National Library of Energy BETA

Sample records for total coal petroleum

  1. Coke from coal and petroleum

    DOE Patents [OSTI]

    Wynne, Jr., Francis E.; Lopez, Jaime; Zaborowsky, Edward J.

    1981-01-01

    A carbonaceous coke is manufactured by the delayed coking of a slurry mixture of from about 10 to about 30 weight percent of caking or non-caking coal and the remainder a petroleum resid blended at below 50.degree. C.

  2. ,"Total Crude Oil and Petroleum Products Exports"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Total Crude Oil and Petroleum Products ... "Back to Contents","Data 1: Total Crude Oil and Petroleum Products Exports" ...

  3. Assessment of the petroleum, coal, and geothermal resources of...

    Office of Scientific and Technical Information (OSTI)

    coal, and geothermal resources of the economic community of West African states (ECOWAS) region Citation Details In-Document Search Title: Assessment of the petroleum, coal, and ...

  4. Assessment of the petroleum, coal, and geothermal resources of...

    Office of Scientific and Technical Information (OSTI)

    the petroleum, coal, and geothermal resources of the economic community of West African states (ECOWAS) region Mattick, R.E. (comp.) 02 PETROLEUM; 01 COAL, LIGNITE, AND PEAT; 15...

  5. Coal liquefaction and hydroprocessing of petroleum oils

    SciTech Connect (OSTI)

    Rosenthal, J.W.; Dahlberg, A.J.

    1983-12-27

    This invention comprises a process for hydroprocessing a petroleum oil containing soluble metals compounds while suppressing the accumulation of coke within the hydroprocessing zone, comprising the steps of forming a mixture comprising particulate coal and a petroleum oil containing soluble metal compounds to form a feed slurry; and contacting said feed slurry with added hydrogen in said hydroprocessing zone under hydroprocessing conditions to produce an effluent comprising a normally liquid portion having a reduced soluble metals concentration and undissolved solids containing metal from said soluble metals compounds in said petroleum oil.

  6. Petroleum Data, Natural Gas Data, Coal Data, Macroeconomic Data, Petroleum Import Data

    SciTech Connect (OSTI)

    2009-01-18

    Supplemental tables to the Annual Energy Outlook (AEO) 2006 for petroleum, natural gas, coal, macroeconomic, and import data

  7. " Level: National Data and Regional Totals...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... by" "petroleum refineries, rather than purchased ... ,,"Total United States" ,"RSE Column ... 324,"Petroleum and Coal ...

  8. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  9. ,"Crude Oil and Petroleum Products Total Stocks Stocks by Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Crude Oil and Petroleum Products Total Stocks Stocks ... AM" "Back to Contents","Data 1: Crude Oil and Petroleum Products Total Stocks Stocks ...

  10. Total Crude Oil and Petroleum Products Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter Kerosene and

  11. Method of removal of sulfur from coal and petroleum products

    DOE Patents [OSTI]

    Verkade, John G.; Mohan, Thyagarajan; Angelici, Robert J.

    1995-01-01

    A method for the removal of sulfur from sulfur-bearing materials such as coal and petroleum products using organophosphine and organophosphite compounds is provided.

  12. ENERGY PLANNING, POLICY AND ECONOMY; 02 PETROLEUM; 01 COAL, LIGNITE...

    Office of Scientific and Technical Information (OSTI)

    Philippines: Asia Pacific energy series: Country report Hoffman, S. 29 ENERGY PLANNING, POLICY AND ECONOMY; 02 PETROLEUM; 01 COAL, LIGNITE, AND PEAT; PHILIPPINES; ECONOMIC...

  13. Fact #736: July 16, 2012 Total Petroleum Imports and Net Petroleum Imports: The Difference is Growing

    Broader source: Energy.gov [DOE]

    When referring to U.S. imports of petroleum, it is important to make the distinction between total imports and net imports. Net imports are equal to the amount of total imported petroleum minus the...

  14. ,"Crude Oil and Petroleum Products Total Stocks Stocks by Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Crude Oil and Petroleum Products Total Stocks Stocks by Type",6,"Monthly","82015","1151956"...

  15. Occupational employment survey, booklet of definitions. Petroleum refining, coal products, and related industries

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The publication gives occupational definitions for 149 occupations in the petroleum refining, coal products, and related industries.

  16. Product Supplied for Total Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Liquids and LRGs Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished

  17. Coal-fired boiler for petroleum refinery

    SciTech Connect (OSTI)

    Ketterman, W.R.; Heinzmann, D.A.

    1982-01-01

    There has been a significant amount of interest in conversion from oil/gas fired boilers to coal-fired equipment since the Arab oil embargo of 1973. The CRA Incorporated Coffeyville Refinery decided in 1977 to proceed with the installation of a 86.183 Kg/h coal fired boiler to generate process steam at 650 psig (4,482 k Pa) 596/sup 0/F (313/sup 0/C). A significant portion of this steam is passed through steam turbines to obtain mechanical power. Building and operating a coal-fired steam plant is a ''Different Kettle of Fish'' from building and operating an oil/gas-fired steam plant. The intention of this paper is to deal with some of the ''Why's and Wherefores'' of the conversion to coal-fired equipment.

  18. Table 4. Total Petroleum Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Petroleum Consumption, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",6449.55,6566.35,6643,6723.3,6810.9,6880.25,6956.9,7059.1,7124.8,7205.1,7296.35,7376.65,7446,7522.65,7595.65,7665,7712.45,7774.5 "AEO

  19. Refinery & Blender Net Production of Total Finished Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than

  20. Refinery Net Production of Total Finished Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55

  1. Table 4. Total Petroleum Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Petroleum Consumption, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 6450 6566 6643 6723 6811 6880 6957 7059 7125 7205 7296 7377 7446 7523 7596 7665 7712 7775 AEO 1995 6398 6544 6555 6676 6745 6822 6888 6964 7048 7147 7245 7337 7406 7472 7537 7581 7621 AEO 1996 6490 6526 6607 6709 6782 6855 6942 7008 7085 7176 7260 7329 7384 7450 7501 7545 7581 7632 7676 AEO 1997 6636 6694

  2. Fact #593: October 19, 2009 Petroleum Accounts for Nearly Half of the Total

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trade Deficit | Department of Energy 3: October 19, 2009 Petroleum Accounts for Nearly Half of the Total Trade Deficit Fact #593: October 19, 2009 Petroleum Accounts for Nearly Half of the Total Trade Deficit As recently as 2002, the petroleum trade balance accounted for less than 20% of the total U.S. goods trade deficit. In 2008, however, petroleum accounted for 45% of the trade deficit. However, as petroleum's share of the deficit grew, the deficit for vehicles, engines and parts went

  3. Coprocessing of coal and heavy petroleum crudes and residua: a solvent evaluation and a parametric study

    SciTech Connect (OSTI)

    Curtis, C.W.; Guin, J.A.; Tsai, K.J.; Pass, M.C.

    1984-01-01

    This study has investigated the combined hydroprocessing of coal with petroleum solvents consisting of heavy and reduced crudes and residua to determine the feasibility of simultaneous upgrading of both materials to lighter products. Six hydrogen-rich heavy petroleum materials have been processed with Illinois No. 6 coal at 400/sup 0/C and 425/sup 0/C for 30 minutes under three reaction conditions: a N/sub 2/ atmosphere, a H/sub 2/ atmosphere and a H/sub 2/ atmosphere using hydrotreating extrudates. Liquefaction of bituminous coal can be achieved in the petroleum solvents with coal conversion being dependent upon the reaction conditions. Noncatalytic coal conversions of 45 to 50% are achieved in a H/sub 2/ atmosphere. Addition of a catalyst increases conversion to near 70%. Only approximately 35% conversion is obtained in a N/sub 2/ atmosphere. In the catalytic environment substantial conversions to pentane soluble material occur. Hydrotreatment and extraction of the solvent prior to coprocessing increases the amount of coal conversion and, in some cases, increases the amount of pentane soluble material produced. The influence of the solvent appears to be related to the molecular weight, viscosity and Conradson Carbon number of the petroleum materials. Evaluation of the reaction parameters of temperature, hydrogen pressure, time and catalyst extrudate size for coprocessing has been undertaken. Based on the production of pentane soluble oil and coal conversion, feasible parameters are established: 425/sup 0/C, 1250 psig H/sub 2/ pressure at ambient temperature, long reaction time and a hydrogenation catalyst with a small particle size. Combined processing is shown to be sensitive to catalyst extrudate size, with powdered catalyst giving substantially more oil yield and coal conversion than the extrudates. 6 references, 11 figures, 4 tables.

  4. Crude Oil and Petroleum Products Total Stocks Stocks by Type

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils

  5. Method of producing a colloidal fuel from coal and a heavy petroleum fraction

    DOE Patents [OSTI]

    Longanbach, James R.

    1983-08-09

    A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300.degree.-550.degree. C. The slurry is heated to a temperature of 400.degree.-500.degree. C. for a limited time of only about 1-5 minutes before cooling to a temperature of less than 300.degree. C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

  6. Workshop on the utilization of coal as an alternative to petroleum fuels in the Andean region. Volume 2. Contributed papers

    SciTech Connect (OSTI)

    Not Available

    1985-06-28

    Since the advent of the petroleum crisis in the mid-seventies, with its escalating fuel-oil prices, coal production has shown a substantial increase. Worldwide coal reserves are large, and the technology exists to exploit these reserves. Andean countries, especially Peru, are known to have significant underutilized coal reserves, which could prove socially and economically attractive for energy policy and planning and for long-term self-sufficiency. At present, many industrial operations and electric-generating facilities in Bolivia, Ecuador, and Peru are dependent on fuel-oil from diminishing domestic reserves or from imports. With current prices of coal generally about half those for residual petroleum fuels (based on energy content), the potential exists for exploitation of Andean coal as an alternative to petroleum fuels. Greater use of coal resources would help meet the demand for increased energy needed to improve living standards and for increased industrialization in the area.

  7. Fact #837: September 8, 2014 Gap between Net Imports and Total Imports of Petroleum is Widening – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #837: Gap between Net Imports and Total Imports of Petroleum is Widening

  8. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz

    SciTech Connect (OSTI)

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang

    2008-03-15

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

  9. Total Crude Oil and Petroleum Products Imports by Area of Entry

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel Other Renewable

  10. East Coast (PADD 1) Total Crude Oil and Petroleum Products Net Receipts by

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline, Tanker, Barge and Rail Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other

  11. ,"U.S. Total Refiner Petroleum Product Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    NUSDPG","EMAEPPRPTGNUSDPG","EMAEPPRLPTGNUSDPG","EMAEPPRHPTGNUSDPG" "Date","U.S. Total Gasoline Retail Sales by Refiners (Dollars per Gallon)","U.S. Aviation Gasoline...

  12. A Perspective of petroleum, natural gas, and coal bed methane on the energy security of India

    SciTech Connect (OSTI)

    Ghose, M.K.; Paul, B.

    2008-07-01

    The global energy requirement has grown at a phenomenal rate and the consumption of primary energy sources has been a very high positive growth. This article focuses on the consumption of different primary energy sources and it identifies that coal will continue to remain as the prime energy in the foreseeable future. It examines energy requirement perspectives for India and demands of petroleum, natural gas, and coal bed methane in the foreseeable future. It discusses the state of present day petroleum and petrochemical industries in the country and the latest advances in them to take over in the next few years. The regional pattern of consumption of primary energy sources shows that oil remains as the largest single source of primary energy in most parts of the world. However, gas dominates as the prime source in some parts of the world. Economic development and poverty alleviation depend on securing affordable energy sources and for the country's energy security; it is necessary to adopt the latest technological advances in petroleum and petrochemical industries by supportive government policies. But such energy is very much concerned with environmental degradation and must be driven by contemporary managerial acumen addressing environmental and social challenges effectively. Environmental laws for the abatement of environmental degradation are discussed in this paper. The paper concludes that energy security leading to energy independence is certainly possible and can be achieved through a planned manner.

  13. ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...Subbituminous",,"Coal","Petroleum","Electricity","from ... ,,"Total United States" 311,"Food",4,26,0,6,0,6,... 324110," Petroleum Refineries",3,79,0,25,0,25,0,0,0,4...

  14. Total

    Gasoline and Diesel Fuel Update (EIA)

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other ...

  15. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel ...

  16. Table 12. Total Coal Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Coal Consumption, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",920,928,933,938,943,948,953,958,962,967,978,990,987,992,1006,1035,1061,1079 "AEO 1995",,935,940,941,947,948,951,954,958,963,971,984,992,996,1002,1013,1025,1039 "AEO

  17. Table 12. Total Coal Consumption, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Coal Consumption, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 920 928 933 938 943 948 953 958 962 967 978 990 987 992 1006 1035 1061 1079 AEO 1995 935 940 941 947 948 951 954 958 963 971 984 992 996 1002 1013 1025 1039 AEO 1996 937 942 954 962 983 990 1004 1017 1027 1033 1046 1067 1070 1071 1074 1082 1087 1094 1103 AEO 1997 948 970 987 1003 1017 1020 1025 1034 1041

  18. Method of producing a colloidal fuel from coal and a heavy petroleum fraction. [partial liquefaction of coal in slurry, filtration and gasification of residue

    DOE Patents [OSTI]

    Longanbach, J.R.

    1981-11-13

    A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300 to 550/sup 0/C. The slurry is heated to a temperature of 400 to 500/sup 0/C for a limited time of only about 1 to 5 minutes before cooling to a temperature of less than 300/sup 0/C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

  19. Refining and end use study of coal liquids. Topical report: Petroleum Refinery; Linear Programming Model; and Design Basis

    SciTech Connect (OSTI)

    1995-03-01

    A model was developed for use in the Bechtel PIMS (Process Industry Modeling System) linear programming software to simulate a generic Midwest (PADD II) petroleum refinery of the future. This ``petroleum-only`` version of the model establishes the size and complexity of the refinery after the year 2000 and prior to the introduction of coal liquids. It should be noted that no assumption has been made on when a plant can be built to produce coal liquids except that it will be after the year 2000. The year 2000 was chosen because it is the latest year where fuel property and emission standards have been set by the Environmental Protection Agency. It assumes the refinery has been modified to accept crudes that are heavier in gravity and higher in sulfur than today`s average crude mix. In addition, the refinery has also been modified to produce a product slate of transportation fuels of the future (i.e. 40% reformulated gasolines). This model will be used as a basis for determining the optimum scheme for processing coal liquids in a petroleum refinery. This report summarizes the design basis for this ``petroleum only`` LP refinery model. A report detailing the refinery configuration when coal liquids are processed will be provided at a later date.

  20. Quality assurance in the petroleum industry: Oil and gas industry Total Quality Management (TQM)

    SciTech Connect (OSTI)

    Penny, N.P.

    1991-01-01

    This paper describes the development and implementation of Total Quality Management (TQM) at the Naval Petroleum Reserves in California (NPRC), known as Elk Hills', and one of the largest oil and gas producing and processing facilities in the nation. NPRC is jointly owned by the United States Department of Energy (DOE), and Chevron USA Inc. (CUSA), and is managed and operated by Bechtel Petroleum Operations Inc. (BPOI). This paper describes step-by-step methods for getting started in TQM in the oil and gas industry, including the essential quality systems ingredients. The paper also illustrates how the President's Award for Quality and Productivity Improvement and the Malcolm Baldrige National Quality Award (MBNQA) can be used as the assessment standards and benchmarks for measuring TQM. 8 refs., 2 figs.

  1. ,"Total Crude Oil and Petroleum Products Exports"

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Total Crude Oil and Petroleum Products Exports",6,"Monthly","6/2016","1/15/1981" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  2. Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams

    SciTech Connect (OSTI)

    Clifford, C.E.B.; Schobert, H.H.

    2008-07-01

    We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

  3. Desulfurization of coal and petroleum. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-02-01

    The bibliography contains citations concerning the desulfurization of coal, coal liquids, and crude oil. Flotation heap leaching, oxydesulfurization, metal oxide, microwave process, and chlorination are among the pre-combustion processes discussed. Coal liquefaction and gasification are only included if sulfur removal is stressed. Flue gas desulfurization and other post-combustion sulfur control processes are excluded. (Contains 250 citations and includes a subject term index and title list.)

  4. Desulfurization of coal and petroleum. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1997-02-01

    The bibliography contains citations concerning the desulfurization of coal, coal liquids, and crude oil. Flotation heap leaching, oxydesulfurization, metal oxide, microwave process, and chlorination are among the pre-combustion processes discussed. Coal liquefaction and gasification are only included if sulfur removal is stressed. Flue gas desulfurization and other post-combustion sulfur control processes are excluded. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Desulfurization of coal and petroleum. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-04-01

    The bibliography contains citations concerning the desulfurization of coal, coal liquids, and crude oil. Flotation heap leaching, oxydesulfurization, metal oxide, microwave process, and chlorination are among the pre-combustion processes discussed. Coal liquefaction and gasification are only included if sulfur removal is stressed. Flue gas desulfurization and other post-combustion sulfur control processes are excluded. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Desulfurization of coal and petroleum. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The bibliography contains citations concerning the desulfurization of coal, coal liquids, and crude oil. Flotation heap leaching, oxydesulfurization, metal oxide, microwave process, and chlorination are among the pre-combustion processes discussed. Coal liquefaction and gasification are only included if sulfur removal is stressed. Flue gas desulfurization and other post-combustion sulfur control processes are excluded. (Contains 250 citations and includes a subject term index and title list.)

  7. A technical and economic assessment of petroleum, heavy oil, shale oil and coal liquid refining

    SciTech Connect (OSTI)

    Sikonia, J.G.; Shah, B.R.; Ulowetz, M.A.

    1983-11-01

    Decreasing availability of conventional crude oil will result in the utilization of alternative raw materials for the production of transportation fuels. Based on currently available processes and as a result of detailed pilot plant studies, the differences in the technical and economic aspects of refining alternative feedstocks of heavy oil, coal liquids and shale oil have indicated that heavy, hydrogen-deficient materials require more complex and costly upgrading techniques. Compared to the base case of Arabian Light crude oil, the Mexican Maya heavy oil is worth about $4.35/B less, the coal liquid about $2.38/B less and the shale oil about $5.98/B less. All of these alternative fuels can be upgraded into high quality transportation fuels.

  8. Organic petrology, thermal maturity, geology, and petroleum source rock potential of Lower Permian coal, Karoo supersystem, Zambia

    SciTech Connect (OSTI)

    Utting, J. ); Wielens, H. )

    1992-10-01

    This paper reports on data concerning organic petrology and thermal maturity of Lower Karoo coal measures (Lower Permian) which are of considerable importance in determining the hydrocarbon potential of sediments in the rift-valley and half-graben complexes of the Luangwa and Zambezi valleys of eastern and southern Zambia, respectively, and in the extensive sedimentary basin developed on relatively stable Precambrian basement in western Zambia, a total area in excess of 3000 km{sup 2}. Samples from seven outcrop and subsurface localities situated in the northeast (northern Luangwa Valley), east (mid-Luangwa Valley), south (mid-Zambezi Valley), and the Western Province of Zambia were studied. The coal measures are from 9 to 280 m thick, but individual coal seams are generally less than 6 m. The coal macerals contain an average of 60% vitrinite and 9% liptinite, enough to have potential to generate hydrocarbon. A few samples contain twice this amount of liptinite. Reflected-light microscopy and the thermal alteration index of spores were used to determine the thermal maturity. The organic matter in samples studied is within the oil generation zone (thermal alteration index 2{minus} to 2+; %R{sub 0} max = 0.5-0.9). The petrological and palynological data indicate that the organic matter consists of Types II (generally approximately 25% in carbonaceous shale samples), III, and IV, indicating source rock potential. Late Karoo ( ) and post-Karoo fault blocks with differential vertical displacements may have produced structural traps suitable for oil and gas accumulation.

  9. Table 6. Electric power delivered fuel Prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.69,2.8,3.02,2.89,2.82,2.68,2.71,2.06,2.11,1.79,1.52,1.47,1.42,1.41,1.41,1.48,1.57,1.54,1.54,1.56,1.67,1.76,1.73,1.81,1.84 "Average heat value (Btu per

  10. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.37,2.35,2.22,1.93,1.73,1.69,1.74,1.6,1.47,1.46,1.23,1.2,0.84,0.87,1.42,1.46,1.47,1.64,1.5,1.61,1.6,1.7,1.65,1.6,1.61 "Average heat value (Btu per

  11. Table 6. Electric power delivered fuel Prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",0,0,0,1.73,1.48,1.41,2.03," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "

  12. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.1,2.07,2.08,1.98,1.8,1.81,1.74,1.59,1.44,1.41,1.3,1.27,1.26,1.25,1.24,1.33,1.33,1.42,1.44,1.39,1.37,1.35,1.37,1.41,1.43 "Average heat value (Btu per

  13. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.34,3.39,3.35,3.14,3.05,2.87,2.83,2.58,2.02,2,1.88,1.73,1.8," "," "," "," "," "," "," "," "," "," "," "," " "Average heat value (Btu per

  14. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.93,1.91,1.84,1.74,1.59,1.6,1.47,1.26,1.28,1.06,0.97,0.97,0.95,0.92,0.93,0.98,0.99,1.01,1.03,1.05,1.06,1.09,1.09,1.09,1.06 "Average heat value (Btu per

  15. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.23,3.2,3.94,4.04,3.55,3.34,3.52,2.86,3.08,2.81,2.2,1.9,1.78,2.17,1.52,1.59,1.56,1.57,1.59,1.62,1.62,1.69,1.73,1.78,1.81 "Average heat value (Btu per

  16. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)"," "," "," "," "," "," "," "," "," "," "," "," "," "," ",1.44," "," "," "," ","

  17. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.36,3.47,3.55,3.59,3.47,3.39,2.97,2.56,2.56,2.31,1.92,1.76,1.76,1.72,1.57,1.59,1.65,1.73,1.74,1.79,1.78,1.77,1.82,1.86,1.85 "Average heat value (Btu per

  18. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.13,3.2,3.49,3.76,3.9,3.62,3.07,2.61,2.4,2.18,1.8,1.72,1.68,1.66,1.54,1.55,1.55,1.59,1.58,1.67,1.69,1.78,1.8,1.8,1.79 "Average heat value (Btu per

  19. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.91,3.91,3.78,3.37,2.79,2.97,3.58,3.09,2.81,1.75,1.88,2.96,3.03," "," "," "," "," "," "," "," "," "," "," "," " "Average heat value (Btu per

  20. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",0,0,0,2.71,2.95,2.55,2.51," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "

  1. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.99,1.9,1.94,1.76,1.7,1.65,1.58,1.34,1.26,1.19,1.15,1.16,1.19,1.19,1.15,1.44,1.56,1.55,1.63,1.63,1.61,1.7,1.74,1.71,1.75 "Average heat value (Btu per

  2. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.53,2.5,2.56,2.46,2.14,2.02,1.93,1.61,1.52,1.4,1.21,1.2,1.17,1.14,1.08,1.11,1.12,1.16,1.19,1.25,1.27,1.27,1.31,1.34,1.36 "Average heat value (Btu per

  3. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.73,1.77,1.54,1.52,1.42,1.34,1.27,1.08,1.05,0.98,0.93,0.89,0.89,0.81,0.82,0.82,0.88,0.94,0.94,0.99,0.99,1.01,1.1,1.1,1.12 "Average heat value (Btu per

  4. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.79,1.77,1.83,1.75,1.51,1.43,1.41,1.23,1.19,1.12,1.03,1.01,0.98,1.05,0.98,0.95,0.98,1.02,0.99,1.02,1.02,1.02,1.18,1.23,1.24 "Average heat value (Btu per

  5. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.34,2.36,2.42,2.34,2.26,2.17,2.14,1.75,1.7,1.52,1.37,1.23,1.19,1.1,1.02,1.06,1.06,1.05,1.06,1.11,1.16,1.17,1.16,1.18,1.19 "Average heat value (Btu per

  6. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.46,2.56,2.49,2.39,2.16,2.04,2.1,1.85,1.66,1.51,1.38,1.34,1.27,1.31,1.32,1.4,1.43,1.48,1.51,1.55,1.54,1.58,1.53,1.65,1.7 "Average heat value (Btu per

  7. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",5.41,5.09,7,6.09,6.19,5.06,3.67,3.19,3.27,2.66,2.62,2.37,2.41," "," "," "," "," "," "," "," "," "," "," "," " "Average heat value (Btu per

  8. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.62,2.68,2.79,2.68,2.12,2.07,1.97,1.72,1.68,1.58,1.39,1.34,1.32,1.27,1.3,1.31,1.33,1.37,1.4,1.45,1.51,1.53,1.56,1.59,1.6 "Average heat value (Btu per

  9. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.98,2.03,1.99,1.93,1.74,1.64,1.69,1.5,1.22,1.13,1.07,1.08,1.06,1.02,1.11,1.1,1.07,1.09,1.07,1.14,1.14,1.13,1.19,1.26,1.25 "Average heat value (Btu per

  10. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.03,3.24,3.52,3.45,2.89,3.01,3.01,2.71,2.31,2.1,1.69,1.54,1.59,1.63,1.52,1.55,1.54,1.55,1.51,1.53,1.57,1.64,1.6,1.67,1.65 "Average heat value (Btu per

  11. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2,1.9,1.85,1.73,1.59,1.53,1.51,1.33,1.11,1.01,0.93,0.92,0.9,0.96,0.92,0.93,0.92,0.93,0.95,0.98,1.1,1.24,1.34,1.34,1.35 "Average heat value (Btu per

  12. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.42,1.57,1.38,1.33,1.11,1.07,1.02,0.93,0.85,0.71,0.64,0.62,0.61,0.95,0.92,0.73,0.67,0.68,0.71,0.67,0.69,0.69,0.71,0.67,0.67 "Average heat value (Btu per

  13. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.4,1.42,1.55,1.51,1.42,1.33,0.9,0.88,0.8,0.71,0.66,0.6,0.58,0.57,0.56,0.55,0.59,0.59,0.72,0.75,0.77,0.75,0.75,0.75,0.75 "Average heat value (Btu per

  14. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",4.27,4.21,4.07,3.55,3.8,3.66,3.53,2.9,2.56,2.44,2.02,1.7,1.8,1.67,1.48,1.52,1.61,1.63,1.61,1.59,1.52,1.61,1.69,1.74,1.78 "Average heat value (Btu per

  15. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.95,3.87,4.05,4.18,4.16,4.01,3.33,2.89,2.73,2.18,2.05,1.8,1.87,2.27,1.39,1.45,1.59,1.76,1.75,1.78,1.82,1.77,1.73,1.78,1.8 "Average heat value (Btu per

  16. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.78,2.31,2.18,2.05,2.06,1.9,1.99,1.79,1.56,1.51,1.48,1.43,1.53,1.47,1.38,1.33,1.31,1.34,1.43,1.42,1.41,1.37,1.32,1.38,1.32 "Average heat value (Btu per

  17. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.09,3.13,3.26,3.32,3.05,2.73,2.57,2.41,2.4,2.13,1.76,1.59,1.55,1.42,1.49,1.45,1.43,1.42,1.43,1.41,1.45,1.5,1.49,1.59,1.61 "Average heat value (Btu per

  18. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.59,3.8,3.77,3.63,3.52,3.59,3.26,2.74,2.69,2.4,2,1.78,1.76,1.59,1.43,1.44,1.44,1.43,1.48,1.63,1.68,1.7,1.73,1.78,1.78 "Average heat value (Btu per

  19. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.53,1.55,1.49,1.34,1.26,1.14,1.1,0.98,0.88,0.82,0.77,0.74,0.74,0.74,0.72,0.73,0.76,0.78,0.74,0.73,0.7,0.71,0.72,0.71,0.69 "Average heat value (Btu per

  20. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.32,2.28,2.48,2.48,2.24,2.39,2.05,1.71,1.7,1.54,1.33,1.21,1.23,1.31,1.46,1.36,1.36,1.32,1.34,1.42,1.44,1.41,1.44,1.48,1.52 "Average heat value (Btu per

  1. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.99,2.03,2,1.82,1.72,1.65,1.35,1.19,1.12,1.04,1.04,0.99,0.96,0.91,0.94,0.91,0.91,0.92,0.98,0.99,1.02,1.24,1.23,1.32,1.4 "Average heat value (Btu per

  2. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.49,1.96,1.89,1.79,1.67,1.76,1.45,1.38,1.3,1.28,1.18,1.25,1.33,1.11,1.07,1.08,1.09,1.14,1.07,1.06,1.07,1.12,1.1,1.08,1.08 "Average heat value (Btu per

  3. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.52,2.48,2.43,2.56,2.41,2.3,2.1,1.75,1.72,1.59,1.37,1.22,1.25,1.21,1.15,1.3,1.35,1.36,1.38,1.36,1.43,1.44,1.48,1.55,1.52 "Average heat value (Btu per

  4. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.48," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," ","

  5. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.64,3.76,3.98,3.85,3.71,3.66,2.89,2.34,2.33,2.17,1.91,1.62,1.59,1.57,1.39,1.42,1.45,1.45,1.47,1.51,1.56,1.57,1.53,1.63,1.72 "Average heat value (Btu per

  6. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.09,2,2.19,2.09,1.95,1.76,1.74,1.56,1.51,1.42,1.39,1.34,1.3,1.03,0.99,0.94,0.93,0.92,0.94,1.03,1.08,1.1,1.13,1.13,1.15 "Average heat value (Btu per

  7. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.53,2.49,2.72,2.88,2.69,2.57,2.28,1.94,1.73,1.57,1.36,1.26,1.22,1.22,1.11,1.13,1.12,1.12,1.15,1.15,1.26,1.26,1.27,1.25,1.34 "Average heat value (Btu per

  8. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.99,1.97,1.88,1.87,1.84,1.68,1.62,1.49,1.39,1.29,1.31,1.25,1.26,1.33,1.23,1.2,1.24,1.26,1.29,1.34,1.35,1.44,1.49,1.5,1.45 "Average heat value (Btu per

  9. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.11,2.05,1.94,1.78,1.7,1.55,1.39,1.36,1.25,1.14,1.13,1.04,0.98,1.12,1.01,1.03,1.15,1.11,1.07,1.09,1.14,1.19,1.21,1.19,1.17 "Average heat value (Btu per

  10. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)"," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," ","

  11. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.37,3.35,3.67,3.52,3.28,3.08,2.77,2.49,2.45,2.33,1.95,1.67,1.69,1.59,1.33,1.34,1.38,1.39,1.42,1.45,1.45,1.47,1.47,1.52,1.55 "Average heat value (Btu per

  12. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.4,2.49,2.55,2.47,2.39,2.54,2.22,1.73,1.67,1.53,1.35,1.25,1.21,1.25,1.2,1.18,1.22,1.24,1.25,1.27,1.39,1.42,1.47,1.52,1.47 "Average heat value (Btu per

  13. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.35,2.37,2.42,2.56,2.18,2.06,1.98,1.7,1.5,1.29,1.18,1.12,1.12,1.05,1.02,1.02,1.07,1.09,1.06,1.14,1.21,1.21,1.33,1.36,1.36 "Average heat value (Btu per

  14. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.57,1.51,1.43,1.54,1.32,1.2,1.17,1.05,1,0.95,0.87,0.82,0.79,0.77,0.78,0.76,0.79,0.81,0.82,0.82,0.8,0.8,0.76,0.83,0.84 "Average heat value (Btu per

  15. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.37,2.34,2.38,2.39,2.27,2.21,2.07,1.77,1.69,1.54,1.36,1.28,1.25,1.23,1.2,1.22,1.25,1.27,1.29,1.32,1.36,1.39,1.41,1.45,1.45 "Average heat value (Btu per

  16. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.67,3.77,4.35,3.7,3.75,3.58,3.15,2.95,2.67,2.46,2.38,2.41,2.45," "," ",1.69,1.81,1.9,1.91,1.88,1.77,1.7,1.95,2.17,2.13 "Average heat value (Btu per pound)",9205,9205,9205,9373,10706,11038,10215,10286,10056,10139,10423,10565,11439,"

  17. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.95,3.39,3.57,3.65,3.41,3.01,3.66,2.12,2.27,1.92,1.74,1.63,1.63," ",1.33,1.38,1.46,1.5,1.49,1.5,1.55,1.6,1.59,1.63,1.65 "Average heat value (Btu per pound)",12449,12336,12359,12245,12288,12510,12361,12501,12504,12638,12653,12708,12799,"

  18. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.19,3.4,3.12,3.68,3.18,3.38,2.94,2.78,2.78,2.94,1.97,1.75,1.92," ",1.75,1.73,1.68,1.7,1.69,1.68,1.68,1.68,1.69,1.72,1.73 "Average heat value (Btu per pound)",11603,11746,12130,11794,11985,11735,11517,11595,11546,11728,11793,12200,12482,"

  19. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.15,2.15,2.29,2.25,2.27,2.16,2.17,1.73,1.54,1.33,1.43,1.4,1.46," ",1.69,1.56,1.49,1.63,1.57,1.44,1.36,1.36,1.37,1.55,1.58 "Average heat value (Btu per pound)",8492,8517,8477,8413,8391,8403,8366,9211,8532,8131,8151,8052,8014,"

  20. Cooperative investigation by Auburn University and Cities Service Research and Development Company of combined coal and heavy resid processing. Quarterly report, October 15, 1983-January 15, 1984. [Use of petroleum residual fuels as organic solvents

    SciTech Connect (OSTI)

    Curtis, C.W.; Guin, J.A.; Tarrer, A.R.

    1984-01-01

    The objective of this research is to determine the feasibility of using heavy petroleum crudes and residua as solvents in coal liquefaction. Petroleum residuum is a hydrogen-rich material and coal is hydrogen deficient. In coprocessing, the fundamental concept being evaluated is to determine if petroleum residua can transfer hydrogen directly to coal at specified reaction conditions. The reaction parameters for such a transfer must be determined and optimized. Secondly, the idea of modifying the petroleum residua to produce more effective solvents for transferring hydrogen to coal during liquefaction is being evaluated. The goal of the coprocessing is to increase the net yield and improve the quality of liquid product compared to that originally present in the petroleum residuum. The parametric evaluation has shown that optimal conditions for combined processing are: Reaction Tempperature - 425/sup 0/C; Hydrogen Pressure - above 500 psia initial hydrogen pressure; Time - 90 minutes; and Catalyst - powdered hydrogenation catalyst. Coal conversion and oil production from combined catalytic (powdered) processing compare favorably with that from tetralin with a powdered catalyst. An added benefit of combined processing is the upgrading of the petroleum crude which is obtained during processing. Comparison of the final oil yields to the initial charge shows that combined processing yields a net increase of 23.3% for 90 minute reaction time while tetralin provides a net increase of 17.7% for 30 minutes of reaction. 3 figures, 20 tables.

  1. Workshop on the utilization of coal as an alternative to petroleum fuels in the Andean Region. Volume 1. Summary report. Held in Lima, Peru on June 24-28, 1985

    SciTech Connect (OSTI)

    1985-12-31

    The Workshop on the Utilization of Coal as an Alternative to Petroleum Fuels in the Andean Region was one regional effort to examine issues involved in developing coal as a major energy source. Held in Lima, Peru, June 24-28, 1985, and funded by the Government of Peru and the U.S. Agency for International Development (AID), the workshop examined technological measures and economic policy initiatives needed to promote coal development, particularly in Peru, Bolivia, and Ecuador.

  2. Total All Countries Exports of Crude Oil and Petroleum Products by

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination Destination: Total All Countries Afghanistan Albania Algeria Andora Angola Anguilla Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bangladesh Bahama Islands Bahrain Barbados Belarus Belgium Belize Benin Bolivia Bosnia and Herzegovina Brazil Brunei Bulgaria Burkina Faso Burma Bermuda Cambodia Cameroon Canada Cayman Islands Chad Chile China Cocos (Keeling) Islands Colombia Congo (Brazzaville) Congo (Kinshasa) Costa Rica Croatia Curacao Cyprus Czech

  3. Total Net Imports of Crude Oil and Petroleum Products into the U.S.

    U.S. Energy Information Administration (EIA) Indexed Site

    Country: Total All Countries Persian Gulf OPEC Algeria Angola Ecuador Indonesia Iran Iraq Kuwait Libya Nigeria Qatar Saudi Arabia United Arab Emirates Venezuela Non OPEC Afghanistan Albania Andora Anguilla Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bolivia Bosnia and Herzegovina Botswana Brazil Brunei Bulgaria Burkina Faso Burma Cambodia Cameroon Canada Cayman Islands Chad Chile China Cocos

  4. AEO2011: World Total Coal Flows By Importing Regions and Exporting...

    Open Energy Info (EERE)

    Coal Flows By Importing Regions and Exporting Countries This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report...

  5. Coal

    Broader source: Energy.gov [DOE]

    Coal is the largest domestically produced source of energy in America and is used to generate a significant amount of our nation’s electricity.

  6. This Week In Petroleum Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    1000 Independence Avenue, SW Washington, DC 20585 Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels |...

  7. ,"Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker, Barge and Rail between PAD Districts"

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Receipts by Pipeline, Tanker, Barge and Rail between PAD Districts" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker, Barge and Rail between PAD Districts",5,"Monthly","6/2016","1/15/1981" ,"Release

  8. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    8.PDF Table 28. PAD District 2 - Imports of Crude Oil and Petroleum Products by Country of Origin, January 2014 (Thousand Barrels) Country of Origin Crude Oil 1,2 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils 1 Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total OPEC ..................................... 1,552 - - - - - - - - - Algeria ................................ - - - - - - - - - - Angola

  9. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    0.PDF Table 30. PAD District 4 and 5 - Imports of Crude Oil and Petroleum Products by Country of Origin, January 2014 (Thousand Barrels) Country of Origin Crude Oil 1,2 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils 1 Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total PAD District 4 OPEC ..................................... - - - - - - - - - - Algeria ................................ - - - - - - - - - -

  10. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    2.PDF Table 32. Exports of Crude Oil and Petroleum Products by Destination, January 2014 (Thousand Barrels) Destination Crude Oil 1 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total Argentina ............................ - 0 - 3 - 349 349 - - - Australia .............................. - 0 575 0 - 0 0 - - - Bahamas ............................ - 0 4 - - 179 179

  11. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    1 June 2016 Table 42. PAD District 2 - Imports of Crude Oil and Petroleum Products by Country of Origin, June 2016 (Thousand Barrels) Country of Origin Crude Oil 1,2 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils 1 Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total OPEC ..................................... 801 - - - - - - - - - Algeria ................................ - - - - - - - - - - Angola

  12. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    9 June 2016 Table 44. PAD District 4 and 5 - Imports of Crude Oil and Petroleum Products by Country of Origin, June 2016 (Thousand Barrels) Country of Origin Crude Oil 1,2 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils 1 Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total PAD District 4 OPEC ..................................... - - - - - - - - - - Algeria ................................ - - - - - - - - - -

  13. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    1 June 2016 Table 51. Exports of Crude Oil and Petroleum Products by Destination, June 2016 (Thousand Barrels) Destination Crude Oil 1 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total Argentina ............................ - 0 312 64 - - - - - - Australia .............................. - - 426 - - 0 0 - 0 0 Bahamas ............................ - 0 31 0 - 37 37

  14. Total integrated NOx compliance for existing pulverized coal-fired units

    SciTech Connect (OSTI)

    Camody, G.; Lewis, R.; Cohen, M.B.; Buschmann, J.; Hilton, R.; Larsson, A.C.; Tobiasz, R.

    1999-07-01

    The EPA Title 1 NOx emission limits along with the corresponding OTR regulations are mandating coal-fired NOx emission levels below 0.15 lb/MBtu. For tangentially fired units, experience has shown that the technology is currently available to achieve these limits. The question for each unit owner-operator becomes; what is the most economical technology or combination of technologies to achieve the required results? This paper provides a brief overview of Combustion Engineering, Inc.'s (ABB C-E) latest NOx control technologies, both in-furnace and post-combustion, for tangential coal-fired steam generators. The paper further reviews options of both stand-alone and combined multiple technologies to achieve the most cost-effective NOx compliance, while maintaining the high levels of unit efficiency and performance that is required to by successful in their deregulated power industry. Current operational data of both in-furnace and SCR NOx reduction systems are presented, as well as the latest historical cost data for the systems.

  15. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.9 Q Q Q Heat Pump......7.7 0.3 Q Q Steam or Hot Water System......Census Division Total West Energy Information Administration ...

  16. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.9 Q Q Q Heat Pump......6.2 3.8 2.4 Steam or Hot Water System......Census Division Total Northeast Energy Information ...

  17. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  18. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  19. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  20. Total................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  1. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  2. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  3. Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  4. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  5. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  6. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9

  7. Weekly Petroleum Status Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 4. Stocks of Crude Oil by PAD District, and Stocks of Petroleum Products, 1 U.S. Totals (Million Barrels) Product Region Current Week Last Week Year Ago 2 Years Ago 61716 ...

  8. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    2.PDF Table 22. Refinery Stocks of Crude Oil and Petroleum Products by PAD and Refining Districts, January 2014 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Crude Oil ..................................................................... 7,495 446 7,941 9,590 1,697 1,988 13,275 Petroleum Products

  9. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    6.PDF Table 26. Imports of Crude Oil and Petroleum Products into the United States by Country of Origin, January 2014 (Thousand Barrels) Country of Origin Crude Oil 1,2 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils 1 Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total OPEC ..................................... 99,127 - - 2,384 - - - - 1,652 1,652 Algeria ................................ - - - 2,119 - - - - -

  10. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    7.PDF Table 27. PAD District 1 - Imports of Crude Oil and Petroleum Products by Country of Origin, January 2014 (Thousand Barrels) Country of Origin Crude Oil 1,2 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils 1 Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total OPEC ..................................... 5,672 - - - - - - - 1,652 1,652 Algeria ................................ - - - - - - - - - - Angola

  11. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    9.PDF Table 29. PAD District 3 - Imports of Crude Oil and Petroleum Products by Country of Origin, January 2014 (Thousand Barrels) Country of Origin Crude Oil 1,2 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils 1 Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total OPEC ..................................... 69,917 - - 2,005 - - - - - - Algeria ................................ - - - 1,740 - - - - - - Angola

  12. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    3.PDF Table 33. Net Imports of Crude Oil and Petroleum Products into the United States by Country, January 2014 (Thousand Barrels per Day) Country of Origin Crude Oil 1 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total OPEC ..................................... 3,198 0 -27 60 - -36 -36 0 52 52 Algeria ................................ - - - 68 - - - - - - Angola

  13. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    3 June 2016 Table 34. Refinery Stocks of Crude Oil and Petroleum Products by PAD and Refining Districts, June 2016 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Crude Oil ..................................................................... 12,055 729 12,784 10,352 2,180 1,915 14,447 Petroleum Products

  14. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    9 June 2016 Table 39. Imports of Crude Oil and Petroleum Products into the United States by Country of Origin, June 2016 (Thousand Barrels) Country of Origin Crude Oil 1,2 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils 1 Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total OPEC ..................................... 90,723 - - 4,059 - - - - 1,218 1,218 Algeria ................................ 1,253 - - 4,059 -

  15. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    3 June 2016 Table 40. Year-to-Date Imports of Crude Oil and Petroleum Products into the United States by Country of Origin, January-June 2016 (Thousand Barrels) Country of Origin Crude Oil 1,2 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils 1 Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total OPEC ..................................... 563,597 - - 25,955 - 2 2 - 8,201 8,201 Algeria

  16. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    7 June 2016 Table 41. PAD District 1 - Imports of Crude Oil and Petroleum Products by Country of Origin, June 2016 (Thousand Barrels) Country of Origin Crude Oil 1,2 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils 1 Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total OPEC ..................................... 13,026 - - 402 - - - - 522 522 Algeria ................................ - - - 402 - - - - - - Angola

  17. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    5 June 2016 Table 43. PAD District 3 - Imports of Crude Oil and Petroleum Products by Country of Origin, June 2016 (Thousand Barrels) Country of Origin Crude Oil 1,2 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils 1 Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total OPEC ..................................... 55,521 - - 3,240 - - - - 696 696 Algeria ................................ 1,253 - - 3,240 - - - - - -

  18. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    3 June 2016 Table 45. PAD District 1 - Year-to-Date Imports of Crude Oil and Petroleum Products by Country of Origin, January-June 2016 (Thousand Barrels) Country of Origin Crude Oil 1,2 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils 1 Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total OPEC ..................................... 68,781 - - 468 - 2 2 - 6,901 6,901 Algeria ................................ - - -

  19. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    7 June 2016 Table 46. PAD District 2 - Year-to-Date Imports of Crude Oil and Petroleum Products by Country of Origin, January-June 2016 (Thousand Barrels) Country of Origin Crude Oil 1,2 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils 1 Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total OPEC ..................................... 8,024 - - - - - - - - - Algeria ................................ - - - - - - - -

  20. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    1 June 2016 Table 47. PAD District 3 - Year-to-Date Imports of Crude Oil and Petroleum Products by Country of Origin, January-June 2016 (Thousand Barrels) Country of Origin Crude Oil 1,2 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils 1 Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total OPEC ..................................... 350,597 - - 24,172 - - - - 1,300 1,300 Algeria ................................

  1. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    5 June 2016 Table 48. PAD District 4 and 5 - Year-to-Date Imports of Crude Oil and Petroleum Products by Country of Origin, January-June 2016 (Thousand Barrels) Country of Origin Crude Oil 1,2 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils 1 Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total PAD District 4 OPEC ..................................... - - - - - - - - - - Algeria ................................

  2. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    5 June 2016 Table 52. Year-to-Date Exports of Crude Oil and Petroleum Products by Destination, January-June 2016 (Thousand Barrels) Destination Crude Oil 1 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total Argentina ............................ - 0 462 362 - 373 373 - 0 0 Australia .............................. - 3 1,547 3 - 5 5 - 0 0 Bahamas

  3. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    9 June 2016 Table 53. Net Imports of Crude Oil and Petroleum Products into the United States by Country, June 2016 (Thousand Barrels per Day) Country of Origin Crude Oil 1 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total OPEC ..................................... 3,024 - -30 135 - -36 -36 0 41 41 Algeria ................................ 42 - - 135 - - - - - -

  4. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    3 June 2016 Table 54. Year-to-Date Net Imports of Crude Oil and Petroleum Products into the United States by Country, January-June 2016 (Thousand Barrels per Day) Country of Origin Crude Oil 1 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total OPEC ..................................... 3,097 0 -24 113 - -44 -44 0 35 35 Algeria ................................ 19

  5. Coal liquefaction process

    DOE Patents [OSTI]

    Maa, Peter S.

    1978-01-01

    A process for liquefying a particulate coal feed to produce useful petroleum-like liquid products which comprises contacting; in a series of two or more coal liquefaction zones, or stages, graded with respect to temperature, an admixture of a polar compound; or compounds, a hydrogen donor solvent and particulate coal, the total effluent being passed in each instance from a low temperature zone, or stage to the next succeeding higher temperature zone, or stage, of the series. The temperature within the initial zone, or stage, of the series is maintained about 70.degree. F and 750.degree. F and the temperature within the final zone, or stage, is maintained between about 750.degree. F and 950.degree. F. The residence time within the first zone, or stage, ranges, generally, from about 20 to about 150 minutes and residence time within each of the remaining zones, or stages, of the series ranges, generally, from about 10 minutes to about 70 minutes. Further steps of the process include: separating the product from the liquefaction zone into fractions inclusive of a liquid solvent fraction; hydrotreating said liquid solvent fraction in a hydrogenation zone; and recycling the hydrogenated liquid solvent mixture to said coal liquefaction zones.

  6. Outlook and Challenges for Chinese Coal

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

    2008-06-20

    China's economy in its current mode of growth. Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on its current growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Broadening awareness of the environmental costs of coal mining, transport, and combustion is raising the pressure on Chinese policy makers to find alternative energy sources. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China is short of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport. Transporting coal to users has overloaded the train system and dramatically increased truck use, raising transport oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 mt by 2025, significantly impacting regional markets. The looming coal gap threatens to derail China's growth path, possibly undermining political, economic, and social stability. High coal prices and domestic shortages will have regional and global effects. Regarding China's role as a global manufacturing center, a domestic coal gap will increase prices and constrain growth. Within the Asia-Pacific region, China's coal gap is likely to bring about increased competition with other coal-importing countries including Japan, South Korea, Taiwan, and India. As with petroleum, China may respond with a government-supported 'going-out' strategy of resource acquisition and vertical integration. Given its population and growing resource constraints, China may favor energy security, competitiveness, and local environmental protection over global climate change mitigation. The possibility of a large coal gap suggests

  7. Petroleum products

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This book is the first of three volumes devoted to petroleum products and lubricants. This volume begins with standard D 56 and contains all petroleum standards up to D 1947. It contains specifications and test methods for fuels, solvents, burner fuel oils, lubricating oils, cutting oils, lubricating greases, fluids measurement and sampling, liquified petroleum gases, light hydrocarbons, plant spray oils, sulfonates, crude petroleum, petrolatam, and wax.

  8. Rheology of petroleum coke-water slurry

    SciTech Connect (OSTI)

    Prasad, M.; Mall, B.K.; Mukherjee, A.; Basu, S.K.; Verma, S.K.; Narasimhan, K.S.

    1998-07-01

    This paper reports the results of the studies carried out on the optimization of particle size distribution, the rheological characteristics and stability of highly loaded petroleum coke-water slurry using three additives. The solids loading achieved in the slurries were in the range of 65% to 75.6% depending on the additives used. Slurry viscosity varied between 267 to 424 mPas at 128 s{sup {minus}} shear rate. The petroleum coke-water slurries exhibited pseudoplastic characteristics with yield tending towards Bingham plastic as the solids loading progressively increased. The effect of addition of petroleum coke to the extent of 25% in coal-water slurry prepared from low ash Ledo coal of Makum field in Assam was also examined. The slurry containing coal-petroleum coke blend showed better stability, having shelf life of 7 days as compared to 5 days in the case of petroleum coke-water slurry.

  9. REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE

    SciTech Connect (OSTI)

    Kevin C. Galbreath; Donald L. Toman; Christopher J. Zygarlicke

    1999-09-01

    Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke (1, 2). Petroleum coke is most commonly blended with coal in proportions suitable to meet sulfur emission compliance. Petroleum coke is generally less reactive than coal; therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the combustion of petroleum coke alone. Although petroleum coke is a desirable fuel for producing relatively inexpensive electrical power, concerns about the effects of petroleum coke blending on combustion and pollution control processes exist in the coal-fired utility industry (3). The Energy & Environmental Research Center (EERC) completed a 2-year technical assessment of petroleum coke as a supplemental fuel. A survey questionnaire was sent to seven electric utility companies that are currently cofiring coal and petroleum coke in an effort to solicit specific suggestions on research needs and fuel selections. An example of the letter and survey questionnaire is presented in Appendix A. Interest was expressed by most utilities in evaluating the effects of petroleum coke blending on grindability, combustion reactivity, fouling, slagging, and fly ash emissions control. Unexpectedly, concern over corrosion was not expressed by the utilities contacted. Although all seven utilities responded to the question, only two utilities, Northern States Power Company (NSP) and Ameren, sent fuels to the EERC for evaluation. Both utilities sent subbituminous coals from the Power River Basin and petroleum shot coke samples. Petroleum shot coke is produced unintentionally during operational upsets in the petroleum refining process. This report evaluates the effects of petroleum shot coke blending on grindability, fuel reactivity, fouling/slagging, and

  10. NAFTA opportunities: Petroleum refining

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The North American Free Trade Agreement (NAFTA) creates a more transparent environment for the sale of refined petroleum products to Mexico, and locks in access to Canada's relatively open market for these products. Canada and Mexico are sizable United States export markets for refined petroleum products, with exports of $556 million and $864 million, respectively, in 1992. These markets represent approximately 24 percent of total U.S. exports of these goods.

  11. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    0.PDF Table 20. Blender Net Inputs of Petroleum Products by PAD Districts, January 2014 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Natural Gas Plant Liquids and Liquefied Refinery Gases ....................................................... 358 2 360 69 38 259 366 Pentanes Plus

  12. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    1 June 2016 Table 32. Blender Net Inputs of Petroleum Products by PAD District, June 2016 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Natural Gas Plant Liquids and Liquefied Refinery Gases ....................................................... 21 - 21 - 10 85 95 Pentanes Plus

  13. Blast furnace coke quality in relation to petroleum coke addition

    SciTech Connect (OSTI)

    Alvarez, R.; Diez, M.A.; Menendez, J.A.; Barriocanal, C.; Pis, J.J.; Sirgado, M.

    1995-12-01

    The incorporation of petroleum coke as an additive in industrial coking coal blends is a practice often used by steel companies. A suitable blast furnace coke produced by replacing part of the coking coal blend with a suitable petroleum coke (addition of 5 to 15%), was made by Great Lakes Carbon Corporation and successfully tested at several blast furnaces. This coke had lower reactivity, less ash and slightly higher sulfur content than coke made without the addition of petroleum coke. In contrast with these results, it has been reported in a BCRA study that additions of petroleum coke to a strong coking coal, above 5 wt%, increased coke reactivity. These differences may be explained on the basis of the coal or blend characteristics to which petroleum coke is added. Petroleum coke addition seems to give better results if the coal/blend has high fluidity. The present situation in Spain is favorable for the use of petroleum coke. So, a study of laboratory and semi-industrial scale was made to assess the possibility of using petroleum coke as an additive to the typical industrial coal blend coked by the Spanish Steel Company, ENSIDESA. The influence of the petroleum coke particle size was also studied to semi-industrial scale.

  14. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  15. Petroleum Marketing Annual Archives

    U.S. Energy Information Administration (EIA) Indexed Site

    Petrolem Reports Petroleum Marketing Annual Archives The Petroleum Marketing Annual was discontinued in 2010. Choose the year from the archive Petroleum Marketing Annual you wish...

  16. Weekly Coal Production Estimation Methodology

    Gasoline and Diesel Fuel Update (EIA)

    Weekly Coal Production Estimation Methodology Step 1 (Estimate total amount of weekly U.S. coal production) U.S. coal production for the current week is estimated using a ratio ...

  17. REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE

    SciTech Connect (OSTI)

    1998-09-01

    A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance. Although the blending of petroleum coke with coal may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

  18. Fact #593: October 19, 2009 Petroleum Accounts for Nearly Half...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 593: October 19, 2009 Petroleum Accounts for Nearly Half of the Total Trade Deficit As recently as 2002, the petroleum trade balance accounted for less than 20% of the total ...

  19. District of Columbia Total Electric Power Industry Net Generation...

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",81,75,72,35,200 " Coal","-","-","-","-","-" " Petroleum",81,75,72,35,200 " Natural Gas","-","-","-","-","-" ...

  20. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    5.PDF Table 15. Natural Gas Plant Net Production and Stocks of Petroleum Products by PAD and Refining Districts, January 2014 (Thousand Barrels) Commodity Production PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Natural Gas Liquids ................................................ - 4,181 4,181 3,052 1,959 9,877 14,888 Pentanes Plus

  1. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    6.PDF Table 16. Refinery and Blender Net Input of Crude Oil and Petroleum Products by PAD and Refining Districts, January 2014 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Crude Oil ................................................................. 26,748 2,868 29,616 67,499 14,682 25,866 108,047 Natural Gas Plant Liquids

  2. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    7.PDF Table 17. Refinery and Blender Net Production of Finished Petroleum Products by PAD and Refining Districts, January 2014 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 772 -22 750 1,555 -217 39 1,377 Ethane/Ethylene

  3. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    8.PDF Table 18. Refinery Net Input of Crude Oil and Petroleum Products by PAD and Refining Districts, January 2014 (Thousand Barrels, Except Where Noted) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Crude Oil ................................................................. 26,748 2,868 29,616 67,499 14,682 25,866 108,047 Natural Gas Plant

  4. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    9.PDF Table 19. Refinery Net Production of Finished Petroleum Products by PAD and Refining Districts, January 2014 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 772 -22 750 1,555 -217 39 1,377 Ethane/Ethylene

  5. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    1.PDF Table 21. Blender Net Production of Petroleum Products by PAD Districts, January 2014 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Finished Motor Gasoline ........................................... 75,867 5,597 81,464 33,855 8,365 9,820 52,040 Reformulated ........................................................

  6. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    1.PDF Table 31. Exports of Crude Oil and Petroleum Products by PAD District, January 2014 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Crude Oil 1 ............................................................ 1,496 1,685 4,468 43 6 7,698 248 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,533 4,128 12,242 137 456 18,495 597 Pentanes Plus .................................................. 1,190

  7. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    5.PDF Table 35. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products by PAD District and State, January 2014 (Thousand Barrels) Commodity Motor Gasoline Motor Gasoline Blending Components Kerosene Reformulated Conventional Total Reformulated Conventional Total PAD District 1 ............................................ 29 3,477 3,506 15,870 30,353 46,223 821 Connecticut ............................................. - - - 1,103 - 1,103 4 Delaware

  8. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    2 June 2016 Table 27. Natural Gas Plant Net Production and Stocks of Petroleum Products by PAD and Refining Districts, June 2016 (Thousand Barrels) Commodity Production PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Natural Gas Plant Liquids ...................................... 14 9,851 9,865 6,063 6,470 12,522 25,055 Pentanes Plus

  9. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    3 June 2016 Table 28. Refinery and Blender Net Input of Crude Oil and Petroleum Products by PAD and Refining Districts, June 2016 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Crude Oil ................................................................. 30,787 2,981 33,768 70,174 15,135 25,170 110,479 Natural Gas Plant

  10. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    5 June 2016 Table 29. Refinery and Blender Net Production of Finished Petroleum Products by PAD and Refining Districts, June 2016 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 1,589 55 1,644 4,843 625 783 6,251 Ethane/Ethylene

  11. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    7 June 2016 Table 30. Refinery Net Input of Crude Oil and Petroleum Products by PAD and Refining Districts, June 2016 (Thousand Barrels, Except Where Noted) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Crude Oil ................................................................. 30,787 2,981 33,768 70,174 15,135 25,170 110,479 Natural Gas

  12. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    9 June 2016 Table 31. Refinery Net Production of Finished Petroleum Products by PAD and Refining Districts, June 2016 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 1,589 55 1,644 4,843 625 783 6,251 Ethane/Ethylene

  13. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    2 June 2016 Table 33. Blender Net Production of Petroleum Products by PAD District, June 2016 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Finished Motor Gasoline ........................................... 92,262 7,022 99,284 45,894 9,917 14,867 70,678 Reformulated

  14. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    9 June 2016 Table 49. Exports of Crude Oil and Petroleum Products by PAD District, June 2016 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Crude Oil 1 ............................................................ 3,576 2,977 4,489 42 406 11,489 383 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,704 8,682 21,444 90 1,391 34,311 1,144 Pentanes Plus ..................................................

  15. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    0 June 2016 Table 56. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products by PAD District and State, June 2016 (Thousand Barrels) Commodity Motor Gasoline Motor Gasoline Blending Components 1 Kerosene Reformulated Conventional Total Reformulated Conventional Total PAD District 1 ............................................ 24 1,945 1,969 19,940 35,674 55,614 2,096 Connecticut ............................................. - - - 1,468 - 1,468 36 Delaware

  16. EIA - Weekly U.S. Coal Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rounding. Bituminous and Lignite Total includes bituminous coal, subbituminous coal, and lignite, and Anthracite Total includes Pennsylvania anthracite. The States in...

  17. Early Days of Coal Research | Department of Energy

    Energy Savers [EERE]

    Early Days of Coal Research Wartime Needs Spur Interest in Coal-to-Oil Processes In 1944 ... Oil was in tight supply in the United States during the war years. As demand for petroleum ...

  18. Weekly Petroleum Status Report

    Gasoline and Diesel Fuel Update (EIA)

    Please go to the redesigned Weekly Petroleum Status Report.

  19. Strategic Petroleum Reserve quarterly report

    SciTech Connect (OSTI)

    Not Available

    1993-08-15

    This Quarterly Report highlights activities undertaken during the second quarter of calendar year 1993, including: inventory of petroleum products stored in the Reserve, under contract and in transit at the end of the calendar quarter; fill rate for the current quarter and projected fill rate for the next calendar quarter; average price of the petroleum products acquired during the calendar quarter; current and projected storage capacity and plans to accelerate the acquisition or construction of such capacity; analysis of existing or anticipated problems with the acquisition and storage of petroleum products, and future expansion of storage capacity; funds obligated by the Secretary from the SPR Petroleum Account and the Strategic Petroleum Reserve Account during the prior calendar quarter and in total; and major environmental actions completed, in progress, or anticipated.

  20. Petroleum supply monthly, March 1994

    SciTech Connect (OSTI)

    Not Available

    1994-03-30

    Data presented in the Petroleum Supply Monthly (PSM) describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics. The tables and figures in the Summary Statistics section of the PSM present a time series of selected petroleum data on a US level. Most time series include preliminary estimates for one month based on the Weekly Petroleum Supply Reporting System; statistics based on the most recent data from the Monthly Petroleum Supply Reporting System (MPSRS); and statistics published in prior issues of the PSM and PSA. The Detailed Statistics tables of the PSM present statistics for the most current month available as well as year-to-date. In most cases, the statistics are presented for several geographic areas -- the United States (50 States and the District of Columbia), five PAD Districts, and 12 Refining Districts. At the US and PAD District level, the total volume and the daily rate of activities are presented. The statistics are developed from monthly survey forms submitted by respondents to the EIA and from data provided from other sources.

  1. Petroleum supply monthly, June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-06-28

    Data presented in the Petroleum Supply Monthly (PSM) describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics. The tables and figures ih the Summary Statistics section of the PSM present a time series of selected petroleum data on a US level. Most time series include preliminary estimates for one month based on the Weekly Petroleum Supply Reporting System; statistics based on the most recent data from the Monthly Petroleum Supply Reporting System (MPSRS); and statistics published in prior issues of the PSM and PSA. The Detailed Statistics tables of the PSM present statistics for the most current month available as well as year-to-date. In most cases, the statistics are presented for several geographic areas - - the United States (50 States and the District of Columbia), five PAD Districts, and 12 Refining Districts. At the US and PAD District level, the total volume and the daily rate of activities are presented. The statistics are developed from monthly survey forms submitted by respondents to the EIA and from data provided firom other sources.

  2. Coal production 1985

    SciTech Connect (OSTI)

    Not Available

    1986-11-07

    Coal Production 1985 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, reserves, and stocks to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. All data presented in this report, except the total production table presented in the Highlights section, and the demonstrated reserve base data presented in Appendix A, were obtained from form EIA-7A, ''Coal Production Report,'' from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1985. The data cover 4105 of the 5477 US coal mining operations active in 1985. These mining operations accounted for 99.4% of total US coal production and represented 74.9% of all US coal mining operations in 1985. This report also includes data for the demonstrated reserve vase of coal in the US on January 1, 1985.

  3. Chapter 4 - Coal

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | International Energy Outlook 2016 Chapter 4 Coal Overview In the International Energy Outlook 2016 (IEO2016) Reference case, coal remains the second-largest energy source worldwide- behind petroleum and other liquids-until 2030. From 2030 through 2040, it is the third-largest energy source, behind both liquid fuels and natural gas. World coal consumption increases from 2012 to 2040 at an average rate of 0.6%/year, from 153 quadrillion Btu in 2012 to 169

  4. Accuracy of Petroleum Supply Data

    Reports and Publications (EIA)

    2009-01-01

    Accuracy of published data in the Weekly Petroleum Status Report, the Petroleum Supply Monthly, and the Petroleum Supply Annual.

  5. Strategic Petroleum Reserve quarterly report

    SciTech Connect (OSTI)

    Not Available

    1991-08-15

    This August 15, 1991, Strategic Petroleum Reserve Quarterly Report describes activities related to the site development, oil acquisition, budget and cost of the Reserve during the period April 1, 1991, through June 30, 1991. The Strategic Petroleum Reserve storage facilities development program is proceeding on schedule. The Reserve's capacity is currently 726 million barrels. A total of 5.5 million barrels of new gross cavern volume was developed at Big Hill and Bayou Choctaw during the quarter. There were no crude oil deliveries to the Strategic Petroleum Reserve during the calendar quarter ending June 30, 1991. Acquisition of crude oil for the Reserve has been suspended since August 2, 1990, following the invasion of Kuwait by Iraq. As of June 30, 1991, the Strategic Petroleum Reserve inventory was 568.5 million barrels. The reorganization of the Office of the Strategic Petroleum Reserve became effective June 28, 1991. Under the new organization, the Strategic Petroleum Reserve Project Management Office in Louisiana will report to the Strategic Petroleum Reserve Program Office in Washington rather than the Oak Ridge Field Office in Tennessee. 2 tabs.

  6. Strategic petroleum reserve. Quarterly report

    SciTech Connect (OSTI)

    1995-08-15

    The Strategic Petroleum Reserve reduces the Nation`s vulnerability to oil supply disruptions. Its existence provides a formidable deterrent to the use of oil as a political instrument and an effective response mechanism should a disruption occur. The Strategic Petroleum Reserve was created pursuant to the Energy Policy and Conservation Act of December 22, 1975 (Public Law 94-163). Its purposes are to reduce the impact of disruptions in supplies of petroleum products and to carry out obligations of the United States under the Agreement on an International Energy Program. Section 165(a) of the Act requires the submission of Annual Reports and Section 165(b)(1) requires the submission of Quarterly Reports. This Quarterly Report highlights activities undertaken during the second quarter of calendar year 1995, including: inventory of petroleum products stored in the Reserve; current and projected storage capacity, analysis of existing or anticipated problems with the acquisition and storage of petroleum products, and future expansion of storage capacity; funds obligated by the Secretary from the SPR Petroleum Account and the Strategic Petroleum Reserve Account during the prior calendar quarter and in total; and major environmental actions completed, in progress, or anticipated.

  7. U.S. Domestic and Foreign Coal Distribution by State of Origin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (thousand short tons) Coal Exports Coal Origin State and Region Domestic Distribution By Coal Mines By Brokers & Traders* Total Exports Total Distribution Alabama 10,679.56...

  8. Reducing power production costs by utilizing petroleum coke. Annual report

    SciTech Connect (OSTI)

    Galbreath, K.C.

    1998-07-01

    A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

  9. Co-processing of carbonaceous solids and petroleum oil

    DOE Patents [OSTI]

    Gupta, Avinash; Greene, Marvin I.

    1992-01-01

    In a process for producing distillates from coal by a first stage thermal liquefaction followed by a catalytic hydrogenation, liquefaction solvent is added at points spaced over the length of the thermal liquefaction heater. Coal may be co-processed with petroleum oil by adding pre-hydrogenated oil to the first stage or unhydrogenated oil to the second stage.

  10. By Coal Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    California (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total...

  11. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    3.PDF Table 23. Percent Yield of Petroleum Products by PAD and Refining Districts, January 2014 Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 2.7 -0.8 2.4 2.4 -1.5 0.2 1.3 Finished Motor Gasoline 1 ......................................... 46.8 40.4 46.2 54.0 51.6 49.3 52.5

  12. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    5.PDF Table 25. Imports of Crude Oil and Petroleum Products by PAD District, January 2014 (Thousand Barrels, Except Where Noted) Commodity PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Crude Oil 1,2 ................................................................................. 16,975 63,997 113,277 7,841 33,179 235,269 7,589 Natural Gas Plant Liquids and Liquefied Refinery Gases ...... 2,374 3,314 358 431 234 6,711 216 Pentanes Plus

  13. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    5 June 2016 Table 35. Percent Yield of Petroleum Products by PAD and Refining Districts, June 2016 Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 4.7 1.9 4.5 6.8 4.1 3.1 5.6 Finished Motor Gasoline 1 ......................................... 46.7 36.4 45.9 51.3 51.4 49.9 51.0

  14. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    7 June 2016 Table 37. Imports of Crude Oil and Petroleum Products by PAD District, June 2016 (Thousand Barrels, Except Where Noted) Commodity PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Crude Oil 1,2 ................................................................................. 27,006 56,339 99,092 8,151 37,732 228,320 7,611 Natural Gas Plant Liquids and Liquefied Refinery Gases ...... 839 2,061 43 201 331 3,475 116 Pentanes Plus

  15. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    8 June 2016 Table 38. Year-to-Date Imports of Crude Oil and Petroleum Products by PAD District, January-June 2016 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Crude Oil 1,2 ............................................................................. 153,535 398,183 603,557 45,937 219,143 1,420,355 7,804 Natural Gas Plant Liquids and Liquefied Refinery Gases .. 8,648 14,318 1,358 2,024 1,851 28,199 155 Pentanes Plus

  16. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    0 June 2016 Table 50. Year-to-Date Exports of Crude Oil and Petroleum Products by PAD District, January-June 2016 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Crude Oil 1 ............................................................ 27,101 11,565 45,321 2,305 1,319 87,611 481 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 11,668 53,121 146,224 1,006 7,255 219,273 1,205 Pentanes Plus

  17. The shell coal gasification process

    SciTech Connect (OSTI)

    Koenders, L.O.M.; Zuideveld, P.O.

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  18. Petroleum Marketing Annual

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    PDF 1.2MB . Front Matter . Petroleum Marketing Annual Cover Page, Preface, and Table of Contents PDF . Highlights . Petroleum Marketing Annual Highlights PDF . . Summary Statistics ...

  19. Petroleum Marketing Annual

    Gasoline and Diesel Fuel Update (EIA)

    PDF 2.9MB . . Front Matter . Petroleum Marketing Annual Cover Page, Contacts, Preface, and Table of Contents PDF . . Highlights . Petroleum Marketing Annual Highlights PDF . . ...

  20. Petroleum Marketing Annual 1997

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    PDF 1.2MB . . Front Matter . Petroleum Marketing Annual Cover Page, Contacts, Preface, and Table of Contents PDF . . Highlights . Petroleum Marketing Annual Highlights PDF . . ...

  1. Petroleum Marketing Annual 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Marketing Annual 2009 Released: August 6, 2010 Next Release Date: Discontinued find annual data in Petroleum Marketing Monthly Monthly price and volume statistics on...

  2. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Refi ner retail petroleum product prices U.S. Energy Information Administration | Petroleum Marketing Monthly 7 September 2016

  3. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Refi ner retail petroleum product volumes U.S. Energy Information Administration | Petroleum Marketing Monthly 9 September 2016

  4. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Refi ner wholesale petroleum product volumes U.S. Energy Information Administration | Petroleum Marketing Monthly 13 September 20

  5. Petroleum Supply Monthly

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... This "green" coke may be sold as is or further purifed by calcining. Petroleum Products. ... products respectively, (including Energy Information AdministrationPetroleum ...

  6. Kinetics of heavy oil/coal coprocessing

    SciTech Connect (OSTI)

    Szladow, A.J.; Chan, R.K.; Fouda, S.; Kelly, J.F. )

    1988-01-01

    A number of studies have been reported on coprocessing of coal and oil sand bitumen, petroleum residues and distillate fractions in catalytic and non-catalytic processes. The studies described the effects of feedstock characteristics, process chemistry and operating variables on the product yield and distribution; however, very few kinetic data were reported in these investigations. This paper presents the kinetic data and modeling of the CANMET coal/heavy oil coprocessing process. A number of reaction networks were evaluated for CANMET coprocessing. The final choice of model was a parallel model with some sequential characteristics. The model explained 90.0 percent of the total variance, which was considered satisfactory in view of the difficulties of modeling preasphaltenes. The models which were evaluated showed that the kinetic approach successfully applied to coal liquefaction and heavy oil upgrading can be also applied to coprocessing. The coal conversion networks and heavy oil upgrading networks are interrelated via the forward reaction paths of preasphaltenes, asphaltenes, and THFI and via the reverse kinetic paths of an adduct formation between preasphaltenes and heavy oil.

  7. Coal Production 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  8. State coal profiles, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-02

    The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

  9. Appalachian recapitalization: United Coal comes full circle

    SciTech Connect (OSTI)

    Fiscor, S.

    2006-05-15

    The article recounts the recent history of the United Coal Co. which exited from the coal business between 1992 and 1997 and has recently returned. More coal reserves have been added by its four companies Sapphire Coal, Carter Roag Coal, Pocahontas Coal and Wellmore, bringing the grand total to 222.6 Mtons. United Coal's developments and investment strategy are discussed. The company headquarters are in Bristol, Va., USA. 1 tab., 7 photos.

  10. Weekly Petroleum Status Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    34 A. The Energy Information ... Petroleum Supply Reporting System ......importers, exporters, bulk storage terminals, and pipelines. ...

  11. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude oil prices U.S. Energy Information Administration | Petroleum Marketing Monthly 3 September 2016

  12. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    4.PDF Table 34. Stocks of Crude Oil and Petroleum Products by PAD District, January 2014 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Crude Oil ....................................................................... 10,275 111,271 870,187 20,678 50,951 1,063,362 Refinery ...................................................................... 7,941 13,275 41,345 2,493 22,312 87,366 Tank Farms and Pipelines (Includes Cushing, OK) .... 2,143 92,469 112,359 13,989 23,957 244,917

  13. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    7 June 2016 Table 55. Stocks of Crude Oil and Petroleum Products by PAD District, June 2016 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Crude Oil ....................................................................... 16,685 150,638 972,590 24,402 59,385 1,223,700 Refinery ...................................................................... 12,784 14,447 49,186 2,511 24,327 103,255 Tank Farms and Pipelines (Includes Cushing, OK) .... 3,777 130,591 207,861 18,326 28,268

  14. Utility to Purchase Low-Carbon Power from Innovative Clean Coal...

    Broader source: Energy.gov (indexed) [DOE]

    Carbon emissions for this plant will be... less than 10 percent of a conventional coal plant ... petroleum, and natural gas, with coal-fired power plants accounting for approximately ...

  15. ITP Petroleum Refining: Energy Bandwidth for Petroleum Refining...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bandwidth for Petroleum Refining Processes ITP Petroleum Refining: Energy Bandwidth for Petroleum Refining Processes bandwidth.pdf (1.16 MB) More Documents & Publications ITP ...

  16. ITP Petroleum Refining: Petroleum Technology Vision 2020 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Petroleum Technology Vision 2020 ITP Petroleum Refining: Petroleum Technology Vision 2020 techvision.pdf (684.96 KB) More Documents & Publications Manufacturing Energy and Carbon ...

  17. ITP Petroleum Refining: Profile of the Petroleum Refining Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Profile of the Petroleum Refining Industry in California: California Industries of the Future Program ITP Petroleum Refining: Profile of the Petroleum Refining Industry in ...

  18. ITP Petroleum Refining: Energy Efficiency Roadmap for Petroleum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Roadmap for Petroleum Refineries in California ITP Petroleum Refining: Energy Efficiency Roadmap for Petroleum Refineries in California refiningroadmap.pdf (1.34 ...

  19. Total Blender Net Input of Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Normal Butane Isobutane Other Liquids OxygenatesRenewables Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol...

  20. Fact #863 March 9, 2015 Crude Oil Accounts for the Majority of Primary Energy Imports while Exports are Mostly Petroleum Products

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2014, seventy percent of the primary energy imports were crude oil, followed by petroleum products (16%) and natural gas (12%). The remaining sources of primary energy imports: coal, coal coke,...

  1. Table 8.6a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 16,509,639 1,410,151 16,356,550 353,000 247,409 19,356,746

  2. Use of coal liquefaction catalysts for coal/oil coprocessing and heavy oil upgrading

    SciTech Connect (OSTI)

    Cugini, A.V.; Krastman, D.; Thompson, R.L.; Gardner, T.J.; Ciocco, M.V.

    1997-04-01

    The catalytic hydrogenation of coal and model solvents using dispersed or supported catalysts at different pressures has been the focus of several recent studies at PETC. The effectiveness of these catalysts has been studied in coal liquefaction and coal-oil coprocessing. Coal-oil coprocessing involves the co-reaction of coal and petroleum-derived oil or resid. The results of these studies have indicated that both dispersed and supported catalysts are effective in these systems at elevated H{sub 2} pressures ({approximately}2,500 psig). Attempts to reduce pressure indicated that a combination of catalyst concentration and solvent quality could be used to compensate for reductions in H{sub 2} pressure. Comparison of the coal and coprocessing systems reveals many similarities in the catalytic requirements for both systems. Both hydrogenation and hydrogenolysis activities are required and the reactive environments are similar. Also, the use of catalysts in the two systems shares problems with similar types of inhibitors and poisons. The logical extension of this is that it may be reasonable to expect similar trends in catalyst activity for both systems. In fact, many of the catalysts selected for coal liquefaction were selected based on their effectiveness in petroleum systems. This study investigates the use of supported and dispersed coal liquefaction catalysts in coal-oil coprocessing and petroleum-only systems. The focus of the study was delineating the effects of coal concentration, pressure, and catalyst type.

  3. Petroleum | Open Energy Information

    Open Energy Info (EERE)

    Petroleum (Redirected from Oil) Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Petroleum is a fossil fuel consisting of various...

  4. Petroleum Marketing Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Entire . The entire report as a single file. PDF 1.2MB . Front Matter . Petroleum Marketing Annual Cover Page, Preface, and Table of Contents PDF . Highlights . Petroleum...

  5. Petroleum Marketing Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Entire . The entire report as a single file. PDF 1.2MB . Front Matter . Petroleum Marketing Annual Cover Page, Preface, and Table of Contents PDF . Highlights . Petroleum...

  6. Quarterly Coal Distribution Report - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Quarterly Coal Distribution Report Release Date: August 17, 2016 | Next Release Date: December 22, 2016 | full report The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of transportation, and consuming sector. All quarterly data are preliminary and will be superseded by the release of the corresponding "Annual Coal Distribution Report." Highlights for the fourth quarter 2015: Total

  7. Petroleum supply monthly

    SciTech Connect (OSTI)

    Not Available

    1983-05-01

    Information on the supply and distribution of petroleum and petroleum products in the US as of March 1983 is presented. Data include statistics on crude oil, motor gasoline, distillate fuel oil, residual fuel oil, liquefied petroleum gases, imports, exports, stocks, and transport. This issue also features 2 articles entitled: Summer Gasoline Overview and Principal Factors Influencing Motor Gasoline Demand. (DMC)

  8. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    8.PDF Table 38. Movements of Crude Oil and Petroleum Products by Tanker and Barge Between PAD Districts, January 2014 (Thousand Barrels) Commodity From 1 to From 2 to 2 3 5 1 3 5 Crude Oil ................................................................. 106 498 - 223 2,810 - Petroleum Products ............................................... 107 40 0 1,206 2,416 0 Liquefied Petroleum Gases .................................. - 0 - 0 0 - Unfinished Oils

  9. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    6 June 2016 Table 59. Movements of Crude Oil and Petroleum Products by Tanker and Barge Between PAD Districts, June 2016 (Thousand Barrels) Commodity From 1 to From 2 to 2 3 5 1 3 5 Crude Oil ................................................................. 0 0 - 357 848 - Petroleum Products ............................................... 125 0 0 723 2,384 0 Liquefied Petroleum Gases .................................. - 0 - 0 0 - Unfinished Oils

  10. Strategic Petroleum Reserve. Quarterly report

    SciTech Connect (OSTI)

    Not Available

    1993-11-15

    The Strategic Petroleum Reserve serves as one of the most important investments in reducing the Nation`s vulnerability to oil supply disruptions. This Quarterly Report highlights activities undertaken during the third quarter of calendar year 1993, including: inventory of petroleum products stored in the Reserve, under contract and in transit at the end of the calendar quarter; fill rate for the quarter and projected fill rate for the next calendar quarter; average price of the petroleum products acquired during the calendar quarter; current and projected storage capacity and plans to accelerate the acquisition or construction of such capacity; analysis of existing or anticipated problems with the acquisition and storage of petroleum products and future expansion of storage capacity; funds obligated by the Secretary from the SPR Petroleum Account and the Strategic Petroleum Reserve Account during the prior calendar quarter and in total; and major environmental actions completed, in progress, or anticipated. Samples of the oil revealed two problems that, although readily correctable, have reduced the availability of some of the oil inventory for drawdown in the near-term. These problems are: (1) a higher-than-normal gas content in some of the crude oil, apparently from years of intrusion of methane form the surrounding salt formation; and (2) elevated temperatures of some of the crude oil, due to geothermal heating, that has increased the vapor pressure of the oil. Investigations are proceeding to determine the extent to which gas intrusion and geothermal heating are impacting the availability of oil for drawdown. Preliminary designs have been developed for systems to mitigate both problems.

  11. Reactivity of North Bohemian coals in coprocessing of coal/oil mixtures

    SciTech Connect (OSTI)

    Sebor, G.; Cerny, J.; Maxa, D.; Blazek, J.; Sykorova, I.

    1995-12-01

    Autoclave experiments with North Bohemian coal were done in order to evaluate their reactivity in coprocessing with petroleum vacuum residue, Selected coals were comprehensively characterized by using a number of analytical methods. While the coals were of similar geological origin, some of their characteristics differed largely from one coal to another. Despite the differences in physical and chemical structure, the coals provided very similar yields of desired reaction products. The yields of a heavy non- distillable fraction and/or an insoluble solid residue were, under experimental conditions, largely affected by retrogressive reactions (coking). The insoluble solid fractions were examined microscopically under polarized light.

  12. Petroleum marketing monthly

    SciTech Connect (OSTI)

    1995-11-01

    The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data.

  13. Petroleum Supply Monthly

    SciTech Connect (OSTI)

    1996-02-01

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major U.S. geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  14. Petroleum supply monthly

    SciTech Connect (OSTI)

    1995-10-01

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blends, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States.

  15. New Hampshire Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Hampshire" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2411,2371,2235,2226,2262 " Coal",528,528,528,528,546 " Petroleum",529,503,503,501,501 " Natural ...

  16. New Hampshire Total Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Hampshire" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10331,10066,10660,8411,8519 " Coal",3885,3927,3451,2886,3083 " Petroleum",439,385,136,183,72 " Natural ...

  17. Colorado Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Energy Source",2006,2007,2008,2009,2010 "Fossil",48211,50980,48334,45490,45639 " Coal",36269,35936,34828,31636,34559 " Petroleum",21,28,19,13,17 " Natural ...

  18. Connecticut Total Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Energy Source",2006,2007,2008,2009,2010 "Fossil",16046,14982,12970,12562,14743 " Coal",4282,3739,4387,2453,2604 " Petroleum",1279,1311,514,299,409 " Natural ...

  19. Arkansas Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",33626,34203,34639,36385,40667 " Coal",24183,25744,26115,25075,28152 " Petroleum",161,94,64,88,45 " Natural ...

  20. Georgia Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",100299,107165,99661,90634,97823 " Coal",86504,90298,85491,69478,73298 " Petroleum",834,788,742,650,641 " Natural ...

  1. Delaware Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",7182,8486,7350,4710,5489 " Coal",4969,5622,5267,2848,2568 " Petroleum",132,241,219,258,56 " Natural ...

  2. Florida Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Energy Source",2006,2007,2008,2009,2010 "Fossil",184530,188433,180167,181553,197662 " Coal",65423,67908,64823,54003,59897 " Petroleum",22904,20203,11971,9221,9122 " ...

  3. Alaska Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5443,5519,5598,5365,5308 " Coal",617,641,618,631,620 " Petroleum",768,1010,978,1157,937 " Natural Gas",4058,3868,4002,3577...

  4. Arizona Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Fossil",73385,79794,82715,74509,73386 " Coal",40443,41275,43840,39707,43644 " Petroleum",73,49,52,63,66 " Natural ...

  5. Illinois Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Energy Source",2006,2007,2008,2009,2010 "Fossil",97212,103072,101101,94662,99605 " Coal",91649,95265,96644,89967,93611 " Petroleum",136,132,143,113,110 " Natural ...

  6. California Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Energy Source",2006,2007,2008,2009,2010 "Fossil",112317,122151,125699,118679,112376 " Coal",2235,2298,2280,2050,2100 " Petroleum",2368,2334,1742,1543,1059 " Natural ...

  7. Idaho Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1381,1741,1790,1726,1778 " Coal",82,84,90,83,88 " Petroleum","s","s","s","s","s" " Natural Gas",1298,1657,1700,1644,1689 " ...

  8. Hawaii Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10646,10538,10356,9812,9655 " Coal",1549,1579,1648,1500,1546 " Petroleum",9054,8914,8670,8289,8087 " Natural ...

  9. Kansas Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",35172,38590,36363,35033,34895 " Coal",33281,36250,34003,32243,32505 " Petroleum",51,207,130,121,103 " Natural ...

  10. Illinois Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Energy Source",2006,2007,2008,2009,2010 "Fossil",30626,30435,30662,30795,30554 " Coal",15731,15582,15653,15852,15551 " Petroleum",1143,1097,1099,1090,1106 " Natural ...