Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Historical pipeline construction cost analysis  

Science Journals Connector (OSTI)

This study aims to provide a reference for the pipeline construction cost, by analysing individual pipeline cost components with historical pipeline cost data. Cost data of 412 pipelines recorded between 1992 and 2008 in the Oil and Gas Journal are collected and adjusted to 2008 dollars with the chemical engineering plant cost index (CEPCI). The distribution and share of these 412 pipeline cost components are assessed based on pipeline diameter, pipeline length, pipeline capacity, the year of completion, locations of pipelines. The share of material and labour cost dominates the pipeline construction cost, which is about 71% of the total cost. In addition, the learning curve analysis is conducted to attain learning rate with respect to pipeline material and labour costs for different groups. Results show that learning rate and construction cost are varied by pipeline diameters, pipeline lengths, locations of pipelines and other factors. This study also investigates the causes of pipeline construction cost differences among different groups. [Received: October 13, 2010; Accepted: December 20, 2010

Zhenhua Rui; Paul A. Metz; Doug B. Reynolds; Gang Chen; Xiyu Zhou

2011-01-01T23:59:59.000Z

2

Pipeline compressor station construction cost analysis  

Science Journals Connector (OSTI)

This study aims to provide a reference for pipeline compressor station construction costs by analysing individual compressor station cost components using historical compressor station cost data between 1992 and 2008. Distribution and share of these pipeline compressor station cost components are assessed based on compressor station capacity, year of completion, and locations. Average unit costs in material, labour, miscellaneous, land, and total costs are $866/hp, $466/hp, $367/hp, $13/hp, and $1,712/hp, respectively. Primary costs for compressor stations are material cost, approximately 50.6% of the total cost. This study conducts a learning curve analysis to investigate the learning rate of material and labour costs for different groups. Results show that learning rates and construction component costs vary by capacity and locations. This study also investigates the causes of pipeline compressor station construction cost differences. [Received: March 25, 2012; Accepted; 20 February 2013

Yipeng Zhao; Zhenhua Rui

2014-01-01T23:59:59.000Z

3

Total cost model for making sourcing decisions  

E-Print Network [OSTI]

This thesis develops a total cost model based on the work done during a six month internship with ABB. In order to help ABB better focus on low cost country sourcing, a total cost model was developed for sourcing decisions. ...

Morita, Mark, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

4

Example Cost Codes for Construction Projects  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter provides an example outline of cost items and their corresponding cost codes that may be used for construction projects.

1997-03-28T23:59:59.000Z

5

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

Analytical Services & Testing Contract June 2014 Contractor: Contract Number: Contract Type: Advanced Technologies & Labs International Inc. DE-AC27-10RV15051 Cost Plus Award Fee...

6

Project Functions and Activities Definitions for Total Project Cost  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter provides guidelines developed to define the obvious disparity of opinions and practices with regard to what exactly is included in total estimated cost (TEC) and total project cost (TPC).

1997-03-28T23:59:59.000Z

7

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Energy Savers [EERE]

Wastren-EnergX Mission Support LLC Contract Number: DE-CI0000004 Contract Type: Cost Plus Award Fee 128,879,762 Contract Period: December 2009 - July 2015 Fee Information...

8

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

Period: Fee Information Maximum Fee Contract Type: Minimum Fee 91,085,394 74,386,573 Target Fee September 2002 - March 2017 Cost Plus Fixed FeeIncentive Fee 1,192,114,896...

9

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

- Oak Ridge, TN Contract Name: Transuranic Waste Processing Contract June, 2014 2,433,940 Cost Plus Award Fee 150,664,017 Fee Information Minimum Fee 2,039,246 Maximum Fee...

10

Total Estimated Contract Cost:) Performance Period Total Fee...  

Office of Environmental Management (EM)

Washington Closure LLC DE-AC06-05RL14655 Contractor: Contract Number: Contract Type: Cost Plus Incentive Fee 2,251,328,348 Fee Information 0 Maximum Fee 337,699,252...

11

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Energy Savers [EERE]

Cumulative Fee Paid 22,200,285 Wackenhut Services, Inc. DE-AC30-10CC60025 Contractor: Cost Plus Award Fee 989,000,000 Contract Period: Contract Type: January 2010 - December...

12

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Energy Savers [EERE]

& Wilcox Conversion Services, LLC Contract Number: DE-AC30-11CC40015 Contract Type: Cost Plus Award Fee EM Contractor Fee June, 2014 Site: Portsmouth Paducah Project Office...

13

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

Number: Contract Type: Contract Period: 0 Minimum Fee Maximum Fee Washington River Protection Solutions LLC DE-AC27-08RV14800 Cost Plus Award Fee 5,553,789,617 Fee Information...

14

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

2011 - September 2015 June 2014 Contractor: Contract Number: Contract Type: Idaho Treatment Group LLC DE-EM0001467 Cost Plus Award Fee Fee Information 419,202,975 Contract Period:...

15

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

FY2010 FY2011 FY2012 Fee Information Minimum Fee Maximum Fee June 2014 Contract Number: Cost Plus Incentive Fee Contractor: 3,245,814,927 Contract Period: EM Contractor Fee Site:...

16

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

0 Contractor: Bechtel National Inc. Contract Number: DE-AC27-01RV14136 Contract Type: Cost Plus Award Fee Maximum Fee* 595,123,540 Fee Available 102,622,325 10,714,819,974...

17

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

LLC (UCOR) DE-SC-0004645 April 29, 2011 - July 13, 2016 Contract Number: Maximum Fee Cost Plus Award Fee 16,098,142 EM Contractor Fee Site: Oak Ridge Office - Oak Ridge, TN...

18

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Type: Cost Plus Award Fee 4,104,318,749 28,500,000 31,597,837 0 39,171,018 32,871,600 EM Contractor Fee Site: Savannah River Site Office - Aiken, SC Contract Name:...

19

Total Cost of Ownership Considerations in Global Sourcing Processes  

E-Print Network [OSTI]

Total Cost of Ownership Considerations in Global Sourcing Processes Robert Alard, Philipp Bremen and microeconomic aspects which can also be largely used independently. Keywords: Global Supply Networks, Total Cost of Ownership, Global Total Cost of Ownership, Global Procurement, Outsourcing, Supplier Evaluation, Country

Paris-Sud XI, Université de

20

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

Fee Paid 127,390,991 Contract Number: Fee Available Contract Period: Contract Type: Cost Plus Award Fee 4,104,318,749 28,500,000 31,597,837 0 39,171,018 32,871,600 EM...

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

DE-AM09-05SR22405DE-AT30-07CC60011SL14 Contractor: Contract Number: Contract Type: Cost Plus Award Fee 357,223 597,797 894,699 EM Contractor Fee Site: Stanford Linear...

22

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Broader source: Energy.gov (indexed) [DOE]

$ 3,422,994.00 $ 3,422,994.00 FY2011 4,445,142.00 $ FY2012 $ 5,021,951.68 FY2013 $ 3,501,670.00 FY2014 $0 FY2015 $0 FY2016 $0 FY2017 $0 FY2018 $0 FY2019 $0 Cumulative Fee Paid $16,391,758 Wackenhut Services, Inc. DE-AC30-10CC60025 Contractor: Cost Plus Award Fee $989,000,000 Contract Period: Contract Type: January 2010 - December 2019 Contract Number: EM Contractor Fee Site: Savannah River Site Office - Aiken, SC Contract Name: Comprehensive Security Services September 2013 Fee Information Maximum Fee $55,541,496 $5,204,095 $3,667,493 $5,041,415 Minimum Fee 0 Fee Available $5,428,947 $6,326,114

23

Developing a total replacement cost index for suburban office projects  

E-Print Network [OSTI]

Understanding the components of replacement costs for office developments, and how these components combine to create total development costs is essential for success in office real estate development. Surprisingly, the ...

Hansen, David John, S.M. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

24

COST SHARING Cost sharing is the portion of total project costs of a sponsored agreement that is not bourn by  

E-Print Network [OSTI]

1 COST SHARING Cost sharing is the portion of total project costs of a sponsored agreement. There are primarily three types of cost sharing that may occur on sponsored projects: Mandatory cost sharing. For example, the National Science Foundation requires mandatory cost sharing for some of its projects. COST

Cui, Yan

25

Uncertainty Quantification and Calibration in Well Construction Cost Estimates  

E-Print Network [OSTI]

or to individual cost components. Application of the methodology to estimation of well construction costs for horizontal wells in a shale gas play resulted in well cost estimates that were well calibrated probabilistically. Overall, average estimated...

Valdes Machado, Alejandro

2013-08-05T23:59:59.000Z

26

U.S. Department of Energy Releases Revised Total System Life Cycle Cost  

Broader source: Energy.gov (indexed) [DOE]

Releases Revised Total System Life Cycle Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project August 5, 2008 - 2:40pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca Mountain, Nevada. The 2007 total system life cycle cost estimate includes the cost to research, construct and operate Yucca Mountain during a period of 150 years, from the beginning of the program in 1983 through closure and decommissioning in 2133. The new cost estimate of $79.3 billion, when updated to 2007 dollars comes to $96.2 billion, a 38 percent

27

Property:Geothermal/TotalProjectCost | Open Energy Information  

Open Energy Info (EERE)

TotalProjectCost TotalProjectCost Jump to: navigation, search Property Name Geothermal/TotalProjectCost Property Type Number Description Total Project Cost Pages using the property "Geothermal/TotalProjectCost" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + 14,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 2,155,497 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + 6,135,381 + A new analytic-adaptive model for EGS assessment, development and management support Geothermal Project + 1,629,670 +

28

CIGNA Study Uncovers Relationship of Disabilities to Total Benefits Costs  

Broader source: Energy.gov [DOE]

The findings of a new study reveal an interesting trend. Integrating disability programs with health care programs can potentially lower employers' total benefits costs and help disabled employees get back to work sooner and stay at work.

29

DOE Solar Decathlon: 2009 Solar Decathlon House Construction Costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

safety gear on the roof of a house. Above him is a large photovoltaic panel. safety gear on the roof of a house. Above him is a large photovoltaic panel. A member of Team Spain installs a portion of his house's roof during Solar Decathlon 2009. Solar Decathlon 2009 Solar Decathlon House Construction Costs The construction costs of the U.S. Department of Energy Solar Decathlon 2009 team houses varied widely based on the technologies employed and the target market for which they were designed. In general, however, construction costs ranged from about $200,000 to more than $800,000. But it is important to remember that these houses were one-of-a-kind designs that incorporated bleeding-edge technologies. If they were to be mass-produced, as most residential homes are, their overall costs would likely decrease significantly. Specific construction cost ranges for each house as well as information

30

Silo Construction Costs and Silage Production Practices.  

E-Print Network [OSTI]

, the average annual cost per ton of storage ranged from $1.65 for the 100-ton size to $1: for those of 200-ton capacity. On farms with crops yielding 12 tons of silage per acre, a crew of five men, two tractors and tl trucks harvested 8 acres per day when... filling trench silos. However, a crew of eight men and fp tractors was required to put a similar yield in an upright silo. With crops yielding only 4 tons of silage per acre, a crew of four men, two trucks and two trac'. averaged putting the production...

Magee, A. C. (Aden Combs)

1955-01-01T23:59:59.000Z

31

FY 2007 Total System Life Cycle Cost, Pub 2008 | Department of...  

Office of Environmental Management (EM)

FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive...

32

APS team works smarter, cuts substation construction costs by 36%  

SciTech Connect (OSTI)

An aggressive, cost-cutting, team of T D employees at Arizona Public Service Co (APS) is building a new distribution substation in Phoenix for less than half the original cost that APS planners had calculated for the project's land, labor and materials. Scheduled for service in June of this year, APS analysts had originally projected land, labor and materials costs for the 20-MVA Bell substation at nearly $1.7-million-not including major equipment such as transformers, circuit breakers, and switches. However, after studying the project, an empowered APS crew was able to slash 36% off the original estimate-more than $610,000. What's more, APS spokesmen say that its new approach to substation construction and design has given its engineers and construction crews a laundry list of additional ideas to try out on future substation ventures. 4 figs., 1 tab.

Not Available

1993-05-01T23:59:59.000Z

33

A Comparison of Design Criteria, Construction Practices, and Cost : Summary.  

SciTech Connect (OSTI)

BPA is continually challenged to be cost competitive with other public and private utilities. This report summarizes the results of a survey conducted in 1989 by the Office of Engineering to compare design criteria and practices for constructing transmission and substation facilities with those of other utilities. The objective of the study was to evaluate whether BPA's design criteria and practices result in higher cost for power system facilities with respect to other utilities. The study was initiated by the Assistant Administrator for Engineering as part of an overall effort to review BPA's reliability criteria, standards, and related design practices. The evaluation was divided into three major parts which addressed the design and construction of transmission lines, buildings, and substation and control facilities. To conduct the survey, detailed questionnaires were developed to cover a broad spectrum of design criteria, cost, and related subjects, such as environment, land, design, procurement, and construction practices. The questionnaires were sent to participating utilities, followed by visits to the utilities by the BPA survey teams. Of the four utilities participating in the survey, three are larger utilities located outside the Pacific Northwest Region. The utilities were selected because they have transmission voltages similar to BPA, voltages up to 500-kV. The fourth is a smaller BPA customer utility from within the Region selected to provide A BPA customer viewpoint, as well as comparative design information for lower voltage facilities. 14 tabs.

United States. Bonneville Power Administration.

1990-07-01T23:59:59.000Z

34

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling...

35

Cost Savings of Nuclear Power with Total Fuel Reprocessing  

SciTech Connect (OSTI)

The cost of fast reactor (FR) generated electricity with pyro-processing is estimated in this article. It compares favorably with other forms of energy and is shown to be less than that produced by light water reactors (LWR's). FR's use all the energy in natural uranium whereas LWR's utilize only 0.7% of it. Because of high radioactivity, pyro-processing is not open to weapon material diversion. This technology is ready now. Nuclear power has the same advantage as coal power in that it is not dependent upon a scarce foreign fuel and has the significant additional advantage of not contributing to global warming or air pollution. A jump start on new nuclear plants could rapidly allow electric furnaces to replace home heating oil furnaces and utilize high capacity batteries for hybrid automobiles: both would reduce US reliance on oil. If these were fast reactors fueled by reprocessed fuel, the spent fuel storage problem could also be solved. Costs are derived from assumptions on the LWR's and FR's five cost components: 1) Capital costs: LWR plants cost $106/MWe. FR's cost 25% more. Forty year amortization is used. 2) The annual O and M costs for both plants are 9% of the Capital Costs. 3) LWR fuel costs about 0.0035 $/kWh. Producing FR fuel from spent fuel by pyro-processing must be done in highly shielded hot cells which is costly. However, the five foot thick concrete walls have the advantage of prohibiting diversion. LWR spent fuel must be used as feedstock for the FR initial core load and first two reloads so this FR fuel costs more than LWR fuel. FR fuel costs much less for subsequent core reloads (< LWR fuel) if all spent fuel feedstock is from the fast reactor (i.e., Breeding Ratio =1). 4) Yucca Mountain storage of unprocessed LWR spent fuel is estimated as $360,000/MTHM. But this fuel can be processed to remove TRU for use as fast reactor fuel. The remaining fission products repository costs are only one fifth that of the original fuel. Storage of short half life fission products alone requires less storage time and long term integrity than LWR spent fuel (300 years storage versus 100,000 years.) 5) LWR decommissioning costs are estimated to be $0.3 x 10{sup 6}/MWe. The annual cost for a 40 year licensed plant would be 2.5 % of this or less if interest is taken into account. All plants will eventually have to replace those components which become radiation damaged. FR's should be designed to replace parts rather than decommission. The LWR costs are estimated to be 2.65 cents/kWh. FR costs are 2.99 cents/kWh for the first 7.5 years and 2.39 cents/kWh for the next 32.5 years. The average cost over forty years is 2.50 cents/kWh which is less than the LWR costs. These power costs are similar to coal power, are lower than gas, oil, and much lower than renewable power.(authors)

Solbrig, Charles W.; Benedict, Robert W. [Fuel Cycle Programs Division, Idaho National Laboratory, Idaho Falls, Idaho (United States)

2006-07-01T23:59:59.000Z

36

,"U.S. Total Refiner Acquisition Cost of Crude Oil"  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil" "Sourcekey","R00003","R12003","R13003" "Date","U.S. Crude Oil Composite Acquisition Cost by Refiners (Dollars per Barrel)","U.S. Crude Oil Domestic...

37

Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

SciTech Connect (OSTI)

This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

Ramsden, T.

2013-04-01T23:59:59.000Z

38

FY 2007 Total System Life Cycle Cost, Pub 2008 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management's (OCRWM) May 2007 total system cost estimate for the disposal of the Nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TSLCC analysis provides a basis for assessing the adequacy of the Nuclear Waste Fund (NWF) Fee as required by Section 302 of the Nuclear Waste Policy Act of 1982 (NWPA), as amended. In addition, the TSLCC analysis provides a basis for the calculation of the Government's share of disposal costs for government-owned and managed SNF and HLW. The TSLCC estimate includes both historical costs and

39

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Technical Report NRELTP-5600-56408...

40

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

Broader source: Energy.gov [DOE]

This report by NREL discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment.

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Total Cost Per MwH for all common large scale power generation sources |  

Open Energy Info (EERE)

Total Cost Per MwH for all common large scale power generation sources Total Cost Per MwH for all common large scale power generation sources Home > Groups > DOE Wind Vision Community In the US DOEnergy, are there calcuations for real cost of energy considering the negative, socialized costs of all commercial large scale power generation soruces ? I am talking about the cost of mountain top removal for coal mined that way, the trip to the power plant, the sludge pond or ash heap, the cost of the gas out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs and so on. What I am tring to get at is the 'real cost' per MWh or KWh for the various sources ? I suspect that the costs commonly quoted for fossil fuels and nucelar are

42

Example G Cost of construction of nuclear power plants Description of data  

E-Print Network [OSTI]

Example G Cost of construction of nuclear power plants Description of data Table G.1 gives data) power plants constructed in USA. It is required to predict the capital cost involved in the construction of further LWR power plants. The notation used in Table G.1 is explained in Table G.2. The final 6 lines

Reid, Nancy

43

Example G Cost of construction of nuclear power plants Description of data  

E-Print Network [OSTI]

1 Example G Cost of construction of nuclear power plants Description of data Table G.1 gives reactor (LWR) power plants constructed in USA. It is required to predict the capital cost involved in the construction of further LWR power plants. The notation used in Table G.1 is explained in Table G.2. The final 6

Reid, Nancy

44

Total Pollution Effect and Total Energy Cost per Output of Different Products for Polish Industrial System  

Science Journals Connector (OSTI)

For many years a broad use has been made of the indices of total energy requirements in the whole large production system corresponding to unit output of particular goods (Boustead I., Hancock G.F., 1979). The...

Henryk W. Balandynowicz

1988-01-01T23:59:59.000Z

45

The cost effectiveness of geotechnical investigations in commercial building construction  

E-Print Network [OSTI]

4l 5. Range, Mean and Standard Deviation of Geotechnical Investigation Costs 42 6. Histogram of Geotechnicai Investigati on Costs 43 LIST OF TABLES Number 1. The Cost of Inadequate Investigations 2. Woif Creek Dam Cutoff Wail Savings 3... iminary design fees, permits, I i- censing, search for financing~ 6-18 months. I I - Detailed design 1-6 months. Time A - Project approved, funds available. a - Small budget for design and geotechnical investigations. b - Catchup in design/geotechnical...

Temple, Merdith Wyndham Bolling

2012-06-07T23:59:59.000Z

46

Parametric estimating for early electric substation construction cost.  

E-Print Network [OSTI]

??Developing accurate construction estimates is critical for electric utilities to make reliable financial plans for their future. Parametric estimating is just one of several techniques… (more)

Wall, Darden Lee

2010-01-01T23:59:59.000Z

47

On the Cost and Quality Tradeoff in Constructing Minimum-Energy Broadcast Trees in Wireless Ad  

E-Print Network [OSTI]

On the Cost and Quality Tradeoff in Constructing Minimum-Energy Broadcast Trees in Wireless Ad Hoc], each having a different complexity and produc- ing a broadcast tree with a different energy cost. Thus to the quality of the trees constructed. II. BUILDING BLOCKS The three ingredients that constitute any minimum-energy

Hu, Y. Charlie

48

Shawmut hydroelectric redevelopment project. Final technical and construction cost report  

SciTech Connect (OSTI)

This report describes the major steps undertaken by the Central Maine Power Company to redevelop an old existing lowhead (19 to 23 ft) hydroelectric station and, at the same time, demonstrate the commercial viability of such a venture. The report addresses the process of site selection, preliminary conceptual design for determining economic viability, licensing and the regulatory process, final design, and project construction with the objective of presenting to the reader a technical and economical guide useful for a similar undertaking.

None

1982-08-01T23:59:59.000Z

49

Construction and first applications of a global cost of fishing database  

E-Print Network [OSTI]

of $928 and $1120, respectively. The total global variable fishing cost is estimated to be in the range USConstruction and first applications of a global cost of fishing database Vicky W. Y. Lam*, Ussif applications of a global cost of fishing database. ­ ICES Journal of Marine Science, 68: 1996­2004. Received 14

Pauly, Daniel

50

Minimizing the total cost of hen allocation to poultry farms using hybrid Growing Neural Gas approach  

Science Journals Connector (OSTI)

Abstract In this paper a decision support system to solve the problem of hen allocation to hen houses with the aim of minimizing the total cost is described. The total cost consists of farm utilization cost, hen transportation cost, and loss from mixing hens at different ages in the same hen houses. Clustering of hen houses using the traditional Growing Neural Gas (GNG) was first determined to allocate hens to the hen houses effectively. However, the traditional GNG often solves the clustering problem by considering distance only. Therefore the hybrid Growing Neural Gas (hGNG) considering both the distance from the centroids of the clusters to the hen houses and the weights of hen house sizes was proposed to solve the problem. In the second phase, allocating and determining routes to allocate hens to the hen houses using the nearest neighbor approach were carried out in order to minimize the total distance. The performance of the algorithm was measured using the relative improvement (RI), which compares the total costs of the hGNG and GNG algorithms and the current practice. The results obtained from this study show that the hGNG algorithm provides better total cost values than the firm’s current practice from 7.92% to 20.83%, and from 5.90% to 17.91% better than the traditional GNG algorithm. The results also demonstrate that the proposed method is useful not only for reducing the total cost, but also for efficient management of a poultry production system. Furthermore, the method used in this research should prove beneficial to other similar agro-food sectors in Thailand and around the world.

Atiwat Boonmee; Kanchana Sethanan; Banchar Arnonkijpanich; Somnuk Theerakulpisut

2015-01-01T23:59:59.000Z

51

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of the Total Cost Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Technical Report NREL/TP-5600-56408 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 An Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Prepared under Task No. HT12.8610 Technical Report NREL/TP-5600-56408

52

Activity-based costing simulation as a tool for construction process optimization  

E-Print Network [OSTI]

Variable and fixed costs. . 111. 2. 3 Crash duration and cost. 111. 2. 4 Least cost scheduling 111. 2. 5 Optimization objectives. . . . . 15 17 17 18 19 20 23 CHAPTER IV APPLICATIONS OF OPTIMIZATION TOOLS IN CONSTRUCTION . . Page 25 IV. I... Excavation Project. . . . . . . . . . . . . . . . . . . . VIII. 2. 1 Option 1: with 15CY hauler . VIII. 2. 1. 1 STEP 1: Calculate resource balance point. . . . VIII. 2. 1. 2 STEP 2: Simulate the minimum ratios. . . . . . . . VIII. 2. 1. 3 STEP 3: Simulate...

Son, Junghye

1999-01-01T23:59:59.000Z

53

Structure, energy and cost efficiency evaluation of three different lightweight construction systems used in low-rise residential buildings  

Science Journals Connector (OSTI)

Abstract This article presents the analysis of the structure, energy and cost efficiency of three lightweight structural systems – wood light frames (WLF), lightweight steel frames (LGSF) and 3D sandwich (3DSP) panels – during their useful life. The structural systems focussed upon in this study are commonly used in Eastern Europe with specific reference to Turkey. The structural analysis and design was carried out using ETABS while EnergyPlus was used in the analysis of the energy consumption of the buildings. The results of the structural analysis of the three alternative construction systems show that 3DSP has better structural behaviour in terms of resistance against lateral loads. The thermal performance evaluation of the walls and ceilings shows that the WLF and LGSF walls have better insulation values (12.5% lower U-value) while the roof construction of the 3DSP has much better insulation performance (70% lower U-value). Moreover, the building designed with 3DSP requires 11% less energy for total heating and cooling during one year. The information for the building industry in Turkey shows that the cost of construction for 3DSP construction is 34.6% lower than for WLF and 27.7% lower than LGSF.

Sareh Naji; O?uz Cem Çelik; U. Johnson Alengaram; Mohd Zamin Jumaat; Shahaboddin Shamshirband

2014-01-01T23:59:59.000Z

54

A Comparison of Salt Marsh Construction Costs with the Value of Exported Shrimp Production  

E-Print Network [OSTI]

to coastal salt marshes. Continuing wetland loss in Galveston Bay, Texas (USA) has led to the development of shrimp harvested in Galveston Bay. In relation to construction costs, shrimp production was higher wetlands used as nursery habitats (Turner 1977; Zimmerman et al. 2000). The salt marshes in Galveston Bay

55

Optimization of low-cost phosphorus removal from wastewater using co-treatments with constructed  

E-Print Network [OSTI]

treatment residual; iron; lime sludge; municipal wastewater Introduction The US-EPA has identified for removing P from wastewater (US-EPA, 1993). However, questions of mechanisms, predictabilityOptimization of low-cost phosphorus removal from wastewater using co-treatments with constructed

Florida, University of

56

An empirical study of the economies of scale in AC transmission line construction costs  

E-Print Network [OSTI]

1 An empirical study of the economies of scale in AC transmission line construction costs Krishnan the interconnection (Western, ERCOT, Eastern) in which the transmission was built, and · the capacity of the line. We the change in "Available Transmission Capability" (ATC) [4] between the cases of having the line in and out

Baldick, Ross

57

Impacts of Rising Construction and Equipment Costs on Energy Industries (released in AEO2007)  

Reports and Publications (EIA)

Costs related to the construction industry have been volatile in recent years. Some of the volatility may be related to higher energy prices. Prices for iron and steel, cement, and concrete -- commodities used heavily in the construction of new energy projects -- rose sharply from 2004 to 2006, and shortages have been reported. How such price fluctuations may affect the cost or pace of new development in the energy industries is not known with any certainty, and short-term changes in commodity prices are not accounted for in the 25-year projections in Annual Energy Outlook 2007. Most projects in the energy industries require long planning and construction lead times, which can lessen the impacts of short-term trends.

2007-01-01T23:59:59.000Z

58

Generation IV Nuclear Energy Systems Construction Cost Reductions Through the Use of Virtual Environments  

SciTech Connect (OSTI)

The objective of this multi-phase project is to demonstrate the feasibility and effectiveness of using full-scale virtual reality simulation in the design, construction, and maintenance of future nuclear power plants. The project will test the suitability of immersive virtual reality technology to aid engineers in the design of the next generation nuclear power plant and to evaluate potential cost reductions that can be realized by optimization of installation and construction sequences. The intent is to see if this type of information technology can be used in capacities similar to those currently filled by full-scale physical mockups. This report presents the results of the completed project.

Timothy Shaw; Vaugh Whisker

2004-02-28T23:59:59.000Z

59

Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project  

Broader source: Energy.gov (indexed) [DOE]

U.S. Department of Energy U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Audit Report Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project OAS-M-13-03 August 2013 Department of Energy Washington, DC 20585 August 8, 2013 MEMORANDUM FOR THE SENIOR ADVISOR FOR ENVIRONMENTAL MANAGEMENT FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project" BACKGROUND In 2005, the Department of Energy (Department) awarded the Idaho Cleanup Project contract to CH2M ♦ WG Idaho, LLC (CWI) to remediate the Idaho National Laboratory. The Sodium

60

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Parametric analysis of total costs and energy efficiency of 2G enzymatic ethanol production  

Science Journals Connector (OSTI)

Abstract This paper presents an analysis of total costs (TPC) and energy efficiency of enzymatic ethanol production. The analysis is parametrized with respect to plant capacity and polysaccharides content (pc) of lignocellulosic feedstock. The feedstock is based on wheat straw whose price is proportional to its pc ranging from new straw with high pc and high cost to agro-wastes with limited pc but lower cost. The plant flowsheet was built using a conventional biochemical platform with co-saccharification and fermentation (SHF) technologies. A parametric analysis of TPC as a function of plant capacity (100–2100 ton DB/day) and pc (i.e. feedstock price) (80% (75 USD/ton DB)–35% (6 USD/ton DB)) was performed with Net Present Value (NPV) techniques. Current data from Mexican economics and the agro-industrial sector were used as an illustrative case. A quasi-linear section of the TCP surface was identified delimited by (300–1100 ton DB/day) and (80–55% pc) with increments no larger than 21% of the minimum TPC obtained (0.99 USD/l etOH for 2100 ton DB/day and 80% pc). Major cost contributions are detailed and quantified for boundary cases of this surface. Energy consumption and production were also calculated for all the plant capacity and feedstock pc cases, taking into consideration the Maximum Energy Recovery (MER) obtained from a Pinch analysis. The end-use energy index eer was less than 0.82 for all cases, thus stressing the need to use process equipment with lower energy requirements. TPC are compared against previously published results for SHF technology between 500 and 2100 ton DB/day plant capacities. These values were updated and normalized with respect to feedstock and enzyme costs employed in this work. Differences among TPC and recently published normalized results are within a ±5% range, thus confirming the dependence of TPC from feedstock and enzyme prices, regardless of flowsheet technology and economic conditions.

A. Sanchez; V. Sevilla-Güitrón; G. Magańa; L. Gutierrez

2013-01-01T23:59:59.000Z

62

Total Cost Per MwH for all common large scale power generation...  

Open Energy Info (EERE)

out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs...

63

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

64

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

65

Startup Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter discusses startup costs for construction and environmental projects, and estimating guidance for startup costs.

1997-03-28T23:59:59.000Z

66

A cost/benefit model for insertion of technological innovation into a total quality management program  

E-Print Network [OSTI]

for measuring quality improvement is the cost of quality. Traditionally, comprehensive quality cost reports have regularly been issued in a fixed format to identify opportunities for improvement and provide guidelines for improvement over time. However, current...

Ratliff, William L

2012-06-07T23:59:59.000Z

67

10 MWe Solar Thermal Central Receiver Pilot Plant Total Capital Cost  

Science Journals Connector (OSTI)

A cost analysis of the 10MWe Solar One Thermal Central Receiver Plant near Barstow, California, ... is presented to help predict costs of future solar thermal central receiver plants. In this paper, the Solar One...

H. F. Norris

1985-01-01T23:59:59.000Z

68

Best Practices for Controlling Capital Costs in Net Zero Energy Design and Construction- 2014 BTO Peer Review  

Broader source: Energy.gov [DOE]

Presenter: Shanti Pless, National Renewable Energy Laboratory For net zero energy (NZE) building performance to become the norm in new commercial construction, it is necessary to demonstrate that NZE can be achieved cost effectively.

69

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

70

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

71

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

72

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

73

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

74

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

75

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

76

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

77

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

78

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

79

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

80

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The development of an updatable series of problems that can be used to demonstrate construction cost estimating principles to students of civil engineering and building construction  

E-Print Network [OSTI]

Construction Equipment 5 Prices Summarize Equipment Costs Calculate Labor Manhours Determine wage Rates and Crew Mixes Price out Labor Obtain Material Prices 5 Availabilities Assemble Direct Cost Items Determine Overhead Personnel Calculate Labor Burden... is solving a problem from his text us1ng a labor rate of $2 per hour for a carpenter when the present rate is in excess of $8 per hour. He knows that the expected "right" answer is go1ng to be wrong by at least 400K. Pulver tried to overcome this cost...

Tiner, Wayne Douglas

2012-06-07T23:59:59.000Z

82

Lead Coolant Test Facility Technical and Functional Requirements, Conceptual Design, Cost and Construction Schedule  

SciTech Connect (OSTI)

This report presents preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic. Based on review of current world lead or lead-bismuth test facilities and research need listed in the Generation IV Roadmap, five broad areas of requirements of basis are identified: Develop and Demonstrate Prototype Lead/Lead-Bismuth Liquid Metal Flow Loop Develop and Demonstrate Feasibility of Submerged Heat Exchanger Develop and Demonstrate Open-lattice Flow in Electrically Heated Core Develop and Demonstrate Chemistry Control Demonstrate Safe Operation and Provision for Future Testing. These five broad areas are divided into twenty-one (21) specific requirements ranging from coolant temperature to design lifetime. An overview of project engineering requirements, design requirements, QA and environmental requirements are also presented. The purpose of this T&FRs is to focus the lead fast reactor community domestically on the requirements for the next unique state of the art test facility. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 420oC. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M. It is also estimated that the facility will require two years to be constructed and ready for operation.

Soli T. Khericha

2006-09-01T23:59:59.000Z

83

Using a total landed cost model to foster global logistics strategy in the electronics industry  

E-Print Network [OSTI]

Global operation strategies have been widely used in the last several decades as many companies and industries have taken advantage of lower production costs. However, in choosing a location, companies often only consider ...

Jearasatit, Apichart

2010-01-01T23:59:59.000Z

84

Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Brochure)  

SciTech Connect (OSTI)

There is mounting evidence that zero energy can, in many cases, be achieved within typical construction budgets. To ensure that the momentum behind zero energy buildings and other low-energy buildings will continue to grow, this guide assembles recommendations for replicating specific successes of early adopters who have met their energy goals while controlling costs. Contents include: discussion of recommended cost control strategies, which are grouped by project phase (acquisition and delivery, design, and construction) and accompanied by industry examples; recommendations for balancing key decision-making factors; and quick reference tables that can help teams apply strategies to specific projects.

Not Available

2014-09-01T23:59:59.000Z

85

Feasibility Studies to Improve Plant Availability and Reduce Total Installed Cost in Integrated Gasification Combined Cycle Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Feasibility Studies to Improve Plant Feasibility Studies to Improve Plant Availability and Reduce Total Installed Cost in Integrated Gasification Combined Cycle Plants Background Gasification provides the means to turn coal and other carbonaceous solid, liquid and gaseous feedstocks as diverse as refinery residues, biomass, and black liquor into synthesis gas and valuable byproducts that can be used to produce low-emissions power, clean-burning fuels and a wide range of commercial products to support

86

A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications  

Broader source: Energy.gov [DOE]

This report prepared by the Lawrence Berkeley National Laboratory describes a total cost of ownership model for emerging applications in stationary fuel cell systems.

87

The effects of the implementation of grey water reuse systems on construction cost and project schedule  

E-Print Network [OSTI]

a positive or negative effect on the design team’s decision to implement a grey water reuse system: capital cost, maintenance cost, LEED credits, local plumbing codes, project schedule, local water conservation issues, complexity of the system, etc...

Kaduvinal Varghese, Jeslin

2009-05-15T23:59:59.000Z

88

Energy content, storage substances, and construction and maintenance costs of Mediterranean deciduous leaves  

Science Journals Connector (OSTI)

At monthly intervals water content, crude fibre, total and protein nitrogen, sugars, starch, total lipids, ash content and calorific total energy were measured throughout the lifespan of the...Pistacia terebinthu...

S. Diamantoglou; S. Rhizopoulou; U. Kull

1989-12-01T23:59:59.000Z

89

Introduction to Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Fact Sheet)  

SciTech Connect (OSTI)

Momentum behind zero energy building design and construction is increasing, presenting a tremendous opportunity for advancing energy performance in the commercial building industry. At the same time, there is a lingering perception that zero energy buildings must be cost prohibitive or limited to showcase projects. Fortunately, an increasing number of projects are demonstrating that high performance can be achieved within typical budgets. This factsheet highlights replicable, recommended strategies for achieving high performance on a budget, based on experiences from past projects.

Not Available

2014-09-01T23:59:59.000Z

90

Stochastic Modeling of Future Highway Maintenance Costs for Flexible Type Highway Pavement Construction Projects  

E-Print Network [OSTI]

that affect pavement performances; 2) develop a stochastic model that predicts future maintenance costs of flexible-type pavement in Texas. The study data were gathered through the Pavement Management Information System (PMIS) containing more than 190...

Kim, Yoo Hyun

2012-07-16T23:59:59.000Z

91

Development of a method for recording energy costs and uses during the construction process  

E-Print Network [OSTI]

consumption during the construction process, sets forth methods for recording this energy consumption and establishes a program for the recording and analysis of this data. An energy study of electricity, gasoline, and diesel consumption was made...

Arnold, Althea Gayle

2009-05-15T23:59:59.000Z

92

Construction of a Small-Scale and Low-Cost Gas Apparatus  

Science Journals Connector (OSTI)

This article describes how to construct an apparatus for gas production from disposable polyethene pipets and polypropene microcentrifuge tubes. Heat is used to form the plastics into appropriate shapes. A stand from floral wire is also presented. The ...

Lise Kvittingen; Richard Verley

2004-09-01T23:59:59.000Z

93

Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Final Report  

SciTech Connect (OSTI)

Final report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Mockups applied to design review of AP600/1000, Construction planning for AP 600, and AP 1000 maintenance evaluation. Proof of concept study also performed for GenIV PBMR models.

Timothy Shaw; Anthony Baratta; Vaughn Whisker

2005-02-28T23:59:59.000Z

94

Barge Truck Total  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

95

Development of a Method Using BIM Technology to Determine the Utility Bill and Total Cost of Ownership of a Single-family Home  

E-Print Network [OSTI]

. Note: Numbers generated from Autodesk Green Building Studio & Google Mortgage Calculator Source: Created in Microsoft Excel 22 In the first method I was able to successfully establish the utility bill and the total cost of ownership.... Note: Numbers generated from Autodesk Green Building Studio & Google Mortgage Calculator Source: Created in Microsoft Excel 22 In the first method I was able to successfully establish the utility bill and the total cost of ownership...

McGarity, Ashley

2010-07-14T23:59:59.000Z

96

Construction techniques and costs of tilt-up concrete farm structures  

E-Print Network [OSTI]

in pince+ Bailie (9) used two coats of bond breaking ooagmund to prevent sticking of tim panels to the oasting bed. as may as three panels were cast cn top of each other ~ The J. g. Bann Construction Company (5) granted their steel windows snd doors... spreading eigh". cubic yards of sand over the ouilring site. 3? sand was graded to provide the casting bed for the wall panels as there was no floor slab in this ?tractors, The butter bo-rde anc' string lines were then set. T!w . attsx' were installed...

Winsett, Ivan Lane

2012-06-07T23:59:59.000Z

97

The Fuzzy Time-Cost-Quality-Environment Trade-off Analysis of Resource-Constrained Multi-mode Construction Systems for Large-Scale Hydroelectric Projects  

Science Journals Connector (OSTI)

This paper studies the fuzzy time-cost-quality-environment trade-off problem of construction project and establishes a decision making model with multiple modes under resource-constrained environment. The objecti...

Huan Zheng

2014-01-01T23:59:59.000Z

98

The Fuzzy Time-Cost-Quality-Environment Trade-off Analysis of Multi-mode Construction Systems for Large-scale Hydroelectric Projects  

Science Journals Connector (OSTI)

This paper studies the time-cost-quality-environment trade-off problem of construction project and establishes a multi-objective decision making model under a fuzzy environment. The objective functions are to min...

Huan Zheng

2014-01-01T23:59:59.000Z

99

Predicting construction cost and schedule success using artificial neural networks ensemble and support vector machines classification models  

Science Journals Connector (OSTI)

It is commonly perceived that how well the planning is performed during the early stage will have significant impact on final project outcome. This paper outlines the development of artificial neural networks ensemble and support vector machines classification models to predict project cost and schedule success, using status of early planning as the model inputs. Through industry survey, early planning and project performance information from a total of 92 building projects is collected. The results show that early planning status can be effectively used to predict project success and the proposed artificial intelligence models produce satisfactory prediction results.

Yu-Ren Wang; Chung-Ying Yu; Hsun-Hsi Chan

2012-01-01T23:59:59.000Z

100

Tazimina hydroelectric project, Iliamna, Alaska. Final technical and construction cost report  

SciTech Connect (OSTI)

The Iliamna-Newhalen-Nondalton Electric Cooperative (INNEC) provides electrical power to three communities of the same names. These communities are located near the north shore of Iliamna Lake in south-central Alaska approximately 175 miles southwest of Anchorage. A hydroelectric project was constructed for these communities, starting in the spring of 1996 and ending in the spring of 1998. The project site is on the Tazimina River about 12 miles northeast of Iliamna Lake. The taximina River flows west from the Aleutian Range. The project site is at Tazimina Falls about 9 miles upstream of the confluence of the Tazimina River and the Newhalen River. The project has an installed capacity of 824 kilowatts (kW) and is expandable to 1.5 megawatts (MW). The project is run-of-the-river (no storage) and uses the approximately 100 feet of natural head provided by the falls. The project features include a channel control sill, intake structure, penstock, underground powerhouse, tailrace, surface control building, buried transmission line and communication cable, and access road.

NONE

1998-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

I want to construct a train of total length 12 units using cars which are either 1 unit long or 2 units long. The question is,  

E-Print Network [OSTI]

Trains I want to construct a train of total length 12 units using cars which are either 1 unit long or 2 units long. The question is, how many different trains are there? For example, here is one in trains of length 12 as in trains of any length n. That is we want to discover the relationship be- tween

McCann, Robert J.

102

Incorporating uncertainty in the Life Cycle Cost Analysis of pavements  

E-Print Network [OSTI]

Life Cycle Cost Analysis (LCCA) is an important tool to evaluate the economic performance of alternative investments for a given project. It considers the total cost to construct, maintain, and operate a pavement over its ...

Swei, Omar Abdullah

2012-01-01T23:59:59.000Z

103

Life-Cycle Cost Analysis | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Life-Cycle Cost Analysis Life-Cycle Cost Analysis Life-Cycle Cost Analysis October 16, 2013 - 4:41pm Addthis Constructed Costs of a Net-Zero Office Building Facility: Research Support Facility at the National Renewable Energy Laboratory in Golden, Colorado Operational: August 2010 Constructed cost: $259/ft2 to achieve 50% less energy use than code Constructed cost of similar office buildings in area: $225 to $300/ft2 Reaching Net-Zero: A 1.27 MW photovoltaic system was added to the project in two phases to bring the system to net-zero. This system was financed through a power purchase agreement and did not add to the constructed cost of the building. If those costs were included in the capital costs, the total constructed cost would have been 291/ft2 to reach net-zero energy use. Learn more about the Research Support

104

A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications  

SciTech Connect (OSTI)

A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

2014-06-23T23:59:59.000Z

105

PROJECT DESCRIPTION PROJECT TIMELINE PROJECT COSTS FUNDING SOURCE 1 Akers Hall, originally constructed in 1964, requires major  

E-Print Network [OSTI]

PROJECT DESCRIPTION PROJECT TIMELINE PROJECT COSTS FUNDING SOURCE 1 Akers Hall TIMELINE PROJECT COSTS FUNDING SOURCE 2 Olin Health Center is a 105,000 squarefoot medical center DESCRIPTION PROJECT TIMELINE PROJECT COSTS FUNDING SOURCE 3 Munn Ice Arena HVAC Upgrades and Ice

106

Operating Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

1997-03-28T23:59:59.000Z

107

Total supply chain cost model  

E-Print Network [OSTI]

Sourcing and outsourcing decisions have taken on increased importance within Teradyne to improve efficiency and competitiveness. This project delivered a conceptual framework and a software tool to analyze supply chain ...

Wu, Claudia

2005-01-01T23:59:59.000Z

108

Construction cost impact analysis of the U.S. Department of Energy mandatory performance standards for new federal commercial and multi-family, high-rise residential buildings  

SciTech Connect (OSTI)

In accordance with federal legislation, the U.S. Department of Energy (DOE) has conducted a project to demonstrate use of its Energy Conservation Voluntary Performance Standards for Commercial and Multi-Family High-Rise Residential Buildings; Mandatory for New Federal Buildings; Interim Rule (referred to in this report as DOE-1993). A key requisite of the legislation requires DOE to develop commercial building energy standards that are cost effective. During the demonstration project, DOE specifically addressed this issue by assessing the impacts of the standards on (1) construction costs, (2) builders (and especially small builders) of multi-family, high-rise buildings, and (3) the ability of low-to moderate-income persons to purchase or rent units in such buildings. This document reports on this project.

Di Massa, F.V.; Hadley, D.L.; Halverson, M.A.

1993-12-01T23:59:59.000Z

109

PHENIX Work Breakdown Structure. Cost and schedule review copy  

SciTech Connect (OSTI)

The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds are shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M&S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate shows Total, M&S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry.

Not Available

1994-02-01T23:59:59.000Z

110

Construction and Test of Low Cost X-Ray Tomography Scanner for Physical-Chemical Analysis and Nondestructive Inspections  

SciTech Connect (OSTI)

X-ray computed tomography (CT) refers to the cross-sectional imaging of an object measuring the transmitted radiation at different directions. In this work, we describe the development of a low cost micro-CT X-ray scanner that is being developed for nondestructive testing. This tomograph operates using a microfocus X-ray source and contains a silicon photodiode as detectors. The performance of the system, by its spatial resolution, has been estimated through its Modulation Transfer Function-MTF and the obtained value at 10% of MTF is 661 {mu}m. It was built as a general purpose nondestructive testing device.

Oliveira, Jose Martins Jr. de [Universidade de Sorocaba-UNISO, Campus Seminario, Caixa Postal 578, Av. Dr. Eugenio Salermo, 100, Centro, 18035-430, Sorocaba, SP (Brazil); Martins, Antonio Cesar Germano [Universidade Estadual Paulista Julio de Mesquita Filho-UNESP, GASI, Av. 3 de Marco, 511, Alto da Boa Vista, 18087-180, Sorocaba, SP (Brazil)

2009-06-03T23:59:59.000Z

111

Construction Spending | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spending Spending BusinessUSA Data/Tools Apps Challenges Let's Talk BusinessUSA You are here Data.gov » Communities » BusinessUSA » Data Construction Spending Dataset Summary Description Construction Spending provides monthly estimates of the total dollar value of construction work done in the U.S. Construction Spending covers the dollar construction work done each month on new structures or improvements to existing structures for private and public sectors. Data estimates include the cost of labor and materials, cost of architectural and engineering work, overhead costs, interest and taxes paid during construction, and contractor's profits. Tags {construction,spending,value,"put in place",private,residential,nonresidential,public,state,local,federal,lodging,office,commercial,"health care",educational,religious,safety,amusement,recreation,transportation,communication,power,highway,street,sewage,waste,disposal,water,supply,conservation,development,manufacturing,structure,building,single-family,multifamily,housing,new,improvement,existing,sectors,cost," labor",materials,architectural,engineering,overhead,interest,taxes,contractor,profit}

112

OMB Approval No. 0348-0041 BUDGET INFORMATION - Construction Programs  

Broader source: Energy.gov (indexed) [DOE]

OMB Approval No. 0348-0041 BUDGET INFORMATION - Construction Programs NOTE: Certain Federal assistance programs require additional computations to arrive at the Federal share of project costs eligible for participation. If such is the case, you will be notified. COST CLASSIFICATION a. Total Cost b. Costs Not Allowable for Participation c. Total Allowable Costs (Columns a-b) 1 Administrative and legal expenses $0.00 $0.00 $0.00 2 Land, structures, rights-of-way, appraisals, etc. $0.00 $0.00 $0.00 3 Relocation expenses and payments

113

Abstract--In an open access power market, power tracing is a very important issue as it can help allocate the total cost of  

E-Print Network [OSTI]

it a desired method for transmission pricing. This work has been supported by the National Science increasing complexity and the associated computations costs. Index Terms--Electricity market, transmission pricing, Short Run Marginal Cost (SRMC). I. INTRODUCTION LECTRICITY MARKET design and operation have

Cañizares, Claudio A.

114

Estimation of ship construction costs  

E-Print Network [OSTI]

Since the end of the Cold War naval procurement for the US Navy has seen a dramatic decrease. This decrease in defense spending has placed existing programs under more scrutiny than previous years. As a result there is ...

Miroyannis, Aristides

2006-01-01T23:59:59.000Z

115

Levelized Electricity Costs  

Science Journals Connector (OSTI)

The concept of levelized energy costs responds to the necessity of disclosing the ... in order to recover the total life cycle cost of energy production. This chapter charts the effectiveness of levelized cost fo...

Nuno Luis Madureira

2014-01-01T23:59:59.000Z

116

Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 5 Report: Generation IV Reactor Virtual Mockup Proof-of-Principle Study  

SciTech Connect (OSTI)

Task 5 report is part of a 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Created a virtual mockup of PBMR reactor cavity and discussed applications of virtual mockup technology to improve Gen IV design review, construction planning, and maintenance planning.

Timothy Shaw; Anthony Baratta; Vaughn Whisker

2005-02-28T23:59:59.000Z

117

Design, manufacture and construction of low-cost housing units equipped with solar energy technology in Iraq’s marshes and remote areas  

Science Journals Connector (OSTI)

Samples of Iraq’s marshes reed panels were prepared by a new method. Reed samples were coated by polyester and pressed isolating to produce reed panel. Thermal isolation of(0. 13%) was found less than concert (0.9 %). Water absorption resistance effect was achieved and mechanical bending under static load was conducted. Reed panels were used as construction materials.

Usama Abdulmajeed Abdulhadi; Angham Raad Alwan; Hani Hassan Sarhan; Majid Hassan Ali; Jamal Jameel Anjas; Saba Mahdi Khaleel; Ban Ali Abood

2012-01-01T23:59:59.000Z

118

A Comparison of Design Criteria, Construction Practices and Cost : Among Bonneville Power Administration, Umatilla Electric Co-op Association, Arizona Public Service Company, Los Angeles Department of Water and Power, Ontario Hydro.  

SciTech Connect (OSTI)

BPA is continually challenged to be cost competitive with other public and private utilities. This report summarizes the results of a survey conducted in 1989 by the Office of Engineering to compare design criteria and practices for constructing transmission and substation facilities with those of other utilities. The objective of the study was to evaluate whether BPA's design criteria and practices result in higher cost for power system facilities with respect to other utilities. The study was initiated by the Assistant Administrator for Engineering as part of overall effort to review BPA's reliability criteria, standards, and related design practices. The survey was jointly conducted by BPA's Division of Facilities Engineering and the Division of Electrical and Electronic Engineering. The evaluation was divided into three major parts which addressed the design and construction of transmission lines, buildings, and substation and control facilities. To conduct the survey, detailed questionnaires were developed to cover a broad spectrum of design criteria, costs, and related subjects, such as environment, land, design, procurement, and construction practices. The questionnaires were sent to participating utilities, followed by visits to the utilities by the BPA survey teams. Of the four utilities participating in the survey, three are larger utilities located outside the Pacific Northwest Region. The utilities were selected because they have transmission voltages similar to BPA, voltages up to 500-kV. The fourth is a smaller BPA customer utility from within the Region selected to provide a BPA customer viewpoint, as well as comparative design information for lower voltage facilities. 6 refs., 43 tabs.

United States. Bonneville Power Administration.

1990-08-03T23:59:59.000Z

119

Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 4 Report: Virtual Mockup Maintenance Task Evaluation  

SciTech Connect (OSTI)

Task 4 report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. This report focuses on using Full-scale virtual mockups for nuclear power plant training applications.

Timothy Shaw; Anthony Baratta; Vaughn Whisker

2005-02-28T23:59:59.000Z

120

Small-scale hydroelectric power demonstration project: Broad River Electric Cooperative, Inc. , Cherokee Falls Hydroelectric Project: Final technical and construction cost report  

SciTech Connect (OSTI)

The purpose of this report is to fulfill part of the requirement of the US Department of Energy (DOE) Cooperative Agreement Number FC07-80ID12125 of the Small Scale Hydropower Program and is submitted on behalf of the Broad River Electric Cooperative, Inc. of Gaffney, South Carolina. The project was initially studied in 1978 with construction commencing in January, 1984. The primary work elements of the project consisted of the renovation of an existing dam and a new powerhouse. The dam was rehabilitated and flashboards were installed along the top of the structure. The powerhouse was supplied with a single open pit turbine and a new substation was constructed. The project generated power in December of 1985 but has been plagued with numerous problems compounded by a flood in March, 1987 causing extensive damages. The flood of March, 1987 resulted in filing of litigative action by the developers against their project managers and engineers which has yet to reach settlement and will possibly culminate in court sometime during the fall of 1988.

Not Available

1988-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

College of Engineering Request for Institutional Waiver of Indirect Cost  

E-Print Network [OSTI]

PAF Number College of Engineering Request for Institutional Waiver of Indirect Cost Principal Investigator Sponsor Project Title Total Direct Costs Total Modified Direct Costs Full Indirect Costs Rate Full Indirect Costs Amount Total Project Costs (with Full IDC) Requested Indirect Costs Rate Requested Indirect

Kamat, Vineet R.

122

Costs of Storing and Transporting Hydrogen  

Broader source: Energy.gov [DOE]

An analysis was performed to estimate the costs associated with storing and transporting hydrogen. These costs can be added to a hydrogen production cost to determine the total delivered cost of hydrogen.

123

Vectren Energy Delivery of Indiana (Electric) - Commercial New Construction  

Broader source: Energy.gov (indexed) [DOE]

Vectren Energy Delivery of Indiana (Electric) - Commercial New Vectren Energy Delivery of Indiana (Electric) - Commercial New Construction Rebates (Indiana) Vectren Energy Delivery of Indiana (Electric) - Commercial New Construction Rebates (Indiana) < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate Custom/HVAC Systems: $100,000 or 50% of the total project cost Incentive cannot buy down project below 1.5 years payback. Program Info State Indiana Program Type Utility Rebate Program Rebate Amount HVAC Systems (New Construction): $0.12/kWh reduced

124

Graduate Certificate in Construction Engineering and Management  

E-Print Network [OSTI]

, Green Building Materials and Techniques, Sustainable Development and Construction Dr. Tewodros Ghebrab, Sustainable construction methods and materials in buildings and infrastructure systems, Engineering cost Management. Students choose two electives from: · Construction Safety and Risk Management, · Sustainable

Gelfond, Michael

125

AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

AEP Ohio - Commercial New Construction Energy Efficiency Rebate AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) < Back Eligibility Commercial Industrial Local Government Municipal Utility Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate General: 50% of total project cost; Contact AEP Ohio Design Incentives: 50% of cost up to $50,000 Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Custom: $0.08/kWh first year savings and $100/peak kW reduction

126

A low cost adaptive optics system using a membrane mirror  

Science Journals Connector (OSTI)

A low cost adaptive optics system constructed almost entirely of commercially available components is presented.

Paterson, Carl; Munro, I; Dainty, J

2000-01-01T23:59:59.000Z

127

Cost?Based Optimization of a Papermaking Wastewater Regeneration Recycling System  

Science Journals Connector (OSTI)

Wastewater can be regenerated for recycling in an industrial process to reduce freshwater consumption and wastewater discharge. Such an environment friendly approach will also lead to cost savings that accrue due to reduced freshwater usage and wastewater discharge. However the resulting cost savings are offset to varying degrees by the costs incurred for the regeneration of wastewater for recycling. Therefore systematic procedures should be used to determine the true economic benefits for any water?using system involving wastewater regeneration recycling. In this paper a total cost accounting procedure is employed to construct a comprehensive cost model for a paper mill. The resulting cost model is optimized by means of mathematical programming to determine the optimal regeneration flowrate and regeneration efficiency that will yield the minimum total cost.

Long Huang; Xiao Feng; Khim H. Chu

2010-01-01T23:59:59.000Z

128

TOTAL Full-TOTAL Full-  

E-Print Network [OSTI]

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

129

Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector  

E-Print Network [OSTI]

quantify production, energy and cost characteristics of ironCost Total O&M Cost Energy Cost Raw Material Cost AnnualCost Total O&M Cost Energy Cost (other than Coking Coal and

Karali, Nihan

2014-01-01T23:59:59.000Z

130

Materials Requirements for Pipeline Construction  

Science Journals Connector (OSTI)

...the same time, pipeline failure must be...the huge cost of repair. The first oil...where the initial pipeline construction cost...cost of a single repair can exceed C1M. TABLE 2. NORTH SEA PIPELINES grade max. water...

1976-01-01T23:59:59.000Z

131

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

132

Robust Cost Colorings Takuro Fukunaga  

E-Print Network [OSTI]

Robust Cost Colorings Takuro Fukunaga Magn´us M. Halld´orsson Hiroshi Nagamochi Abstract We consider graph coloring problems where the cost of a coloring is the sum of the costs of the colors, and the cost of a color is a monotone concave function of the total weight of the class. This models resource

HalldĂłrsson, MagnĂşs M.

133

Total isomerization gains flexibility  

SciTech Connect (OSTI)

Isomerization extends refinery flexibility to meet changing markets. TIP (Total Isomerization Process) allows conversion of paraffin fractions in the gasoline boiling region including straight run naptha, light reformate, aromatic unit raffinate, and hydrocrackate. The hysomer isomerization is compared to catalytic reforming. Isomerization routes are graphed. Cost estimates and suggestions on the use of other feedstocks are given. TIP can maximize gas production, reduce crude runs, and complement cat reforming. In four examples, TIP reduces reformer severity and increases reformer yield.

Symoniak, M.F.; Holcombe, T.C.

1983-05-01T23:59:59.000Z

134

Buildings Energy Data Book: 2.5 Residential Construction and Housing Market  

Buildings Energy Data Book [EERE]

8 8 2009 Sales Price and Construction Cost Breakdown of an Average New Single-Family Home ($2010) (1) Function Finished Lot 20% Construction Cost 59% Financing 2% Overhead & General Expenses 5% Marketing 1% Sales Commission 3% Profit 9% Total 100% Function Building Permit Fees 2% Impact Fees 1% Water and Sewer Inspection 2% Excavation, Foundation, & Backfill 7% Steel 1% Framing and Trusses 16% Sheathing 2% Windows 3% Exterior Doors 1% Interior Doors & Hardware 2% Stairs 1% Roof Shingles 4% Siding 6% Gutters & Downspouts 0% Plumbing 5% Electrical Wiring 4% Lighting Fixtures 1% HVAC 4% Insulation 2% Drywall 5% Painting 3% Cabinets, Countertops 6% Appliances 2% Tiles & Carpet 5% Trim Material 3% Landscaping & Sodding 3% Wood Deck/Patio 1% Asphalt Driveway 1% Other 9% Total 100% Note(s): Source(s): NAHB, Breaking Down House Price and Construction Costs, 2010, Table 1; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price

135

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect (OSTI)

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

136

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

137

Summary Max Total Units  

Broader source: Energy.gov (indexed) [DOE]

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

138

Cost Containment  

Science Journals Connector (OSTI)

Cost containment in health care involves a wide ... , the growth rate of expenditure or certain costs of health care services. These measures include ... patient education, etc. The reasons for increased cost ...

2008-01-01T23:59:59.000Z

139

Calculator program aids well cost management  

SciTech Connect (OSTI)

A TI-59 calculator program designed to track well costs on daily and weekly bases can dramatically facilitate the task of monitoring well expenses. The program computes the day total, cumulative total, cumulative item-row totals, and day-week total. For carrying these costs throughout the drilling project, magnetic cards can store the individual and total cumulative well expenses.

Doyle, C.J.

1982-01-18T23:59:59.000Z

140

Buildings Energy Data Book: 1.3 Value of Construction and Research  

Buildings Energy Data Book [EERE]

8 8 Number of Construction Employees and Total Employees for Select Building Envolope Industries (Thousand Employees) Poured Concrete Foundation and Structure Contractors (NAICS 238110) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Masonry Contractors (NAICS 238140) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Roofing Contractors (NAICS 238160) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Drywall and Insulation Contractors (NAICS 238310) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Painting and Wall Covering Contractors (NAICS 238320) -Total Employment -Construction/Extraction Occupations

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Constructive physics  

E-Print Network [OSTI]

Discussion of the necessity to use the constructive mathematics as the formalism of quantum theory for systems with many particles.

Yuri Ozhigov

2008-05-19T23:59:59.000Z

142

New Construction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales Allocation Tool...

143

Best Practices for Controlling Capital Costs in Net Zero Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Controlling Capital Costs in Net Zero Energy Design and Construction - 2014 BTO Peer Review Best Practices for Controlling Capital Costs in Net Zero Energy Design and...

144

Alternative Energy in New State Construction  

Broader source: Energy.gov [DOE]

Texas requires state government departments to compare the cost of providing energy alternatives for new and reconstructed state government buildings and for certain construction or repair to...

145

The design of a panelized roof system for residential construction  

E-Print Network [OSTI]

The cost of housing in the U.S. continues to rise faster than household income. Innovative building materials and construction technologies have the potential to reduce housing construction costs. One strategy to do this ...

Dentz, Jordan Lewis

1991-01-01T23:59:59.000Z

146

Cost and schedule reduction for next-generation Candu  

SciTech Connect (OSTI)

AECL has developed a suite of technologies for Candu{sup R} reactors that enable the next step in the evolution of the Candu family of heavy-water-moderated fuel-channel reactors. These technologies have been combined in the design for the Advanced Candu Reactor TM1 (ACRTM), AECL's next generation Candu power plant. The ACR design builds extensively on the existing Candu experience base, but includes innovations, in design and in delivery technology, that provide very substantial reductions in capital cost and in project schedules. In this paper, main features of next generation design and delivery are summarized, to provide the background basis for the cost and schedule reductions that have been achieved. In particular the paper outlines the impact of the innovative design steps for ACR: - Selection of slightly enriched fuel bundle design; - Use of light water coolant in place of traditional Candu heavy water coolant; - Compact core design with unique reactor physics benefits; - Optimized coolant and turbine system conditions. In addition to the direct cost benefits arising from efficiency improvement, and from the reduction in heavy water, the next generation Candu configuration results in numerous additional indirect cost benefits, including: - Reduction in number and complexity of reactivity mechanisms; - Reduction in number of heavy water auxiliary systems; - Simplification in heat transport and its support systems; - Simplified human-machine interface. The paper also describes the ACR approach to design for constructability. The application of module assembly and open-top construction techniques, based on Candu and other worldwide experience, has been proven to generate savings in both schedule durations and overall project cost, by reducing premium on-site activities, and by improving efficiency of system and subsystem assembly. AECL's up-to-date experience in the use of 3-D CADDS and related engineering tools has also been proven to reduce both engineering and construction costs through more efficient work planning and use of materials, through reduced re-work and through more precise configuration management. Full-scale exploitation of AECL's electronic engineering and project management tools enables further reductions in cost. The Candu fuel-channel reactor type offers inherent manufacturing and construction advantages through the application of a simple, low-pressure low-temperature reactor vessel along with modular fuel channel technology. This leads to cost benefits and total project schedule benefits. As a result, the targets which AECL has set for replication units - overnight capital cost of $1000 US/kW and total project schedule (engineering/manufacturing/construction/commissioning) of 48 months, have been shown to be achievable for the reference NG Candu design. (authors)

Hopwood, J.M.; Yu, S.; Pakan, M.; Soulard, M. [Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada)

2002-07-01T23:59:59.000Z

147

Cost Estimator  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve as a senior cost and schedule estimator who is responsible for preparing life-cycle cost and schedule estimates and analyses associated with the...

148

Sandia National Laboratories: reduce wind energy costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wind energy costs DOE Completes Construction of State-of-the-Art Wind Plant Performance Facility On April 17, 2013, in Energy, Events, News & Events, Partnership, Renewable Energy,...

149

Avoidable waste management costs  

SciTech Connect (OSTI)

This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

1995-01-01T23:59:59.000Z

150

COST ACCOUNTING IN US CITIES: TRANSACTION COSTS AND GOVERNANCE FACTORS AFFECTING COST ACCOUNTING DEVELOPMENT AND USE  

E-Print Network [OSTI]

Cost accounting in government is a topic that has an oddly uncertain place in public financial management. Many people know what it is as an ideal construct but do not know what it is in practice. This uncertainty of ...

Mohr, Zachary Thomas

2013-05-31T23:59:59.000Z

151

Cost Shifting  

Science Journals Connector (OSTI)

Abstract Cost shifting exists when a provider raises prices for one set of buyers because it has lowered prices for some other buyer. In theory, cost shifting can take place only if providers have unexploited market power. The empirical evidence on the extent of cost shifting is mixed. Taken as a whole, the evidence does not support the claims that cost shifting is a large and pervasive feature of the US health-care markets. At most, one can argue that perhaps one-fifth of Medicare payment reductions have been passed on to private payers. The majority of the rigorous studies, however, have found no evidence of cost shifting.

M.A. Morrisey

2014-01-01T23:59:59.000Z

152

Cost analysis guidelines  

SciTech Connect (OSTI)

The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy`s (DOE`s) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies.

Strait, R.S.

1996-01-10T23:59:59.000Z

153

http://www.tecs.ecu.edu/constructionPrinted on recycled paper. 4500 copies of this public document were printed at a cost of $627.75, or $0.14 per copy.  

E-Print Network [OSTI]

discipline. Students with a degree in a closely related field such as architecture, real estate, business technologies, globalization, sustainable construction, productivity and quality, profitability, and best

154

Electricity Plant Cost Uncertainties (released in AEO2009)  

Reports and Publications (EIA)

Construction costs for new power plants have increased at an extraordinary rate over the past several years. One study, published in mid-2008, reported that construction costs had more than doubled since 2000, with most of the increase occurring since 2005. Construction costs have increased for plants of all types, including coal, nuclear, natural gas, and wind.

2009-01-01T23:59:59.000Z

155

INDIRECT COST CALCULATION [IN REVERSE] YOU WANT TO CALCULATE THE DIRECT COSTS  

E-Print Network [OSTI]

INDIRECT COST CALCULATION [IN REVERSE] YOU WANT TO CALCULATE THE DIRECT COSTS YOU KNOW WHAT THE TUITION, STIPEND AND EQUIPMENT COSTS ARE YOU KNOW WHAT THE TOTAL COST IS CALCULATION IS USING THE 2010 FED F&A RATE FOR WSU OF 52% (.52) [ DIRECT COST ­ TUITION ­ STIPEND ­ EQUIPMENT] (.52 ) + DIRECT

Finley Jr., Russell L.

156

Construction Machinery  

Science Journals Connector (OSTI)

...Even today many people employed in construction associate the use of robots with the manufacturing industry, mainly the automotive ... , where they are typically employed to spray paint and spot weld the car b...

Eugeniusz Budny Prof.; Miros?aw Ch?osta Dr.…

2009-01-01T23:59:59.000Z

157

cost savings  

National Nuclear Security Administration (NNSA)

reduced the amount of time involved in the annual chemical inventory for a cost savings of 18,282. Other presentations covered SRNS' award-winning employee suggestion...

158

BPA's Costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BPAsCosts Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives Finance & Rates...

159

Estimating SCR installation costs  

SciTech Connect (OSTI)

The EUCG surveyed 72 separate US installations of selective catalytic reduction (SCR) systems at coal-fired units totalling 41 GW of capacity to identify the systems' major cost drivers. The results, summarized in this article, provide excellent first-order estimates and guidance for utilities considering installing the downstream emissions-control technology. 4 figs., 1 tab.

Marano, M.; Sharp, G. [American Electric Power (United States)

2006-01-15T23:59:59.000Z

160

Low Cost Radio Telescope  

Science Journals Connector (OSTI)

A radio interferometer has been constructed at Haverford College as an aid to learning the fundamentals of radio astronomy. Its cost both in cash outlay and in construction time make it a feasible year-long project for an undergraduate. Its simplicity does not prevent it from being a useful instrument for instruction at the college or high-school level; among its capabilities are the measurement of the positions of at least four of the strongest discrete cosmic-noisesources and the diameter of the radio sun.

Joseph H. Taylor Jr.

1964-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

New Jersey SmartStart Buildings - New Construction and Retrofits |  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » New Jersey SmartStart Buildings - New Construction and Retrofits New Jersey SmartStart Buildings - New Construction and Retrofits < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate General: incentives may be limited to $500,000 per utility account per year. Custom Measures: limited to lesser of $0.16/kWh or $1.60/therm saved annually; 50% of total costs; or buydown to a 1-year payback period Program Info Funding Source New Jersey Societal Benefits Charge (public benefits fund)

162

Cost effectiveness of the 1993 Model Energy Code in Colorado  

SciTech Connect (OSTI)

This report documents an analysis of the cost effectiveness of the Council of American Building Officials` 1993 Model Energy Code (MEC) building thermal-envelope requirements for single-family homes in Colorado. The goal of this analysis was to compare the cost effectiveness of the 1993 MEC to current construction practice in Colorado based on an objective methodology that determined the total life-cycle cost associated with complying with the 1993 MEC. This analysis was performed for the range of Colorado climates. The costs and benefits of complying with the 1993 NIEC were estimated from the consumer`s perspective. The time when the homeowner realizes net cash savings (net positive cash flow) for homes built in accordance with the 1993 MEC was estimated to vary from 0.9 year in Steamboat Springs to 2.4 years in Denver. Compliance with the 1993 MEC was estimated to increase first costs by $1190 to $2274, resulting in an incremental down payment increase of $119 to $227 (at 10% down). The net present value of all costs and benefits to the home buyer, accounting for the mortgage and taxes, varied from a savings of $1772 in Springfield to a savings of $6614 in Steamboat Springs. The ratio of benefits to costs ranged from 2.3 in Denver to 3.8 in Steamboat Springs.

Lucas, R.G.

1995-06-01T23:59:59.000Z

163

Weatherford Inclined Wellbore Construction  

SciTech Connect (OSTI)

The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed construction of an inclined wellbore with seven (7) inch, twenty-three (23) pound casing at a total depth of 1296 feet. The inclined wellbore is near vertical to 180 feet with a build angle of approximately 4.5 degrees per hundred feet thereafter. The inclined wellbore was utilized for further proprietary testing after construction and validation. The wellbore is available to other companies requiring a cased hole environment with known deviation out to fifty degrees (50) from vertical. The wellbore may also be used by RMOTC for further deepening into the fractured shales of the Steele and Niobrara formation.

Schulte, R.

2002-08-19T23:59:59.000Z

164

Low-Cost, Lightweight Solar Concentrator  

Broader source: Energy.gov (indexed) [DOE]

sunshot DOEGO-102012-3663 * September 2012 MOTIVATION Solar concentrators currently cost 150-250m 2 , which represents as much as half of the total installed cost for a...

165

Performance Period Total Fee Paid  

Broader source: Energy.gov (indexed) [DOE]

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

166

Electricity costs  

Science Journals Connector (OSTI)

... index is used to correct for inflation. The short answer is given by the Central Electricity Generating Board's (CEGB's) 1980-81 report, paragraph 168. "The ... Generating Board's (CEGB's) 1980-81 report, paragraph 168. "The cost per kWh of fuel. . . rose by 18.6 per cent (between 1979 ...

J.W. JEFFERY

1982-03-18T23:59:59.000Z

167

Alternative Fuels Data Center: Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Cost Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on Digg Find More places to share Alternative Fuels Data Center: Vehicle Cost Calculator on AddThis.com... Vehicle Cost Calculator Vehicle Cost Calculator This tool uses basic information about your driving habits to calculate total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Also

168

An examination of the costs and critical characteristics of electric utility distribution system capacity enhancement projects  

SciTech Connect (OSTI)

This report classifies and analyzes the capital and total costs (e.g., income tax, property tax, depreciation, centralized power generation, insurance premiums, and capital financing) associated with 130 electricity distribution system capacity enhancement projects undertaken during 1995-2002 or planned in the 2003-2011 time period by three electric power utilities operating in the Pacific Northwest. The Pacific Northwest National Laboratory (PNNL), in cooperation with participating utilities, has developed a large database of over 3,000 distribution system projects. The database includes brief project descriptions, capital cost estimates, the stated need for each project, and engineering data. The database was augmented by additional technical (e.g., line loss, existing substation capacities, and forecast peak demand for power in the area served by each project), cost (e.g., operations, maintenance, and centralized power generation costs), and financial (e.g., cost of capital, insurance premiums, depreciations, and tax rates) data. Though there are roughly 3,000 projects in the database, the vast majority were not included in this analysis because they either did not clearly enhance capacity or more information was needed, and not available, to adequately conduct the cost analyses. For the 130 projects identified for this analysis, capital cost frequency distributions were constructed, and expressed in terms of dollars per kVA of additional capacity. The capital cost frequency distributions identify how the projects contained within the database are distributed across a broad cost spectrum. Furthermore, the PNNL Energy Cost Analysis Model (ECAM) was used to determine the full costs (e.g., capital, operations and maintenance, property tax, income tax, depreciation, centralized power generation costs, insurance premiums and capital financing) associated with delivering electricity to customers, once again expressed in terms of costs per kVA of additional capacity. The projects were sorted into eight categories (capacitors, load transfer, new feeder, new line, new substation, new transformer, reconductoring, and substation capacity increase) and descriptive statistics (e.g., mean, total cost, number of observations, and standard deviation) were constructed for each project type. Furthermore, statistical analysis has been performed using ordinary least squares regression analysis to identify how various project variables (e.g., project location, the primary customer served by the project, the type of project, the reason for the upgrade, size of the upgrade) impact the unit cost of the project.

Balducci, Patrick J.; Schienbein, Lawrence A.; Nguyen, Tony B.; Brown, Daryl R.; Fathelrahman, Eihab M.

2004-06-01T23:59:59.000Z

169

Types of Costs Types of Cost Estimates  

E-Print Network [OSTI]

first cost or capital investment): ­ Expenditures made to acquire or develop capital assets ­ Three main· Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408: Mining-site management or corporate level expenditure · Direct vs. Indirect Costs ­ Direct (or variable) costs apply

Boisvert, Jeff

170

Types of Costs Types of Cost Estimates  

E-Print Network [OSTI]

-Revenue Relationships · Capital Costs (or first cost or capital investment): ­ Expenditures made to acquire or develop05-1 · Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408 ­ off-site management or corporate level expenditure · Direct vs. Indirect Costs ­ Direct (or variable

Boisvert, Jeff

171

Low-Cost, Lightweight Solar Concentrators  

Broader source: Energy.gov (indexed) [DOE]

or parabolic dish) can range between 40-50% of the total costs. To meet SunShot cost target of 6ckWh, the concentrator costs need to reduced from 150-200m 2 to 75m 2...

172

Rationale for cost-effective laboratory medicine.  

Science Journals Connector (OSTI)

...hospital, work load has increased...to contain costs in the DRG...limit future capital funds for...mechanism to control total health...Although computers can track...performed more cost effectively...investment in capital equipment...in a more cost-efficient...sufficient work load and multiple...of quality control, auto...hospital via computer, telephone...

A Robinson

1994-04-01T23:59:59.000Z

173

Indirect Cost Sharing Policies and Guidelines  

E-Print Network [OSTI]

Indirect Cost Sharing Policies and Guidelines University at Albany In the 1997 Fall semester% of the University's indirect cost return to the schools or colleges, departments, and centers. The allocations are determined in direct proportion to the units' contribution toward the total indirect cost recovery pool

Kidd, William S. F.

174

Cost reduction potential in LMFBR design  

SciTech Connect (OSTI)

LWR capital costs have escalated continuously over the years to the point where today its economics represent a bar to further LWR deployment in the U.S. High initial costs and the promise of a similar pattern of cost escalation in succeeding years for the LMFBR would effectively stop LMFBR deployment in this country before it could even begin. LWR cost escalation in the main can be traced to large increases in both amounts and unit costs of construction materials and to greatly lengthened construction times. Innovative approaches to LMFBR design are now being pursued that show promise for substantial cost reductions particularly in those areas that have contributed most to LWR cost increases.

Chang, Y.I.; Till, C.E.

1983-08-01T23:59:59.000Z

175

REQUEST FOR INDIRECT COST WAIVER I. Project Director  

E-Print Network [OSTI]

REQUEST FOR INDIRECT COST WAIVER I. Project Director: Department: Project Title: Project Sponsor without fully recovering the institutional indirect costs which will be incurred in conducting the project COSTS 1. FULL: OF I. A. C. 2. PARTIAL: OF H. B. K. TOTAL PROJECT COSTS L. INDIRECT COSTS TO BE WAIVED, J

Krovi, Venkat

176

Construction Review | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Assessment (SC-1.3) within the Office of Science (SC) conducts independent technical, cost, schedule, and management peer reviews of SC construction projects and large...

177

Residential photovoltaic worth : an assessment of retrofit vs. new construction  

E-Print Network [OSTI]

This paper characterizes the basic differences between photovoltaic retrofit and new construction applications. It quantifies the tradeoffs forced by rooftop area constraints, special array mounting costs, maintenance ...

Dinwoodie, Thomas L.

1982-01-01T23:59:59.000Z

178

U.S. Total Refiner Acquisition Cost of Crude Oil  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2008 2009 2010 2011 2012 2013 View History Composite 94.74 59.29 76.69 101.87 100.93 100.49 1968-2013 Domestic 98.47 59.49 78.01 100.71 100.72 102.91 1968-2013 Imported 92.77 59.17...

179

The total adjustment cost problem: Applications, models, and solution algorithms  

Science Journals Connector (OSTI)

Resource leveling problems arise whenever it is expedient to reduce the fluctuations in resource utilization over time, while maintaining a prescribed project completion deadline. Several resource leveling objective functions may be defined, consideration ... Keywords: Minimum and maximum time lags, Mixed-integer linear programming formulations, Project scheduling, Resource adjustment

Stefan Kreter; Julia Rieck; Jürgen Zimmermann

2014-04-01T23:59:59.000Z

180

Examples of Cost Estimation Packages  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Estimates can be performed in a variety of ways. Some of these are for projects for an undefined scope, a conventional construction project, or where there is a level of effort required to complete the work. Examples of cost estimation packages for these types of projects are described in this appendix.

1997-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Brush Busters: How to Estimate Costs for Controlling Small Mesquite  

E-Print Network [OSTI]

rapidly as plant size increases. ? Costs can escalate rapidly if you apply leaf or stem sprays using excessive pressure or nozzles with large orifices. ? Labor is usually a major component of total cost with Brush Busters methods. Costs escalate rapidly... and Figure 2 estimates costs for the stem spray method). Each figure consists of three graphs. The upper graph shows the cost for the spray only. The center graph shows total cost for spray plus labor at $6 per hour. The bottom graph shows total cost...

Ueckert, Darrell; McGinty, Allan

1999-04-15T23:59:59.000Z

182

Estimating Specialty Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Specialty costs are those nonstandard, unusual costs that are not typically estimated. Costs for research and development (R&D) projects involving new technologies, costs associated with future regulations, and specialty equipment costs are examples of specialty costs. This chapter discusses those factors that are significant contributors to project specialty costs and methods of estimating costs for specialty projects.

1997-03-28T23:59:59.000Z

183

Direct costing  

E-Print Network [OSTI]

oau 5e reduced. Under the same oonOitions, even ~Me on a bread scale entails not mere1y the conduct of the direct oyeraticns cf yrccessing the materials into finished products, but also the performance of auxiliary functions. these may 'ba power y... purposes have been advanced as folkway le Most of a o03RyaxO' 8 products Grc usual13r sold at prices which oovex' full product costs y plus 861ling a%el administrative expenses, plus normal profit. The inventoi~ valuate. on should be consistent...

Browning, Donald Bullock

2012-06-07T23:59:59.000Z

184

Cost Analysis Rate Settin  

E-Print Network [OSTI]

Cost Analysis and Rate Settin for Animal Research Facilities #12;#12;Cost Analysis and Rate ... .. . ...................... . . . ................................. . .... 7 Chapter 2 Preparation for Cost Analysis ......................................................... 9 Chapter 3 Assignment of Costs to Animal Research Facility Cost Centers

Baker, Chris I.

185

Cost and production estimation for a cutter suction dredge  

E-Print Network [OSTI]

repairs than the an pipe length. After the equipment and pipeline costs are determined, the overhead costs are then taken to be 9 percent of the total daily costs of equipment and pipeline. Several cells are left open where additional specific costs can... repairs than the an pipe length. After the equipment and pipeline costs are determined, the overhead costs are then taken to be 9 percent of the total daily costs of equipment and pipeline. Several cells are left open where additional specific costs can...

Miertschin, Michael Wayne

2012-06-07T23:59:59.000Z

186

Cost Sharing What is Cost Sharing?  

E-Print Network [OSTI]

1 Cost Sharing What is Cost Sharing? x Cost sharing is a commitment to use university resources and Expenses o Equipment x Committing to cost share is highly discouraged unless required by the sponsoring agency x Tracking of committed cost share is required to meet federal regulations (OMB A-110) x UCSD has

Tsien, Roger Y.

187

Geothermal power plant R and D: an analysis of cost-performance tradeoffs and the Heber Binary-Cycle Demonstration Project  

SciTech Connect (OSTI)

A study of advancements in power plant designs for use at geothermal resources in the low to moderate (300 to 400F) temperature range is reported. In 3 case studies, the benefits of R and D to achieve these advancements are evaluated in terms of expected increases in installed geothermal generating capacity over the next 2 decades. A parametric sensitivity study is discussed which analyzes differential power development for combinations of power plant efficiency and capitol cost. Affordable tradeoffs between plant performance and capital costs are illustrated. The independent review and analysis of the expected costs of construction, operation and maintenance of the Heber Binary Cycle Geothermal Power Demonstration Plant are described. Included in this assessment is an analysis of each of the major cost components of the project, including (1) construction cost, (2) well field development costs, (3) fluid purchase costs, and (4) well field and power plant operation and maintenance costs. The total cost of power generated from the Heber Plant (in terms of mills per kWh) is then compared to the cost of power from alternative fossil-fueled base load units. Also evaluated are the provisions of both: (a) the Cooperative Agreement between the federal government and San Diego Gas and Electric (SDG and E); and (b) the Geothermal Heat Sales Contract with Union Oil Company.

Cassel, T.A.V.; Amundsen, C.B.; Blair, P.D.

1983-06-30T23:59:59.000Z

188

Residential photovoltaic systems costs  

SciTech Connect (OSTI)

A study of costs associated with the installation and operation of a residential photovoltaic system has been conducted to determine present and projected (1986) status. As a basis for the study, a residential photovoltaic system design projected for 1986 was assumed, consisting of two principal components: a roof-mounted array and a utility-interactive inverter. The scope of the study encompassed both silicon and cadmium sulfide photovoltaic modules. Cost estimates were obtained by a survey and study of reports generated by companies and agencies presently active in each of the subsystem area. Where necessary, supplemental estimates were established as part of this study. The range of estimates for silicon-based systems strongly suggest that such systems will be competitive for new installations and reasonably competitive for retrofit applications. The cadmium-sulfide-based system cost estimates, which are less certain than those for silicon, indicate that these systems will be marginally competitive with silicon-based systems for new construction, but not competitive for retrofit applications. Significant variations from the DOE system price sub-goals were found, however, particularly in the areas of array mounting, wiring and cleaning. Additional development work appears needed in these areas.

Cox, C.H. III

1980-01-01T23:59:59.000Z

189

Illumina Unamplified Indexed Library Construction: An Automated Approach  

SciTech Connect (OSTI)

Manual library construction is a limiting factor in Illumina sequencing. Constructing libraries by hand is costly, time-consuming, low-throughput, and ergonomically hazardous, and constructing multiple libraries introduces risk of library failure due to pipetting errors. The ability to construct multiple libraries simultaneously in automated fashion represents significant cost and time savings. Here we present a strategy to construct up to 96 unamplified indexed libraries using Illumina TruSeq reagents and a Biomek FX robotic platform. We also present data to indicate that this library construction method has little or no risk of cross-contamination between samples.

Hack, Christopher A.; Sczyrba, Alexander; Cheng, Jan-Fang

2011-03-21T23:59:59.000Z

190

AN ENERGY COST OPTIMIZATION METHOD FOR A LARGE SCALE HYBRID CENTRAL COOLING PLANT WITH MULTIPLE ENERGY SOURCES UNDER A COMPLEX ELECTRICITY COST STRUCTURE.  

E-Print Network [OSTI]

??The cooling energy cost could be a significant portion of the total energy cost for a large organization or building complex during summer. A hybrid… (more)

Guo, Yin

2012-01-01T23:59:59.000Z

191

Handbook of energy use for building construction  

SciTech Connect (OSTI)

The construction industry accounts for over 11.14% of the total energy consumed in the US annually. This represents the equivalent energy value of 1 1/4 billion barrels of oil. Within the construction industry, new building construction accounts for 5.19% of national annual energy consumption. The remaining 5.95% is distributed among new nonbuilding construction (highways, ralroads, dams, bridges, etc.), building maintenance construction, and nonbuilding maintenance construction. The handbook focuses on new building construction; however, some information for the other parts of the construction industry is also included. The handbook provides building designers with information to determine the energy required for buildings construction and evaluates the energy required for alternative materials, assemblies, and methods. The handbook is also applicable to large-scale planning and policy determination in that it provides the means to estimate the energy required to carry out major building programs.

Stein, R.G.; Stein, C.; Buckley, M.; Green, M.

1980-03-01T23:59:59.000Z

192

Los Alamos National Laboratory Building Cost Index  

SciTech Connect (OSTI)

The Los Alamos National Laboratory Building Cost Index indicates that actual escalation since 1970 is near 10% per year. Therefore, the Laboratory will continue using a 10% per year escalation rate for construction estimates through 1985 and a slightly lower rate of 8% per year from 1986 through 1990. The computerized program compares the different elements involved in the cost of a typical construction project, which for our purposes, is a complex of office buildings and experimental laboratores. The input data used in the program consist primarily of labor costs and material and equipment costs. The labor costs are the contractural rates of the crafts workers in the Los Alamos area. For the analysis, 12 field-labor draft categories are used; each is weighted corresponding to the labor craft distribution associated with the typical construction project. The materials costs are current Los Alamos prices. Additional information sources include material and equipment quotes obtained through conversations with vendors and from trade publications. The material and equipment items separate into 17 categories for the analysis and are weighted corresponding to the material and equipment distribution associated with the typical construction project. The building cost index is compared to other national building cost indexes.

Orr, H.D.; Lemon, G.D.

1983-01-01T23:59:59.000Z

193

Los Alamos National Laboratory building cost index  

SciTech Connect (OSTI)

The Los Alamos National Laboratory Building Cost Index indicates that actual escalation since 1970 is near 10% per year. Therefore, the Laboratory will continue using a 10% per year escalation rate for construction estimates through 1985 and a slightly lower rate of 8% per year from 1986 through 1990. The computerized program compares the different elements involved in the cost of a typical construction project, which for our purposes, is a complex of office buildings and experimental laboratories. The input data used in the program consist primarily of labor costs and material and equipment costs. The labor costs are the contractual rates of the crafts workers in the Los Alamos area. For the analysis, 12 field-labor craft categories are used; each is weighted corresponding to the labor craft distribution associated with the typical construction project. The materials costs are current Los Alamos prices. Additional information sources include material and equipment quotes obtained through conversations with vendors and from trade publications. The material and equipment items separate into 17 categories for the analysis and are weighted corresponding to the material and equipment distribution associated with the typical construction project. The building cost index is compared to other national building cost indexes.

Orr, H.D.; Lemon, G.D.

1982-10-01T23:59:59.000Z

194

Variations of Total Domination  

Science Journals Connector (OSTI)

The study of locating–dominating sets in graphs was pioneered by Slater [186, 187...], and this concept was later extended to total domination in graphs. A locating–total dominating set, abbreviated LTD-set, in G

Michael A. Henning; Anders Yeo

2013-01-01T23:59:59.000Z

195

Cost Sharing Basics Definitions  

E-Print Network [OSTI]

Cost Sharing Basics Definitions Some funding agencies require the grantee institution the project costs. Cost sharing is defined as project costs not borne by the sponsor. Cost sharing funds may resources or facilities. If the award is federal, only acceptable non-federal costs qualify as cost sharing

Finley Jr., Russell L.

196

1Construction Engineering Building Emphasis  

E-Print Network [OSTI]

1Construction Engineering Building Emphasis 2013-2014 Catalog 125 Total Credits First Year Semester 1 Semester 2 R Engr 101 (Engr Orientation) 2 CE 170 (Engineering Graphics) 3 CE 160 (Engr Problems Credits First Year Semester 1 Semester 2 R Engr 101 (Engr Orientation) 2 CE 170 (Engineering Graphics) 3

Lin, Zhiqun

197

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

198

FULL-COST ACCOUNTING  

Science Journals Connector (OSTI)

FULL-COST ACCOUNTING ... Environmental costs would be built into a product's cost, and consumers would be able to make informed purchases. ...

1993-01-11T23:59:59.000Z

199

Low-cost inertial measurement unit.  

SciTech Connect (OSTI)

Sandia National Laboratories performs many expensive tests using inertial measurement units (IMUs)--systems that use accelerometers, gyroscopes, and other sensors to measure flight dynamics in three dimensions. For the purpose of this report, the metrics used to evaluate an IMU are cost, size, performance, resolution, upgradeability and testing. The cost of a precision IMU is very high and can cost hundreds of thousands of dollars. Thus the goals and results of this project are as follows: (1) Examine the data flow in an IMU and determine a generic IMU design. (2) Discuss a high cost IMU implementation and its theoretically achievable results. (3) Discuss design modifications that would save money for suited applications. (4) Design and implement a low cost IMU and discuss its theoretically achievable results. (5) Test the low cost IMU and compare theoretical results with empirical results. (6) Construct a more streamlined printed circuit board design reducing noise, increasing capabilities, and constructing a self-contained unit. Using these results, we can compare a high cost IMU versus a low cost IMU using the metrics from above. Further, we can examine and suggest situations where a low cost IMU could be used instead of a high cost IMU for saving cost, size, or both.

Deyle, Travis Jay

2005-03-01T23:59:59.000Z

200

Construction Logistics Improvements using the SCOR model Tornet Case  

E-Print Network [OSTI]

Construction Logistics Improvements using the SCOR model �Tornet Case Fredrik Persson1 , Jonas are emerging that leads to cost reductions in construction. In this strive towards improvement, logistics on cost savings from the logistics perspective in different areas of the logistic system. Keywords

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Entanglement cost of generalised measurements  

E-Print Network [OSTI]

Bipartite entanglement is one of the fundamental quantifiable resources of quantum information theory. We propose a new application of this resource to the theory of quantum measurements. According to Naimark's theorem any rank 1 generalised measurement (POVM) M may be represented as a von Neumann measurement in an extended (tensor product) space of the system plus ancilla. By considering a suitable average of the entanglements of these measurement directions and minimising over all Naimark extensions, we define a notion of entanglement cost E_min(M) of M. We give a constructive means of characterising all Naimark extensions of a given POVM. We identify various classes of POVMs with zero and non-zero cost and explicitly characterise all POVMs in 2 dimensions having zero cost. We prove a constant upper bound on the entanglement cost of any POVM in any dimension. Hence the asymptotic entanglement cost (i.e. the large n limit of the cost of n applications of M, divided by n) is zero for all POVMs. The trine measurement is defined by three rank 1 elements, with directions symmetrically placed around a great circle on the Bloch sphere. We give an analytic expression for its entanglement cost. Defining a normalised cost of any d-dimensional POVM by E_min(M)/log(d), we show (using a combination of analytic and numerical techniques) that the trine measurement is more costly than any other POVM with d>2, or with d=2 and ancilla dimension 2. This strongly suggests that the trine measurement is the most costly of all POVMs.

Richard Jozsa; Masato Koashi; Noah Linden; Sandu Popescu; Stuart Presnell; Dan Shepherd; Andreas Winter

2003-03-27T23:59:59.000Z

202

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

Developments in the Levelized Cost of Energy From U.S. WindA; Simonot, E. (2011). The Cost of Wind Energy. Spanish WindUtility Construction Costs: Sources and Impacts. Prepared by

Lantz, Eric

2014-01-01T23:59:59.000Z

203

Energy Use and Costs in Texas Schools and Hospitals  

E-Print Network [OSTI]

demand charges, monthly natural gas consumed, monthly total natural gas costs, and total facility conditioned area. From this data, the monthly and annual energy use and cost performance of the facility is presented with the calculation of 10 use and cost...

Dunn, J. R.

1998-01-01T23:59:59.000Z

204

Commissioning : The Total Process  

E-Print Network [OSTI]

that rely on electronic control. Very frequently these systems and design features have not performed as expected. This can result in energy-efficiency losses. occupant complaints about comfort, indoor air quality problems. high operating costs...

Kettler, G. J.

1998-01-01T23:59:59.000Z

205

Cost-Effectiveness Ratio  

Science Journals Connector (OSTI)

The cost?effectiveness ratio (CER) is a calculation that summarizes the intervention's net cost and effectiveness. The three types of CER are: the average cost?effectiveness ratio (ACER), the marginal cost?...

2008-01-01T23:59:59.000Z

206

Cost Share-Cost Reimbursement Invoice Format Example | The Ames...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Share-Cost Reimbursement Invoice Format Example Effective Date: 102014 File (public): Cost Share-Cost...

207

Unit costs of waste management operations  

SciTech Connect (OSTI)

This report provides estimates of generic costs for the management, disposal, and surveillance of various waste types, from the time they are generated to the end of their institutional control. Costs include monitoring and surveillance costs required after waste disposal. Available data on costs for the treatment, storage, disposal, and transportation of spent nuclear fuel and high-level radioactive, low-level radioactive, transuranic radioactive, hazardous, mixed (low-level radioactive plus hazardous), and sanitary wastes are presented. The costs cover all major elements that contribute to the total system life-cycle (i.e., ``cradle to grave``) cost for each waste type. This total cost is the sum of fixed and variable cost components. Variable costs are affected by operating rates and throughput capacities and vary in direct proportion to changes in the level of activity. Fixed costs remain constant regardless of changes in the amount of waste, operating rates, or throughput capacities. Key factors that influence cost, such as the size and throughput capacity of facilities, are identified. In many cases, ranges of values for the key variables are presented. For some waste types, the planned or estimated costs for storage and disposal, projected to the year 2000, are presented as graphics.

Kisieleski, W.E.; Folga, S.M.; Gillette, J.L.; Buehring, W.A.

1994-04-01T23:59:59.000Z

208

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

209

Development of surface mine cost estimating equations  

SciTech Connect (OSTI)

Cost estimating equations were developed to determine capital and operating costs for five surface coal mine models in Central Appalachia, Northern Appalachia, Mid-West, Far-West, and Campbell County, Wyoming. Engineering equations were used to estimate equipment costs for the stripping function and for the coal loading and hauling function for the base case mine and for several mines with different annual production levels and/or different overburden removal requirements. Deferred costs were then determined through application of the base case depreciation schedules, and direct labor costs were easily established once the equipment quantities (and, hence, manpower requirements) were determined. The data points were then fit with appropriate functional forms, and these were then multiplied by appropriate adjustment factors so that the resulting equations yielded the model mine costs for initial and deferred capital and annual operating cost. (The validity of this scaling process is based on the assumption that total initial and deferred capital costs are proportional to the initial and deferred costs for the primary equipment types that were considered and that annual operating cost is proportional to the direct labor costs that were determined based on primary equipment quantities.) Initial capital costs ranged from $3,910,470 in Central Appalachia to $49,296,785; deferred capital costs ranged from $3,220,000 in Central Appalachia to $30,735,000 in Campbell County, Wyoming; and annual operating costs ranged from $2,924,148 in Central Appalachia to $32,708,591 in Campbell County, Wyoming. (DMC)

Not Available

1980-09-26T23:59:59.000Z

210

Evaluation of Novel and Low-Cost Materials for Bipolar Plates in PEM Fuel Cells.  

E-Print Network [OSTI]

??Bipolar plate material and fabrication costs make up a significant fraction of the total cost in a polymer electrolyte membrane fuel cell stack. In an… (more)

Desrosiers, Kevin Campbell

2002-01-01T23:59:59.000Z

211

Cost-benefit analysis on green building energy efficiency technology application: A case in China  

Science Journals Connector (OSTI)

Abstract In order to initiate economic evaluation of green buildings and foster their development, this article conducts the cost–benefit evaluation of energy efficiency technology application (EETA) on green buildings in China. Based on the economic evaluation theory of construction project (EETCP), the authors first establishes the theoretical framework system of cost–benefit evaluation of the EETA on green buildings and then develops the analysis methods of incremental costs and quantitative calculation formula of incremental benefits of the EETA on green buildings. Using these theories and methods, this article takes the Wanke City project in China as a study case, conducts the cost–benefit empirical analysis of the EETA on green buildings, and draws the following important conclusions: (1) the incremental costs of the EETA account for a large proportion of total incremental costs of green buildings, which are more than 50% in this case; (2) the EETA on green buildings can bring incremental economic benefits, as well as environmental benefits; (3) if only consider the incremental economic benefits of the EETA on green buildings, the financial evaluation indexes show green buildings do not have market investment potential; (4) among all the factors influencing the financial evaluation results of the EETA on green buildings, power price is the most sensitive factor, followed by the unit incremental costs, and the lifetime has the smallest influence.

Yuming Liu; Xia Guo; Feiling Hu

2014-01-01T23:59:59.000Z

212

Total CWT costs in the Columbia River Basin 5/12/2011 Recovery costs  

E-Print Network [OSTI]

Corp 153,000$ PGE 10,400$ Idaho Power 8,000$ PSMFC 32,500$ ODFW 472,600$ Anad. Fish Cons. Act 107,687$ PSMFC Mark Center 65,000$ ODFW Ocean Sampling (55%)1 209,100$ WDFW Selective Fisheries Monitoring 45,000$ WDFW - PST CWT Lab - (33.2%)1 37,228$ ODFW - PST Ocean Sampling (55%)1 65,605$ ODFW - Ocean

213

Dengue vaccination may be cost effective in Brazil  

Science Journals Connector (OSTI)

Even when considering the relatively low efficacy of dengue vaccine shown in recent phase 2b trials, age-targeted vaccination may still be cost effective in Brazil provided the total vaccination cost is sufficien...

2013-07-01T23:59:59.000Z

214

AVCEM: Advanced-Vehicle Cost and Energy Use Model  

E-Print Network [OSTI]

compressor); total cost of materials for the water pump, the hydrogencost); the initial temperature and pressure of hydrogen; the compressorcompressor cost per unit of output ($/hp/million standard ft3 [SCF] of hydrogen/

Delucchi, Mark

2005-01-01T23:59:59.000Z

215

2011 Cost Symposium Agenda for web (2)-OPAM  

Broader source: Energy.gov (indexed) [DOE]

Office of Engineering and Construction Office of Engineering and Construction Management (OECM) 1:05 PM 1:45 PM 40 Opening Remarks - Project management Update Paul Bosco, Director, Office of Engineering and Construction Management (OECM) 1:45 PM 2:45 PM 60 Construction Market Overview TBD (panelists from the Procurement Executives Group (PEG)) 2:45 PM 3:00 PM 15 3:00 PM 3:40 PM 40 GAO Cost Estimating and Assessment Guide (GAO-09- 3SP) and the Schedule Estimating Guide that is under development Karen Richey, Senior Cost Analyst, Government Accountability Office (GAO) 3:40 PM 4:20 PM 40 Risk Management & Cost Estimating Guide Gruber Chris, Independent Cost Consultant 4:20 PM 5:00 PM 40 Cost Estimating for Corps of Engineers' New Orleans Levee replacement TBD Thursday, May 26 8:15 AM 8:20 AM 5 Welcome Back John Makepeace,Office of Engineering and Construction

216

The Leica TCRA1105 Reflectorless Total Station  

SciTech Connect (OSTI)

This poster provides an overview of SLAC's TCRA1105 reflectorless total station for the Alignment Engineering Group. This instrument has shown itself to be very useful for planning new construction and providing quick measurements to difficult to reach or inaccessible surfaces.

Gaudreault, F.

2005-09-06T23:59:59.000Z

217

Cost Study for Large Wind Turbine Blades  

SciTech Connect (OSTI)

The cost study for large wind turbine blades reviewed three blades of 30 meters, 50 meters, and 70 meters in length. Blade extreme wind design loads were estimated in accordance with IEC Class I recommendations. Structural analyses of three blade sizes were performed at representative spanwise stations assuming a stressed shell design approach and E-glass/vinylester laminate. A bill of materials was prepared for each of the three blade sizes using the laminate requirements prepared during the structural analysis effort. The labor requirements were prepared for twelve major manufacturing tasks. TPI Composites developed a conceptual design of the manufacturing facility for each of the three blade sizes, which was used for determining the cost of labor and overhead (capital equipment and facilities). Each of the three potential manufacturing facilities was sized to provide a constant annual rated power production (MW per year) of the blades it produced. The cost of the production tooling and overland transportation was also estimated. The results indicate that as blades get larger, materials become a greater proportion of total cost, while the percentage of labor cost is decreased. Transportation costs decreased as a percentage of total cost. The study also suggests that blade cost reduction efforts should focus on reducing material cost and lowering manufacturing labor, because cost reductions in those areas will have the strongest impact on overall blade cost.

ASHWILL, THOMAS D.

2003-05-01T23:59:59.000Z

218

Cost estimate of initial SSC experimental equipment  

SciTech Connect (OSTI)

The cost of the initial detector complement at recently constructed colliding beam facilities (or at those under construction) has been a significant fraction of the cost of the accelerator complex. Because of the complexity of large modern-day detectors, the time-scale for their design and construction is comparable to the time-scale needed for accelerator design and construction. For these reasons it is appropriate to estimate the cost of the anticipated detector complement in parallel with the cost estimates of the collider itself. The fundamental difficulty with this procedure is that, whereas a firm conceptual design of the collider does exist, comparable information is unavailable for the detectors. Traditionally, these have been built by the high energy physics user community according to their perception of the key scientific problems that need to be addressed. The role of the accelerator laboratory in that process has involved technical and managerial coordination and the allocation of running time and local facilities among the proposed experiments. It seems proper that the basic spirit of experimentation reflecting the scientific judgment of the community should be preserved at the SSC. Furthermore, the formal process of initiation of detector proposals can only start once the SSC has been approved as a construction project and a formal laboratory administration put in place. Thus an ad hoc mechanism had to be created to estimate the range of potential detector needs, potential detector costs, and associated computing equipment.

NONE

1986-06-01T23:59:59.000Z

219

Estimated Cost Description Determination Date:  

Broader source: Energy.gov (indexed) [DOE]

Title, Location Title, Location Estimated Cost Description Determination Date: 2010 LCLS Undulator 2 is envisioned to be a 0.2 - 2keV FEL x-ray source, capable of delivering x-rays to End Station A (ESA), located in the existing Research Yard at SLAC. It will also be configurable as a non- FEL hard x-ray source capable of delivering a chirped x-ray pulse for single-shot broad-spectrum measurements. The project would entail reconstruction of the electron beam transport to End Station A, construction and installation of a new undulator in the tunnel upstream of ESA and beam dump, and construction and installation of x-ray transport, optics, and diagnostics in ESA. It also includes the construction of an annex to End Station A , providing hutches for experiment stations.

220

Cost Model and Cost Estimating Software  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter discusses a formalized methodology is basically a cost model, which forms the basis for estimating software.

1997-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Cost Effective Condominium Construction Project in Addis Ababa.  

E-Print Network [OSTI]

??Housing is a basic need for civilized living. In many developing countries, housing inadequacies and backlog have been increasing mainly due galloping increase in population;… (more)

Berhanu Adane, Mesfin T/ Giorgis

2012-01-01T23:59:59.000Z

222

Kostnadsstyrning i Byggprojekt; Cost management of construction project.  

E-Print Network [OSTI]

?? Föreliggande rapport är ett examensarbete vid högskoleingenjörsprogrammet i byggteknik och design vid Kungliga tekniska högskolan i Haninge och gjordes pĺ uppdrag av Siljeströms AB. Rapporten har… (more)

Björk, Veronica

2012-01-01T23:59:59.000Z

223

COST BREAKDOWN AWARD NO: START DATE: EXPIRATION DATE: FISCAL...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COST BREAKDOWN AWARD NO: START DATE: EXPIRATION DATE: FISCAL YEAR BREAKDOWN OF FUNDS ELEMENTS FY FY FY FY FY TOTAL Direct Labor Overhead Materials Supplies Travel Other Direct...

224

Evaluation of desalination costs with DEEP  

Science Journals Connector (OSTI)

Detailed analysis has shown several discrepancies and pitfalls of coupling an economic evaluation code, such as SEMER to the desalination cost evaluation code DEEP. This paper resumes our findings, which may be of interest to other DEEP users. The paper in particular deals with the following issues: why is it that power costs from nuclear systems are systematically higher in DEEP than those given by the economic evaluations made by individual organisations, (in our case, the SEMER code for example), even when the calculated construction costs are input into DEEP? Why corresponding power costs for fossil energy systems are lower? Why in particular desalination costs from Gas-Turbine Combined Cycle power system, which is now considered to be the cheapest fossil fuel option, are higher than desalination costs by Pulverised Coal system? Why DEEP calculation results with the backup heat source are 40% higher than those without the backup heat source?

S. Nisan; Linda Volpi

2004-01-01T23:59:59.000Z

225

Cost Study Manual  

Broader source: Energy.gov (indexed) [DOE]

28, 2012 28, 2012 Cost Study Manual Executive Summary This Cost Study Manual documents the procedures for preparing a Cost Study to compare the cost of a contractor's employee benefits to the industry average from a broad-based national benefit cost survey. The annual Employee Benefits Cost Study Comparison (Cost Study) assists with the analysis of contractors' employee benefits costs. The Contracting Officer (CO) may require corrective action when the average benefit per capita cost or the benefit cost as a percent of payroll exceeds the comparator group by more than five percent. For example, if per capita benefit costs for the comparator group are $10,000 and the benefit costs as a percent of payroll for the comparator group are 20%, the threshold for the contractor's benefits as a

226

Activity Based Costing  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Activity Based Costing (ABC) is method for developing cost estimates in which the project is subdivided into discrete, quantifiable activities or a work unit. This chapter outlines the Activity Based Costing method and discusses applicable uses of ABC.

1997-03-28T23:59:59.000Z

227

Career Map: Construction Worker  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Construction Worker positions.

228

Obama Administration Announces Loan Guarantees to Construct New Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

THE DEPARTMENT OF ENERGY Office of Public Affairs Department of Energy Announces $40 Million to Develop the Next Generation Nuclear Plant WASHINGTON, DC ďż˝ U.S. Secretary of Energy Steven Chu today announced selections for the award of approximately $40 million in total to two teams led by Pittsburgh-based Westinghouse Electric Co. and San Diego-based General Atomics for conceptual design and planning work for the Next Generation Nuclear Plant (NGNP). The results of this work will help the Administration determine whether to proceed with detailed efforts toward construction and demonstration of the NGNP. If successful, the NGNP Demonstration Project will demonstrate high-temperature gas-cooled reactor technology that will be capable of producing electricity as well as process heat for industrial applications and will be configured for low technical and safety risk with highly reliable operations. Final cost-shared awards are subject to the negotiation of acceptable terms and conditions.

229

Rangeland Resource Management for Texans: Total Resource Management  

E-Print Network [OSTI]

The Total Resource Management approach helps ranchers make strategic, tactical and operational decisions for the best, most cost-effective use of resources. This publication offers step-by-step directions for implementing TRM for a profitable...

Hanselka, C. Wayne; Fox, William E.; White, Larry D.

2004-03-26T23:59:59.000Z

230

Methods | Transparent Cost Database  

Open Energy Info (EERE)

information NREL has developed the following cost of energy tools: System Advisor Model (SAM): https:sam.nrel.gov SAM makes performance predictions and cost of...

231

Calculating Cost Savings from FY08 Pollution Prevention Projects Purpose: To ensure a standard and credible method is used to compare the cost savings of all pollution prevention  

E-Print Network [OSTI]

Calculating Cost Savings from FY08 Pollution Prevention Projects Purpose: To ensure a standard and credible method is used to compare the cost savings of all pollution prevention proposals, allowing `apples = UTotal Project Cost Annual Project Savings Total Project Cost = all costs for implementation, including

232

Costing for National Electricity Interventions to Increase Access to Energy, Health Services, and Education  

E-Print Network [OSTI]

Costing for National Electricity Interventions to Increase Access to Energy, Health Services ..................................................................................................... 6 2 Earth Institute Electricity Planning and Investment Costing Model........................................................................... 21 4.1 Total costs of electricity distribution scale-up............................

Modi, Vijay

233

The Costs and Benefits of Compliance with Renewable Portfolio Standards: Reviewing Experience to Date  

E-Print Network [OSTI]

of the 9.2 ˘/kWh retail electricity cost in 2012 across theof total retail electricity costs. Again, comparabilityprojected increase in electricity costs to meet a 33% RPS in

Heeter, Jenny

2014-01-01T23:59:59.000Z

234

21 briefing pages total  

Broader source: Energy.gov (indexed) [DOE]

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

235

Information erasure without an energy cost  

E-Print Network [OSTI]

Landauer argued that the process of erasing the information stored in a memory device incurs an energy cost in the form of a minimum amount of mechanical work. We find, however, that this energy cost can be reduced to zero by paying a cost in angular momentum or any other conserved quantity. Erasing the memory of Maxwell's demon in this way implies that work can be extracted from a single thermal reservoir at a cost of angular momentum and an increase in total entropy. The implications of this for the second law of thermodynamics are assessed.

Joan A. Vaccaro; Stephen M. Barnett

2010-04-29T23:59:59.000Z

236

23rd steam-station cost survey  

SciTech Connect (OSTI)

The results of the 23rd Steam Station Cost Survey covering the year 1982 are summarized. The major categories of the survey are as follows: general data; output data, 1982; fuel consumption, 1982; operation 1982 (mills/net kWh); investment ($/net kWh); energy cost, 1982 (mills/net kWh); and station performance, 1982. Thirty-one fossil-fuel steam plants and four nuclear stations were included in the survey. Fuel and operating cost increases are felt to be responsible for the moderate rise in total busbar-enery costs. 11 figures, 1 table.

Friedlander, G.D.; Going, M.C.

1983-11-01T23:59:59.000Z

237

Highly Insulating Windows - Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost Cost The following is an estimate of the cost effective incremental cost of highly-insulating windows (U-factor=0.20 Btu/hr-ft2-F) compared to regular ENERGY STAR windows (U-factor 0.35 Btu/hr-ft2-F). Energy savings from lower U-factors were simulated with RESFEN over an assumed useful window life of 25 years. To determine the maximum incremental cost at which highly-insulating windows would still be cost-effective, we used a formula used by many utility companies to calculate the cost of saved energy from energy efficiency programs, based on the programs' cost and savings. We turned this formula around so that the cost of saved energy equals the present energy prices in the studied locations, whereas the program cost (the incremental cost of the windows) is the dependent variable. By entering 5%

238

Total Precipitable Water  

SciTech Connect (OSTI)

The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

None

2012-01-01T23:59:59.000Z

239

Total Sustainability Humber College  

E-Print Network [OSTI]

1 Total Sustainability Management Humber College November, 2012 SUSTAINABILITY SYMPOSIUM Green An Impending Global Disaster #12;3 Sustainability is NOT Climate Remediation #12;Our Premises "We cannot, you cannot improve it" (Lord Kelvin) "First rule of sustainability is to align with natural forces

Thompson, Michael

240

INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE ...  

Broader source: Energy.gov (indexed) [DOE]

INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating...

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Public Sector New Construction and Retrofit Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Public Sector New Construction and Retrofit Program Public Sector New Construction and Retrofit Program Public Sector New Construction and Retrofit Program < Back Eligibility Fed. Government Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Appliances & Electronics Ventilation Heat Pumps Commercial Lighting Lighting Manufacturing Insulation Water Heating Windows, Doors, & Skylights Maximum Rebate Bonus maximum: $100,000 All incentives: $2.50/sq. ft. (base plus bonus), $300,000, 75% of project costs, and 100% of incremental costs Program Info Funding Source Illinois Energy Efficiency Portfolio Standard (EEPS) surcharge for Ameren,

242

Contracting with reading costs and renegotiation costs  

E-Print Network [OSTI]

OF CALIFORNIA, SAN DIEGO Contracting with Reading Costs andrents, and the competitive contracting process. Journal ofReiche. Foundation of incomplete contracting in a model of

Brennan, James R.

2007-01-01T23:59:59.000Z

243

Cost Estimation Package  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter focuses on the components (or elements) of the cost estimation package and their documentation.

1997-03-28T23:59:59.000Z

244

Life Cycle Cost Estimate  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

1997-03-28T23:59:59.000Z

245

A chronicle of costs  

SciTech Connect (OSTI)

This report contains the history of all estimated costs associated with the superconducting super collider.

Elioff, T.

1994-04-01T23:59:59.000Z

246

Environmental and Cost Synergy in Supply Chain Network Integration Mergers and Acquisitions  

E-Print Network [OSTI]

with the minimization of the total costs and the total emissions under firm-specific weights. We propose a synergy measure that captures the total generalized cost. We then apply the new mathematical framework to quantifyEnvironmental and Cost Synergy in Supply Chain Network Integration in Mergers and Acquisitions Anna

Nagurney, Anna

247

Physician Cost Profiling — Reliability and Risk of Misclassification  

Science Journals Connector (OSTI)

...and reliability the proportion of variability in a measure that is due to real differences in performance. The use of episode-grouping tools is accepted as a valid means of constructing clinically homogeneous cost groups. With respect to cost profiling, validity indicates whether the method of assigning... Some insurance companies are offering patients incentives to choose lower-cost physicians. This study shows that the current methods used to generate physicians' cost profiles do not have high reliability and that the systems using these cost profiles to identify lower-cost physicians will incorrectly classify many physicians.

Adams J.L.Mehrotra A.Thomas J.W.McGlynn E.A.

2010-03-18T23:59:59.000Z

248

Carbon Capture and Mineralization in Singapore: Preliminary Environmental Impacts and Costs via LCA  

Science Journals Connector (OSTI)

Carbon Capture and Mineralization in Singapore: Preliminary Environmental Impacts and Costs via LCA ... The total energy and CO2 emissions of a mineral carbonation process are investigated using a life cycle assessment (LCA). ... The LCA investigation takes into account the energy and greenhouse gas emissions from mineral mining operations and shipment from Australia, the recovery of CO2 based on amine scrubbing technology (if required), and two possible options for mineral carbonation in Singapore where the final carbonate products have potential use in the construction industry and as land reclamation material. ...

Hsien H. Khoo; Paul N. Sharratt; Jie Bu; Tze Y. Yeo; Armando Borgna; James G. Highfield; Thomas G. Bjo?rklo?f; Ron Zevenhoven

2011-08-25T23:59:59.000Z

249

Early Station Costs Questionnaire  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Early Station Costs Questionnaire Early Station Costs Questionnaire Marc Melaina Hydrogen Technologies and Systems Center Market Readiness Workshop February 16-17th, 2011 Washington, DC Questionnaire Goals * The Early Station Costs questionnaire provides an anonymous mechanism for organizations with direct experience with hydrogen station costs to provide feedback on current costs, near-term costs, economies of scale, and R&D priorities. * This feedback serves the hydrogen community and government agencies by increasing awareness of the status of refueling infrastructure costs National Renewable Energy Laboratory Innovation for Our Energy Future Questions for Market Readiness Workshop Attendees * Are these questions the right ones to be asking?

250

Low Cost, Durable Seal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost, Durable Seal Cost, Durable Seal George M. Roberts UTC Power Corporation February 14, 2007 This presentation does not contain any proprietary or confidential information 1 LOW COST, DURABLE SEAL Outline * Project Objective * Technical Approach * Timeline * Team Roles * Budget * Q&A 2 LOW COST, DURABLE SEAL Project Objective Develop advanced, low cost, durable seal materials and sealing techniques amenable to high volume manufacture of PEM cell stacks. DOE Targets/Goals/Objectives Project Goal Durability Transportation: 5,000 hr Stationary: 40,000 hr Durability Improve mechanical and chemical stability to achieve 40,000 hr of useful operating life. Low Cost Low Cost A material cost equivalent to or less than the cost of silicones in common use. 3 LOW COST, DURABLE SEAL

251

The social costs of child abuse in Japan  

Science Journals Connector (OSTI)

Abstract The present study calculates the social costs of child abuse in Japan. The items calculated included the direct costs of dealing with abuse and the indirect costs related to long-term damage from abuse during the fiscal year 2012 (April 1, 2012, to March 31, 2013). Based on previous studies on the social costs of child abuse and peripheral matters conducted in other countries, the present study created items for the estimable direct costs and indirect costs of child abuse, and calculated the cost of each item. Among indirect costs, future losses owing to child abuse were calculated using extra costs with a discount rate of 3%. The social cost of child abuse in Japan in the fiscal year 2012 was at least Ą1.6 trillion ($16 billion). The direct costs totaled Ą99 billion ($1 billion), and the indirect costs totaled Ą1.5 trillion ($15 billion). This sum of Ą1.6 trillion for only the year 2012 is almost equal to the total amount of damages of Ą1.9 trillion caused by the 2011 Tohoku Earthquake and Tsunami in Fukushima Prefecture. Moreover, abuse is a serious problem that occurs every year and has recurring costs, unlike a natural calamity. However, Japan has no system for calculating the long-term effects of abuse. Therefore, owing to the scarcity of data, the calculations in the present study may underestimate the true costs.

Ichiro Wada; Ataru Igarashi

2014-01-01T23:59:59.000Z

252

Total Cross Sections for Neutron Scattering  

E-Print Network [OSTI]

Measurements of neutron total cross-sections are both extensive and extremely accurate. Although they place a strong constraint on theoretically constructed models, there are relatively few comparisons of predictions with experiment. The total cross-sections for neutron scattering from $^{16}$O and $^{40}$Ca are calculated as a function of energy from $50-700$~MeV laboratory energy with a microscopic first order optical potential derived within the framework of the Watson expansion. Although these results are already in qualitative agreement with the data, the inclusion of medium corrections to the propagator is essential to correctly predict the energy dependence given by the experiment.

C. R. Chinn; Ch. Elster; R. M. Thaler; S. P. Weppner

1994-10-19T23:59:59.000Z

253

Vehicle Cost Calculator | Open Energy Information  

Open Energy Info (EERE)

Vehicle Cost Calculator Vehicle Cost Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Vehicle Cost Calculator Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Transportation Phase: Evaluate Options Resource Type: Online calculator User Interface: Website Website: www.afdc.energy.gov/calc/ Web Application Link: www.afdc.energy.gov/calc/ OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: Vehicle Cost Calculator[1] Logo: Vehicle Cost Calculator Calculate the total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Overview This tool uses basic information about your driving habits to calculate

254

Architecture Engineering Construction (AEC)  

E-Print Network [OSTI]

Architecture Engineering Construction (AEC) Presented to FM Staff February 25, 2009 Updated March 1, 2010 #12;University of Maryland Baltimore Director Architecture, Engineering and Construction Vacant Administration & Finance Kathleen M. Byington #12;Division of Facilities Management Architecture, Engineering

Weber, David J.

255

SunShot Initiative: Transformational Approach to Reducing the Total System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transformational Approach to Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics to someone by E-mail Share SunShot Initiative: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics on Facebook Tweet about SunShot Initiative: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics on Twitter Bookmark SunShot Initiative: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics on Google Bookmark SunShot Initiative: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics on Delicious Rank SunShot Initiative: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics on Digg

256

Cost Modeling and Design Techniques for Integrated Package Distribution Systems  

E-Print Network [OSTI]

Cost Modeling and Design Techniques for Integrated Package Distribution Systems Karen R. Smilowitz idealizations of network geometries, operating costs, demand and customer distributions, and routing patterns that approximate the total cost of operation. The design problem is then reduced to a series of optimization

Daganzo, Carlos F.

257

COST SHARING ON SPONSORED PROJECTS California Institute of Technology  

E-Print Network [OSTI]

COST SHARING ON SPONSORED PROJECTS California Institute of Technology Pasadena, California 1 of 4 7/14/2004 Issuing Authority: Office of Financial Services Effective Date: October 1, 2003 Definitions: Cost sharing is that portion of the total cost of a research or other externally funded project that is not funded

Goddard III, William A.

258

Quality Cost Analysis: Benefits and Risks Copyright Cem Kaner  

E-Print Network [OSTI]

Quality Cost Analysis: Benefits and Risks Copyright © Cem Kaner January, 1996 All rights reserved quality-related costs as a means of communication between the quality staff departments and the company of quality-related costs since 1951. Feigenbaum made it one of the core ideas underlying the Total Quality

259

Project Construction | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Project Construction Project Construction Project Construction October 16, 2013 - 5:14pm Addthis Building Design Project Construction Commisioning Integrating renewable energy into Federal new construction or major renovations requires effective structuring of the construction team and project schedule. This overview discusses key construction team considerations for renewable energy as well as timing and expectations for the construction phase. The project construction phase begins after a project is completely designed and the construction documents (100%) have been issued. Construction team skills and experience with renewable energy technologies are crucial during construction, as is how the integration of renewable energy affects the project construction schedule. Construction Team

260

Aquifer thermal energy storage costs with a seasonal heat source.  

SciTech Connect (OSTI)

The cost of energy supplied by an aquifer thermal energy storage (ATES) system from a seasonal heat source was investigated. This investigation considers only the storage of energy from a seasonal heat source. Cost estimates are based upon the assumption that all of the energy is stored in the aquifer before delivery to the end user. Costs were estimated for point demand, residential development, and multidistrict city ATES systems using the computer code AQUASTOR which was developed specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on ATES costs were: cost of purchased thermal energy; cost of capital; source temperature; system size; transmission distance; and aquifer efficiency. ATES-delivered energy costs are compared with the costs of hot water heated by using electric power or fuel-oils. ATES costs are shown as a function of purchased thermal energy. Both the potentially low delivered energy costs available from an ATES system and its strong cost dependence on the cost of purchased thermal energy are shown. Cost components for point demand and multi-district city ATES systems are shown. Capital and thermal energy costs dominate. Capital costs, as a percentage of total costs, increase for the multi-district city due to the addition of a large distribution system. The proportion of total cost attributable to thermal energy would change dramatically if the cost of purchased thermal energy were varied. It is concluded that ATES-delivered energy can be cost competitive with conventional energy sources under a number of economic and technical conditions. This investigation reports the cost of ATES under a wide range of assumptions concerning parameters important to ATES economics. (LCL)

Reilly, R.W.; Brown, D.R.; Huber, H.D.

1981-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Operations Cost Allocation Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Operations Consolidation Project Operations Consolidation Project Operations Consolidation Project (OCP) Cost Allocation Presentation - September 20, 2011 OCP Cost Allocation Customer Presentation List of Acronyms OCP Cost Allocation Spreadsheets OCP Cost Allocation Customer Presentation - Questions and Answers - September 19 - 20, 2011 Additional Questions and Answers Customer Comments/Questions and Answers: Arizona Municipal Power Users Association Arizona Power Authority Central Arizona Project Colorado River Commission Colorado River Energy Distributors Association City of Gilbert, AZ Irrigation and Electrical Districts Association of Arizona Town of Marana, AZ City of Mesa, AZ Town of Wickenburg, AZ Western's Final Decision Regarding the Long-Term Cost Allocation Methodology for Operations Staff Costs

262

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

263

Constructability -- from Qinshan to the ACR  

SciTech Connect (OSTI)

Atomic Energy of Canada Limited (AECL) has recognized the importance of constructability for many years, and it is applying its principals to CANDU projects with increasing success. The CANDU 6 Nuclear Power Plant has been constructed eleven times in the last 25 years. However, the last two units completed on the Qinshan project in China have employed some very innovative construction methods that have not been used on the previous units. In order to make nuclear power generation more competitive, shorter construction schedules and reduced project cost and risks are essential objectives. The application of constructability principles is a major contributor to achieving these objectives. The success of Qinshan has increased the confidence in the new construction methods, which are being implemented on the ACR (Advanced CANDU Reactor) successfully. An ACR construction strategy that utilizes advanced construction techniques has been developed by AECL. The strategy includes paralleling of activities by using extensive modularization and the vertical installation of equipment and modules into the reactor building using a VHL (Very Heavy Lift) crane. This strategy allows short schedules to be met with a minimum risk to the project.

Elgohary, Medhat; Fairclough, Neville; Ricciuti, Rick

2003-09-01T23:59:59.000Z

264

Determination of Total Solids in Biomass and Total Dissolved...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 3312008 A. Sluiter, B. Hames, D. Hyman, C. Payne,...

265

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies Using  

Broader source: Energy.gov (indexed) [DOE]

Costs to Implement Greenhouse Gas Mitigation Strategies Costs to Implement Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings Estimate Costs to Implement Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings October 7, 2013 - 11:25am Addthis After determining the best greenhouse gas (GHG) reduction strategies using renewable energy, a Federal agency should estimate the cost of implementing them in a building or buildings. There are several cost factors that need to be considered when developing a renewable energy project. Capital costs, fixed and variable operations and maintenance (O&M) costs and in the case of biomass and waste-to-energy projects, fuel costs all contribute to the total cost of operating a renewable energy system. The levelized system cost takes into account these

266

Hydrogen Threshold Cost Calculation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Record (Offices of Fuel Cell Technologies) Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing vehicles [gasoline in hybrid-electric vehicles (HEVs)] in 2020. This record documents the methodology and assumptions used to calculate that threshold cost. Principles: The cost threshold analysis is a "top-down" analysis of the cost at which hydrogen would be

267

Hydrogen Pathway Cost Distributions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pathway Cost Distributions Pathway Cost Distributions Jim Uihlein Fuel Pathways Integration Tech Team January 25, 2006 2 Outline * Pathway-Independent Cost Goal * Cost Distribution Objective * Overview * H2A Influence * Approach * Implementation * Results * Discussion Process * Summary 3 Hydrogen R&D Cost Goal * Goal is pathway independent * Developed through a well defined, transparent process * Consumer fueling costs are equivalent or less on a cents per mile basis * Evolved gasoline ICE and gasoline-electric hybrids are benchmarks * R&D guidance provided in two forms * Evolved gasoline ICE defines a threshold hydrogen cost used to screen or eliminate options which can't show ability to meet target * Gasoline-electric hybrid defines a lower hydrogen cost used to prioritize projects for resource allocation

268

Cost-Benefit Analysis  

Science Journals Connector (OSTI)

cost-benefit analysis is an analytical procedure for determining the economic efficiency of intervention, expressed as the relationship between costs and outcomes, usually measured in monetary terms. In othe...

2008-01-01T23:59:59.000Z

269

Cost-Efficiency  

Science Journals Connector (OSTI)

Cost?efficiency is a goal that has been integrated by policy makers into all modern health care systems to control the expansion of costs over time. It relates to maximizing the quality of a comparable unit ...

2008-01-01T23:59:59.000Z

270

About Cost Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from the university, fee-for-service contracts, as well as establishing CAMD as a cost center. We know that our users are reluctant to see CAMD become a cost center, however...

271

Costs of Electricity  

Science Journals Connector (OSTI)

A major reason for the decreased interest in the building of new nuclear power plants in recent years has been the relatively high cost of nuclear power. In this section, we will consider the role of costs in electricity

2005-01-01T23:59:59.000Z

272

Direct/Indirect Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter provides recommended categories for direct and indirect elements developed by the Committee for Cost Methods Development (CCMD) and describes various estimating techniques for direct and indirect costs.

1997-03-28T23:59:59.000Z

273

Cost Optimal Energy Performance  

Science Journals Connector (OSTI)

EPBD recast requires Member States (MS) to ensure that minimum energy performance requirements of buildings are set with a view to achieving cost optimal levels using a comparative methodology framework...1]. Cost

Jarek Kurnitski

2013-01-01T23:59:59.000Z

274

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

275

Achieving the 30% Goal: Energy and Cost Savings Analysis of ASHRAE Standard  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the 30% Goal: Energy and Cost Savings Analysis of ASHRAE Standard the 30% Goal: Energy and Cost Savings Analysis of ASHRAE Standard 90.1-2010 This report documents the progress indicator (PI) process and analysis that Pacific Northwest National Laboratory (PNNL) developed to evaluate the potential energy savings from the application of ASHRAE Standard 90.1-2010 to building design and construction compared to the application of ASHRAE Standard 90.1-2004. The report describes PNNL's EnergyPlus simulation framework, and the building prototype simulation models. The combined upgrades from ASHRAE Standard 90.1 -2004 to ASHRAE Standard 90.1-2010 are described, and consist of a total of 153 approved addenda (44 addenda to ASHRAE Standard 90.1-2007 and 109 addenda to ASHRAE Standard 90.1-2010). PNNL reviewed and considered all 153 addenda for quantitative analysis in

276

Cost Containment and Productivity  

E-Print Network [OSTI]

Cost Containment and Productivity Faculty Assembly Presentation January 22, 2013 Arthur G. Ramicone, CFO David N. DeJong, Vice Provost, Academic Planning and Resources Management #12;Cost Containment Resources to Enhance the Student Experience · Reduce the Cost and Complexity of Administrative Operations

Jiang, Huiqiang

277

Power Plant Cycling Costs  

SciTech Connect (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

278

Lunch & Learn Cost Sharing  

E-Print Network [OSTI]

Lunch & Learn Cost Sharing #12;Today's Agenda Policy Procedures OMNI Child Budget Setup Transactions in OMNI FACET Common Issues #12;Cost Sharing Policy http://www.research.fsu.edu/contractsgra nts ­ Not quantified ­ Do not have to account for and report #12;Cost Sharing Procedures http

McQuade, D. Tyler

279

Estimated Cost Description Determination Date:  

Broader source: Energy.gov (indexed) [DOE]

and posted 2/10/2011 and posted 2/10/2011 *Title, Location Estimated Cost Description Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain $50,000 FONSI: uncertain Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain FONSI: uncertain Total Estimated Cost $70,000 Attachment: Memo, Moody to Marcinowski, III, SUBJECT: NEPA 2011 APS for DOE-SRS, Dated: Annual NEPA Planning Summary Environmental Assessments (EAs) Expected to be Initiated in the Next 12 Months Department of Energy (DOE) Savannah River Site (SRS) Jan-11 Estimated Schedule (**NEPA Milestones) South Carolina Department of Health and Environmental Control (SCDHEC) issued a National Pollutant Discharge Elimination System (NPDES) Industrial Stormwater General Permit (IGP) # SCR000000 November 12, with an effective date of January

280

Buildings Energy Data Book: 1.3 Value of Construction and Research  

Buildings Energy Data Book [EERE]

9 9 Number of Construction Employees and Total Employees for Select Building Equipment Industries (Thousand Employees) Electrical Contractors and Other Wiring Installation Contractors (NAICS 238210) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Plumbing, Heating, and Air-Conditioning Contractors (NAICS 238220) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Other Building Equipment Contractors (NAICS 238290) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Source(s): Bureau of Labor Statistics, Occupational Employment and Wage Estimates: 2002 OES Estimates for 2002 Data, November 2004 OES Estimates for 2004 Data, May 2006 Estimates for 2006 Data, May 2008 Estimates for 2008 Data, May 2010 Estimates for 2010 Data. Available at

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Construction | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Construction Construction Construction In neighborhoods all across the country, the Energy Department's Better Buildings Neighborhood Program is helping families and business owners make energy efficiency upgrades that are saving them money and improving the comfort of our buildings. Learn more about the Better Buildings Neighborhood Program. In neighborhoods all across the country, the Energy Department's Better Buildings Neighborhood Program is helping families and business owners make energy efficiency upgrades that are saving them money and improving the comfort of our buildings. Learn more about the Better Buildings Neighborhood Program. Learn about the energy-efficient construction projects that are saving businesses and communities money while creating jobs.

282

Construction of Channels (Indiana)  

Broader source: Energy.gov [DOE]

Permission is required from the Natural Resources Commission is required for the construction or alteration of artificial channels or improved channels of natural watercourses that connect to any...

283

Cost Function Estimates  

Science Journals Connector (OSTI)

Abstract The cost function describes the cost-minimizing combinations of inputs required for production of different levels of output. Empirical cost function studies take both short-run and long-run approaches and can be structurally consistent with microeconomic theory versus more behavioral or real-world data oriented. Studies of health care providers face numerous challenges including the multiproduct nature of the firm, difficulty in controlling for quality of service, and frequent failure of the profit-maximization assumption. Cost function applications in health care are numerous and include such topics as optimal firm size, performance inefficiency measures, and comparisons of production costs with third-party payments.

K. Carey

2014-01-01T23:59:59.000Z

284

Types of Cost Estimates  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The chapter describes the estimates required on government-managed projects for both general construction and environmental management.

1997-03-28T23:59:59.000Z

285

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

286

Cost effective lighting  

SciTech Connect (OSTI)

Long-life replacement lamps for the incandescent lamp have been evaluated with regard to their cost effectiveness. The replacements include the use of energy buttons that extend lamp life as well as an adaptive fluorescent circline lamp that will fit into existing incandescent lamp sockets. The initial, operating, and replacement costs for one million lumen-hours are determined for each lamp system. We find the most important lighting cost component is the operating cost. Using lamps that are less efficient or devices that cause lamps to operate less efficiently are not cost-effective. The adaptive fluorescent circline lamp, even at an initial cost of $15.00, is the most cost effective source of illumination compared to the incandescent lamp and lamp systems examined. 3 refs., 6 tabs.

Morse, O.; Verderber, R.

1987-07-01T23:59:59.000Z

287

Validating the Estimated Cost of Saving Water Through Infrastructure Rehabilitation in the Texas Lower Rio Grande Valley (Hidalgo County Irrigation District No. 1)  

E-Print Network [OSTI]

A Case Study Using Actual Construction Costs for the Curry Main Pipeline Project, Hidalgo County Irrigation District No. 1 (Edinburg)...

Lacewell, R. D.; Rister, M.; Sturdivant, A. W.

288

Reclamation cost inputs for the resource allocation and mine costing model. Final working paper  

SciTech Connect (OSTI)

The purpose of this study is to improve estimates of surface mining reclamation cost components used as inputs to the Energy Information Administration's Resource Allocation and Mine Costing (RAMC) model. Costs ignored by the RAMC equations and input separately into the model on a regional basis were the focus of this study. Estimates of costs associated with the following reclamation activities were developed: valley fill construction, topsoil handling, runoff and diversion ditch construction and backfilling, sediment pond construction and backfilling, final pit backfilling and highwall reduction, revegetation, and permitting. For each activity, separate estimates were developed by cost component (initial capital, deferred capital, and annual operating), region (central Appalachia, northern Appalachia, the Midwest, and the West), and overburden ratio. For the first five activities, a ''composite mine'' approach was used. Basic engineering data on the quantity of material moved, and the distance over which it is moved, were obtained on a task-by-task basis for regional samples of actual mining operations. Mine permit applications filed with state and federal regulatory agencies were used as the source of these data. On the basis of the collected data, average material quantities and transportation distances were calculated for each region and reclamation task; these averages were used as the composite mine specifications assumed to be representative of the typical earthmoving requirements associated with each task in each region. Revegetation costs were estimated on the basis of published or publicly available data representing either the actual or estimated costs to state governments of revegetating abandoned mine sites. Permitting costs were developed on the basis of estimates of typical regional permitting costs solicited from engineering contractors providing permitting services to the coal industry. 11 tabs.

Not Available

1984-11-30T23:59:59.000Z

289

Cost Model for Digital Curation: Cost of Digital Migration  

E-Print Network [OSTI]

Steece, B. 2000. Software cost estimation with COCOMO II.Developing a Framework of Cost Elements for PreservingAshley, K. 1999. Digital archive costs: Facts and fallacies.

Kejser, Ulla Břgvad; Nielsen, Anders Bo; Thirifays, Alex

2009-01-01T23:59:59.000Z

290

Private trucking costs and records  

E-Print Network [OSTI]

were asked of the appro- priate officials in each case. Tbe interviewer observed the methods of keeping cost and operating statistics in order to determine the different systems in use and also to estimate the time and expense involved in keeping... TBB OHR4TIOI Oy TBBXR OMN TROCHE FLBBT@?1956 Losel Xaeareity Total Operation Rsysaeaa: Qrkviag Bayeaaes Motor tueL aa6 Oil Other operatiaO Bryaaeea 855, 104. 00 62?915 ?00 oO? 91?979?$65?00 040?0$7. 00 197 ' 725 ?00 62)054?667?00 911, 7...

Haning, Charles R

2012-06-07T23:59:59.000Z

291

Interdisciplinary Institute for Innovation Revisiting the cost escalation  

E-Print Network [OSTI]

Interdisciplinary Institute for Innovation Revisiting the cost escalation curse of nuclear power@mines-paristech.fr hal-00780566,version1-24Jan2013 #12;Revisiting the cost escalation curse of nuclear power. New lessons the first wave of nuclear reactors in 1970 to the construction of Generation III+ reactors in Finland

Boyer, Edmond

292

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

293

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

294

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

295

ENVIRONMENTAL CONSTRUCTABILITY IN  

E-Print Network [OSTI]

Engineering Storm Water Quality #12;Linear Construction Flux · Natural resource protection is a design and phase of construction, from start to finish · Be fair for both engineer and contractor · Develop.eqb.state.mn.us/EnvRevGuidanceDocuments.htm Highway Project Design Process (HPDP) Subject Guidance Accessibility Requirements Air Quality Airports

Minnesota, University of

296

Cost per-User as Key Factor in Project Prioritization: A Case Study of the San Francisco Bay Area  

E-Print Network [OSTI]

signi?cant additional costs per ride to existing operations.total estimated investment cost of network-related. ll0V gapwould lower the estimated costs per Affected ride. pmjem was

Nuworsoo, Cornelius; Parks, Kamala; Deakin, Elizabeth

2006-01-01T23:59:59.000Z

297

Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California  

E-Print Network [OSTI]

and grid owners. Energy (and cost) savings might be found inSystem to Offset Peak Energy Cost at a Wastewater TreatmentSavings Estimation (GWh) Energy Costs Current Other Total

Xu, Tengfang

2011-01-01T23:59:59.000Z

298

Tracking the Sun III; The Installed Cost of Photovoltaics in the United States from 1998-2009  

E-Print Network [OSTI]

from 1998-2009 Tracking the Sun III: The Installed Cost ofSystems MW Total Tracking the Sun III: The Installed Cost ofthrough 2009. Tracking the Sun III: The Installed Cost of

Barbose, Galen

2011-01-01T23:59:59.000Z

299

Commercial equipment cost database  

SciTech Connect (OSTI)

This report, prepared for DOE, Office of Codes and Standards, as part of the Commercial Equipment Standards Program at Pacific Northwest Laboratory, specifically addresses the equipment cost estimates used to evaluate the economic impacts of revised standards. A database including commercial equipment list prices and estimated contractor costs was developed, and through statistical modeling, estimated contractor costs are related to equipment parameters including performance. These models are then used to evaluate cost estimates developed by the ASHRAE 90.1 Standing Standards Project Committee, which is in the process of developing a revised ASHRAE 90.1 standard. The database will also be used to support further evaluation of the manufacturer and consumer impacts of standards. Cost estimates developed from the database will serve as inputs to economic modeling tools, which will be used to estimate these impacts. Preliminary results suggest that list pricing is a suitable measure from which to estimate contractor costs for commercial equipment. Models developed from these cost estimates accurately predict estimated costs. The models also confirm the expected relationships between equipment characteristics and cost. Cost models were developed for gas-fired and electric water heaters, gas-fired packaged boilers, and warm air furnaces for indoor installation. Because of industry concerns about the use of the data, information was not available for the other categories of EPAct-covered equipment. These concerns must be addressed to extend the analysis to all EPAct equipment categories.

Freeman, S.L.

1995-01-01T23:59:59.000Z

300

Chapter 8: Constructing the Building  

Broader source: Energy.gov (indexed) [DOE]

: : Constructing the Building Developing a Construction Plan Writing Effective Construction Documents Safeguarding Design Goals During Construction Protecting the Site Low-Impact Construction Processes Protecting Indoor Air Quality Managing Construction Waste LANL | Chapter 8 Constructing the Building Developing a Construction Plan A high-performance design is a great achievement, but it doesn't mean much if the building isn't then built as intended. Getting from design to a completed project happens in two stages: 1) development of construction documents and 2) actual construction. To successfully implement a sustainable design, the construction docu- ments must accurately convey the specifics that deter- mine building performance, and they have to set up

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Total solar house description and performance  

SciTech Connect (OSTI)

The initial attempt to apply the Total Solar concept to a residence in the Philadelphia, Pennsylvania, area is described. A very large storage capacity has made it possible to use only solar energy for meeting the heating, cooling and hot water needs for the entire year, with a parasitic power penalty of about 3500 kWh. Winter temperatures were maintained at 68/sup 0/F with 60/sup 0/F night setback, summer at 76/sup 0/F. Occupant intervention was negligible and passive overheat was minimized. The extra cost for the system, approximately $30,000 is readily amortized by the savings in purchased energy.

Starobin, L. (Univ. of Pennsylvania, Philadelphia); Starobin, J.

1981-01-01T23:59:59.000Z

302

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... havior of the ratio of total quanta to total energy (Q : W) within the spectral region of photosynthetic ..... For blue-green waters, where hRmax lies.

2000-01-02T23:59:59.000Z

303

Methods | Transparent Cost Database  

Open Energy Info (EERE)

Methods Methods Disclaimer The data gathered here are for informational purposes only. Inclusion of a report in the database does not represent approval of the estimates by DOE or NREL. Levelized cost calculations DO NOT represent real world market conditions. The calculation uses a single discount rate in order to compare technology costs only. About the Cost Database For emerging energy technologies, a variety of cost and performance numbers are cited in presentations and reports for present-day characteristics and potential improvements. Amid a variety of sources and methods for these data, the Office of Energy Efficiency and Renewable Energy's technology development programs determine estimates for use in program planning. The Transparent Cost Database collects program cost and performance

304

The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs  

SciTech Connect (OSTI)

End-use energy efficiency is increasingly being relied upon as a resource for meeting electricity and natural gas utility system needs within the United States. There is a direct connection between the maturation of energy efficiency as a resource and the need for consistent, high-quality data and reporting of efficiency program costs and impacts. To support this effort, LBNL initiated the Cost of Saved Energy Project (CSE Project) and created a Demand-Side Management (DSM) Program Impacts Database to provide a resource for policy makers, regulators, and the efficiency industry as a whole. This study is the first technical report of the LBNL CSE Project and provides an overview of the project scope, approach, and initial findings, including: • Providing a proof of concept that the program-level cost and savings data can be collected, organized, and analyzed in a systematic fashion; • Presenting initial program, sector, and portfolio level results for the program administrator CSE for a recent time period (2009-2011); and • Encouraging state and regional entities to establish common reporting definitions and formats that would make the collection and comparison of CSE data more reliable. The LBNL DSM Program Impacts Database includes the program results reported to state regulators by more than 100 program administrators in 31 states, primarily for the years 2009–2011. In total, we have compiled cost and energy savings data on more than 1,700 programs over one or more program-years for a total of more than 4,000 program-years’ worth of data, providing a rich dataset for analyses. We use the information to report costs-per-unit of electricity and natural gas savings for utility customer-funded, end-use energy efficiency programs. The program administrator CSE values are presented at national, state, and regional levels by market sector (e.g., commercial, industrial, residential) and by program type (e.g., residential whole home programs, commercial new construction, commercial/industrial custom rebate programs). In this report, the focus is on gross energy savings and the costs borne by the program administrator—including administration, payments to implementation contractors, marketing, incentives to program participants (end users) and both midstream and upstream trade allies, and evaluation costs. We collected data on net savings and costs incurred by program participants. However, there were insufficient data on participant cost contributions, and uncertainty and variability in the ways in which net savings were reported and defined across states (and program administrators).

Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth; Schiller, Steven R.; Goldman, Charles A.; LaCommare, Kristina

2014-03-19T23:59:59.000Z

305

Costs of Oil Dependence: A 2000 Update  

SciTech Connect (OSTI)

Oil dependence remains a potentially serious economic and strategic problem for the United States. This report updates previous estimates of the costs of oil dependence to the U.S. economy and introduces several methodological enhancements. Estimates of the costs to the U.S. economy of the oil market upheavals of the last 30 years are in the vicinity of $7 trillion, present value 1998 dollars, about as large as the sum total of payments on the national debt over the same period. Simply adding up historical costs in 1998 dollars without converting to present value results in a Base Case cost estimate of $3.4 trillion. Sensitivity analysis indicates that cost estimates are sensitive to key parameters. A lower bound estimate of $1.7 trillion and an upper bound of $7.1 trillion (not present value) indicate that the costs of oil dependence have been large under almost any plausible set of assumptions. These cost estimates do not include military, strategic or political costs associated with U.S. and world dependence on oil imports.

Greene, D.L.

2000-05-17T23:59:59.000Z

306

Cost of Oil Dependence: A 2000 Update  

SciTech Connect (OSTI)

Oil dependence remains a potentially serious economic and strategic problem for the United States. This report updates previous estimates of the costs of oil dependence to the U.S. economy and introduces several methodological enhancements. Estimates of the costs to the U.S. economy of the oil market upheavals of the last 30 years are in the vicinity of $7 trillion, present value 1998 dollars, about as large as the sum total of payments on the national debt over the same period. Simply adding up historical costs in 1998 dollars without converting to present value results in a Base Case cost estimate of $3.4 trillion. Sensitivity analysis indicates that cost estimates are sensitive to key parameters. A lower bound estimate of $1.7 trillion and an upper bound of $7.1 trillion (not present value) indicate that the costs of oil dependence have been large under almost any plausible set of assumptions. These cost estimates do not include military, strategic or political costs associated with U.S. and world dependence on oil imports.

Greene, D.L.; Tishchishyna, N.I.

2000-05-01T23:59:59.000Z

307

Cost Comparison Among Concepts of Injection for CO2 Offshore Underground Sequestration Envisaged in Japan  

Science Journals Connector (OSTI)

Publisher Summary Japan is in the process of 5-year R&D program of underground storage of CO2, and this study was carried out as part of this program. Offshore saline aquifers are the target geological formation in this program because (1) most of large-scale emission sources of CO2 are located near the coast in Japan, (2) aquifers of large volume are expected to be found more in offshore than on land, and (3) site acquisition is much more costly on land. At present, the total time scheme of the sequestration process is assumed, which is based on practical results from similar processes such as large-scale underground storage of natural gas in aquifers. The total system of underground sequestration can be roughly divided into three processes: recovery, transportation, and injection. Although the methods of recovery and transportation have been well studied, the injection process has not been established as it is significantly affected by geographic, geological, and topographic features of the site. The cost of injection into an offshore aquifer varies with the method applied. One reason is that there are a variety of applicable designs and construction methods of wells and surface facilities (especially offshore) that depend on the conditions of injection site. The other reason is that there are many uncertainties in exploration and operation, as is the case with petroleum development. This chapter presents the results of the preliminary analysis on the costs of injection facilities.

Hironori Kotsubo; Takashi Ohsumi; Hitoshi Koide; Motoo Uno; Takeshi Ito; Toshio Kobayashi; Kozo Ishida

2003-01-01T23:59:59.000Z

308

LMFBR fuel component costs  

SciTech Connect (OSTI)

A significant portion of the cost of fabricating LMFBR fuels is in the non-fuel components such as fuel pin cladding, fuel assembly ducts and end fittings. The contribution of these to fuel fabrication costs, based on FFTF experience and extrapolated to large LMFBR fuel loadings, is discussed. The extrapolation considers the expected effects of LMFBR development programs in progress on non-fuel component costs.

Epperson, E.M.; Borisch, R.R.; Rice, L.H.

1981-10-29T23:59:59.000Z

309

Cost Estimating Handbook for Environmental Restoration  

SciTech Connect (OSTI)

Environmental restoration (ER) projects have presented the DOE and cost estimators with a number of properties that are not comparable to the normal estimating climate within DOE. These properties include: An entirely new set of specialized expressions and terminology. A higher than normal exposure to cost and schedule risk, as compared to most other DOE projects, due to changing regulations, public involvement, resource shortages, and scope of work. A higher than normal percentage of indirect costs to the total estimated cost due primarily to record keeping, special training, liability, and indemnification. More than one estimate for a project, particularly in the assessment phase, in order to provide input into the evaluation of alternatives for the cleanup action. While some aspects of existing guidance for cost estimators will be applicable to environmental restoration projects, some components of the present guidelines will have to be modified to reflect the unique elements of these projects. The purpose of this Handbook is to assist cost estimators in the preparation of environmental restoration estimates for Environmental Restoration and Waste Management (EM) projects undertaken by DOE. The DOE has, in recent years, seen a significant increase in the number, size, and frequency of environmental restoration projects that must be costed by the various DOE offices. The coming years will show the EM program to be the largest non-weapons program undertaken by DOE. These projects create new and unique estimating requirements since historical cost and estimating precedents are meager at best. It is anticipated that this Handbook will enhance the quality of cost data within DOE in several ways by providing: The basis for accurate, consistent, and traceable baselines. Sound methodologies, guidelines, and estimating formats. Sources of cost data/databases and estimating tools and techniques available at DOE cost professionals.

NONE

1990-09-01T23:59:59.000Z

310

Contractor: Contract Number: Contract Type: Total Estimated  

Broader source: Energy.gov (indexed) [DOE]

Number: Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Earned FY2008 $2,550,203 FY2009 $39,646,446 FY2010 $64,874,187 FY2011 $66,253,207 FY2012 $41,492,503 FY2013 $0 FY2014 FY2015 FY2016 FY2017 FY2018 Cumulative Fee Earned $214,816,546 Fee Available $2,550,203 Minimum Fee $77,931,569 $69,660,249 Savannah River Nuclear Solutions LLC $458,687,779 $0 Maximum Fee Fee Information $88,851,963 EM Contractor Fee Site: Savannah River Site Office, Aiken, SC Contract Name: Management & Operating Contract September 2013 DE-AC09-08SR22470

311

Petroleum well costs.  

E-Print Network [OSTI]

??This is the first academic study of well costs and drilling times for Australia??s petroleum producing basins, both onshore and offshore. I analyse a substantial… (more)

Leamon, Gregory Robert

2006-01-01T23:59:59.000Z

312

Early Station Costs Questionnaire  

Broader source: Energy.gov (indexed) [DOE]

of refueling infrastructure costs National Renewable Energy Laboratory Innovation for Our Energy Future Questions for Market Readiness Workshop Attendees * Are these questions the...

313

''When Cost Measures Contradict''  

SciTech Connect (OSTI)

When regulators put forward new economic or regulatory policies, there is a need to compare the costs and benefits of these new policies to existing policies and other alternatives to determine which policy is most cost-effective. For command and control policies, it is quite difficult to compute costs, but for more market-based policies, economists have had a great deal of success employing general equilibrium models to assess a policy's costs. Not all cost measures, however, arrive at the same ranking. Furthermore, cost measures can produce contradictory results for a specific policy. These problems make it difficult for a policy-maker to determine the best policy. For a cost measures to be of value, one would like to be confident of two things. First one wants to be sure whether the policy is a winner or loser. Second, one wants to be confident that a measure produces the correct policy ranking. That is, one wants to have confidence in a policy measure's ability to correctly rank policies from most beneficial to most harmful. This paper analyzes empirically these two properties of different costs measures as they pertain to assessing the costs of the carbon abatement policies, especially the Kyoto Protocol, under alternative assumptions about implementation.

Montgomery, W. D.; Smith, A. E.; Biggar, S. L.; Bernstein, P. M.

2003-05-09T23:59:59.000Z

314

Low Cost, Durable Seal  

Broader source: Energy.gov [DOE]

This presentation, which focuses on low cost, durable seals, was given by George Roberts of UTC Power at a February 2007 meeting on new fuel cell projects.

315

Cost Estimating and Cost Management Capacity Building Workshop  

E-Print Network [OSTI]

Cost Estimating and Cost Management Capacity Building Workshop August 11-13, 2010 Coffman Memorial 574 guidebook on cost estimating and cost management · To learn how states are moving forward with the implementation of the guidebook or other initiatives related to cost estimating and cost management · To share

Minnesota, University of

316

The Social Cost of Intercity Transportation  

E-Print Network [OSTI]

,409 39,972 7,918 Total All Sources 18,536 60,863 19,890 #12;Air Pollution: Valuation Local Health Costs External to User (not necessarily to system) Result: Noise, Air Pollution, Congestion, Accidents Not: Water Pollution, Parking, Defense ... #12;Approach Air Highway Noise Air Pollution Congestion

Levinson, David M.

317

Updating Texas Energy Cost Containment Audit Reports  

E-Print Network [OSTI]

moneys in a program known as LoanSTAR. Due to the time between the audits and availability of funds, update of the reports for current energy and equipment cost, and for accomplishment of projects was necessary. Audits in 1984 and 1986 identified total...

Burke, T. E.; Heffington, W. M.

1989-01-01T23:59:59.000Z

318

Simple Modular LED Cost Model  

Broader source: Energy.gov [DOE]

The LED Cost Model, developed by the DOE Cost Modeling Working Group, provides a simplified method for analyzing the manufacturing costs of an LED package. The model focuses on the major cost...

319

Construction Price Indexes | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Price Indexes Price Indexes BusinessUSA Data/Tools Apps Challenges Let's Talk BusinessUSA You are here Data.gov » Communities » BusinessUSA » Data Construction Price Indexes Dataset Summary Description The Construction Price Indexes provide price indexes for single-family houses sold and for single-family houses under construction. The houses sold index incorporates the value of the land and is available quarterly at the national level and annually by region. The indexes for houses under construction are available monthly at the national level. The indexes are based on data funded by HUD and collected in the Survey of Construction (SOC). Tags {Laspeyres,Constant,Quality,Paasche,Output,Deflator,Fisher,Ideal,Index,absorption,apartment,authorized,authorization,build,building,built,characteristic,completed,completion,construction,contract,contractor,cost,development,dwelling,economic,existing,expenditures,family,financing,finished,floor,home,house,houses,housing,hud,indicator,index,issue,issuing,living,manufactured,market,metropolitan,microdata,month,multifamily,multiple,new,nonresidential,occupancy,occupants,occupied,office,one-unit,owner,permanent,permit,permits,price,private,privately-owned,public,quarters,rebuilt,region,regional,rent,rental,residential,rural,sale,sectional,single,single-family,site-built,size,sold,speculative,spending,stage,started,starts,structure,timeshare,under,unit,units,urban,u.s.,vacancy,valuation,zoning}

320

Construction Readiness RM  

Broader source: Energy.gov [DOE]

The authorization to proceed with construction of a new facility is given at the CD-3 phase of the project management cycle, after completion of the final design. Between CD-3 and CD-4 stages of...

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Pipeline Construction Guidelines (Indiana)  

Broader source: Energy.gov [DOE]

The Division of Pipeline Safety of the Indiana Utility Regulatory Commission regulates the construction of any segment of an interstate pipeline on privately owned land in Indiana. The division has...

322

Passive solar construction handbook  

SciTech Connect (OSTI)

Many of the basic elements of passive solar design are reviewed. The unique design constraints presented in passive homes are introduced and many of the salient issues influencing design decisions are described briefly. Passive solar construction is described for each passive system type: direct gain, thermal storage wall, attached sunspace, thermal storage roof, and convective loop. For each system type, important design and construction issues are discussed and case studies illustrating designed and built examples of the system type are presented. Construction details are given and construction and thermal performance information is given for the materials used in collector components, storage components, and control components. Included are glazing materials, framing systems, caulking and sealants, concrete masonry, concrete, brick, shading, reflectors, and insulators. The Load Collector Ratio method for estimating passive system performance is appended, and other analysis methods are briefly summarized. (LEW)

Levy, E.; Evans, D.; Gardstein, C.

1981-08-01T23:59:59.000Z

323

Genomic library construction  

SciTech Connect (OSTI)

Compositions and methods for amplifying nucleic acid sequences from a single cell are provided. Compositions and methods for constructing a genomic library from a single cell are also provided.

Church, George M. (Brookline, MA); Zhang, Kun (San Diego, CA)

2011-07-26T23:59:59.000Z

324

Achieving Sustainable Construction in Affordable Housing  

SciTech Connect (OSTI)

An energy-efficient design and construction checklist and information sheets on energy-efficient design and construction are two products being developed. These products will help affordable housing providers take the first steps toward a whole-house approach to the design and implementation of energy-efficient construction practices. The checklist presents simple and clear guidance on energy improvements that can be readily addressed now by most affordable housing providers. The information sheets complement the checklist by providing installation instructions and material specifications that are accompanied by detailed graphics. The information sheets also identify benefits of recommended energy-efficiency measures and procedures including cost savings and impacts on health and comfort. This paper presents details on the checklist and information sheets and discusses their use in two affordable housing projects.

Barcik, M.K.; Creech, D.B.; Ternes, M.P.

1998-12-07T23:59:59.000Z

325

Costing climate change  

Science Journals Connector (OSTI)

...Costenergy analyses of such schemes...and tidal power at costs...consider in economic analyses of GHG abatement...pertaining to wind power in Denmark...In a cost analysis of implementing...Cutting coal combustion...large an economic burden...

2002-01-01T23:59:59.000Z

327

Energy Efficiency and Sustainable Construction Standards for Public  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency and Sustainable Construction Standards for Public Energy Efficiency and Sustainable Construction Standards for Public Buildings Energy Efficiency and Sustainable Construction Standards for Public Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Georgia Program Type Energy Standards for Public Buildings Provider Georgia Environmental Finance Authority Senate Bill 130 of 2008 established energy efficiency goals for new state building projects. All major facility projects over 10,000 square feet should strive to exceed the efficiency standards of ASHRAE 90.1.2004 by 30% where it is determined that such 30% efficiency is cost effective based on

328

Cost-Effectiveness: Implication for Bonneville and Utility Programs Council document 2007-23 August 2007  

E-Print Network [OSTI]

1 Cost-Effectiveness: Implication for Bonneville and Utility Programs Council document 2007 found to be cost effective if the electric system paid all the costs. Council plan conservation targets are based on availability of conservation that passes this Total Resource Cost (TRC) test. Since its first

329

Physical Cost of Erasing Quantum Correlation  

E-Print Network [OSTI]

Erasure of information stored in a quantum state requires energy cost and is inherently an irreversible operation. If quantumness of a system is physical, does erasure of quantum correlation as measured by discord also need some energy cost? Here, we show that change in quantum correlation is never larger than the total entropy change of the system and the environment. The entropy cost of erasing correlation has to be at least equal to the amount of quantum correlation erased. Hence, quantum correlation can be regarded as genuinely physical. We show that the new bound leads to the Landauer erasure. The physical cost of erasing quantum correlation is well respected in the case of bleaching of quantum information, thermalization, and can have potential application for any channel leading to erasure of quantum correlation.

Arun Kumar Pati

2012-08-23T23:59:59.000Z

330

An Examination of Avoided Costs in Utah  

E-Print Network [OSTI]

existing avoided cost methodology and established thefor certain avoided cost methodologies or avoided cost inpu

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

331

New Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater  

Broader source: Energy.gov (indexed) [DOE]

Resin Improves Efficiency, Reduces Costs in Hanford Site Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater Treatment New Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater Treatment March 1, 2012 - 12:00pm Addthis RICHLAND, Wash. - A new resin EM, the Richland Operations Office, and contractor CH2M HILL Plateau Remediation Company are using in contaminated groundwater treatment is expected to increase efficiency and reduce costs in the operation of pump-and-treat facilities along the Columbia River at the Hanford site. The higher performance resin, SIR-700, is expected to reduce DOE's estimated operation and maintenance costs over the lifetime of the 100-DX Groundwater Treatment Facility by approximately $20 million. In comparison to this expected cost savings, the construction cost for the treatment

332

Transmission line capital costs  

SciTech Connect (OSTI)

The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

Hughes, K.R.; Brown, D.R.

1995-05-01T23:59:59.000Z

333

Decommissioning Unit Cost Data  

SciTech Connect (OSTI)

The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for decommissioning at other facilities with similar equipment and labor costs. It also provides techniques for extracting information from limited data using extrapolation and interpolation techniques.

Sanford, P. C.; Stevens, J. L.; Brandt, R.

2002-02-26T23:59:59.000Z

334

Design and Construction of an Automated Community Bicycle Loan/  

E-Print Network [OSTI]

Design and Construction of an Automated Community Bicycle Loan/ Return System Richard Lopez $20 Box $50 Solar Power Panels $50 CPU $200 Total Per Unit $432 #12;Conclusion and Future · Lessons

Goadrich, Mark

335

Question: What is the cost threshold for providing cost detail for subrecipient  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Question: What is the cost threshold for providing cost detail for subrecipients or consultant Question: What is the cost threshold for providing cost detail for subrecipients or consultant information? Is there a cost threshold set for third parties? Answer: Each subawardee/subrecipient/subcontractor whose work is expected to exceed $650,000 or 50% of the total work effort (whichever is less) should complete a Budget Justification package to include the SF 424A budget form, Budget Justification Guideline Excel document, and a narrative supporting the Budget Justification Guidelines. This information may be saved as a separate file or included with the Prime Applicant's Budget.pdf file. Summary level information for subawardees is not sufficient. Detailed explanations and supporting

336

Totally Unimodular Multistage Stochastic Programs  

E-Print Network [OSTI]

Nov 23, 2014 ... be the workforce level with a cost of ck per worker. The number of ... to the variable of the previous workforce level y?(k). Remark 4. ... planning.

2014-11-23T23:59:59.000Z

337

Page (Total 3) Philadelphia University  

E-Print Network [OSTI]

of materials and equipment and expected cost of materials needed (purchasing material that are not available in the department will take long time and should be avoided when possible). 3. Conduct the research work (field

338

Mujeres Hombres Total Hombres Total 16 5 21 0 10  

E-Print Network [OSTI]

Julio de 2011 Tipo de Discapacidad Sexo CENTRO 5-DistribuciĂłn del estudiantado con discapacidad por centro, tipo de discapacidad, sexo y totales. #12;

Autonoma de Madrid, Universidad

339

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... ment of the total energy and vice versa. From a measurement of spectral irradi- ance ... unit energy (for the wavelength region specified).

2000-01-02T23:59:59.000Z

340

AVCEM: Advanced-Vehicle Cost and Energy Use Model  

E-Print Network [OSTI]

stack); fuel-cell salvage value (fraction of initial coststack); total cost of vehicle electronics needed specifically for the fuel-cellcosts, expressed as a wage multiplier); specific weight of the fuel-cell stack (

Delucchi, Mark

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

of total oil increase in oil prices. demand; thus, we assume6), which results from oil price changes, is a real cost toanalysis when we use low-oil-price case and high-oil-price

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

342

External Costs of Transport in the U.S.  

E-Print Network [OSTI]

oil is 58.6% of total oil demand, which results in $1.20 toof regional oil supply and demand. Wealth transfer cost.oil. Leiby (2007) also estimates “monopsony” or demand-

Delucchi, Mark A.; McCubbin, Donald R.

2010-01-01T23:59:59.000Z

343

Cost effectiveness of protection schemes for IP-over-WDM networks  

Science Journals Connector (OSTI)

We analyze the cost of IP-over-WDM networks employing survivable traffic grooming protection. The network cost is evaluated in terms of total number of optical transceivers in the...

Correia, N S C; Medeiros, M C R

2007-01-01T23:59:59.000Z

344

AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM  

E-Print Network [OSTI]

compressor); total cost of materials for the water pump, the hydrogencost); the initial temperature and pressure of hydrogen; the compressorcompressor cost per unit of output ($/hp/million standard ft3 [SCF] of hydrogen/

Delucchi, Mark

2005-01-01T23:59:59.000Z

345

Labor Standards for Construction  

Broader source: Energy.gov (indexed) [DOE]

Chapter 43.3 (March 2013) Chapter 43.3 (March 2013) 1 Maintaining Alignment of Project Management with Contract Management for Non-Management and Operating (M&O) Cost Reimbursement Contracts for Capital Asset Projects, Environmental Remediation, Decontamination and Decommissioning, Facility Operations, and Other Major Projects Purpose and Applicability This chapter provides guidance on how Contracting Officers (COs) should manage contract changes, and how COs and Federal Project Directors (FPDs) should maintain alignment between project and contract management under non-M&O cost reimbursement contracts for capital asset projects, environmental remediation, decontamination and decommissioning, facility operations, and other projects. This chapter has three sections. Section I provides pre-award

346

Lookin g for data personnel costs, indirect costs, equipment costs  

Broader source: Energy.gov (indexed) [DOE]

Negotiating Group Question/Answer Sessions November 19, 2009 Q: What happens now? A: The negotiation process starts tomorrow [November 20, 2009], when DOE will be sending the Awardees an e-mail with information about which website to go to for clarification and direction, information from the Office of Civil Rights, and answers to some of the questions that came up in the meeting. DOE will be gathering information about the questions concerning cyber requirements, metrics, and reporting requirements and will be getting back to the awardees about those issues the week after Thanksgiving. We have done a review of the budgets, and emails will be sent giving opportunities to address any issues. We will also re-review technical and cost proposals.

347

Montana Energy and Cost Savings for New Single- and Multifamily Homes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MONTANA CONSTRUCTION CODE MONTANA CONSTRUCTION CODE Montana Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 Montana Construction Code BUILDING TECHNOLOGIES PROGRAM 2 2012 IECC AS COMPARED TO THE 2009 MONTANA CONSTRUCTION CODE Montana Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the DC Energy Conservation Code The 2012 International Energy Conservation Code (IECC) yields positive benefits for Montana homeowners. Moving to the 2012 IECC from the current Montana Construction Code is cost-effective over a 30-year life cycle. On average, Montana homeowners will save $4,105 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and

348

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

349

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

350

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

351

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

352

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

353

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

354

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

355

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

356

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

357

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

358

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

359

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

360

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

362

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

363

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

364

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

365

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

366

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

367

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

368

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

369

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

370

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

371

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

372

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

373

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

374

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

375

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

376

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

377

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

378

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

379

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

380

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.7 0.5 0.2 Million U.S. Housing Units Home Electronics Usage Indicators Table HC12.12 Home Electronics Usage Indicators by Midwest Census Region,...

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 1.8 1.2 0.5 Table HC11.10 Home Appliances Usage Indicators by Northeast Census Region, 2005 Million U.S. Housing Units Home Appliances...

382

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 2.8 1.1 0.7 Q 0.4 Million U.S. Housing Units Home Electronics Usage Indicators Table HC13.12 Home Electronics Usage Indicators by South Census Region,...

383

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 3.1 1.0 2.2 Table HC14.10 Home Appliances Usage Indicators by West Census Region, 2005 Million U.S. Housing Units Home Appliances...

384

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four Most Populated...

385

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 2.7 3.5 2.2 1.3 3.5 1.3 3.8 Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal...

386

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 13.2 3.4 2.0 1.4 Table HC12.10 Home Appliances Usage Indicators by Midwest Census Region, 2005 Million U.S. Housing Units Home Appliances...

387

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Census Region Northeast Midwest South West Million U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005...

388

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(as Self-Reported) City Town Suburbs Rural Million U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location,...

389

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 4.4 2.5 3.0 3.4 Table HC8.10 Home Appliances Usage Indicators by UrbanRural Location, 2005 Million U.S. Housing Units UrbanRural...

390

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.6 Q 0.5 Million U.S. Housing Units Home Electronics Usage Indicators Table HC14.12 Home Electronics Usage Indicators by West Census Region, 2005...

391

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 13.2 4.9 2.3 1.1 1.5 Table HC13.10 Home Appliances Usage Indicators by South Census Region, 2005 Million U.S. Housing Units South Census Region...

392

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 51.9 7.0 4.8 2.2 Not Asked (Mobile Homes or Apartment in Buildings with 5 or More Units)... 23.7...

393

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

Housing Units Living Space Characteristics Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Single-Family Units Detached...

394

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment... 1.2 Q Q N Q Have Main Space Heating Equipment... 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating...

395

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

396

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

397

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

398

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

399

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

400

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

402

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

403

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

404

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

405

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

406

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

407

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

408

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

409

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

410

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

411

DOE Hydrogen Analysis Repository: Advanced Vehicle Cost and Energy-use  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Vehicle Cost and Energy-use Model (AVCEM) Advanced Vehicle Cost and Energy-use Model (AVCEM) Project Summary Full Title: Advanced Vehicle Cost and Energy-use Model (AVCEM) Project ID: 123 Principal Investigator: Mark Delucchi Brief Description: AVCEM is an electric and gasoline vehicle energy-use and lifetime-cost model. AVCEM designs a motor vehicle to meet range and performance requirements specified by the modeler, and then calculates the initial retail cost and total private and social lifetime cost of the designed vehicle. Purpose AVCEM designs a motor vehicle to meet range and performance requirements specified by the modeler, and then calculates the initial retail cost and total private and social lifetime cost of the designed vehicle. It can be used to investigate the relationship between the lifetime cost -- the total

412

Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure  

SciTech Connect (OSTI)

This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

Smith, M.; Gonzales, J.

2014-09-01T23:59:59.000Z

413

Waste management facilities cost information for transuranic waste  

SciTech Connect (OSTI)

This report contains preconceptual designs and planning level life-cycle cost estimates for managing transuranic waste. The report`s information on treatment and storage modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the U.S. Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

Shropshire, D.; Sherick, M.; Biagi, C.

1995-06-01T23:59:59.000Z

414

Development of a right-of-way cost estimation and cost estimate management process framework for highway projects  

E-Print Network [OSTI]

and difficult to address because the duration of the time span between the initiation of a project and the completion of construction often spans many years. Cost estimation of right of way (ROW) has been shown to be a specific area in which cost escalation... Engineering and Management. 2 research was conducted under Phase II of NCHRP Project 8-49, ROW Methods and Tools to Control Project Cost Escalation, which focuses specifically on cost escalation issues related to ROW. Its precursor, NCHRP Project 8...

Lucas, Matthew Allen

2009-05-15T23:59:59.000Z

415

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

416

Univalent Foundation and Constructive Mathematics  

E-Print Network [OSTI]

Univalent Foundation and Constructive Mathematics Thierry Coquand Oberwolfach, November 18, 2014 #12;Univalent Foundation and Constructive Mathematics Univalent Foundations Voevodsky's program to express mathematics in type theory instead of set theory 1 #12;Univalent Foundation and Constructive

Coquand, Thierry

417

cost | OpenEI  

Open Energy Info (EERE)

cost cost Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

418

Estimating Renewable Energy Costs  

Broader source: Energy.gov [DOE]

Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

419

Cost Effective Sustainable Housing.  

E-Print Network [OSTI]

??Cost Effective Sustainable Housing The topic of research which was discussed throughout this study was an analysis of sustainable development between single-family and multi-family structures.… (more)

Morton, Joshua

2009-01-01T23:59:59.000Z

420

Cost Estimating Guide  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides uniform guidance and best practices that describe the methods and procedures that could be used in all programs and projects at DOE for preparing cost estimates. No cancellations.

2011-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and Renewable Energy Get Widget Code...

422

Costing climate change  

Science Journals Connector (OSTI)

...even whether man-made greenhouse-gas emissions should...and monetary savings from lighting policy calculated using `Work Energy Smart Lighting Calculator', assuming...reducing energy costs and greenhouse gases. Australian Greenhouse...

2002-01-01T23:59:59.000Z

423

Estimating environmental costs  

Science Journals Connector (OSTI)

Added demands on natural resources and proposed environmental regulations could potentially have a significant impact on the production and operational costs of information technology (IT). In this paper, we utilize an Economic Input-Output Life-Cycle ...

Kiara Corrigan; Amip Shah; Chandrakant Patel

2010-02-01T23:59:59.000Z

424

Standard costs for labor  

E-Print Network [OSTI]

STANDARD COSTS FOR LABOR A Thesis By MD. NURUL ABSAR KHAN Submitted to the Graduate School of the Agricultural and Mechanical College of Texms in partial fulfillment of the requirements for the degree of MASTER OF BUSINESS ADMINISTRATION... Administration and the government of East Pakistan. CONTENTS Chapter Page I. Introduction and Prelisd. nary Discussion II. Installation and Accounting Aspects of Standard Costs for Labor III, Recording~ Analysing and Reporting of Labor Vaxlances . 45 IV...

Khan, Mohammed Nurul Absar

2012-06-07T23:59:59.000Z

425

Cost estimate of electricity produced by TPV  

Science Journals Connector (OSTI)

A crucial parameter for the market penetration of TPV is its electricity production cost. In this work a detailed cost estimate is performed for a Si photocell based TPV system, which was developed for electrically self-powered operation of a domestic heating system. The results are compared to a rough estimate of cost of electricity for a projected GaSb based system. For the calculation of the price of electricity, a lifetime of 20 years, an interest rate of 4.25% per year and maintenance costs of 1% of the investment are presumed. To determine the production cost of TPV systems with a power of 12–20 kW, the costs of the TPV components and 100 EUR kW?1el,peak for assembly and miscellaneous were estimated. Alternatively, the system cost for the GaSb system was derived from the cost of the photocells and from the assumption that they account for 35% of the total system cost. The calculation was done for four different TPV scenarios which include a Si based prototype system with existing technology (?sys = 1.0%), leading to 3000 EUR kW?1el,peak, an optimized Si based system using conventional, available technology (?sys = 1.5%), leading to 900 EUR kW?1el,peak, a further improved system with future technology (?sys = 5%), leading to 340 EUR kW?1el,peak and a GaSb based system (?sys = 12.3% with recuperator), leading to 1900 EUR kW?1el,peak. Thus, prices of electricity from 6 to 25 EURcents kWh?1el (including gas of about 3.5 EURcents kWh?1) were calculated and compared with those of fuel cells (31 EURcents kWh?1) and gas engines (23 EURcents kWh?1).

Günther Palfinger; Bernd Bitnar; Wilhelm Durisch; Jean-Claude Mayor; Detlev Grützmacher; Jens Gobrecht

2003-01-01T23:59:59.000Z

426

Cost-Effectiveness of Prophylactic Surgery for Duodenal Cancer in Familial Adenomatous Polyposis  

Science Journals Connector (OSTI)

...2009 research-article Research Articles Cost-Effectiveness of Prophylactic Surgery...modeling approach was used to evaluate the cost-effectiveness of various treatment strategies...constructed to estimate the life expectancy and cost of three different strategies: pancreaticoduodenectomy...

Wesley H. Greenblatt; Chin Hur; Amy B. Knudsen; John A. Evans; Daniel C. Chung; G. Scott Gazelle

2009-10-01T23:59:59.000Z

427

Toward a cost equation for a multielement station B. G. Clark, May 2001  

E-Print Network [OSTI]

Toward a cost equation for a multielement station B. G. Clark, May 2001 For purposes of deciding whether a multielement station for the eVLA is an economical way to construct them, we need a cost equation, relating the cost of the station to the number of elements and their size. I propose to list here

Groppi, Christopher

428

Guide to Integrating Renewable Energy in Federal Construction | Department  

Broader source: Energy.gov (indexed) [DOE]

Guide to Integrating Renewable Energy in Federal Construction Guide to Integrating Renewable Energy in Federal Construction Guide to Integrating Renewable Energy in Federal Construction Developed by the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), the "Guide to Integrating Renewable Energy into Federal Construction" helps Federal agencies understand renewable energy options, select appropriate types of renewable energy technologies, and integrate these technologies into all phases of new construction or major renovation projects. To reduce costs and increase options, renewable energy should be considered from the very beginning of a construction project as well as at every stage of the project process from planning to operation. Depicted in the chart below, this Guide is structured to address renewable

429

Construction Endorsement Process in Russia.  

E-Print Network [OSTI]

??The construction endorsement and receiving of construction permit is a long lasting and very complicated process in Russia. There is no one and only instruction… (more)

Avanesov, Alexander

2010-01-01T23:59:59.000Z

430

Martifer Construction | Open Energy Information  

Open Energy Info (EERE)

services. The division operates in wind farm tower construction, also provides engineering services for solar projects. References: Martifer Construction1 This article...

431

Construction Schedule | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Construction Schedule Current Projects 27-ID and 35-ID APS Vibration Reporting Protocol Summary of Construction Equipment Tests and Activities Jan 2014 Past Projects APCF LOM438...

432

Material efficiency in construction  

E-Print Network [OSTI]

Japan Iron and Steel Federation kt Kilotonne LCA Life-cycle assessment MFA Mass flow analysis Mt Megatonne xix Nomenclature rebar Reinforcement bar RuFUS Reuse of Foundations on Urban Sites SCI Steel Construction Institute t Tonne U/R Utilisation ratio...

Moynihan, Muiris

2014-10-07T23:59:59.000Z

433

Cost and Area Comparison Per Student of the Public Elementary Schools in Texas based on the Project Delivery Systems  

E-Print Network [OSTI]

It has been shown that there exists a correlation between the cost of construction of elementary schools and the project delivery systems. Previous research showed that Competitive Sealed proposal contract method of construction is $4000 cheaper...

Goyal Rakesh, Sheetal

2013-08-09T23:59:59.000Z

434

Tokamak reactor cost model based on STARFIRE/WILDCAT costing  

SciTech Connect (OSTI)

A cost model is presented which is useful for survey and comparative studies of tokamak reactors. The model is heavily based on STARFIRE and WILDCAT costing guidelines, philosophies, and procedures and reproduces the costing for these devices quite accurately.

Evans, K. Jr.

1983-03-01T23:59:59.000Z

435

FY 2009 Progress Report for Lightweighting Materials- 7. Low-Cost Carbon Fiber  

Broader source: Energy.gov [DOE]

The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability.

436

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

437

Filter system cost comparison for IGCC and PFBC power systems  

SciTech Connect (OSTI)

A cost comparison was conducted between the filter systems for two advanced coal-based power plants. The results from this study are presented. The filter system is based on a Westinghouse advanced particulate filter concept, which is designed to operate with ceramic candle filters. The Foster Wheeler second-generation 453 MWe (net) pressurized fluidized-bed combustor (PFBC) and the KRW 458 MWe (net) integrated gasification combined cycle (IGCC) power plants are used for the comparison. The comparison presents the general differences of the two power plants and the process-related filtration conditions for PFBC and IGCC systems. The results present the conceptual designs for the PFBC and IGCC filter systems as well as a cost summary comparison. The cost summary comparison includes the total plant cost, the fixed operating and maintenance cost, the variable operating and maintenance cost, and the effect on the cost of electricity (COE) for the two filter systems.

Dennis, R.A.; McDaniel, H.M.; Buchanan, T. [and others

1995-12-01T23:59:59.000Z

438

Cooling Energy and Cost Savings with Daylighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cooling Energy and Cost Savings with Daylighting Cooling Energy and Cost Savings with Daylighting Title Cooling Energy and Cost Savings with Daylighting Publication Type Conference Paper LBNL Report Number LBL-19734 Year of Publication 1985 Authors Arasteh, Dariush K., Russell Johnson, Stephen E. Selkowitz, and Deborah J. Connell Conference Name 2nd Annual Symposium on Improving Building Energy Efficiency in Hot and Humid Climates Date Published 09/1985 Conference Location Texas A&M University Call Number LBL-19734 Abstract Fenestration performance in nonresidentialsbuildings in hot climates is often a large coolingsload liability. Proper fenestration design andsthe use of daylight-responsive dimming controls onselectric lights can, in addition to drasticallysreducing lighting energy, lower cooling loads,speak electrical demand, operating costs, chillerssizes, and first costs. Using the building energyssimulation programs DOE-2.1B and DOE-2.1C , wesfirst discuss lighting energy savings from daylighting.sThe effects of fenestration parametersson cooling loads, total energy use, peak demand,schiller sizes, and initial and operating costs aresalso discussed. The impact of daylighting, asscompared to electric lighting, on cooling requirementssis discussed as a function of glazingscharacteristics, location, and shading systems.

439

Microsoft PowerPoint - Cost Estimating for Hydro Planning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimating Estimating for Hydropower Project Planning M Th Mona Thomason Chief, Product Coordination Branch Hydroelectric Design Center 13 J 2012 13 June 2012 US Army Corps of Engineers BUILDING STRONG ® Overview Overview  Background g  USACE hydropower project cost estimating y p p j g process  Challenges in cost estimating & strategies for mitigation of cost risk BUILDING STRONG ® HYDROELECTRIC DESIGN CENTER 2 USACE regulations USACE regulations  ER 1110-1-1300 Cost Engineering Policy and General Requirements  ER 1110-2-1150 Engineering and Design for Civil Works Project  ER 1110-2-1302 Civil Works Cost Engineering ETL 1110 2 573 C t ti C t E ti ti  ETL 1110-2-573 Construction Cost Estimating Guide for Civil Works BUILDING STRONG ® HYDROELECTRIC DESIGN CENTER 3 Hydroelectric

440

Low-Cost "Vacuum Desiccator"  

Science Journals Connector (OSTI)

Low-Cost "Vacuum Desiccator" ... Described are individualized, low-cost, and safe desiccators that can be efficiently and rapidly made with an inexpensive kitchen aid sold for shrink-wrapping food. ... Cost-Effective Teacher ...

Frederick Sweet

2004-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Factors Impacting Decommissioning Costs - 13576  

SciTech Connect (OSTI)

The Electric Power Research Institute (EPRI) studied United States experience with decommissioning cost estimates and the factors that impact the actual cost of decommissioning projects. This study gathered available estimated and actual decommissioning costs from eight nuclear power plants in the United States to understand the major components of decommissioning costs. Major costs categories for decommissioning a nuclear power plant are removal costs, radioactive waste costs, staffing costs, and other costs. The technical factors that impact the costs were analyzed based on the plants' decommissioning experiences. Detailed cost breakdowns by major projects and other cost categories from actual power plant decommissioning experiences will be presented. Such information will be useful in planning future decommissioning and designing new plants. (authors)

Kim, Karen; McGrath, Richard [Electric Power Research Institute, 3420 Hillview Ave., Palo Alto, California (United States)] [Electric Power Research Institute, 3420 Hillview Ave., Palo Alto, California (United States)

2013-07-01T23:59:59.000Z

442

Roadway Improvement Project Cost Allocation  

E-Print Network [OSTI]

Roadway Improvement Project Cost Allocation CTS 21st Annual Transportation Research Conference costs #12;Potential Applications · Roadway Project Feasibility Studies ­ Identified potential roadway infrastructure improvement ­ Documentation of estimated project costs ­ Determine property assessments

Minnesota, University of

443

Sunk Costs and Competitive Bidding  

E-Print Network [OSTI]

SUNK COSTS AND COMPETITIVE BIDDING Kenneth R. FrenchRevised: November 1982 SUNK COSTS AND COMPETITIVE BIDDINGl the winning bid be? I f sunk costs do not matter, I f the

French, Kenneth R.; McCormick, Robert E.

1982-01-01T23:59:59.000Z

444

Assigning research and development costs  

E-Print Network [OSTI]

and Development Cost Components RESEARCH AND DEVELOPMENT COSTS IN FINANCIAL STATEMENTS . 10 Capitalization Basis for Reporting Research and Development Costs Revenue Basis for Reporting Research and Development Costs Reasons Why Most Companies Expense... PRACTICE WITH ACCOUNTING THEORY Unknown Results at the End of an Accounting Period Uncertain Useful Life of Results. . . . . . . . . . . . . Recurrence of Annual Costs Permissive Feature of the Internal Revenue Code Uniform Amounts of Annual Costs...

Edwards, Wendell Edward

2012-06-07T23:59:59.000Z

445

Construction Readiness RM  

Broader source: Energy.gov (indexed) [DOE]

Construction Readiness Review Module Construction Readiness Review Module March 2010 CD- [This Rev Readiness -0 view Module w s Review (CRR OFFICE O CD-1 was used to dev R). This Review OF ENVIRO Standard R Construc Rev Critical D CD-2 M velop the Revie w Module cont ONMENTA Review Pla ction Rea view Modul Decision (CD C March 2010 ew Plan for Sal tains the lesson Review.] AL MANAG an (SRP) adiness le D) Applicabili D-3 lt Waste Proce ns learned from GEMENT ity CD-4 ssing Facility ( m the SWPF Co Post Ope (SWPF) Const onstruction Re eration truction eadiness Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental

446

Construction quality assurance report  

SciTech Connect (OSTI)

This report provides a summary of the construction quality assurance (CQA) observation and test results, including: The results of the geosynthetic and soil materials conformance testing. The observation and testing results associates with the installation of the soil liners. The observation and testing results associated with the installation of the HDPE geomembrane liner systems. The observation and testing results associated with the installation of the leachate collection and removal systems. The observation and testing results associated with the installation of the working surfaces. The observation and testing results associated with in-plant manufacturing process. Summary of submittal reviews by Golder Construction Services, Inc. The submittal and certification of the piping material specifications. The observation and verification associated of the Acceptance Test Procedure results of the operational equipment functions. Summary of the ECNs which are incorporated into the project.

Roscha, V.

1994-09-08T23:59:59.000Z

447

INDEPENDENT COST REVIEW (ICR)  

Broader source: Energy.gov (indexed) [DOE]

COST REVIEW (ICR) COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) STANDARD OPERATING PROCEDURES (SOP) Revision 1 DEPARTMENT OF ENERGY (DOE) OFFICE OF ACQUISITION AND PROJECT MANAGEMENT (OAPM) September 2013 SUMMARY OF UPDATES: This revision includes the following significant changes since the December 2011 SOP release: 1. The original SOP discussed how an EIR and an ICE could be executed in tandem, but since we are no longer advocating this approach the ICE process has been completely separated from the EIR process and references to EIRs have been removed. 2. Section 1 adds a reference to Public Law 2055 reflecting that we must now, as a matter of law, perform an ICE at CD-3 for projects with a TPC over $100 million. 3. Section 2 notes that DOE Programs must now pay for ICRs and ICEs and reflects that PARS II must be

448

INDEPENDENT COST REVIEW (ICR)  

Broader source: Energy.gov (indexed) [DOE]

COST REVIEW (ICR) COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) STANDARD OPERATING PROCEDURES (SOP) Revision 1 DEPARTMENT OF ENERGY (DOE) OFFICE OF ACQUISITION AND PROJECT MANAGEMENT (OAPM) September 2013 SUMMARY OF UPDATES: This revision includes the following significant changes since the December 2011 SOP release: 1. The original SOP discussed how an EIR and an ICE could be executed in tandem, but since we are no longer advocating this approach the ICE process has been completely separated from the EIR process and references to EIRs have been removed. 2. Section 1 adds a reference to Public Law 2055 reflecting that we must now, as a matter of law, perform an ICE at CD-3 for projects with a TPC over $100 million. 3. Section 2 notes that DOE Programs must now pay for ICRs and ICEs and reflects that PARS II must be

449

Power Plant Cycling Costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plant Cycling Costs Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Prepared under Subcontract No. NFT-1-11325-01

450

Cost Controls Pay Off Big  

Science Journals Connector (OSTI)

Cost Controls Pay Off Big ... Biggest plus was the general improvement in the economy; but to this must be added successful efforts by industry to control costs. ...

1959-02-16T23:59:59.000Z

451

QGESS: Capital Cost Scaling Methodology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(costs and values of inputs, outputs, and processes, including capital and operating costs) and performance (mass conversion, energy efficiency, and, generally speaking,...

452

Toward a constructive physics  

SciTech Connect (OSTI)

We argue that the discretization of physics which has occurred thanks to the advent of quantum mechanics has replaced the continuum standards of time, length and mass which brought physics to maturity by counting. The (arbitrary in the sense of conventional dimensional analysis) standards have been replaced by three dimensional constants: the limiting velocity c, the unit of action h, and either a reference mass (eg m/sub p/) or a coupling constant (eg G related to the mass scale by hc/(2..pi..Gm/sub p//sup 2/) approx. = 1.7 x 10/sup 38/). Once these physical and experimental reference standards are accepted, the conventional approach is to connect physics to mathematics by means of dimensionless ratios. But these standards now rest on counting rather than ratios, and allow us to think of a fourth dimensionless mathematical concept, which is counting integers. According to constructive mathematics, counting has to be understood before engaging in the practice of mathematics in order to avoid redundancy. In its strict form constructive mathematics allows no completed infinities, and must provide finite algorithms for the computation of any acceptable concept. This finite requirement in constructive mathematics is in keeping with the practice of physics when that practice is restricted to hypotheses which are testable in a finite time. In this paper we attempt to outline a program for physics which will meet these rigid criteria while preserving, in so far as possible, the successes that conventional physics has already achieved.

Noyes, H.P.; Gefwert, C.; Manthey, M.J.

1983-06-01T23:59:59.000Z

453

Performance Period Total Fee Paid FY2001  

Broader source: Energy.gov (indexed) [DOE]

01 01 $4,547,400 FY2002 $4,871,000 FY2003 $6,177,902 FY2004 $8,743,007 FY2005 $13,134,189 FY2006 $7,489,704 FY2007 $9,090,924 FY2008 $10,045,072 FY2009 $12,504,247 FY2010 $17,590,414 FY2011 $17,558,710 FY2012 $14,528,770 Cumulative Fee Paid $126,281,339 Cost Plus Award Fee DE-AC29-01AL66444 Washington TRU Solutions LLC Contractor: Contract Number: Contract Type: $8,743,007 Contract Period: $1,813,482,000 Fee Information Maximum Fee $131,691,744 Total Estimated Contract Cost: $4,547,400 $4,871,000 $6,177,902 October 2000 - September 2012 Minimum Fee $0 Fee Available EM Contractor Fee Site: Carlsbad Field Office - Carlsbad, NM Contract Name: Waste Isolation Pilot Plant Operations March 2013 $13,196,690 $9,262,042 $10,064,940 $14,828,770 $12,348,558 $12,204,247 $17,590,414 $17,856,774

454

Low Cost, Durable Seal  

SciTech Connect (OSTI)

Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

Roberts, George; Parsons, Jason; Friedman, Jake

2010-12-17T23:59:59.000Z

455

Low-Cost, Lightweight Solar Concentrators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrators Concentrators California Institute of Technology/Jet Propulsion Laboratory Award Number:0595-1612 | April 18, 2013 | Ganapathi * Mirror module development has been approached with the goal of being applicable to all types of CSP systems * Several heliostat design options being considered to address driving requirements: * Facets that are compliant to winds > 35 mph * Deep structures for optimizing structural efficiency * Pointing accuracy achieved with mechanism design * Simple precision components * Easy on-site assembly with pre-fab components * Structural foam properties and strengthening trades being conducted to reduce overall costs with FEM models Goal: Typical costs for a concentrator (heliostat or parabolic dish) can range between 40-50% of the total costs. To meet SunShot

456

Low-Cost, Lightweight Solar Concentrators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrators Concentrators California Institute of Technology/Jet Propulsion Laboratory Award Number:0595-1612 | January 15, 2013 | Ganapathi Thin Film mirror is ~40-50% cheaper and 60% lighter than SOA * Project leverages extensive space experience by JPL and L'Garde to develop a low-cost parabolic dish capable of providing 4 kW thermal. Key features: * Metallized reflective thin film material with high reflectivity (>93%) with polyurethane foam backing * Single mold polyurethane backing fabrication enables low cost high production manufacturing * Ease of panel installation and removal enables repairs and results in a low total life cycle cost * Deployment of multiple dishes enhances system level optimizations by simulating larger fields which addresses issues like shared resources

457

Total Sky Imager (TSI) Handbook  

SciTech Connect (OSTI)

The total sky imager (TSI) provides time series of hemispheric sky images during daylight hours and retrievals of fractional sky cover for periods when the solar elevation is greater than 10 degrees.

Morris, VR

2005-06-01T23:59:59.000Z

458

MONITORED GEOLOGIC REPOSITORY LIFE CYCLE COST ESTIMATE ASSUMPTIONS DOCUMENT  

SciTech Connect (OSTI)

The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost (LCC) estimate and schedule update incorporating information from the Viability Assessment (VA) , License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

R.E. Sweeney

2001-02-08T23:59:59.000Z

459

ASME post construction pressure technology codes  

SciTech Connect (OSTI)

The need to continue to operate pressurized equipment and other facilities in a safe, reliable and cost effective manner has led to the development of many new approaches to in-service inspection, flaw evaluation, and repair. Interest on the part of users, regulatory authorities and others in standardizing these approaches has led to the formation of a new ASME Main Committee on Post Construction under the Board on Pressure Technology Codes and Standards, and a new Division of the Pressure Vessel Research Council on Continued Operation of Equipment. This paper provides a brief overview of these activities.

Sims, J.R. [Exxon Research and Engineering Co., Florham Park, NJ (United States)

1996-12-01T23:59:59.000Z

460

Life cycle costs for the domestic reactor-based plutonium disposition option  

SciTech Connect (OSTI)

Projected constant dollar life cycle cost (LCC) estimates are presented for the domestic reactor-based plutonium disposition program being managed by the US Department of Energy Office of Fissile Materials Disposition (DOE/MD). The scope of the LCC estimate includes: design, construction, licensing, operation, and deactivation of a mixed-oxide (MOX) fuel fabrication facility (FFF) that will be used to purify and convert weapons-derived plutonium oxides to MOX fuel pellets and fabricate MOX fuel bundles for use in commercial pressurized-water reactors (PWRs); fuel qualification activities and modification of facilities required for manufacture of lead assemblies that will be used to qualify and license this MOX fuel; and modification, licensing, and operation of commercial PWRs to allow irradiation of a partial core of MOX fuel in combination with low-enriched uranium fuel. The baseline cost elements used for this document are the same as those used for examination of the preferred sites described in the site-specific final environmental impact statement and in the DOE Record of Decision that will follow in late 1999. Cost data are separated by facilities, government accounting categories, contract phases, and expenditures anticipated by the various organizations who will participate in the program over a 20-year period. Total LCCs to DOE/MD are projected at approximately $1.4 billion for a 33-MT plutonium disposition mission.

Williams, K.A.

1999-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Cost Type Examples Salary costs for staff working  

E-Print Network [OSTI]

Cost Type Examples Salary costs for staff working on the grant Fellows, research assistants by the technician can be supported by a verifiable audit trail. Specialist consultancy fees Recruitment costs Staff recruitment and advertising costs, including interviewee travel. Materials & consumables Laboratory chemicals

Rambaut, Andrew

462

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling  

E-Print Network [OSTI]

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling Oak Ridge National fiber reinforced composites have enjoyed limited acceptance in the automotive industry due to high costs to bond with composite matrix material. It is important that a carbon fiber manufacturing cost model

463

Globally strongly convex cost functional for a coefficient inverse problem  

E-Print Network [OSTI]

A Carleman Weight Function (CWF) is used to construct a new cost functional for a Coefficient Inverse Problems for a hyperbolic PDE. Given a bounded set of an arbitrary size in a certain Sobolev space, one can choose the parameter of the CWF in such a way that the constructed cost functional will be strongly convex on that set. Next, convergence of the gradient method, which starts from an arbitrary point of that set, is established. Since restrictions on the size of that set are not imposed, then this is the global convergence.

Larisa Beilina; Michael V. Klibanov

2013-12-10T23:59:59.000Z

464

Busting the Myth That Green Costs More Green  

E-Print Network [OSTI]

-10-42 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 Pollution Prevention Roundtable in the Tennessee Department of Environment and Conservation, an independent organization of various... Authority. } ESL-IC-08-10-42 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 Costs The importance of ?costs? in the design and construction world can not be overstated. Entire...

Qualk, J. D.; McCown, P.

465

Project Management Design, Value & Cost  

E-Print Network [OSTI]

Administration Real Estate Law & Ethics Property & Construction Economics Construction Investment & Planning Real Estate Valuation & Appraisal International Real Estate Investment & Finance Property & Construction Nottingham Law School Intellectual Property Law Principles of Intellectual Property Law Data Protection

Evans, Paul

466

Invoice Statement of Cost Cost Type/Cost Share UT-B Contracts Div Page 1 of 1  

E-Print Network [OSTI]

Invoice Statement of Cost ­ Cost Type/Cost Share UT-B Contracts Div Aug 2009 Page 1 of 1 invoice-state-cost-ext-venx-aug09 Company Name: Statement of Amounts Claimed Invoice Number: Statement of Cost ­ Cost Type/Cost Cost Subcontractor Cost Job Title Name Current Hours Rate Current Amount Cumulative Hours Cumulative

Pennycook, Steve

467

U.S. Department of Energy Hydrogen Storage Cost Analysis  

SciTech Connect (OSTI)

The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a â��bottom-upâ� costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with DFMA�® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target. In general, tank costs are the largest component of system cost, responsible for at least 30 percent of total system cost, in all but two of the 12 systems. Purchased BOP cost also drives system cost, accounting for 10 to 50 percent of total system cost across the various storage systems. Potential improvements in these cost drivers for all storage systems may come from new manufacturing processes and higher production volumes for BOP components. In addition, advances in the production of storage media may help drive down overall costs for the sodium alanate, SBH, LCH2, MOF, and AX-21 systems.

Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

2013-03-11T23:59:59.000Z

468

Evaluation of Advanced Heliostat Reflective Facets on Cost and Performance  

Science Journals Connector (OSTI)

Abstract Heliostat reflective facets have traditionally been constructed with glass/silver and metal back support, which may be near reaching its minimum cost point. During the past year, Sandia National Laboratories evaluated alternative low-cost materials and manufacturing methods to construct facets with the goal of reducing current facet cost by at least 25% while maintaining surface slope errors of 1 milli-radians RMS or below. Several companies developed prototype facet samples, which were optically evaluated at Sandia and compared to baseline facet samples using a proposed cost-to-performance metric. A cost-performance metric for comparing facets was developed by modeling and optimizing the hypothetical SunShot 200 \\{MWe\\} power tower plant scenario in DELSOL, a computer code for system-level modeling of power tower systems. We varied the slope error on the facets and adjusted the cost on the facets to maintain a constant plant levelized cost of energy (LCOE). The result of these models provided a chart of the facet optical performance and the allowable facet cost for a constant plant LCOE. The size of the prototype facet samples ranged from 1.4 to 3 m2. The measured optical slope errors were between 1 and 2 milli- radians RMS when compared to a flat mirror design shape. Despite slope errors greater than 1 milli-radians RMS, some of the prototype samples met the cost goals for this project using the cost-performance metric. Next steps are to work with the companies to improve the manufacturing processes and further reduce the cost and improve on the optical performance to reach Department of Energy SunShot goal of $75/m2 for heliostats.

J. Yellowhair; C.E. Andraka

2014-01-01T23:59:59.000Z

469

Cost Estimates for New Molecules  

Science Journals Connector (OSTI)

Cost Estimates for New Molecules ... Once this has been carried out, the projected cost/kilogram for the new drug substance (if only raw material costs and no manufacturing/overhead/labour costs are considered) may well come down by a factor of 10 or even 100, and this is often more acceptable to management trying to make strategic decisions about potential profitability. ...

Trevor Laird

2005-02-22T23:59:59.000Z

470

Cost Sharing Why and How  

E-Print Network [OSTI]

Cost Sharing Why and How Trudy M. Riley Assistant Provost, Research Administration Susan M. Tkachick Sponsored Research Accountant $ Research Office #12;Research Office AGENDA What is Cost Sharing Why Cost Share What is Allowable Managing Cost Sharing during the life of the project What happens

Firestone, Jeremy

471

7 - Cost-Efficiency Evaluation  

Science Journals Connector (OSTI)

The purpose of cost-efficiency evaluations is to make the connection between cost and outcomes. Using methods like cost-benefit analysis and cost-effective analysis, this allows evaluators to provide the most complete information. The information may be used to make better decisions about implementation or continuing a program.

Gennaro F. Vito; George E. Higgins

2015-01-01T23:59:59.000Z

472

Alameda Municipal Power - Commercial New Construction Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Commercial New Construction Rebate Commercial New Construction Rebate Program Alameda Municipal Power - Commercial New Construction Rebate Program < Back Eligibility Commercial Construction Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Assistance cannot exceed the actual cost of the project Program Info State California Program Type Utility Rebate Program Rebate Amount Design Assistance Grants: Up to $10,000/project Whole Building Approach Rebates: $0.10/kWh for buildings exceeding Title 24 by 10% $0.15/kWh for buildings exceeding Title 24 by 15% $0.20/kWh for buildings exceeding Title 24 by 20%

473

MassSAVE (Electric) - Commercial New Construction Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

MassSAVE (Electric) - Commercial New Construction Program MassSAVE (Electric) - Commercial New Construction Program MassSAVE (Electric) - Commercial New Construction Program < Back Eligibility Commercial Construction Industrial Installer/Contractor Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Maximum Rebate 70% of incremental cost of higher efficiency equipment, or an amount that buys down the incremental investment to a 1.5 year simple payback. Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Custom Lighting: $0.40 - $1.00/watt saved High Efficiency Fluorescent Systems: $10-$35/fixture High and Low Bay Fluorescents: $20 - $40/fixture

474

CPS Energy - New Commercial Construction Incentives | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CPS Energy - New Commercial Construction Incentives CPS Energy - New Commercial Construction Incentives CPS Energy - New Commercial Construction Incentives < Back Eligibility Commercial Multi-Family Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate 35% of eligible project costs or $250,000 per project Program Info Start Date 01/01/2010 State Texas Program Type Utility Rebate Program Rebate Amount Tier 1 Energy Incentive: $0.08/kWh Tier 1 Peak Demand Incentive: $125/kW Tier 2 Energy Incentive: $0.12/kWh Tier 2 Peak Demand Incentive: $150/kW Tier 3 Energy Incentive: $0.20/kWh Tier 3 Peak Demand Incentive: $200/kW Provider CPS Energy CPS Energy offers incentives for new commercial construction that is at

475

Oxybuoy: Constructing a Real-Time Inexpensive Hypoxia Monitoring Platform  

E-Print Network [OSTI]

Oxybuoy: Constructing a Real-Time Inexpensive Hypoxia Monitoring Platform Rizal Nor1 , Mikhail on using research vessels to collect water samples for subsequent chemical anal- ysis or to deploy DO premiums to recoup their development costs. Another commercial strategy is to develop a sensor platform

Nesterenko, Mikhail

476

Rocky Flats Former Construction Workers, Construction Worker Screening  

Broader source: Energy.gov (indexed) [DOE]

Rocky Flats Former Construction Workers, Construction Worker Rocky Flats Former Construction Workers, Construction Worker Screening Projects Rocky Flats Former Construction Workers, Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: Rocky Flats Worker Population Served: Construction Workers Principal Investigator: Knut Ringen, DrPH, MHA, MPH Toll-free Telephone: (800) 866-9663 Local Outreach Office: Dwayne Adkins 7510 W. Mississippi Ave., Suite 230 Lakewood, CO 80226 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica

477

Idaho National Laboratory Former Construction Workers, Construction Worker  

Broader source: Energy.gov (indexed) [DOE]

Idaho National Laboratory Former Construction Workers, Construction Idaho National Laboratory Former Construction Workers, Construction Worker Screening Projects Idaho National Laboratory Former Construction Workers, Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: Idaho National Laboratory (INL) Worker Population Served: Construction Workers Principal Investigator: Knut Ringen, DrPH, MHA, MPH Toll-free Telephone: 1-800-866-9663 Local Outreach Office: Dan Obray 456 N. Arthur Avenue Pocatello, ID 83204 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica

478

Waste Isolation Pilot Plant Construction Workers, Construction Worker  

Broader source: Energy.gov (indexed) [DOE]

Waste Isolation Pilot Plant Construction Workers, Construction Waste Isolation Pilot Plant Construction Workers, Construction Worker Screening Projects Waste Isolation Pilot Plant Construction Workers, Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: WIPP Worker Population Served: Construction Workers Principal Investigator: Knut Ringen, DrPh, MHA, MPH Toll-free Telephone: (800) 866-9663 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica and/or solvents. The project is being carried out by a large group led by

479

Office of Design and Construction Architecture/Engineering/Construction Management  

E-Print Network [OSTI]

to construct the Orchestra Pit, and above-grade masonry walls will continue through winter, as weather permits 2011 Project Manager: Tim Burns, Sr. Project Manager - Construction Comments: This is part two

Moore, Paul A.

480

Pinellas Former Construction Worker, Construction Worker Screening Projects  

Broader source: Energy.gov (indexed) [DOE]

Pinellas Former Construction Worker, Construction Worker Screening Pinellas Former Construction Worker, Construction Worker Screening Projects Pinellas Former Construction Worker, Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: Pinellas Worker Population Served: Construction Workers Principal Investigator: Knut Ringen, DrPH, MHA, MPH Toll-free Telephone: 1-800-866-9663 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica and/or solvents. The project is being carried out by a large group led by

Note: This page contains sample records for the topic "total construction cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Cost Estimating, Analysis, and Standardization  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish policy and responsibilities for: (a) developing and reviewing project cost estimates; (b) preparing independent cost estimates and analysis; (c) standardizing cost estimating procedures; and (d) improving overall cost estimating and analytical techniques, cost data bases, cost and economic escalation models, and cost estimating systems. Cancels DOE O 5700.2B, dated 8-5-1983; DOE O 5700.8, dated 5-27-1981; and HQ 1130.1A, dated 12-30-1981. Canceled by DOE O 5700.2D, dated 6-12-1992

1984-11-02T23:59:59.000Z

482

Cost Study Manual | Department of Energy  

Energy Savers [EERE]

Cost Study Manual Cost Study Manual Update 62912. Memo regarding Cost Study Manual Cost Study Manual More Documents & Publications Policy Flash 2013-62 Acquisition Letter 09 -...

483

Legislative Findings: Least-Cost Energy Sources (Nebraska) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Legislative Findings: Least-Cost Energy Sources (Nebraska) Legislative Findings: Least-Cost Energy Sources (Nebraska) Legislative Findings: Least-Cost Energy Sources (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Nebraska Program Type Siting and Permitting Provider Nebraska Public Power District

484

Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) |  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) < Back Eligibility Commercial Construction Industrial Utility Program Info State Louisiana Program Type Fees Generating Facility Rate-Making Provider Louisiana Public Service Commission The Incentive Cost Recovery Rule for Nuclear Power Generation establishes guidelines for any utility seeking to develop a nuclear power plant in Louisiana. The rule clarifies, as well as supplements the Louisiana Public Service Commission's 1983 General Order for the acquisition of nuclear generation resources. The goal of the rule is to provide a transparent process that identifies the responsibilities parties in the regulatory

485

Cost-effective Design Options for IsoDAR  

E-Print Network [OSTI]

This whitepaper reviews design options for the IsoDAR electron antineutrino source. IsoDAR is designed to produce $2.6 \\times 10^{22}$ electron antineutrinos per year with an average energy of 6.4 MeV, using isotope decay-at-rest. Aspects which must be balanced for cost-effectiveness include: overall cost; rate and energy distribution of the electron antineutrino flux and backgrounds; low technical risk; compactness; simplicity of underground construction and operation; reliability; value to future neutrino physics programs; and value to industry. We show that the baseline design outlined here is the most cost effective.

A. Adelmann; J. R. Alonso; W. Barletta; R. Barlow; L. Bartoszek; A. Bungau; L. Calabretta; A. Calanna; D. Campo; J. M. Conrad; Z. Djurcic; Y. Kamyshkov; H. Owen; M. H. Shaevitz; I. Shimizu; T. Smidt; J. Spitz; M. Toups; M. Wascko; L. A. Winslow; J. J. Yang

2012-10-16T23:59:59.000Z

486

Review of US utility demand-side bidding programs: Impacts, costs, and cost-effectiveness  

Science Journals Connector (OSTI)

In this study, we review utility experiences with demand-side management (DSM) bidding programs. Since 1987, about 35 US utilities have signed long-term contracts with developers of DSM resources (ie energy service companies and customers) to provide a quantity of demand and energy savings at specified prices. Total resource costs range between 5.4 and 8 cents/kWh for 10 DSM bidding programs where complete information on program costs is available. Almost all DSM bidding programs have been cost-effective compared with the utility's own supply-side alternatives, although there is substantial disagreement regarding the value of these programs compared with the utility's own DSM programs. In most bidding programs, payments to bidders account for between 70 and 90% of total program costs. Variation in winning bid prices is influenced primarily by DSM bid ceiling prices, differences in the mix of measures and markets targeted by developers, and the degree of performance risk borne by the DSM developer. Bids targeting residential customers averaged 6.2 cents/kWh compared with about 5.0 cents/kWh for commercial/industrial bids. We also compared the costs of acquiring lighting savings in DSM bidding contracts with a sample of 20 utility-sponsored commercial/industrial lighting programs. We found that, on average, total resource costs were slightly higher in bidding programs (6.1 vs 5.6 cents/kWh), although ratepayers bear significantly less performance risk in bidding programs compared with traditional utility-sponsored DSM programs.

Charles A. Goldman; Michele S. Kito

1995-01-01T23:59:59.000Z

487

costs | OpenEI  

Open Energy Info (EERE)

7 7 Varnish cache server costs Dataset Summary Description This dataset represents a historical repository of all the numerical data from the smartgrid.gov website condensed into spreadsheets to enable analysis of the data. Below are a couple of things worth noting: Source Smartgrid.gov Date Released March 04th, 2013 (11 months ago) Date Updated March 04th, 2013 (11 months ago) Keywords AMI costs distribution smart grid transmission Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon SmartGrid.gov Quarterly Data Summary 4Q12 (xlsx, 112.1 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon SmartGrid.gov Quarterly Data Summary 3Q12 (xlsx, 107.9 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon SmartGrid.gov Quarterly Data Summary 2Q12 (xlsx, 111.9 KiB)

488

Idaho Site Achieves Successful Nuclear Shipment on Newly Constructed Haul  

Broader source: Energy.gov (indexed) [DOE]

Achieves Successful Nuclear Shipment on Newly Achieves Successful Nuclear Shipment on Newly Constructed Haul Road Idaho Site Achieves Successful Nuclear Shipment on Newly Constructed Haul Road May 1, 2012 - 12:00pm Addthis The HFEF-6 cask is transported on the haul road. The HFEF-6 cask is transported on the haul road. IDAHO FALLS, Idaho - Close coordination among operations, security and transportation teams at the Idaho site helped ensure the recent success of the first nuclear shipment on a newly constructed haul road. The new road located between the Critical Infrastructure Test Range Complex (CITRC) and the Materials and Fuels Complex (MFC) is expected to help save significant time and cost over the life of the project by avoiding traffic disruptions on the public highway and increased cost associated with

489

Comparison of high-speed rail and maglev system costs  

SciTech Connect (OSTI)

This paper compares the two modes of transportation, and notes important similarities and differences in the technologies and in how they can be implemented to their best advantage. Problems with making fair comparisons of the costs and benefits are discussed and cost breakdowns based on data reported in the literature are presented and discussed in detail. Cost data from proposed and actual construction projects around the world are summarized and discussed. Results from the National Maglev Initiative and the recently-published Commercial Feasibility Study are included in the discussion. Finally, estimates will be given of the expected cost differences between HSR and maglev systems implemented under simple and complex terrain conditions. The extent to which the added benefits of maglev technology offset the added costs is examined.

Rote, D.M.

1998-07-01T23:59:59.000Z

490

Univalent Foundation and Constructive Mathematics  

E-Print Network [OSTI]

Univalent Foundation and Constructive Mathematics Thierry Coquand Luminy, April 7, 2014 #12;Univalent Foundation and Constructive Mathematics References on univalent foundation V. Voevodsky Univalent foundation home page and "Experimental library of univalent foundation of mathematics" B. Ahrens. C. Kapulkin

Coquand, Thierry

491

Textbook Cost Report for the Board of Regents University of Wisconsin -Madison  

E-Print Network [OSTI]

Textbook Cost Report for the Board of Regents University of Wisconsin - Madison November 2, 2007 Introduction Textbook costs matter. A typical first-year undergraduate, taking the typical first-year course--can expect to pay over $700 for textbooks in the first year. While this is a fraction of the total cost

Sheridan, Jennifer

492

Construction Project Number  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

North Execution - (2009 - 2011) North Execution - (2009 - 2011) Construction Project Number 2009 2010 2011 Project Description ANMLPL 0001C 76,675.32 - - Animas-Laplata circuit breaker and power rights CRGRFL 0001C - - 7,177.09 Craig Rifle Bay and transfer bay upgrade to 2000 amps; / Convert CRG RFL to 345 kV out of Bears Ear Sub FGE 0019C - - 39,207.86 Replace 69/25kV transformer KX2A at Flaming Gorge FGE 0020C - - 52,097.12 Flaming Gorge: Replace failed KW2A transformer HDN 0069C 16,638.52 208,893.46 3,704,578.33 Replace failed transformer with KZ1A 250 MVA 230/138kv

493

SF6432-CN Construction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7/31/13 7/31/13 Page 1 of 31 Printed copies of this document are uncontrolled. Retrieve latest version electronically. SANDIA CORPORATION SF 6432-CN (07/2013) Section II STANDARD TERMS AND CONDITIONS FOR FIRM-FIXED PRICE COMMERCIAL CONSTRUCTION CONTRACTS THE FOLLOWING CLAUSES APPLY TO THIS CONTRACT AS INDICATED UNLESS SPECIFICALLY DELETED, OR EXCEPT TO THE EXTENT THEY ARE SPECIFICALLY SUPPLEMENTED OR AMENDED IN WRITING IN THE COVER PAGE OR SECTION I. (CTRL+CLICK ON A LINK BELOW TO ADVANCE DIRECTLY TO THAT SECTION) ACCEPTANCE OF TERMS AND CONDITIONS (Ts&Cs) APPLICABLE LAW ASSIGNMENT AUTHORIZED DISTRIBUTORS BANKRUPTCY CANCELLATION OR TERMINATION FOR CONVENIENCE CHANGES COMPLIANCE WITH LAWS DEFINITIONS DIFFERING SITE CONDITIONS DISPUTES

494

Univalent Foundation and Constructive Mathematics  

E-Print Network [OSTI]

Univalent Foundation and Constructive Mathematics Thierry Coquand Oberwolfach, November 21, 2014 #12;Univalent Foundation and Constructive Mathematics Family of sets over a set Cf. Exercice 3,Richman and Ruitenburg 1 #12;Univalent Foundation and Constructive Mathematics Family of sets over a set We have

Coquand, Thierry

495

Maglev Launch: Ultra?low Cost, Ultra?high Volume Access to Space for Cargo and Humans  

Science Journals Connector (OSTI)

Despite decades of efforts to reduce rocket launch costs improvements are marginal. Launch cost to LEO for cargo is ?$10 000 per kg of payload and to higher orbit and beyond much greater. Human access to the ISS costs $20 million for a single passenger. Unless launch costs are greatly reduced large scale commercial use and human exploration of the solar system will not occur. A new approach for ultra low cost access to space—Maglev Launch—magnetically accelerates levitated spacecraft to orbital speeds 8 km/sec or more in evacuated tunnels on the surface using Maglev technology like that operating in Japan for high speed passenger transport. The cost of electric energy to reach orbital speed is less than $1 per kilogram of payload. Two Maglev launch systems are described the Gen?1System for unmanned cargo craft to orbit and Gen?2 for large?scale access of human to space. Magnetically levitated and propelled Gen?1 cargo craft accelerate in a 100 kilometer long evacuated tunnel entering the atmosphere at the tunnel exit which is located in high altitude terrain (?5000 meters) through an electrically powered “MHD Window” that prevents outside air from flowing into the tunnel. The Gen?1 cargo craft then coasts upwards to space where a small rocket burn ?0.5 km/sec establishes the final orbit. The Gen?1 reference design launches a 40 ton 2 meter diameter spacecraft with 35 tons of payload. At 12 launches per day a single Gen?1 facility could launch 150 000 tons annually. Using present costs for tunneling superconductors cryogenic equipment materials etc. the projected construction cost for the Gen?1 facility is 20 billion dollars. Amortization cost plus Spacecraft and O&M costs total $43 per kg of payload. For polar orbit launches sites exist in Alaska Russia and China. For equatorial orbit launches sites exist in the Andes and Africa. With funding the Gen?1 system could operate by 2020 AD. The Gen?2 system requires more advanced technology. Passenger spacecraft enter the atmosphere at 70 000 feet where deceleration is acceptable. A levitated evacuated launch tube is used with the levitation force generated by magnetic interaction between superconducting cables on the levitated launch tube and superconducting cables on the ground beneath. The Gen?2 system could launch 100’s of thousands of passengers per year and operate by 2030 AD. Maglev launch will enable large human scale exploration of space thousands of gigawatts of space solar power satellites for beamed power to Earth a robust defense against asteroids and comets and many other applications not possible now.

James Powell; George Maise; John Rather

2010-01-01T23:59:59.000Z

496

Modal and Nonmodal Symmetric Perturbations. Part II: Nonmodal Growths Measured by Total Perturbation Energy  

Science Journals Connector (OSTI)

Maximum nonmodal growths of total perturbation energy are computed for symmetric perturbations constructed from the normal modes presented in Part I. The results show that the maximum nonmodal growths are larger than the energy growth produced by ...

Qin Xu; Ting Lei; Shouting Gao

2007-06-01T23:59:59.000Z

497

Farm organization and cotton production costs in Comandante Fernandez, Chaco, Argentina  

E-Print Network [OSTI]

relevant in this matter. 'J. ractorized farms have lower proportions of fixed, but higher proportions of operating capital than non-tractorized farms when tenure is controlled. Average total costs per ton of cotton were signi- ficantlyy different only... between trartorized and non- tractorized owners. Average total costs per hectar'- are higher for tractorized than for non-trartoriz~H farms when tenure is controlled, ?oats o& capital items, among indirect cost components, and labor and traction...

Stagno, Horacio Hugo

2012-06-07T23:59:59.000Z

498

Life-Cycle Cost Analysis for Condensate Receiving System  

SciTech Connect (OSTI)

The purpose of this analysis is to determine the life-cycle costs of several options relevant to the Condensate Removal System serving the Compressed Air System (CAS) at the Yucca Mountain Site Characterization Project (YMP) Exploratory Studies Facility (ESF). The best option (least present value) will be selected as the preferred configuration to construct.

C Mellen

1995-01-18T23:59:59.000Z

499

Appropriateness Criteria and Elective Procedures — Total Joint Arthroplasty  

Science Journals Connector (OSTI)

...the importance of such criteria and have already started developing them as guidelines for other orthopedic procedures. Second, accountable care organizations and other institutions pursuing similar health care delivery models are becoming influential, and as they move away from procedure-based payments... The implementation of appropriateness criteria that help to identify the patients likely to benefit most from a given procedure could help to combat increasing health care costs while enhancing access and quality. Total joint arthroplasty offers a prime example.

Ghomrawi H.M.K.Schackman B.R.Mushlin A.I.

2012-12-27T23:59:59.000Z

500

Cost Effective Recovery of Low-TDS Frac Flowback Water for Re-use  

SciTech Connect (OSTI)

The project goal was to develop a cost-effective water recovery process to reduce the costs and envi-ronmental impact of shale gas production. This effort sought to develop both a flowback water pre-treatment process and a membrane-based partial demineralization process for the treatment of the low-Total Dissolved Solids (TDS) portion of the flowback water produced during hydrofracturing operations. The TDS cutoff for consideration in this project is < 35,000 {approx} 45,000 ppm, which is the typical limit for economic water recovery employing reverse osmosis (RO) type membrane desalination processes. The ultimate objective is the production of clean, reclaimed water suitable for re-use in hydrofracturing operations. The team successfully compiled data on flowback composition and other attributes across multiple shale plays, identified the likely applicability of membrane treatment processes in those shales, and expanded the proposed product portfolio to include four options suitable for various reuse or discharge applications. Pretreatment technologies were evaluated at the lab scale and down-selected based upon their efficacy in removing key contaminants. The chosen technologies were further validated by performing membrane fouling studies with treated flowback water to demonstrate the technical feasibility of flowback treatment with RO membranes. Process flow schemes were constructed for each of the four product options based on experimental performance data from actual flowback water treatment studies. For the products requiring membrane treatment, membrane system model-ing software was used to create designs for enhanced water recovery beyond the typical seawater desalination benchmark. System costs based upon vendor and internal cost information for all process flow schemes were generated and are below target and in line with customer expectations. Finally, to account for temporal and geographic variability in flowback characteristics as well as local disposal costs and regulations, a parametric value assessment tool was created to assess the economic attractiveness of a given flowback recovery process relative to conventional disposal for any combination of anticipated flowback TDS and local disposal cost. It is concluded that membrane systems in combination with appropriate pretreatment technologies can provide cost-effective recovery of low-TDS flow-back water for either beneficial reuse or safe surface discharge.

Claire Henderson; Harish Acharya; Hope Matis; Hareesh Kommepalli; Brian Moore; Hua Wang

2011-03-31T23:59:59.000Z