Apparatus and method for delivering a fluid to a container  

DOE Patents [OSTI]

An apparatus for delivering a fluid into a container has a carriage movably associated with a holding mechanism along an axis. A piston is attached to the carriage and a cylinder is slidably attached to the piston along the axis. The cylinder has a hole formed therein that extends along the axis. A needle extending along the axis is attached to the piston and passes through the cylinder hole. The needle has a first operative position relative to the piston when the needle is retracted within the cylinder and a second operative position relative to the piston when the needle extends from the cylinder.

Turner, Terry D. (Ammon, ID)

2002-01-01T23:59:59.000Z

224

Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail Share Alternative FuelsFuelingStaples Delivers on

225

Total Organic Carbon Analyzer | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Organic Carbon Analyzer Total Organic Carbon Analyzer The carbon analyzer is used to analyze total carbon (TC), inorganic carbon (IC), total organic carbon (TOC), purgeable...

226

Incorporating uncertainty in the Life Cycle Cost Analysis of pavements  

E-Print Network [OSTI]

Life Cycle Cost Analysis (LCCA) is an important tool to evaluate the economic performance of alternative investments for a given project. It considers the total cost to construct, maintain, and operate a pavement over its ...

Swei, Omar Abdullah

2012-01-01T23:59:59.000Z

227

AVCEM: Advanced-Vehicle Cost and Energy Use Model  

E-Print Network [OSTI]

compressor); total cost of materials for the water pump, the hydrogencost); the initial temperature and pressure of hydrogen; the compressorcompressor cost per unit of output ($/hp/million standard ft3 [SCF] of hydrogen/

Delucchi, Mark

2005-01-01T23:59:59.000Z

228

Energy Management in Small Commercial Buildings: A Look at How HVAC Contractors Can Deliver Energy Efficiency to this Segment  

SciTech Connect (OSTI)

While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hour onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.

Hult, Erin; Granderson, Jessica; Mathew, Paul

2014-07-01T23:59:59.000Z

229

The unit cost factors and calculation methods for decommissioning - Cost estimation of nuclear research facilities  

SciTech Connect (OSTI)

Available in abstract form only. Full text of publication follows: The uncertainties of decommissioning costs increase high due to several conditions. Decommissioning cost estimation depends on the complexity of nuclear installations, its site-specific physical and radiological inventories. Therefore, the decommissioning costs of nuclear research facilities must be estimated in accordance with the detailed sub-tasks and resources by the tasks of decommissioning activities. By selecting the classified activities and resources, costs are calculated by the items and then the total costs of all decommissioning activities are reshuffled to match with its usage and objectives. And the decommissioning cost of nuclear research facilities is calculated by applying a unit cost factor method on which classification of decommissioning works fitted with the features and specifications of decommissioning objects and establishment of composition factors are based. Decommissioning costs of nuclear research facilities are composed of labor cost, equipment and materials cost. Of these three categorical costs, the calculation of labor costs are very important because decommissioning activities mainly depend on labor force. Labor costs in decommissioning activities are calculated on the basis of working time consumed in decommissioning objects and works. The working times are figured out of unit cost factors and work difficulty factors. Finally, labor costs are figured out by using these factors as parameters of calculation. The accuracy of decommissioning cost estimation results is much higher compared to the real decommissioning works. (authors)

Kwan-Seong Jeong; Dong-Gyu Lee; Chong-Hun Jung; Kune-Woo Lee [Korea Atomic Energy Research Institute, Deokjin-dong 150, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

2007-07-01T23:59:59.000Z

230

Projected Cost, Energy Use, and Emissions of Hydrogen Technologies for Fuel Cell Vehicles  

SciTech Connect (OSTI)

Each combination of technologies necessary to produce, deliver, and distribute hydrogen for transportation use has a corresponding levelized cost, energy requirement, and greenhouse gas emission profile depending upon the technologies' efficiencies and costs. Understanding the technical status, potential, and tradeoffs is necessary to properly allocate research and development (R&D) funding. In this paper, levelized delivered hydrogen costs, pathway energy use, and well-to-wheels (WTW) energy use and emissions are reported for multiple hydrogen production, delivery, and distribution pathways. Technologies analyzed include both central and distributed reforming of natural gas and electrolysis of water, and central hydrogen production from biomass and coal. Delivery options analyzed include trucks carrying liquid hydrogen and pipelines carrying gaseous hydrogen. Projected costs, energy use, and emissions for current technologies (technology that has been developed to at least the bench-scale, extrapolated to commercial-scale) are reported. Results compare favorably with those for gasoline, diesel, and E85 used in current internal combustion engine (ICE) vehicles, gasoline hybrid electric vehicles (HEVs), and flexible fuel vehicles. Sensitivities of pathway cost, pathway energy use, WTW energy use, and WTW emissions to important primary parameters were examined as an aid in understanding the benefits of various options. Sensitivity studies on production process energy efficiency, total production process capital investment, feed stock cost, production facility operating capacity, electricity grid mix, hydrogen vehicle market penetration, distance from the hydrogen production facility to city gate, and other parameters are reported. The Hydrogen Macro-System Model (MSM) was used for this analysis. The MSM estimates the cost, energy use, and emissions trade offs of various hydrogen production, delivery, and distribution pathways under consideration. The MSM links the H2A Production Model, the Hydrogen Delivery Scenario Analysis Model (HDSAM), and the Greenhouse Gas, Regulated Emission, and Energy for Transportation (GREET) Model. The MSM utilizes the capabilities of each component model and ensures the use of consistent parameters between the models to enable analysis of full hydrogen production, delivery, and distribution pathways. To better understand spatial aspects of hydrogen pathways, the MSM is linked to the Hydrogen Demand and Resource Analysis Tool (HyDRA). The MSM is available to the public and enables users to analyze the pathways and complete sensitivity analyses.

Ruth, M. F.; Diakov, V.; Laffen, M. J.; Timbario, T. A.

2010-01-01T23:59:59.000Z

231

Total Synthesis of (?)-Himandrine  

E-Print Network [OSTI]

We describe the first total synthesis of (?)-himandrine, a member of the class II galbulimima alkaloids. Noteworthy features of this chemistry include a diastereoselective Diels?Alder reaction in the rapid synthesis of the ...

Movassaghi, Mohammad

232

Cost Model and Cost Estimating Software  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter discusses a formalized methodology is basically a cost model, which forms the basis for estimating software.

1997-03-28T23:59:59.000Z

233

Electric Blanket Delivers K.O. to Space Heater During #EnergyFaceoff...  

Office of Environmental Management (EM)

Electric Blanket Delivers K.O. to Space Heater During EnergyFaceoff Round Three Electric Blanket Delivers K.O. to Space Heater During EnergyFaceoff Round Three November 19, 2014...

234

Brush Busters: How to Estimate Costs for Controlling Pricklypear  

E-Print Network [OSTI]

graph shows total cost for spray plus labor at $6 per hour. The bottom graph shows total cost for spray plus labor at $12 per hour. ? Locate your average plant density (the average calculated in Step #1) on the lower, horizontal axis (density axis... to the vertical axis (cost axis) on the left of the graph. Make a mark on the cost axis. This point is an estimate of what your cost per acre should be in $/acre. Example: If you have an average of 100 pricklypear plants per acre, and your labor cost is $6 per...

Ueckert, Darrell; McGinty, Allan

1999-04-15T23:59:59.000Z

235

Costing of Joining Methods -Arc Welding Costs  

E-Print Network [OSTI]

Costing of Joining Methods - Arc Welding Costs ver. 1 ME 6222: Manufacturing Processes and Systems.S. Colton © GIT 2009 5 #12;LaborLabor Di t ti f ldi· Direct time of welding ­ time to produce a length of weld ­ labor rate ­ multiplication gives labor cost per length · Set-up time, etc. · Personal time

Colton, Jonathan S.

236

Rangeland Resource Management for Texans: Total Resource Management  

E-Print Network [OSTI]

The Total Resource Management approach helps ranchers make strategic, tactical and operational decisions for the best, most cost-effective use of resources. This publication offers step-by-step directions for implementing TRM for a profitable...

Hanselka, C. Wayne; Fox, William E.; White, Larry D.

2004-03-26T23:59:59.000Z

237

Activity Based Costing  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Activity Based Costing (ABC) is method for developing cost estimates in which the project is subdivided into discrete, quantifiable activities or a work unit. This chapter outlines the Activity Based Costing method and discusses applicable uses of ABC.

1997-03-28T23:59:59.000Z

238

23rd steam-station cost survey  

SciTech Connect (OSTI)

The results of the 23rd Steam Station Cost Survey covering the year 1982 are summarized. The major categories of the survey are as follows: general data; output data, 1982; fuel consumption, 1982; operation 1982 (mills/net kWh); investment ($/net kWh); energy cost, 1982 (mills/net kWh); and station performance, 1982. Thirty-one fossil-fuel steam plants and four nuclear stations were included in the survey. Fuel and operating cost increases are felt to be responsible for the moderate rise in total busbar-enery costs. 11 figures, 1 table.

Friedlander, G.D.; Going, M.C.

1983-11-01T23:59:59.000Z

239

Turfgrass: Maintenance Costs in Texas.  

E-Print Network [OSTI]

. These regions also have high water costs. The Gulf Coast, where water is a minor item, has an average expenditure only slightly greater than half that in West Texas. Average lawn sizes in these two regions are almost identical. Use of com- post, commercial.... Individuals with grasses other than bermuda and St. Augustine spend on the average about 53 percent TARLE 2. TOTALS OF VARIOUS HOME LAWN MAINTENANCE EXPENDITURES WITHIN REGIONS AND FOR THE STATE1 Number of Maintenance items Region households Commercial...

Holt, Ethan C.; Allen, W. Wayne; Ferguson, Marvin H.

1964-01-01T23:59:59.000Z

240

Total Precipitable Water  

SciTech Connect (OSTI)

The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

None

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Daily variations in delivered doses in patients treated with radiotherapy for localized prostate cancer  

SciTech Connect (OSTI)

Purpose: The aim of this work was to study the variations in delivered doses to the prostate, rectum, and bladder during a full course of image-guided external beam radiotherapy. Methods and Materials: Ten patients with localized prostate cancer were treated with helical tomotherapy to 78 Gy at 2 Gy per fraction in 39 fractions. Daily target localization was performed using intraprostatic fiducials and daily megavoltage pelvic computed tomography (CT) scans, resulting in a total of 390 CT scans. The prostate, rectum, and bladder were manually contoured on each CT by a single physician. Daily dosimetric analysis was performed with dose recalculation. The study endpoints were D95 (dose to 95% of the prostate), rV2 (absolute rectal volume receiving 2 Gy), and bV2 (absolute bladder volume receiving 2 Gy). Results: For the entire cohort, the average D95 ({+-}SD) was 2.02 {+-} 0.04 Gy (range, 1.79-2.20 Gy). The average rV2 ({+-}SD) was 7.0 {+-} 8.1 cc (range, 0.1-67.3 cc). The average bV2 ({+-}SD) was 8.7 {+-} 6.8 cc (range, 0.3-36.8 cc). Unlike doses for the prostate, there was significant daily variation in rectal and bladder doses, mostly because of variations in volume and shape of these organs. Conclusion: Large variations in delivered doses to the rectum and bladder can be documented with daily megavoltage CT scans. Image guidance for the targeting of the prostate, even with intraprostatic fiducials, does not take into account the variation in actual rectal and bladder doses. The clinical impact of techniques that take into account such dosimetric parameters in daily patient set-ups should be investigated.

Kupelian, Patrick A. [Department of Radiation Oncology, M.D. Anderson Cancer Center Orlando, Orlando, FL (United States)]. E-mail: patrick.kupelian@orhs.org; Langen, Katja M. [Department of Radiation Oncology, M.D. Anderson Cancer Center Orlando, Orlando, FL (United States); Zeidan, Omar A. [Department of Radiation Oncology, M.D. Anderson Cancer Center Orlando, Orlando, FL (United States); Meeks, Sanford L. [Department of Radiation Oncology, M.D. Anderson Cancer Center Orlando, Orlando, FL (United States); Willoughby, Twyla R. [Department of Radiation Oncology, M.D. Anderson Cancer Center Orlando, Orlando, FL (United States); Wagner, Thomas H. [Department of Radiation Oncology, M.D. Anderson Cancer Center Orlando, Orlando, FL (United States); Jeswani, Sam [TomoTherapy Inc., Madison, WI (United States); Ruchala, Kenneth J. [TomoTherapy Inc., Madison, WI (United States); Haimerl, Jason [TomoTherapy Inc., Madison, WI (United States); Olivera, Gustavo H. [TomoTherapy Inc., Madison, WI (United States); University of Wisconsin-Madison, Madison, WI (United States)

2006-11-01T23:59:59.000Z

242

Environmental and Cost Synergy in Supply Chain Network Integration Mergers and Acquisitions  

E-Print Network [OSTI]

with the minimization of the total costs and the total emissions under firm-specific weights. We propose a synergy measure that captures the total generalized cost. We then apply the new mathematical framework to quantifyEnvironmental and Cost Synergy in Supply Chain Network Integration in Mergers and Acquisitions Anna

Nagurney, Anna

243

INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating...

244

Contracting with reading costs and renegotiation costs  

E-Print Network [OSTI]

OF CALIFORNIA, SAN DIEGO Contracting with Reading Costs andrents, and the competitive contracting process. Journal ofReiche. Foundation of incomplete contracting in a model of

Brennan, James R.

2007-01-01T23:59:59.000Z

245

Systems Engineering Cost Estimation  

E-Print Network [OSTI]

on project, human capital impact. 7 How to estimate Cost? Difficult to know what we are building early on1 Systems Engineering Lecture 3 Cost Estimation Dr. Joanna Bryson Dr. Leon Watts University of Bath: Contrast approaches for estimating software project cost, and identify the main sources of cost

Bryson, Joanna J.

246

Life Cycle Cost Estimate  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

1997-03-28T23:59:59.000Z

247

Cost Estimation Package  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter focuses on the components (or elements) of the cost estimation package and their documentation.

1997-03-28T23:59:59.000Z

248

PHENIX WBS notes. Cost and schedule review copy  

SciTech Connect (OSTI)

The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds are shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M&S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate Total, M&S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry.

Not Available

1994-02-01T23:59:59.000Z

249

Final Scientific and Technical Report - Practical Fiber Delivered Laser Ignition Systems for Vehicles  

SciTech Connect (OSTI)

Research has characterized advanced kagome fiber optics for their use in laser ignition systems. In comparison to past fibers used in laser ignition, these fibers have the important advantage of being relatively bend-insensitivity, so that they can be bent and coiled without degradation of output energy or beam quality. The results are very promising for practical systems. For pulse durations of ~12 ns, the fibers could deliver >~10 mJ pulses before damage onset. A study of pulse duration showed that by using longer pulse duration (~20 30 ns), it is possible to carry even higher pulse energy (by factor of ~2-3) which also provides future opportunities to implement longer duration sources. Beam quality measurements showed nearly single-mode output from the kagome fibers (i.e. M2 close to 1) which is the optimum possible value and, combined with their high pulse energy, shows the suitability of the fibers for laser ignition. Research has also demonstrated laser ignition of an engine including reliable (100%) ignition of a single-cylinder gasoline engine using the laser ignition system with bent and coiled kagome fiber. The COV of IMEP was <2% which is favorable for stable engine operation. These research results, along with the continued reduction in cost of laser sources, support our commercial development of practical laser ignition systems.

Yalin, Azer [Seaforth, LLC

2014-03-30T23:59:59.000Z

250

New geothermal heat extraction process to deliver clean power generation  

ScienceCinema (OSTI)

A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

Pete McGrail

2012-12-31T23:59:59.000Z

251

Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan Feb Mar AprDecadeYear Jan Febper

252

Arizona Price of Natural Gas Delivered to Residential Consumers (Dollars  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYearVented and FlaredYear Jan Feb

253

Arkansas Price of Natural Gas Delivered to Residential Consumers (Dollars  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion Cubicper Thousand Cubic

254

OOTW COST TOOLS  

SciTech Connect (OSTI)

This document reports the results of a study of cost tools to support the analysis of Operations Other Than War (OOTW). It recommends the continued development of the Department of Defense (DoD) Contingency Operational Support Tool (COST) as the basic cost analysis tool for 00TWS. It also recommends modifications to be included in future versions of COST and the development of an 00TW mission planning tool to supply valid input for costing.

HARTLEY, D.S.III; PACKARD, S.L.

1998-09-01T23:59:59.000Z

255

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network [OSTI]

Thus, the net marginal investment costs of the wind systemi f any: Total net investment costs before: and after tax:$426 = (11) Total net investment costs before: $5836 and

Kay, J.

2009-01-01T23:59:59.000Z

256

COST SHARING ON SPONSORED PROJECTS California Institute of Technology  

E-Print Network [OSTI]

COST SHARING ON SPONSORED PROJECTS California Institute of Technology Pasadena, California 1 of 4 7 is that portion of the total cost of a research or other externally funded project that is not funded as a demonstration of its commitment to the project. When voluntary cost sharing is included in the proposal budget

Goddard III, William A.

257

ELENA, a preliminary cost and feasibility study  

E-Print Network [OSTI]

To produce dense pbar beams at very low energies (100-200 keV), a small decelerator ring could be built and installed between the existing AD ring and the experimental area. Phase-space blowup during deceleration would be compensated by electron cooling in order to obtain final emittances comparable to the 5MeV beam presently delivered by the AD. This report describes preliminary machine parameters and layout of ELENA and also gives an approximate estimate of cost and manpower needs.

Angoletta, M-E; Beuret, A; Belochitskii, P; Borburgh, J; Bourquin, P; Buzio, M; Cornuet, D; Eriksson, T; Fowler, T; Hori, M; Mahner, E; Maury, S; Mhl, D; Monteiro, J; Pasinelli, S; Pedersen, F; Raich, U; Soby, L; Strubin, P; Tranquille, G; Zickler, T

2007-01-01T23:59:59.000Z

258

Total Crude by Pipeline  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008 (Next1,Product: Total

259

Total U.S......................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.9 Do.. 111.1

260

Total U.S.....................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.9 Do..

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Total U.S.....................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.9 Do..5.6

262

Total U.S.....................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.9 Do..5.64.2

263

Total U.S........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.9

264

Total U.S........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7 21.7

265

Total U.S........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7 21.77.1

266

Total U.S...........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7

267

Summary Max Total Units  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4 Recovery Act/BuySummary Max Total Units *If All

268

Determination of Total Solids in Biomass and Total Dissolved...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 3312008 A. Sluiter, B. Hames, D. Hyman, C. Payne,...

269

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

SciTech Connect (OSTI)

The rapid development of wind power that the United States has experienced over the last several years has been coupled with a growing concern that wind development will require substantial additions to the nation's transmission infrastructure. Transmission is particularly important for wind power due to the locational dependence of wind resources, the relatively low capacity factor of wind plants, and the mismatch between the short lead time to build a new wind project and the longer lead time often needed to plan, permit, and construct transmission. It is clear that institutional issues related to transmission planning, siting, and cost allocation will pose major obstacles to accelerated wind power deployment, but also of concern is the potential cost of this infrastructure build out. Simply put, how much extra cost will society bear to deliver wind power to load centers? Without an answer to this question, there can be no consensus on whether or not the cost of developing transmission for wind will be a major barrier to further wind deployment, or whether the institutional barriers to transmission expansion are likely to be of more immediate concern. In this report, we review a sample of 40 detailed transmission studies that have included wind power. These studies cover a broad geographic area, and were completed from 2001-2008. Our primary goal in reviewing these studies is to develop a better understanding of the transmission costs needed to access growing quantities of wind generation. A secondary goal is to gain a better appreciation of the differences in transmission planning approaches in order to identify those methodologies that seem most able to estimate the incremental transmission costs associated with wind development. Finally, we hope that the resulting dataset and discussion might be used to inform the assumptions, methods, and results of higher-level assessment models that are sometimes used to estimate the cost of wind deployment (e.g. NEMS and WinDS). The authors and general location of the 40 detailed transmission studies included in our review are illustrated in Figure ES-1. As discussed in the body of the report, these studies vary considerably in scope, authorship, objectives, methodology, and tools. Though we recognize this diversity and are cognizant that comparisons among these studies are therefore somewhat inappropriate, we nonetheless emphasize such simple comparisons in this report. We do so in order to improve our understanding of the range of transmission costs needed to access greater quantities of wind, and to highlight some of the drivers of those costs. In so doing, we gloss over many important details and differences among the studies in our sample. In emphasizing simple comparisons, our analysis focuses primarily on the unit cost of transmission implied by each of the studies. The unit cost of transmission for wind in $/kW terms on a capacity-weighted basis is estimated by simply dividing the total transmission cost in a study by the total amount of incremental generation capacity (wind and non-wind) modeled in that study. In so doing, this metric assumes that within any individual study all incremental generation capacity imposes transmission costs in proportion to its nameplate capacity rating. The limitations to this approach are described in some detail in the body of the report.

Mills, Andrew D.; Wiser, Ryan; Porter, Kevin

2009-02-02T23:59:59.000Z

270

Rhode Island Price of Natural Gas Delivered to Residential Consumers  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWest Virginia"Total Consumption (MillionDecade(Dollars per

271

Vermont Price of Natural Gas Delivered to Residential Consumers (Dollars  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198SeparationTotal Consumptionper Thousand

272

Virginia Average Price of Natural Gas Delivered to Residential and  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198SeparationTotal Consumptionper0.1

273

Massachusetts Natural Gas Delivered to Commercial Consumers for the Account  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay Smith, RussFoot)per% of Total Residentialof

274

E-Print Network 3.0 - application delivering fast-breaking Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

) deliver insured non-insured finance ( approve (makepay cancel)) ... Source: Davulcu, Hasan - Department of Computer Science and Engineering, Arizona State University Collection:...

275

Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002  

Reports and Publications (EIA)

This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

2002-01-01T23:59:59.000Z

276

ICPP tank farm closure study. Volume 3: Cost estimates, planning schedules, yearly cost flowcharts, and life-cycle cost estimates  

SciTech Connect (OSTI)

This volume contains information on cost estimates, planning schedules, yearly cost flowcharts, and life-cycle costs for the six options described in Volume 1, Section 2: Option 1 -- Total removal clean closure; No subsequent use; Option 2 -- Risk-based clean closure; LLW fill; Option 3 -- Risk-based clean closure; CERCLA fill; Option 4 -- Close to RCRA landfill standards; LLW fill; Option 5 -- Close to RCRA landfill standards; CERCLA fill; and Option 6 -- Close to RCRA landfill standards; Clean fill. This volume is divided into two portions. The first portion contains the cost and planning schedule estimates while the second portion contains life-cycle costs and yearly cash flow information for each option.

NONE

1998-02-01T23:59:59.000Z

277

Direct/Indirect Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter provides recommended categories for direct and indirect elements developed by the Committee for Cost Methods Development (CCMD) and describes various estimating techniques for direct and indirect costs.

1997-03-28T23:59:59.000Z

278

Pollution prevention cost savings potential  

SciTech Connect (OSTI)

The waste generated by DOE facilities is a serious problem that significantly impacts current operations, increases future waste management costs, and creates future environmental liabilities. Pollution Prevention (P2) emphasizes source reduction through improved manufacturing and process control technologies. This concept must be incorporated into DOE`s overall operating philosophy and should be an integral part of Total Quality Management (TQM) program. P2 reduces the amount of waste generated, the cost of environmental compliance and future liabilities, waste treatment, and transportation and disposal costs. To be effective, P2 must contribute to the bottom fine in reducing the cost of work performed. P2 activities at LLNL include: researching and developing innovative manufacturing; evaluating new technologies, products, and chemistries; using alternative cleaning and sensor technologies; performing Pollution Prevention Opportunity Assessments (PPOAs); and developing outreach programs with small business. Examples of industrial outreach are: innovative electroplating operations, printed circuit board manufacturing, and painting operations. LLNL can provide the infrastructure and technical expertise to address a wide variety of industrial concerns.

Celeste, J.

1994-12-01T23:59:59.000Z

279

Environmental Cost Analysis  

E-Print Network [OSTI]

Environmental Cost Analysis David Edge Texas Natural Resource Conservation Commission 131 ESL-IE-00-04-21 Proceedings from the Twenty-second National Industrial Energy Technology Conference, Houston, TX, April 5-6, 2000 Tuas Natural... Resource Conservation CorDDliuion Environmental Cost Analysis Presented By David Edge Determine the Costs c> Input co Output c> Hidden c> Capital (non recurring) Envirormenlal Cost Analy.;is "There has to be a measurable result...

Edge, D.

280

Power Plant Cycling Costs  

SciTech Connect (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Minimum cost model energy code envelope requirements  

SciTech Connect (OSTI)

This paper describes the analysis underlying development of the U.S. Department of Energy`s proposed revisions of the Council of American Building Officials (CABO) 1993 Model Energy Code (MEC) building thermal envelope requirements for single-family and low-rise multifamily residences. This analysis resulted in revised MEC envelope conservation levels based on an objective methodology that determined the minimum-cost combination of energy efficiency measures (EEMs) for residences in different locations around the United States. The proposed MEC revision resulted from a cost-benefit analysis from the consumer`s perspective. In this analysis, the costs of the EEMs were balanced against the benefit of energy savings. Detailed construction, financial, economic, and fuel cost data were compiled, described in a technical support document, and incorporated in the analysis. A cost minimization analysis was used to compare the present value of the total long-nm costs for several alternative EEMs and to select the EEMs that achieved the lowest cost for each location studied. This cost minimization was performed for 881 cities in the United States, and the results were put into the format used by the MEC. This paper describes the methodology for determining minimum-cost energy efficiency measures for ceilings, walls, windows, and floors and presents the results in the form of proposed revisions to the MEC. The proposed MEC revisions would, on average, increase the stringency of the MEC by about 10%.

Connor, C.C.; Lucas, R.G.; Turchen, S.J.

1994-08-01T23:59:59.000Z

282

Total Energy CMR Production  

SciTech Connect (OSTI)

The following outlines the optimized pulsed laser deposition (PLD) procedure used to prepare Nd{sub 0.67}Sr{sub 0.33}MnO{sub 3} (NSMO) temperature sensors at Towson University (Prof. Rajeswari Kolagani) for the LCLS XTOD Total Energy Monitor. The samples have a sharp metal/insulator transition at T {approx} 200 K and are optimized for operation at T {approx} 180 K, where their sensitivity is the highest. These samples are epitaxial multilayer structures of Si/YSZ/CeO/NSMO, where these abbreviations are defined in table 1. In this heterostructure, YSZ serves as a buffer layer to prevent deleterious chemical reactions, and also serves to de-oxygenate the amorphous SiO{sub 2} surface layer to generate a crystalline template for epitaxy. CeO and BTO serve as template layers to minimize the effects of thermal and lattice mismatch strains, respectively. More details on the buffer and template layer scheme are included in the attached manuscript accepted for publication in Sensor Letters (G. Yong et al., 2008).

Friedrich, S; Kolagani, R M

2008-08-11T23:59:59.000Z

283

Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production  

E-Print Network [OSTI]

reduces the energy content of forest residues delivered to a bio-fuel facility as mobile facilities use by bio-oil, bio-slurry and torrefied wood is 45%, 65% and 87% of the initial forest residue energyUsing mobile distributed pyrolysis facilities to deliver a forest residue resource for bio

Victoria, University of

284

Cree's High-Power White LED Delivers 121 lm/W  

Broader source: Energy.gov [DOE]

Cree's commercial high-power white LEDs can now deliver 121 lm/W at 35A/cm2 current density. These particular Cree XLamp XP-G LEDs deliver 267 lumens at a drive current of 700 mA and an operating...

285

ORIGINAL PAPER Case study of the real contents delivered in French  

E-Print Network [OSTI]

ORIGINAL PAPER Case study of the real contents delivered in French motorcycle schools Samuel This study is concerned initial motorcycle training delivered in motorcycle schools in France. Novice motorcy of studying initial motorcycle training, both for research purposes and with regard to public policy

Paris-Sud XI, Université de

286

Cost effective lighting  

SciTech Connect (OSTI)

Long-life replacement lamps for the incandescent lamp have been evaluated with regard to their cost effectiveness. The replacements include the use of energy buttons that extend lamp life as well as an adaptive fluorescent circline lamp that will fit into existing incandescent lamp sockets. The initial, operating, and replacement costs for one million lumen-hours are determined for each lamp system. We find the most important lighting cost component is the operating cost. Using lamps that are less efficient or devices that cause lamps to operate less efficiently are not cost-effective. The adaptive fluorescent circline lamp, even at an initial cost of $15.00, is the most cost effective source of illumination compared to the incandescent lamp and lamp systems examined. 3 refs., 6 tabs.

Morse, O.; Verderber, R.

1987-07-01T23:59:59.000Z

287

Cost per-User as Key Factor in Project Prioritization: A Case Study of the San Francisco Bay Area  

E-Print Network [OSTI]

signi?cant additional costs per ride to existing operations.total estimated investment cost of network-related. ll0V gapwould lower the estimated costs per Affected ride. pmjem was

Nuworsoo, Cornelius; Parks, Kamala; Deakin, Elizabeth

2006-01-01T23:59:59.000Z

288

Tracking the Sun III; The Installed Cost of Photovoltaics in the United States from 1998-2009  

E-Print Network [OSTI]

from 1998-2009 Tracking the Sun III: The Installed Cost ofSystems MW Total Tracking the Sun III: The Installed Cost ofthrough 2009. Tracking the Sun III: The Installed Cost of

Barbose, Galen

2011-01-01T23:59:59.000Z

289

Costs of mixed low-level waste stabilization options  

SciTech Connect (OSTI)

Selection of final waste forms to be used for disposal of DOE`s mixed low-level waste (MLLW) depends on the waste form characteristics and total life cycle cost. In this paper the various cost factors associated with production and disposal of the final waste form are discussed and combined to develop life-cycle costs associated with several waste stabilization options. Cost factors used in this paper are based on a series of treatment system studies in which cost and mass balance analyses were performed for several mixed low-level waste treatment systems and various waste stabilization methods including vitrification, grout, phosphate bonded ceramic and polymer. Major cost elements include waste form production, final waste form volume, unit disposal cost, and system availability. Production of grout costs less than the production of a vitrified waste form if each treatment process has equal operating time (availability) each year; however, because of the lower volume of a high temperature slag, certification and handling costs and disposal costs of the final waste form are less. Both the total treatment cost and life cycle costs are higher for a system producing grout than for a system producing high temperature slag, assuming equal system availability. The treatment costs decrease with increasing availability regardless of the waste form produced. If the availability of a system producing grout is sufficiently greater than a system producing slag, then the cost of treatment for the grout system will be less than the cost for the slag system, and the life cycle cost (including disposal) may be less depending on the unit disposal cost. Treatment and disposal costs will determine the return on investment in improved system availability.

Schwinkendorf, W.E.; Cooley, C.R.

1998-03-01T23:59:59.000Z

290

Total Building Air Management: When Dehumidification Counts  

E-Print Network [OSTI]

are realized when systems are designed with a total operating strategy in mind. Thls strategy takes Cheryl L. White Technical Consultant Eddleson & Rowe, Assoc. Denver, Colorado into consideration every factor of buildmg air management includmg: 1...-89 specifies at least 15 CFM per person. In Denver Colorado where relative humidity of outdoor air is low and outdoor design temperature is 92" F DB/65" F WB, this may be a cost effective method of assuring high IAQ. In other parts of the country - Houston...

Chilton, R. L.; White, C. L.

1996-01-01T23:59:59.000Z

291

Brush Busters: How to Estimate Costs for Controlling Small Cedar  

E-Print Network [OSTI]

method. Figure 3 is for the top-removal method). In Figures 1 and 2, the upper graph shows the cost for the spray only. The center graph shows total cost for spray + labor at $6 per hour. The bottom graph shows total cost for spray + labor at $12 per... hour. Figure 3 shows the costs for the top-removal method, with labor at $6 per hour in the upper graph and $12 per hour in the lower graph. ? Locate your average cedar density (the average calculated in Step #1) on the lower, horizontal axis (density...

Ueckert, Darrell; McGinty, Allan

2001-04-25T23:59:59.000Z

292

Costs of Oil Dependence: A 2000 Update  

SciTech Connect (OSTI)

Oil dependence remains a potentially serious economic and strategic problem for the United States. This report updates previous estimates of the costs of oil dependence to the U.S. economy and introduces several methodological enhancements. Estimates of the costs to the U.S. economy of the oil market upheavals of the last 30 years are in the vicinity of $7 trillion, present value 1998 dollars, about as large as the sum total of payments on the national debt over the same period. Simply adding up historical costs in 1998 dollars without converting to present value results in a Base Case cost estimate of $3.4 trillion. Sensitivity analysis indicates that cost estimates are sensitive to key parameters. A lower bound estimate of $1.7 trillion and an upper bound of $7.1 trillion (not present value) indicate that the costs of oil dependence have been large under almost any plausible set of assumptions. These cost estimates do not include military, strategic or political costs associated with U.S. and world dependence on oil imports.

Greene, D.L.

2000-05-17T23:59:59.000Z

293

Cost of Oil Dependence: A 2000 Update  

SciTech Connect (OSTI)

Oil dependence remains a potentially serious economic and strategic problem for the United States. This report updates previous estimates of the costs of oil dependence to the U.S. economy and introduces several methodological enhancements. Estimates of the costs to the U.S. economy of the oil market upheavals of the last 30 years are in the vicinity of $7 trillion, present value 1998 dollars, about as large as the sum total of payments on the national debt over the same period. Simply adding up historical costs in 1998 dollars without converting to present value results in a Base Case cost estimate of $3.4 trillion. Sensitivity analysis indicates that cost estimates are sensitive to key parameters. A lower bound estimate of $1.7 trillion and an upper bound of $7.1 trillion (not present value) indicate that the costs of oil dependence have been large under almost any plausible set of assumptions. These cost estimates do not include military, strategic or political costs associated with U.S. and world dependence on oil imports.

Greene, D.L.; Tishchishyna, N.I.

2000-05-01T23:59:59.000Z

294

Cost Estimating Handbook for Environmental Restoration  

SciTech Connect (OSTI)

Environmental restoration (ER) projects have presented the DOE and cost estimators with a number of properties that are not comparable to the normal estimating climate within DOE. These properties include: An entirely new set of specialized expressions and terminology. A higher than normal exposure to cost and schedule risk, as compared to most other DOE projects, due to changing regulations, public involvement, resource shortages, and scope of work. A higher than normal percentage of indirect costs to the total estimated cost due primarily to record keeping, special training, liability, and indemnification. More than one estimate for a project, particularly in the assessment phase, in order to provide input into the evaluation of alternatives for the cleanup action. While some aspects of existing guidance for cost estimators will be applicable to environmental restoration projects, some components of the present guidelines will have to be modified to reflect the unique elements of these projects. The purpose of this Handbook is to assist cost estimators in the preparation of environmental restoration estimates for Environmental Restoration and Waste Management (EM) projects undertaken by DOE. The DOE has, in recent years, seen a significant increase in the number, size, and frequency of environmental restoration projects that must be costed by the various DOE offices. The coming years will show the EM program to be the largest non-weapons program undertaken by DOE. These projects create new and unique estimating requirements since historical cost and estimating precedents are meager at best. It is anticipated that this Handbook will enhance the quality of cost data within DOE in several ways by providing: The basis for accurate, consistent, and traceable baselines. Sound methodologies, guidelines, and estimating formats. Sources of cost data/databases and estimating tools and techniques available at DOE cost professionals.

NONE

1990-09-01T23:59:59.000Z

295

Pension costs and liabilities  

E-Print Network [OSTI]

be to charge the cost over the current and subsequent years on the assumption that the cost, even though measured by past services, is incurred in contemplation of present and future 1 services. 1'he development of accounting thought concerning retire...? present liabilities are under- stated and owner's equity is overstated by a corresponding amount. It seems, however, that charging retained earnings with the past service cost does not, represent the true picture. Pension payments based solely on past...

Courtney, Harley Macon

1961-01-01T23:59:59.000Z

296

LMFBR fuel component costs  

SciTech Connect (OSTI)

A significant portion of the cost of fabricating LMFBR fuels is in the non-fuel components such as fuel pin cladding, fuel assembly ducts and end fittings. The contribution of these to fuel fabrication costs, based on FFTF experience and extrapolated to large LMFBR fuel loadings, is discussed. The extrapolation considers the expected effects of LMFBR development programs in progress on non-fuel component costs.

Epperson, E.M.; Borisch, R.R.; Rice, L.H.

1981-10-29T23:59:59.000Z

297

The Social Cost of Intercity Transportation  

E-Print Network [OSTI]

,409 39,972 7,918 Total All Sources 18,536 60,863 19,890 #12;Air Pollution: Valuation Local Health Costs External to User (not necessarily to system) Result: Noise, Air Pollution, Congestion, Accidents Not: Water Pollution, Parking, Defense ... #12;Approach Air Highway Noise Air Pollution Congestion

Levinson, David M.

298

Hydrogen and Infrastructure Costs  

Broader source: Energy.gov (indexed) [DOE]

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of...

299

Target Cost Management Strategy  

E-Print Network [OSTI]

Target cost management (TCM) is an innovation of Japanese management accounting system and by common sense has been considered with great interest by practitioners. Nowadays, TCM related

Okano, Hiroshi

1996-01-01T23:59:59.000Z

300

''When Cost Measures Contradict''  

SciTech Connect (OSTI)

When regulators put forward new economic or regulatory policies, there is a need to compare the costs and benefits of these new policies to existing policies and other alternatives to determine which policy is most cost-effective. For command and control policies, it is quite difficult to compute costs, but for more market-based policies, economists have had a great deal of success employing general equilibrium models to assess a policy's costs. Not all cost measures, however, arrive at the same ranking. Furthermore, cost measures can produce contradictory results for a specific policy. These problems make it difficult for a policy-maker to determine the best policy. For a cost measures to be of value, one would like to be confident of two things. First one wants to be sure whether the policy is a winner or loser. Second, one wants to be confident that a measure produces the correct policy ranking. That is, one wants to have confidence in a policy measure's ability to correctly rank policies from most beneficial to most harmful. This paper analyzes empirically these two properties of different costs measures as they pertain to assessing the costs of the carbon abatement policies, especially the Kyoto Protocol, under alternative assumptions about implementation.

Montgomery, W. D.; Smith, A. E.; Biggar, S. L.; Bernstein, P. M.

2003-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Apportioning Climate Change Costs  

E-Print Network [OSTI]

Apportioning Climate Change Costs Daniel A. Farber* I. II.ON CLIMATE CHANGE FOUR QUESTIONS ABOUTof how to respond to climate change. Most public attention

Farber, Daniel A.

2008-01-01T23:59:59.000Z

302

The Total RNA Story Introduction  

E-Print Network [OSTI]

The Total RNA Story Introduction Assessing RNA sample quality as a routine part of the gene about RNA sample quality. Data from a high quality total RNA preparation Although a wide variety RNA data interpretation and identify features from total RNA electropherograms that reveal information

Goldman, Steven A.

304

An Examination of Avoided Costs in Utah  

E-Print Network [OSTI]

existing avoided cost methodology and established thefor certain avoided cost methodologies or avoided cost inpu

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

305

Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions  

SciTech Connect (OSTI)

The aim of commissioning new buildings is to ensure that they deliver, if not exceed, the performance and energy savings promised by their design. When applied to existing buildings, commissioning identifies the almost inevitable 'drift' from where things should be and puts the building back on course. In both contexts, commissioning is a systematic, forensic approach to quality assurance, rather than a technology per se. Although commissioning has earned increased recognition in recent years - even a toehold in Wikipedia - it remains an enigmatic practice whose visibility severely lags its potential. Over the past decade, Lawrence Berkeley National Laboratory has built the world's largest compilation and meta-analysis of commissioning experience in commercial buildings. Since our last report (Mills et al. 2004) the database has grown from 224 to 643 buildings (all located in the United States, and spanning 26 states), from 30 to 100 million square feet of floorspace, and from $17 million to $43 million in commissioning expenditures. The recorded cases of new-construction commissioning took place in buildings representing $2.2 billion in total construction costs (up from 1.5 billion). The work of many more commissioning providers (18 versus 37) is represented in this study, as is more evidence of energy and peak-power savings as well as cost-effectiveness. We now translate these impacts into avoided greenhouse gases and provide new indicators of cost-effectiveness. We also draw attention to the specific challenges and opportunities for high-tech facilities such as labs, cleanrooms, data centers, and healthcare facilities. The results are compelling. We developed an array of benchmarks for characterizing project performance and cost-effectiveness. The median normalized cost to deliver commissioning was $0.30/ft2 for existing buildings and $1.16/ft2 for new construction (or 0.4% of the overall construction cost). The commissioning projects for which data are available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded the direct value of the energy savings. Commissioning also improves worker comfort, mitigates indoor air quality problems

Mills, Evan

2009-07-16T23:59:59.000Z

306

Decommissioning Unit Cost Data  

SciTech Connect (OSTI)

The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for decommissioning at other facilities with similar equipment and labor costs. It also provides techniques for extracting information from limited data using extrapolation and interpolation techniques.

Sanford, P. C.; Stevens, J. L.; Brandt, R.

2002-02-26T23:59:59.000Z

307

Transmission line capital costs  

SciTech Connect (OSTI)

The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

Hughes, K.R.; Brown, D.R.

1995-05-01T23:59:59.000Z

308

AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM  

E-Print Network [OSTI]

compressor); total cost of materials for the water pump, the hydrogencost); the initial temperature and pressure of hydrogen; the compressorcompressor cost per unit of output ($/hp/million standard ft3 [SCF] of hydrogen/

Delucchi, Mark

2005-01-01T23:59:59.000Z

309

On Perimeter Coverage in Wireless Sensor Networks with Minimum Cost  

E-Print Network [OSTI]

, and asset tracking [1], [2]. In monitoring applications, small battery-powered sensor nodes are deployed of the white house so as to ensure its security. Each sensor is associated with a cost. To reduce the total

Tam, Vincent W. L.

310

AVCEM: Advanced-Vehicle Cost and Energy Use Model  

E-Print Network [OSTI]

stack); fuel-cell salvage value (fraction of initial coststack); total cost of vehicle electronics needed specifically for the fuel-cellcosts, expressed as a wage multiplier); specific weight of the fuel-cell stack (

Delucchi, Mark

2005-01-01T23:59:59.000Z

311

External Costs of Transport in the U.S.  

E-Print Network [OSTI]

oil is 58.6% of total oil demand, which results in $1.20 toof regional oil supply and demand. Wealth transfer cost.oil. Leiby (2007) also estimates monopsony or demand-

Delucchi, Mark A.; McCubbin, Donald R.

2010-01-01T23:59:59.000Z

312

Page (Total 3) Philadelphia University  

E-Print Network [OSTI]

of materials and equipment and expected cost of materials needed (purchasing material that are not available in the department will take long time and should be avoided when possible). 3. Conduct the research work (field

313

Totally Unimodular Multistage Stochastic Programs  

E-Print Network [OSTI]

Nov 23, 2014 ... be the workforce level with a cost of ck per worker. The number of ... to the variable of the previous workforce level y?(k). Remark 4. ... planning.

2014-11-23T23:59:59.000Z

314

U.S. Total Stocks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sector Transportation EnergyGlossary7,148.4NA NAArea:

315

2013 Total Electric Industry- Customers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H. I.Plasma Camp View largerCustomers (Data

316

Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure  

SciTech Connect (OSTI)

This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

Smith, M.; Gonzales, J.

2014-09-01T23:59:59.000Z

317

Total..........................................................  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11.7 0.8 Have Equipment But Do Not Use it... 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System......

318

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

30.3 Have Equipment But Do Not Use it... 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System......

319

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage...

320

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

Have Equipment But Do Not Use it... 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System......

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Total..........................................................  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

15.9 7.5 Have Equipment But Do Not Use it... 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System......

322

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

11.7 Have Equipment But Do Not Use it... 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System......

323

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

8.6 Have Equipment But Do Not Use it... 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System......

324

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

8.5 Have Equipment But Do Not Use it... 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System......

325

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

3.7 Have Equipment But Do Not Use it... 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System......

326

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

1.7 1.9 4.7 Have Equipment But Do Not Use it... 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System......

327

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......

328

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

Personal Computers Do Not Use a Personal Computer... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer... 75.6...

329

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer... 35.5 8.1 5.6 2.5 Use a Personal Computer......

330

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer... 35.5 6.4 2.2 4.2 Use a Personal Computer......

331

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer......

332

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......

333

Total..........................................................  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Usage Indicators UrbanRural Location (as Self-Reported) City Town Suburbs Rural Energy Information Administration 2005 Residential Energy Consumption Survey:...

334

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Housing Units (millions) Home Appliances Usage Indicators City Town Suburbs Rural Energy Information Administration 2005 Residential Energy Consumption Survey:...

335

Total..........................................................  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location, 2005 Housing Units (millions) Energy Information Administration: 2005...

336

Total  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008 (Next1, 20126,6,4,7,Top 100 U.S.

337

Total  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008 (Next1, 20126,6,4,7,Top 100

338

Total........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:

339

Total........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.1 Do Not Have

340

Total........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.1 Do Not

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Total.........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.1 Do

342

Total..........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.1 Do25.6 40.7

343

Total..........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.1 Do25.6 40.7.

344

Total..........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.1 Do25.6

345

Total..........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.1 Do25.60.7

346

Total..........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.1 Do25.60.74.2

347

Total..........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.1

348

Total..........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.17.1 19.0 22.7

349

Total...........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.17.1 19.0

350

Total...........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.17.1 19.05.6

351

Total...........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.17.1

352

Total.............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.17.1Cooking

353

Total.............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0

354

Total.............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0Cooking Appliances

355

Total.............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0Cooking

356

Total.............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0CookingDo Not Have

357

Total.............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0CookingDo Not

358

Total.............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0CookingDo NotDo

359

Total.............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0CookingDo NotDoDo

360

Total..............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0CookingDo NotDoDo

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Total..............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0CookingDo

362

Total..............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0CookingDo0.7 21.7

363

Total..............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0CookingDo0.7

364

Total.................................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0CookingDo0.77.1

365

Total.................................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0CookingDo0.77.1...

366

Total....................................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0

367

Total....................................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0Cooking Appliances

368

Total....................................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0Cooking Appliances25.6

369

Total....................................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0Cooking

370

Total....................................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0CookingPersonal

371

Total....................................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0CookingPersonal4.2 7.6

372

Total....................................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0CookingPersonal4.2 7.6

373

Total.........................................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0CookingPersonal4.2

374

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

AppliancesTools.... 56.2 11.6 3.3 8.2 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 0.2 Q 0.1 Hot Tub or...

375

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AppliancesTools.... 56.2 12.0 9.0 3.1 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 0.4 Q Q Hot Tub or...

376

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

AppliancesT 56.2 20.3 16.0 8.6 5.1 6.2 12.8 26.8 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 Q 0.2 Q Q 0.3 Q Q Hot Tub or...

377

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

AppliancesTools.... 56.2 12.2 9.4 2.8 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 Q Q Q Hot Tub or Spa......

378

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

AppliancesTools... 56.2 20.5 10.8 3.6 6.1 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 N N N N Hot Tub or...

379

Utilizing Mobility to Minimize the Total Communication and Motion Energy  

E-Print Network [OSTI]

Utilizing Mobility to Minimize the Total Communication and Motion Energy Consumption of a Robotic costs. However, simplified path loss models are utilized to model the communication channels. In Yan Operation Yuan Yan and Yasamin Mostofi Department of Electrical and Computer Engineering University

Mostofi, Yasamin

380

OGJ300; Smaller list, bigger financial totals  

SciTech Connect (OSTI)

This paper reports on Oil and Gas Journal's list of the largest, publicly traded oil and gas producing companies in the U.S. which is both smaller and larger this year than it was in 1990. It's smaller because it covers fewer companies. Industry consolidation has slashed the number of public companies. As a result, the former OGJ400 has become the OGJ300, which includes the 30 largest limited partnerships. But the assets-ranked list is larger because important financial totals - representing 1990 results - are significantly higher than those of a year ago, despite the lower number of companies. Consolidation of the U.S. producing industry gained momentum throughout the 1980s. Unable to sustain profitability in a period of sluggish energy prices and, for many, rising costs, companies sought relief through mergers or liquidation of producing properties. As this year's list shows, however, surviving companies have managed to grow. Assets for the OGJ300 group totaled $499.3 billion in 1990 - up 6.3% from the 1989 total of last year's OGJ400. Stockholders' equity moved up 5.3% to $170.7 billion. Stockholders' equity was as high as $233.8 billion in 1983.

Beck, R.J.; Biggs, J.B.

1991-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Power Plant Cycling Costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(say, a trip) and such factors are not fully captured in this dataset. 9. Older combined cycle units were a step change in lower operating costs due to cycling...

382

Estimating Renewable Energy Costs  

Broader source: Energy.gov [DOE]

Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

383

Cost Estimating Guide  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides uniform guidance and best practices that describe the methods and procedures that could be used in all programs and projects at DOE for preparing cost estimates. No cancellations.

2011-05-09T23:59:59.000Z

384

Investments of uncertain cost  

E-Print Network [OSTI]

I study irreversible investment decisions when projects take time to complete, and are subject to two types of uncertainty over the cost of completion. The first is technical uncertainty, i.e., uncertainty over the amount ...

Pindyck, Robert S.

1992-01-01T23:59:59.000Z

385

Standard costs for labor  

E-Print Network [OSTI]

STANDARD COSTS FOR LABOR A Thesis By MD. NURUL ABSAR KHAN Submitted to the Graduate School of the Agricultural and Mechanical College of Texms in partial fulfillment of the requirements for the degree of MASTER OF BUSINESS ADMINISTRATION... January 1960 Ma/or Sub)acts Accounting STANOAHD COSTS FOR LABOR ND, NURUL ABSAR KHAN Approved as t style and content bys Chairman of Committee Head of Hepartment January 1960 The author acknowledges his indebtedness to Mr. T. M. Leland, Mr. T. D...

Khan, Mohammed Nurul Absar

1960-01-01T23:59:59.000Z

386

Vehicle Cost Calculator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlongUpdatesValley wins 2015 ScienceRunning jobs

387

DEMONSTRATION OF THE VIABILITY AND EVALUATION OF PRODUCTION COSTS FOR BIOMASS-INFUSED COAL BRIQUETTES  

SciTech Connect (OSTI)

This report is the final reporting installment of the DOE project titled DEMONSTRATION OF THE VIABILITY AND EVALUATION OF PRODUCTION COSTS FOR BIOMASS-INFUSED COAL BRIQUETTES. This rerport includes a summary of the work completed to date including the experimental methods used to acheive the results, discussions, conclusions and implications of the final product delivered by the project.

Kamshad, Kourosh

2013-12-31T23:59:59.000Z

388

Low-Cost Illumination-Grade LEDs  

SciTech Connect (OSTI)

Solid State Lighting is a cost-effective, energy-conserving technology serving a rapidly expand- ing multi-billion dollar market. This program was designed to accelerate this lighting revolution by reducing the manufacturing cost of Illumination-Grade LEDs. The technical strategy was to investigate growth substrate alternatives to standard planar sapphire, select the most effective and compatible option, and demonstrate a significant increase in Lumen/$ with a marketable LED. The most obvious alternate substrate, silicon, was extensively studied in the first two years of the program. The superior thermal and mechanical properties of Si were expected to improve wavelength uniformity and hence color yield in the manufacture of high-power illumination- grade LEDs. However, improvements in efficiency and epitaxy uniformity on standard c-plane sapphire diminished the advantages of switching to Si. Furthermore, the cost of sapphire decreased significantly and the cost of processing Si devices using our thin film process was higher than expected. We concluded that GaN on Si was a viable technology but not a practical option for Philips Lumileds. Therefore in 2012 and 2013, we sought and received amendments which broadened the scope to include other substrates and extended the time of execution. Proprietary engineered substrates, off-axis (non-c-plane) sapphire, and c-plane patterned sapphire substrates (PSS) were all investigated in the final 18 months of this program. Excellent epitaxy quality was achieved on all three candidates; however we eliminated engineered substrates and non-c-plane sapphire because of their higher combined cost of substrate, device fabrication and packaging. Ultimately, by fabricating a flip-chip (FC) LED based upon c-plane PSS we attained a 42% reduction in LED manufacturing cost relative to our LUXEON Rebel product (Q1-2012). Combined with a flux gain from 85 to 102 Lm, the LUXEON Q delivered a 210% increase in Lm/$ over this time period. The technology was commercialized in our LUXEON Q product in Sept., 2013. Also, the retention of the sapphire increased the robustness of the device, enabling sales of low-cost submount-free chips to lighting manufacturers. Thus, blue LED die sales were initiated in the form of a PSS-FC in February, 2013.

Epler, John

2013-08-31T23:59:59.000Z

389

Roadway Improvement Project Cost Allocation  

E-Print Network [OSTI]

Roadway Improvement Project Cost Allocation CTS 21st Annual Transportation Research Conference costs #12;Potential Applications · Roadway Project Feasibility Studies ­ Identified potential roadway infrastructure improvement ­ Documentation of estimated project costs ­ Determine property assessments

Minnesota, University of

390

Sunk Costs and Competitive Bidding  

E-Print Network [OSTI]

SUNK COSTS AND COMPETITIVE BIDDING Kenneth R. FrenchRevised: November 1982 SUNK COSTS AND COMPETITIVE BIDDINGl the winning bid be? I f sunk costs do not matter, I f the

French, Kenneth R.; McCormick, Robert E.

1982-01-01T23:59:59.000Z

391

Mandatory Photovoltaic System Cost Analysis  

Broader source: Energy.gov [DOE]

The Arizona Corporation Commission requires electric utilities to conduct a cost/benefit analysis to compare the cost of line extension with the cost of installing a stand-alone photovoltaic (PV)...

392

Factors Impacting Decommissioning Costs - 13576  

SciTech Connect (OSTI)

The Electric Power Research Institute (EPRI) studied United States experience with decommissioning cost estimates and the factors that impact the actual cost of decommissioning projects. This study gathered available estimated and actual decommissioning costs from eight nuclear power plants in the United States to understand the major components of decommissioning costs. Major costs categories for decommissioning a nuclear power plant are removal costs, radioactive waste costs, staffing costs, and other costs. The technical factors that impact the costs were analyzed based on the plants' decommissioning experiences. Detailed cost breakdowns by major projects and other cost categories from actual power plant decommissioning experiences will be presented. Such information will be useful in planning future decommissioning and designing new plants. (authors)

Kim, Karen; McGrath, Richard [Electric Power Research Institute, 3420 Hillview Ave., Palo Alto, California (United States)] [Electric Power Research Institute, 3420 Hillview Ave., Palo Alto, California (United States)

2013-07-01T23:59:59.000Z

393

QGESS: Capital Cost Scaling Methodology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(costs and values of inputs, outputs, and processes, including capital and operating costs) and performance (mass conversion, energy efficiency, and, generally speaking,...

394

Reported Energy and Cost Savings from the DOE ESPC Program  

SciTech Connect (OSTI)

The objective of this work was to determine the realization rate of energy and cost savings from the Department of Energy's Savings Performance Contract (ESPC) program based on information reported by the energy services companies (ESCOs) that are carrying out ESPC projects at federal sites. Information was extracted from 134 Measurement and Verification (M&V) reports to determine reported, estimated, and guaranteed cost savings and reported and estimated energy savings for the previous contract year. Because the quality of the reports varied, it was not possible to determine all of these parameters for each project. For 133 of the 134 projects, there was sufficient information to compare estimated, reported, and guaranteed cost savings. For this group, the total estimated cost savings for the reporting periods addressed were $95.7 million, total reported cost savings were $96.8 million, and total guaranteed cost savings were $92.1 million. This means that on average: ESPC contractors guaranteed 96% of the estimated cost savings, projects reported achieving 101% of the estimated cost savings, and projects reported achieving 105% of the guaranteed cost savings. For 129 of the projects examined, there was sufficient information to compare estimated and reported energy savings. On the basis of site energy, estimated savings for those projects for the previous year totaled 5.371 million MMBtu, and reported savings were 5.374 million MMBtu, just over 100% of the estimated energy savings. On the basis of source energy, total estimated energy savings for the 129 projects were 10.400 million MMBtu, and reported saving were 10.405 million MMBtu, again, just over 100.0% of the estimated energy savings.

Shonder, John A [ORNL; Slattery, Bob S [ORNL; Atkin, Erica [ORNL

2012-01-01T23:59:59.000Z

395

Low Cost, Durable Seal  

SciTech Connect (OSTI)

Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

Roberts, George; Parsons, Jason; Friedman, Jake

2010-12-17T23:59:59.000Z

396

June 5, 2001 1 FIRE Cost Estimate  

E-Print Network [OSTI]

ign Aw ard & Mobilize Ex c av ation Construct FIRE Building EA FONSI EIS PSA R DOE Approval FSA R ORR Systems $343.8M$78.5M$266.3M1 ­ Fusion Core Systems Total (FY99M$) Contingency (FY99M$) Cost (FY99M$) WBS Element #12;June 5, 2001 6 Fusion Core Systems Estimate $343.8M$78.5M$266.3MTotal Fusion Core Systems $10

397

Enterprise budget development and production cost allocation  

E-Print Network [OSTI]

, wage rates, and benefits can be determined from several sources. The "going rate" in the local area is the most-used source. Labor contractors may provide workers an on job basis for one total fee, while union contracts may set wage rates, benefits... general ledger accounts. The movement of cost measures through these accounts should reflect the flow of resources through an operation's production and distribution. Such accounts such as Machinery Repairs, Wages and Salaries, Power and Heating...

Minear, Kelly Don

1991-01-01T23:59:59.000Z

398

Cost Type Examples Salary costs for staff working  

E-Print Network [OSTI]

. Equipment access charges Service contracts, running costs, materials and consumables and staff time

Rambaut, Andrew

399

SLA-based Optimization of Power and Migration Cost in Cloud Computing Hadi Goudarzi, Mohammad Ghasemazar and Massoud Pedram  

E-Print Network [OSTI]

the total energy cost of cloud computing system while meeting the specified client-level SLAs, and infrastructure-independent computing are examples of motivations of such systems. Electrical energy cost the system. These constraints result in a basic trade-off between the total energy cost and client

Pedram, Massoud

400

Chief financial officer's task force on rationing feasibility, cost and schedule. Final report  

SciTech Connect (OSTI)

The purpose of this memorandum is to report our realistic assessment of the feasibility, cost, and time frame for bringing a rationing program to 90-day readiness. The basic aspects of the nature of the rationing plan are discussed. The plan has been changed in several respects in response to comments from the Congress, the general public and the ECC, since the previous version was rejected by the Congress in May 1979. Three changes in particular impact the preimplementation process: The range of entities accorded status as priority firms has increased to cover such groups as telecommunications firms and for-hire delivery firms; All firms (not just priority users) are alloted rights for a percentage of their historical gasoline usage; States have more influence on the division of the total state supply between state reserves and vehicle allotments. The rationing plan, is described on a chart depicting the interaction of the principal components is included. The rationing process starts when checks for coupons are sent to owners of registered vehicles. The biggest single problem area appears to be delivering these checks into the hands of the vehicle registrants who are entitled to them. (DMC)

Not Available

1980-03-05T23:59:59.000Z

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

U.S. Department of Energy Hydrogen Storage Cost Analysis  

SciTech Connect (OSTI)

The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a â??bottom-upâ? costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with DFMA?® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target. In general, tank costs are the largest component of system cost, responsible for at least 30 percent of total system cost, in all but two of the 12 systems. Purchased BOP cost also drives system cost, accounting for 10 to 50 percent of total system cost across the various storage systems. Potential improvements in these cost drivers for all storage systems may come from new manufacturing processes and higher production volumes for BOP components. In addition, advances in the production of storage media may help drive down overall costs for the sodium alanate, SBH, LCH2, MOF, and AX-21 systems.

Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

2013-03-11T23:59:59.000Z

402

Heliostat cost reduction study.  

SciTech Connect (OSTI)

Power towers are capable of producing solar-generated electricity and hydrogen on a large scale. Heliostats are the most important cost element of a solar power tower plant. Since they constitute {approx} 50% of the capital cost of the plant it is important to reduce heliostat cost as much as possible to improve the economic performance of power towers. In this study we evaluate current heliostat technology and estimate a price of $126/m{sup 2} given year-2006 materials and labor costs for a deployment of {approx}600 MW of power towers per year. This 2006 price yields electricity at $0.067/kWh and hydrogen at $3.20/kg. We propose research and development that should ultimately lead to a price as low as $90/m{sup 2}, which equates to $0.056/kWh and $2.75/kg H{sup 2}. Approximately 30 heliostat and manufacturing experts from the United States, Europe, and Australia contributed to the content of this report during two separate workshops conducted at the National Solar Thermal Test Facility.

Jones, Scott A.; Lumia, Ronald. (University of New Mexico, Albuquerque, NM); Davenport, Roger (Science Applications International Corporation, San Diego, CA); Thomas, Robert C. (Advanced Thermal Systems, Centennial, CO); Gorman, David (Advanced Thermal Systems, Larkspur, CO); Kolb, Gregory J.; Donnelly, Matthew W.

2007-06-01T23:59:59.000Z

403

Maximizing Throughput of UAV-Relaying Networks with the Load-Carry-and-Deliver Paradigm  

E-Print Network [OSTI]

Maximizing Throughput of UAV-Relaying Networks with the Load-Carry-and-Deliver Paradigm Chen Unmanned Aerial Vehicles (UAVs) to relay messages between two distant ground nodes. For delay-tolerant applications like latency-insensitive bulk data transfer, we seek to maximize throughput by having a UAV load

Kung, H. T.

404

Towards Optimal Energy Store-Carry-and-Deliver for PHEVs via V2G System  

E-Print Network [OSTI]

technology is incorporated to facilitate the energy delivery by providing electricity pricing and energy energy flow, non- stationary energy demand, battery characteristics, and TOU elec- tricity price. WeTowards Optimal Energy Store-Carry-and-Deliver for PHEVs via V2G System Hao Liang, Bong Jun Choi

Zhuang, Weihua

405

New Strontium-based Bioactive Glasses: Physicochemical Reactivity and Delivering Capability  

E-Print Network [OSTI]

1 New Strontium-based Bioactive Glasses: Physicochemical Reactivity and Delivering Capability, strontium- doped bioactive glasses are of major interest; their key property relies on the increased that closely resembles to the biological apatite present in bones. Compared to strontium-free materials

Boyer, Edmond

406

A critical concern for embedded sys tems is the need to deliver high levels of per  

E-Print Network [OSTI]

10 A critical concern for embedded sys­ tems is the need to deliver high levels of per­ formance voltage. Because dynam­ ic energy scales quadratically with supply volt­ age, DVS can significantly reduce energy use. 2 Enabling systems to run at multiple fre­ quency and voltage levels is challenging

Mudge, Trevor

407

Energy Storage & Delivery The goal of this project is to deliver measurement methods specific to  

E-Print Network [OSTI]

Energy Storage & Delivery Materials The goal of this project is to deliver measurement methods specific to polymeric and organic materials needed in next generation energy storage and delivery. · The NIST team is works closely with leaders in the energy storage and delivery field, including General

408

GENIE: Delivering e-Science to the environmental scientist M. Y. Gulamali1  

E-Print Network [OSTI]

to deliver a Grid-based, modular, distributed and scalable Earth System Model for long-term and paleo-term aims of the GENIE project. 1 Introduction The Grid ENabled Integrated Earth system model (GENIE-term benefits to the Earth system modelling community (and others who need to com- bine disparate models

409

ECEEE 2005 SUMMER STUDY WHAT WORKS & WHO DELIVERS? 183 Local energy efficiency and demand-side  

E-Print Network [OSTI]

ECEEE 2005 SUMMER STUDY ­ WHAT WORKS & WHO DELIVERS? 183 1,202 Local energy efficiency and demand be the basis for local energy policies and energy efficiency/demand-side management activities1, have been) activities in 1. DSM: Demand-Side Management; EE: energy efficiency (here, does not include renewable

Paris-Sud XI, Université de

410

UMBC Training Centers Partners with EC-Council, to Deliver Online Cybersecurity Training Programs  

E-Print Network [OSTI]

UMBC Training Centers Partners with EC-Council, to Deliver Online Cybersecurity Training Programs "iClasses offer Students the option of live, instructor lead online security training virtually anywhere with access to the internet." March 21, 2011 - UMBC Training Centers, long time partner of the EC

Maryland, Baltimore County, University of

411

Hay Harvesting Costs $$$$$ in Texas.  

E-Print Network [OSTI]

Hay is an important crop in Ta 1 Harvesting costs constitute the major5 pense of hay production in many M Mg and Wayne D . Taylor INTRODUCTION .................................................... 2 Fixed Costs or Ownership Costs... ............................................. 10 Totarl Cost .............................................................. 10 HAY HARVESTING ALTERNATIVES COMPARED ...................... 11 HOW TO MAKE WISE DECISIONS CONCERNING INVESTMENTS IN MACHINERY...

Long, James T.; Taylor, Wayne D.

1972-01-01T23:59:59.000Z

412

COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATION .............................................................................13 Definition of Levelized Cost ........................................................................................................13 Levelized Cost Components

413

COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATION............................................................ 3 Definition of Levelized Cost.................................................................................... 3 Levelized Cost Categories

Laughlin, Robert B.

414

Cost Estimating, Analysis, and Standardization  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish policy and responsibilities for: (a) developing and reviewing project cost estimates; (b) preparing independent cost estimates and analysis; (c) standardizing cost estimating procedures; and (d) improving overall cost estimating and analytical techniques, cost data bases, cost and economic escalation models, and cost estimating systems. Cancels DOE O 5700.2B, dated 8-5-1983; DOE O 5700.8, dated 5-27-1981; and HQ 1130.1A, dated 12-30-1981. Canceled by DOE O 5700.2D, dated 6-12-1992

1984-11-02T23:59:59.000Z

415

Characterizing Application Memory Error Vulnerability to Optimize Datacenter Cost via Heterogeneous-Reliability Memory  

E-Print Network [OSTI]

Characterizing Application Memory Error Vulnerability to Optimize Datacenter Cost via Heterogeneous--Memory devices represent a key component of datacenter total cost of ownership (TCO), and techniques used, we make three main con- tributions to enable highly-reliable servers at low datacenter cost. First

Mutlu, Onur

416

Construction and first applications of a global cost of fishing database  

E-Print Network [OSTI]

of $928 and $1120, respectively. The total global variable fishing cost is estimated to be in the range USConstruction and first applications of a global cost of fishing database Vicky W. Y. Lam*, Ussif applications of a global cost of fishing database. ­ ICES Journal of Marine Science, 68: 1996­2004. Received 14

Pauly, Daniel

417

Facilitating Sound, Cost-Effective Federal Energy Management (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet is an overview of the U.S. Department of Energy's Federal Energy Management Program (FEMP). The Federal Government, as the nation's largest energy consumer, has a tremendous opportunity and acknowledged responsibility to lead by example. The U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) plays a critical role in this effort. FEMP facilitates the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. FEMP does this by focusing on the needs of its Federal customers, delivering an array of services across a variety of program areas.

Not Available

2012-03-01T23:59:59.000Z

418

Hydrogen as a transportation fuel: Costs and benefits  

SciTech Connect (OSTI)

Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

Berry, G.D.

1996-03-01T23:59:59.000Z

419

Geothermal probabilistic cost study  

SciTech Connect (OSTI)

A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

1981-08-01T23:59:59.000Z

420

Costs, Culture, and Complexity: An Analysis of Technology Enhancements in a Large Lecture Course at UC Berkeley  

E-Print Network [OSTI]

$ 68,731 total. Table 5: Development/Revision Costs ActivityWhile Table 5 presents development/revision costs thatof development/revision activities, which appear in Table 5,

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Technology commercialization cost model and component case study. Final report  

SciTech Connect (OSTI)

Fuel cells seem poised to emerge as a clean, efficient, and cost competitive source of fossil fuel based electric power and thermal energy. Sponsors of fuel cell technology development need to determine the validity and the attractiveness of a technology to the market in terms of meeting requirements and providing value which exceeds the total cost of ownership. Sponsors of fuel cell development have addressed this issue by requiring the developers to prepare projections of the future production cost of their fuel cells in commercial quantities. These projected costs, together with performance and life projections, provide a preliminary measure of the total value and cost of the product to the customer. Booz-Allen & Hamilton Inc. and Michael A. Cobb & Company have been retained in several assignments over the years to audit these cost projections. The audits have gone well beyond a simple review of the numbers. They have probed the underlying technical and financial assumptions, the sources of data on material and equipment costs, and explored issues such as the realistic manufacturing yields which can be expected in various processes. Based on the experience gained from these audits, the DOE gave Booz-Allen and Michael A. Cobb & company the task to develop a criteria to be used in the execution of future fuel cell manufacturing cost studies. It was thought that such a criteria would make it easier to execute such studies in the future as well as to cause such studies to be more understandable and comparable.

Not Available

1991-12-01T23:59:59.000Z

422

Technology commercialization cost model and component case study  

SciTech Connect (OSTI)

Fuel cells seem poised to emerge as a clean, efficient, and cost competitive source of fossil fuel based electric power and thermal energy. Sponsors of fuel cell technology development need to determine the validity and the attractiveness of a technology to the market in terms of meeting requirements and providing value which exceeds the total cost of ownership. Sponsors of fuel cell development have addressed this issue by requiring the developers to prepare projections of the future production cost of their fuel cells in commercial quantities. These projected costs, together with performance and life projections, provide a preliminary measure of the total value and cost of the product to the customer. Booz-Allen Hamilton Inc. and Michael A. Cobb Company have been retained in several assignments over the years to audit these cost projections. The audits have gone well beyond a simple review of the numbers. They have probed the underlying technical and financial assumptions, the sources of data on material and equipment costs, and explored issues such as the realistic manufacturing yields which can be expected in various processes. Based on the experience gained from these audits, the DOE gave Booz-Allen and Michael A. Cobb company the task to develop a criteria to be used in the execution of future fuel cell manufacturing cost studies. It was thought that such a criteria would make it easier to execute such studies in the future as well as to cause such studies to be more understandable and comparable.

Not Available

1991-12-01T23:59:59.000Z

423

Department of Energy Delivers on R&D Targets around Cellulosic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

cost of 2.05 per gallon. Biochemical Waterfall Chart of Minimum Ethanol Selling Price (in 2007 dollars per gallon). Major improvements included improving the following:...

424

Department of Energy Delivers on R&D Targets around Cellulosic...  

Office of Environmental Management (EM)

advances required to produce cellulosic ethanol that is cost competitive with petroleum. Cellulosic ethanol is fuel produced from the inedible, organic material abundant in...

425

Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering Thermal Comfort  

E-Print Network [OSTI]

including cost, energy and thermal comfort analysis, whichfor greatest energy benefits, prioritize thermal comfortSetting Thermal Comfort Criteria and Minimizing Energy Use

Regnier, Cindy

2014-01-01T23:59:59.000Z

426

MSU-Bozeman Total Faculty  

E-Print Network [OSTI]

Associate Assistant Total College of Agriculture Agricultural Economics & Economics 2 1 8 5 16 20 100 0 18.8 Agricultural Education 1 1 1 1 4 0 0 50 25.0 Animal & Range Sciences 1 1 1 13 1 1 2 3 2 2 4 14 33 50 43 42.9 Film & Photography 1 1 3 5 3 1 14 17 25 75 35.7 Music

Maxwell, Bruce D.

427

Market-Oriented Cloud Computing: Vision, Hype, and Reality for Delivering IT Services as Computing Utilities  

E-Print Network [OSTI]

This keynote paper: presents a 21st century vision of computing; identifies various computing paradigms promising to deliver the vision of computing utilities; defines Cloud computing and provides the architecture for creating market-oriented Clouds by leveraging technologies such as VMs; provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; presents some representative Cloud platforms especially those developed in industries along with our current work towards realising market-oriented resource allocation of Clouds by leveraging the 3rd generation Aneka enterprise Grid technology; reveals our early thoughts on interconnecting Clouds for dynamically creating an atmospheric computing environment along with pointers to future community research; and concludes with the need for convergence of competing IT paradigms for delivering our 21st century vision.

Buyya, Rajkumar; Venugopal, Srikumar

2008-01-01T23:59:59.000Z

428

Utility Cost Analysis  

E-Print Network [OSTI]

W Computere 6 Computer HVAC Computers Liebert Unite CRT's Subtotal WAC System VAV AHU' s TABLE 3: OPERATING kW BY SEASON Computers 6 Computer WAC Comput err Liebert Unitr CRT'B Sub total HVAC System VAV AHU's AHU1# Pumps Chillerr Subtotal...

Horn, S.

1984-01-01T23:59:59.000Z

429

Method and apparatus for delivering high power laser energy over long distances  

DOE Patents [OSTI]

Systems, devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser drilling of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates.

Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

2013-08-20T23:59:59.000Z

430

Under Secretary Klotz delivers remarks at PREP ribbon-cutting | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlong version) The0Radiationadvanced RF

431

10eV Photons of UV Laser Light Delivered (Photonics) | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloweenReliable solar:2

432

Oxygenation cost estimates for Cherokee, Douglas, and Norris reservoirs  

SciTech Connect (OSTI)

The capital and annual costs associated with reoxygenation of the turbine releases at Cherokee, Douglas and Norris Reservoirs using the small bubble injection technique developed for Ft. Patrick Henry Dam were computed. The weekly average dissolved oxygen (DO) deficits were computed for each reservoir for an average year (based on 16 years of records). The total annual cost of an oxygen supply and injection system for each reservoir is presented. 5 refs., 6 figs., 5 tabs.

Fain, T.G.

1980-10-01T23:59:59.000Z

433

INDEPENDENT COST REVIEW (ICR)  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable ProjectsHistoryia/802871 IA Blog|INDEPENDENT COST

434

User cost in oil production  

E-Print Network [OSTI]

The assumption of an initial fixed mineral stock is superfluous and wrong. User cost (resource rent) in mineral production is the present value of expected increases in development cost. It can be measured as the difference ...

Adelman, Morris Albert

1990-01-01T23:59:59.000Z

435

Vehicle operating costs: evidence from developing countries  

SciTech Connect (OSTI)

The document presents information concerning the relationships between vehicle operating costs and highway conditions derived from four studies performed in Kenya, the Caribbean, Brazil, and India in the 1970s and early 1980s. The levels of transport costs and the amounts by which they are altered when highway conditions change depend on two main factors. The first is the production technology facing firms, in particular, the types and designs of vehicles to which firms have access. The second is the economic environment that firms face, in particular, relative prices of inputs to the production of transportation, such as fuel, tires, labor, and vehicles, and the nature of the transport markets that firms serve. The first part of the book sets out an economic model of firms managing vehicle fleets within which these influences can be examined. The second part of the book reports and interprets the results of the four major research projects which were designed to study the influences on vehicle operating costs. The third part of the book examines total vehicle operating costs.

Chesher, A.; Harrison, R.

1987-01-01T23:59:59.000Z

436

Wind Integration Cost and Cost-Causation: Preprint  

SciTech Connect (OSTI)

The question of wind integration cost has received much attention in the past several years. The methodological challenges to calculating integration costs are discussed in this paper. There are other sources of integration cost unrelated to wind energy. A performance-based approach would be technology neutral, and would provide price signals for all technology types. However, it is difficult to correctly formulate such an approach. Determining what is and is not an integration cost is challenging. Another problem is the allocation of system costs to one source. Because of significant nonlinearities, this can prove to be impossible to determine in an accurate and objective way.

Milligan, M.; Kirby, B.; Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Martin-Martinez, S.; Gomez-Lazaro, E.; Peneda, I.; Smith, C.

2013-10-01T23:59:59.000Z

437

Check Estimates and Independent Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Check estimates and independent cost estimates (ICEs) are tools that can be used to validate a cost estimate. Estimate validation entails an objective review of the estimate to ensure that estimate criteria and requirements have been met and well documented, defensible estimate has been developed. This chapter describes check estimates and their procedures and various types of independent cost estimates.

1997-03-28T23:59:59.000Z

438

Cost Effectiveness NW Energy Coalition  

E-Print Network [OSTI]

1 Action 8 Cost Effectiveness Manual Kim Drury NW Energy Coalition Context · Inconsistent understanding of cost effectiveness contributed to under performing conservation E.g: individual measures vs Action Plan for Energy Efficiency published a comprehensive guide on cost effectiveness: best practices

439

Total Energy Outcome City Pilot  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 th ,Top Value AddedTotal Energy Outcome

440

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008 (Next1,Product: Total9,216

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Total Number of Operable Refineries  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008 (Next1,Product:Country: Total

442

Cost and Profit of Ginning Cotton in Texas.  

E-Print Network [OSTI]

his actual cost and profit with his computed standard cost and profit may ascertain his om relative efficiency. The profit outlook of the ginning enterprise and the valuation forming the basis of purchase and sale engage the attention of bankers... as Percentages of Total Number1 Number Type of Power Year Gaso- Elec- Steam Water line Animal tric Diesel Gas Total IDepartm~nt of Commerce, Bureau of the Census: Cotton Production and Distribution, Sea- son of 1919-20, Bulletin 145, pages 36-43. Cotton...

Paulson, W. E. (William E.)

1942-01-01T23:59:59.000Z

443

Ensuring cost effectiveness in the TAP process  

SciTech Connect (OSTI)

The Training Accredition Program (TAP) at the Waste Isolation Division (WID) is discussed by the general manager. Cost effectiveness in the TAP process is made possible by saving through sharing which refers to the exchange and co-development of information and technology among Westinghouse Government owned-contractor operators and with other organizations. In 1990 a comprehensive management and supervisor training (MAST) program plan was devised and a MAST certification program of 31 self-paced written moduler was developed. This program has proven to be inexpensive to develop and implement when compared to classroom training. In addition, total quality is used as a tool to continuously improve work process. Continuous improvement requires continued evaluation of work process, such as TAP analysis and development in summary to make training at DOE facilities the most cost-effective training anywhere, we need to share, challenge conventional wisdom, and seek to continuously improve.

Trego, A.L.

1992-06-16T23:59:59.000Z

444

Cost analysis of German waste repositories  

SciTech Connect (OSTI)

In forecasting costs of final disposal for radioactive waste, the determined disposal concept and operational aspects such as the necessary amount for personnel to operate the repository are important. Even for the German deep geological concept, there are large differences resulting from the assessment to select an already existing mine or a completely new formation as a disposal site. Based on actual planning, the expected total costs of the running waste repository projects in the Federal Republic of Germany are presented including their distribution to single aspects like project management, underground investigation, licensing work and construction. Moreover, the actual expenditures for the different waste repositories are given and as far as possible the prices per m{sup 3}.

Berg, H.P.; Debski, H.J. [Bundesamt fuer Strahlenschutz, Salzgitter (Germany)

1993-12-31T23:59:59.000Z

445

Low Cost Heliostat Development Phase II Final Report  

SciTech Connect (OSTI)

The heliostat field in a central receiver plant makes up roughly one half of the total plant cost. As such, cost reductions for the installed heliostat price greatly impact the overall plant cost and hence the plants Levelized Cost of Energy. The general trend in heliostat size over the past decades has been to make them larger. One part of our thesis has been that larger and larger heliostats may drive the LCOE up instead of down due to the very nature of the precise aiming and wind-load requirements for typical heliostats. In other words, it requires more and more structure to precisely aim the sunlight at the receiver as one increases heliostat mirror area and that it becomes counter-productive, cost-wise, at some point.

Kusek, Stephen M.

2014-04-21T23:59:59.000Z

446

Solar total energy project Shenandoah  

SciTech Connect (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

447

High Fuel Costs Spark Increased Use of Wood for Home Heating by Brian Handwerk for National Geographic News  

E-Print Network [OSTI]

families reducing their costly household oil or gas dependence by turning to a traditional fuel is typically delivered to homes in tanks, and is almost as expensive as heating oil. Berry manages the EIA Hampshire. Just last week, Erik said, he had a discussion with his fuel-oil supplier about how little oil

South Bohemia, University of

448

3/1/2014 to 3/31/2014 Total Costs: $1,207,200.00  

E-Print Network [OSTI]

of Agriculture 4/16/2014 12/31/2013 OUDEMANS, PETER None Delivery of Grape IPM Predication Models to NJ Wine/Environment al Science US Department of Energy US Department of Energy 3/1/2014 2/28/2015 BARKAY, TAMAR Service 3/6/2014 6/30/2014 BOTH, AREND- JAN None Delivery of two webinars on greenhouse energy issues

Goodman, Robert M.

449

Reducing total fulfillment at costs at Amazon EU through network design optimization  

E-Print Network [OSTI]

A key supply chain management issue encountered by any business requiring a distribution system is in designing its distribution network. A distribution network configuration has both direct and indirect ongoing effects ...

Merriam, Ken (Ken A.)

2007-01-01T23:59:59.000Z

450

Sustainable Transportation Decision-Making: Spatial Decision Support Systems (SDSS) and Total Cost Analysis  

E-Print Network [OSTI]

the TUT research generated diverse variables and created possible implementations of spatial decision support system (SDSS), the methodology still demands improvement. The current method has been developed to create suitable routes but is not designed...

Kim, Hwan Yong

2013-04-04T23:59:59.000Z

451

FY 2007 Total System Life Cycle Cost, Pub 2008 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollars in5Statistical Table

452

,"U.S. Total Refiner Acquisition Cost of Crude Oil"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves in Nonproducing Reservoirs (MillionNatural GasRefiner

453

A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-DecemberBasedToward a MoreA RisingA1

454

Total Cost Per MwH for all common large scale power generation sources |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, IncTipmont Rural Elec Member Corp

455

U.S. Department of Energy Releases Revised Total System Life Cycle Cost  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartmentFeed Families"ofTravisD.of theArea

456

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin,An Evaluation of EnhancedHandling

457

Advances in Energy Efficiency, Capital Cost, and Installation Schedules for Large Capacity Cooling Applications Using a Packaged Chiller Plant Approach  

E-Print Network [OSTI]

reductions in unit capital costs of installed chiller plant capacity on a dollar per ton basis, 2) marked improvements in total procurement and installation schedules, 3) significantly smaller space requirements, and 4) enhanced control over total system...

Pierson, T. L.; Andrepont, J. S.

458

Realistic costs of carbon capture  

SciTech Connect (OSTI)

There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding transport and storage costs appears to be US$100-150/tCO2 for first-of-a-kind plants and perhaps US$30-50/tCO2 for nth-of-a-kind plants.The estimates for FOAK and NOAK costs appear to be broadly consistent in the light of estimates of the potential for cost reductions with increased experience. Cost reductions are expected from increasing scale, learning on individual components, and technological innovation including improved plant integration. Innovation and integration can both lower costs and increase net output with a given cost base. These factors are expected to reduce abatement costs by approximately 65% by 2030. The range of estimated costs for NOAK plants is within the range of plausible future carbon prices, implying that mature technology would be competitive with conventional fossil fuel plants at prevailing carbon prices.

Al Juaied, Mohammed (Harvard Univ., Cambridge, MA (US). Belfer Center for Science and International Affiaris); Whitmore, Adam (Hydrogen Energy International Ltd., Weybridge (GB))

2009-07-01T23:59:59.000Z

459

Total quality management implementation guidelines  

SciTech Connect (OSTI)

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

460

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

462

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

463

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

464

Secretary Moniz to Deliver Keynote at Washington Auto Show | Department of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2)ScienceScientistsON THE5,toPlantEnergy to Deliver

465

Discover and Deliver: The Big Picture on Energy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle BatteryofDisability ServicesDiscover and Deliver:

466

U.S. Nuclear Weapons Strategy Delivered to Congress | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept. of Energy, Office ofNuclear Weapons Strategy Delivered to

467

Power Tower Technology Roadmap and cost reduction plan.  

SciTech Connect (OSTI)

Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

Mancini, Thomas R.; Gary, Jesse A. (U.S. Department of Energy); Kolb, Gregory J.; Ho, Clifford Kuofei

2011-04-01T23:59:59.000Z

468

Advanced Fuel Cycle Cost Basis  

SciTech Connect (OSTI)

This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

2008-03-01T23:59:59.000Z

469

Advanced Fuel Cycle Cost Basis  

SciTech Connect (OSTI)

This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

2007-04-01T23:59:59.000Z

470

Cost Model and Cost Estimating Software - DOE Directives, Delegations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is basically a cost model, which forms the basis for estimating software. g4301-1chp22.pdf -- PDF Document, 190 KB Writer: John Makepeace Subjects: Administration...

471

An Examination of Avoided Costs in Utah  

E-Print Network [OSTI]

Subject An Examination of Avoided Costs in Utah Date Januarystate by seeking changes to the avoided cost tariff paid tomethod of calculating avoided costs that has been officially

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

472

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

Fueling stations; Cost; Shanghai; Fuel cell vehicles 1.and the delivery cost for fuel cell vehicles, however, itthus hydrogen cost therefore depend on the ?eet of fuel cell

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

473

Will Nano-Butlers Work for Micro-Payments? Innovation in Business Services Model may Reduce Cost of Delivering Global Healthcare Services  

E-Print Network [OSTI]

This paper represents an emerging view of personalized care and patient-centric systems approach. It integrates biomedical informatics and business services. A potentially innovative model may evolve from this convergence ...

Datta, Shoumen

2008-07-31T23:59:59.000Z

474

Lower Cost Energy Options  

E-Print Network [OSTI]

ttle b1t about Abbott Laborator1es. Abbott 1s a world-w1de health care company w1th 27 manufactur1ng and research fac111t1es 1n the U.S. and Puerto R1co totall1ng more than 10,000,000 square feet of floor space. The company has also has manufactur1...ch ranks 96th 1n the Furtune 500. .uaan L.UOU.TO_IU OOMESTIC ENEllGY CONSEllVATION ~~ n ~~~ ~~ a M m M ~ ? " YEn F1gure 1: Energy Conservat10n U.S. & Puerto R1co The Abbott energy conservat10n program started 1n 1973 as d1d many compan1es. We...

Maze, M. E.

475

Total termination of term rewriting is undecidable  

E-Print Network [OSTI]

Total termination of term rewriting is undecidable Hans Zantema Utrecht University, Department Usually termination of term rewriting systems (TRS's) is proved by means of a monotonic well­founded order. If this order is total on ground terms, the TRS is called totally terminating. In this paper we prove that total

Utrecht, Universiteit

476

Total Petroleum Systems and Assessment Units (AU)  

E-Print Network [OSTI]

Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

Torgersen, Christian

477

Cost Analysis of NEMO Protocol Md. Shohrab Hossain , Mohammed  

E-Print Network [OSTI]

based on all-IP technology, compounded by the fact that the number of mobile nodes requiring mobility have developed analytical models to estimate total costs of key mobility management entities of NEMO, mobility management entities, computer networks. I. INTRODUCTION To ensure continuous Internet connectivity

Atiquzzaman, Mohammed

478

Efficient selection of binary choice bundles with cost considerations  

E-Print Network [OSTI]

of a consumer wishing to evaluate bundles of options from a list of N independently selectable binary options to supplied utility and cost functions. Although 2N is very large (e.g., for N = 100, 2N 1030 ), we show how of the individual activity prices) and a total utility value derived according to each guest's individual utility

Washington at Seattle, University of

479

Costs of Generating Electrical Energy 1.0 Overview  

E-Print Network [OSTI]

uranium (3.5% U-235) in a light water reactor has an energy content of 960MWhr/kg [2], or multiplying by 3.41 MBTU/MWhr, we get 3274MBTU/kg. The total cost of bringing uranium to the fuel rods of a nuclear power plant, considering mining, transportation, conversion1 , enrichment, and fabrication, has been estimated

McCalley, James D.

480

Costs of Generating Electrical Energy 1.0 Overview  

E-Print Network [OSTI]

. Enriched uranium (3.5% U-235) in a light water reactor has an energy content of 960MWhr/kg [2], or multiplying by 3.41 MBTU/MWhr, we get 3274MBTU/kg. The total cost of bringing uranium to the fuel rods of a nuclear power plant, considering mining, transportation, conversion1 , enrichment, and fabrication, has

McCalley, James D.

Note: This page contains sample records for the topic "total delivered cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Lower Cost Carbon Fiber Precursors  

Broader source: Energy.gov (indexed) [DOE]

production and conversion parameters must be optimized. Lower cost fiber enable CF composite applications. Approach: 1. Complete previous effort by scaling to the CF production...

482

Lower Cost Carbon Fiber Precursors  

Broader source: Energy.gov (indexed) [DOE]

performing fiber. (600-750 KSI) Barriers: Addresses the need for higher performance low cost fiber for hydrogen storage tanks and energy management structures of automobiles....

483

HTGR Cost Model Users' Manual  

SciTech Connect (OSTI)

The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

A.M. Gandrik

2012-01-01T23:59:59.000Z

484

Audit Costs for the 1986 Texas Energy Cost Containment Program  

E-Print Network [OSTI]

Direct program costs for detailed audits of 13.5 million square feet of institutional building space in the 1986 Texas Energy Cost Containment Program were $0.047/SF. The building area was 63 percent simple (offices, schools, and universities...

Heffington, W. M.; Lum, S. K.; Bauer, V. A.; Turner, W. D.

1987-01-01T23:59:59.000Z

485

Point of impact : delivering mission essential supplies to the warfighter through the Joint Precision Airdrop System (JPADS)  

E-Print Network [OSTI]

The Joint Precision Airdrop System (JPADS) exists to execute logistical resupply operations using fixed and rotary wing air in a safe, effective and precise manner in order to deliver supplies and equipment to intended ...

Eaton, Joshua A. N. (Joshua Andrew Norman)

2012-01-01T23:59:59.000Z

486

On Comparing the Quality of Head and Neck Imrt Plans Delivered with Two Different Linear Accelerator Manufacturers  

SciTech Connect (OSTI)

The purpose of this work was to determine whether 2 different types of linear accelerators manufacturers with similar MLC leaf widths deliver equivalent IMRT distributions for head and neck radiotherapy patients. In this study, plans delivered with Siemens linacs were re-optimized with an Elekta linac and vice versa. To test for significance, paired t-tests were computed to examine differences in target and normal tissue doses and monitor units. Dose distributions, dose-volume histograms, and dose to targets and normal tissues were found to be equivalent irrespective of the linac type. However, approximately 15% more monitor units were delivered when planned on the Elekta machine (p < 0.002). Both linear accelerators provide plans of comparable dosimetric quality; however, Elekta machines deliver slightly more monitor units than Siemens machines. This increase is likely due differences in geometric properties of the machine head designs, as modeled in the treatment planning system.

Basran, Parminder S., E-mail: pbasran@bccancer.bc.c [Department of Medical Physics, Odette Cancer Centre, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Balogh, Judith; Poon, Ian; MacKenzie, Robert [Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Odette Cancer Centre, Toronto, Ontario (Canada); Chan, Timothy [Department of Medical Sciences, University of Western Ontario, Toronto, Ontario (Canada)

2011-04-01T23:59:59.000Z

487

Using Tele-Coaching to Increase Behavior-Specific Praise Delivered by Secondary Teachers in an Augmented Reality Learning Environment  

E-Print Network [OSTI]

This study analyzes the effects of real-time feedback on teacher behavior in an augmented reality simulation environment. Real-time feedback prompts teachers to deliver behavior-specific praise to students in the TeachLivE ...

Elford, Martha Denton

2013-05-31T23:59:59.000Z

488

Hydrogen Compression, Storage, and Dispensing Cost Reduction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Document states additional...

489

Low-Cost MHTES Systems for CSP  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

490

Deploying Low-Cost Suspension Heliostats  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

491

Alaska Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan FebProvedGross Withdrawals Total

492

ALDUO(TM) Algae Cultivation Technology for Delivering Sustainable Omega-3s, Feed, and Fuel  

SciTech Connect (OSTI)

* ALDUO(TM) Algae Production Technology Cellana?s Proprietary, Photosynthetic, & Proven * ALDUO(TM) Enables Economic Algae Production Unencumbered by Contamination by Balancing Higher-Cost PBRs with Lower-Cost Open Ponds * ALDUO(TM) Advantages * ALDUO(TM) Today o Large collection of strains for high value co-products o Powerful Mid-scale Screening & Optimization System o Solution to a Conflicting Interest o Split Pond Yield Enhancement o Heterotrophy & mixotrophy as a "finishing step" o CO2 Mitigation-flue Gas Operation o Worldwide Feed Trials with Livestock & Aquatic Species * ALDUO(TM) Technology Summarized

Bai, Xuemei [Cellana LLC

2012-09-24T23:59:59.000Z

493

Historical Costs of Coal-Fired Electricity and Implications for the Future James McNerney,a,b  

E-Print Network [OSTI]

and comparing different electricity generation technologies using total costs, rather than costs of single A Change decomposition 15 1. Introduction Coal generates two-fifths of the world's electricity [1Historical Costs of Coal-Fired Electricity and Implications for the Future James Mc

494

Tracking the Sun II: The Installed Cost of Photovoltaics in the U.S. from 1998-2008  

E-Print Network [OSTI]

2008 BACK PAGE Tracking the Sun II: The Installed Cost of10-100 kW >100 kW Tracking the Sun II: The Installed Cost ofSystems MW Total Tracking the Sun II: The Installed Cost of

Barbose, Galen L

2010-01-01T23:59:59.000Z

495

5, 14791509, 2008 Staged cost  

E-Print Network [OSTI]

HESSD 5, 1479­1509, 2008 Staged cost optimization of urban storm drainage systems M. Maharjan et al Staged cost optimization of urban storm drainage systems based on hydraulic performance in a changing optimization of urban storm drainage systems M. Maharjan et al. Title Page Abstract Introduction Conclusions

Boyer, Edmond

496

Reactor Cost Analysis Brian James  

E-Print Network [OSTI]

Reactor Cost Analysis Brian James Directed Technologies, Inc. 6-7 November 2007 This presentation specification & optimization · Capital cost estimation · Projected hydrogen $/kg #12;Directed Technologies, Inc/WGS Membrane Reactor OTM/ Water-Splitting ANL With WGS #12;Directed Technologies, Inc. 6-7 November 2007 BILIWG

497

Use of Cost Estimating Relationships  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Cost Estimating Relationships (CERs) are an important tool in an estimator's kit, and in many cases, they are the only tool. Thus, it is important to understand their limitations and characteristics. This chapter discusses considerations of which the estimator must be aware so the Cost Estimating Relationships can be properly used.

1997-03-28T23:59:59.000Z

498

Apparatus and method for maximizing power delivered by a photovoltaic array  

DOE Patents [OSTI]

A method and apparatus for maximizing the electric power output of a photovoltaic array connected to a battery where the voltage across the photovoltaic array is adjusted through a range of voltages to find the voltage across the photovoltaic array that maximizes the electric power generated by the photovoltaic array and then is held constant for a period of time. After the period of time has elapsed, the electric voltage across the photovoltaic array is again adjusted through a range of voltages and the process is repeated. The electric energy and the electric power generated by the photovoltaic array is delivered to the battery which stores the electric energy and the electric power for later delivery to a load.

Muljadi, Eduard (Golden, CO); Taylor, Roger W. (Golden, CO)

1998-01-01T23:59:59.000Z

499

Apparatus and method for maximizing power delivered by a photovoltaic array  

DOE Patents [OSTI]

A method and apparatus for maximizing the electric power output of a photovoltaic array connected to a battery where the voltage across the photovoltaic array is adjusted through a range of voltages to find the voltage across the photovoltaic array that maximizes the electric power generated by the photovoltaic array and then is held constant for a period of time. After the period of time has elapsed, the electric voltage across the photovoltaic array is again adjusted through a range of voltages and the process is repeated. The electric energy and the electric power generated by the photovoltaic array is delivered to the battery which stores the electric energy and the electric power for later delivery to a load. 20 figs.

Muljadi, E.; Taylor, R.W.

1998-05-05T23:59:59.000Z

500

Long-term Clinical Outcomes of Whole-Breast Irradiation Delivered in the Prone Position  

SciTech Connect (OSTI)

Purpose: The aim of this study was to evaluate retrospectively the effectiveness and toxicity of post-lumpectomy whole-breast radiation therapy delivered with prone positioning. Methods and Materials: Between September 1992 and August 2004, 245 women with 248 early-stage invasive or in situ breast cancers were treated using a prone breast board. Photon fields treated the whole breast to 46 to 50.4 Gy with standard fractionation. The target volume was clinically palpable breast tissue; no attempt was made to irradiate chest wall lymphatics. Tumor bed boosts were delivered in 85% of cases. Adjuvant chemotherapy and hormonal therapy were administered to 42% and 62% of patients, respectively. Results: After a median follow-up of 4.9 years, the 5 year actuarial true local and elsewhere ipsilateral breast tumor recurrence rates were 4.8% and 1.3%, respectively. The 5-year actuarial rates of regional nodal recurrence and distant metastases were 1.6% and 7.4%. Actuarial disease-free, disease-specific, and overall survival rates at 5 years were 89.4%, 97.3%, and 93%, respectively. Treatment breaks were required by 2.4% of patients. Grade 3 acute dermatitis and edema were each limited to 2% of patients. Only 4.9% of patients complained of acute chest wall discomfort. Chronic Grade 2 to 3 skin and subcutaneous tissue toxicities were reported in 4.4% and 13.7% of patients, respectively. Conclusions: Prone position breast radiation results in similar long-term disease control with a favorable toxicity profile compared with standard supine tangents. The anatomic advantages of prone positioning may contribute to improving the therapeutic ratio of post-lumpectomy radiation by improving dose homogeneity and minimizing incidental cardiac and lung dose.

Stegman, Lauren D. [Department of Radiation Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Beal, Katherine P. [Department of Radiation Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Hunt, Margie A. [Department of Medical Physics, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Fornier, Monica N. [Department of Breast Cancer Medicine Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); McCormick, Beryl [Department of Radiation Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)]. E-mail: mccormib@mskcc.org

2007-05-01T23:59:59.000Z