National Library of Energy BETA

Sample records for total construction cost

  1. Example Cost Codes for Construction Projects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides an example outline of cost items and their corresponding cost codes that may be used for construction projects.

  2. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    Total Fee Paid FY2008 $134,832 FY2009 $142,578 FY2010 $299,878 FY2011 $169,878 Cumulative Fee Paid $747,166 Contract Period: September 2007 - October 2012 $31,885,815 C/P/E Environmental Services, LLC DE-AM09-05SR22405/DE-AT30-07CC60011/SL14 Contractor: Contract Number: Contract Type: Cost Plus Award Fee $357,223 $597,797 $894,699 EM Contractor Fee Site: Stanford Linear Accelerator Center (SLAC) Contract Name: SLAC Environmental Remediation December 2012 $1,516,646 Fee Available $208,620 Fee

  3. Total Estimated Contract Cost: Performance Period

    Office of Environmental Management (EM)

    Fee Available (N/A) Total Fee Paid $23,179,000 $18,632,000 $16,680,000 $18,705,000 $25,495,000 $34,370,000 $32,329,000 $33,913,000 $66,794,000 $10,557,000 $3,135,000 $283,789,000 FY2015 FY2014 FY2013 FY2009 FY2010 FY2011 FY2012 Fee Information Minimum Fee Maximum Fee Dec 2015 Contract Number: Cost Plus Incentive Fee Contractor: $3,264,909,094 Contract Period: EM Contractor Fee s Idaho Operations Office - Idaho Falls, ID Contract Name: Idaho Cleanup Project $0 Contract Type: CH2M Washington Group

  4. Project Functions and Activities Definitions for Total Project Cost

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides guidelines developed to define the obvious disparity of opinions and practices with regard to what exactly is included in total estimated cost (TEC) and total project cost (TPC).

  5. Total Estimated Contract Cost: Performance Period

    Office of Environmental Management (EM)

    FY2012 Fee Information Minimum Fee Maximum Fee September 2015 Contract Number: Cost Plus Incentive Fee Contractor: 3,264,909,094 Contract Period: EM Contractor Fee s Idaho...

  6. ,"U.S. Total Refiner Acquisition Cost of Crude Oil"

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","U.S. Total Refiner Acquisition Cost of Crude Oil",3,"Annual",2014,"6301968" ,"Release Date:","212016" ,"Next Release Date:","312016" ,"Excel File...

  7. Construction Cost Growth for New Department of Energy Nuclear Facilities

    SciTech Connect (OSTI)

    Kubic, Jr., William L.

    2014-05-25

    Cost growth and construction delays are problems that plague many large construction projects including the construction of new Department of Energy (DOE) nuclear facilities. A study was conducted to evaluate cost growth of large DOE construction projects. The purpose of the study was to compile relevant data, consider the possible causes of cost growth, and recommend measures that could be used to avoid extreme cost growth in the future. Both large DOE and non-DOE construction projects were considered in this study. With the exception of Chemical and Metallurgical Research Building Replacement Project (CMRR) and the Mixed Oxide Fuel Fabrication Facility (MFFF), cost growth for DOE Nuclear facilities is comparable to the growth experienced in other mega construction projects. The largest increase in estimated cost was found to occur between early cost estimates and establishing the project baseline during detailed design. Once the project baseline was established, cost growth for DOE nuclear facilities was modest compared to non-DOE mega projects.

  8. FY 2007 Total System Life Cycle Cost, Pub 2008

    Broader source: Energy.gov [DOE]

    The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management’s (OCRWM) May 2007 total...

  9. NREL Reports Soft Costs Now Largest Piece of Solar Installation Total Cost

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - News Releases | NREL Reports Soft Costs Now Largest Piece of Solar Installation Total Cost December 2, 2013 Two detailed reports from the Energy Department's National Renewable Energy Laboratory (NREL) find that solar financing and other non-hardware costs - often referred to as "soft costs" - now comprise up to 64% of the total price of residential solar energy systems, reflecting how soft costs are becoming an increasingly larger fraction of the cost of installing solar.

  10. CIGNA Study Uncovers Relationship of Disabilities to Total Benefits Costs

    Broader source: Energy.gov [DOE]

    The findings of a new study reveal an interesting trend. Integrating disability programs with health care programs can potentially lower employers' total benefits costs and help disabled employees get back to work sooner and stay at work.

  11. An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling...

  12. Total Estimated Contract Cost: Contract Option Period: Maximum...

    Office of Environmental Management (EM)

    & Wilcox Conversion Services, LLC Contract Number: DE-AC30-11CC40015 Contract Type: Cost Plus Award Fee EM Contractor Fee September 2015 Site: Portsmouth Paducah Project Office...

  13. Total Estimated Contract Cost: Contract Option Period: Performance

    Office of Environmental Management (EM)

    Contractor: Bechtel National Inc. Contract Number: DE-AC27-01RV14136 Contract Type: Cost Plus Award Fee NA Maximum Fee 599,588,540 Fee Available 102,622,325 10,868,785,789...

  14. Step-by-step cost-estimation guide for residential earth-shelter construction

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Designers and builders of earth-sheltered structures will find this guide to be a basic outline for estimating construction costs. It considers, besides the basic materials and costs of any construction project, the regional, experience, and other variables that affect underground construction costs. The guide format permits the user to tally individual estimates and derive a simple cost per square foot. Space is also provided to tally actual costs for comparison. (DCK)

  15. Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment

    SciTech Connect (OSTI)

    Ramsden, T.

    2013-04-01

    This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

  16. Total Estimated Contract Cost: Contract Option Period: Maximum Fee

    Office of Environmental Management (EM)

    Maximum Fee Performance Period Fee Earned FY2011/2012 $4,059,840 FY2013 $2,928,000 FY2014 $3,022,789 FY2015 FY2016 Cumulative Fee $10,010,629 $19,878,019 $3,214,544 $5,254,840 $5,662,028 $1,421,695 Fee Available $4,324,912 $417,833,183 Contract Base Period: January 3, 2011 - September 2, 2016 (Extended) Fee Information Minimum Fee $0 N/A $19,878,019 Contractor: Babcock & Wilcox Conversion Services, LLC Contract Number: DE-AC30-11CC40015 Contract Type: Cost Plus Award Fee EM Contractor Fee

  17. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power and Backup Power Applications | Department of Energy A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications This report prepared by the Lawrence Berkeley National Laboratory describes a total cost of ownership model for emerging applications in stationary fuel cell systems. The

  18. An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment

    Broader source: Energy.gov [DOE]

    This report by NREL discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment.

  19. Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project

    Office of Environmental Management (EM)

    Audit Report Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project OAS-M-13-03 August 2013 Department of Energy Washington, DC 20585 August 8, 2013 MEMORANDUM FOR THE SENIOR ADVISOR FOR ENVIRONMENTAL MANAGEMENT FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project"

  20. Impacts of Rising Construction and Equipment Costs on Energy Industries (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Costs related to the construction industry have been volatile in recent years. Some of the volatility may be related to higher energy prices. Prices for iron and steel, cement, and concrete -- commodities used heavily in the construction of new energy projects -- rose sharply from 2004 to 2006, and shortages have been reported. How such price fluctuations may affect the cost or pace of new development in the energy industries is not known with any certainty, and short-term changes in commodity prices are not accounted for in the 25-year projections in Annual Energy Outlook 2007. Most projects in the energy industries require long planning and construction lead times, which can lessen the impacts of short-term trends.

  1. Feasibility studies to improve plant availability and reduce total installed cost in IGCC plants

    SciTech Connect (OSTI)

    Sullivan, Kevin; Anasti, William; Fang, Yichuan; Subramanyan, Karthik; Leininger, Tom; Zemsky, Christine

    2015-03-30

    The main purpose of this project is to look at technologies and philosophies that would help reduce the costs of an Integrated Gasification Combined Cycle (IGCC) plant, increase its availability or do both. GE’s approach to this problem is to consider options in three different areas: 1) technology evaluations and development; 2) constructability approaches; and 3) design and operation methodologies. Five separate tasks were identified that fall under the three areas: Task 2 – Integrated Operations Philosophy; Task 3 – Slip Forming of IGCC Components; Task 4 – Modularization of IGCC Components; Task 5 – Fouling Removal; and Task 6 – Improved Slag Handling. Overall, this project produced results on many fronts. Some of the ideas could be utilized immediately by those seeking to build an IGCC plant in the near future. These include the considerations from the Integrated Operations Philosophy task and the different construction techniques of Slip Forming and Modularization (especially if the proposed site is in a remote location or has a lack of a skilled workforce). Other results include ideas for promising technologies that require further development and testing to realize their full potential and be available for commercial operation. In both areas GE considers this project to be a success in identifying areas outside the core IGCC plant systems that are ripe for cost reduction and ity improvement opportunities.

  2. Do We Really Know how Much it Costs to Construct High Performance Buildings?

    SciTech Connect (OSTI)

    Livingston, Olga V.; Dillon, Heather E.; Halverson, Mark A.; Antonopoulos, Chrissi A.; Madison, Michael C.; Lucas, Robert G.

    2012-08-31

    Understanding the cost of energy efficient construction is critical to decision makers in building design, code development, and energy analysis. How much does it cost to upgrade from R-13 to R-19 in a building wall? How much do low-e windows really cost? Can we put a dollar figure on commissioning? Answers to these questions have a fuzzy nature, based on educated guesses and industry lore. The response depends on location, perspective, bulk buying, and hand waving. This paper explores the development of a web tool intended to serve as a publicly available repository of building component costs. In 2011 the U.S. Department of Energy (DOE) funded the launch of a web tool called the Building Component Cost Community (BC3), dedicated to publishing building component costs from documented sources, actively gathering verifiable cost data from the users, and collecting feedback from a wide range of participants on the quality of the posted cost data. The updated BC3 database, available at http://bc3.pnnl.gov, went live on April 30, 2012. BC3 serves as the ultimate source of the energy-related component costs for DOEs residential code development activities, including cost-effectiveness analyses. The paper discusses BC3 objectives, structure, functionality and the current content of the database. It aims to facilitate a dialog about the lack of verifiable transparent cost data, as well as introduce a web tool that helps to address the problem. The questions posed above will also be addressed by this paper, but they have to be resolved by the user community by providing feedback and cost data to the BC3 database, thus increasing transparency and removing information asymmetry.

  3. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500... 3.2 Q 0.8 0.9 0.8 0.5 500 to 999......

  4. DOE Project Number Project Name Site Critical Decision Total Project Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Number Project Name Site Critical Decision Total Project Cost Approved Project End Date 15-D-411 Underground Ventilation System (UVS) Carlsbad CD0 309,000,000 $ 01/01/21 CBC-ETEC-0040.C1 Energy Technology Engineering Center Demolition Project ETEC CD0 29,000,000 $ 09/30/19 RL-0041.C1 Nuclear Facility D&D - River Corridor Closure Project Hanford CD3 2,251,500,000 $ 09/30/19 RL-0011.C1 Plutonium Finishing Plant (PFP) Decontamination and Dismantlement Hanford CD3 352,000,000 $ 11/30/17

  5. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500... 3.2 357 336 113 188 177 59 500 to 999......

  6. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500... 3.2 0.9 0.5 0.4 500 to 999......

  7. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500... 3.2 0.9 0.5 0.9 1.0 500 to 999......

  8. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500... 3.2 0.5 0.3 Q 500 to 999......

  9. Total............................................................

    Gasoline and Diesel Fuel Update (EIA)

    Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592

  10. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases Propane/Propylene Normal Butane/Butylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending Components Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur

  11. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases Propane/Propylene Normal Butane/Butylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending Components Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur

  12. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  13. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1

  14. Total Cost Per MwH for all common large scale power generation...

    Open Energy Info (EERE)

    out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs...

  15. Total................................................

    Gasoline and Diesel Fuel Update (EIA)

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  16. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  17. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  18. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9

  19. Detailed thermal performance measurements and cost effectiveness of earth-sheltered construction: a case study

    SciTech Connect (OSTI)

    Christian, J.E.

    1985-09-01

    Earth-covering, solar gain, and massive construction are the design concepts successfully blended to produce an energy-efficient, durable, and comfortable building. Twenty-four-hour-quiet sleeping quarters and quality office space were the first design objectives of this building, these were successfully accomplished. The data acquisition system and a unique energy-balance analysis documents the thermal performance of each envelope component. Since the building's typical number of occupants, size, and internal electric loads are similar to those of a large residential building, the energy-performance data are extended to the residential marketplace. First-cost estimates for the whole building, earth-covered roof, and bermed wall are used with the detailed measured energy-use data to estimate cost effectiveness using residential economics criteria, such as 3% discount rate and 30-year life. The results from this analysis confirm the fact that earth, sun, and mass can save substantial amounts of annual and peak energy demand. However, further construction cost reductions are needed to produce more favorable cost effectiveness in the residential market arena. The overall thermal conductance value of this building is lower than the average values from the 300 low-energy residences as reported in the Building Energy-Use Compilation and Analysis, Part A (BECA-A), data base. However, the balance point of this building, with mechanical ventilation to ensure about 0.5 air change per hour, is substantially higher than those reported for low-energy residential buildings. This suggests that most of the energy-efficient homes either have an air-to-air heat exchanger or infiltration levels far below the generally accepted 0.5 air change per hour to ensure healthy indoor air quality. Reflective insulating blinds were installed in this building and have enhanced the daylighting and usability of the building. 9 refs., 23 figs., 4 tabs.

  20. Best Practices for Controlling Capital Costs in Net Zero Energy Design and Construction- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Shanti Pless, National Renewable Energy Laboratory For net zero energy (NZE) building performance to become the norm in new commercial construction, it is necessary to demonstrate that NZE can be achieved cost effectively.

  1. Startup Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter discusses startup costs for construction and environmental projects, and estimating guidance for startup costs.

  2. INDEPENDENT COST REVIEW (ICR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Report SOP Standard Operating Procedure TEC Total Estimated Cost TIPR Technical ... FY13 FY14 FY15 FY16 Total PED Construction TEC OPC TPC Note: above values include MR...

  3. Construction

    Broader source: Energy.gov [DOE]

    Learn about the energy-efficient construction projects that are saving businesses and communities money while creating jobs.

  4. Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    There is mounting evidence that zero energy can, in many cases, be achieved within typical construction budgets. To ensure that the momentum behind zero energy buildings and other low-energy buildings will continue to grow, this guide assembles recommendations for replicating specific successes of early adopters who have met their energy goals while controlling costs. Contents include: discussion of recommended cost control strategies, which are grouped by project phase (acquisition and delivery, design, and construction) and accompanied by industry examples; recommendations for balancing key decision-making factors; and quick reference tables that can help teams apply strategies to specific projects.

  5. Considering the total cost of electricity from sunlight and the alternatives

    SciTech Connect (OSTI)

    Fthenakis, Vasilis

    2015-03-01

    Photovoltaic (PV) electricity generation has grown to about 17 GW in the United States, corresponding to one tenth of the global capacity. Most deployment in the country has happened during the last 6 years. Reflecting back, in early 2008 this author and his collaborators James Mason and Ken Zweibel, published in Scientific American and in Energy Policy a Solar Grand Plan demonstrating the feasibility of renewable energy in providing 69% of the United States electricity demand by 2050, while reducing CO2 emissions by 60% from 2005 levels; the PV contribution to this plan was assessed to be 250 GW by 2030 and 2900 GW by 2050 [1]. The DOE's more detailed SunShot vision study, released in 2012, showed the possibility of having 300 GW of PV installed in the United States by 2030, and 630 GW by 2050. Assessing the sustainability of such rapid growth of photovoltaics necessitates undertaking a careful analysis because PV markets largely are enabled by its promise to produce reliable electricity with minimum environmental burdens. Measurable aspects of sustainability include cost, resource availability, and environmental impact. The question of cost concerns the affordability of solar energy compared to other energy sources throughout the world. Environmental impacts include local-, regional-, and global-effects, as well as the usage of land and water, which must be considered in a comparable context over a long time, multigenerational horizon. As a result, the availability of material resources matters to current and future-generations under the constraint of affordability.

  6. Considering the total cost of electricity from sunlight and the alternatives

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fthenakis, Vasilis

    2015-03-01

    Photovoltaic (PV) electricity generation has grown to about 17 GW in the United States, corresponding to one tenth of the global capacity. Most deployment in the country has happened during the last 6 years. Reflecting back, in early 2008 this author and his collaborators James Mason and Ken Zweibel, published in Scientific American and in Energy Policy a Solar Grand Plan demonstrating the feasibility of renewable energy in providing 69% of the United States electricity demand by 2050, while reducing CO2 emissions by 60% from 2005 levels; the PV contribution to this plan was assessed to be 250 GW bymore » 2030 and 2900 GW by 2050 [1]. The DOE's more detailed SunShot vision study, released in 2012, showed the possibility of having 300 GW of PV installed in the United States by 2030, and 630 GW by 2050. Assessing the sustainability of such rapid growth of photovoltaics necessitates undertaking a careful analysis because PV markets largely are enabled by its promise to produce reliable electricity with minimum environmental burdens. Measurable aspects of sustainability include cost, resource availability, and environmental impact. The question of cost concerns the affordability of solar energy compared to other energy sources throughout the world. Environmental impacts include local-, regional-, and global-effects, as well as the usage of land and water, which must be considered in a comparable context over a long time, multigenerational horizon. As a result, the availability of material resources matters to current and future-generations under the constraint of affordability.« less

  7. U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca Mountain, Nevada.  The 2007 total system life...

  8. Introduction to Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    Momentum behind zero energy building design and construction is increasing, presenting a tremendous opportunity for advancing energy performance in the commercial building industry. At the same time, there is a lingering perception that zero energy buildings must be cost prohibitive or limited to showcase projects. Fortunately, an increasing number of projects are demonstrating that high performance can be achieved within typical budgets. This factsheet highlights replicable, recommended strategies for achieving high performance on a budget, based on experiences from past projects.

  9. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  10. Virginia Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 Virginia Construction Code

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Virginia homeowners. Moving to the 2012 IECC from the current Virginia Construction Code is cost effective over a 30-year life cycle. On average, Virginia homeowners will save $5,836 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $388 for the 2012 IECC.

  11. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    SciTech Connect (OSTI)

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  12. Operating Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

  13. Bottlenecks aggravate rising construction costs

    SciTech Connect (OSTI)

    NONE

    2008-05-15

    Rising demand for power in developing countries combined with concerns about carbon emissions from coal-fired power plants in developed countries have created a bonanza for carbon-light technologies, including nuclear, renewables and natural gas plants. This, in turn, has put upward pressure on the price of natural gas in key markets while resulting in shortages in critical components for building renewables and nuclear reactors. Globalization of the power industry means that pressures in one segment or one region translate into shortages and rising prices everywhere else.

  14. OMB Approval No. 0348-0041 BUDGET INFORMATION - Construction Programs

    Energy Savers [EERE]

    OMB Approval No. 0348-0041 BUDGET INFORMATION - Construction Programs NOTE: Certain Federal assistance programs require additional computations to arrive at the Federal share of project costs eligible for participation. If such is the case, you will be notified. COST CLASSIFICATION a. Total Cost b. Costs Not Allowable for Participation c. Total Allowable Costs (Columns a-b) 1 Administrative and legal expenses $0.00 $0.00 $0.00 2 Land, structures, rights-of-way, appraisals, etc. $0.00 $0.00

  15. Cutting-Edge Savannah River Site Project Avoids Millions in Costs, Removes Chemical Solvents from Underground: Project avoided costs totaling more than $15 million, removed tons of chemical solvents from beneath the Savannah River Site

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – Workers recently completed a multiyear project that removed more than 33,000 gallons of non-radioactive chemical solvents from beneath a portion of the Savannah River Site (SRS), preventing those pollutants from entering the local water table and helping the site avoid costs of more than $15 million.

  16. Summary Max Total Units

    Energy Savers [EERE]

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  17. Anaheim Public Utilities - Commercial & Industrial New Construction...

    Broader source: Energy.gov (indexed) [DOE]

    Utilities (APU) offers commercial, industrial, and institutional customers the New Construction Incentives Program to offset construction and installation costs of energy...

  18. Buildings Energy Data Book: 2.5 Residential Construction and Housing Market

    Buildings Energy Data Book [EERE]

    8 2009 Sales Price and Construction Cost Breakdown of an Average New Single-Family Home ($2010) (1) Function Finished Lot 20% Construction Cost 59% Financing 2% Overhead & General Expenses 5% Marketing 1% Sales Commission 3% Profit 9% Total 100% Function Building Permit Fees 2% Impact Fees 1% Water and Sewer Inspection 2% Excavation, Foundation, & Backfill 7% Steel 1% Framing and Trusses 16% Sheathing 2% Windows 3% Exterior Doors 1% Interior Doors & Hardware 2% Stairs 1% Roof

  19. Project Construction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Integrating renewable energy into Federal new construction or major renovations requires effective structuring of the construction team and project schedule. This overview discusses key construction team considerations for renewable energy as well as timing and expectations for the construction phase. The project construction phase begins after a project is completely designed and the construction documents (100%) have been issued. Construction team skills and experience with renewable energy technologies are crucial during construction, as is how the integration of renewable energy affects the project construction schedule.

  20. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Choose a vehicle to compare fuel cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Propane (LPG) Next Vehicle Cost Calculator Vehicle 0 City 0 Hwy (mi/gal) 0 City 0 Hwy (kWh/100m) Gasoline Vehicle 0 City 0 Hwy (mi/gal) Normal Daily Use 30.5 Total miles/day City 55 % Hwy 45 % Other Trips 3484 Total miles/year City 20 % Hwy 80 % Fuel Cost Emissions Annual Fuel Cost $ $/gal Annual

  1. Buildings Energy Data Book: 1.3 Value of Construction and Research

    Buildings Energy Data Book [EERE]

    8 Number of Construction Employees and Total Employees for Select Building Envolope Industries (Thousand Employees) Poured Concrete Foundation and Structure Contractors (NAICS 238110) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Masonry Contractors (NAICS 238140) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Roofing Contractors (NAICS 238160) -Total Employment -Construction/Extraction Occupations

  2. New Construction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial new construction projects may be eligible to receive reimbursements...

  3. Electrochemical construction

    DOE Patents [OSTI]

    Einstein, Harry (Springfield, NJ); Grimes, Patrick G. (Westfield, NJ)

    1983-08-23

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  4. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  5. Construction Certifications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Certifications Individual Permit: Construction Certifications Enhanced control measures were designed and installed at 67 Sites in 42 SMAs in 2012. Contact Environmental...

  6. Anaheim Public Utilities- Commercial & Industrial New Construction Rebate Program

    Broader source: Energy.gov [DOE]

    Anaheim Public Utilities (APU) offers commercial, industrial, and institutional customers the New Construction Incentives Program to offset construction and installation costs of energy efficient...

  7. A Constructible and Durable High-Performance Walls System: Extended Plate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Beam | Department of Energy A Constructible and Durable High-Performance Walls System: Extended Plate and Beam A Constructible and Durable High-Performance Walls System: Extended Plate and Beam Photo courtesy of Home Innovation Research Labs. Photo courtesy of Home Innovation Research Labs. Lead Performer: Home Innovation Research Labs-Upper Marlboro, MD Partners: American Chemistry Council, Dow Building Solutions, Forest Products Laboratory, Builders DOE Total Funding: $256,818 Cost

  8. Small business success story: Lindblad Construction | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    led by Argonne National Laboratory." Lindblad has demonstrated how a small business can deliver high-quality construction services at a cost-effective price to not only ...

  9. Yongshan County Yonggu Construction and Construction Material...

    Open Energy Info (EERE)

    Yongshan County Yonggu Construction and Construction Material Co Ltd Jump to: navigation, search Name: Yongshan County Yonggu Construction and Construction Material Co., Ltd....

  10. Construction Certifications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Certifications Individual Permit: Construction Certifications Enhanced control measures were designed and installed at 67 Sites in 42 SMAs in 2012. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Construction Certifications Enhanced Controls SMA Submittal Date and Letter Certification Document 2M-SMA-1 July 25, 2012 (see document for submittal letter and certification) Submittal of Certification of Installation of

  11. Energy Department Report Calculates Emissions and Costs of Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    does not consider other factors such as capital costs of construction for wind, solar, fossil-fueled power plants, or transmission. These costs are significant, but outside the...

  12. 1222 6.b Plains and Eastern Project Cost.xlsx

    Broader source: Energy.gov (indexed) [DOE]

    Project Cost Estimate (mm) LINE CONSTRUCTION Miles Cost Line Segment - OK 427 853 Line Segment - AR 277 553 Line Segment - TN 16 33 HVDC CONVERTERS Oklahoma Converter Station...

  13. Best Practices for Controlling Capital Costs in Net Zero Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Best Practices for Controlling Capital Costs in Net Zero Energy Design and Construction - 2014 BTO Peer Review Best Practices for Controlling Capital Costs in Net Zero Energy ...

  14. NIF Construction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NIF Construction After careful preparation, a giant rotating crane lifted the NIF target chamber and gently placed it in the Target Bay, a breathtaking event that took only about 30 minutes. Building the World's Largest Laser Planning for NIF began in the early 1990s, and ground was broken on May 29, 1997. Energy Secretary Federico Peña said at the groundbreaking: "NIF will unleash the power of the heavens to make Earth a better place." To prepare the site for construction, more than

  15. Buildings Energy Data Book: 1.3 Value of Construction and Research

    Buildings Energy Data Book [EERE]

    9 Number of Construction Employees and Total Employees for Select Building Equipment Industries (Thousand Employees) Electrical Contractors and Other Wiring Installation Contractors (NAICS 238210) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Plumbing, Heating, and Air-Conditioning Contractors (NAICS 238220) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Other Building Equipment Contractors (NAICS 238290)

  16. Levelized Power Generation Cost Codes

    Energy Science and Technology Software Center (OSTI)

    1996-04-30

    LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generationmore » cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor.« less

  17. Price/Cost Proposal Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PRICE/COST PROPOSAL FORM Page No. of NREL Solicitation Document Number: Offeror's Name and Address: Title of Proposed Effort and Task No., Phase No., or Project Total, As Applicable: Telephone Number: Total Amount of Task/Phase No. ___________ $ _______________________ Proposal Summary Total $ ________________________ DETAIL DESCRIPTION OF COST ELEMENTS 1. DIRECT MATERIALS (Attach Itemized Listing for all Purchased Parts, Purchased Items or Services, Raw Materials, Standard Commercial Items, or

  18. BPA's Costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings and Workshops Customer...

  19. Electricity Plant Cost Uncertainties (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Construction costs for new power plants have increased at an extraordinary rate over the past several years. One study, published in mid-2008, reported that construction costs had more than doubled since 2000, with most of the increase occurring since 2005. Construction costs have increased for plants of all types, including coal, nuclear, natural gas, and wind.

  20. Total Crude by Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign

  1. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  2. Solar Basics for Homebuilders: Reducing the Total Cost of Ownership

    Broader source: Energy.gov [DOE]

    Solar photovoltaic (PV) energy systems are new in many residential real estate markets, and a growing number of homebuilders are integrating PV into new homes to attract customers and increase...

  3. Property:Geothermal/TotalProjectCost | Open Energy Information

    Open Energy Info (EERE)

    Churchill Co., NV Geothermal Project + 14,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 2,155,497 + A...

  4. Total Estimated Contract Cost: Contract Option Period: Performance

    Office of Environmental Management (EM)

    Performance Period Fee Earned FY2000 thru 2008 $102,622,325 FY2009 $12,259,719 FY2010 $35,789,418 FY2011 $24,126,240 FY2012 $24,995,209 FY2013 $6,340,762 FY2014 $16,285,867 FY2015 $35,931,000 $8,595,000 FY2016 $25,181,000 FY2017 $24,849,000 FY2018 $99,100,000 FY2019 $129,700,000 Cumulative Fee $231,014,540 $599,588,540 $12,259,719 $35,789,418 $38,554,240 $41,785,209 $16,698,762 $37,117,867 Maximum Fee $599,588,540 Fee Available $102,622,325 $10,868,785,789 Completion Contract: December 11, 2000

  5. U.S. Total Refiner Acquisition Cost of Crude Oil

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Composite 76.69 101.87 100.93 100.49 92.02 48.40 1968-2015 Domestic 78.01 100.71 100.72 102.91 94.05 49.95 1968-2015 Imported 75.86 102.63 101.09 98.11 89.56 46.39 1968-2015

  6. Nuclear economics 2000: Deterministic and probabilistic projections of nuclear and coal electric power generation costs for the year 2000

    SciTech Connect (OSTI)

    Williams, K.A.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1987-06-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base-load nuclear and coal-fired power plants with a startup date of January 2000. For the Midwest region a complete data set that specifies each parameter used to obtain the comparative results is supplied. When based on the reference set of input variables, the comparison of power generation costs is found to favor nuclear in most regions of the country. Nuclear power is most favored in the northeast and western regions where coal must be transported over long distances; however, coal-fired generation is most competitive in the north central region where large reserves of cheaply mineable coal exist. In several regions small changes in the reference variables could cause either option to be preferred. The reference data set reflects the better of recent electric utility construction cost experience (BE) for nuclear plants. This study assumes as its reference case a stable regulatory environment and improved planning and construction practices, resulting in nuclear plants typically built at the present BE costs. Today's BE nuclear-plant capital investment cost model is then being used as a surrogate for projected costs for the next generation of light-water reactor plants. An alternative analysis based on today's median experience (ME) nuclear-plant construction cost experience is also included. In this case, coal is favored in all ten regions, implying that typical nuclear capital investment costs must improve for nuclear to be competitive.

  7. DTE Energy- Commercial New Construction Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    New Construction/Remodeling projects require descriptions of the proposed project, all facilities that will be affected by the project, detail cost breakdown by measure, architectural drawings,...

  8. Examples of Cost Estimation Packages

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Estimates can be performed in a variety of ways. Some of these are for projects for an undefined scope, a conventional construction project, or where there is a level of effort required to complete the work. Examples of cost estimation packages for these types of projects are described in this appendix.

  9. Electricity Generation Cost Simulation Model

    Energy Science and Technology Software Center (OSTI)

    2003-04-25

    The Electricity Generation Cost Simulation Model (GENSIM) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration ofmore » a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the U.S. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emission trade-offs. The base case results using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax credit of 1.8 cents/kwhr.« less

  10. Construction plans jump; operations skid in 1996

    SciTech Connect (OSTI)

    True, W.R.

    1997-08-04

    Federally regulated oil and gas pipelines turned in mixed performances in 1996, a review of annual reports filed with the US Federal Energy Regulatory Commission (FERC) shows. Plans for new pipeline construction, filed with both the FERC and Canadian regulatory bodies, increased during a 12-month period ending June 30, 1997. Natural-gas pipeline operating companies increased their operating revenues but saw their incomes fall; oil pipelines saw both revenues and incomes fall sharply as deliveries were flat. Major natural-gas pipelines slightly increased the amounts of gas they moved for a fee and decreased gas sold out of their systems. In 1996, liquids pipelines moved fewer barrels than a year earlier and reduced in all categories the miles of line operated. Each year in this exclusive report, Oil and Gas Journal tracks revenues and incomes earned from operations along with volumes moved, as submitted to the FERC by US regulated interstate pipeline companies. Data are presented on the following: pipeline revenues, incomes--1996; North American pipeline-construction costs; US pipeline costs--estimated vs. actual; North American compressor construction costs; US compressor costs--estimated vs. actual; Canadian pipeline-construction costs, actual; US interstate mileage; investment in liquids pipelines; 10 years of land-construction costs; top 10 interstate liquids lines; top 10 interstate gas lines; liquids pipeline companies; and gas pipeline companies.

  11. Estimating Specialty Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Specialty costs are those nonstandard, unusual costs that are not typically estimated. Costs for research and development (R&D) projects involving new technologies, costs associated with future regulations, and specialty equipment costs are examples of specialty costs. This chapter discusses those factors that are significant contributors to project specialty costs and methods of estimating costs for specialty projects.

  12. Low-cost thin-material solar technology, the key to a viable energy alternative

    SciTech Connect (OSTI)

    Wilhelm, W.G.; Ripel, B.D.

    1985-08-01

    The creation of a solar technology based on a dramatic reduction in material intensity and greater simplicity of design is the result of a cost-guided research approach. It takes advantage of a progressive material science based on polymer films and unique construction methods that optimize material requirements, performance and durability. The current level of technical maturity has revealed a solar collector design that has the potential for a dramatic reduction in installed cost while maintaining high thermal performance and durability. In addition, the same methodology has guided total solar system designs with similar economies and performance advantages.

  13. An examination of the costs and critical characteristics of electric utility distribution system capacity enhancement projects

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Schienbein, Lawrence A.; Nguyen, Tony B.; Brown, Daryl R.; Fathelrahman, Eihab M.

    2004-06-01

    This report classifies and analyzes the capital and total costs (e.g., income tax, property tax, depreciation, centralized power generation, insurance premiums, and capital financing) associated with 130 electricity distribution system capacity enhancement projects undertaken during 1995-2002 or planned in the 2003-2011 time period by three electric power utilities operating in the Pacific Northwest. The Pacific Northwest National Laboratory (PNNL), in cooperation with participating utilities, has developed a large database of over 3,000 distribution system projects. The database includes brief project descriptions, capital cost estimates, the stated need for each project, and engineering data. The database was augmented by additional technical (e.g., line loss, existing substation capacities, and forecast peak demand for power in the area served by each project), cost (e.g., operations, maintenance, and centralized power generation costs), and financial (e.g., cost of capital, insurance premiums, depreciations, and tax rates) data. Though there are roughly 3,000 projects in the database, the vast majority were not included in this analysis because they either did not clearly enhance capacity or more information was needed, and not available, to adequately conduct the cost analyses. For the 130 projects identified for this analysis, capital cost frequency distributions were constructed, and expressed in terms of dollars per kVA of additional capacity. The capital cost frequency distributions identify how the projects contained within the database are distributed across a broad cost spectrum. Furthermore, the PNNL Energy Cost Analysis Model (ECAM) was used to determine the full costs (e.g., capital, operations and maintenance, property tax, income tax, depreciation, centralized power generation costs, insurance premiums and capital financing) associated with delivering electricity to customers, once again expressed in terms of costs per kVA of additional capacity. The projects were sorted into eight categories (capacitors, load transfer, new feeder, new line, new substation, new transformer, reconductoring, and substation capacity increase) and descriptive statistics (e.g., mean, total cost, number of observations, and standard deviation) were constructed for each project type. Furthermore, statistical analysis has been performed using ordinary least squares regression analysis to identify how various project variables (e.g., project location, the primary customer served by the project, the type of project, the reason for the upgrade, size of the upgrade) impact the unit cost of the project.

  14. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  15. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  16. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  17. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  18. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  19. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  20. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  1. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  2. Estimated Cost Description Determination Date:

    Office of Environmental Management (EM)

    Revised and posted 2/10/2011 *Title, Location Estimated Cost Description Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain $50,000 FONSI: uncertain Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain FONSI: uncertain Total Estimated Cost $70,000 Attachment: Memo, Moody to Marcinowski, III, SUBJECT: NEPA 2011 APS for DOE-SRS, Dated: Annual NEPA Planning Summary Environmental Assessments (EAs) Expected to be Initiated in the Next

  3. Parallel Total Energy

    Energy Science and Technology Software Center (OSTI)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  4. Labor Standards for Construction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (M&O) Cost Reimbursement Contracts for Capital Asset Projects, Environmental ... non-M&O cost reimbursement contracts for capital asset projects, environmental ...

  5. Low-cost inertial measurement unit.

    SciTech Connect (OSTI)

    Deyle, Travis Jay

    2005-03-01

    Sandia National Laboratories performs many expensive tests using inertial measurement units (IMUs)--systems that use accelerometers, gyroscopes, and other sensors to measure flight dynamics in three dimensions. For the purpose of this report, the metrics used to evaluate an IMU are cost, size, performance, resolution, upgradeability and testing. The cost of a precision IMU is very high and can cost hundreds of thousands of dollars. Thus the goals and results of this project are as follows: (1) Examine the data flow in an IMU and determine a generic IMU design. (2) Discuss a high cost IMU implementation and its theoretically achievable results. (3) Discuss design modifications that would save money for suited applications. (4) Design and implement a low cost IMU and discuss its theoretically achievable results. (5) Test the low cost IMU and compare theoretical results with empirical results. (6) Construct a more streamlined printed circuit board design reducing noise, increasing capabilities, and constructing a self-contained unit. Using these results, we can compare a high cost IMU versus a low cost IMU using the metrics from above. Further, we can examine and suggest situations where a low cost IMU could be used instead of a high cost IMU for saving cost, size, or both.

  6. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  7. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Aerosols, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  8. Hydropower Baseline Cost Modeling

    SciTech Connect (OSTI)

    O'Connor, Patrick W.; Zhang, Qin Fen; DeNeale, Scott T.; Chalise, Dol Raj; Centurion, Emma E.

    2015-01-01

    Recent resource assessments conducted by the United States Department of Energy have identified significant opportunities for expanding hydropower generation through the addition of power to non-powered dams and on undeveloped stream-reaches. Additional interest exists in the powering of existing water resource infrastructure such as conduits and canals, upgrading and expanding existing hydropower facilities, and the construction new pumped storage hydropower. Understanding the potential future role of these hydropower resources in the nation’s energy system requires an assessment of the environmental and techno-economic issues associated with expanding hydropower generation. To facilitate these assessments, this report seeks to fill the current gaps in publically available hydropower cost-estimating tools that can support the national-scale evaluation of hydropower resources.

  9. Career Map: Construction Manager

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Construction Manager positions.

  10. Low cost materials of construction for biological processes: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-05-13

    The workshop was held, May 1993 in conjunction with the 15th Symposium on Biotechnology for Fuels and Chemicals. The purpose of this workshop was to present information on the biomass to ethanol process in the context of materials selection and through presentation and discussion, identify promising avenues for future research. Six technical presentations were grouped into two sessions: process assessment and technology assessment. In the process assessment session, the group felt that the pretreatment area would require the most extensive materials research due the complex chemical, physical and thermal environment. Discussion centered around the possibility of metals being leached into the process stream and their effect on the fermentation mechanics. Linings were a strong option for pretreatment assuming the economics were favorable. Fermentation was considered an important area for research also, due to the unique complex of compounds and dual phases present. Erosion in feedstock handling equipment was identified as a minor concern. In the technology assessment session, methodologies in corrosion analysis were presented in addition to an overview of current coatings/linings technology. Widely practiced testing strategies, including ASTM methods, as well as novel procedures for micro-analysis of corrosion were discussed. Various coatings and linings, including polymers and ceramics, were introduced. The prevailing recommendations for testing included keeping the testing simple until the problem warranted a more detailed approach and developing standardized testing procedures to ensure the data was reproducible and applicable. The need to evaluate currently available materials such as coatings/linings, carbon/stainless steels, or fiberglass reinforced plastic was emphasized. It was agreed that economic evaluation of each material candidate must be an integral part of any research plan.

  11. DOE Challenge Home Savings and Cost Estimate Summary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings and Cost Estimate Summary DOE Challenge Home Savings and Cost Estimate Summary The U.S. Department of Energy Challenge Home Savings and Cost Estimate Summary, November 2013. PDF icon ch_cost_savings_summary.pdf More Documents & Publications Indoor airPLUS Construction Specifications Indoor airPLUS Construction Specifications Version 1 (Rev. 02) Washington DOE ZERH

  12. A Constructible and Durable High-Performance Walls System: Extended...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Labs. Photo courtesy of Home Innovation Research Labs. ... DOE Total Funding: 256,818 Cost Share: 65,000 Project ... homes that are more comfortable and durable at a lower cost. ...

  13. Enhanced Geothermal Systems (EGS) well construction technology evaluation report.

    SciTech Connect (OSTI)

    Capuano, Louis, Jr.; Huh, Michael; Swanson, Robert; Raymond, David Wayne; Finger, John Travis; Mansure, Arthur James; Polsky, Yarom; Knudsen, Steven Dell

    2008-12-01

    Electricity production from geothermal resources is currently based on the exploitation of hydrothermal reservoirs. Hydrothermal reservoirs possess three ingredients critical to present day commercial extraction of subsurface heat: high temperature, in-situ fluid and high permeability. Relative to the total subsurface heat resource available, hydrothermal resources are geographically and quantitatively limited. A 2006 DOE sponsored study led by MIT entitled 'The Future of Geothermal Energy' estimates the thermal resource underlying the United States at depths between 3 km and 10 km to be on the order of 14 million EJ. For comparison purposes, total U.S. energy consumption in 2005 was 100 EJ. The overwhelming majority of this resource is present in geological formations which lack either in-situ fluid, permeability or both. Economical extraction of the heat in non-hydrothermal situations is termed Enhanced or Engineered Geothermal Systems (EGS). The technologies and processes required for EGS are currently in a developmental stage. Accessing the vast thermal resource between 3 km and 10 km in particular requires a significant extension of current hydrothermal practice, where wells rarely reach 3 km in depth. This report provides an assessment of well construction technology for EGS with two primary objectives: (1) Determining the ability of existing technologies to develop EGS wells. (2) Identifying critical well construction research lines and development technologies that are likely to enhance prospects for EGS viability and improve overall economics. Towards these ends, a methodology is followed in which a case study is developed to systematically and quantitatively evaluate EGS well construction technology needs. A baseline EGS well specification is first formulated. The steps, tasks and tools involved in the construction of this prospective baseline EGS well are then explicitly defined by a geothermal drilling contractor in terms of sequence, time and cost. A task and cost based analysis of the exercise is subsequently conducted to develop a deeper understanding of the key technical and economic drivers of the well construction process. Finally, future research & development recommendations are provided and ranked based on their economic and technical significance.

  14. Yearly Energy Costs for Buildings

    Energy Science and Technology Software Center (OSTI)

    1991-03-20

    COSTSAFR3.0 generates a set of compliance forms which will be attached to housing Requests for Proposals (RFPs) issued by Departments or Agencies of the Federal Government. The compliance forms provide a uniform method for estimating the total yearly energy cost for each proposal. COSTSAFR3.0 analyzes specific housing projects at a given site, using alternative fuel types, and considering alternative housing types. The program is designed around the concept of minimizing overall costs through energy conservationmore » design, including first cost and future utility costs, and estabilishes a standard design to which proposed housing designs are compared. It provides a point table for each housing type that can be used to determine whether a proposed design meets the standard and how a design can be modified to meet the standard.« less

  15. Social cost impact assessment of pipeline infrastructure projects

    SciTech Connect (OSTI)

    Matthews, John C.; Allouche, Erez N.; Sterling, Raymond L.

    2015-01-15

    A key advantage of trenchless construction methods compared with traditional open-cut methods is their ability to install or rehabilitate underground utility systems with limited disruption to the surrounding built and natural environments. The equivalent monetary values of these disruptions are commonly called social costs. Social costs are often ignored by engineers or project managers during project planning and design phases, partially because they cannot be calculated using standard estimating methods. In recent years some approaches for estimating social costs were presented. Nevertheless, the cost data needed for validation of these estimating methods is lacking. Development of such social cost databases can be accomplished by compiling relevant information reported in various case histories. This paper identifies eight most important social cost categories, presents mathematical methods for calculating them, and summarizes the social cost impacts for two pipeline construction projects. The case histories are analyzed in order to identify trends for the various social cost categories. The effectiveness of the methods used to estimate these values is also discussed. These findings are valuable for pipeline infrastructure engineers making renewal technology selection decisions by providing a more accurate process for the assessment of social costs and impacts. - Highlights: • Identified the eight most important social cost factors for pipeline construction • Presented mathematical methods for calculating those social cost factors • Summarized social cost impacts for two pipeline construction projects • Analyzed those projects to identify trends for the social cost factors.

  16. Costs of Storing and Transporting Hydrogen | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Costs of Storing and Transporting Hydrogen Costs of Storing and Transporting Hydrogen An analysis was performed to estimate the costs associated with storing and transporting hydrogen. These costs can be added to a hydrogen production cost to determine the total delivered cost of hydrogen. PDF icon 25106.pdf More Documents & Publications Survey of the Economics of Hydrogen Technologies H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results -

  17. Development of surface mine cost estimating equations

    SciTech Connect (OSTI)

    Not Available

    1980-09-26

    Cost estimating equations were developed to determine capital and operating costs for five surface coal mine models in Central Appalachia, Northern Appalachia, Mid-West, Far-West, and Campbell County, Wyoming. Engineering equations were used to estimate equipment costs for the stripping function and for the coal loading and hauling function for the base case mine and for several mines with different annual production levels and/or different overburden removal requirements. Deferred costs were then determined through application of the base case depreciation schedules, and direct labor costs were easily established once the equipment quantities (and, hence, manpower requirements) were determined. The data points were then fit with appropriate functional forms, and these were then multiplied by appropriate adjustment factors so that the resulting equations yielded the model mine costs for initial and deferred capital and annual operating cost. (The validity of this scaling process is based on the assumption that total initial and deferred capital costs are proportional to the initial and deferred costs for the primary equipment types that were considered and that annual operating cost is proportional to the direct labor costs that were determined based on primary equipment quantities.) Initial capital costs ranged from $3,910,470 in Central Appalachia to $49,296,785; deferred capital costs ranged from $3,220,000 in Central Appalachia to $30,735,000 in Campbell County, Wyoming; and annual operating costs ranged from $2,924,148 in Central Appalachia to $32,708,591 in Campbell County, Wyoming. (DMC)

  18. Photovoltaic balance-of-system designs and costs at PVUSA

    SciTech Connect (OSTI)

    Reyes, A.B.; Jennings, C.

    1995-05-01

    This report is one in a series of 1994-1995 PVUSA reports that document PVUSA lessons learned at demonstration sites in California and Texas. During the last 7 years (1988 to 1994), 16 PV systems ranging from 20 kW to 500 kW have been installed. Six 20-kW emerging module technology (EMT) arrays and three turnkey (i.e., vendor designed and integrated) utility-scale systems were procured and installed at PVUSA`s main test site in Davis, California. PVUSA host utilities have installed a total of seven EMT arrays and utility-scale systems in their service areas. Additional systems at Davis and host utility sites are planned. One of PVUSA`s key objectives is to evaluate the performance, reliability, and cost of PV balance-of-system (BOS). In the procurement stage PVUSA encouraged innovative design to improve upon present practice by reducing maintenance, improving reliability, or lowering manufacturing or construction costs. The project team worked closely with suppliers during the design stage not only to ensure designs met functional and safety specifications, but to provide suggestions for improvement. This report, intended for the photovoltaic (PV) industry and for utility project managers and engineers considering PV plant construction and ownership, documents PVUSA utility-scale system design and cost lessons learned. Complementary PVUSA topical reports document: construction and safety experience; five-year assessment of EMTs; validation of the Kerman 500-kW grid-support PV plant benefits; PVUSA instrumentation and data analysis techniques; procurement, acceptance, and rating practices for PV power plants; experience with power conditioning units and power quality.

  19. Cost Model and Cost Estimating Software

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter discusses a formalized methodology is basically a cost model, which forms the basis for estimating software.

  20. Call center construction underway

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    only two weeks on the job, "design and construction work is in high gear," said Charlie Moore, MK Construction Manager. The 62,000-square-foot facility at 3111 National Parks...

  1. 21 briefing pages total

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law

  2. Weather, construction inflation could squeeze North American pipelines

    SciTech Connect (OSTI)

    True, W.R.

    1998-08-31

    Major North American interstate and interprovincial pipeline companies appear headed for a squeeze near-term: 1997 earnings from operations were down for the second straight year even as the companies expected new construction to begin this year or later to cost more. The effects of warmer-than-normal weather during 1997 in North America made a showing in annual reports filed by US regulated interstate oil and gas pipeline companies with the US Federal Energy Regulatory Commission (FERC). This paper contains data on the following: pipeline revenues, incomes--1997; North American pipeline costs; North American pipeline costs (estimated vs. actual); North American compressor construction costs; US compressor costs (estimated vs. actual); US interstate mileage; investment in liquids pipelines; 10 years of land construction costs; top 10 interstate liquids lines; top 10 interstate gas lines; liquids pipeline companies; and gas pipeline companies.

  3. Fortis Construction Inc.

    Energy Savers [EERE]

    Rob Fallow, Senior Project Manager Fortis Construction Portland, Oregon, USA Market Sectors Commercial Data Centers Healthcare Higher Education Pricing Major...

  4. Incorporating psychological influences in probabilistic cost analysis

    SciTech Connect (OSTI)

    Kujawski, Edouard; Alvaro, Mariana; Edwards, William

    2004-01-08

    Today's typical probabilistic cost analysis assumes an ''ideal'' project that is devoid of the human and organizational considerations that heavily influence the success and cost of real-world projects. In the real world ''Money Allocated Is Money Spent'' (MAIMS principle); cost underruns are rarely available to protect against cost overruns while task overruns are passed on to the total project cost. Realistic cost estimates therefore require a modified probabilistic cost analysis that simultaneously models the cost management strategy including budget allocation. Psychological influences such as overconfidence in assessing uncertainties and dependencies among cost elements and risks are other important considerations that are generally not addressed. It should then be no surprise that actual project costs often exceed the initial estimates and are delivered late and/or with a reduced scope. This paper presents a practical probabilistic cost analysis model that incorporates recent findings in human behavior and judgment under uncertainty, dependencies among cost elements, the MAIMS principle, and project management practices. Uncertain cost elements are elicited from experts using the direct fractile assessment method and fitted with three-parameter Weibull distributions. The full correlation matrix is specified in terms of two parameters that characterize correlations among cost elements in the same and in different subsystems. The analysis is readily implemented using standard Monte Carlo simulation tools such as {at}Risk and Crystal Ball{reg_sign}. The analysis of a representative design and engineering project substantiates that today's typical probabilistic cost analysis is likely to severely underestimate project cost for probability of success values of importance to contractors and procuring activities. The proposed approach provides a framework for developing a viable cost management strategy for allocating baseline budgets and contingencies. Given the scope and magnitude of the cost-overrun problem, the benefits are likely to be significant.

  5. Activity Based Costing

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Activity Based Costing (ABC) is method for developing cost estimates in which the project is subdivided into discrete, quantifiable activities or a work unit. This chapter outlines the Activity Based Costing method and discusses applicable uses of ABC.

  6. Contractor: Contract Number: Contract Type: Total Estimated

    Office of Environmental Management (EM)

    Contract Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Paid FY2004 $294,316 FY2005 $820,074 FY2006 $799,449 FY2007 $877,898 FY2008 $866,608 FY2009 $886,404 FY2010 $800,314 FY2011 $871,280 FY2012 $824,517 FY2013 Cumulative Fee Paid $7,040,860 $820,074 $799,449 $877,898 $916,130 $886,608 Computer Sciences Corporation DE-AC06-04RL14383 $895,358 $899,230 $907,583 Cost Plus Award Fee $134,100,336 $8,221,404 Fee Available Contract Period: Fee Information Minimum

  7. Hydrogen Threshold Cost Calculation

    Broader source: Energy.gov [DOE]

    DOE Hydrogen Program Record number11007, Hydrogen Threshold Cost Calculation, documents the methodology and assumptions used to calculate that threshold cost.

  8. Hydrogen Threshold Cost Calculation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    record documents the methodology and assumptions used to calculate that threshold cost. ... Calculation Methodology and Results: The consumer's cost per mile for the FCEV is set to ...

  9. Performance Period Total Fee Paid FY2008

    Office of Environmental Management (EM)

    FY2008 $87,580 FY2009 $87,580 FY2010 $171,763 FY2011 $1,339,286 FY 2012 $38,126 FY 2013 $42,265 Cumulative Fee Paid $1,766,600 $42,265 Cost Plus Incentive Fee/Cost Plus Fixed Fee $36,602,425 Contract Period: September 2007 - November 30, 2012 Target Fee $521,595 Total Estimated Contract Cost Contract Type: Maximum Fee $3,129,570 $175,160 $377,516 $1,439,287 Fee Available $175,160 $80,871 Accelerated Remediation Company (aRc) DE-AT30-07CC60013 Contractor: Contract Number: Minimum Fee $2,086,380

  10. Total-derivative supersymmetry breaking

    SciTech Connect (OSTI)

    Haba, Naoyuki; Uekusa, Nobuhiro

    2010-05-15

    On an interval compactification in supersymmetric theory, boundary conditions for bulk fields must be treated carefully. If they are taken arbitrarily following the requirement that a theory is supersymmetric, the conditions could give redundant constraints on the theory. We construct a supersymmetric action integral on an interval by introducing brane interactions with which total-derivative terms under the supersymmetry transformation become zero due to a cancellation. The variational principle leads equations of motion and also boundary conditions for bulk fields, which determine boundary values of bulk fields. By estimating mass spectrum, spontaneous supersymmetry breaking in this simple setup can be realized in a new framework. This supersymmetry breaking does not induce a massless R axion, which is favorable for phenomenology. It is worth noting that fermions in hyper-multiplet, gauge bosons, and the fifth-dimensional component of gauge bosons can have zero-modes (while the other components are all massive as Kaluza-Klein modes), which fits the gauge-Higgs unification scenarios.

  11. New Mexico State University campus geothermal demonstration project: an engineering construction design and economic evaluation. Final technical report, February 25, 1980-April 24, 1981

    SciTech Connect (OSTI)

    Cunniff, R.A.; Ferguson, E.; Archey, J.

    1981-07-01

    A detailed engineering construction cost estimate and economic evaluation of low temperature geothermal energy application for the New Mexico State University Campus are provided. Included are results from controlled experiments to acquire design data, design calculations and parameters, detailed cost estimates, and a comprehensive cost and benefit analysis. Detailed designs are given for a system using 140 to 145{sup 0}F geothermal water to displace 79 billion Btu per year of natural gas now being burned to generate steam. This savings represents a displacement of 44 to 46 percent of NMSU central plant natural gas consumption, or 32 to 35 percent of total NMSU natural gas consumption. The report forms the basis for the system construction phase with work scheduled to commence in July 1981, and target on-stream data of February 1982.

  12. Total Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  13. Capturing Waste Gas: Saves Energy, Lower Costs

    SciTech Connect (OSTI)

    2013-07-12

    In June 2009, ArcelorMittal learned about the potential to receive a 50% cost-matching grant from the American Recovery and Reinvestment Act (ARRA) administered by the U.S. Department of Energy (DOE). ArcelorMittal applied for the competitive grant and, in November, received $31.6 million as a DOE cost-sharing award. By matching the federal funding, ArcelorMittal was able to construct a new, high efficiency Energy Recovery & Reuse 504 Boiler and supporting infrastructure.

  14. Project Cost Profile Spreadsheet | Department of Energy

    Energy Savers [EERE]

    Project Cost Profile Spreadsheet Project Cost Profile Spreadsheet Under DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets, the Office of Acquisition and Project Management (OAPM) must perform a Performance Baseline External Independent Review (EIR) prior to Critical Decision (CD) 2, and a Construction/Execution Readiness EIR for all Major System projects prior to CD-3. The EIR Standard Operating Procedures (SOP) discuss all elements of EIRs including review

  15. The Business Case for Sustainable Design and Construction

    SciTech Connect (OSTI)

    Placet, Marylynn; Dyer, Beverly

    2002-11-01

    This paper discusses the challenges associated with developing a business case for sustainable design and construction, provides a framework for evaluating the benefits, and presents some preliminary data on costs of various sustainable design features.

  16. Insulation for New Home Construction | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ultra-efficient home design. It is more cost-effective to add insulation during construction than to retrofit it after the house is finished. To properly insulate a new home,...

  17. Construction Control Representative

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Engineering and Construction Field Engineering, (J5600) 5555...

  18. Construction | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policymakers Construction at Jefferson Lab The Technology & Engineering Development Facility or TEDF is one of the new facilities being constructed at Jefferon Lab is support of th enational science agenda. A D D I T I O N A L L I N K S: 12 GeV TEDF UIM ARRA Projects 10-Year Site Plan Facilities Home top-right bottom-left-corner bottom-right-corner Construction Two major construction projects are underway at Jefferson Lab - the 12 GeV Upgrade and the Technology & Engineering Development

  19. A chronicle of costs

    SciTech Connect (OSTI)

    Elioff, T.

    1994-04-01

    This report contains the history of all estimated costs associated with the superconducting super collider.

  20. Cost Estimation Package

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter focuses on the components (or elements) of the cost estimation package and their documentation.

  1. Life Cycle Cost Estimate

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

  2. Cost Contributors to Geothermal Power Production

    SciTech Connect (OSTI)

    Nathwani, Jay; Mines, Greg

    2011-07-01

    The US Department of Energy Geothermal Technologies Office (DOE-GTO) has developed the tool Geothermal Electricity Technologies Evaluation Model (GETEM) to assess the levelized cost of electricity (LCOE) of power produced from geothermal resources. Recently modifications to GETEM allow the DOE-GTO to better assess how different factors impact the generation costs, including initial project risk, time required to complete a development, and development size. The model characterizes the costs associated with project risk by including the costs to evaluate and drill those sites that are considered but not developed for commercial power generation, as well as to assign higher costs to finance those activities having more risk. This paper discusses how the important parameters impact the magnitude project costs for different project scenarios. The cost distributions presented include capital cost recovery for the exploration, confirmation, well field completion and power plant construction, as well as the operation and maintenance (O&M) costs. The paper will present these cost distributions for both EGS and hydrothermal resources.

  3. INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating...

  4. Workplace Charging Equipment and Installation Costs | Department of Energy

    Energy Savers [EERE]

    Equipment and Installation Costs Workplace Charging Equipment and Installation Costs The costs for a workplace charging program include the costs for charging equipment, installation, maintenance, and supplying electricity. Charging equipment costs depend on the type of charging station you decide to install in your workplace. Level 1 ($300-$1,500) and Level 2 ($400-$6,500) charging stations are commonly installed at workplaces. Explore how charging station equipment features affect the total

  5. Reducing Non-Hardware Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Soft Costs » Reducing Non-Hardware Costs Reducing Non-Hardware Costs DOE supports efforts to dramatically reduce the non-hardware, balance of systems costs associated with solar energy systems. Representing as much as 64% of the total installed system price, these "soft costs" include: Customer Acquisition Financing and Contracting Permitting, Interconnection, and Inspection Installation and Performance Operations and Maintenance. To meet SunShot goals, the industry must innovate new

  6. TotalView Training 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TotalView Training 2015 TotalView Training 2015 NERSC will host an in-depth training course on TotalView, a graphical parallel debugger developed by Rogue Wave Software, on...

  7. Owens Construction | Open Energy Information

    Open Energy Info (EERE)

    Construction Jump to: navigation, search Name: Owens Construction Place: Powell, OH Website: www.owensconstruction.com References: Owens Construction1 Information About...

  8. Rezac Construction | Open Energy Information

    Open Energy Info (EERE)

    Rezac Construction Jump to: navigation, search Name: Rezac Construction Place: Lincoln, NE Website: www.rezacconstruction.com References: Rezac Construction 1 Information About...

  9. Wanzek Construction | Open Energy Information

    Open Energy Info (EERE)

    Wanzek Construction Jump to: navigation, search Logo: Wanzek Construction Name: Wanzek Construction Address: 2028 2nd Avenue NW Place: West Fargo, ND Country: United States Zip:...

  10. Estimated Cost Description Determination Date:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Title, Location Estimated Cost Description Determination Date: 2010 LCLS Undulator 2 is envisioned to be a 0.2 - 2keV FEL x-ray source, capable of delivering x-rays to End Station A (ESA), located in the existing Research Yard at SLAC. It will also be configurable as a non- FEL hard x-ray source capable of delivering a chirped x-ray pulse for single-shot broad-spectrum measurements. The project would entail reconstruction of the electron beam transport to End Station A, construction and

  11. Parametric Analysis of the Factors Controlling the Costs of Sedimentary Geothermal Systems - Preliminary Results (Poster), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Several additional studies were conducted to explore the sensitivity of sedimentary geothermal system costs to key assumptions in the base case model. 1. Decreased Drilling Costs Assumed that drilling costs were 75% of those in the base case. * Total well field costs account for ~30%-50% of the total project costs in base case. * Assuming a 25% reduction in drilling costs reduces overall project capital costs by 8%-14%. * Impact increases with increasing reservoir depth (drilling costs

  12. Types of Cost Estimates

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    The chapter describes the estimates required on government-managed projects for both general construction and environmental management.

  13. TANK OPERATIONS CONTRACT CONSTRUCTION MANAGEMENT METHODOLOGY UTILIZING THE AGENCY METHOD OF CONSTRUCTION MANAGEMENT

    SciTech Connect (OSTI)

    LESKO KF; BERRIOCHOA MV

    2010-02-26

    Washington River Protection Solutions, LLC (WRPS) has faced significant project management challenges in managing Davis-Bacon construction work that meets contractually required small business goals. The unique challenge is to provide contracting opportunities to multiple small business constructioin subcontractors while performing high hazard work in a safe and productive manner. Previous to the WRPS contract, construction work at the Hanford Tank Farms was contracted to large companies, while current Department of Energy (DOE) Contracts typically emphasize small business awards. As an integral part of Nuclear Project Management at Hanford Tank Farms, construction involves removal of old equipment and structures and installation of new infrastructure to support waste retrieval and waste feed delivery to the Waste Treatment Plant. Utilizing the optimum construction approach ensures that the contractors responsible for this work are successful in meeting safety, quality, cost and schedule objectives while working in a very hazardous environment. This paper descirbes the successful transition from a traditional project delivery method that utilized a large business general contractor and subcontractors to a new project construction management model that is more oriented to small businesses. Construction has selected the Agency Construction Management Method (John E Schaufelberger, Len Holm, "Management of Construction Projects, A Constructor's Perspective", University of Washington, Prentice Hall 2002). This method was implemented in the first quarter of Fiscal Year 2009 (FY2009), where Construction Management is performed by substantially home office resources from the URS Northwest Office in Richland, Washington. The Agency Method has allowed WRPS to provide proven Construction Managers and Field Leads to mentor and direct small business contractors, thus providing expertise and assurance of a successful project. Construction execution contracts are subcontracted directly by WRPS to small or disadvantaged contractors that are mentored and supported by URS personnel. Each small contractor is mentored and supported utilizing the principles of the Construction Industry Institute (CII) Partnering process. Some of the key mentoring and partnering areas that are explored in this paper are, internal and external safety professional support, subcontractor safety teams and the interface with project and site safety teams, quality assurance program support to facilitate compliance with NQA-1, construction, team roles and responsibilities, work definition for successful fixed price contracts, scheduling and interface with project schedules and cost projection/accruals. The practical application of the CII Partnering principles, with the Construction Management expertise of URS, has led to a highly successful construction model that also meets small business contracting goals.

  14. Direct/Indirect Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides recommended categories for direct and indirect elements developed by the Committee for Cost Methods Development (CCMD) and describes various estimating techniques for direct and indirect costs.

  15. Solar Water Heating with Low-Cost Plastic Systems (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

  16. Passive solar construction handbook

    SciTech Connect (OSTI)

    Levy, E.; Evans, D.; Gardstein, C.

    1981-08-01

    Many of the basic elements of passive solar design are reviewed. The unique design constraints presented in passive homes are introduced and many of the salient issues influencing design decisions are described briefly. Passive solar construction is described for each passive system type: direct gain, thermal storage wall, attached sunspace, thermal storage roof, and convective loop. For each system type, important design and construction issues are discussed and case studies illustrating designed and built examples of the system type are presented. Construction details are given and construction and thermal performance information is given for the materials used in collector components, storage components, and control components. Included are glazing materials, framing systems, caulking and sealants, concrete masonry, concrete, brick, shading, reflectors, and insulators. The Load Collector Ratio method for estimating passive system performance is appended, and other analysis methods are briefly summarized. (LEW)

  17. Residential New Construction Program

    Broader source: Energy.gov [DOE]

    The Residential New Construction Program includes two levels that can be achieved by completing various energy efficiency measures: Base Level and High Performance Level. Projects meeting the req...

  18. New Construction Program

    Broader source: Energy.gov [DOE]

    NOTE: On March 2016, NYSERDA revised the Commercial New Construction program (PON 1601) extending the program through December 29, 2017, or until the funds are fully committed. 

  19. Genomic library construction

    DOE Patents [OSTI]

    Church, George M.; Zhang, Kun

    2011-07-26

    Compositions and methods for amplifying nucleic acid sequences from a single cell are provided. Compositions and methods for constructing a genomic library from a single cell are also provided.

  20. UMC Construction Waste (4493)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    collect all Construction waste identified in 2006 and excess through plant sales, recycle through plant scrap metal recycle program, dispose in Y-12 on-site landfill, or ship to...

  1. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  2. Performance Period Total Fee Paid FY2001

    Office of Environmental Management (EM)

    FY2001 $4,547,400 FY2002 $4,871,000 FY2003 $6,177,902 FY2004 $8,743,007 FY2005 $13,134,189 FY2006 $7,489,704 FY2007 $9,090,924 FY2008 $10,045,072 FY2009 $12,504,247 FY2010 $17,590,414 FY2011 $17,558,710 FY2012 $14,528,770 Cumulative Fee Paid $126,281,339 Cost Plus Award Fee DE-AC29-01AL66444 Washington TRU Solutions LLC Contractor: Contract Number: Contract Type: $8,743,007 Contract Period: $1,813,482,000 Fee Information Maximum Fee $131,691,744 Total Estimated Contract Cost: $4,547,400

  3. Solar Construction Permitting Standards

    Broader source: Energy.gov [DOE]

    Municipalities and counties in Arizona may no longer require a stamp from a professional engineer to approve a solar system installation, which can raise the cost of a permit, unless such a...

  4. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Sasabe, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San

  5. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Sasabe, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass,

  6. Bartering results in cost savings | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bartering results in cost ... Bartering results in cost savings Posted: March 6, 2015 - 1:54pm Representatives pictured left to right at the Bear Creek Burial Ground are UCOR representatives Paul Waldschlager and Sherree Shaw, UCOR President Ken Rueter, OREM Manager Sue Cange, UPF Federal Project Director John Eschenberg, UPF Project Director Brian Reilly, UPF Construction Manager Lynn Nolan, and UPF Project Superintendent John Stone. When UPF Construction completed the half-mile haul road

  7. Home construction | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home construction Home construction Family members inspect construction of their future home.

  8. Page Under Construction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Page Under Construction Page Under Construction This page is currently under construction.

  9. A Review of Cost Estimation in New Technologies- Implications for Energy Process Plants

    Broader source: Energy.gov [DOE]

    This report reviews literature on cost estimation in several areas involving major capital expenditure programs: energy process plants, major weapons systems acquisition, public works and larger construction projects, and cost estimating techniques and problems for chemical process plants.

  10. Pollution prevention cost savings potential

    SciTech Connect (OSTI)

    Celeste, J.

    1994-12-01

    The waste generated by DOE facilities is a serious problem that significantly impacts current operations, increases future waste management costs, and creates future environmental liabilities. Pollution Prevention (P2) emphasizes source reduction through improved manufacturing and process control technologies. This concept must be incorporated into DOE`s overall operating philosophy and should be an integral part of Total Quality Management (TQM) program. P2 reduces the amount of waste generated, the cost of environmental compliance and future liabilities, waste treatment, and transportation and disposal costs. To be effective, P2 must contribute to the bottom fine in reducing the cost of work performed. P2 activities at LLNL include: researching and developing innovative manufacturing; evaluating new technologies, products, and chemistries; using alternative cleaning and sensor technologies; performing Pollution Prevention Opportunity Assessments (PPOAs); and developing outreach programs with small business. Examples of industrial outreach are: innovative electroplating operations, printed circuit board manufacturing, and painting operations. LLNL can provide the infrastructure and technical expertise to address a wide variety of industrial concerns.

  11. Total Eolica | Open Energy Information

    Open Energy Info (EERE)

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  12. Total........................................................

    Gasoline and Diesel Fuel Update (EIA)

    111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351

  13. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space

  14. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing

  15. Total............................................................

    Gasoline and Diesel Fuel Update (EIA)

  16. Total.............................................................

    Gasoline and Diesel Fuel Update (EIA)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer....................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Most-Used Personal Computer Type of PC Desk-top Model.................................. 58.6 7.6 14.2 13.1 9.2 14.6 5.0 14.5 Laptop Model...................................... 16.9 2.0 3.8 3.3 2.1 5.7 1.3 3.5 Hours Turned on Per Week Less than 2 Hours..............................

  17. Total..............................................................

    Gasoline and Diesel Fuel Update (EIA)

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  18. Total..............................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  19. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  20. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  1. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  2. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  3. Total.................................................................

    Gasoline and Diesel Fuel Update (EIA)

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  4. Total.................................................................

    Gasoline and Diesel Fuel Update (EIA)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  5. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat

  6. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat

  7. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  8. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  9. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Air-Conditioning Equipment 1, 2 Central System............................................... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units.......................................... 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  10. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units........................................ 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  11. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  12. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  13. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  14. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  15. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing

  16. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  17. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  18. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One

  19. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  20. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7

  1. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  2. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Do Not Have Cooling Equipment............................. 17.8 2.1 1.8 0.3 Have Cooling Equipment.......................................... 93.3 23.5 16.0 7.5 Use Cooling Equipment........................................... 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it.......................... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  3. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  4. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  5. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  6. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  7. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  8. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  9. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  10. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  11. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  12. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5

  13. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a

  14. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  15. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 19.0 22.7 22.3 Do Not Have Cooling Equipment................................ 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................. 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment.............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................. 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 25.8 10.9 16.6 12.5

  16. Total.................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat

  17. Total.................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 7.0 8.0 12.1 Do Not Have Cooling Equipment................................... 17.8 1.8 Q Q 4.9 Have Cooling Equipment................................................ 93.3 5.3 7.0 7.8 7.2 Use Cooling Equipment................................................. 91.4 5.3 7.0 7.7 6.6 Have Equipment But Do Not Use it............................... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System.............................................................. 65.9 1.1 6.4 6.4 5.4 Without a

  18. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  19. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  20. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  1. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  2. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  3. Total.........................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  4. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 2.0 0.4 Q 0.3 Basements Basement in Single-Family Homes and Apartments in 2-4 Unit Buildings Yes......

  5. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Housing Units Living Space Characteristics Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Single-Family Units Detached...

  6. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Living Space Characteristics Below Poverty Line Eligible for Federal Assistance 1 Million ... Living Space Characteristics Below Poverty Line Eligible for Federal Assistance 1 Million ...

  7. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More 60,000 to 79,999 ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More 60,000 to 79,999 ...

  8. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table HC7.4 Space Heating Characteristics by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More Space Heating ...

  9. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 40,000 to 59,999 60,000 to 79,999 ...

  10. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Income Relative to Poverty Line Below 100 Percent......1.3 1.2 0.8 0.4 1. Below 150 percent of poverty line or 60 percent of median State ...

  11. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table HC13.10 Home Appliances Usage Indicators by South Census Region, 2005 Million U.S. Housing Units South Census Region Home Appliances Usage Indicators South Atlantic East ...

  12. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table HC8.10 Home Appliances Usage Indicators by UrbanRural Location, 2005 Million U.S. Housing Units UrbanRural Location (as Self-Reported) Housing Units (millions) Home ...

  13. Total..............................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 14.8 10.5 2,263 1,669 1,079 1,312 1,019 507 N N N ConcreteConcrete Block... 5.3 3.4 2,393 1,660 1,614 Q Q Q Q Q Q Composition...

  14. COST BREAKDOWN AWARD NO: START DATE: EXPIRATION DATE: FISCAL YEAR BREAKDOWN OF FUNDS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COST BREAKDOWN AWARD NO: START DATE: EXPIRATION DATE: FISCAL YEAR BREAKDOWN OF FUNDS ELEMENTS FY FY FY FY FY TOTAL Direct Labor Overhead Materials Supplies Travel Other Direct Costs Subcontractors Total Direct Costs G&A Expense Total All Costs DOE Share* Awardee Share* Overhead Rate G&A Rate 1. The cost elements indicated are provided as an example only. Your firm should indicate the costs elements you have used on your invoices. 2. You should indicate the cost incurred for each of your

  15. DOE Challenge Home Savings & Cost Estimate Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Challenge Home Savings & Cost Estimate Summary November 2013 www.buildings.energy.gov/challenge DOE Challenge Home Savings & Cost Estimate Summary November 2013 INTRODUCTION In considering the business strategy for constructing and selling Zero Energy Ready Homes through the DOE Challenge Home program, builders and other program partners understandably want to know about the added costs. Upgrades in insulation, air sealing, mechanical equipment and other systems will mean both

  16. High Energy Cost Grants

    Broader source: Energy.gov [DOE]

    The High Energy Cost Grant Program provides financial assistance for the improvement of energy generation, transmission, and distribution facilities servicing eligible rural communities with home...

  17. Workplace Charging Installation Costs

    Broader source: Energy.gov [DOE]

    Installation costs and services vary considerably, so employers are encouraged to obtain a number of quotes before moving forward with any installation. An initial site investigation should include:

  18. SOFT COST GRAND CHALLENGE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energycenter.org California Center for Sustainable Energy Soft Cost Grand Challenge May 22, 2014 Accelerating the transition to a sustainable world powered by clean energy 2...

  19. Construction Schedule | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction Schedule Current Projects 27-ID and 35-ID APS Vibration Reporting Protocol Summary of Construction Equipment Tests and Activities Jan 2014 Past Projects APCF LOM438...

  20. Metric Construction | Open Energy Information

    Open Energy Info (EERE)

    Metric Construction Jump to: navigation, search Name: Metric Construction Place: Boston, MA Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test...

  1. Martifer Construction | Open Energy Information

    Open Energy Info (EERE)

    Construction Jump to: navigation, search Name: Martifer Construction Place: Oliveira de Frades, Portugal Zip: 3684-909 Sector: Services, Solar, Wind energy Product: Portugal-based...

  2. Key issues for low-cost FGD installations

    SciTech Connect (OSTI)

    DePriest, W.; Mazurek, J.M.

    1995-12-01

    This paper will discuss various methods for installing low-cost FGD systems. The paper will include a discussion of various types of FGD systems available, both wet and dry, and will compare the relative cost of each type. Important design issues, such as use of spare equipment, materials of construction, etc. will be presented. An overview of various low-cost construction techniques (i.e., modularization) will be included. This paper will draw heavily from Sargent & Lundy`s database of past and current FGD projects together with information we gathered for several Electric Power Research Institute (EPRI) studies on the subject.

  3. Transmission line capital costs

    SciTech Connect (OSTI)

    Hughes, K.R.; Brown, D.R.

    1995-05-01

    The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

  4. Decommissioning Unit Cost Data

    SciTech Connect (OSTI)

    Sanford, P. C.; Stevens, J. L.; Brandt, R.

    2002-02-26

    The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for decommissioning at other facilities with similar equipment and labor costs. It also provides techniques for extracting information from limited data using extrapolation and interpolation techniques.

  5. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    SciTech Connect (OSTI)

    Mills, Evan

    2009-07-16

    The aim of commissioning new buildings is to ensure that they deliver, if not exceed, the performance and energy savings promised by their design. When applied to existing buildings, commissioning identifies the almost inevitable 'drift' from where things should be and puts the building back on course. In both contexts, commissioning is a systematic, forensic approach to quality assurance, rather than a technology per se. Although commissioning has earned increased recognition in recent years - even a toehold in Wikipedia - it remains an enigmatic practice whose visibility severely lags its potential. Over the past decade, Lawrence Berkeley National Laboratory has built the world's largest compilation and meta-analysis of commissioning experience in commercial buildings. Since our last report (Mills et al. 2004) the database has grown from 224 to 643 buildings (all located in the United States, and spanning 26 states), from 30 to 100 million square feet of floorspace, and from $17 million to $43 million in commissioning expenditures. The recorded cases of new-construction commissioning took place in buildings representing $2.2 billion in total construction costs (up from 1.5 billion). The work of many more commissioning providers (18 versus 37) is represented in this study, as is more evidence of energy and peak-power savings as well as cost-effectiveness. We now translate these impacts into avoided greenhouse gases and provide new indicators of cost-effectiveness. We also draw attention to the specific challenges and opportunities for high-tech facilities such as labs, cleanrooms, data centers, and healthcare facilities. The results are compelling. We developed an array of benchmarks for characterizing project performance and cost-effectiveness. The median normalized cost to deliver commissioning was $0.30/ft2 for existing buildings and $1.16/ft2 for new construction (or 0.4% of the overall construction cost). The commissioning projects for which data are available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded the direct value of the energy savings. Commissioning also improves worker comfort, mitigates indoor air quality problems

  6. Cost Estimating Handbook for Environmental Restoration

    SciTech Connect (OSTI)

    1990-09-01

    Environmental restoration (ER) projects have presented the DOE and cost estimators with a number of properties that are not comparable to the normal estimating climate within DOE. These properties include: An entirely new set of specialized expressions and terminology. A higher than normal exposure to cost and schedule risk, as compared to most other DOE projects, due to changing regulations, public involvement, resource shortages, and scope of work. A higher than normal percentage of indirect costs to the total estimated cost due primarily to record keeping, special training, liability, and indemnification. More than one estimate for a project, particularly in the assessment phase, in order to provide input into the evaluation of alternatives for the cleanup action. While some aspects of existing guidance for cost estimators will be applicable to environmental restoration projects, some components of the present guidelines will have to be modified to reflect the unique elements of these projects. The purpose of this Handbook is to assist cost estimators in the preparation of environmental restoration estimates for Environmental Restoration and Waste Management (EM) projects undertaken by DOE. The DOE has, in recent years, seen a significant increase in the number, size, and frequency of environmental restoration projects that must be costed by the various DOE offices. The coming years will show the EM program to be the largest non-weapons program undertaken by DOE. These projects create new and unique estimating requirements since historical cost and estimating precedents are meager at best. It is anticipated that this Handbook will enhance the quality of cost data within DOE in several ways by providing: The basis for accurate, consistent, and traceable baselines. Sound methodologies, guidelines, and estimating formats. Sources of cost data/databases and estimating tools and techniques available at DOE cost professionals.

  7. Toward a constructive physics

    SciTech Connect (OSTI)

    Noyes, H.P.; Gefwert, C.; Manthey, M.J.

    1983-06-01

    We argue that the discretization of physics which has occurred thanks to the advent of quantum mechanics has replaced the continuum standards of time, length and mass which brought physics to maturity by counting. The (arbitrary in the sense of conventional dimensional analysis) standards have been replaced by three dimensional constants: the limiting velocity c, the unit of action h, and either a reference mass (eg m/sub p/) or a coupling constant (eg G related to the mass scale by hc/(2..pi..Gm/sub p//sup 2/) approx. = 1.7 x 10/sup 38/). Once these physical and experimental reference standards are accepted, the conventional approach is to connect physics to mathematics by means of dimensionless ratios. But these standards now rest on counting rather than ratios, and allow us to think of a fourth dimensionless mathematical concept, which is counting integers. According to constructive mathematics, counting has to be understood before engaging in the practice of mathematics in order to avoid redundancy. In its strict form constructive mathematics allows no completed infinities, and must provide finite algorithms for the computation of any acceptable concept. This finite requirement in constructive mathematics is in keeping with the practice of physics when that practice is restricted to hypotheses which are testable in a finite time. In this paper we attempt to outline a program for physics which will meet these rigid criteria while preserving, in so far as possible, the successes that conventional physics has already achieved.

  8. 2015 Construction Safety Workshop Presentations

    Broader source: Energy.gov [DOE]

    2015 Construction Safety Workshop Presentations, June 16, 2015 - Forrestal Building - Washington, DC

  9. The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs

    SciTech Connect (OSTI)

    Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth; Schiller, Steven R.; Goldman, Charles A.; LaCommare, Kristina

    2014-03-19

    End-use energy efficiency is increasingly being relied upon as a resource for meeting electricity and natural gas utility system needs within the United States. There is a direct connection between the maturation of energy efficiency as a resource and the need for consistent, high-quality data and reporting of efficiency program costs and impacts. To support this effort, LBNL initiated the Cost of Saved Energy Project (CSE Project) and created a Demand-Side Management (DSM) Program Impacts Database to provide a resource for policy makers, regulators, and the efficiency industry as a whole. This study is the first technical report of the LBNL CSE Project and provides an overview of the project scope, approach, and initial findings, including: • Providing a proof of concept that the program-level cost and savings data can be collected, organized, and analyzed in a systematic fashion; • Presenting initial program, sector, and portfolio level results for the program administrator CSE for a recent time period (2009-2011); and • Encouraging state and regional entities to establish common reporting definitions and formats that would make the collection and comparison of CSE data more reliable. The LBNL DSM Program Impacts Database includes the program results reported to state regulators by more than 100 program administrators in 31 states, primarily for the years 2009–2011. In total, we have compiled cost and energy savings data on more than 1,700 programs over one or more program-years for a total of more than 4,000 program-years’ worth of data, providing a rich dataset for analyses. We use the information to report costs-per-unit of electricity and natural gas savings for utility customer-funded, end-use energy efficiency programs. The program administrator CSE values are presented at national, state, and regional levels by market sector (e.g., commercial, industrial, residential) and by program type (e.g., residential whole home programs, commercial new construction, commercial/industrial custom rebate programs). In this report, the focus is on gross energy savings and the costs borne by the program administrator—including administration, payments to implementation contractors, marketing, incentives to program participants (end users) and both midstream and upstream trade allies, and evaluation costs. We collected data on net savings and costs incurred by program participants. However, there were insufficient data on participant cost contributions, and uncertainty and variability in the ways in which net savings were reported and defined across states (and program administrators).

  10. Labor Standards for Construction

    Office of Environmental Management (EM)

    Chapter 43.3 (March 2013) 1 Maintaining Alignment of Project Management with Contract Management for Non-Management and Operating (M&O) Cost Reimbursement Contracts for Capital Asset Projects, Environmental Remediation, Decontamination and Decommissioning, Facility Operations, and Other Major Projects Purpose and Applicability This chapter provides guidance on how Contracting Officers (COs) should manage contract changes, and how COs and Federal Project Directors (FPDs) should maintain

  11. Brookhaven National Laboratory's low cost solar technology

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1984-09-01

    The problems identified in early study - cost, architectural compatibility, and reliability - were not likely to be solved with conventional practices in the solar industry. BNL then embarked upon an iterative development process towards a solution founded on the methodology which establish a set of key guidelines for the research. With the derivation of cost goals ($5 to $6 per square foot, installed) and performance targets (consistent with conventional technology) it was considered important to use sophisticated industrial product development technologies to achieve the desired results. The normal industrial practice to reduce cost, for example, is to reduce material intensity, strive for simplicity in design and apply as much mass production as possible. This approach revealed the potential of polymer films as a basic construction material for solar collectors. Further refinements to reduce cost were developed, including the perfection of a non-pressurized absorber/heat exchanger and the adaptability of a printable optical selective surface. Additional significant advantages were acquired through application of a monocoque construction technique borrowed from the aircraft industry. The procedures used, including important support from industry to help identify materials and guide fabrication techniques, eventually resulted in construction and successful testing of a thin polymer film solar collector. To achieve the overall objectives of viable solar economics some system concepts have been explored by BNL. Consistent with the cost goals mentioned, it is believed that the low pressure designs pursued will be successful. Designs for the storage tank and distribution system that have been pursued include the use of polymer film lined sheet metal for the storage tanks and plastic pipe.

  12. Unique Lanthide-Free Motor Construction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unique Lanthanide-Free Motor Construction Josh Ley, Principal Investigator Jon Lutz, Presenter Alan Gilbert, Program Manager UQM Technologies, Inc. April 21, 2014 APE044 This presentation does not contain any proprietary, confidential, or otherwise restricted information Overview Timeline Project start date: 10/01/2011 Project end date: 10/31/2015 Percent complete: 60% Budget Total project funding - $2,667K DOE Share - $889K UQM Share Funding received in FY13: $765K Funding for FY14: $806K

  13. Award Number: Federal Non-Federal Federal Non-Federal Total

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    j. Indirect Charges k. Totals (sum of 6i-6j) Program Income Applicant Name: Budget Information - Non Construction Programs OMB Approval No. 0348-0044 New or Revised Budget Section A - Budget Summary i. Total Direct Charges (sum of 6a-6h) Grant Program, Function or Activity Object Class Categories Authorized for Local Reproduction h. Other a. Personnel b. Fringe Benefits c. Travel d. Equipment 6. Total (5) f. Contractual g. Construction Section B - Budget Categories Catalog of Federal Domestic

  14. DOE Announces $160 Million for Biorefinery Construction and Highlights New

    Energy Savers [EERE]

    Agricultural Program to Promote Biofuels | Department of Energy 60 Million for Biorefinery Construction and Highlights New Agricultural Program to Promote Biofuels DOE Announces $160 Million for Biorefinery Construction and Highlights New Agricultural Program to Promote Biofuels February 22, 2006 - 12:11pm Addthis Funding Paves the Way for Diversifying America's Energy Mix DECATUR, IL - Energy Secretary Samuel W. Bodman, today announced $160 million in cost-shared funding over three years to

  15. Characteristics RSE Column Factor: Total

    U.S. Energy Information Administration (EIA) Indexed Site

    and 1994 Vehicle Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  16. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and Renewable Energy Get Widget Code...

  17. Workplace Charging Equipment Costs

    Broader source: Energy.gov [DOE]

    Charging stations are available from a variety of manufacturers in a range of models for all charging applications. For a single port charging station, Level 1 hardware costs range from $300-$1,500...

  18. Estimating Renewable Energy Costs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

  19. System Cost Model

    Energy Science and Technology Software Center (OSTI)

    1996-03-27

    SCM is used for estimation of the life-cycle impacts (costs, health and safety risks) of waste management facilities for mixed low-level, low-level, and transuranic waste. SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing waste management facilities at Department of Energy (DOE) installations. SCM also provides transportation costs for intersite transfer of DOE wastes. SCM covers the entire DOE waste management complex tomore » allow system sensitivity analysis including: treatment, storage, and disposal configuration options; treatment technology selection; scheduling options; transportation options; waste stream and volume changes; and site specific conditions.« less

  20. Cost Estimating Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-09

    This Guide provides uniform guidance and best practices that describe the methods and procedures that could be used in all programs and projects at DOE for preparing cost estimates. No cancellations.

  1. Cost Estimating Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-09

    This Guide provides uniform guidance and best practices that describe the methods and procedures that could be used in all programs and projects at DOE for preparing cost estimates.

  2. Calutron construction | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    construction Calutron construction Construction workers pour the concrete floor and footers for a Y-12 Calutron process building...

  3. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  4. TANK OPERATIONS CONTRACT CONSTRUCTION MANAGEMENT METHODOLOGY UTILIZING THE AGENCY METHOD OF CONSTRUCTION MANAGEMENT TO SAFELY AND EFFECTIVELY COMPLETE NUCLEAR CONSTRUCTION WORK

    SciTech Connect (OSTI)

    LESO KF; HAMILTON HM; FARNER M; HEATH T

    2010-01-14

    Washington River Protection Solutions, LLC (WRPS) has faced significant project management challenges in managing Davis-Bacon construction work that meets contractually required small business goals. The unique challenge is to provide contracting opportunities to multiple small business construction subcontractors while performing high hazard work in a safe and productive manner. Previous to the Washington River Protection Solutions, LLC contract, Construction work at the Hanford Tank Farms was contracted to large companies, while current Department of Energy (DOE) Contracts typically emphasize small business awards. As an integral part of Nuclear Project Management at Hanford Tank Farms, construction involves removal of old equipment and structures and installation of new infrastructure to support waste retrieval and waste feed delivery to the Waste Treatment Plant. Utilizing the optimum construction approach ensures that the contractors responsible for this work are successful in meeting safety, quality, cost and schedule objectives while working in a very hazardous environment. This paper describes the successful transition from a traditional project delivery method that utilized a large business general contractor and subcontractors to a new project construction management model that is more oriented to small businesses. Construction has selected the Agency Construction Management Method. This method was implemented in the first quarter of Fiscal Year (FY) 2009, where Construction Management is performed by substantially home office resources from the URS Northwest Office in Richland, Washington. The Agency Method has allowed WRPS to provide proven Construction Managers and Field Leads to mentor and direct small business contractors, thus providing expertise and assurance of a successful project. Construction execution contracts are subcontracted directly by WRPS to small or disadvantaged contractors that are mentored and supported by DRS personnel. Each small contractor is mentored and supported utilizing the principles of the Construction Industry Institute (CII) Partnering process. Some of the key mentoring and partnering areas that are explored in this paper are, internal and external safety professional support, subcontractor safety teams and the interface with project and site safety teams, quality assurance program support to facilitate compliance with NQA-1, construction, team roles and responsibilities, work definition for successful fixed price contracts, scheduling and interface with project schedules and cost projection/accruals. The practical application of the CII Partnering principles, with the Construction Management expertise of URS, has led to a highly successful construction model that also meets small business contracting goals.

  5. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Choose a vehicle to compare fuel cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator Update Your Widget Code This widget version will stop working on March 31. Update your widget code. × Widget Code Select All Close U.S. Department of Energy Energy Efficiency and Renewable Energy

  6. Shifting the cost curve for subsea developments

    SciTech Connect (OSTI)

    Solheim, B.J.; Hestad, E.

    1995-12-31

    A steadily increasing challenge in offshore oil and gas field developments in the Norwegian part of the North Sea is to design, construct, and install offshore installations that give an acceptable return of investment Deeper water, limited reservoirs and a low, fluctuating oil price make the task even more demanding. Saga Petroleum has recently faced this challenge with its last field development project. Attention in this paper is focused on the Vigdis subsea production system. However, the considerations and cost reduction elements are valid for offshore field developments in general. The main cost reductions are obtained by: Maximum use of industry capability; Application of new organization principles; Focus on functional requirements; Shortened project execution time; Technological development. In addition this paper presents thoughts on further cost reduction possibilities for future subsea field developments.

  7. SF6432-CN Construction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7/31/13 Page 1 of 31 Printed copies of this document are uncontrolled. Retrieve latest version electronically. SANDIA CORPORATION SF 6432-CN (07/2013) Section II STANDARD TERMS AND CONDITIONS FOR FIRM-FIXED PRICE COMMERCIAL CONSTRUCTION CONTRACTS THE FOLLOWING CLAUSES APPLY TO THIS CONTRACT AS INDICATED UNLESS SPECIFICALLY DELETED, OR EXCEPT TO THE EXTENT THEY ARE SPECIFICALLY SUPPLEMENTED OR AMENDED IN WRITING IN THE COVER PAGE OR SECTION I. (CTRL+CLICK ON A LINK BELOW TO ADVANCE DIRECTLY TO

  8. FY 1995 cost savings report

    SciTech Connect (OSTI)

    Andrews-Smith, K.L., Westinghouse Hanford

    1996-06-21

    Fiscal Year (FY) 1995 challenged us to dramatically reduce costs at Hanford. We began the year with an 8 percent reduction in our Environmental Management budget but at the same time were tasked with accomplishing additional workscope. This resulted in a Productivity Challenge whereby we took on more work at the beginning of the year than we had funding to complete. During the year, the Productivity Challenge actually grew to 23 percent because of recissions, Congressional budget reductions, and DOE Headquarters actions. We successfully met our FY 1995 Productivity Challenge through an aggressive cost reduction program that identified and eliminated unnecessary workscope and found ways to be more efficient. We reduced the size of the workforce, cut overhead expenses, eliminated paperwork, cancelled construction of new facilities, and reengineered our processes. We are proving we can get the job done better and for less money at Hanford. DOE`s drive to do it ``better, faster, cheaper`` has led us to look for more and larger partnerships with the private sector. The biggest will be privatization of Hanford`s Tank Waste Remediation System, which will turn liquid tank waste into glass logs for eventual disposal. We will also save millions of dollars and avoid the cost of replacing aging steam plants by contracting Hanford`s energy needs to a private company. Other privatization successes include the Hanford Mail Service, a spinoff of advanced technical training, low level mixed waste thermal treatment, and transfer of the Hanford Museums of Science and history to a private non-profit organization. Despite the rough roads and uncertainty we faced in FY 1995, less than 3 percent of our work fell behind schedule, while the work that was performed was completed with an 8.6 percent cost under-run. We not only met the FY 1995 productivity challenge, we also met our FY 1995-1998 savings commitments and accelerated some critical cleanup milestones. The challenges continue. Budgets remain on the decline, even while the expectations increase. Yet we are confident in our ability to keep our commitments and goals by identifying new efficiencies in the Hanford cleanup program. We will also pursue new contracting arrangements that will allow us to foster greater competition and use more commercial practices while maintaining our commitment to the safety and health of the public, our workers, and the environment.

  9. Cost Reductions with Multi-Megawatt Centralized Inverter Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LLC *99.1% Efficient Inverter System *Power Factor Control +- 0.9 *2,500VDC *LowZero Voltage Ride Through *Compact Design *Liquid Cooling *Hot-Swap Capability *Lower Total Cost...

  10. Factory Cost Model

    Energy Science and Technology Software Center (OSTI)

    1996-12-17

    The Factory Cost Model (FCM) is an economic analysis tool intended to provide flat panel display (FPD) and other similar discrete component manufacturers with the ability to make first-order estimates of the cost of unit production. This software has several intended uses. Primary among these is the ability to provide first-order economic analysis for future factories. Consequently, the model requires a minimal level of input detail, and accomodates situations where actual production data are notmore » available. This software is designed to be activity based such that most of the calculated direct costs are associated with the steps of a manufacturibg process. The FCM architecture has the ability to accomodate the analysis of existing manufacturing facilities. The FCM can provide assistance with strategic economic decisions surrounding production related matters. For instance, the program can project the effect on costs and resources of a new product''s introduction, or it can assess the potential cost reduction produced by step yield improvements in the manufacturing process.« less

  11. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  12. Technical approaches for reducing cost of power support

    SciTech Connect (OSTI)

    Not Available

    1984-03-01

    Methods for reducing the cost of Chinese-made power supports are discussed. A reasonable selection of functions is proposed, including protection from side collapse, anti-sliding and anti-toppling, prop extension, loading capacity and hydraulic pressure. Material costs constitute 34-44% of the total cost, and so optimisation of design and materials is required. Standardisation of hydraulic components is recommended; and the use of appropriate and effective technological and managerial techniques is advocated. (In Chinese)

  13. QGESS: Capital Cost Scaling Methodology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the tonnes of CO2 utilized. The costs of the process are to include infrastructure, raw materials, processing, byproduct disposal, and utilities costs, as well as any other costs....

  14. Factors Impacting Decommissioning Costs - 13576

    SciTech Connect (OSTI)

    Kim, Karen; McGrath, Richard

    2013-07-01

    The Electric Power Research Institute (EPRI) studied United States experience with decommissioning cost estimates and the factors that impact the actual cost of decommissioning projects. This study gathered available estimated and actual decommissioning costs from eight nuclear power plants in the United States to understand the major components of decommissioning costs. Major costs categories for decommissioning a nuclear power plant are removal costs, radioactive waste costs, staffing costs, and other costs. The technical factors that impact the costs were analyzed based on the plants' decommissioning experiences. Detailed cost breakdowns by major projects and other cost categories from actual power plant decommissioning experiences will be presented. Such information will be useful in planning future decommissioning and designing new plants. (authors)

  15. Low Cost, Durable Seal

    SciTech Connect (OSTI)

    Roberts, George; Parsons, Jason; Friedman, Jake

    2010-12-17

    Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

  16. Cost estimate for muddy water palladium production facility at Mound

    SciTech Connect (OSTI)

    McAdams, R.K.

    1988-11-30

    An economic feasibility study was performed on the ''Muddy Water'' low-chlorine content palladium powder production process developed by Mound. The total capital investment and total operating costs (dollars per gram) were determined for production batch sizes of 1--10 kg in 1-kg increments. The report includes a brief description of the Muddy Water process, the process flow diagram, and material balances for the various production batch sizes. Two types of facilities were evaluated--one for production of new, ''virgin'' palladium powder, and one for recycling existing material. The total capital investment for virgin facilities ranged from $600,000 --$1.3 million for production batch sizes of 1--10 kg, respectively. The range for recycle facilities was $1--$2.3 million. The total operating cost for 100% acceptable powder production in the virgin facilities ranged from $23 per gram for a 1-kg production batch size to $8 per gram for a 10-kg batch size. Similarly for recycle facilities, the total operating cost ranged from $34 per gram to $5 per gram. The total operating cost versus product acceptability (ranging from 50%--100% acceptability) was also evaluated for both virgin and recycle facilities. Because production sizes studied vary widely and because scale-up factors are unknown for batch sizes greater than 1 kg, all costs are ''order-of-magnitude'' estimates. All costs reported are in 1987 dollars.

  17. Heliostat cost reduction study.

    SciTech Connect (OSTI)

    Jones, Scott A.; Lumia, Ronald. (University of New Mexico, Albuquerque, NM); Davenport, Roger (Science Applications International Corporation, San Diego, CA); Thomas, Robert C. (Advanced Thermal Systems, Centennial, CO); Gorman, David (Advanced Thermal Systems, Larkspur, CO); Kolb, Gregory J.; Donnelly, Matthew W.

    2007-06-01

    Power towers are capable of producing solar-generated electricity and hydrogen on a large scale. Heliostats are the most important cost element of a solar power tower plant. Since they constitute {approx} 50% of the capital cost of the plant it is important to reduce heliostat cost as much as possible to improve the economic performance of power towers. In this study we evaluate current heliostat technology and estimate a price of $126/m{sup 2} given year-2006 materials and labor costs for a deployment of {approx}600 MW of power towers per year. This 2006 price yields electricity at $0.067/kWh and hydrogen at $3.20/kg. We propose research and development that should ultimately lead to a price as low as $90/m{sup 2}, which equates to $0.056/kWh and $2.75/kg H{sup 2}. Approximately 30 heliostat and manufacturing experts from the United States, Europe, and Australia contributed to the content of this report during two separate workshops conducted at the National Solar Thermal Test Facility.

  18. Earth-sheltered compromise home saves on heating, cooling costs

    SciTech Connect (OSTI)

    Frankhauser, T.

    1985-02-01

    Building a home into the side of a hill to take advantage of the earth's temperature-neutralizing qualities and facing it to the south will reduce heating and cooling costs. A home in North Dakota based on these principles has never had two unheated rooms freeze and needs no air conditioning. Mutli-zoned thermostats are located in the south-facing rooms. Other features are a five-foot overhang, lower ceilings, aluminum foil deflectors beneath carpets and above the plasterboard in the ceiling, and extra insulation. By eliminating an earth covering that would require sturdier support, construction costs were competitive with regular frame construction.

  19. INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operating Procedures | Department of Energy INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures PDF icon ICR_ICE SOP_Sep 2013_Final.pdf More Documents & Publications ICR-ICE Standard Operating Procedures (Update Sept 2013) Contractor SOW Template - ICR Contractor SOW Template - ICE

  20. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  1. Total Energy Outcome City Pilot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total Energy Outcome City Pilot 2014 Building Technologies Office Peer Review Targeted Energy Outcomes A New City Energy Policy for Buildings Ken Baker - kbaker@neea.org Northwest Energy Efficiency Alliance Project Summary Timeline: Key Partners: Start date: 09/01/2012 Planned end date: 08/31/2015 Key Milestones 1. Produce outcome based marketing collateral; 04/03/14 New Buildings Institute Two to three NW cities 2. Quantify and define participating city actions; 04/03/14 3. Quantify ongoing

  2. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    SciTech Connect (OSTI)

    Mills, Andrew D.; Wiser, Ryan; Porter, Kevin

    2009-02-02

    The rapid development of wind power that the United States has experienced over the last several years has been coupled with a growing concern that wind development will require substantial additions to the nation's transmission infrastructure. Transmission is particularly important for wind power due to the locational dependence of wind resources, the relatively low capacity factor of wind plants, and the mismatch between the short lead time to build a new wind project and the longer lead time often needed to plan, permit, and construct transmission. It is clear that institutional issues related to transmission planning, siting, and cost allocation will pose major obstacles to accelerated wind power deployment, but also of concern is the potential cost of this infrastructure build out. Simply put, how much extra cost will society bear to deliver wind power to load centers? Without an answer to this question, there can be no consensus on whether or not the cost of developing transmission for wind will be a major barrier to further wind deployment, or whether the institutional barriers to transmission expansion are likely to be of more immediate concern. In this report, we review a sample of 40 detailed transmission studies that have included wind power. These studies cover a broad geographic area, and were completed from 2001-2008. Our primary goal in reviewing these studies is to develop a better understanding of the transmission costs needed to access growing quantities of wind generation. A secondary goal is to gain a better appreciation of the differences in transmission planning approaches in order to identify those methodologies that seem most able to estimate the incremental transmission costs associated with wind development. Finally, we hope that the resulting dataset and discussion might be used to inform the assumptions, methods, and results of higher-level assessment models that are sometimes used to estimate the cost of wind deployment (e.g. NEMS and WinDS). The authors and general location of the 40 detailed transmission studies included in our review are illustrated in Figure ES-1. As discussed in the body of the report, these studies vary considerably in scope, authorship, objectives, methodology, and tools. Though we recognize this diversity and are cognizant that comparisons among these studies are therefore somewhat inappropriate, we nonetheless emphasize such simple comparisons in this report. We do so in order to improve our understanding of the range of transmission costs needed to access greater quantities of wind, and to highlight some of the drivers of those costs. In so doing, we gloss over many important details and differences among the studies in our sample. In emphasizing simple comparisons, our analysis focuses primarily on the unit cost of transmission implied by each of the studies. The unit cost of transmission for wind in $/kW terms on a capacity-weighted basis is estimated by simply dividing the total transmission cost in a study by the total amount of incremental generation capacity (wind and non-wind) modeled in that study. In so doing, this metric assumes that within any individual study all incremental generation capacity imposes transmission costs in proportion to its nameplate capacity rating. The limitations to this approach are described in some detail in the body of the report.

  3. Manufactured Homes Simulated Thermal Analysis and Cost Effectiveness Report.

    SciTech Connect (OSTI)

    Baylon, David

    1990-05-17

    In 1988 and 1989, 150 manufactured homes were built to comply with Super Good Cents (SGC) specifications adapted from the existing specifications for site-built homes under the Residential Construction Demonstration Project (RCDP). Engineering calculations and computer simulations were used to estimate the effects of the SGC specifications on the thermal performance of the homes. These results were compared with consumer costs to establish the cost-effectiveness of individual measures. Heat loss U-factors for windows, walls, floors and ceilings were established using the standard ASHRAE parallel heat flow method. Adjustments resulted in higher U-factors for ceilings and floors than assumed at the time the homes were approved as meeting the SGC specifications. Except for those homes which included heat pumps, most of the homes did not meet the SGC compliance standards. Nonetheless these homes achieved substantial reductions in overall heat loss rate (UA) compared to UAs estimated for the same homes using the standard insulation packages provided by the manufacturers in the absence of the RCDP program. Homes with conventional electric furnaces showed a 35% reduction in total UA while homes with heat pumps had a 25% reduction. A regression analysis showed no significant relationship between climate zone, manufacturer and UA. A modified version of SUNDAY building simulation program which simulates duct and heat pump performance was used to model the thermal performance of each RCDP home as built and the same home as it would have been built without SGC specifications (base case). Standard assumptions were used for thermostat setpoint, thermal mass, internal gains and infiltration rates. 11 refs., 5 figs., 5 tabs.

  4. Buildings Energy Data Book: 2.5 Residential Construction and Housing Market

    Buildings Energy Data Book [EERE]

    5 2010 Construction Method of Single-Family Homes, by Region (Thousand Units and Percent of Total Units) Region Total Northeast 49 10% 4 33% 2 18% 54 Midwest 76 16% 3 25% 2 18% 82 South 247 52% 4 33% 6 55% 258 West 101 21% 1 8% 1 9% 103 Total 473 100% 12 100% 11 100% 497 Source(s): Stick-Built Modular Panelized/Precut DOC, Manufacturing, Mining and Construction Statistics, New Residential Construction: Type of Construction Method of New Single-Family Houses Completed

  5. Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)

    SciTech Connect (OSTI)

    Goodrich, A. C.; Woodhouse, M.; James, T.

    2011-02-01

    EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

  6. Section L Attachment G - Management Team Cost Sheet.xlsx

    National Nuclear Security Administration (NNSA)

    G Management Team Cost Sheet Definitions of items to be included in the worksheet Name Title Reimbursable* Annual Base Salary Reimbursable* Incentive Pay and bonuses Reimbursable* Deferred compensation Reimbursable* Employer contributions to Employee Stock Ownership Plans (ESOPs) Reimbursable* Employer Contributions to Defined Contribution Pension Plans Total Reimbursable* Annual Compensation Current Annual Base Salary Current Total Annual Compensation Benchmark job title/level Median Annual

  7. Cost Estimating, Analysis, and Standardization

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-11-02

    To establish policy and responsibilities for: (a) developing and reviewing project cost estimates; (b) preparing independent cost estimates and analysis; (c) standardizing cost estimating procedures; and (d) improving overall cost estimating and analytical techniques, cost data bases, cost and economic escalation models, and cost estimating systems. Cancels DOE O 5700.2B, dated 8-5-1983; DOE O 5700.8, dated 5-27-1981; and HQ 1130.1A, dated 12-30-1981. Canceled by DOE O 5700.2D, dated 6-12-1992

  8. Geothermal probabilistic cost study

    SciTech Connect (OSTI)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  9. substantially reduced production costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    production costs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  10. Reducing Power Factor Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low power factor is expensive and inefficient. Many utility companies charge you an additional fee if your power factor is less than 0.95. Low power factor also reduces your electrical system's distribu- tion capacity by increasing current flow and causing voltage drops. This fact sheet describes power factor and explains how you can improve your power factor to reduce electric bills and enhance your electrical system's capacity. REDUCING POWER FACTOR COST To understand power factor, visualize a

  11. Obama Administration Announces Loan Guarantees to Construct New Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Reactors in Georgia Obama Administration Announces Loan Guarantees to Construct New Nuclear Power Reactors in Georgia Conditional deal is major step towards restarting the domestic nuclear industry Washington D.C. --- Underscoring his Administration�s commitment to jumpstarting the nation�s nuclear power industry, President Obama today announced that the Department of Energy has offered conditional commitments for a total of $8.33 billion in loan guarantees for the construction and

  12. President Obama Announces Loan Guarantees to Construct New Nuclear Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactors in Georgia | Department of Energy Loan Guarantees to Construct New Nuclear Power Reactors in Georgia President Obama Announces Loan Guarantees to Construct New Nuclear Power Reactors in Georgia February 16, 2010 - 12:00am Addthis Washington D.C. --- Underscoring his Administration's commitment to jumpstarting the nation's nuclear power industry, President Obama today announced that the Department of Energy has offered conditional commitments for a total of $8.33 billion in loan

  13. Obama Administration Announces Loan Guarantees to Construct New Nuclear

    Energy Savers [EERE]

    Power Reactors in Georgia | Department of Energy Loan Guarantees to Construct New Nuclear Power Reactors in Georgia Obama Administration Announces Loan Guarantees to Construct New Nuclear Power Reactors in Georgia February 16, 2010 - 12:47pm Addthis WASHINGTON, D.C. - Underscoring his Administration's commitment to jumpstarting the nation's nuclear power industry, President Obama today announced that the Department of Energy has offered conditional commitments for a total of $8.33 billion in

  14. U.S. Total Stocks

    Gasoline and Diesel Fuel Update (EIA)

    Stock Type: Total Stocks Strategic Petroleum Reserve Non-SPR Refinery Tank Farms and Pipelines Leases Alaskan in Transit Bulk Terminal Pipeline Natural Gas Processing Plant Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Stock Type Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Crude Oil and Petroleum Products 1,968,618 1,991,182 2,001,135 2,009,097 2,021,553 2,014,788 1956-2015 Crude Oil

  15. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG

  16. FY 2009 Progress Report for Lightweighting Materials - 7. Low-Cost Carbon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fiber | Department of Energy 7. Low-Cost Carbon Fiber FY 2009 Progress Report for Lightweighting Materials - 7. Low-Cost Carbon Fiber The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability. PDF icon 7_low-cost_carbon_fiber.pdf More Documents & Publications Low Cost Carbon Fiber Research in the LM Materials Program Overview FY 2008 Progress Report for Lightweighting

  17. Monitored Geologic Repository Life Cycle Cost Estimate Assumptions Document

    SciTech Connect (OSTI)

    R. Sweeney

    2000-03-08

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost estimate and schedule update incorporating information from the Viability Assessment (VA), License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

  18. MONITORED GEOLOGIC REPOSITORY LIFE CYCLE COST ESTIMATE ASSUMPTIONS DOCUMENT

    SciTech Connect (OSTI)

    R.E. Sweeney

    2001-02-08

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost (LCC) estimate and schedule update incorporating information from the Viability Assessment (VA) , License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

  19. Chapter 8: Constructing the Building

    Broader source: Energy.gov [DOE]

    Chapter 8 of the LANL Sustainable Design Guide contains information for construction of the building so it will perform as intended and protect the environment.

  20. Hackney Construction | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Hackney Construction Address: 309 Farrens Creek LanePO Box 13 Place: Grangeville, Idaho Zip: 83530 Region: Rockies Area Sector: Solar Product:...

  1. New system reduces sludge management costs

    SciTech Connect (OSTI)

    Roll, R.R. ); Koser, M.R. )

    1993-06-01

    This article describes a recently completed a $2.7-million project to upgrade the sludge dewatering and stabilizing system at a 48-mgd wastewater treatment facility in Niagara Fall, New York. The work was necessitated by the deteriorated condition of the plant's original vacuum filters and increasing costs to landfill the dewatered sludge. The new equipment has restored sludge production capacity while reducing the final material's moisture content. The Niagara Falls plant is one of the few municipal physical-chemical treatment plants built in this country, and is the largest still functioning. Constructed in the mid-1970s, it was designed to treat a combination of domestic sewage and industrial wastes. One third of the flow and one half of the solids are industrial in nature. The changes made reduced electrical power consumption and sanitary landfill costs.

  2. Reported Energy and Cost Savings from the DOE ESPC Program

    SciTech Connect (OSTI)

    Shonder, John A; Slattery, Bob S; Atkin, Erica

    2012-01-01

    The objective of this work was to determine the realization rate of energy and cost savings from the Department of Energy's Savings Performance Contract (ESPC) program based on information reported by the energy services companies (ESCOs) that are carrying out ESPC projects at federal sites. Information was extracted from 134 Measurement and Verification (M&V) reports to determine reported, estimated, and guaranteed cost savings and reported and estimated energy savings for the previous contract year. Because the quality of the reports varied, it was not possible to determine all of these parameters for each project. For 133 of the 134 projects, there was sufficient information to compare estimated, reported, and guaranteed cost savings. For this group, the total estimated cost savings for the reporting periods addressed were $95.7 million, total reported cost savings were $96.8 million, and total guaranteed cost savings were $92.1 million. This means that on average: ESPC contractors guaranteed 96% of the estimated cost savings, projects reported achieving 101% of the estimated cost savings, and projects reported achieving 105% of the guaranteed cost savings. For 129 of the projects examined, there was sufficient information to compare estimated and reported energy savings. On the basis of site energy, estimated savings for those projects for the previous year totaled 5.371 million MMBtu, and reported savings were 5.374 million MMBtu, just over 100% of the estimated energy savings. On the basis of source energy, total estimated energy savings for the 129 projects were 10.400 million MMBtu, and reported saving were 10.405 million MMBtu, again, just over 100.0% of the estimated energy savings.

  3. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control

    SciTech Connect (OSTI)

    Martin, E.

    2014-01-01

    The DOE Building America program has been conducting research leading to cost effective high performance homes since the early 1990's. Optimizing whole house mechanical ventilation as part of the program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this white paper is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

  4. DOE Publishes CALiPER Report on Cost-Effectiveness of Linear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    life-cycle cost simulations that compared a two-lamp troffer using LED lamps (38W total power draw) or fluorescent lamps (51W total power draw) over a 10-year study period. The LED...

  5. Thermal benefits and cost effectiveness of earth berming

    SciTech Connect (OSTI)

    Speltz, J.; Haves, P.

    1980-01-01

    A number of advantages are claimed for earth sheltered buildings; the earth provides both insulation and thermal storage and also serves to reduce infiltration and noise. This paper seeks to quantify the thermal advantages of both earth sheltering and perimeter insulation by comparing the simulated thermal performance of an earth sheltered house, a house with perimeter insulation and a house with neither. The fuel savings are then compared to the estimated construction costs to determine cost-effectiveness. The major saving from an earth sheltered building is obtained in colder climates where the effective elevation of the frost line due to the earth berms considerably reduces the cost of the foundation.

  6. TSD Custom Construction | Open Energy Information

    Open Energy Info (EERE)

    TSD Custom Construction Jump to: navigation, search Name: TSD Custom Construction Place: Madison, WI Website: www.tsdcustomconstruction.com References: TSD Custom Construction1...

  7. Construction Begins | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction Begins Construction Begins Workers drill down to bedrock for the pouring of Y-12 building footers as construction begins in 1942

  8. A Total Cost of Ownership Model for Low Temperature PEM Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    model for emerging applications in stationary fuel cell systems. The analysis considers low temperature proton exchange membrane systems for use in combined heat and power ...

  9. Project Profile: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics

    Broader source: Energy.gov [DOE]

    The Dow Chemical Company, under the BOS-X funding opportunity, has launched a transformational product in the building-integrated photovoltaics (BIPV) industry: the Dow POWERHOUSE Solar Shingle.

  10. Considering the total cost of electricity from sunlight and the alternatives

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    none,

    2015-04-15

    Photovoltaic (PV) electricity generation has grown to about 17 GW in the United States, corresponding to one tenth of the global capacity. Most deployment in the country has happened during the last 6 years. Reflecting back in time, in early 2008 this author and his collaborators James Mason and Ken Zweibel, published in Scientific American and in Energy Policy a Solar Grand Plan demonstrating the feasibility of renewable energy in providing 69% of the U.S. electricity demand by 2050, while reducing CO2 emissions by 60% from 2005 levels; the PV contribution to this plan was assessed to be 250 GWmoreby 2030, and 2,900 GW by 2050 [1]. The DOEs more detailed SunShot vision study, released in 2012, showed the possibility of having 300 GW of PV installed in the United States by 2030, and 630 GW by 2050.less

  11. Considering the total cost of electricity from sunlight and the alternatives

    SciTech Connect (OSTI)

    none,

    2015-04-15

    Photovoltaic (PV) electricity generation has grown to about 17 GW in the United States, corresponding to one tenth of the global capacity. Most deployment in the country has happened during the last 6 years. Reflecting back in time, in early 2008 this author and his collaborators James Mason and Ken Zweibel, published in Scientific American and in Energy Policy a Solar Grand Plan demonstrating the feasibility of renewable energy in providing 69% of the U.S. electricity demand by 2050, while reducing CO2 emissions by 60% from 2005 levels; the PV contribution to this plan was assessed to be 250 GW by 2030, and 2,900 GW by 2050 [1]. The DOEs more detailed SunShot vision study, released in 2012, showed the possibility of having 300 GW of PV installed in the United States by 2030, and 630 GW by 2050.

  12. U.S. Department of Energy Hydrogen Storage Cost Analysis

    SciTech Connect (OSTI)

    Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

    2013-03-11

    The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a “bottom-up” costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with DFMA® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target. In general, tank costs are the largest component of system cost, responsible for at least 30 percent of total system cost, in all but two of the 12 systems. Purchased BOP cost also drives system cost, accounting for 10 to 50 percent of total system cost across the various storage systems. Potential improvements in these cost drivers for all storage systems may come from new manufacturing processes and higher production volumes for BOP components. In addition, advances in the production of storage media may help drive down overall costs for the sodium alanate, SBH, LCH2, MOF, and AX-21 systems.

  13. Total Imports of Residual Fuel

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. Total 4,471 6,479 7,281 4,217 5,941 6,842 1936-2015 PAD District 1 1,854 1,956 4,571 2,206 2,952 3,174 1981-2015 Connecticut 1995-2015 Delaware 204 678 85 1995-2015 Florida 677 351 299 932 836 1995-2015 Georgia 232 138 120 295 1995-2015 Maine 50 1995-2015 Maryland 1995-2015 Massachusetts 1995-2015 New Hampshire 1995-2015 New Jersey 1,328 780 1,575 400 1,131 1,712 1995-2015 New York 7 6 1,475 998 350 322 1995-2015 North Carolina

  14. 2014 Total Electric Industry- Customers

    Gasoline and Diesel Fuel Update (EIA)

    Customers (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 6,243,013 862,269 28,017 8 7,133,307 Connecticut 1,459,239 155,372 4,648 4 1,619,263 Maine 706,952 91,541 3,023 0 801,516 Massachusetts 2,720,128 398,717 14,896 3 3,133,744 New Hampshire 606,883 105,840 3,342 0 716,065 Rhode Island 438,879 58,346 1,884 1 499,110 Vermont 310,932 52,453 224 0 363,609 Middle Atlantic 15,806,914 2,247,455 44,397 17

  15. Total Adjusted Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  16. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History U.S. Total 133,646 119,888 93,672 82,173 63,294 68,265 1936-2015 PAD District 1 88,999 79,188 59,594 33,566 30,944 33,789 1981-2015 Connecticut 220 129 1995-2015 Delaware 748 1,704 510 1,604 2,479 1995-2015 Florida 15,713 11,654 10,589 8,331 5,055 7,013 1995-2015 Georgia 5,648 7,668 6,370 4,038 2,037 1,629 1995-2015 Maine 1,304 651 419 75 317 135 1995-2015 Maryland 3,638 1,779 1,238 433 938 539 1995-2015 Massachusetts 123 50 78 542 88 1995-2015 New

  17. Handbook for quick cost estimates. A method for developing quick approximate estimates of costs for generic actions for nuclear power plants

    SciTech Connect (OSTI)

    Ball, J.R.

    1986-04-01

    This document is a supplement to a ''Handbook for Cost Estimating'' (NUREG/CR-3971) and provides specific guidance for developing ''quick'' approximate estimates of the cost of implementing generic regulatory requirements for nuclear power plants. A method is presented for relating the known construction costs for new nuclear power plants (as contained in the Energy Economic Data Base) to the cost of performing similar work, on a back-fit basis, at existing plants. Cost factors are presented to account for variations in such important cost areas as construction labor productivity, engineering and quality assurance, replacement energy, reworking of existing features, and regional variations in the cost of materials and labor. Other cost categories addressed in this handbook include those for changes in plant operating personnel and plant documents, licensee costs, NRC costs, and costs for other government agencies. Data sheets, worksheets, and appropriate cost algorithms are included to guide the user through preparation of rough estimates. A sample estimate is prepared using the method and the estimating tools provided.

  18. Comparison of high-speed rail and maglev system costs

    SciTech Connect (OSTI)

    Rote, D.M.

    1998-07-01

    This paper compares the two modes of transportation, and notes important similarities and differences in the technologies and in how they can be implemented to their best advantage. Problems with making fair comparisons of the costs and benefits are discussed and cost breakdowns based on data reported in the literature are presented and discussed in detail. Cost data from proposed and actual construction projects around the world are summarized and discussed. Results from the National Maglev Initiative and the recently-published Commercial Feasibility Study are included in the discussion. Finally, estimates will be given of the expected cost differences between HSR and maglev systems implemented under simple and complex terrain conditions. The extent to which the added benefits of maglev technology offset the added costs is examined.

  19. OTEC large systems construction techniques

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    Requirements for the construction and installation of various types of 400 MWe OTEC commercial size platforms and cold water pipes are presented. The capability of the state of the art in Technologies and Facilities, to satisfy the requirements of OTEC commercial plant construction and installation are assessed.

  20. Compositions of constructed microbial mats

    DOE Patents [OSTI]

    Bender, Judith A. (Atlanta, GA); Phillips, Peter C. (Decatur, GA)

    1999-01-01

    Compositions and methods of use of constructed microbial mats, comprising cyanobacteria and purple autotrophic bacteria and an organic nutrient source, in a laminated structure, are described. The constructed microbial mat is used for bioremediation of different individual contaminants and for mixed or multiple contaminants, and for production of beneficial compositions and molecules.

  1. Levelized cost and levelized avoided cost of new generation resources...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3 The importance of the factors varies among the technologies. For technologies such as solar and wind generation that have no fuel costs and relatively small variable O&M costs,...

  2. LIFE Cost of Electricity, Capital and Operating Costs

    SciTech Connect (OSTI)

    Anklam, T

    2011-04-14

    Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

  3. The cost of wetland creation and restoration. Final report

    SciTech Connect (OSTI)

    King, D.; Bohlen, C.

    1995-08-01

    This report examines the economics of wetland creation, restoration, and enhancement projects, especially as they are used within the context of mitigation for unavoidable wetland losses. Complete engineering-cost-accounting profiles of over 90 wetland projects were developed in collaboration with leading wetland restoration and creation practitioners around the country to develop a primary source database. Data on the costs of over 1,000 wetland projects were gathered from published sources and other available databases to develop a secondary source database. Cases in both databases were carefully analyzed and a set of baseline cost per acre estimates were developed for wetland creation, restoration, and enhancement. Observations of costs varied widely, ranging from $5 per acre to $1.5 million per acre. Differences in cost were related to the target wetland type, and to site-specific and project-specific factors that affected the preconstruction, construction, and post-construction tasks necessary to carry out each particular project. Project-specific and site-specific factors had a much larger effect on project costs than wetland type for non-agricultural projects. Costs of wetland creation and restoration were also shown to differ by region, but not by as much as expected, and in response to the regulatory context. The costs of wetland creation, restoration, and enhancement were also analyzed in a broader economic context through examination of the market for wetland mitigation services, and through the development of a framework for estimating compensation ratios-the number of acres of created, restored, or enhanced wetland required to compensate for an acre of lost natural wetland. The combination of per acre creation, restoration, and enhancement costs and the compensation ratio determine the overall mitigation costs associated with alternative mitigation strategies.

  4. Heilongjiang Province Water Transportation Construction | Open...

    Open Energy Info (EERE)

    Construction Jump to: navigation, search Name: Heilongjiang Province Water Transportation Construction Place: Harbin, Heilongjiang Province, China Sector: Hydro Product: China...

  5. Caspian pipeline combine awards construction contract

    SciTech Connect (OSTI)

    Not Available

    1992-11-02

    This paper reports that the Caspian Pipeline Consortium (CPC) has let contract to Overseas Bechtel Inc. for a 500 mile crude oil export pipeline in Russia. Bechtel will provide engineering, procurement, financing, and construction services and serve as project manager for the 42 inc. line that will extend west from Grozny, near the Caspian Sea, to Novorossiisk, on the Black Sea. Estimated cost is more than $850 million. At Grozny, the new line will tie into 800 miles of existing pipeline that runs along the north shore of the Caspian Sea from supergiant Tengiz field in Kazakhstan. Together, the two segments will form a 1,300 mile system capable of shipping crude oil from the Tengiz region and from Baku, Azerbaijan, to a new terminal and port facilities at Novorossiisk for shipment to world markets, ultimately reaching open oceans via the Mediterranean Sea.

  6. Cost | OpenEI Community

    Open Energy Info (EERE)

    Cost Home Ocop's picture Submitted by Ocop(5) Member 15 July, 2014 - 07:07 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To...

  7. Wind Integration Cost and Cost-Causation: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Martin-Martinez, S.; Gomez-Lazaro, E.; Peneda, I.; Smith, C.

    2013-10-01

    The question of wind integration cost has received much attention in the past several years. The methodological challenges to calculating integration costs are discussed in this paper. There are other sources of integration cost unrelated to wind energy. A performance-based approach would be technology neutral, and would provide price signals for all technology types. However, it is difficult to correctly formulate such an approach. Determining what is and is not an integration cost is challenging. Another problem is the allocation of system costs to one source. Because of significant nonlinearities, this can prove to be impossible to determine in an accurate and objective way.

  8. Passive-solar construction handbook

    SciTech Connect (OSTI)

    Levy, E.; Evans, D.; Gardstein, C.

    1981-02-01

    Many of the basic elements of passive solar design are reviewed. Passive solar construction is covered according to system type, each system type discussion including a general discussion of the important design and construction issues which apply to the particular system and case studies illustrating designed and built examples of the system type. The three basic types of passive solar systems discussed are direct gain, thermal storage wall, and attached sunspace. Thermal performance and construction information is presented for typical materials used in passive solar collector components, storage components, and control components. Appended are an overview of analysis methods and a technique for estimating performance. (LEW)

  9. Check Estimates and Independent Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Check estimates and independent cost estimates (ICEs) are tools that can be used to validate a cost estimate. Estimate validation entails an objective review of the estimate to ensure that estimate criteria and requirements have been met and well documented, defensible estimate has been developed. This chapter describes check estimates and their procedures and various types of independent cost estimates.

  10. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  11. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  12. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  13. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  14. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  15. Cost Effective Recovery of Low-TDS Frac Flowback Water for Re-use

    SciTech Connect (OSTI)

    Claire Henderson; Harish Acharya; Hope Matis; Hareesh Kommepalli; Brian Moore; Hua Wang

    2011-03-31

    The project goal was to develop a cost-effective water recovery process to reduce the costs and envi-ronmental impact of shale gas production. This effort sought to develop both a flowback water pre-treatment process and a membrane-based partial demineralization process for the treatment of the low-Total Dissolved Solids (TDS) portion of the flowback water produced during hydrofracturing operations. The TDS cutoff for consideration in this project is < 35,000 {approx} 45,000 ppm, which is the typical limit for economic water recovery employing reverse osmosis (RO) type membrane desalination processes. The ultimate objective is the production of clean, reclaimed water suitable for re-use in hydrofracturing operations. The team successfully compiled data on flowback composition and other attributes across multiple shale plays, identified the likely applicability of membrane treatment processes in those shales, and expanded the proposed product portfolio to include four options suitable for various reuse or discharge applications. Pretreatment technologies were evaluated at the lab scale and down-selected based upon their efficacy in removing key contaminants. The chosen technologies were further validated by performing membrane fouling studies with treated flowback water to demonstrate the technical feasibility of flowback treatment with RO membranes. Process flow schemes were constructed for each of the four product options based on experimental performance data from actual flowback water treatment studies. For the products requiring membrane treatment, membrane system model-ing software was used to create designs for enhanced water recovery beyond the typical seawater desalination benchmark. System costs based upon vendor and internal cost information for all process flow schemes were generated and are below target and in line with customer expectations. Finally, to account for temporal and geographic variability in flowback characteristics as well as local disposal costs and regulations, a parametric value assessment tool was created to assess the economic attractiveness of a given flowback recovery process relative to conventional disposal for any combination of anticipated flowback TDS and local disposal cost. It is concluded that membrane systems in combination with appropriate pretreatment technologies can provide cost-effective recovery of low-TDS flow-back water for either beneficial reuse or safe surface discharge.

  16. Consumer attitudes concerning construction features of an earth-sheltered dwelling

    SciTech Connect (OSTI)

    McKown, C. (Texas Tech Univ., Lubbock); Stewart, K.K.

    1980-01-01

    Consumer responses to construction features of earth-sheltered houses were collected from a volunteer sampling of visitors to an ''open house'' in South Carolina. Consumers reported they had not expected the exposed-front elevation, that skylights are needed in some of the darker areas, and that they were favorably impressed with the solar heating for space and water, the energy efficiency, and the low cost of construction and utilities. Savings of $3000 in initial costs and $300 in annual utility costs were specified as requirements for purchase by the majority. Responses were generally favorable, although only five percent had visted an earth-insulated or underground home before.

  17. Itogumi Construction | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Itogumi Construction Place: Hokkaido, Japan Zip: 060-8554 Product: Japan-based engineering contractor. It set up a PV module joint venture with...

  18. Manufacturing Cost Levelization Model – A User’s Guide

    SciTech Connect (OSTI)

    Morrow, William R.; Shehabi, Arman; Smith, Sarah Josephine

    2015-08-01

    The Manufacturing Cost Levelization Model is a cost-performance techno-economic model that estimates total large-scale manufacturing costs for necessary to produce a given product. It is designed to provide production cost estimates for technology researchers to help guide technology research and development towards an eventual cost-effective product. The model presented in this user’s guide is generic and can be tailored to the manufacturing of any product, including the generation of electricity (as a product). This flexibility, however, requires the user to develop the processes and process efficiencies that represents a full-scale manufacturing facility. The generic model is comprised of several modules that estimate variable costs (material, labor, and operating), fixed costs (capital & maintenance), financing structures (debt and equity financing), and tax implications (taxable income after equipment and building depreciation, debt interest payments, and expenses) of a notional manufacturing plant. A cash-flow method is used to estimate a selling price necessary for the manufacturing plant to recover its total cost of production. A levelized unit sales price ($ per unit of product) is determined by dividing the net-present value of the manufacturing plant’s expenses ($) by the net present value of its product output. A user defined production schedule drives the cash-flow method that determines the levelized unit price. In addition, an analyst can increase the levelized unit price to include a gross profit margin to estimate a product sales price. This model allows an analyst to understand the effect that any input variables could have on the cost of manufacturing a product. In addition, the tool is able to perform sensitivity analysis, which can be used to identify the key variables and assumptions that have the greatest influence on the levelized costs. This component is intended to help technology researchers focus their research attention on tasks that offer the greatest opportunities for cost reduction early in the research and development stages of technology invention.

  19. Realistic costs of carbon capture

    SciTech Connect (OSTI)

    Al Juaied, Mohammed . Belfer Center for Science and International Affiaris); Whitmore, Adam )

    2009-07-01

    There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding transport and storage costs appears to be US$100-150/tCO2 for first-of-a-kind plants and perhaps US$30-50/tCO2 for nth-of-a-kind plants.The estimates for FOAK and NOAK costs appear to be broadly consistent in the light of estimates of the potential for cost reductions with increased experience. Cost reductions are expected from increasing scale, learning on individual components, and technological innovation including improved plant integration. Innovation and integration can both lower costs and increase net output with a given cost base. These factors are expected to reduce abatement costs by approximately 65% by 2030. The range of estimated costs for NOAK plants is within the range of plausible future carbon prices, implying that mature technology would be competitive with conventional fossil fuel plants at prevailing carbon prices.

  20. Cost reduction in deep water production systems

    SciTech Connect (OSTI)

    Beltrao, R.L.C.

    1995-12-31

    This paper describes a cost reduction program that Petrobras has conceived for its deep water field. Beginning with the Floating Production Unit, a new concept of FPSO was established where a simple system, designed to long term testing, can be upgraded, on the location, to be the definitive production unit. Regarding to the subsea system, the following projects will be considered. (1) Subsea Manifold: There are two 8-well-diverless manifolds designed for 1,000 meters presently under construction and after a value analysis, a new design was achieved for the next generation. Both projects will be discussed and a cost evaluation will also be provided. (2) Subsea Pipelines: Petrobras has just started a large program aiming to reduce cost on this important item. There are several projects such as hybrid (flexible and rigid) pipes for large diameter in deep water, alternatives laying methods, rigid riser on FPS, new material...etc. The authors intend to provide an overview of each project.

  1. Ensuring cost effectiveness in the TAP process

    SciTech Connect (OSTI)

    Trego, A.L.

    1992-06-16

    The Training Accredition Program (TAP) at the Waste Isolation Division (WID) is discussed by the general manager. Cost effectiveness in the TAP process is made possible by saving through sharing which refers to the exchange and co-development of information and technology among Westinghouse Government owned-contractor operators and with other organizations. In 1990 a comprehensive management and supervisor training (MAST) program plan was devised and a MAST certification program of 31 self-paced written moduler was developed. This program has proven to be inexpensive to develop and implement when compared to classroom training. In addition, total quality is used as a tool to continuously improve work process. Continuous improvement requires continued evaluation of work process, such as TAP analysis and development in summary to make training at DOE facilities the most cost-effective training anywhere, we need to share, challenge conventional wisdom, and seek to continuously improve.

  2. Oak Ridge Construction | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction Oak Ridge Construction Construction of typical A- and B-type houses in Oak Ridge

  3. Award Number: Federal Non-Federal Federal Non-Federal Total

    Gasoline and Diesel Fuel Update (EIA)

    Award Number: Federal Non-Federal Federal Non-Federal Total (a) (b) (c ) (d) (e) (f) (g) 1. - 2. - 3. - 4. - 5. Totals - - - - - (1) (2) (3) (4) - - - - - - - - - - - - - - - - - - - 7. - SF-424A (Rev. 4-92) Applicant Name: Budget Information - Non Construction Programs OMB Approval No. 0348-0044 New or Revised Budget Section A - Budget Summary i. Total Direct Charges (sum of 6a-6h) Grant Program, Function or Activity Object Class Categories Authorized for Local Reproduction h. Other a.

  4. Award Number: Federal Non-Federal Federal Non-Federal Total

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prescribed by OMB Circular A-102 Previous Edition Usable Total (5) f. Contractual g. Construction Section B - Budget Categories Catalog of Federal Domestic Assistance Number Grant Program Function or Activity Estimated Unobligated Funds e. Supplies i. Total Direct Charges (sum of 6a-6h) Grant Program, Function or Activity Object Class Categories Authorized for Local Reproduction h. Other a. Personnel b. Fringe Benefits c. Travel d. Equipment 6. j. Indirect Charges k. Totals (sum of 6i-6j)

  5. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Energy Savers [EERE]

    Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant challenges from severe weather, hot summers, and about 2% annual load growth. To better control costs and manage electric reliability under these conditions, OG&E is pursuing demand response strategies made possible by implementation of smart grid technologies, tools, and techniques from

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    of Natural Gas Liquids Production"; Form EIA-423, "Monthly Cost and Quality of Fuels for Electric Plants Report"; Form EIA-191M, "Monthly Underground Gas Storage Report"; Office...

  7. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  8. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  9. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  10. Insulating concrete forms: Installed cost and acoustic performance

    SciTech Connect (OSTI)

    1999-03-01

    The NAHB Research Center conducted a study to compare the cost and performance of Insulating Concrete Form (ICF) walls to conventional wood-frame exterior walls. This report contains the results of the cost study and sound transmission tests. Three home were built and monitored. One home has an ICF plank system, one has an ICF block system, and one is of conventional 2x4 lumber construction. The homes have identical floor plans and are located side by side. The findings indicate that the labor costs for the ICFs were slightly to moderately higher than the wood framing. However, the sound tests indicate that the ICF walls perform significantly better than the wood walls when no openings were present. The report summarizes the findings and recommends ways to increase the cost-effectiveness of ICFs.

  11. Costs of lithium-ion batteries for vehicles

    SciTech Connect (OSTI)

    Gaines, L.; Cuenca, R.

    2000-08-21

    One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

  12. construction

    National Nuclear Security Administration (NNSA)

    insulated roofs and more energy efficient HVAC systems. The cool roof has high solar reflectance, so it emits absorbed solar radiation back into the atmosphere, which...

  13. Retro-Commissioning Increases Data Center Efficiency at Low Cost

    Energy Savers [EERE]

    Achieved at SRS Basic Retro-Cx: 1. Eliminated electric reheat. 2. Turned off humidification devices. 3. Tuned floor tile airflow. 4. Turned off three CRAC units. Total estimated savings ≅ 1,400,000 kWh/year Retro-Cx cost at SRS: Engineering consultant: preliminary, on-site, and follow-up work including data measurements and retrieval. SRS on-site facilities personnel and engineering support. Total estimated cost ≅ $25,000 Simple Payback at SRS: Estimated, at $0.045/kWh = 2.5 months. taken

  14. Low Cost Heliostat Development Phase II Final Report

    SciTech Connect (OSTI)

    Kusek, Stephen M.

    2014-04-21

    The heliostat field in a central receiver plant makes up roughly one half of the total plant cost. As such, cost reductions for the installed heliostat price greatly impact the overall plant cost and hence the plant’s Levelized Cost of Energy. The general trend in heliostat size over the past decades has been to make them larger. One part of our thesis has been that larger and larger heliostats may drive the LCOE up instead of down due to the very nature of the precise aiming and wind-load requirements for typical heliostats. In other words, it requires more and more structure to precisely aim the sunlight at the receiver as one increases heliostat mirror area and that it becomes counter-productive, cost-wise, at some point.

  15. Innovative High-Performance Deposition Technology for Low-Cost

    Energy Savers [EERE]

    Manufacturing of OLED Lighting | Department of Energy High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting Lead Performer: OLEDWorks, LLC - Rochester, NY DOE Total Funding: $1,046,452 Cost Share: $1,046,452 Project Term: 10/1/2013 - 12/31/2015 Funding Opportunity: SSL Manufacturing R&D Funding Opportunity Announcement (FOA) DE-FOA-000079 Project Objective This

  16. Utilization of CFB fly ash for construction applications

    SciTech Connect (OSTI)

    Conn, R.E.; Sellakumar, K.; Bland, A.E.

    1999-07-01

    Disposal in landfills has been the most common means of handling ash in circulating fluidized bed (CFB) boiler power plants. Recently, larger CFB boilers with generating capacities up to 300 MWe are currently being planned, resulting in increased volumes and disposal cost of ash by-product. Studies have shown that CFB ashes do not pose environmental concerns that should significantly limit their potential utilization. Many uses of CFB ash are being investigated by Foster Wheeler, which can provide more cost-effective ash management. Construction applications have been identified as one of the major uses for CFB ashes. Typically, CFB ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. However, CFB ashes can be used for other construction applications that require less stringent specifications including soil stabilization, road base, structural fill, and synthetic aggregate. In this study, potential construction applications were identified for fly ashes from several CFB boilers firing diverse fuels such as petroleum coke, refuse derived fuel (RDF) and coal. The compressive strength of hydrated fly ashes was measured in order to screen their potential for use in various construction applications. Based on the results of this work, the effects of both ash chemistry and carbon content on utilization potential were ascertained. Actual beneficial uses of ashes evaluated in this study are also discussed.

  17. Re-engineering the Federal planning process: A total Federal planning strategy, integrating NEPA with modern management tools

    SciTech Connect (OSTI)

    Eccleston, C.H.

    1997-09-05

    The National Environmental Policy Act (NEPA) of 1969 was established by Congress more than a quarter of a century ago, yet there is a surprising lack of specific tools, techniques, and methodologies for effectively implementing these regulatory requirements. Lack of professionally accepted techniques is a principal factor responsible for many inefficiencies. Often, decision makers do not fully appreciate or capitalize on the true potential which NEPA provides as a platform for planning future actions. New approaches and modem management tools must be adopted to fully achieve NEPA`s mandate. A new strategy, referred to as Total Federal Planning, is proposed for unifying large-scale federal planning efforts under a single, systematic, structured, and holistic process. Under this approach, the NEPA planning process provides a unifying framework for integrating all early environmental and nonenvironmental decision-making factors into a single comprehensive planning process. To promote effectiveness and efficiency, modem tools and principles from the disciplines of Value Engineering, Systems Engineering, and Total Quality Management are incorporated. Properly integrated and implemented, these planning tools provide the rigorous, structured, and disciplined framework essential in achieving effective planning. Ultimately, the goal of a Total Federal Planning strategy is to construct a unified and interdisciplinary framework that substantially improves decision-making, while reducing the time, cost, redundancy, and effort necessary to comply with environmental and other planning requirements. At a time when Congress is striving to re-engineer the governmental framework, apparatus, and process, a Total Federal Planning philosophy offers a systematic approach for uniting the disjointed and often convoluted planning process currently used by most federal agencies. Potentially this approach has widespread implications in the way federal planning is approached.

  18. AEO2013 Early Release Base Overnight Project Technological Total Overnight

    Gasoline and Diesel Fuel Update (EIA)

    3 Early Release Base Overnight Project Technological Total Overnight Variable Fixed Heatrate 6 nth-of-a- kind Online Size Lead time Cost in 2012 Contingency Optimism Cost in 2012 4 O&M 5 O&M in 2012 Heatrate Technology Year 1 (MW) (years) (2011 $/kW) Factor 2 Factor 3 (2011 $/kW) (2011 $/MWh) (2011$/kW) (Btu/kWh) (Btu/kWh) Scrubbed Coal New 7 2016 1300 4 2,694 1.07 1.00 2,883 4.39 30.64 8,800 8,740 Integrated Coal-Gasification Comb Cycle (IGCC) 7 2016 1200 4 3,475 1.07 1.00 3,718 7.09

  19. Soft Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Soft Costs Soft Costs The U.S. Department of Energy (DOE) SunShot Initiative accelerates the adoption of solar energy technologies in the marketplace. In support of SunShot Initiative goals, the solar office partners with manufacturers, communities, universities, utilities, and other stakeholders to: Reduce non-hardware costs Lower barriers Foster growth. These focus areas ensure that solar energy systems continue to become more affordable and accessible for Americans. Current Efforts DOE issues

  20. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 4: Project cost estimate

    SciTech Connect (OSTI)

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. This volume represents the total estimated costs for the W113 facility. Operating Contractor Management costs have been incorporated as received from WHC. The W113 Facility TEC is $19.7 million. This includes an overall project contingency of 14.4% and escalation of 17.4%. A January 2001 construction contract procurement start date is assumed.

  1. Power plant capital investment cost estimates: current trends and sensitivity to economic parameters

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    This report describes power plant capital investment cost studies that were carried out as part of the activities of the Plans and Analysis Division, Office of Nuclear Energy Programs, US Department of Energy. The activities include investment cost studies prepared by an architect-engineer, including trends, effects of environmental and safety requirements, and construction schedules. A computer code used to prepare capital investment cost estimates under varying economic conditions is described, and application of this code is demonstrated by sensitivity studies.

  2. HTGR Cost Model Users' Manual

    SciTech Connect (OSTI)

    A.M. Gandrik

    2012-01-01

    The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

  3. COSTS ASSOCIATED WITH WHISTLEBLOWER ACTIONS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A (May, 2014) COSTS ASSOCIATED WITH WHISTLEBLOWER ACTIONS Applicability: This section is applicable to all elements of the Department of Energy including the National Nuclear Security Administration. References: * Section 627 of the Energy Policy Act of 2005, codified at 42 U.S.C. 5853 * DEAR 931.205-47(h), Costs related to legal and other proceedings * DEAR 952.216-7, Allowable cost and payment * DEAR 970.3102-05-47(h), Costs related to legal and other proceedings * DEAR 970.5232-2, Payments

  4. Instrumentation of dredge spoil for landfill construction

    SciTech Connect (OSTI)

    Byle, M.J.; McCullough, M.L.; Alexander, R.; Vasuki, N.C.; Langer, J.A.

    1999-07-01

    The Delaware Solid Waste Authority's Northern Solid Waste Management Center is located outside of Wilmington Delaware at Cherry Island, a former dredge disposal site. Dredge spoils, of very low permeability, range in depths up to 30 m (100 feet) which form a natural liner and the foundation for the 140 ha (350-acre) municipal solid waste landfill. The soils beneath the landfill have been extensively instrumented to measure pore pressure, settlement and deflections, using inclinometer casings, standpipe piezometers, vibrating wire piezometers, pneumatic piezometers, settlement plates, liquid settlement gages, total pressure cells and thermistors. The nature of the existing waste and anticipated settlements (up to 6 m (19 feet)) have required some unique installation details. The instrumentation data has been integral in planning the landfilling sequence to maintain perimeter slope stability and has provided key geotechnical parameters needed for operation and construction of the landfill. The performance of the instrumentation and monitoring results are discussed.

  5. Project Cost Profile Spreadsheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Cost Profile Spreadsheet Project Cost Profile Spreadsheet File Project Cost Profile Spreadsheet.xlsx More Documents & Publications Statement of Work (SOW) Template ...

  6. Cogeneration project slated for construction

    SciTech Connect (OSTI)

    Not Available

    1993-09-13

    Destec Energy Inc. plans to begin construction of a 212-Mw gas-fired cogeneration plant in Polk County, Fla., late this year. The Houston-based firm will perform engineering and constructionmanagement services for the $150-million, combined-cycle project, but will call for proposals for construction services later this year, says project manager Bob Taylor. The plant north of Tampa, is scheduled to go on line in early 1995. All its electrical output will be sold to Florida Power Co. under a 30-year contract and process steam will go to the host, US Agrichemical Co., a large phosphate producer and fertilizer manufacturer.

  7. Low-Cost Gas Heat Pump for Building Space Heating

    Office of Environmental Management (EM)

    Low-Cost Gas Heat Pump for Building Space Heating 2014 Building Technologies Office Peer Review Michael Garrabrant mgarrabrant@stonemtntechnologies.com Stone Mountain Technologies, Inc. Project Summary Timeline: Start date: March 01, 2013 Planned end date: February 28, 2015 Key Milestones: 1. Cycle & System Design: 12/31/2014 2. Breadboard Test Results: 06/30/2014 3. Packaged Prototype Results: 02/28/2015 Budget: Total DOE $ to date: $305,396 Total future DOE $: $597,474 Target

  8. Low-Cost Gas Heat Pump for Building Space Heating

    Office of Environmental Management (EM)

    Low-Cost Gas Heat Pump for Building Space Heating 2015 Building Technologies Office Peer Review Michael Garrabrant mgarrabrant@stonemtntechnologies.com Stone Mountain Technologies, Inc. Project Summary Timeline: Start date: March 01, 2013 Planned end date: August 31, 2015 Key Milestones: 1. Cycle & System Design: 12/31/2014 2. Breadboard Test Results: 12/31/2014 3. Packaged Prototype Results: 04/01/2015 Budget: Total DOE $ to date: $629,730 Total future DOE $: $273,140 Target

  9. SUN (re)construction | Open Energy Information

    Open Energy Info (EERE)

    SUN (re)construction Jump to: navigation, search Logo: SUN (re)construction Name: SUN (re)construction Address: 1351 Harker Avenue Place: Palo Alto, California Zip: 94301 Region:...

  10. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 634 578 46 1 Q 116.4 106.3...

  11. Electricity production levelized costs for nuclear, gas and coal

    Office of Scientific and Technical Information (OSTI)

    Levelized costs for nuclear, gas and coal for Electricity, under the Mexican scenario. Javier C. Palacios, Gustavo Alonso, Ramón Ramírez, Armando Gómez, Javier Ortiz, Luis C. Longoria. Instituto Nacional de Investigaciones Nucleares México palacios@nuclear.inin.mx, galonso@nuclear.inin.mx . ABSTRACT In the case of new nuclear power stations, it is necessary to pay special attention to the financial strategy that will be applied, time of construction, investment cost, and the discount and

  12. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Alaska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 269 277 185 R 159 170 Production (million cubic feet) Gross Withdrawals From Gas Wells 127,417 112,268

  13. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Connecticut - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  14. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 District of Columbia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells

  15. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Indiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 620 914 819 R 921 895 Production (million cubic feet) Gross Withdrawals From Gas Wells 6,802 9,075

  16. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Maryland - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7 8 9 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells 43 34 44 32 20 From Oil

  17. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Massachusetts - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  18. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Minnesota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  19. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Nebraska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 276 322 270 R 357 310 Production (million cubic feet) Gross Withdrawals From Gas Wells 2,092 1,854

  20. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 New Hampshire - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  1. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 North Carolina - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  2. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    50 North Dakota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 188 239 211 200 200 Production (million cubic feet) Gross Withdrawals From Gas Wells

  3. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 South Carolina - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  4. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Washington - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  5. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    80 Wisconsin - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  6. Total System Performance Assessment Peer Review Panel

    Office of Energy Efficiency and Renewable Energy (EERE)

    Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain.

  7. Career Map: Construction Worker | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction Worker Career Map: Construction Worker Several construction workers work to attach turbine blades to a small wind turbine. Construction Worker Position Title Construction Worker Alternate Title(s) Laborer and Helper, Equipment Operator, Crane Operator Education & Training Level High school diploma or equivalent. Some training may be preferred. Equipment operators must hold a driver's license. Education & Training Level Description Most construction workers learn their trade

  8. Cost Control Best Practices for Net Zero Energy Building Projects: Preprint

    SciTech Connect (OSTI)

    Leach, M.; Pless, S.; Torcellini, P.

    2014-02-01

    For net zero energy (NZE) buildings to become the norm in commercial construction, it will be necessary to design and construct these buildings cost effectively. While industry leaders have developed workflows (for procurement, design, and construction) to achieve cost-effective NZE buildings for certain cases, the expertise embodied in those workflows has limited penetration within the commercial building sector. Documenting cost control best practices of industry leaders in NZE and packaging those strategies for adoption by the commercial building sector will help make the business case for NZE. Furthermore, it will promote market uptake of the innovative technologies and design approaches needed to achieve NZE. This paper summarizes successful cost control strategies for NZE procurement, design, and construction that key industry users (such as building owners, architects, and designers) can incorporate into their everyday workflows. It will also evaluate the current state of NZE economics and propose a path forward for greater market penetration of NZE buildings. By demonstrating how to combine NZE technologies and design approaches into an overall efficiency package that can be implemented at minimal (zero, in certain cases) incremental capital cost, the domain of NZE design and construction can be expanded from a niche market to the commercial construction mainstream.

  9. Building America Top Innovations Hall of Fame Profile … High-Performance Home Cost Performance Trade-Offs Production Builders

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    field projects with production builders have demonstrated that high-performance homes experience significant cost trade-offs that offset other cost increases. This proved transformational, gaining builder traction with related market-based programs like ENERGY STAR for Homes and DOE Challenge Home. "Break points" or cost trade-offs that are identified during the engineering analysis of the residential construction process can yield two types of business savings: 1) reductions in costs

  10. Life-cycle cost analysis 200-West Weather Enclosure: Multi-function Waste Tank Facility

    SciTech Connect (OSTI)

    Umphrey, M.R.

    1995-01-16

    The Multi-Function Waste Tank Facility (MWTF)will provide environmentally safe and acceptable storage capacity for handling wastes resulting from the remediation of existing single-shell and double-shell tanks on the Hanford Site. The MWTF will construct two tank farm facilities at two separate locations. A four-tank complex will be constructed in the 200-East Area of the Hanford Site; a two-tank complex will be constructed in the 200-West Area. This report documents the results of a life-cycle cost analysis performed by ICF Kaiser Hanford Company (ICF KH) for the Weather Enclosure proposed to be constructed over the 200-West tanks. Currently, all tank farm operations on the Hanford Site are conducted in an open environment, with weather often affecting tank farm maintenance activities. The Weather Enclosure is being proposed to allow year-round tank farm operation and maintenance activities unconstrained by weather conditions. Elimination of weather-related delays at the MWTF and associated facilities will reduce operational costs. The life-cycle cost analysis contained in this report analyzes potential cost savings based on historical weather information, operational and maintenance costs, construction cost estimates, and other various assumptions.

  11. Up and down: energy and cost comparison

    SciTech Connect (OSTI)

    Shapira, H.B.; Brite, S.E.; Yost, M.B.

    1981-01-01

    A study comparing cost and energy performance of equal aboveground and earth-sheltered homes is being conducted at the Oak Ridge National Laboratory. Five cities were selected to represent five regions of the US. A module of a basic 138 m/sup 2/ (1480-sq-ft) living unit was designed to adapt to both conventional, well-insulated housing and earth-sheltered (ES) housing. The homes were designed to represent the popular home on the market in the particular neighborhood. The designs vary to conform with regional requirements for heating and cooling loads as well as style, construction materials, finish, etc. Finished sets of detailed drawings were prepared for all the sites.

  12. Texas Beachfront Construction Webpage | Open Energy Information

    Open Energy Info (EERE)

    Construction Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Texas Beachfront Construction Webpage Author Texas General Land Office Published...

  13. China Nuclear Engineering Construction Corporation CNEC | Open...

    Open Energy Info (EERE)

    Nuclear Engineering Construction Corporation CNEC Jump to: navigation, search Name: China Nuclear Engineering & Construction Corporation (CNEC) Place: Beijing, China Zip: 100840...

  14. (Electric and Gas) Residential New Construction Program

    Broader source: Energy.gov [DOE]

    The Energize CT offers a program designed to encourage the construction of energy efficient homes. The Residential New Construction Program offers incentives targeted at increasing energy...

  15. EDIG Construction Management | Open Energy Information

    Open Energy Info (EERE)

    Name: EDIG Construction Management Place: Israel Product: String representation "E.D.I.G. is a p ... pment projects." is too long. References: EDIG Construction Management1...

  16. Riverside Public Utilities- Energy Efficiency Construction Incentive

    Broader source: Energy.gov [DOE]

    Riverside Public Utilities' (RPU) Commercial New Construction Incentives are designed to encourage owners/developers to invest in energy efficient designs in new construction, building expansion...

  17. SEPCOIII Electric Power Construction Corporation | Open Energy...

    Open Energy Info (EERE)

    SEPCOIII Electric Power Construction Corporation Jump to: navigation, search Name: SEPCOIII Electric Power Construction Corporation Place: China Zip: 266100 Sector: Services...

  18. Ruihua Construction Corporation RHC | Open Energy Information

    Open Energy Info (EERE)

    Ruihua Construction Corporation RHC Jump to: navigation, search Name: Ruihua Construction Corporation (RHC) Place: Shenzhen, Guangdong Province, China Zip: 518040 Sector: Solar...

  19. Qinghai Huanghe Zhongxing Hydropower Construction Development...

    Open Energy Info (EERE)

    Zhongxing Hydropower Construction Development Co Ltd Jump to: navigation, search Name: Qinghai Huanghe Zhongxing Hydropower Construction Development Co., Ltd Place: Qinghai...

  20. Consolidated Construction Consortium Ltd | Open Energy Information

    Open Energy Info (EERE)

    Consolidated Construction Consortium Ltd Jump to: navigation, search Name: Consolidated Construction Consortium Ltd Place: Chennai - 600 004., Tamil Nadu, India Zip: 600004 Sector:...

  1. Econnect Construction Ltd | Open Energy Information

    Open Energy Info (EERE)

    Econnect Construction Ltd Jump to: navigation, search Name: Econnect Construction Ltd Place: Northumberland, United Kingdom Zip: NE46 3PU Sector: Renewable Energy Product:...

  2. Colorado Construction Dewatering General Permit | Open Energy...

    Open Energy Info (EERE)

    Colorado Construction Dewatering General Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Colorado Construction Dewatering...

  3. Nor-son Construction | Open Energy Information

    Open Energy Info (EERE)

    Nor-son Construction Jump to: navigation, search Name: Nor-son Construction Place: Fargo, ND Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test...

  4. GreenTech Construction | Open Energy Information

    Open Energy Info (EERE)

    GreenTech Construction Jump to: navigation, search Name: GreenTech Construction Address: 7591 Perry Rd. Place: Delaware, Ohio Zip: 43015 Sector: Buildings, Efficiency Phone Number:...

  5. Toyo Construction Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Jump to: navigation, search Name: Toyo Construction Co Ltd Place: Tokyo, Tokyo, Japan Product: Technical engineers and construction firm which worked with Fuji Electric on...

  6. Renewable Energy Cost Optimization Spreadsheet

    Energy Science and Technology Software Center (OSTI)

    2007-12-31

    The Software allow users to determine the optimum combination of renewable energy technologies to minimize life cycle cost for a facility by employing various algorithms which calculate initial and operating cost, energy delivery, and other attributes associated with each technology as a function of size.

  7. Replacement Cost of Domestic Crude

    Energy Science and Technology Software Center (OSTI)

    1994-12-01

    The DEEPWATER model forecasts the replacement cost of domestic crude oil for 13 offshore regions in the lower 48 states. The replacement cost of domestic crude oil is the constant or levelized selling price that will recover the full expense of exploration, development, and productions with a reasonable return on capital.

  8. Use of Cost Estimating Relationships

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Cost Estimating Relationships (CERs) are an important tool in an estimator's kit, and in many cases, they are the only tool. Thus, it is important to understand their limitations and characteristics. This chapter discusses considerations of which the estimator must be aware so the Cost Estimating Relationships can be properly used.

  9. Unreasonable Cost Waivers | Department of Energy

    Office of Environmental Management (EM)

    Unreasonable Cost Waivers Unreasonable Cost Waivers unreasonablecost10-03-2012.pdf cnmidecision.pdf eaglepassdecision.pdf...

  10. Low-Cost Microchannel Heat Exchanger

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... cooling application tests * Complete high pressure application integrity and performance tests * Define performance and cost advantages over conventional approach Cost ...

  11. Addressing Deferred Maintenance, Infrastructure Costs, and Excess...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities at Portsmouth and Paducah Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities ...

  12. Research and Development of a Low Cost Solar Collector

    SciTech Connect (OSTI)

    Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

    2012-08-01

    This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic trough. And the cost reduction obtained by the Optimized Parabolic Trough compared to the

  13. Construction of High-Performance, Low-Cost Photoelectrodes with Controlled Polycrystalline Architectures

    SciTech Connect (OSTI)

    Kyoung-Shin Choi

    2013-06-30

    The major goal of our research was to gain the ability in electrochemical synthesis to precisely control compositions and morphologies of various oxide-based polycrystalline photoelectrodes in order to establish the composition-morphology-photoelectrochemical property relationships while discovering highly efficient photoelectrode systems for use in solar energy conversion. Major achievements include: development of porous n-type BiVO{sub 4} photoanode for efficient and stable solar water oxidation; development of p-type CuFeO{sub 2} photocathode for solar hydrogen production; and junction studies on electrochemically fabricated p-n Cu{sub 2}O homojunction solar cells for efficiency enhancement.

  14. Technology advances keeping LNG cost-competitive

    SciTech Connect (OSTI)

    Bellow, E.J. Jr.; Ghazal, F.P.; Silverman, A.J.; Myers, S.D.

    1997-06-02

    LNG plants, often very expensive in the past, will in the future need to cost less to build and operate and yet maintain high safety and reliability standards, both during construction and operation. Technical advancements, both in the process and in equipment scaling, manufacturing, and metallurgy, will provide much of the impetus for the improved economics. Although world energy demand is predicted to grow on average of about 2% annually over the next decade, LNG is expected to contribute an increasing portion of this growth with annual growth rates averaging about 7%. This steep growth increase will be propelled mainly by the environmentally friendlier burning characteristics of natural gas and the strong industrial growth in Asian and pacific Rim countries. While LNG is emerging as the fuel of choice for developing economies, its delivered cost to consumers will need to stay competitive with alternate energy supplies if it is to remain in front. The paper discusses LNG process development, treating process, equipment developments (man heat exchanger, compressors, drivers, and pressure vessels), and economy of scale.

  15. Geothermal Exploration Cost and Time

    SciTech Connect (OSTI)

    Jenne, Scott

    2013-02-13

    The Department of Energys Geothermal Technology Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. The National Renewable Energy Laboratory (NREL) was tasked with developing a metric in 2012 to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this cost and time metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration cost and time improvements can be compared, and developing an online tool for graphically showing potential project impacts (all available at http://en.openei.org/wiki/Gateway: Geothermal). This paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open Energy Information website (OpenEI, http://en.openei.org) for public access. - Published 01/01/2013 by US National Renewable Energy Laboratory NREL.

  16. construction | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    construction | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  17. Construction Kickoff Meeting Agenda | Department of Energy

    Office of Environmental Management (EM)

    Construction Kickoff Meeting Agenda Construction Kickoff Meeting Agenda Document serves as a standard agenda for the construction kickoff meeting. File p4-01_construct_kickoff_8.docx More Documents & Publications Investment-Grade Audit Kickoff Meeting Sample Agenda Agenda: Preliminary Assessment Kickoff Meeting FEMP ESPC Project Development Resource Guide

  18. Controlling Capital Costs in High Performance Office Buildings: A Review of Best Practices for Overcoming Cost Barriers

    SciTech Connect (OSTI)

    Pless, S.; Torcellini, P.

    2012-05-01

    This paper presents a set of 15 best practices for owners, designers, and construction teams of office buildings to reach high performance goals for energy efficiency, while maintaining a competitive budget. They are based on the recent experiences of the owner and design/build team for the Research Support Facility (RSF) on National Renewable Energy Facility's campus in Golden, CO, which show that achieving this outcome requires each key integrated team member to understand their opportunities to control capital costs.

  19. Prescriptive method for insulating concrete forms in residential construction

    SciTech Connect (OSTI)

    Vrankar, A.; Elhajj, N.

    1998-05-01

    Characterized as strong, durable, and energy-efficient, a new wall system for housing called Insulating Concrete Forms (ICFs) is emerging as an alternative to lumber wall frames. Due to rising costs and varying quality of framing lumber, home builders are increasing their use of ICFs even though added engineering costs make ICF homes slightly more expensive than homes with wood framing. To improve the affordability and acceptance of ICF homes, this report sets guidelines on the design, construction and inspection of ICF wall systems in residential construction. Based on thorough testing and research, the Prescriptive Method section of the report outlines minimum requirements for ICF systems including wall thickness, termite protection, reinforcement, lintel span, and connection requirements. It highlights construction and thermal guidelines for ICFs and explains how to apply the prescriptive requirements to one- and two-family homes. The Commentary section provides supplemental information and the engineering assumptions and methods used for the prescriptive method. Appendices contain step-by-step examples on how to apply ICF requirements when designing a home. They also contain engineering technical substantiation and metric conversion factors.

  20. US nuclear power plant operating cost and experience summaries

    SciTech Connect (OSTI)

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  1. ARM - Measurement - Shortwave broadband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    total downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths between 0.4 and 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the

  2. Cost Effective Water Heating Solutions

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question"Are high-efficiency hot water heating systems worth the cost?"

  3. Design Storm for Total Retention.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storm Events for Select Western U.S. Cities (adapted from Energy Independence and Security Act Technical Guidance, USEPA, 2009) City 95th Percentile Event Rainfall Total...

  4. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Alabama - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,026 7,063 6,327 R 6,165 6,118 Production (million cubic feet) Gross Withdrawals From Gas Wells

  5. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Arkansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,397 8,388 8,538 R 9,843 10,150 Production (million cubic feet) Gross Withdrawals From Gas Wells

  6. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 California - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,580 1,308 1,423 R 1,335 1,118 Production (million cubic feet) Gross Withdrawals From Gas

  7. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Colorado - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 28,813 30,101 32,000 R 32,468 38,346 Production (million cubic feet) Gross Withdrawals From Gas

  8. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Florida - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 17,182 16,459 19,742

  9. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Georgia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells

  10. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Illinois - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 50 40 40 R 34 36 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,697 2,114

  11. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Iowa - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0

  12. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Kansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 22,145 25,758 24,697 R 23,792 24,354 Production (million cubic feet) Gross Withdrawals From Gas Wells

  13. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Kentucky - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 17,670 14,632 17,936 R 19,494 19,256 Production (million cubic feet) Gross Withdrawals From Gas

  14. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Louisiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 19,137 21,235 19,792 R 19,528 19,251 Production (million cubic feet) Gross Withdrawals From Gas

  15. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Maine - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  16. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Michigan - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 10,100 11,100 10,900 R 10,550 10,500 Production (million cubic feet) Gross Withdrawals From Gas

  17. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Mississippi - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,979 5,732 1,669 R 1,967 1,645 Production (million cubic feet) Gross Withdrawals From Gas

  18. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Missouri - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 53 100 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 R 8 8 From

  19. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Montana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,059 6,477 6,240 5,754 5,754 Production (million cubic feet) Gross Withdrawals From Gas Wells

  20. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Nevada - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 R 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 3 From Oil Wells

  1. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 New Jersey - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  2. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 New Mexico - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,748 32,302 28,206 R 27,073 27,957 Production (million cubic feet) Gross Withdrawals From

  3. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 New York - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,736 6,157 7,176 R 6,902 7,119 Production (million cubic feet) Gross Withdrawals From Gas Wells

  4. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Ohio - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 34,931 46,717 35,104 R 32,664 32,967 Production (million cubic feet) Gross Withdrawals From Gas Wells

  5. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Oklahoma - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,000 41,238 40,000 39,776 40,070 Production (million cubic feet) Gross Withdrawals From Gas

  6. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Oregon - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 26 24 27 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,407 1,344 770 770

  7. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Pennsylvania - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,500 54,347 55,136 R 53,762 70,400 Production (million cubic feet) Gross Withdrawals

  8. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Rhode Island - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From

  9. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Tennessee - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 230 210 212 R 1,089 1,024 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,144

  10. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Texas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 95,014 100,966 96,617 97,618 98,279 Production (million cubic feet) Gross Withdrawals From Gas Wells

  11. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Utah - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,075 6,469 6,900 R 7,030 7,275 Production (million cubic feet) Gross Withdrawals From Gas Wells 328,135

  12. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Vermont - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells

  13. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,470 7,903 7,843 R 7,956 7,961 Production (million cubic feet) Gross Withdrawals From Gas Wells

  14. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 West Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 52,498 56,813 50,700 R 54,920 60,000 Production (million cubic feet) Gross Withdrawals

  15. Total Blender Net Input of Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids OxygenatesRenewables ...

  16. 2014 Total Electric Industry- Sales (Megawatthours

    U.S. Energy Information Administration (EIA) Indexed Site

    and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",47211525,53107038,19107433,557463,119983459 "Connecticut",12777579,12893531,3...

  17. ,"Total Natural Gas Underground Storage Capacity "

    U.S. Energy Information Administration (EIA) Indexed Site

    ...orcapaepg0sacmmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: Total Natural Gas Underground Storage Capacity " "Sourcekey","N5290US2","NGMEP...

  18. Wind Electrolysis: Hydrogen Cost Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrolysis: Hydrogen Cost Optimization Genevieve Saur and Todd Ramsden Technical Report NREL/TP-5600-50408 May 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Wind Electrolysis: Hydrogen Cost Optimization Genevieve Saur, Todd

  19. Load Leveling Battery System Costs

    Energy Science and Technology Software Center (OSTI)

    1994-10-12

    SYSPLAN evaluates capital investment in customer side of the meter load leveling battery systems. Such systems reduce the customer's monthly electrical demand charge by reducing the maximum power load supplied by the utility during the customer's peak demand. System equipment consists of a large array of batteries, a current converter, and balance of plant equipment and facilities required to support the battery and converter system. The system is installed on the customer's side of themore » meter and controlled and operated by the customer. Its economic feasibility depends largely on the customer's load profile. Load shape requirements, utility rate structures, and battery equipment cost and performance data serve as bases for determining whether a load leveling battery system is economically feasible for a particular installation. Life-cycle costs for system hardware include all costs associated with the purchase, installation, and operation of battery, converter, and balance of plant facilities and equipment. The SYSPLAN spreadsheet software is specifically designed to evaluate these costs and the reduced demand charge benefits; it completes a 20 year period life cycle cost analysis based on the battery system description and cost data. A built-in sensitivity analysis routine is also included for key battery cost parameters. The life cycle cost analysis spreadsheet is augmented by a system sizing routine to help users identify load leveling system size requirements for their facilities. The optional XSIZE system sizing spreadsheet which is included can be used to identify a range of battery system sizes that might be economically attractive. XSIZE output consisting of system operating requirements can then be passed by the temporary file SIZE to the main SYSPLAN spreadsheet.« less

  20. Low Cost Non-Reactive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prepared: 10/28/09 Low Cost Non-Reactive Coating for Refractory Metals A non-reactive coating for refractory metals has been developed at The Ames Laboratory. Contamination of rare earth and reactive metals and their alloys has been a chronic problem that results from their interaction with the crucibles or other vessels used in high temperature processing or during other applications. As a consequence, processing and other costs are high due to the need to replace equipment or containers, or

  1. Syngas Mixed Alcohol Cost Validation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1, 2013 DOE Bioenergy Technologies Office: Project Peer Review Syngas Mixed Alcohol Cost Validation Abhijit Dutta, NREL This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement Enable research and development of cost-competitive biomass to liquid fuels by providing: - Techno-economic analysis (TEA) - Feedback to the research efforts Specific objective in 2012: Provide TEA and validate DOE BETO's goal to demonstrate technologies capable

  2. Low cost bare-plate solar air collector

    SciTech Connect (OSTI)

    Maag, W.L.; Wenzler, C.J.; Rom, F.E.; VanArsdale, D.R.

    1980-09-01

    The purpose of this project was to develop a low cost, bare-plate collector, determine its performance for a variety of climatic conditions, analyze the economics of this type of solar collector and evaluate specific applications. Two prototype collectors were designed, fabricated and installed into an instrumented test system. Tests were conducted for a period of five months. Results of the tests showed consistent operating efficiencies of 60% or greater with air preheat temperature uses up to 20/sup 0/F for one of the prototypes. The economic analyses indicated that an installed cost of between $5 and $10 per square foot would make this type of solar system economically viable. For the materials of construction and the type of fabrication and installation perceived, these costs for the bare-plate solar collector are believed to be attainable. Specific applications for preheating ventilation air for schools were evaluated and judged to be economically viable.

  3. Average System Cost Methodology : Administrator's Record of Decision.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1984-06-01

    Significant features of average system cost (ASC) methodology adopted are: retention of the jurisdictional approach where retail rate orders of regulartory agencies provide primary data for computing the ASC for utilities participating in the residential exchange; inclusion of transmission costs; exclusion of construction work in progress; use of a utility's weighted cost of debt securities; exclusion of income taxes; simplification of separation procedures for subsidized generation and transmission accounts from other accounts; clarification of ASC methodology rules; more generous review timetable for individual filings; phase-in of reformed methodology; and each exchanging utility must file under the new methodology within 20 days of implementation by the Federal Energy Regulatory Commission of the ten major participating utilities, the revised ASC will substantially only affect three. (PSB)

  4. Audit of construction of protective force training facilities at the Pantex Plant

    SciTech Connect (OSTI)

    1995-05-05

    A goal of the Department of Energy project management system is to ensure that projects are necessary to fulfill mission needs and are cost effective. This requires that the Department justify each project and explore competitive alternatives. The objective of this audit was to assess the need to construct protective force training facilities at the Department`s Pantex Plant. Our audit disclosed that (1) construction of a physical training facility was not necessary to fulfill mission needs, and (2) the Department did not consider all viable alternatives to constructing a weapons tactics and training facility. These conditions occurred, in part, because a Justification for New Start was never prepared and approved for the Security Enhancements Major System Acquisition, which included these two projects. We recommended that the Manager, Albuquerque Operations Office, cancel construction of the physical training facility, make needed repairs and upgrades to the existing facilities, and reduce the cost of the Security Enhancements Major System Acquisition accordingly. Implementation of this recommendation will save about $1.7 million. We also recommended that the Manager direct Mason & Hanger to perform economic analyses of all viable alternatives to constructing a weapons tactics and training facility before proceeding with construction. Such analyses could lead to cancellation or rescoping of the proposed facility and result in savings to the Department. Albuquerque management did not agree to cancel construction of the physical training facility, but did agree to perform economic analyses of all viable alternatives to the proposed weapons tactics and training facility before proceeding with construction.

  5. Postmortem Cost and Schedule Analysis - Lessons Learned On NCSX

    SciTech Connect (OSTI)

    R. Strykowsky, T. Brown, J. Chrzanowski, M. Cole, P. Heitzenroeder, G.H. Neilson, Donald Rej, and M. Viola

    2012-03-08

    The National Compact Stellarator Experiment (NCSX) was designed to test physics principles of an innovative fusion energy confinement device developed by the Princeton Plasma Physics Laboratory (PPPL) and Oak Ridge National Laboratory (ORNL) under contract from the US Department of Energy. The project was technically very challenging, primarily due to the complex component geometries and tight tolerances that were required. As the project matured these challenges manifested themselves in significant cost overruns through all phases of the project (i.e. design, R&D, fabrication and assembly). The project was subsequently cancelled by the DOE in 2008. Although the project was not completed, several major work packages, comprising about 65% of the total estimated cost (excluding management and contingency), were completed, providing a data base of actual costs that can be analyzed to understand cost drivers. Technical factors that drove costs included the complex geometry, tight tolerances, material requirements, and performance requirements. Management factors included imposed annual funding constraints that throttled project cash flow, staff availability, and inadequate R&D. Understanding how requirements and design decisions drove cost through this top-down forensic cost analysis could provide valuable insight into the configuration and design of future state-of-the art machines and other devices.

  6. Cost-Effective Cable Insulation: Nanoclay Reinforced Ethylene-Propylene-Rubber for Low-Cost HVDC Cabling

    SciTech Connect (OSTI)

    2012-02-24

    GENI Project: GE is developing new, low-cost insulation for high-voltage direct current (HVDC) electricity transmission cables. The current material used to insulate HVDC transmission cables is very expensive and can account for as much as 1/3 of the total cost of a high-voltage transmission system. GE is embedding nanomaterials into specialty rubber to create its insulation. Not only are these materials less expensive than those used in conventional HVDC insulation, but also they will help suppress excess charge accumulation. The excess charge left behind on a cable poses a major challenge for high-voltage insulationif its not kept to a low level, it could ultimately lead the insulation to fail. GEs low-cost insulation is compatible with existing U.S. cable manufacturing processes, further enhancing its cost effectiveness.

  7. DOE Selects Eight Projects to Receive Funding for Reducing the Cost of CO2 Capture and Compression

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has selected eight projects to receive funding to construct small- and large-scale pilots for reducing the cost of...

  8. Construction of a Li Ion Battery (LIB) Cathode Production Plant in Elyria,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ohio | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt008_es_dicarlo_2011_p.pdf More Documents & Publications Process for Low Cost Domestic Production of LIB Cathode Materials Process for Low Cost Domestic Production of LIB Cathode Materials Construction of a Li Ion Battery (LIB) Cathode Production Plant in Elyria, Ohio

  9. Y-12 construction | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    construction Y-12 construction A Manhattan Engineering District technical sergeant looks over nearly completed construction at Y-12...

  10. Construction of file database management

    SciTech Connect (OSTI)

    MERRILL,KYLE J.

    2000-03-01

    This work created a database for tracking data analysis files from multiple lab techniques and equipment stored on a central file server. Experimental details appropriate for each file type are pulled from the file header and stored in a searchable database. The database also stores specific location and self-directory structure for each data file. Queries can be run on the database according to file type, sample type or other experimental parameters. The database was constructed in Microsoft Access and Visual Basic was used for extraction of information from the file header.

  11. NUCLEAR ENERGY SYSTEM COST MODELING

    SciTech Connect (OSTI)

    Francesco Ganda; Brent Dixon

    2012-09-01

    The U.S. Department of Energys Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative Island approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this islands used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an islands cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

  12. Conception and construction of an LPG tank using a composite membrane technology

    SciTech Connect (OSTI)

    Fuvel, P.; Claude, J.

    1985-03-01

    TECHNIGAZ and TOTAL C.F.P. have developed a new LPG storage technology derived from the membrane concept used for LNG storage and transportation. This technology called GMS uses a composite membrane as primary barrier. A 2 000 m/sup 3/ storage pilot unit, based on that concept, is under construction in TOTAL's refinery at DUNKIRK (France) since September 1983.

  13. 2009 Total Energy Production by State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total Energy Production by State 2009 Total Energy Production by State 2009 Total Energy Production by State...

  14. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  15. Buildings Energy Data Book: 2.5 Residential Construction and Housing Market

    Buildings Energy Data Book [EERE]

    4 Region Single-Family Multi-Family Mobile Homes Northeast 54 11% 26 17% 4 8% 84 12% Midwest 82 17% 25 16% 6 11% 113 16% South 258 52% 59 38% 34 68% 351 50% West 103 21% 45 29% 6 13% 154 22% Total 496 100% 155 100% 50 100% 702 100% Source(s): 2010 New Homes Completed/Placed, by Census Region (Thousand Units and Percent of Total Units) Total DOC, Manufacturing, Mining and Construction Statistics: New Residential Construction: New Privately Owned Housing Units Completed, 2010; and DOC,

  16. Dictionary construction in sparse methods for image restoration

    SciTech Connect (OSTI)

    Wohlberg, Brendt

    2010-01-01

    Sparsity-based methods have achieved very good performance in a wide variety of image restoration problems, including denoising, inpainting, super-resolution, and source separation. These methods are based on the assumption that the image to be reconstructed may be represented as a superposition of a few known components, and the appropriate linear combination of components is estimated by solving an optimization such as Basis Pursuit De-Noising (BPDN). Considering that the K-SVD constructs a dictionary which has been optimised for mean performance over a training set, it is not too surprising that better performance can be achieved by selecting a custom dictionary for each individual block to be reconstructed. The nearest neighbor dictionary construction can be understood geometrically as a method for estimating the local projection into the manifold of image blocks, whereas the K-SVD dictionary makes more sense within a source-coding framework (it is presented as a generalization of the k-means algorithm for constructing a VQ codebook), is therefore, it could be argued, less appropriate in principle, for reconstruction problems. One can, of course, motivate the use of the K-SVD in reconstruction application on practical grounds, avoiding the computational expense of constructing a different dictionary for each block to be denoised. Since the performance of the nearest neighbor dictionary decreases when the dictionary becomes sufficiently large, this method is also superior to the approach of utilizing the entire training set as a dictionary (and this can also be understood within the image block manifold model). In practical terms, the tradeoff is between the computational cost of a nearest neighbor search (which can be achieved very efficiently), or of increased cost at the sparse optimization.

  17. Cell Total Activity Final Estimate.xls

    Office of Legacy Management (LM)

    WSSRAP Cell Total Activity Final Estimate (calculated September 2002, Fleming) (Waste streams & occupied cell volumes from spreadsheet titled "cell waste volumes-8.23.02 with macros.xls") Waste Stream a Volume (cy) Mass (g) 2 Radiological Profile 3 Nuclide Activity (Ci) 4 Total % of Total U-238 U-234 U-235 Th-228 Th-230 Th-232 Ra-226 Ra-228 Rn-222 5 Activity if > 1% Raffinate Pits Work Zone (Ci) Raffinate processed through CSS Plant 1 159990 1.49E+11 Raffinate 6.12E+01 6.12E+01

  18. Waste Management Facilities cost information for mixed low-level waste. Revision 1

    SciTech Connect (OSTI)

    Shropshire, D.; Sherick, M.; Biadgi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing mixed low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  19. Print-based Manufacturing of Integrated, Low Cost, High Performance SSL

    Energy Savers [EERE]

    Luminaires | Department of Energy Print-based Manufacturing of Integrated, Low Cost, High Performance SSL Luminaires Print-based Manufacturing of Integrated, Low Cost, High Performance SSL Luminaires Lead Performer: Eaton Corporation - Menomonee Falls, WI Partners: - Heraeus Materials Technology, LLC - Conshohocken, PA - Haiku Tech, Inc - Miami, FL - Eaton Cooper Lighting Innovation Center - Peachtree City, GA DOE Total Funding: $2,468,672 Cost Share: $2,468,676 Project Term: 9/15/2013 -

  20. Low-Cost Packaged Combined Heat and Power System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Packaged Combined Heat and Power System Low-Cost Packaged Combined Heat and Power System Increasing the Market Acceptance of Smaller CHP Systems This project is developing a flexible, packaged combined heat and power (CHP) system that produces 330 kilowatts (kW) of electrical power output and 410 kW of thermal output while increasing efficiency and reducing total cost of ownership. Introduction Many CHP systems less than 1 megawatt (MW) use reciprocating internal combustion engines.

  1. Modifications to Replacement Costs System

    SciTech Connect (OSTI)

    Godec, M. [ICF Resources, Inc., Fairfax, VA (United States)

    1989-05-18

    The purpose of this memorandum is to document the improvements and modifications made to the Replacement Costs of Crude Oil (REPCO) Supply Analysis System. While some of this work was performed under our previous support contract to DOE/ASFE, we are presenting all modifications and improvements are presented here for completeness. The memo primarily documents revisions made to the Lower-48 Onshore Model. Revisions and modifications made to other components and models in the REPCO system which are documented elsewhere are only highlighted in this memo. Generally, the modifications made to the Lower-48 Onshore Model reflect changes that have occurred in domestic drilling, oil field costs, and reserves since 1982, the date of the most recent available data used for the original Replacement Costs report, published in 1985.

  2. Solar Water Heating with Low-Cost Plastic Systems

    SciTech Connect (OSTI)

    2012-01-01

    Federal buildings consumed over 392,000 billion Btu of site delivered energy for buildings during FY 2007 at a total cost of $6.5 billion. Earlier data indicate that about 10% of this is used to heat water.[2] Targeting energy consumption in Federal buildings, the Energy Independence and Security Act of 2007 (EISA) requires new Federal buildings and major renovations to meet 30% of their hot water demand with solar energy, provided it is cost-effective over the life of the system. In October 2009, President Obama expanded the energy reduction and performance requirements of EISA and its subsequent regulations with his Executive Order 13514.

  3. Cost-Causation and Integration Cost Analysis for Variable Generation

    SciTech Connect (OSTI)

    Milligan, M.; Ela, E.; Hodge, B. M.; Kirby, B.; Lew, D.; Clark, C.; DeCesaro, J.; Lynn, K.

    2011-06-01

    This report examines how wind and solar integration studies have evolved, what analysis techniques work, what common mistakes are still made, what improvements are likely to be made in the near future, and why calculating integration costs is such a difficult problem and should be undertaken carefully, if at all.

  4. GAO Cost Estimating and Assessment Guide

    Broader source: Energy.gov [DOE]

    GAO Cost Estimating and Assessment Guide: Twelve Steps of a High-Quality Cost Estimating Process, from the first step of defining the estimate's purpose to the last step of updating the estimate to reflect actual costs and changes.

  5. Microsoft Word - Levelized Cost of Energy Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    It takes into account all costs of generating electricity, including capital costs, ... - see OK wind capacity factor above o Capital cost - 1.75 mmMW (includes regional ...

  6. IID Energy- New Construction Energy Efficiency Program

    Broader source: Energy.gov [DOE]

     IID’s New Construction Energy Efficiency Program (NCEEP) is a non-residential new construction and renovation energy efficiency program that combines an integrated design process with financial...

  7. Pre-Construction Notification | Open Energy Information

    Open Energy Info (EERE)

    Construction Notification Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Pre-Construction NotificationLegal Published NA Year...

  8. TotalView Parallel Debugger at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more...

  9. Million Cu. Feet Percent of National Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    as known volumes of natural gas that were the result of leaks, damage, accidents, migration, andor blow down. Notes: Totals may not add due to independent rounding. Prices are...

  10. EQUUS Total Return Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: EQUUS Total Return Inc Place: Houston, Texas Product: A business development company and VC investor that trades as a closed-end fund. EQUUS is...

  11. "2014 Total Electric Industry- Revenue (Thousands Dollars)"

    U.S. Energy Information Administration (EIA) Indexed Site

    and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",8414175.4,7806276.7,2262752.4,57837.4,18541041.8 "Connecticut",2523348.7,2004...

  12. Total Natural Gas Underground Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  13. Total Natural Gas Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  14. ARM - Measurement - Net broadband total irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsNet broadband total irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Net broadband total irradiance The difference between upwelling and downwelling, covering longwave and shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  15. Alternative Fuels Data Center: Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on

  16. Montana Construction Dewatering General Permit Application Information...

    Open Energy Info (EERE)

    overview of Construction Dewatering General Permit process. Author Montana Department of Environmental Quality - Water Protection Bureau Published Montana Department of...

  17. NREL: Environment, Health, and Safety - Construction Subcontractors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents Environment, Health, and Safety Printable Version Construction Subcontractors Documents The purpose of this page is to ensure NREL Environment, Health and Safety (EH&S) requirements are understood by construction subcontractors and incorporated into their planning, procurement, and execution of construction work activities at NREL. It is important that all construction subcontractors and their lower-tiers subcontractors familiarize themselves with these requirements before

  18. GC GUIDANCE ON MINOR CONSTRUCTION THRESHOLDS

    Office of Environmental Management (EM)

    GUIDANCE ON MINOR CONSTRUCTION THRESHOLDS We have been asked about how the Department implements what is known as the "minor construction threshold," which limits the amount of certain funds that can be spent on minor construction projects that are not specifically authorized by law. This Guidance is intended to clarify both the applicable law and Department policy. The Secretary's authority to carry out construction projects is subject to several limitations in the Atomic Energy

  19. Constructing a Cleaner Economy Info Graphic

    Broader source: Energy.gov [DOE]

    An overview of the impact that the clean energy economy is having on the U.S. construction industry.

  20. Construction Safety Advisory Committee | Department of Energy

    Office of Environmental Management (EM)

    Safety Advisory Committee Construction Safety Advisory Committee CSAC Charter 1.0 PURPOSE This charter describes the function and role of the Department of Energy (DOE) Construction Safety Advisory Committee (CSAC). The DOE CSAC is an advisory body formed to provide the Office of Environment, Health, Safety and Security (AU) field input and perspective in the development and maintenance of DOE construction safety program guidance and in review and resolution of construction safety issues. The