Sample records for total biomass inputs

  1. Total Blender Net Input of Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"YearProductionShaleInput Product: Total Input Natural

  2. Total Refinery Net Input of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"YearProductionShaleInput Product:Input Product: Total

  3. Determination of Total Carbohydrates in Algal Biomass: Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbohydrates in Algal Biomass Laboratory Analytical Procedure (LAP) Issue Date: December 2, 2013 S. Van Wychen and L. M. L. Laurens Technical Report NRELTP-5100-60957 December...

  4. Determination of Total Solids and Ash in Algal Biomass: Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solids and Ash in Algal Biomass Laboratory Analytical Procedure (LAP) Issue Date: December 2, 2013 S. Van Wychen and L. M. L. Laurens Technical Report NRELTP-5100-60956 December...

  5. Improving Biomass Yields: High Biomass, Low Input Dedicated Energy Crops to Enable a Full Scale Bioenergy Industry

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Ceres is developing bigger and better grasses for use in biofuels. The bigger the grass yield, the more biomass, and more biomass means more biofuel per acre. Using biotechnology, Ceres is developing grasses that will grow bigger with less fertilizer than current grass varieties. Hardier, higher-yielding grass also requires less land to grow and can be planted in areas where other crops can’t grow instead of in prime agricultural land. Ceres is conducting multi-year trials in Arizona, Texas, Tennessee, and Georgia which have already resulted in grass yields with as much as 50% more biomass than yields from current grass varieties.

  6. Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP)

    SciTech Connect (OSTI)

    Van Wychen, S.; Laurens, L. M. L.

    2013-12-01T23:59:59.000Z

    This procedure describes the methods used to determine the amount of moisture or total solids present in a freeze-dried algal biomass sample, as well as the ash content. A traditional convection oven drying procedure is covered for total solids content, and a dry oxidation method at 575?C is covered for ash content.

  7. Total electron and proton energy input during auroral substorms: Remote sensing with IMAGE-FUV

    E-Print Network [OSTI]

    California at Berkeley, University of

    Total electron and proton energy input during auroral substorms: Remote sensing with IMAGE-FUV B the ionospheric Pedersen conductivity and produces Joule heat- ing in the presence of an electric field. In addition, part of the energy of the auroral particles is dissipated into local heating through dissociation

  8. Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType"A50. Total Inputs

  9. Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of2" "Total Inputs

  10. Impacts of atmospheric nutrient inputs on marine biogeochemistry

    E-Print Network [OSTI]

    Krishnamurthy, Aparna; Moore, J. Keith; Mahowald, Natalie; Luo, Chao; Zender, Charles S

    2010-01-01T23:59:59.000Z

    biomass burning, and biofuels) dominate P inputs [Olmez etburning, fossil fuels, biofuels, volcanoes, sea salts whichburning, fossil fuels, biofuels) G01006 of total P are

  11. Determination of Total Carbohydrates in Algal Biomass: Laboratory Analytical Procedure (LAP)

    SciTech Connect (OSTI)

    Van Wychen, S.; Laurens, L. M. L.

    2013-12-01T23:59:59.000Z

    This procedure uses two-step sulfuric acid hydrolysis to hydrolyze the polymeric forms of carbohydrates in algal biomass into monomeric subunits. The monomers are then quantified by either HPLC or a suitable spectrophotometric method.

  12. Table A52. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType"A50. Total2. Total

  13. Table A54. Number of Establishments by Total Inputs of Energy for Heat, Powe

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType"A50. Total2.

  14. Table A55. Number of Establishments by Total Inputs of Energy for Heat, Powe

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType"A50. Total2.Number

  15. Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"1 "2"4.Total

  16. Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of Electricity SoldTotal

  17. Table A34. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of ElectricityPrimaryTotal

  18. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources &7,0171" "

  19. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources &7,0171"

  20. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType" " and

  1. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType" " and "

  2. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType" " and

  3. Table A41. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType"

  4. Table A56. Number of Establishments by Total Inputs of Energy for Heat, Powe

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType"A50.

  5. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources &7,0171" "0.

  6. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources &7,0171"2"

  7. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType" " and2"

  8. Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of

  9. Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of2" " (Estimates

  10. Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of2" " (Estimates

  11. Mycorrhizae and phosphorus fertilization effects on survival, growth, total biomass and leaf nutrient levels of two-year old Leucaena leucocephala

    E-Print Network [OSTI]

    Mbugua, David Kahuria

    1985-01-01T23:59:59.000Z

    MYCORRHIZAE AND PHOSPHORUS FERTILIZATION EFFECTS ON SURVIVAL, GRONTH& TOTAL BIOMASS AND LEAF NUTRIENT LEVELS OF TWO-YEAR CLD LEUCAENA LEUCOCEPHALA A Thesis by DAVID KAHURIA MBUGUA Submitted to the Graduate College of Texas A&M University... in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1985 Major Subject: Forestry MYCORRHIZAE AND PHOSPHORUS FERTILIZATION EFFECTS ON SURVIVAL, GROWTH& TOTAL BIOMASS AND LEAF NUTRIENT LEVELS OF TWO-YEAR OLD LEUCAENA...

  12. Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities

    E-Print Network [OSTI]

    Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities Biomass energy input basis in the upcoming calendar year? - Please check "yes" or "no." 12. Types of Biomass Fuel Used - Please report the quantity and supplier of the following types of biomass fuel used

  13. As was hypothesized, annual ET water losses appears to be driven by seasonal variations in the total aboveground biomass of the treatment wetland. We found that only air temperature and PAR were significant climatic drivers of ET. However, unlike

    E-Print Network [OSTI]

    Hall, Sharon J.

    in the total aboveground biomass of the treatment wetland. We found that only air temperature and PAR were budget of an aridland" urban wastewater treatment wetland" Experimental Design and Field Sampling! · 10.T.A. 2003. Water and mass budgets of a vertical=-flow constructed wetland used for wastewater treatment

  14. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01T23:59:59.000Z

    and  the  high  price  of  the  biomass  from  the  Miramar biomass to be secured under long?term contracts at better prices.   biomass and any dual fuel)  • Moisture, ash, and carbon concentrations (for weight calculations of input fuel and facility waste)  • Sale price 

  15. Microsoft PowerPoint - Quinault Indian Nation Biomass Renewable...

    Energy Savers [EERE]

    biomass heating facility as primary heat source * Estimated total biomass boiler heating demand for existing and proposed buildings * Created preliminary conceptual drawings for...

  16. Biomass pretreatment

    DOE Patents [OSTI]

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21T23:59:59.000Z

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  17. The picoplankton contribution to the total biomass has not been considered when it is estimated using remote sensors. In this work, In situ chlorophyll-a values were

    E-Print Network [OSTI]

    Gilbes, Fernando

    aportación del picoplancton a la biomasa total del fitoplancton no ha sido considerada cuando esta es (contribuyendo un 60-85% de la biomasa total del fitoplancton y un 61-77% de la absorción de la luz por

  18. CATALYTIC BIOMASS LIQUEFACTION

    E-Print Network [OSTI]

    Ergun, Sabri

    2013-01-01T23:59:59.000Z

    Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

  19. Leaf dynamics, stemflow and throughfall water and nutrient inputs in a subtropical savanna parkland, Texas

    E-Print Network [OSTI]

    Angerer, Jay Peter

    1991-01-01T23:59:59.000Z

    for K, followed by Mg, P, N and Ca. Annual throughfall and stemflow inputs (both nutrients and water) differed among clusters as a result of differing shrub cluster size, total canopy area, and species composition. Throughfall generally made up 97... of Shrub Clusters Plant abundance and size Biomass above BTF collectors Potential Leachability Calcium Magnesium Potassium Nitrogen Phosphorus Bulk Precipitation and Bulk Throughfall Chemistry Nutrient concentrations Regression relationships...

  20. AGCO Biomass Solutions: Biomass 2014 Presentation

    Broader source: Energy.gov [DOE]

    Plenary IV: Advances in Bioenergy Feedstocks—From Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation

  1. Input a journal Viewing Journals

    E-Print Network [OSTI]

    Sussex, University of

    Journals Contents: Input a journal Viewing Journals Deleting a journal Entering jnl into different period Problems Input a journal 1 Login to Bluqube 2 Select 3 Enter relevant Doc type To select the number of journals you will processing & the total credit value 6 Click on 7 Enter brief description 8

  2. Total Acid Value Titration of Hydrotreated Biomass Fast Pyrolysis Oil: Determination of Carboxylic Acids and Phenolics with Multiple End-Point Detection

    SciTech Connect (OSTI)

    Christensen, E.; Alleman, T. L.; McCormick, R. L.

    2013-01-01T23:59:59.000Z

    Total acid value titration has long been used to estimate corrosive potential of petroleum crude oil and fuel oil products. The method commonly used for this measurement, ASTM D664, utilizes KOH in isopropanol as the titrant with potentiometric end point determination by pH sensing electrode and Ag/AgCl reference electrode with LiCl electrolyte. A natural application of the D664 method is titration of pyrolysis-derived bio-oil, which is a candidate for refinery upgrading to produce drop in fuels. Determining the total acid value of pyrolysis derived bio-oil has proven challenging and not necessarily amenable to the methodology employed for petroleum products due to the different nature of acids present. We presented an acid value titration for bio-oil products in our previous publication which also utilizes potentiometry using tetrabutylammonium hydroxide in place of KOH as the titrant and tetraethylammonium bromide in place of LiCl as the reference electrolyte to improve the detection of these types of acids. This method was shown to detect numerous end points in samples of bio-oil that were not detected by D664. These end points were attributed to carboxylic acids and phenolics based on the results of HPLC and GC-MS studies. Additional work has led to refinement of the method and it has been established that both carboxylic acids and phenolics can be determined accurately. Use of pH buffer calibration to determine half-neutralization potentials of acids in conjunction with the analysis of model compounds has allowed us to conclude that this titration method is suitable for the determination of total acid value of pyrolysis oil and can be used to differentiate and quantify weak acid species. The measurement of phenolics in bio-oil is subject to a relatively high limit of detection, which may limit the utility of titrimetric methodology for characterizing the acidic potential of pyrolysis oil and products.

  3. Sustainable Biomass Supply Systems

    SciTech Connect (OSTI)

    Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

    2009-04-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOE’s ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

  4. Biomass Feedstocks

    Broader source: Energy.gov [DOE]

    A feedstock is defined as any renewable, biological material that can be used directly as a fuel, or converted to another form of fuel or energy product. Biomass feedstocks are the plant and algal materials used to derive fuels like ethanol, butanol, biodiesel, and other hydrocarbon fuels. Examples of biomass feedstocks include corn starch, sugarcane juice, crop residues such as corn stover and sugarcane bagasse, purpose-grown grass crops, and woody plants. The Bioenergy Technologies Office works in partnership with the U.S. Department of Agriculture (USDA), national laboratories, universities, industry, and other key stakeholders to identify and develop economically, environmentally, and socially sustainable feedstocks for the production of energy, including transportation fuels, electrical power and heat, and other bioproducts. Efforts in this area will ultimately support the development of technologies that can provide a large and sustainable cellulosic biomass feedstock supply of acceptable quality and at a reasonable cost for use by the developing U.S. advanced biofuel industry.

  5. Biomass Surface Characterization Laboratory

    E-Print Network [OSTI]

    the recalcitrant nature of biomass feedstocks and the performance of techniques to deconstruct biomass NREL of biomass feedstocks. BSCL imaging capabilities include: · Confocal microscopy and Raman microscopy

  6. Biomass Stove Pollution Sam Beck ATOC-3500 Biomass energy accounts for about 15% of the world's primary energy consumption and

    E-Print Network [OSTI]

    Toohey, Darin W.

    Biomass Stove Pollution Sam Beck ATOC-3500 Biomass energy accounts for about 15% of the world. Furthermore, biomass often accounts for more than 90% of the total rural energy supplies in developing countries. The traditional stoves in developing countries waste a lot of biomass, mainly because

  7. Sustainable use of California biomass resources can help meet state and national bioenergy targets

    E-Print Network [OSTI]

    Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

    2009-01-01T23:59:59.000Z

    Municipal solid waste Biosolids Biomass Total biomass . . .also smaller amounts of biosolids from wastewater treatment.SNG) Hydrogen Biochemical Biosolids Physiochemical Densified

  8. NREL: Biomass Research - Biomass Characterization Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    before and after pretreatment and during processing. The characterization of biomass feedstocks, intermediates, and products is a critical step in optimizing biomass conversion...

  9. Biomass shock pretreatment

    DOE Patents [OSTI]

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01T23:59:59.000Z

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  10. Determination of Total Solids in Biomass and Total Dissolved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    o C, and an end point of less than 0.05% solids change in one minute. 10.2.2 Turn on the infrared heating elements and allow them to warm up for approximately 20 minutes. Run the...

  11. Summative Mass Analysis of Algal Biomass ? Integration of Analytical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Total Solids 5.1 Due to the high variability of moisture content in algal biomass feedstocks, all biomass compositional analysis results are reported on a dry weight basis....

  12. CATALYTIC LIQUEFACTION OF BIOMASS

    E-Print Network [OSTI]

    Seth, Manu

    2012-01-01T23:59:59.000Z

    liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

  13. CATALYTIC BIOMASS LIQUEFACTION

    E-Print Network [OSTI]

    Ergun, Sabri

    2013-01-01T23:59:59.000Z

    LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

  14. Sandia National Laboratories: Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass "Bionic" Liquids from Lignin: Joint BioEnergy Institute Results Pave the Way for Closed-Loop Biofuel Refineries On December 11, 2014, in Biofuels, Biomass, Capabilities,...

  15. Sandia National Laboratories: Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Assessing the Economic Potential of Advanced Biofuels On September 10, 2013, in Biofuels, Biomass, Energy, Facilities, JBEI, News, News & Events, Partnership, Renewable...

  16. Biomass Analytical Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diversity and performance, The chemical and physical properties of biomass and biomass feedstocks are characterized as they move through the supply chain to various conversion...

  17. Biomass Densification Workshop Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supply systems that ensure high- volume, reliable, and on-spec availability of biomass feedstocks. The United States has a diverse and abundant potential of biomass resources...

  18. Biomass from Combined Backseatter Modeling

    E-Print Network [OSTI]

    Weishampel, John F.

    and SAR back- scatter. In this article we discuss' the use of models to help develop a relationship to an airbomw SAR (AIB- SAB) image over a fi?rested area in Maine. A relationship derived totall!l from model results was fi?und to undervs- timate biomass. Calibrating the modeled backscatter with limited AIRSAB

  19. Modeling, Optimization and Economic Evaluation of Residual Biomass Gasification 

    E-Print Network [OSTI]

    Georgeson, Adam

    2012-02-14T23:59:59.000Z

    Gasification is a thermo-chemical process which transforms biomass into valuable synthesis gas. Integrated with a biorefinery it can address the facility’s residue handling challenges and input demands. A number of feedstock, technology, oxidizer...

  20. Original article Biomass and nutrient cycling of a highly productive

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Biomass and nutrient cycling of a highly productive Corsican pine stand on former 14 April; accepted 22 September 1997) Abstract - Biomass and nutrient cycling were examined in a 62 on a coarse and dry sandy soil with low exchangeable nutrient pools. Total aboveground biomass was estimated

  1. Original article Biomass of root and shoot systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Biomass of root and shoot systems of Quercus coccifera shrublands in Eastern Spain biomass of kermes oak shrublands (Quercus coccifera L.), an evergreen sclerophyllous species common- mass has been measured on 320 1-m2 plots. Total biomass varies with age and ranges between 0.4 (7

  2. Biomass treatment method

    DOE Patents [OSTI]

    Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

    2010-10-26T23:59:59.000Z

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  3. Mapping Biomass Distribution Potential

    E-Print Network [OSTI]

    Schaetzel, Michael

    2010-11-18T23:59:59.000Z

    Mapping Biomass Distribution Potential Michael Schaetzel Undergraduate ? Environmental Studies ? University of Kansas L O C A T S I O N BIOMASS ENERGY POTENTIAL o According to DOE, Biomass has the potential to provide 14% of... the nation’s power o Currently 1% of national power supply o Carbon neutral? combustion of biomass is part of the natural carbon cycle o Improved crop residue management has potential to benefit environment, producers, and economy Biomass Btu...

  4. TART input manual

    SciTech Connect (OSTI)

    Kimlinger, J.R.; Plechaty, E.F.

    1982-04-01T23:59:59.000Z

    The TART code is a Monte Carlo neutron/photon transport code that is only on the CRAY computer. All the input cards for the TART code are listed, and definitions for all input parameters are given. The execution and limitations of the code are described, and input for two sample problems are given. (WHK)

  5. COFIRING BIOMASS WITH LIGNITE COAL

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-01-01T23:59:59.000Z

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  6. Methanol from biomass via steam gasification

    SciTech Connect (OSTI)

    Coffman, J.A. [Wright-Malta Corp., Ballston Spa, NY (United States)

    1995-12-31T23:59:59.000Z

    R&D at Wright-Malta on gasification of biomass, and use of this gas in methanol synthesis, has now reached the stage where a demonstration plant is feasible. The gasifier has evolved into a long, slender, slightly declined, graded temperature stationary kiln, with a box beam rotor and twin piston feed. The methanol reactor is envisioned as a smaller, more declined, graded temperature, water-filled kiln, with a multi-pipe rotor. Input to the demo plant will be 100 tons/day of green (45% water) wood chips; output will be 11,000 gal/day of methanol and 7500 lbs/hr of steam. The over-all biomass to methanol system is tightly integrated in its mechanical design to take full advantage of the reactivity of biomass under a slow, steady, steamy pressurized cook, and the biomass pyrolysis and methanol synthesis exotherms. This is expected to yield good energy efficiency, environmental attractiveness, and economical operation.

  7. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01T23:59:59.000Z

    Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

  8. Links between biomass and tree demography in a northern hardwood forest: a decade of stability

    E-Print Network [OSTI]

    Battles, John

    Links between biomass and tree demography in a northern hardwood forest: a decade of stability recent trends in tree biomass and demography. We found no significant change in live-tree biomass during the decade. Total biomass was 246 Mg·ha­1 (95%CI = 235­258) in 1995­1996 and 245 Mg·ha­1 (95%CI = 234

  9. TRANSPORT THEORY AND STATISTICAL PHYSICS, 23(5), 671-700 (1994) OPTIMIZATION OF SOLAR RADIATION INPUT IN FOREST

    E-Print Network [OSTI]

    Myneni, Ranga B.

    1994-01-01T23:59:59.000Z

    biomass through photosynthesis. In general, the supply of radiant energy sets a limit to potential INPUT IN FOREST CANOPY AS A TOOL FOR PLANTING/CUTTING OF TREES Yu. Knyazikhin', (l) A. Marshak,(1) D on the input coefficientsof the derived equation. 1. INTRODUCTION In a plant canopy,the aboveground biomass

  10. Pretreated densified biomass products

    DOE Patents [OSTI]

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18T23:59:59.000Z

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  11. Original article Root biomass and biomass increment in a beech

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

  12. AVAILABLE NOW! Biomass Funding

    E-Print Network [OSTI]

    AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

  13. Meats & Products Agricultural Inputs

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    Meats & Products Agricultural Inputs Processing Idaho B20 C C B Meats and Livestock Products Index to agriculture? Legend Overall weighted grade Weighted rank Northwest Midwest Southwest East Meats & ProductsProcessingessing Maine B11 B A A Meats & Products Agricultural Inputs Processing New York F49 F F F soductsoducts

  14. Relating fish biomass to habitat and chemistry in headwater streams of the northeastern United States

    E-Print Network [OSTI]

    Kraft, Clifford E.

    Relating fish biomass to habitat and chemistry in headwater streams of the northeastern United influencing total fish biomass in streams, but few studies have evaluated the relative influence of habitat and pH together. We measured total fish biomass, stream habitat, and stream pH in sixteen sites from

  15. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

    2013-01-01T23:59:59.000Z

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  16. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; Garold L. Gresham; William A. Smith; Tyler L. Westover

    2013-01-01T23:59:59.000Z

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  17. CO2 enrichment increases carbon and nitrogen input from

    E-Print Network [OSTI]

    CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest Colleen2 Ecological Society of America, 2008 #12;#12;#12;#12;#12;+ [CO2] #12;+ Net primary production + [CO2] #12;+ Net primary production + [CO2] + C and N storage in biomass #12;+ Net primary production

  18. SRS Interface Input

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interface Input 1. MOA's: The contractor has no MOA's in effect at the Tritium Operations (SRTO) level. 2. AIP's: The contractor has no AIP's in effect at the SRTO level. 3....

  19. Complex pendulum biomass sensor

    DOE Patents [OSTI]

    Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

    2007-12-25T23:59:59.000Z

    A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

  20. Algal biomass and sea surface temperature in the Mediterranean Basin Intercomparison of data from various satellite sensors, and implications for

    E-Print Network [OSTI]

    Bricaud, Annick

    Algal biomass and sea surface temperature in the Mediterranean Basin Intercomparison of data from and to increasing anthropogenic inputs, is an appropriate test site for observing the evolution of algal biomass progress in the knowledge of spatial and temporal variations in algal biomass in various regions

  1. Sandia National Laboratories: Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Renewable Systems On November 4, 2010, in Renewable Systems Renewable Energy Transportation Nuclear Fossil Energy Efficiency Publications Events News Renewable Systems The...

  2. Biomass Processing Photolibrary

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

  3. Co-firing biomass

    SciTech Connect (OSTI)

    Hunt, T.; Tennant, D. [Hunt, Guillot & Associates LLC (United States)

    2009-11-15T23:59:59.000Z

    Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

  4. Sandia National Laboratories: Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Biofuels Publications Biochemical Conversion Program Lignocellulosic Biomass Microalgae Thermochemical Conversion Sign up for our E-Newsletter Required.gif?3.21 Email...

  5. Biomass 2013 Attendee List | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Attendee List Biomass 2013 Attendee List This is a list of attendees for the Biomass 2013 conference. biomass2013attendeelist.pdf More Documents & Publications Biomass 2013...

  6. Biothermal gasification of biomass

    SciTech Connect (OSTI)

    Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

    1980-01-01T23:59:59.000Z

    The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

  7. Biomass One Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyons BiomassBiofuels)Biomass Facility Jump

  8. Multiresource inventories: woody biomass in Virginia. Forest Service research paper

    SciTech Connect (OSTI)

    Cost, N.D.

    1988-06-01T23:59:59.000Z

    Virginia's 25.4 million acres of land area support 1.5 billion tons of woody biomass. Of this total, 93% is on timberland, 5% on reserved timberland and woodland areas, and 2% on nonforest areas. Over the next two decades, more than 9 million tons of woody biomass could be harvested annually from timberland without adversely affecting timber supplies.

  9. U.S. Total Weekly Inputs & Utilization

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb Monthly Annual Download2009 2010429

  10. Biomass Research Program

    SciTech Connect (OSTI)

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2011-01-01T23:59:59.000Z

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  11. Biomass Research Program

    ScienceCinema (OSTI)

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2013-05-28T23:59:59.000Z

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  12. NREL: Biomass Research - Projects in Biomass Process and Sustainabilit...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global...

  13. Module Handbook Specialisation Biomass Energy

    E-Print Network [OSTI]

    Damm, Werner

    Module Handbook Specialisation Biomass Energy 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 University of Zaragoza Specialisation Provider: Biomass Energy #12;Specialisation Biomass Energy, University of Zaragoza Modul: Introduction and Basic Concepts

  14. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY to treatment prescriptions and anticipated outputs of sawlogs and biomass fuel? How many individual operations biomass fuel removed. Typically in plantations. 50% No harvest treatment

  15. NREL: Biomass Research - Video Text

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    common corn grain ethanol. Cellulosic ethanol is made from organic plant matter called biomass. The video shows different forms of biomass such as switchgrass, corn stalks, and...

  16. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01T23:59:59.000Z

    biomass resources will have to be reassessed periodically in the light of priceEthanol Price. Effect of Sugar on Ethanol Cost • vii BIOMASS

  17. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY .................................................................................... 33 3.3 BIOMASS POWER PLANT OPERATION MODELS AND DATA

  18. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and continuously between the earth's biomass and atmosphere. From a greenhouse gas perspective, forest treatments

  19. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY study. The Biomass to Energy (B2E) Project is exploring the ecological and economic consequences

  20. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Citation: USDA Forest Service, Pacific Southwest Research Station. 2009. Biomass to Energy: Forest

  1. Developing better biomass feedstock | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developing better biomass feedstock Developing better biomass feedstock Released: September 04, 2014 Multi-omics unlocking the workings of plants Kim Hixson, an EMSL research...

  2. Sandia National Laboratories: biomass conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomass conversion Sandia Video Featured by DOE Bioenergy Technologies Office On December 10, 2014, in Biofuels, Biomass, Capabilities, Energy, Facilities, JBEI, News, News &...

  3. NREL: Biomass Research - Amie Sluiter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Biomass Analysis Technologies team to provide compositional analysis data on biomass feedstocks and process intermediates for use in pretreatment models and techno-economic...

  4. Water Research 39 (2005) 239247 Biosorption of La, Eu and Yb using Sargassum biomass

    E-Print Network [OSTI]

    Volesky, Bohumil

    Water Research 39 (2005) 239­247 Biosorption of La, Eu and Yb using Sargassum biomass Vivian Diniz-loaded biomass was studied. The ion exchange sorption mechanism was confirmed by the release of calcium ions from the biomass that matched the total number of metal and protons removed from the solution. The metal binding

  5. WP 3 Report: Biomass Potentials Biomass production potentials

    E-Print Network [OSTI]

    WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

  6. Biomass and nutrient distributions in central Oregon second-growth ponderosa pine ecosystems. Forest Service research paper

    SciTech Connect (OSTI)

    Little, S.N.; Shainsky, L.J.

    1995-03-01T23:59:59.000Z

    We investigated the distributioin of biomass and nurtrients in second-growth ponderosa pine (Pinus ponderosa Dougl. ex Laws.) ecosystems in central Oregon. Destructive sampling of aboveground and belowground tree biomass was carried out at six sites in the Deschutes National Forest; three of these sites also were intensively sampled for biomass and nutrient concentrations of the soil, forest floor, residue, and shrub components. Tree biomass equations were developed that related component biomass to diameter at breast height and total tree height.

  7. DOE 2014 Biomass Conference

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, Senior Manager, American Petroleum Institute

  8. Countercurrent Saccharification of Biomass 

    E-Print Network [OSTI]

    Derner, John David

    2015-04-21T23:59:59.000Z

    Our goal was to research and implement a countercurrent system to run enzymatic saccharification of biomass. The project provided clear results to show that this method is more efficient than the batch process that companies currently employ. Excess...

  9. Biomass Energy Production Incentive

    Broader source: Energy.gov [DOE]

    In 2007 South Carolina enacted the ''Energy Freedom and Rural Development Act'', which provides production incentives for certain biomass-energy facilities. Eligible systems earn $0.01 per kilowatt...

  10. Strategic Biomass Solutions (Mississippi)

    Broader source: Energy.gov [DOE]

    The Strategic Biomass Solutions (SBS) was formed by the Mississippi Technology Alliance in June 2009. The purpose of the SBS is to provide assistance to existing and potential companies, investors...

  11. Converting Biomass to Products

    SciTech Connect (OSTI)

    Graybeal, Judith W.

    2006-06-01T23:59:59.000Z

    For nearly 30 years, PNNL has been developing and applying novel thermal, chemical and biological processes to convert biomass to industrial and consumer products, fuels and energy. Honors for technologies resulting from this research include the Presidential Green Chemistry Award and several Federal Laboratory Consortium and R&D 100 Awards. PNNL’s research and development activities address the complete processing scheme, from feedstock pretreatment to purified product recovery. The laboratory applies fundamental science and advanced engineering capabilities to biomass conversion and processing to ensure effective recovery of optimal value from biomass; carbohydrate polymer systems to maximize energy efficiencies; and micro-technology systems for separation and conversion processes. For example, bioproducts researchers in the laboratory’s Institute for Interfacial Catalysis develop and demonstrate the utility of new catalyst formulations for production of bio-based chemicals. This article describes a sampling of current and recent catalysis projects for biomass conversion.

  12. Biomass 2014 Poster Session

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit poster abstracts for consideration for the annual Biomass Conference Poster Session. The Biomass 2014 conference theme focuses on topics that are advancing the growth of the bioeconomy, such as improvements in feedstock logistics; promising, innovative pathways for advanced biofuels; and market-enabling co-products.

  13. BIOMASS ACTION PLAN FOR SCOTLAND

    E-Print Network [OSTI]

    BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

  14. Northeast Regional Biomass Program

    SciTech Connect (OSTI)

    Lusk, P.D.

    1992-12-01T23:59:59.000Z

    The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

  15. Biomass cogeneration. A business assessment

    SciTech Connect (OSTI)

    Skelton, J.C.

    1981-11-01T23:59:59.000Z

    This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  16. Methanol from biomass via steam gasification

    SciTech Connect (OSTI)

    Coffman, J.A. [Wright-Malta Corp., Ballston Spa, NY (United States)

    1995-12-31T23:59:59.000Z

    R & D at Wright-Malta on gasification of biomass, and use of this gas in methanol synthesis, has now reached the stage where a demonstration plant is feasible. The gasifier has evolved into a long, slender, slightly declined, graded temperature series of stationary kiln sections, with box beam rotors and twin piston feed. The methanol reactor is envisioned as a smaller, more declined, graded temperature, water-filled stationary kiln, with a multi-pipe rotor. Input to the demo plant will be 100 tons/day of green (45% water) wood chips; output is projected at 11,000 gal/day of methanol and 7500 lbs/hr of steam. The over-all biomass to methanol system is tightly integrated in its mechanical design to take full advantage of the reactivity of biomass under a slow, steady, steamy pressurized cook, and the biomass pyrolysis and methanol synthesis exotherms. This is expected to yield good energy efficiency, environmental attractiveness, and economical operation.

  17. Gen Inputs Settlement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding OpportunityF2015Gen-Inputs-Settlement Sign

  18. Biomass Boiler and Furnace Emissions and Safety Regulations in...

    Open Energy Info (EERE)

    Air Use Management (NESCAUM) Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, Economic Development...

  19. Biomass energy systems information user study

    SciTech Connect (OSTI)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01T23:59:59.000Z

    The results of a series of telephone interviews with groups of users of information on biomass energy systems are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. This report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. Results from 12 biomass groups of respondents are analyzed in this report: Federally Funded Researchers (2 groups), Nonfederally Funded Researchers (2 groups), Representatives of Manufacturers (2 groups), Representatives of State Forestry Offices, Private Foresters, Forest Products Engineers, Educators, Cooperative Extension Service County Agents, and System Managers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  20. NREL: Biomass Research - Biomass Characterization Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NREL RefinesAnalysisBiochemical ConversionBiomass

  1. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01T23:59:59.000Z

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

  2. Fuel cycle evaluations of biomass-ethanol and reformulated gasoline. Volume 1

    SciTech Connect (OSTI)

    Tyson, K.S.

    1993-11-01T23:59:59.000Z

    The US Department of Energy (DOE) is using the total fuel cycle analysis (TFCA) methodology to evaluate energy choices. The National Energy Strategy (NES) identifies TFCA as a tool to describe and quantify the environmental, social, and economic costs and benefits associated with energy alternatives. A TFCA should quantify inputs and outputs, their impacts on society, and the value of those impacts that occur from each activity involved in producing and using fuels, cradle-to-grave. New fuels and energy technologies can be consistently evaluated and compared using TFCA, providing a sound basis for ranking policy options that expand the fuel choices available to consumers. This study is limited to creating an inventory of inputs and outputs for three transportation fuels: (1) reformulated gasoline (RFG) that meets the standards of the Clean Air Act Amendments of 1990 (CAAA) using methyl tertiary butyl ether (MTBE); (2) gasohol (E10), a mixture of 10% ethanol made from municipal solid waste (MSW) and 90% gasoline; and (3) E95, a mixture of 5% gasoline and 95% ethanol made from energy crops such as grasses and trees. The ethanol referred to in this study is produced from lignocellulosic material-trees, grass, and organic wastes -- called biomass. The biomass is converted to ethanol using an experimental technology described in more detail later. Corn-ethanol is not discussed in this report. This study is limited to estimating an inventory of inputs and outputs for each fuel cycle, similar to a mass balance study, for several reasons: (1) to manage the size of the project; (2) to provide the data required for others to conduct site-specific impact analysis on a case-by-case basis; (3) to reduce data requirements associated with projecting future environmental baselines and other variables that require an internally consistent scenario.

  3. NREL: Biomass Research - David W. Templeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W. Templeton Photo of David Templeton David Templeton is the senior biomass analyst on the Biomass Analysis team (Biomass Compositional Analysis Laboratory) within the National...

  4. NREL: International Activities - Biomass Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Resource Assessment Map showing annual productivity of marginal lands in APEC economies. Biomass resource assessments quantify the existing or potential biomass material in...

  5. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01T23:59:59.000Z

    Teotl Energy Partners LLC, West Biofuels Biomass?to?Fuels Teotl Energy Partners LLC, West Biofuels Biomass-to-Fuelssolid?fuel biomass, solar thermal electric, or wind energy 

  6. November 2011 Model documentation for biomass,

    E-Print Network [OSTI]

    Noble, James S.

    1 November 2011 Model documentation for biomass, cellulosic biofuels, renewable of Education, Office of Civil Rights. #12;3 Contents Biomass.....................................................................................................................................................4 Variables in the biomass module

  7. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01T23:59:59.000Z

    Biofuels, LLC  UCSD Biomass to Power  Economic Feasibility Figure 1: West Biofuels Biomass Gasification to Power rates..……………………. ……31  UCSD Biomass to Power ? Feasibility 

  8. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01T23:59:59.000Z

    facilities that use biomass, waste, or renewable resources (Eligible renewable energy resources include biomass, solar renewable  power  than  there  is  in  the  market  for  biomass 

  9. Minimally refined biomass fuel

    DOE Patents [OSTI]

    Pearson, Richard K. (Pleasanton, CA); Hirschfeld, Tomas B. (Livermore, CA)

    1984-01-01T23:59:59.000Z

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  10. Biomass | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyons BiomassBiofuels)BiomassThermal

  11. High-biomass sorghums for biomass biofuel production

    E-Print Network [OSTI]

    Packer, Daniel

    2011-05-09T23:59:59.000Z

    for breeding evaluations. Seventeen hundred ninety two exotic sorghum accessions from 7 different geographic origins were evaluated for high-biomass desirability in 3 environments. Significant relationships between passport data and high-biomass desirability...

  12. Woody biomass resource of Alabama. Forest Service research paper

    SciTech Connect (OSTI)

    Rosson, J.F.; Thomas, C.E.

    1986-10-01T23:59:59.000Z

    The extent of total live biomass in a forest ecosystem is summarized by an equation. If forest biomass becomes a substantial component of fuel supply, certain resource supply/demand issues become evident. This, in effect, will impact on the future of forest biomass as a renewable-resource element. To supply a growing demand for biomass fuel, certain limited management options are available to managers. It is clear that benefits and risks are associated with all phases of any form of energy production. The direct and indirect costs and benefits of utilizing biomass for energy need to be identified and evaluated. The first step in the process involves identification of the resource and its quantity, composition, distribution, and potential availability.

  13. Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

  14. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldsonInformationTorpedo Speciality Wire IncTorresolEnergy

  15. Burgeoning Biomass: Creating Efficient and Sustainable Forest Biomass Supply Chains in the Rockies

    E-Print Network [OSTI]

    1 Burgeoning Biomass: Creating Efficient and Sustainable Forest Biomass Supply Chains and removing beetle- killed trees, produce a byproduct called woody biomass. Also known as "slash, woody biomass can be collected, processed and transported SUMMARY Woody biomass could be used

  16. biomass | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or products. More detailed information on the subject of biomassMSW gasification and co-gasification of coal and biomass is available. Challenges A few obstacles exist before...

  17. Biomass Feedstock National User Facility

    Broader source: Energy.gov [DOE]

    Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

  18. ENERGY FROM BIOMASS AND

    E-Print Network [OSTI]

    in aeroderivative gas turbines has beencommerciallyestablished for natural gas-fired cogeneration since 1980. Steam!l!ledin a companionpaperprepared for this conference. 781 #12;BIOMASS-GASIFIER ~.INJECTED GAS TURBINE COGENERA110N FOR THE CANE of the gas turbine for cogeneration.applications(27) and the low unit capital cost of gas turbines comparedto

  19. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY as a result of emerging biomass opportunities on private industrial and public multiple-use lands (tracked in the vegetation domain) and the quantity of biomass consumed by the wildfire (tracked

  20. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;12-2 #12;Appendix 12: Biomass to Energy Project Team, Committee Members and Project Advisors Research Team. Nechodom's background is in biomass energy policy development and public policy research. Peter Stine

  1. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY or recommendations of the study. 1. INTRODUCTION 1.1 Domain Description The study area for the Biomass to Energy (B2 and environmental costs and benefits of using forest biomass to generate electrical power while changing fire

  2. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;10-2 #12;Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass to Renewable Fuels and Electricity 1. Report to the Biomass to Energy Project (B2E) Principal Authors: Dennis Schuetzle, TSS

  3. 7, 1733917366, 2007 Biomass burning

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

  4. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY not substantively affect the findings or recommendations of the study. 2. Introduction The Biomass to Energy (B2E) Project is developing a comprehensive forest biomass-to- electricity model to identify and analyze

  5. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;6-2 #12;APPENDIX 6: Cumulative Watershed Effects Analysis for the Biomass to Energy Project 1. Principal the findings or recommendations of the study. Cumulative watershed effects (CWE) of the Biomass to Energy (B2E

  6. Reburn system with feedlot biomass

    DOE Patents [OSTI]

    Annamalai, Kalyan; Sweeten, John M.

    2005-12-13T23:59:59.000Z

    The present invention pertains to the use of feedlot biomass as reburn fuel matter to reduce NO.sub.x emissions. According to one embodiment of the invention, feedlot biomass is used as the reburn fuel to reduce NO.sub.x. The invention also includes burners and boiler in which feedlot biomass serves a reburn fuel.

  7. 13, 3226932289, 2013 Biomass burning

    E-Print Network [OSTI]

    Dong, Xiquan

    ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern Great Plains T (ACP). Please refer to the corresponding final paper in ACP if available. Biomass burning aerosol Geosciences Union. 32269 #12;ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern

  8. Biomass Energy Crops: Massachusetts' Potential

    E-Print Network [OSTI]

    Schweik, Charles M.

    Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

  9. Serial Input Output

    SciTech Connect (OSTI)

    Waite, Anthony; /SLAC

    2011-09-07T23:59:59.000Z

    Serial Input/Output (SIO) is designed to be a long term storage format of a sophistication somewhere between simple ASCII files and the techniques provided by inter alia Objectivity and Root. The former tend to be low density, information lossy (floating point numbers lose precision) and inflexible. The latter require abstract descriptions of the data with all that that implies in terms of extra complexity. The basic building blocks of SIO are streams, records and blocks. Streams provide the connections between the program and files. The user can define an arbitrary list of streams as required. A given stream must be opened for either reading or writing. SIO does not support read/write streams. If a stream is closed during the execution of a program, it can be reopened in either read or write mode to the same or a different file. Records represent a coherent grouping of data. Records consist of a collection of blocks (see next paragraph). The user can define a variety of records (headers, events, error logs, etc.) and request that any of them be written to any stream. When SIO reads a file, it first decodes the record name and if that record has been defined and unpacking has been requested for it, SIO proceeds to unpack the blocks. Blocks are user provided objects which do the real work of reading/writing the data. The user is responsible for writing the code for these blocks and for identifying these blocks to SIO at run time. To write a collection of blocks, the user must first connect them to a record. The record can then be written to a stream as described above. Note that the same block can be connected to many different records. When SIO reads a record, it scans through the blocks written and calls the corresponding block object (if it has been defined) to decode it. Undefined blocks are skipped. Each of these categories (streams, records and blocks) have some characteristics in common. Every stream, record and block has a name with the condition that each stream, record or block name must be unique in its category (i.e. all streams must have different names, but a stream can have the same name as a record). Each category is an arbitrary length list which is handled by a 'manager' and there is one manager for each category.

  10. Biomass Supply and Carbon Accounting for

    E-Print Network [OSTI]

    Biomass Supply and Carbon Accounting for Southeastern Forests February 2012 #12;This Biomass Supply and Carbon Accounting for Southeastern Forests study was conducted by the Biomass Energy Resource Center Biomass Energy Resource Center Kamalesh Doshi Biomass Energy Resource Center Hillary Emick Biomass Energy

  11. 83USDA Forest Service Gen. Tech. Rep. PSW-GTR-160. 1997. Woody Root Biomass of 40-to 90-

    E-Print Network [OSTI]

    Standiford, Richard B.

    83USDA Forest Service Gen. Tech. Rep. PSW-GTR-160. 1997. Woody Root Biomass of 40- to 90- Year. Bledsoe2 Jerry Tecklin3 Abstract: This research examined biomass of blue oak (Quercus douglasii Hook root biomass outside the root ball. Root ball mass ranged from 7 to 184 kg, and estimated total root

  12. Bioenergy and emerging biomass conversion technologies Hanne stergrd, Ris National Laboratory, Technical University of Denmark DTU, Denmark

    E-Print Network [OSTI]

    Bioenergy and emerging biomass conversion technologies Hanne Řstergĺrd, Risř National Laboratory in the Agricultural Outlook from OECD-FAO, these predictions may be misleading and biomass may increase more rapidly Biomass and waste Hydro Nuclear Gas Oil Coal Fig 1 Total primary energy supply3 · The transport sector

  13. Variation in Biomass Composition Components among Forage, Biomass, Sorghum-Sudangrass, and Sweet Sorghum Types

    SciTech Connect (OSTI)

    Stefaniak, T. R.; Dahlberg, J. A.; Bean, B. W.; Dighe, N.; Wolfrum, E. J.; Rooney, W. L.

    2012-07-01T23:59:59.000Z

    Alternative biomass sources must be developed if the United States is to meet the goal in the U.S. Energy Security Act of 2007 to derive 30% of its petroleum from renewable sources, and several different biomass crops are currently in development. Sorghum [Sorghum bicolor (L.) Moench] is one such crop that will be an important feedstock source for biofuel production. As composition influences productivity, there exists a need to understand the range in composition observed within the crop. The goal of this research was to assess the range in dietary fiber composition observed within different types of biomass sorghums. A total of 152 sorghum samples were divided into the four end-use types of sorghum: biomass, forage, sorghum-sudangrass, and sweet. These samples were analyzed chemically using dietary fiber analysis performed at the National Renewable Energy Laboratory using published protocols. Significant variation among the groups was detected for glucan and ash. Positive and highly significant correlations were detected between structural carbohydrates in the biomass and sweet sorghums while many of these correlations were negative or not significant in the forage and sorghum-sudangrass types. In addition, a wide range of variation was present within each group indicating that there is potential to manipulate the composition of the crop.

  14. Science Activities in Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney, Office of ScienceActivities in Biomass

  15. Hydrolysis of biomass material

    DOE Patents [OSTI]

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17T23:59:59.000Z

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  16. The Use of Biomass for Power Generation in the U.S.

    SciTech Connect (OSTI)

    none

    2006-07-15T23:59:59.000Z

    Historically, biomass has been man's principal source of energy, mainly used in the form of wood for cooking and heating. With the industrial revolution and the introduction of motorized transportation and electricity, fossil fuels became the dominant source of energy. Today, biomass is the largest domestic source of renewable energy providing over 3% of total U.S. energy consumption, and surpassing hydropower. Yet, recent increases in the price and volatility of fossil fuel supplies and the financial impacts from a number of financially distressed investments in natural gas combined cycle power plants have led to a renewed interest in electricity generation from biomass. The biomass-fueled generation market is a dynamic one that is forecast to show significant growth over the next two decades as environmental drivers are increasingly supported by commercial ones. The most significant change is likely to come from increases in energy prices, as decreasing supply and growing demand increase the costs of fossil fuel-generated electricity and improve the competitive position of biomass as a power source. The report provides an overview of the renewed U.S. market interest in biomass-fueled power generation and gives a concise look at what's driving interest in biomass-fueled generation, the challenges faced in implementing biomass-fueled generation projects, and the current and future state of biomass-fueled generation. Topics covered in the report include: an overview of biomass-fueled generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in biomass-fueled generation; an analysis of the challenges that are hindering the implementation of biomass-fueled generation projects; a description of the various feedstocks that can be used for biomass-fueled generation; an evaluation of the biomass supply chain; a description of biomass-fueled generation technologies; and, a review of the economic drivers of biomass-fueled generation project success.

  17. Aboveground tree biomass on productive forest land in Alaska. Forest Service research paper

    SciTech Connect (OSTI)

    Yarie, J.; Mead, D.R.

    1982-08-01T23:59:59.000Z

    Total aboveground woody biomass of trees on forest land that can produce 1.4 cubic meters per hectare per year of industrial wood in Alaska is 1.33 billion metric tons green weight. The estimated energy value of the standing woody biomass is 11.9 x 10 Btu's. Statewide tables of biomass and energy values for softwoods, hardwoods, and species group are presented.

  18. Plant biomass in the Tanana River Basin, Alaska. Forest Service research paper

    SciTech Connect (OSTI)

    Mead, B.R.

    1995-01-01T23:59:59.000Z

    Vegetation biomass tables are presented for the Tanana River Basin. Average biomass for each species of tree, shrub, grass, forb, lichen, and moss in the 13 forest and 30 nonforest vegetation types is shown. These data combined with area estimates for each vegetation type provide a tool for estimating habitat carrying capacity for many wildlife species. Tree biomass is reported for the entire aboveground tree, thereby allowing estimates of total fiber content.

  19. Biomass -Feedstock User Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt%inandWBS 1.2.3.3 Biomass -

  20. Biomass 2013: Welcome

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt%inandWBS 1.2.3.31Biomass 2013

  1. Biomass Scenario Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt%inandWBSBiomassAct ofBiomass

  2. Hydrothermal Liquefaction of Biomass

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2010-12-10T23:59:59.000Z

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the carbohydrate structures as they have been further reacted to phenolic Aldol condensation products. The bio-oil

  3. Biomass: Biogas Generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find Find MoreTechnical Report: BiomassInnovationBIOGAS

  4. Remotely sensed heat anomalies linked with Amazonian forest biomass declines

    E-Print Network [OSTI]

    Toomey, M.; Roberts, D. A.; Still, C.; Goulden, M. L.; McFadden, J. P.

    2011-01-01T23:59:59.000Z

    with Amazonian forest biomass declines Michael Toomey, 1 Darof aboveground living biomass (p biomass declines, Geophys. Res.

  5. Interactions of Lignin and Hemicellulose and Effects on Biomass Deconstruction

    E-Print Network [OSTI]

    Li, Hongjia

    2012-01-01T23:59:59.000Z

    such lignocellulosic biomass feedstocks into ethanol via atools. Different biomass feedstocks have different cell wallmajor lignocellulosic biomass feedstocks, except softwoods,

  6. NREL: Biomass Research - Joseph Shekiro

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deacetylation and Mechanical (Disc) Refining Process for the Conversion of Renewable Biomass to Lower Cost Sugars." Biotechnology for Biofuels (7:7). Shekiro, J. ; Kuhn, E.M.;...

  7. NREL: Biomass Research - Josh Schaidle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of pyrolysis products to produce fungible transportation fuels. Research Interests Biomass conversion to fuels and chemicals Environmentally-sustainable engineering practices...

  8. NREL: Biomass Research - Michael Resch

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    improve the hydrolysis efficiency of cellulase and hemicellulase enzyme digestion of biomass. This work will help NREL lower the industrial cost of lignocellulosic enzyme...

  9. Sandia National Laboratories: Lignocellulosic Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industrial process environments, (3) development of high-throughput assays using microfluidics, and (4) understanding how microbial communities degrade biomass and the...

  10. Biomass Gasification | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    gasification involve reducing costs associated with capital equipment and biomass feedstocks. Research to lower capital costs: If oxygen is used in the gasifier, capital...

  11. Biomass Rapid Analysis Network (BRAN)

    SciTech Connect (OSTI)

    Not Available

    2003-10-01T23:59:59.000Z

    Helping the emerging biotechnology industry develop new tools and methods for real-time analysis of biomass feedstocks, process intermediates and The Biomass Rapid Analysis Network is designed to fast track the development of modern tools and methods for biomass analysis to accelerate the development of the emerging industry. The network will be led by industry and organized and coordinated through the National Renewable Energy Lab. The network will provide training and other activities of interest to BRAN members. BRAN members will share the cost and work of rapid analysis method development, validate the new methods, and work together to develop the training for the future biomass conversion workforce.

  12. TOTAL M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total Spring 2010

    E-Print Network [OSTI]

    Hayes, Jane E.

    202 51 *total new freshmen 684: 636 Lexington campus, 48 Paducah campus MS Total 216 12 5 17 2 0 2 40 248 247 648 45 210 14 *total new freshmen 647: 595 Lexington campus, 52 Paducah campus MS Total 192 14

  13. System and process for biomass treatment

    DOE Patents [OSTI]

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20T23:59:59.000Z

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  14. Biomass in the Deregulated Marketplace: Current Issues for Biomass Power

    SciTech Connect (OSTI)

    Not Available

    1998-12-01T23:59:59.000Z

    This issue brief provides readers with a monthly review and analysis of electric utility deregulation as it impacts biomass power production and distribution. The topical areas to be routinely covered will include Federal activities, State activities, Current challenges, and Current opportunities. Additionally, a monthly highlighted topic will provide more in-depth analysis of current issue impacting biomass power.

  15. Multiresource inventories: woody biomass in North Carolina. Forest Service Research paper

    SciTech Connect (OSTI)

    Cost, N.D.

    1986-01-01T23:59:59.000Z

    North Carolina's 31.2 million acres of land area support 1.7 billion tons of woody biomass. Of this total, 94% is on timberland, 3% on nonforest areas, and 3% on reserved timberland and woodland areas. Over the next two decades, more than 12.8 million tons of woody biomass could be harvested annually from timberland without adversely affecting timber supplies.

  16. SHORT-TERM EFFECTS OF SOIL AMENDMENT WITH TREE LEGUME BIOMASS ON CARBON AND NITROGEN

    E-Print Network [OSTI]

    Lehmann, Johannes

    SHORT-TERM EFFECTS OF SOIL AMENDMENT WITH TREE LEGUME BIOMASS ON CARBON AND NITROGEN IN PARTICLE-to-N ratio of the added plant material seems to control the eects of soil amendment with tree legume biomass to the total quantity of C and N pre- sent. Physical fractionation of SOM can help to identify more active

  17. Process for concentrated biomass saccharification

    DOE Patents [OSTI]

    Hennessey, Susan M. (Avondale, PA); Seapan, Mayis (Landenberg, PA); Elander, Richard T. (Evergreen, CO); Tucker, Melvin P. (Lakewood, CO)

    2010-10-05T23:59:59.000Z

    Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

  18. Biomass 2014 Attendee List | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    is the attendee list for Biomass 2014, held July 29-July 30 in Washington, D.C. biomass2014attendeelist.pdf More Documents & Publications Biomass 2013 Attendee List Bioproducts:...

  19. BIOMASS LIQUEFACTION EFFORTS IN THE UNITED STATES

    E-Print Network [OSTI]

    Ergun, Sabri

    2012-01-01T23:59:59.000Z

    icat ion Preheat zone Biomass liquefaction Tubular reactor (design is shown in Figure 7, C I Biomass ua efaction Fic LBL Process BiOMASS t NON-REVERS lNG CYCLONE CONDENSER (

  20. Treatment of biomass to obtain fermentable sugars

    DOE Patents [OSTI]

    Dunson, Jr., James B. (Newark, DE); Tucker, Melvin (Lakewood, CO); Elander, Richard (Evergreen, CO); Hennessey, Susan M. (Avondale, PA)

    2011-04-26T23:59:59.000Z

    Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

  1. Biomass Producer or Collector Tax Credit (Oregon)

    Broader source: Energy.gov [DOE]

     The Oregon Department of Energy provides a tax credit for agricultural producers or collectors of biomass.  The credit can be used for eligible biomass used to produce biofuel; biomass used in...

  2. Mobile Biomass Pelletizing System

    SciTech Connect (OSTI)

    Thomas Mason

    2009-04-16T23:59:59.000Z

    This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

  3. NREL: Biomass Research - Robert M. Baldwin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MI. Dr. Baldwin has extensive experience and expertise in thermochemical conversion of biomass to gaseous and liquid fuels, including catalysis and reaction engineering of biomass...

  4. NREL: Biomass Research - Daniel J. Schell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    more than 30 years of research experience in bio-based conversion of lignocellulosic biomass and has extensive expertise in integrated biomass conversion operations at the bench...

  5. NREL: Biomass Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility (IBRF). June 2, 2011 Science & Industry Peers Turn to NREL for Biomass Solutions The biomass industry looks to the U.S. Department of Energy's National...

  6. Supplying High-Quality, Raw Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supplying High-Quality, Raw Biomass The building blocks to supply high-quality raw biomass start with harvesting and collection practices, product storage and recommendations of...

  7. Molecular Characterization of Biomass Burning Aerosols Using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

  8. Converting Biomass to High-Value Feedstocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Converting Biomass to High-Value Feedstocks Advanced feedstocks play an important role in economically and efficiently converting biomass into bioenergy products. Advanced...

  9. BSCL Use Plan: Solving Biomass Recalcitrance

    SciTech Connect (OSTI)

    Himmel, M.; Vinzant, T.; Bower, S.; Jechura, J.

    2005-08-01T23:59:59.000Z

    Technical report describing NREL's new Biomass Surface Characterization Laboratory (BSCL). The BSCL was constructed to provide the most modern commercial surface characterization equipment for studying biomass surfaces.

  10. Hydrogen Production Cost Estimate Using Biomass Gasification...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Estimate Using Biomass Gasification: Independent Review Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review This independent review is the...

  11. Symbiosis: Addressing Biomass Production Challenges and Climate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Symbiosis: Addressing Biomass Production Challenges and Climate Change Symbiosis: Addressing Biomass Production Challenges and Climate Change This presentation was the opening...

  12. Coal-Biomass Feed and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal-Biomass Feed and Gasification The Coal-Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal...

  13. Biomass Guidelines (Prince Edward Island, Canada)

    Broader source: Energy.gov [DOE]

    PEI Biomass Guidelines identify two major pathways that biomass projects may follow: No Public Investment, and Public Investment. Projects with Public Investment include any project that has:

  14. Hydrogen Production Cost Estimate Using Biomass Gasification

    E-Print Network [OSTI]

    Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory Panel, Hydrogen Production Cost Estimate Using Biomass Gasification To: Mr. Mark Ruth, NREL, DOE

  15. NREL: Biomass Research - Ryan M. Ness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    involve bench-scale wet chemical and instrumental analysis of lignocellulosic biomass feedstocks for the purpose of providing baseline, solids-intermediate, and biomass...

  16. NREL: Biomass Research - Biochemical Conversion Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's projects in biochemical conversion involve three basic steps to convert biomass feedstocks to fuels: Converting biomass to sugar or other fermentation feedstock Fermenting...

  17. 1990 Washington State directory of biomass energy facilities

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1990-12-31T23:59:59.000Z

    This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington`s industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state`s total industrial fuel demand. This is a sizable contribution to the state`s energy needs.

  18. 1990 Washington State directory of biomass energy facilities

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1990-01-01T23:59:59.000Z

    This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington's industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state's total industrial fuel demand. This is a sizable contribution to the state's energy needs.

  19. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"YearProductionShaleInput Product: TotalCountry:

  20. Input Validation Errors and Defenses

    E-Print Network [OSTI]

    Sekar, R.

    = "gpg -r $send_to_list 2>&1" popen($command) · Attack: user fills in the following information-independent policies are preferable Example: SquirrelMail Command Injection Incoming Request (Untrusted input) $command="gpg popen($command) $send_to_list = $_GET[`sendto'] $command = "gpg -r $send_to_list 2>&1" Outgoing Request

  1. Ohio Biomass Energy Program (Ohio)

    Broader source: Energy.gov [DOE]

    Ohio is one of seven states participating in the Great Lakes Regional Biomass Energy Program which was established in 1983. The Regional Program is administered by the Council of Great Lakes...

  2. Biomass Supply for a Bioenergy

    E-Print Network [OSTI]

    Hydrocarbon-based Biofuels; Zia Haq

    2012-01-01T23:59:59.000Z

    Resource assessment – do we have enough biomass? Techno-economic analysis – can biofuels be produced at competitive prices? • Integrated biorefineries – what is being funded at DOE and what are future plans?

  3. Biomass and nutrient accumulation in young Prosopis Juliflora at Mombasa, Kenya

    SciTech Connect (OSTI)

    Maghembe, J.A.; Kariuki, E.M.; Haller, R.D.

    1983-01-01T23:59:59.000Z

    Data are presented for 6-yr old P. juliflora, grown for quarry reclamation on: biomass of stems, large branches, small branches and leaves; height and volume of stems and large branches. All were calculated from regressions on based diameter. Volume was 209 cubic m/ha (stems), 75 cubic m/ha (large branches). Total biomass was 216 t/ha (77% in stems and large branches). Leaves plus small branches (22.6% of biomass) contained over 50% of the pool of nutrients N, P, K and Mg. Implications are discussed for site depletion as a result of total tree use for fuelwood and fodder. 25 references.

  4. Cadmium Biosorption Rate in Protonated Sargassum Biomass

    E-Print Network [OSTI]

    Volesky, Bohumil

    Cadmium Biosorption Rate in Protonated Sargassum Biomass J I N B A I Y A N G A N D B O H U M I L V Sargassum fluitans biomass was accompanied by the release of hydrogen protons from the biomass. The uptake the overall biosorption rate of cadmium ions in flat seaweed biomass particles. The overall biosorption

  5. Global (International) Energy Policy and Biomass

    SciTech Connect (OSTI)

    Overend, R. P.

    2004-01-01T23:59:59.000Z

    Presentation to the California Biomass Collaboration--First Annual Forum, January 8th 2004, Sacramento, California

  6. Biomass Surface Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This fact sheet provides information about Biomass Surface Characterization Laboratory capabilities and applications at NREL.

  7. November 2011 Competition for biomass among

    E-Print Network [OSTI]

    Noble, James S.

    remain high, limiting the development of national or even regional markets for biomass feedstocks. We

  8. Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect (OSTI)

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-08-22T23:59:59.000Z

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  9. Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

  10. Fiscalini Farms Biomass Energy Project

    SciTech Connect (OSTI)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30T23:59:59.000Z

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed system capacity. During the baseline study period, feedstocks included manure, sudan grass silage, and

  11. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    SciTech Connect (OSTI)

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-04-01T23:59:59.000Z

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. During this reporting period, the technical and economic performances of the selected processes were evaluated using computer models and available literature. The results of these evaluations are summarized in this report.

  12. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    SciTech Connect (OSTI)

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-06-01T23:59:59.000Z

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. The technical and economic performances of the selected processes were evaluated using computer models and available literature. Using these results, the carbon sequestration potential of the three technologies was then evaluated. The results of these evaluations are given in this final report.

  13. Development of the Integrated Biomass Supply Analysis and Logistics Model (IBSAL)

    SciTech Connect (OSTI)

    Sokhansanj, Shahabaddine [ORNL; Webb, Erin [ORNL; Turhollow Jr, Anthony F [ORNL

    2008-06-01T23:59:59.000Z

    The Integrated Biomass Supply & Logistics (IBSAL) model is a dynamic (time dependent) model of operations that involve collection, harvest, storage, preprocessing, and transportation of feedstock for use at a biorefinery. The model uses mathematical equations to represent individual unit operations. These unit operations can be assembled by the user to represent the working rate of equipment and queues to represent storage at facilities. The model calculates itemized costs, energy input, and carbon emissions. It estimates resource requirements and operational characteristics of the entire supply infrastructure. Weather plays an important role in biomass management and thus in IBSAL, dictating the moisture content of biomass and whether or not it can be harvested on a given day. The model calculates net biomass yield based on a soil conservation allowance (for crop residue) and dry matter losses during harvest and storage. This publication outlines the development of the model and provides examples of corn stover harvest and logistics.

  14. Biomass Gasification Combined Cycle

    SciTech Connect (OSTI)

    Judith A. Kieffer

    2000-07-01T23:59:59.000Z

    Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

  15. Biomass One LP Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyons BiomassBiofuels)Biomass Facility

  16. The role of biomass in California's hydrogen economy

    E-Print Network [OSTI]

    Parker, Nathan C; Ogden, Joan; Fan, Yueyue

    2009-01-01T23:59:59.000Z

    the biomass resources, hydrogen demands and prices to ?ndhydrogen. The price premium for biomass hydrogen comparedfrom biomass varies with hydrogen selling price. The curves

  17. The role of biomass in California's hydrogen economy

    E-Print Network [OSTI]

    Parker, Nathan C; Ogden, Joan; Fan, Yueyue

    2009-01-01T23:59:59.000Z

    Making a Business from Biomass in Energy, Environment,2004. An assessment of biomass resources in California.methanol and hydrogen from biomass. Journal of Power Sources

  18. Abengoa Bioenergy Biomass of Kansas LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Location: Hugoton, KS Eligibility: 1705 Snapshot In...

  19. New process speeds conversion of biomass to fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

  20. Biomass Resources Overview and Perspectives on Best Fits for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells Biomass resources overview and...

  1. LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS ENGINEERING UNIT (PEU)

    E-Print Network [OSTI]

    Figueroa, Carlos

    2012-01-01T23:59:59.000Z

    0092 UC-61 ORNIA LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSLBL~l0092 LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSof Energy LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS

  2. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    Design Parameters Marine Biomass Production Sea Farmof Various Types of Biomass . Biomethanation Parameters.Proceedings, Fuels from Biomass Symposium. University of

  3. The role of biomass in California's hydrogen economy

    E-Print Network [OSTI]

    Parker, Nathan C; Ogden, Joan; Fan, Yueyue

    2009-01-01T23:59:59.000Z

    promising than renewable sources, including biomass, for aof biomass. US Department of Energy, National RenewableRenewable Energy Laboratory projects the current technology production cost of biomass

  4. Interactions of Lignin and Hemicellulose and Effects on Biomass Deconstruction

    E-Print Network [OSTI]

    Li, Hongjia

    2012-01-01T23:59:59.000Z

    lignocellulosic biomass a promising renewable feedstock forNational Renewable Energy Laboratory (NREL) standard biomassLignocellulosic biomass is the only promising renewable

  5. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf More Documents &...

  6. The role of biomass in California's hydrogen economy

    E-Print Network [OSTI]

    Parker, Nathan C; Ogden, Joan; Fan, Yueyue

    2009-01-01T23:59:59.000Z

    for the same quantity of biomass. Finally, the distanceto ?nd the quantity of hydrogen from biomass that is likelyhow the quantity of hydrogen available from biomass varies

  7. Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass

    E-Print Network [OSTI]

    McKenzie, Heather Lorelei

    2012-01-01T23:59:59.000Z

    less recalcitrant biomass feedstocks and improved enzymes.of less recalcitrant biomass feedstocks and improvedpotential of improved biomass feedstocks and enzymes for the

  8. High-biomass sorghums for biomass biofuel production 

    E-Print Network [OSTI]

    Packer, Daniel

    2011-05-09T23:59:59.000Z

    photoperiod-sensitive (PS) hybrids within the Ma1/Ma5/Ma6 hybrid production system. High-biomass sorghums are PS and the Ma1/Ma5/Ma6 hybrid production system produces PS hybrids with PI parents by manipulating alleles at the Ma1, Ma5 and Ma6 sorghum maturity...

  9. Recommendation 177: Facilitating Early Public Input

    Broader source: Energy.gov [DOE]

    DOE should initiate consultation meetings with stake holders immediately to allow early public input into the planning for IFDP

  10. Life cycle assessment of a biomass gasification combined-cycle power system

    SciTech Connect (OSTI)

    Mann, M.K.; Spath, P.L.

    1997-12-01T23:59:59.000Z

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  11. Countering Poisonous Inputs with Memetic Neuroevolution

    E-Print Network [OSTI]

    Togelius, Julian

    Countering Poisonous Inputs with Memetic Neuroevolution Julian Togelius1 , Tom Schaul1 , J-dimensional and/or ill-chosen state description. Evidently, some controller inputs are "poisonous also ex- plore which types of inputs are poisonous for two different reinforcement learning problems. 1

  12. Publications List Refereed: (78 Total)

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    . 9(1): 37 40. Rockwood, DL. 1984. Genetic improvement potential for biomass quality and quantity 29(l): l8 22. Rockwood, DL, LF Conde, and RH Brendemuehl. l980. Biomass production of densely planted. Current status of woody biomass production research in Florida. Proc. Soil and Crop Sci. Soc. of Fla. 42

  13. Treatment of biomass to obtain ethanol

    DOE Patents [OSTI]

    Dunson, Jr., James B. (Newark, DE); Elander, Richard T. (Evergreen, CO); Tucker, III, Melvin P. (Lakewood, CO); Hennessey, Susan Marie (Avondale, PA)

    2011-08-16T23:59:59.000Z

    Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

  14. Biomass Resources for the Federal Sector

    SciTech Connect (OSTI)

    Not Available

    2005-08-01T23:59:59.000Z

    Biomass Resources for the Federal Sector is a fact sheet that explains how biomass resources can be incorporated into the federal sector, and also how they can provide opportunities to meet federal renewable energy goals.

  15. Biomass Sales and Use Tax Exemption

    Broader source: Energy.gov [DOE]

    Georgia enacted legislation in April 2006 (HB 1018) creating an exemption for biomass materials from the state's sales and use taxes. The term "biomass material" is defined as "organic matter,...

  16. Biomass Webinar Text Version | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Dowload the text version of the audio from the DOE Office of Indian Energy webinar on biomass. DOE Office of Indian Energy Foundational Course Webinar on Biomass: Text Version More...

  17. Biomass Equipment & Materials Compensating Tax Deduction

    Broader source: Energy.gov [DOE]

    In 2005, New Mexico adopted a policy to allow businesses to deduct the value of biomass equipment and biomass materials used for the processing of biopower, biofuels, or biobased products in...

  18. Conversion of Waste Biomass into Useful Products 

    E-Print Network [OSTI]

    Holtzapple, M.

    1998-01-01T23:59:59.000Z

    Waste biomass includes municipal solid waste (MSW), municipal sewage sludge (SS), industrial biosludge, manure, and agricultural residues. When treated with lime, biomass is highly digestible by a mixed culture of acid-forming microorganisms. Lime...

  19. Biomass Equipment and Materials Compensating Tax Deduction

    Broader source: Energy.gov [DOE]

    In 2005 New Mexico adopted a policy to allow businesses to deduct the value of biomass equipment and biomass materials used for the processing of biopower, biofuels or biobased products in...

  20. Biomass Feedstock Composition and Property Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Office of Energy Efficiency and Renewable Energy's Biomass Program works with industry, academia and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. Through research, development, and demonstration efforts geared at the development of integrated biorefineries, the Biomass Program is helping transform the nation's renewable and abundant biomass resources into cost competitive, high performance biofuels, bioproducts, and biopower.(From the Biomass Program's home page at http://www1.eere.energy.gov/biomass/) The Biomass Feedstock Composition and Property Database allows the user to choose from more than 150 types of biomass samples. The specialized interface then guides the user through choices within the sample (such as "Ash" as a choice in the "Hardwood" sample and displays tables based on choice of composition properties, structure properties, elemental properties, extractive properties, etc.

  1. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2001-10-01T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications.

  2. Biomass Catalyst Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    This fact sheet provides information about Biomass Catalyst Characterization Laboratory (BCCL) capabilities and applications at NREL's National Bioenergy Center.

  3. Dairy Biomass as a Renewable Fuel Source

    E-Print Network [OSTI]

    Mukhtar, Saqib; Goodrich, Barry; Engler, Cady; Capareda, Sergio

    2008-03-19T23:59:59.000Z

    biomass. This publication explains the properties of dairy manure that could make it an excellent source of fuel....

  4. Dairy Biomass as a Renewable Fuel Source 

    E-Print Network [OSTI]

    Mukhtar, Saqib; Goodrich, Barry; Engler, Cady; Capareda, Sergio

    2008-03-19T23:59:59.000Z

    biomass. This publication explains the properties of dairy manure that could make it an excellent source of fuel....

  5. Biomass Compositional Analysis Laboratory (Fact Sheet), National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Providing detailed and accurate characterization of the chemical composition of biomass feedstocks, intermediates, and products Compositional Analysis Service Capabilities...

  6. Biomass Compositional Analysis Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    This fact sheet provides information about Biomass Compositional Analysis Laboratory (BCAL) capabilities and applications at NREL's National Bioenergy Center.

  7. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2001-07-01T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts proceeded, and Carbona completed the gasifier island design package. Nexant has completed the balance of plant support systems design and the design for the biomass feed system. Work on the Technoeconomic Study is proceeding. Approximately 75% of the specified hardware quotations have been received at the end of the reporting period. A meeting is scheduled for July 23 rd and 24 th to review the preliminary cost estimates. GTI presented a status review update of the project at the DOE/NETL contractor's review meeting in Pittsburgh on June 21st.

  8. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Francis S. Lau

    2003-09-01T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Natural gas and waste coal fines were evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. A design was developed for a cofiring combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures in a power generation boiler, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. Following the preliminary design, GTI evaluated the gasification characteristics of selected feedstocks for the project. To conduct this work, GTI assembled an existing ''mini-bench'' unit to perform the gasification tests. The results of the test were used to confirm the process design completed in Phase Task 1. As a result of the testing and modeling effort, the selected biomass feedstocks gasified very well, with a carbon conversion of over 98% and individual gas component yields that matched the RENUGAS{reg_sign} model. As a result of this work, the facility appears very attractive from a commercial standpoint. Similar facilities can be profitable if they have access to low cost fuels and have attractive wholesale or retail electrical rates for electricity sales. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. Phase II has not been approved for construction at this time.

  9. Determination of Protein Content in Biomass: Laboratory Analytical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Biomass") and biomass before extraction. 2.2 This procedure is suitable for biomass feedstocks, process solids, and process liquids. 2.3 Some types of biomass feedstocks, such...

  10. Original article Micronutrients in biomass fractions

    E-Print Network [OSTI]

    Boyer, Edmond

    Original article Micronutrients in biomass fractions of holm oak, beech and fir forests biomass fractions in individual monospecific stands of holm oak (Quercus ilex L), beech (Fagus sylvatica L in different biomass fractions of the holm oak forest studied. This can be related to the low soil pH values

  11. Also inside this issue: Bioengineering Better Biomass

    E-Print Network [OSTI]

    Also inside this issue: Bioengineering Better Biomass DOE JGI/EMSL Collaborative Science Projects and degrade carbon. This is an image of the Mn(II)-oxidizing fungus Stilbella aciculosa ­ the fungal biomass Better Biomass Feedstock Science Highlights 15 Clouds up Close Improving Catalysts Pore Challenge

  12. 4, 707745, 2007 Proxies of biomass

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BGD 4, 707­745, 2007 Proxies of biomass for primary production Y. Huot et al. Title Page Abstract the best index of phytoplankton biomass for primary productivity studies? Y. Huot 1,2 , M. Babin 1,2 , F of biomass for primary production Y. Huot et al. Title Page Abstract Introduction Conclusions References

  13. Thermodynamics of Energy Production from Biomass

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Thermodynamics of Energy Production from Biomass Tad W. Patzek 1 and David Pimentel 2 1 Department #12;3 Biomass from Tropical Tree Plantations 14 3.1 Scope of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Environmental Impacts of Industrial Biomass Production . . . . . . . . . . . . . . . 16 3

  14. 4, 51355200, 2004 A review of biomass

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 4, 5135­5200, 2004 A review of biomass burning emissions, part II J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions, part II: Intensive physical properties of biomass burning particles J. S. Reid 1 , R. Koppmann 2 , T. F. Eck 3 , and D. P. Eleuterio 4 1 Marine

  15. 4, 52015260, 2004 A review of biomass

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 4, 5201­5260, 2004 A review of biomass burning emissions part III J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions part III: intensive optical properties of biomass burning particles J. S. Reid1 , T. F. Eck2 , S. A. Christopher3 , R. Koppmann4 , O. Dubovik3 , D

  16. 5, 1045510516, 2005 A review of biomass

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 5, 10455­10516, 2005 A review of biomass burning emissions, part I R. Koppmann et al. Title and Physics Discussions A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide A review of biomass burning emissions, part I R. Koppmann et al. Title Page Abstract Introduction

  17. Energie-Cits 2001 BIOMASS -WOOD

    E-Print Network [OSTI]

    Energie-Cités 2001 BIOMASS - WOOD Gasification / Cogeneration ARMAGH United Kingdom Gasification is transferring the combustible matters in organic waste or biomass into gas and pure char by burning the fuel via it allows biomass in small-scaled engines and co-generation units ­ which with conventional technologies

  18. Woody Biomass Logistics Robert Keefe1

    E-Print Network [OSTI]

    14 Woody Biomass Logistics Robert Keefe1 , Nathaniel Anderson2 , John Hogland2 , and Ken Muhlenfeld The economics of using woody biomass as a fuel or feedstock for bioenergy applications is often driven by logistical considerations. Depending on the source of the woody biomass, the acquisition cost of the material

  19. Fermentable sugars by chemical hydrolysis of biomass

    E-Print Network [OSTI]

    Raines, Ronald T.

    Fermentable sugars by chemical hydrolysis of biomass Joseph B. Binder and Ronald T. Raines1 19, 2009) Abundant plant biomass has the potential to become a sustainable source of fuels of biomass into monosaccharides. Add- ing water gradually to a chloride ionic liquid-containing catalytic

  20. Vanadium catalysts break down biomass for fuels

    E-Print Network [OSTI]

    - 1 - Vanadium catalysts break down biomass for fuels March 26, 2012 Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is an attractive alternative as a feedstock for the production of renewable chemicals and fuels. The Department

  1. Researchers at the Biomass Energy Center

    E-Print Network [OSTI]

    Lee, Dongwon

    is renewable, and can be grown domestically. In all its variet- ies, biomass is also plentiful, and hasHARVEST OF ENERGY Researchers at the Biomass Energy Center are homing in on future fuels --By David--seriously for much longer than that. These are just a few examples of biomass, plant matter that can be transformed

  2. Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass.

    SciTech Connect (OSTI)

    Xie, X.; Wang, M.; Han, J. (Energy Systems)

    2011-04-01T23:59:59.000Z

    This study expands and uses the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model to assess the effects of carbon capture and storage (CCS) technology and cellulosic biomass and coal cofeeding in Fischer-Tropsch (FT) plants on energy use and greenhouse gas (GHG) emissions of FT diesel (FTD). To demonstrate the influence of the coproduct credit methods on FTD life-cycle analysis (LCA) results, two allocation methods based on the energy value and the market revenue of different products and a hybrid method are employed. With the energy-based allocation method, fossil energy use of FTD is less than that of petroleum diesel, and GHG emissions of FTD could be close to zero or even less than zero with CCS when forest residue accounts for 55% or more of the total dry mass input to FTD plants. Without CCS, GHG emissions are reduced to a level equivalent to that from petroleum diesel plants when forest residue accounts for 61% of the total dry mass input. Moreover, we show that coproduct method selection is crucial for LCA results of FTD when a large amount of coproducts is produced.

  3. The role of biomass in California's hydrogen economy

    E-Print Network [OSTI]

    Parker, Nathan C; Ogden, Joan; Fan, Yueyue

    2009-01-01T23:59:59.000Z

    hydrogen from dry biomass feedstocks (i.e. straws, stovers,be produced from the wet biomass feedstocks (manures, urban

  4. Metal impacts on microbial biomass in the anoxic sediments of a contaminated lake

    SciTech Connect (OSTI)

    Gough, Heidi L.; Dahl, Amy L.; Nolan, Melissa A.; Gaillard, Jean-Francois; Stahl, David A.

    2008-04-26T23:59:59.000Z

    Little is known about the long-term impacts of metal contamination on the microbiota of anoxic lake sediments. In this study, we examined microbial biomass and metals (arsenic, cadmium, chromium, copper, iron, lead, manganese, and zinc) in the sediments of Lake DePue, a backwater lake located near a former zinc smelter. Sediment core samples were examined using two independent measures for microbial biomass (total microscopic counts and total phospholipid-phosphate concentrations), and for various fractions of each metal (pore water extracts, sequential extractions, and total extracts of all studied metals and zinc speciation by X-ray absorption fine structure (XAFS). Zinc concentrations were up to 1000 times higher than reported for sediments in the adjacent Illinois River, and ranged from 21,400 mg/kg near the source to 1,680 mg/kg near the river. However, solid metal fractions were not well correlated with pore water concentrations, and were not good predictors of biomass concentrations. Instead, biomass, which varied among sites by as much as two-times, was inversely correlated with concentrations of pore water zinc and arsenic as established by multiple linear regression. Monitoring of other parameters known to naturally influence biomass in sediments (e.g., organic carbon concentrations, nitrogen concentrations, pH, sediment texture, and macrophytes) revealed no differences that could explain observed biomass trends. This study provides strong support for control of microbial abundance by pore water metal concentrations in contaminated freshwater sediments.

  5. BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS -POTENTIALS, LIMITATIONS & COSTS

    E-Print Network [OSTI]

    BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS - POTENTIALS, LIMITATIONS & COSTS Senior scientist - "Towards Hydrogen Society" ·biomass resources - potentials, limits ·biomass carbon cycle ·biomass for hydrogen - as compared to other H2- sources and to other biomass paths #12;BIOMASS - THE CARBON CYCLE

  6. Intra-annual changes in biomass, carbon, and nitrogen dynamics at 4-year old switchgrass field trials in West Tennessee, USA

    SciTech Connect (OSTI)

    Garten, Jr, C. T.; Smith, Jeffery L.; Tyler, Donald D.; Amonette, James E.; Bailey, Vanessa L.; Brice, D. J.; Castro, H. F.; Graham, Robin L.; Gunderson, C. A.; Izaurralde, Roberto C.; Jardine, Philip M.; Jastrow, J. D.; Kerley, M. K.; Matamala, R.; Mayes, M. A.; Metting, F. B.; Miller, R. M.; Moran, K. K.; Post, W. M.; Sands, Ronald D.; Schadt, Christopher W.; Phillips, J. R.; Thomson, Allison M.; Vugteveen, T.; West, T. O.; Wullschleger, Stan D.

    2010-02-15T23:59:59.000Z

    Switchgrass is a potential bioenergy crop that could promote soil C sequestration in some environments. We compared four cultivars on a well-drained Alfisol to test for differences in biomass, C, and N dynamics during the fourth growing season. There was no difference (P > 0.05) among cultivars and no significant cultivar x time interaction in analyses of dry mass, C stocks, or N stocks in aboveground biomass and surface litter. At the end of the growing season, mean (±SE) aboveground biomass was 2.1±0.13 kg m-2, and surface litter dry mass was approximately 50% of aboveground biomass. Prior to harvest, the live root:shoot biomass ratio was 0.76. There was no difference (P > 0.05) among cultivars for total biomass, C, and N stocks belowground. Total belowground biomass (90-cm soil depth) as well as coarse (greater than or equal to 1 mm diameter) and fine (< 1 mm diameter) live root biomass increased from April to October. Dead roots were less than 7% of live root biomass to a depth of 90 cm. Net production of total belowground biomass (505 ±132 g m-2) occurred in the last half of the growing season. The increase in total live belowground biomass (426 ±139 g m-2) was more or less evenly divided among rhizomes, coarse, and fine roots. The N budget for annual switchgrass production was closely balanced with 6.3 g N m-2 removed by harvest of aboveground biomass and 6.7 g N m-2 supplied by fertilization. At the location of our study in west Tennessee, intra-annual changes in biomass, C, and N stocks belowground were of greater importance to crop management for C sequestration than were differences among cultivars.

  7. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2002-09-30T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

  8. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2001-12-31T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of 2002. GTI worked with DOE to develop the Statement of Work for the supplemental activities. DOE granted an interim extension of the project until the end of January 2002 to complete the contract paperwork. GTI worked with Calla Energy to develop request for continued funding to proceed with Phase II, submitted to DOE on November 1, 2001.

  9. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2002-06-30T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

  10. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2002-03-31T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

  11. Engineered plant biomass feedstock particles

    DOE Patents [OSTI]

    Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

    2012-04-17T23:59:59.000Z

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  12. US Nuclear Regulatory Commission Input to DOE Request for Information...

    Energy Savers [EERE]

    US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart...

  13. Biomass Energy Data Book, 2011, Edition 4

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wright, L.; Boundy, B.; Diegel, S. W.; Davis, S. C.

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability.

  14. Biomass Energy Data Book: Edition 2

    SciTech Connect (OSTI)

    Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Badger, Philip C [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL

    2009-12-01T23:59:59.000Z

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  15. Biomass Energy Data Book: Edition 1

    SciTech Connect (OSTI)

    Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL; Saulsbury, Bo [ORNL

    2006-09-01T23:59:59.000Z

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of the Biomass Program and the Office of Planning, Budget and Analysis in the Department of Energy's Energy Efficiency and Renewable Energy (EERE) program. Designed for use as a desk-top reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use. This is the first edition of the Biomass Energy Data Book and is currently only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass is a section on biofuels which covers ethanol, biodiesel and BioOil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is about the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also three appendices which include measures of conversions, biomass characteristics and assumptions for selected tables and figures. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  16. Biomass Energy Data Book: Edition 4

    SciTech Connect (OSTI)

    Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL; Wright, Lynn L [ORNL; Davis, Stacy Cagle [ORNL

    2011-12-01T23:59:59.000Z

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also two appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  17. Biomass Energy Data Book: Edition 3

    SciTech Connect (OSTI)

    Boundy, Robert Gary [ORNL; Davis, Stacy Cagle [ORNL

    2010-12-01T23:59:59.000Z

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the third edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  18. Biomass to Gasoline and DIesel Using Integrated Hydropyrolysis and Hydroconversion

    SciTech Connect (OSTI)

    Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; Tan, Eric; Gephart, John; Shonnard, David

    2013-01-02T23:59:59.000Z

    Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The DOE funding enabled rapid development of the IH2 technology from initial proof-of-principle experiments through continuous testing in a 50 kg/day pilot plant. As part of this project, engineering work on IH2 has also been completed to design a 1 ton/day demonstration unit and a commercial-scale 2000 ton/day IH2 unit. These studies show when using IH2 technology, biomass can be converted directly to transportation quality fuel blending components for the same capital cost required for pyrolysis alone, and a fraction of the cost of pyrolysis plus upgrading of pyrolysis oil. Technoeconomic work for IH2 and lifecycle analysis (LCA) work has also been completed as part of this DOE study and shows IH2 technology can convert biomass to gasoline and diesel blending components for less than $2.00/gallon with greater than 90% reduction in greenhouse gas emissions. As a result of the work completed in this DOE project, a joint development agreement was reached with CRI Catalyst Company to license the IH2 technology. Further larger-scale, continuous testing of IH2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.

  19. Lyonsdale Biomass LLC Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: Energy ResourcesLyonOhio: EnergyLLC Biomass

  20. Code input alternatives John C. Wright

    E-Print Network [OSTI]

    Wright, John C.

    Code input alternatives John C. Wright John Wright Oct 2009 ­ CSWIM Workshop@ORNL Extensible markup, #type, #value, #units, #help idebug, logical, 1, "", "Turn;Summary Use a data-centric model for input creation (code namelists, IPS config file, etc) Database

  1. Biomass Resource Allocation among Competing End Uses

    SciTech Connect (OSTI)

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01T23:59:59.000Z

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

  2. Estimates of US biomass energy consumption 1992

    SciTech Connect (OSTI)

    Not Available

    1994-05-06T23:59:59.000Z

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

  3. Biomass Compositional Analysis Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-07-01T23:59:59.000Z

    At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and validate analytical methods to determine the chemical composition of biomass samples before, during, and after conversion processing. These high-quality compositional analysis data are used to determine feedstock compositions as well as mass balances and product yields from conversion processes.

  4. NREL: Learning - Biomass Energy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure TheSolar Energy SponsorsBiomass

  5. Conference for Biomass and Energy, Copenhagen, 1996 published by Elsevier BIOMASS ENERGY PRODUCTION: THE GLOBAL POTENTIAL

    E-Print Network [OSTI]

    Keeling, Stephen L.

    9th Conference for Biomass and Energy, Copenhagen, 1996 ­ published by Elsevier 1 BIOMASS ENERGY PRODUCTION: THE GLOBAL POTENTIAL AND THE NET INFLUENCE ON THE CO2 CONCENTRATION G. AHAMER Austrian Federal

  6. Understanding Substrate Features Influenced by Pretreatments that Limit Biomass Deconstruction by Enzymes

    E-Print Network [OSTI]

    Gao, Xiadi

    2013-01-01T23:59:59.000Z

    Biomass feedstocks .Materials and Methods Biomass feedstocks Two kinds ofthe screening of biomass feedstocks. In this study, a one-

  7. NREL: Biomass Research - Jonathan J. Stickel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the leader (Principal Investigator) for the Mechanistic Process Modeling task of the Biomass Program. This work involves fundamental and applied research of the fluid mechanics,...

  8. Low Solids Enzymatic Saccharification of Lignocellulosic Biomass...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low Solids Enzymatic Saccharification of Lignocellulosic Biomass Laboratory Analytical Procedure (LAP) Issue Date: February 4, 2015 M. G. Resch, J. O. Baker, and S. R. Decker...

  9. NREL: Biomass Research - Eric P. Knoshaug

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in August 2000 and has since worked on engineering yeast for efficient utilization of biomass-generated pentose sugars, protein design and evolution for increased activity on...

  10. NREL: Biomass Research - Justin B. Sluiter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Justin B. Sluiter Justin Sluiter is a biomass analyst at the National Renewable Energy Laboratory's National Bioenergy Center. Justin started at NREL in 1996 working on a lignin...

  11. NREL: Biomass Research - Courtney E. Payne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and compositional analysis constituents. Courtney also mentors and manages the biomass analysis group's interns. Before joining NREL, Courtney worked as a synthetic organic...

  12. NREL: Biomass Research - Mark R. Nimlos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R. Nimlos Mark Nimlos is a Principal Scientist and Supervisor for the Biomass Molecular Sciences group in the National Bioenergy Center at the National Renewable Energy Laboratory....

  13. NREL: Biomass Research - Thermochemical Conversion Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel synthesis reactor. NREL investigates thermochemical processes for converting biomass and its residues to fuels and intermediates using gasification and pyrolysis...

  14. Biomass Catalyst Characterization Laboratory (Fact Sheet), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization Laboratory Enabling fundamental understanding of thermochemical biomass conversion catalysis and performance NREL is a national laboratory of the U.S....

  15. NREL: Biomass Research - Gregg T. Beckham

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bonds. An illustration of lignin is shown below. In current selective routes for biomass utilization, lignin is typically burned for heat and power. However, the energy and...

  16. Biomass for energy and materials Local technologies -

    E-Print Network [OSTI]

    to rural development. · Biomass can be converted to storable biofuels such as bioethanol, biodiesel (bioethanol, hydrogen and biogas) · Efficient pre-treament · Low cost enzymes · Fermentation

  17. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01T23:59:59.000Z

    use biomass, waste, or renewable resources (including wind, and  emerging  renewable  resource  technologies.   new,  and  emerging  renewable  resources.   The  goal  of 

  18. Biomass IBR Fact Sheet: Haldor Topsoe, Inc.

    Broader source: Energy.gov [DOE]

    Haldor Topsoe, Inc. will integrate the Carbona Gasification and the Haldor Topsoe TIGAS (Topsoe Integrated Gasoline Synthesis) proprietary processes to produce renewable gasoline from woody biomass.

  19. Characterization of Catalysts for Aftertreatment and Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Catalysts for Aftertreatment and Biomass-derived Fuels: Success Stories from...

  20. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01T23:59:59.000Z

    Figure 1: West Biofuels Biomass Gasification to Power process will utilize  gasification technology provided by is  pioneering the gasification technology that has been 

  1. NREL: Biomass Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to economically produce drop-in gasoline, diesel and jet fuel from non-food biomass feedstocks, the federal laboratory announced today. November 26, 2012 NREL Researchers Use...

  2. NREL: Biomass Research - Michelle L. Reed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Technologies (BAT) team. She provides compositional analysis data on biomass feedstocks and process intermediates for use in pretreatment models and techno-economic...

  3. NREL: Biomass Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    users to layer related bioenergy data onto a single map to gather information on biomass feedstocks, biopower and biofuels potential, production and distribution. BioEnergy Atlas...

  4. Biomass Gasification at The Evergreen State College

    E-Print Network [OSTI]

    Natural Gas vs. Biomass Gasification...................................................................33..........................................................................................23 Transportation Impacts and Methods of Mitigation...................................24 Biochar, the Bad, and the Slash..........................................................................31 Natural

  5. EERC Center for Biomass Utilization 2006

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke; John P. Hurley; Ted R. Aulich; Bruce C. Folkedahl; Joshua R. Strege; Nikhil Patel; Richard E. Shockey

    2009-05-27T23:59:59.000Z

    The Center for Biomass Utilization (CBU�®) 2006 project at the Energy & Environmental Research Center (EERC) consisted of three tasks related to applied fundamental research focused on converting biomass feedstocks to energy, liquid transportation fuels, and chemicals. Task 1, entitled Thermochemical Conversion of Biomass to Syngas and Chemical Feedstocks, involved three activities. Task 2, entitled Crop Oil Biorefinery Process Development, involved four activities. Task 3, entitled Management, Education, and Outreach, focused on overall project management and providing educational outreach related to biomass technologies through workshops and conferences.

  6. U-147:Red Hat Enterprise MRG Grid Input Validation Flaw

    Broader source: Energy.gov [DOE]

    The MRG Management Console (Cumin) does not properly filter HTML code from user-supplied input before displaying the input.

  7. Biomass Support for the China Renewable Energy Law: International Biomass Energy Technology Review Report, January 2006

    SciTech Connect (OSTI)

    Not Available

    2006-10-01T23:59:59.000Z

    Subcontractor report giving an overview of the biomass power generation technologies used in China, the U.S., and Europe.

  8. Evaluate Supply and Recovery of Woody Biomass for Energy

    E-Print Network [OSTI]

    Gray, Matthew

    Biomass Recovery DataContrasting Woody Biomass Recovery Data Forest Biomass Supply in the Southeastern4/11/2011 1 Evaluate Supply and Recovery of Woody Biomass for Energy Production from Natural. Other studies of biomass supply have supply have assumedassumed a technical recovery rate

  9. Bamboo: An Overlooked Biomass Resource?

    SciTech Connect (OSTI)

    Scurlock, J.M.O.

    2000-02-01T23:59:59.000Z

    Bamboo is the common term applied to a broad group (1250 species) of large woody grasses, ranging from 10 cm to 40 m in height. Already in everyday use by about 2.5 billion people, mostly for fiber and food within Asia, bamboo may have potential as a bioenergy or fiber crop for niche markets, although some reports of its high productivity seem to be exaggerated. Literature on bamboo productivity is scarce, with most reports coming from various parts of Asia. There is little evidence overall that bamboo is significantly more productive than many other candidate bioenergy crops, but it shares a number of desirable fuel characteristics with certain other bioenergy feedstocks, such as low ash content and alkali index. Its heating value is lower than many woody biomass feedstocks but higher than most agricultural residues, grasses and straws. Although non-fuel applications of bamboo biomass may be actually more profitable than energy recovery, there may also be potential for co-productio n of bioenergy together with other bamboo processing. A significant drawback is the difficulty of selective breeding, given the lack of knowledge of flowering physiology. Further research is also required on propagation techniques, establishment and stand management, and mechanized harvesting needs to be developed.

  10. Engineered plant biomass feedstock particles

    DOE Patents [OSTI]

    Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

    2011-10-18T23:59:59.000Z

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  11. Engineered plant biomass feedstock particles

    DOE Patents [OSTI]

    Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

    2011-10-11T23:59:59.000Z

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  12. Fluidized bed pyrolysis of terrestrial biomass feedstocks

    SciTech Connect (OSTI)

    Besler, S.; Agblevor, F.A.; Davis, M.F. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1994-12-31T23:59:59.000Z

    Hybrid poplar, switchgrass, and corn stover were pyrolyzed in a bench scale fluidized-bed reactor to examine the influence of storage time on thermochemical converting of these materials. The influence of storage on the thermochemical conversion of the biomass feedstocks was assessed based on pyrolysis product yields and chemical and instrumental analyses of the pyrolysis products. Although char and gas yields from corn stover feedstock were influenced by storage time, hybrid poplar and switchgrass were not significantly affected. Liquid, char, and gas yields were feedstock dependent. Total liquid yields (organic+water) varied from 58%-73% depending on the feedstock. Char yields varied from 14%-19% while gas yields ranged from 11%-15%. The chemical composition of the pyrolysis oils from hybrid polar feedstock was slightly changed by storage, however, corn stover and switchgrass feedstock showed no significant changes. Additionally, stored corn stover and hybrid poplar pyrolysis oils showed a significant decrease in their higher heating values compared to the fresh material.

  13. The optimum substrate to biomass ratio to reduce net biomass yields and inert compounds in biological leachate treatment

    E-Print Network [OSTI]

    Bae, Jin-Woo

    The optimum substrate to biomass ratio to reduce net biomass yields and inert compounds that microorganisms must satisfy their maintenance energy requirements prior to synthesizing new biomass, a set on the excess biomass production. Decreasing the supply of substrate per unit biomass resulted in gradual

  14. Biomass plants face wood supply risks Report warns giant new biomass power plants will be hugely reliant on wood chip

    E-Print Network [OSTI]

    Biomass plants face wood supply risks Report warns giant new biomass power plants will be hugely's biomass energy sector could be undermined unless businesses move to resolve the supply chain issues-scale biomass plants will leave generators largely reliant on biomass from overseas such as wood chips, elephant

  15. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems

    SciTech Connect (OSTI)

    Xu, Xiaofeng [ORNL; Thornton, Peter E [ORNL; Post, Wilfred M [ORNL

    2013-01-01T23:59:59.000Z

    Soil microbes play a pivotal role in regulating land-atmosphere interactions; the soil microbial biomass carbon (C), nitrogen (N), phosphorus (P) and C:N:P stoichiometry are important regulators for soil biogeochemical processes; however, the current knowledge on magnitude, stoichiometry, storage, and spatial distribution of global soil microbial biomass C, N, and P is limited. In this study, 3087 pairs of data points were retrieved from 281 published papers and further used to summarize the magnitudes and stoichiometries of C, N, and P in soils and soil microbial biomass at global- and biome-levels. Finally, global stock and spatial distribution of microbial biomass C and N in 0-30 cm and 0-100 cm soil profiles were estimated. The results show that C, N, and P in soils and soil microbial biomass vary substantially across biomes; the fractions of soil nutrient C, N, and P in soil microbial biomass are 1.6% in a 95% confidence interval of (1.5%-1.6%), 2.9% in a 95% confidence interval of (2.8%-3.0%), and 4.4% in a 95% confidence interval of (3.9%-5.0%), respectively. The best estimates of C:N:P stoichiometries for soil nutrients and soil microbial biomass are 153:11:1, and 47:6:1, respectively, at global scale, and they vary in a wide range among biomes. Vertical distribution of soil microbial biomass follows the distribution of roots up to 1 m depth. The global stock of soil microbial biomass C and N were estimated to be 15.2 Pg C and 2.3 Pg N in the 0-30 cm soil profiles, and 21.2 Pg C and 3.2 Pg N in the 0-100 cm soil profiles. We did not estimate P in soil microbial biomass due to data shortage and insignificant correlation with soil total P and climate variables. The spatial patterns of soil microbial biomass C and N were consistent with those of soil organic C and total N, i.e. high density in northern high latitude, and low density in low latitudes and southern hemisphere.

  16. Table 3. U.S. Inputs to biodiesel production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residentialtight oilU.S. Inputs to

  17. South Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade Year-0TotalH BV CYearInput Supplemental

  18. Generation of RTL verification input stimulus

    E-Print Network [OSTI]

    Selvarathinam, Anand Manivannan

    2001-01-01T23:59:59.000Z

    This thesis presents an approach for generating input stimulus for verification of register-transfer level (RTL) design of VLSI circuits. RTL design is often subjected to a significant verification effort due to errors introduced during manual...

  19. Successful biomass (wood pellets ) implementation in

    E-Print Network [OSTI]

    Successful biomass (wood pellets ) implementation in Estonia Biomass Utilisation of Local of primary energy in Estonia ! Wood fuels production ! Pellet firing projects in Estonia ­ SIDA Demo East Production of wood fuels in Estonia in 2002 Regional Energy Centres in Estonia Wood pellets production

  20. Liquid Transportation Fuels from Coal and Biomass

    E-Print Network [OSTI]

    Liquid Transportation Fuels from Coal and Biomass Technological Status, Costs, and Environmental for liquid fuels produced from coal or biomass. · Evaluate environmental, economic, policy, and social Impacts Panel on Alternative Liquid Transportation Fuels DOE LDV Workshop 7-26-10 Mike Ramage and Jim

  1. Lessons learned from existing biomass power plants

    SciTech Connect (OSTI)

    Wiltsee, G.

    2000-02-24T23:59:59.000Z

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  2. SEE ALSO SIDEBARS: RECOURCES SOLARRESOURCES BIOMASS & BIOFUELS

    E-Print Network [OSTI]

    Kammen, Daniel M.

    373 SEE ALSO SIDEBARS: RECOURCES · SOLARRESOURCES · BIOMASS & BIOFUELS Engineered and Artificial, and the production of liquid biofuels for transportation is growing rapidly. However, both traditional biomass energy and crop-based biofuels technologies have negative environmental and social impacts. The overall research

  3. Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass

    E-Print Network [OSTI]

    McKenzie, Heather Lorelei

    2012-01-01T23:59:59.000Z

    2.3. Effects of low pH on biomass solids……………………………. ………………of effects of low pH on biomass……………………………. ….25 2.4. Low pHof low pH biomass reactions………………………. ……………..46

  4. High Biomass Low Export Regimes in the Southern Ocean

    E-Print Network [OSTI]

    Lam, Phoebe J.; Bishop, James K.B.

    2006-01-01T23:59:59.000Z

    of enhanced carbon biomass and export at 55 degrees S duringHigh Biomass Low Export Regimes in the Southern Ocean PhoebeSurface waters with high biomass levels and high proportion

  5. Original article Biomass, litterfall and nutrient content in

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Biomass, litterfall and nutrient content in Castanea sativa coppice stands November 1995) Summary - Aboveground biomass and nutrient content, litterfall and nutrient return) and Catania (Italy). Best regression equations for the aboveground biomass were obtained by applying the allo

  6. Hydrogen from Biomass Catalytic Reforming of Pyrolysis Vapors

    E-Print Network [OSTI]

    kg H2/day) with catalyst attrition rates Biomass Feedstocks 6 CO2 +6 H2O C6 waste Issues: Biomass Availability and Costs Georgia Biomass Feedstock Supply 0 3 6 9 12 2000 2010 2020

  7. Bioconversion of waste biomass to useful products

    DOE Patents [OSTI]

    Grady, J.L.; Chen, G.J.

    1998-10-13T23:59:59.000Z

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

  8. Bioconversion of waste biomass to useful products

    DOE Patents [OSTI]

    Grady, James L. (Fayetteville, AR); Chen, Guang Jiong (Fayetteville, AR)

    1998-01-01T23:59:59.000Z

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

  9. Superheater Corrosion Produced By Biomass Fuels

    SciTech Connect (OSTI)

    Sharp, William (Sandy) [SharpConsultant] [SharpConsultant; Singbeil, Douglas [FPInnovations] [FPInnovations; Keiser, James R [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    About 90% of the world's bioenergy is produced by burning renewable biomass fuels. Low-cost biomass fuels such as agricultural wastes typically contain more alkali metals and chlorine than conventional fuels. Although the efficiency of a boiler's steam cycle can be increased by raising its maximum steam temperature, alkali metals and chlorine released in biofuel boilers cause accelerated corrosion and fouling at high superheater steam temperatures. Most alloys that resist high temperature corrosion protect themselves with a surface layer of Cr{sub 2}O{sub 3}. However, this Cr{sub 2}O{sub 3} can be fluxed away by reactions that form alkali chromates or volatilized as chromic acid. This paper reviews recent research on superheater corrosion mechanisms and superheater alloy performance in biomass boilers firing black liquor, biomass fuels, blends of biomass with fossil fuels and municipal waste.

  10. Assessment of Biomass Resources in Liberia

    SciTech Connect (OSTI)

    Milbrandt, A.

    2009-04-01T23:59:59.000Z

    Biomass resources meet about 99.5% of the Liberian population?s energy needs so they are vital to basic welfare and economic activity. Already, traditional biomass products like firewood and charcoal are the primary energy source used for domestic cooking and heating. However, other more efficient biomass technologies are available that could open opportunities for agriculture and rural development, and provide other socio-economic and environmental benefits.The main objective of this study is to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels. It intends to inform policy makers and industry developers of the biomass resource availability in Liberia, identify areas with high potential, and serve as a base for further, more detailed site-specific assessments.

  11. IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS

    SciTech Connect (OSTI)

    J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; David J. Muth; William Smith

    2012-10-01T23:59:59.000Z

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  12. Improvements of biomass deconstruction enzymes

    SciTech Connect (OSTI)

    Sale, K. L.

    2012-03-01T23:59:59.000Z

    Sandia National Laboratories and DSM Innovation, Inc. collaborated on the investigation of the structure and function of cellulases from thermophilic fungi. Sandia's role was to use its expertise in protein structure determination and X-ray crystallography to solve the structure of these enzymes in their native state and in their substrate and product bound states. Sandia was also tasked to work with DSM to use the newly solved structure to, using computational approaches, analyze enzyme interactions with both bound substrate and bound product; the goal being to develop approaches for rationally designing improved cellulases for biomass deconstruction. We solved the structures of five cellulases from thermophilic fungi. Several of these were also solved with bound substrate/product, which allowed us to predict mutations that might enhance activity and stability.

  13. Total Light Management

    Broader source: Energy.gov [DOE]

    Presentation covers total light management, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  14. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  15. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  16. For more information contact the Biomass Energy Centre, (01420) 526197 biomass.centre@forestry.gsi.gov.uk

    E-Print Network [OSTI]

    For more information contact the Biomass Energy Centre, (01420) 526197 · biomass, but with effective management, a substantial quantity of wood is available from forestry which is not suitable suppliers are available on the Biomass Energy Centre website (www

  17. For more information contact the Biomass Energy Centre, (01420) 526197 biomass.centre@forestry.gsi.gov.uk

    E-Print Network [OSTI]

    For more information contact the Biomass Energy Centre, (01420) 526197 · biomass to become the most widespread across Europe. Pellets are usually . Pellets made from other forms of biomass are available, and may be cheaper, but might be unsuitable

  18. High Tonnage Forest Biomass Production Systems from Southern...

    Broader source: Energy.gov (indexed) [DOE]

    Biomass Program Review High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations DE-EE0001036 S. Taylor (Auburn University), R. Rummer (USDA Forest...

  19. Commercialization of IH2® Biomass Direct-to-Hydrocarbon Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Commercialization of IH2 Biomass Direct-to-Hydrocarbon Fuel Technology Commercialization of IH2 Biomass Direct-to-Hydrocarbon Fuel Technology Breakout Session 2: Frontiers and...

  20. Recovery Act, Office of the Biomass Program,Funding Opportunity...

    Broader source: Energy.gov (indexed) [DOE]

    Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special Notice Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special...

  1. Biomass Compositional Analysis: NIR Rapid Methods (Fact Sheet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at NREL use near-infrared spectroscopy to predict the composition of a variety of biomass types. Photo by Dennis Schroeder, NREL 26528 Biomass Compositional Analysis: NIR...

  2. Quarterly Biomass Program/Clean Cities State Web Conference:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    feraci.pdf More Documents & Publications Quarterly Biomass ProgramClean Cities State Web Conference: May 6, 2010 Quarterly Biomass ProgramClean Cities State Web Conference: May...

  3. Quarterly Biomass Program/Clean Cities States Web Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quarterly Biomass ProgramClean Cities States Web Conference: January 21, 2010 Quarterly Biomass ProgramClean Cities States Web Conference: January 21, 2010 Presentation from the...

  4. Biomass 2014: Growing the Future Bioeconomy | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass 2014: Growing the Future Bioeconomy Biomass 2014: Growing the Future Bioeconomy An error occurred. Unable to execute Javascript. Bioenergy: America's Energy Future is a...

  5. Biomass IBR Fact Sheet: Amyris, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc. Biomass IBR Fact Sheet: Amyris, Inc. Demonstrating the conversion of sweet sorgum biomass to hydrocarbon fuel and chemicals. ibrarraamyris.pdf More Documents &...

  6. Reduction in biomass burning aerosol light absorption upon humidificat...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, Reduction in biomass burning aerosol light absorption upon...

  7. Specific Effects of Fiber Size and Fiber Swelling on Biomass...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of Fiber Size and Fiber Swelling on Biomass Substrate Surface Area and Enzymatic Digestibility. Specific Effects of Fiber Size and Fiber Swelling on Biomass Substrate...

  8. Los Alamos improves biomass-to-fuel process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass-to-fuel Process Improved Los Alamos improves biomass-to-fuel process Los Alamos scientists and collaborators published an article in the scientific journal Nature Chemistry...

  9. 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Plenary I:...

  10. High Tonnage Forest Biomass Production Systems from Southern...

    Energy Savers [EERE]

    High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations This...

  11. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,...

  12. State Grid and Shenzhen Energy Group Biomass Engineering Technology...

    Open Energy Info (EERE)

    Energy Group Biomass Engineering Technology Research Centre Jump to: navigation, search Name: State Grid and Shenzhen Energy Group Biomass Engineering Technology Research Centre...

  13. Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Plenary IV: Advances in Bioenergy...

  14. The role of biomass in California's hydrogen economy

    E-Print Network [OSTI]

    Parker, Nathan C; Ogden, Joan; Fan, Yueyue

    2009-01-01T23:59:59.000Z

    investment in biomass hydrogen infrastructure. Recall thatin biomass hydrogen infrastructure decline sharply betweento supply that hydrogen and the infrastructure is built to

  15. Lignocellulosic Biomass to Ethanol Process Design and Economics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons Advanced Bio-based Jet Fuel...

  16. attached biomass growth: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    animal manure, black liquor,etc. Waste: household waste, sewage sludge, animal manure, slaughterhouse waste. 12;Biomass characteristics Biomass is a storable...

  17. aboveground biomass distributions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    animal manure, black liquor,etc. Waste: household waste, sewage sludge, animal manure, slaughterhouse waste. 12;Biomass characteristics Biomass is a storable...

  18. algal biomass biosorbents: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    animal manure, black liquor,etc. Waste: household waste, sewage sludge, animal manure, slaughterhouse waste. 12;Biomass characteristics Biomass is a storable...

  19. advanced biomass reburning: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    animal manure, black liquor,etc. Waste: household waste, sewage sludge, animal manure, slaughterhouse waste. 12;Biomass characteristics Biomass is a storable...

  20. SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY

    E-Print Network [OSTI]

    Figueroa, C.

    2012-01-01T23:59:59.000Z

    Pressure on the Steam Gasification of Biomass," Departmentof Energy, Catalytic Steam Gasification of Biomass, 11 AprilII. DISCUSSION III. GASIFICATION/LIQUEFACTION DESIGN BASIS

  1. Forest Carbon and Biomass Energy - LCA Issues and Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forest Carbon and Biomass Energy - LCA Issues and Challenges Forest Carbon and Biomass Energy - LCA Issues and Challenges Breakout Session 2D-Building Market Confidence and...

  2. Progress toward Biomass and Coal-Derived Syngas Warm Cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progress toward Biomass and Coal-Derived Syngas Warm Cleanup: Proof-of-Concept Process Demonstration of Multicontaminant Removal Progress toward Biomass and Coal-Derived Syngas...

  3. DOE Announces Webinars on Natural Gas for Biomass Technologies...

    Office of Environmental Management (EM)

    Natural Gas for Biomass Technologies, Additive Manufacturing for Fuel Cells, and More DOE Announces Webinars on Natural Gas for Biomass Technologies, Additive Manufacturing for...

  4. High-Speed Pipeline Revs Up Biomass Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    Researchers at the National Renewable Energy Laboratory (NREL) have developed a new biomass evaluation process that opens up research avenues into understanding and manipulating biomass recalcitrance.

  5. USDA and DOE Award Biomass Research and Development Grants to...

    Broader source: Energy.gov (indexed) [DOE]

    and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. For more information on DOE's Biomass Program,...

  6. great basin naturalist 502 1990 ppap 121 134 FOLIAGE BIOMASS AND COVER relationships BETWEEN

    E-Print Network [OSTI]

    inin the great basin and southwest both species are aggressive and can nearly eliminate the previous the range of site conditions sampled treetiee dominated plots varied by about two to one cover inin shrub twototwotroto to one total foliage biomass inin both tree and shrub dominated plots correlated best

  7. Environmental Transport Input Parameters for the Biosphere Model

    SciTech Connect (OSTI)

    M. Wasiolek

    2004-09-10T23:59:59.000Z

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]).

  8. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    SciTech Connect (OSTI)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01T23:59:59.000Z

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  9. EERC Center for Biomass Utilization 2005

    SciTech Connect (OSTI)

    Zygarlicke, C.J.; Schmidt, D.D.; Olson, E.S.; Leroux, K.M.; Wocken, C.A.; Aulich, T.A.; WIlliams, K.D.

    2008-07-28T23:59:59.000Z

    Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.

  10. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect (OSTI)

    Vladimir Zamansky; Chris Lindsey; Vitali Lissianski

    2000-01-28T23:59:59.000Z

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the ninth reporting period (September 27--December 31, 1999), EER prepared a paper Kinetic Model of Biomass Reburning and submitted it for publication and presentation at the 28th Symposium (International) on Combustion, University of Edinburgh, Scotland, July 30--August 4, 2000. Antares Group Inc, under contract to Niagara Mohawk Power Corporation, evaluated the economic feasibility of biomass reburning options for Dunkirk Station. A preliminary report is included in this quarterly report.

  11. A study of algal biomass potential in selected Canadian regions.

    SciTech Connect (OSTI)

    Passell, Howard David; Roach, Jesse Dillon; Klise, Geoffrey T.

    2011-11-01T23:59:59.000Z

    A dynamic assessment model has been developed for evaluating the potential algal biomass and extracted biocrude productivity and costs, using nutrient and water resources available from waste streams in four regions of Canada (western British Columbia, Alberta oil fields, southern Ontario, and Nova Scotia). The purpose of this model is to help identify optimal locations in Canada for algae cultivation and biofuel production. The model uses spatially referenced data across the four regions for nitrogen and phosphorous loads in municipal wastewaters, and CO{sub 2} in exhaust streams from a variety of large industrial sources. Other data inputs include land cover, and solar insolation. Model users can develop estimates of resource potential by manipulating model assumptions in a graphic user interface, and updated results are viewed in real time. Resource potential by location can be viewed in terms of biomass production potential, potential CO{sub 2} fixed, biocrude production potential, and area required. The cost of producing algal biomass can be estimated using an approximation of the distance to move CO{sub 2} and water to the desired land parcel and an estimation of capital and operating costs for a theoretical open pond facility. Preliminary results suggest that in most cases, the CO{sub 2} resource is plentiful compared to other necessary nutrients (especially nitrogen), and that siting and prospects for successful large-scale algae cultivation efforts in Canada will be driven by availability of those other nutrients and the efficiency with which they can be used and re-used. Cost curves based on optimal possible siting of an open pond system are shown. The cost of energy for maintaining optimal growth temperatures is not considered in this effort, and additional research in this area, which has not been well studied at these latitudes, will be important in refining the costs of algal biomass production. The model will be used by NRC-IMB Canada to identify promising locations for both demonstration and pilot-scale algal cultivation projects, including the production potential of using wastewater, and potential land use considerations.

  12. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:

  13. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 4 6 0 0 6

  14. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 4 6 0 0 6

  15. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 4 6 0 0

  16. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 4 6 0 0

  17. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 4 6 0 09

  18. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 4 6 0 097

  19. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 4 6 0

  20. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 4 6 01 3

  1. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 4 6 01 35

  2. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 4 6 01

  3. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 4 6 013

  4. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 4 6 0139

  5. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 4 6

  6. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 4 60

  7. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 4 604

  8. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 4 6043

  9. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 4 604376

  10. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 4 6043763

  11. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 4

  12. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 42 4 1 0

  13. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 42 4 1 00

  14. Biomass production from inland brines

    SciTech Connect (OSTI)

    Reach, C.D. Jr.

    1985-01-01T23:59:59.000Z

    The feasibility of utilizing inland saline waters to produce biomass through the application of marine aquaculture was investigated. From available data, the diatom Phaeodactylum tricornutum and the crustacea Artemia salina were selected as the experimental marine organisms. The proposed diatom served to establish primary productivity and concurrently provide a food source for the herbivorus crustacea. The objective of the first phase research was to investigate the ability of P. tricornutum and A. salina to survive in the inland saline environment. Clarified activated sludge and anaerobic digester effluents were evaluated as nutrient sources for the diatom cultures. Experimental results indicated that diatom and crustacea growth in the inland brine was equivalent to control cultures utilizing seawater. Wastewater effluents were successful as nutrient sources for the diatom cultures. Bioassay experiments conducted with petroleum related brines yielded mixed results respect to the survival and growth of the P. tricornutum and A. salina organisms. A second series of experiments involved cholornaphthalene, chlorophenanthene, and chlorophenanthrene, and chloroanthracene as the experimental hydrocarbons. Results of the diatom studies show chloroanthracene to induce toxic effects at a concentration of 500 ug/L. Artemia studies showed no acutely toxic effects relative to the test hydrocarbons at 50 and 100 ug/L.

  15. Mixed plantations of eucalyptus and leguminous trees enhance biomass production. Forest Service research paper (Final)

    SciTech Connect (OSTI)

    DeBell, D.S.; Whitesell, C.D.; Schubert, T.H.

    1985-07-01T23:59:59.000Z

    Two Eucalyptus species--E. Saligna and E. grandis--are especially favored in Hawaii for wood, fiber, and fuel production because of their quick growth and high yields. Their growth is limited, however, on many sites by low levels of available nitrogen. Supplemental nitrogen can be provided by nitrogen-fixing plants, such as legumes. A test was conducted to determine whether planting two leguminous species--Acacia melanoxylon and Albizia falcataria Fosberg--could increase biomass production. Total biomass production was much greater in the mixed-species plantations than in the pure Eucalyptus plantation.

  16. Total Synthesis of (?)-Himandrine

    E-Print Network [OSTI]

    Movassaghi, Mohammad

    We describe the first total synthesis of (?)-himandrine, a member of the class II galbulimima alkaloids. Noteworthy features of this chemistry include a diastereoselective Diels?Alder reaction in the rapid synthesis of the ...

  17. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01T23:59:59.000Z

    char from the gasifier  to  the  char  combustor  and  heat from  the  char  combustor  back  to  the  gasifier.   Such exhaust stream of the Char Combustor (R?2).  The biomass is 

  18. Biomass Energy and Competition for Land

    E-Print Network [OSTI]

    Reilly, John

    We describe an approach for incorporating biomass energy production and competition for land into the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the world economy, ...

  19. Sandia National Laboratories: pretreatment for biomass deconstruc...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pretreatment for biomass deconstruc-tion of switchgrass "Bionic" Liquids from Lignin: Joint BioEnergy Institute Results Pave the Way for Closed-Loop Biofuel Refineries On December...

  20. Assessment of Biomass Resources in Afghanistan

    SciTech Connect (OSTI)

    Milbrandt, A.; Overend, R.

    2011-01-01T23:59:59.000Z

    Afghanistan is facing many challenges on its path of reconstruction and development. Among all its pressing needs, the country would benefit from the development and implementation of an energy strategy. In addition to conventional energy sources, the Afghan government is considering alternative options such as energy derived from renewable resources (wind, solar, biomass, geothermal). Biomass energy is derived from a variety of sources -- plant-based material and residues -- and can be used in various conversion processes to yield power, heat, steam, and fuel. This study provides policymakers and industry developers with information on the biomass resource potential in Afghanistan for power/heat generation and transportation fuels production. To achieve this goal, the study estimates the current biomass resources and evaluates the potential resources that could be used for energy purposes.

  1. COUNTERCURRENT CONVERSION OF BIOMASS TO SUGARS 

    E-Print Network [OSTI]

    Yang, Russell

    2015-04-17T23:59:59.000Z

    Our goal was to research and implement a countercurrent system to run enzymatic saccharification of biomass. The project provided clear results to show that this method is more efficient than the batch process that companies currently employ. Excess...

  2. Tax Credit for Forest Derived Biomass

    Broader source: Energy.gov [DOE]

    Forest-derived biomass includes tree tops, limbs, needles, leaves, and other woody debris leftover from activities such as timber harvesting, forest thinning, fire suppression, or forest health m...

  3. Countercurrent Conversion of Biomass to Sugars 

    E-Print Network [OSTI]

    Brooks, Heather Lauren

    2014-09-26T23:59:59.000Z

    Our goal was to research and implement a countercurrent system to run enzymatic saccharification of biomass. The project provided clear results to show that this method is more efficient than the batch process that companies currently employ. Excess...

  4. Tribal Renewable Energy Curriculum Foundational Course: Biomass...

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Department of Energy Office of Indian Energy foundational course webinar on biomass renewable energy by clicking on the .swf link below. You can also download the PowerPoint...

  5. Ozone treatment of biomass to enhance digestibility 

    E-Print Network [OSTI]

    Almendarez, Maria Elena

    2000-01-01T23:59:59.000Z

    is very resistant to enzymatic degradation. Lignocellulosic materials require pretreatment to enhance their digestibility. The main objective of this research was to further enhance the digestibility of biomass (bagasse) with ozonation as a follow...

  6. Ozone treatment of biomass to enhance digestibility

    E-Print Network [OSTI]

    Almendarez, Maria Elena

    2000-01-01T23:59:59.000Z

    is very resistant to enzymatic degradation. Lignocellulosic materials require pretreatment to enhance their digestibility. The main objective of this research was to further enhance the digestibility of biomass (bagasse) with ozonation as a follow...

  7. Biomass 2014: Growing the Future Bioeconomy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Register for Biomass 2014 today and don’t miss your chance to take part in this important event that will help move the nation to a more secure, sustainable, and economically sound future.

  8. Biomass energy : a real estate investment perspective

    E-Print Network [OSTI]

    Foo, Chester Ren Jie

    2014-01-01T23:59:59.000Z

    A central consideration in real estate is how value is created in real estate development and investment deals. A biomass power plant is not only an asset which generates revenues, but from a real estate perspective, it ...

  9. Relating forest biomass to SAR data

    SciTech Connect (OSTI)

    LeToan, T.; Beaudoin, A. (Centre d'Etude Spatiale des Rayonnements CNRS- Univ. Paul Sabatier Toulouse (FR)); Riom, J.; Guyon, D. (Lab. de Bioclimatologie INRA, Bordeaux (FR))

    1992-03-01T23:59:59.000Z

    This paper presents the results of an experiment defined to demonstrate the use of radar to retrieve forest biomass. The SAR data, after calibration, has been analyzed together with ground data collected on forest stands from young stage (8 yrs) to nature stage (46 yrs). The dynamic range of the radar backscatter intensity from forest was found maximum at P-band and decreases with increasing frequencies. Also, cross-polarized backscatter intensity yields the best sensitivities to variations of forest biomass. L-band data confirmed past results on good correlation with forest parameters. The most striking observation has been the strong correlation of P-band backscatter intensity to forest biomass. In order to develop algorithms to infer forest biomass from spaceborne SAR's, the experimental results will be compared with observations on other forest ecosystems and will be interpreted by theoretical modeling.

  10. Biomass Technology Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic...

  11. Biomass reforming processes in hydrothermal media

    E-Print Network [OSTI]

    Peterson, Andrew A

    2009-01-01T23:59:59.000Z

    While hydrothermal technologies offer distinct advantages in being able to process a wide variety of biomass feedstocks, the composition of the feedstock will have a large effect on the processing employed. This thesis ...

  12. Total Crude Oil and Products Exports by Destination

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"YearProductionShaleInput Product: Total Input2009

  13. Process for the treatment of lignocellulosic biomass

    DOE Patents [OSTI]

    Dale, Bruce E.

    2014-07-08T23:59:59.000Z

    A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

  14. Process for the treatment of lignocellulosic biomass

    DOE Patents [OSTI]

    Dale, Bruce E.; Lynd, Lee R.; Laser, Mark

    2013-03-12T23:59:59.000Z

    A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

  15. Direct conversion of algal biomass to biofuel

    DOE Patents [OSTI]

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14T23:59:59.000Z

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  16. Biomass Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartmentWindConversionResults in FirstBiomassBlast:PeerBiomass

  17. Biosorption of Trivalent Chromium on the Brown Seaweed Biomass

    E-Print Network [OSTI]

    Volesky, Bohumil

    Biosorption of Trivalent Chromium on the Brown Seaweed Biomass Y E O U N G - S A N G Y U N , D O N brown alga Ecklonia biomass as a model system. Titration of the biomass revealed that it contains that various biosorbents are able to effectively remove chromium (4-11). Some of the biomass types have

  18. Method of producing hydrogen, and rendering a contaminated biomass inert

    DOE Patents [OSTI]

    Bingham, Dennis N. (Idaho Falls, ID) [Idaho Falls, ID; Klingler, Kerry M. (Idaho Falls, ID) [Idaho Falls, ID; Wilding, Bruce M. (Idaho Falls, ID) [Idaho Falls, ID

    2010-02-23T23:59:59.000Z

    A method for rendering a contaminated biomass inert includes providing a first composition, providing a second composition, reacting the first and second compositions together to form an alkaline hydroxide, providing a contaminated biomass feedstock and reacting the alkaline hydroxide with the contaminated biomass feedstock to render the contaminated biomass feedstock inert and further producing hydrogen gas, and a byproduct that includes the first composition.

  19. Barnsley Biomass Working towards carbon emissions reduction in Yorkshire

    E-Print Network [OSTI]

    Barnsley Biomass Working towards carbon emissions reduction in Yorkshire objectives Fifteen years Yorkshire town are being replaced by a cleaner, green alternative: biomass. Barnsley's Communal Biomass on to residents. · To increase energy efficiency. · To develop biomass usage in new and refurbished public

  20. Canada Biomass-Bioenergy Report May 31, 2006

    E-Print Network [OSTI]

    Canada Biomass-Bioenergy Report May 31, 2006 Doug Bradley President Climate Change Solutions;2 Table of Contents 1. Policy Setting 2. Biomass Volumes 2.1. Woody Biomass 2.1.1. Annual Residue Production 2.1.2. Pulp Chips 2.1.3. Existing Hog Fuel Piles 2.1.4. Forest Floor Biomass 2.2. Agricultural

  1. The Biomass Energy Data Book Center for Transportation Analysis

    E-Print Network [OSTI]

    of biomass feedstocks to their end use, including discussions on sustainability. This work is sponsored

  2. Green Computing input for better outcomes

    E-Print Network [OSTI]

    Amir, Yair

    Journal Profile: Udi Dahan Green Maturity Model for Virtualization Profiling Energy Usage for Efficient suggests that tracking energy consumption at every level will become the factor of success for greenGreen Computing input for better outcomes Learn the discipline, pursue the art, and contribute

  3. SWAT 2012 Input/Output Documentation

    E-Print Network [OSTI]

    Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L.

    2013-03-04T23:59:59.000Z

    The Soil and Water Assessment Tool (SWAT) is a comprehensive model that requires a diversity of information in order to run. Novice users may feel overwhelmed by the variety and number of inputs when they first begin to use the model. This document...

  4. Consanguine Calculations Input File: blood.in

    E-Print Network [OSTI]

    California at Berkeley, University of

    1 of 20 Problem A+ Consanguine Calculations Input File: blood.in Every person's blood has 2 markers in a particular ABO blood type for that person. Combination ABO Blood Type AA A AB AB AO A BB B BO B OO O Likewise, every person has two alleles for the blood Rh factor, represented by the characters + and -. Someone who

  5. Asynchronous vs Synchronous Input-Queued Switches

    E-Print Network [OSTI]

    of high-performance switches. 1 INTRODUCTION A vast technical literature exists on input-queued (IQ to performance losses in comparison with synchronous cell switching, these losses are limited, and may be smaller than the losses due to the above-mentioned segmenta- tion/reassembly overheads. In real scenarios

  6. Asynchronous vs Synchronous Input-Queued Switches

    E-Print Network [OSTI]

    for the design of high-performance switches. I. INTRODUCTION A vast technical literature exists on input. Unfortunately the technical literature has largely neglected this situation, and concentrated the attention throughput, or to simpler scheduling. Even when the asynchronous operation leads to performance losses

  7. Inhalation Exposure Input Parameters for the Biosphere Model

    SciTech Connect (OSTI)

    M. Wasiolek

    2006-06-05T23:59:59.000Z

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This report is concerned primarily with the physical attributes of airborne particulate matter, such as the airborne concentrations of particles and their sizes. The conditions of receptor exposure (duration of exposure in various microenvironments), breathing rates, and dosimetry of inhaled particulates are discussed in more detail in ''Characteristics of the Receptor for the Biosphere Model'' (BSC 2005 [DIRS 172827]).

  8. U-252: Barracuda Web Filter Input Validation Flaws Permit Cross...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Barracuda Web Filter Input Validation Flaws Permit Cross-Site Scripting Attacks U-252: Barracuda Web Filter Input Validation Flaws Permit Cross-Site Scripting Attacks September...

  9. T-623: HP Business Availability Center Input Validation Hole...

    Broader source: Energy.gov (indexed) [DOE]

    3: HP Business Availability Center Input Validation Hole Permits Cross-Site Scripting Attacks T-623: HP Business Availability Center Input Validation Hole Permits Cross-Site...

  10. V-139: Cisco Network Admission Control Input Validation Flaw...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Cisco Network Admission Control Input Validation Flaw Lets Remote Users Inject SQL Commands V-139: Cisco Network Admission Control Input Validation Flaw Lets Remote Users Inject...

  11. USDA, Departments of Energy and Navy Seek Input from Industry...

    Office of Environmental Management (EM)

    Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation USDA, Departments of Energy and Navy Seek Input from Industry...

  12. U-219: Symantec Web Gateway Input Validation Flaws Lets Remote...

    Broader source: Energy.gov (indexed) [DOE]

    9: Symantec Web Gateway Input Validation Flaws Lets Remote Users Inject SQL Commands, Execute Arbitrary Commands, and Change User Passwords U-219: Symantec Web Gateway Input...

  13. Review: Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect (OSTI)

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-07-16T23:59:59.000Z

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  14. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect (OSTI)

    Jay R. Gunderson; Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2002-05-01T23:59:59.000Z

    The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience damaging fouling when switched to higher-volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early with biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the boiler, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides in combination with different flue gas temperatures because of changes in fuel heating value, which can adversely affect ash deposition behavior.

  15. Contribution of Ocean, Fossil Fuel, Land Biosphere and Biomass Burning Carbon1 Fluxes to Seasonal and Interannual Variability in Atmospheric CO22

    E-Print Network [OSTI]

    Mahowald, Natalie

    1 Contribution of Ocean, Fossil Fuel, Land Biosphere and Biomass Burning Carbon1 Fluxes to Seasonal et al., 1989].18 Anthropogenic fossil fuel combustion and cement manufacture drive most of the recent by deforestation, discussed below) over the last 50 years. The fossil fuel plus4 cement input, in contrast

  16. Total Energy Monitor

    SciTech Connect (OSTI)

    Friedrich, S

    2008-08-11T23:59:59.000Z

    The total energy monitor (TE) is a thermal sensor that determines the total energy of each FEL pulse based on the temperature rise induced in a silicon wafer upon absorption of the FEL. The TE provides a destructive measurement of the FEL pulse energy in real-time on a pulse-by-pulse basis. As a thermal detector, the TE is expected to suffer least from ultra-fast non-linear effects and to be easy to calibrate. It will therefore primarily be used to cross-calibrate other detectors such as the Gas Detector or the Direct Imager during LCLS commissioning. This document describes the design of the TE and summarizes the considerations and calculations that have led to it. This document summarizes the physics behind the operation of the Total Energy Monitor at LCLS and derives associated engineering specifications.

  17. Estuaries Vol. 18, No. 16, p. 285-314 March 1995 Inputs, Transformations, and Transport of

    E-Print Network [OSTI]

    Boynton, Walter R.

    ) and total phosphorus (TP) for ChesapeakeBay and three of its tributaryestuaries(Potomac, Patuxent-yrrecord for the SusquehannaRiver indicatesthatannual loads of TN and TP have varied by about 2-fold and 4% of the TN and TP inputs to the mainstreamChesapeake and Potomac River. The direct depositionof

  18. AgraPure Mississippi Biomass Project

    SciTech Connect (OSTI)

    Blackwell,D.A; Broadhead, L.W.; Harrell, W.J.

    2006-03-31T23:59:59.000Z

    The AgraPure Mississippi Biomass project was a congressionally directed project, initiated to study the utilization of Mississippi agricultural byproducts and waste products in the production of bio-energy and to determine the feasibility of commercialization of these agricultural byproducts and waste products as feedstocks in the production of energy. The final products from this project were two business plans; one for a Thermal plant, and one for a Biodiesel/Ethanol plant. Agricultural waste fired steam and electrical generating plants and biodiesel plants were deemed the best prospects for developing commercially viable industries. Additionally, oil extraction methods were studied, both traditional and two novel techniques, and incorporated into the development plans. Mississippi produced crop and animal waste biomasses were analyzed for use as raw materials for both industries. The relevant factors, availability, costs, transportation, storage, location, and energetic value criteria were considered. Since feedstock accounts for more than 70 percent of the total cost of producing biodiesel, any local advantages are considered extremely important in developing this particular industry. The same factors must be evaluated in assessing the prospects of commercial operation of a steam and electrical generation plant. Additionally, the access to the markets for electricity is more limited, regulated and tightly controlled than the liquid fuel markets. Domestically produced biofuels, both biodiesel and ethanol, are gaining more attention and popularity with the consuming public as prices rise and supplies of foreign crude become less secure. Biodiesel requires no major modifications to existing diesel engines or supply chain and offers significant environmental benefits. Currently the biodiesel industry requires Federal and State incentives to allow the industry to develop and become self-sustaining. Mississippi has available the necessary feedstocks and is geographically located to be able to service a regional market. Other states have active incentive programs to promote the industry. Mississippi has adopted an incentive program for ethanol and biodiesel; however, the State legislature has not funded this program, leaving Mississippi at a disadvantage when compared to other states in developing the bio-based liquid fuel industry. With all relevant factors being considered, Mississippi offers several advantages to developing the biodiesel industry. As a result of AgraPure's work and plan development, a private investor group has built a 7,000 gallon per day facility in central Mississippi with plans to build a 10 million gallon per year biodiesel facility. The development of a thermochemical conversion/generation facility requires a much larger financial commitment, making a longer operational time necessary to recover the capital invested. Without a renewable portfolio standard to put a floor under the price, or the existence of a suitable steam host, the venture is not economically viable. And so, it has not met with the success of the biodiesel plan. While the necessary components regarding feedstocks, location, permitting and technology are all favorable; the market is not currently favorable for the development of this type of project. In this region there is an abundance of energy generation capacity. Without subsidies or a Mississippi renewable portfolio standard requiring the renewable energy to be produced from Mississippi raw materials, which are not available for the alternative energy source selected by AgraPure, this facility is not economically viable.

  19. Biomass Feedstock and Conversion Supply System Design and Analysis

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Mohammad S. Roni; Patrick Lamers; Kara G. Cafferty

    2014-09-01T23:59:59.000Z

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets. The 2012 $55/dry T. programmatic target included only logistics costs with a limited focus on biomass quantity, quality and did not include a grower payment. The 2017 Design Case explores two approaches to addressing the logistics challenge: one is an agronomic solution based on blending and integrated landscape management and the second is a logistics solution based on distributed biomass preprocessing depots. The concept behind blended feedstocks and integrated landscape management is to gain access to more regional feedstock at lower access fees (i.e., grower payment) and to reduce preprocessing costs by blending high quality feedstocks with marginal quality feedstocks. Blending has been used in the grain industry for a long time; however, the concept of blended feedstocks in the biofuel industry is a relatively new concept. The blended feedstock strategy relies on the availability of multiple feedstock sources that are blended using a least-cost formulation within an economical supply radius, which, in turn, decreases the grower payment by reducing the amount of any single biomass. This report will introduce the concepts of blending and integrated landscape management and justify their importance in meeting the 2017 programmatic goals.

  20. Biomass Thermochemical Conversion Program. 1983 Annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01T23:59:59.000Z

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  1. Pyrolysis and ignition behavior of coal, cattle biomass, and coal/cattle biomass blends 

    E-Print Network [OSTI]

    Martin, Brandon Ray

    2009-05-15T23:59:59.000Z

    derived from biomass. Current research at Texas A&M University is focused on the effectiveness of using cattle manure biomass as a fuel source in conjunction with coal burning utilities. The scope of this project includes fuel property analysis, pyrolysis...

  2. Pyrolysis and ignition behavior of coal, cattle biomass, and coal/cattle biomass blends

    E-Print Network [OSTI]

    Martin, Brandon Ray

    2009-05-15T23:59:59.000Z

    derived from biomass. Current research at Texas A&M University is focused on the effectiveness of using cattle manure biomass as a fuel source in conjunction with coal burning utilities. The scope of this project includes fuel property analysis, pyrolysis...

  3. Impacts of atmospheric nutrient inputs on marine biogeochemistry

    E-Print Network [OSTI]

    Krishnamurthy, Aparna; Moore, J. Keith; Mahowald, Natalie; Luo, Chao; Zender, Charles S

    2010-01-01T23:59:59.000Z

    Extensive use of fossil fuels and N and P in fertilizer hasto agricultural use and fossil fuel consumption has resultedand combustion sources (fossil fuel, biomass burning, and

  4. Total Precipitable Water

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

  5. Input to Priorities Panel August 7, 2012

    E-Print Network [OSTI]

    Input to Priorities Panel August 7, 2012 Jeff Freidberg MIT 1 #12;The Emperor of Fusion has · Comparison (1 GW overnight cost) · Coal $ 3B · Gas $ 1B · Nuclear $ 4B · Wind $ 2B · Solar-T $ 3B · ITER $25B option · Tough MHD, heating, current drive, transport · I doubt it will achieve its mission · Still

  6. Carbonic Acid Pretreatment of Biomass

    SciTech Connect (OSTI)

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31T23:59:59.000Z

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic acid compared to water alone. 6) Determine optimal conditions for carbonic acid pretreatment of aspen wood. Optimal severities appeared to be in the mid range tested. ASPEN-Plus modeling and economic analysis of the process indicate that the process could be cost competitive with sulfuric acid if the concentration of solids in the pretreatment is maintained very high (~50%). Lower solids concentrations result in larger reactors that become expensive to construct for high pressure applications.

  7. Soft-Input Soft-Output Sphere Decoding Christoph Studer

    E-Print Network [OSTI]

    Soft-Input Soft-Output Sphere Decoding Christoph Studer Integrated Systems Laboratory ETH Zurich Soft-input soft-output (SISO) detection in multiple-input multiple-output (MIMO) systems constitutes Laboratory ETH Zurich, 8092 Zurich, Switzerland Email: boelcskei@nari.ee.ethz.ch Abstract--Soft-input soft

  8. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply

    SciTech Connect (OSTI)

    Perlack, R.D.

    2005-12-15T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

  9. 1982 annual report: Biomass Thermochemical Conversion Program

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1983-01-01T23:59:59.000Z

    This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

  10. Biomass Reburning: Modeling/Engineering Studies

    SciTech Connect (OSTI)

    Vladimir M. Zamansky

    1998-01-20T23:59:59.000Z

    Reburning is a mature fuel staging NO{sub x} control technology which has been successfully demonstrated at full scale by Energy and Environmental Research Corporation (EER) and others on numerous occasions. Based on chemical kinetic modeling and experimental combustion studies, EER is currently developing novel concepts to improve the efficiency of the basic gas reburning process and to utilize various renewable and waste fuels for NO{sub x} control. This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. Basic and advanced biomass reburning have the potential to achieve 60-90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The scope of work includes modeling studies (kinetic, CFD, and physical modeling), experimental evaluation of slagging and fouling associated with biomass reburning, and economic study of biomass handling requirements. Project participants include: EER, FETC R and D group, Niagara Mohawk Power Corporation and Antares, Inc. Most of the combustion experiments on development of biomass reburning technologies are being conducted in the scope of coordinated SBIR program funded by USDA. The first reporting period (October 1--December 31, 1997) included preparation of project management plan and organization of project kick-off meeting at DOE FETC. The quarterly report briefly describes the management plan and presents basic information about the kick-off meeting.

  11. Biomass Thermochemical Conversion Program. 1984 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1985-01-01T23:59:59.000Z

    The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

  12. BIOMASS TO BIO-OIL BY LIQUEFACTION

    SciTech Connect (OSTI)

    Wang, Huamin; Wang, Yong

    2013-01-10T23:59:59.000Z

    Significant efforts have been devoted to develop processes for the conversion of biomass, an abundant and sustainable source of energy, to liquid fuels and chemicals, in order to replace diminishing fossil fuels and mitigate global warming. Thermochemical and biochemical methods have attracted the most attention. Among the thermochemical processes, pyrolysis and liquefaction are the two major technologies for the direct conversion of biomass to produce a liquid product, often called bio-oil. This chapter focuses on the liquefaction, a medium-temperature and high-pressure thermochemical process for the conversion of biomass to bio-oil. Water has been most commonly used as a solvent and the process is known as hydrothermal liquefaction (HTL). Fundamentals of HTL process, key factors determining HTL behavior, role of catalyst in HTL, properties of produced bio-oil, and the current status of the technology are summarized. The liquefaction of biomass by using organic solvents, a process called solvolysis, is also discussed. A wide range of biomass feedstocks have been tested for liquefaction including wood, crop residues, algae, food processing waste, and animal manure.

  13. Specialists' workshop on fast pyrolysis of biomass

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    This workshop brought together most of those who are currently working in or have published significant findings in the area of fast pyrolysis of biomass or biomass-derived materials, with the goal of attaining a better understanding of the dominant mechanisms which produce olefins, oxygenated liquids, char, and tars. In addition, background papers were given in hydrocarbon pyrolysis, slow pyrolysis of biomass, and techniques for powdered-feedstock preparation in order that the other papers did not need to introduce in depth these concepts in their presentations for continuity. In general, the authors were requested to present summaries of experimental data with as much interpretation of that data as possible with regard to mechanisms and process variables such as heat flux, temperatures, partial pressure, feedstock, particle size, heating rates, residence time, etc. Separate abstracts have been prepared of each presentation for inclusion in the Energy Data Base. (DMC)

  14. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect (OSTI)

    Greg F. Weber; Christopher J. Zygarlicke

    2001-05-01T23:59:59.000Z

    In summary, stoker-fired boilers that cofire or switch to biomass fuel may potentially have to deal with ash behavior issues such as production of different concentrations and quantities of fine particulate or aerosols and ash-fouling deposition. Stoker boiler operators that are considering switching to biomass and adding potential infrastructure to accommodate the switch may also at the same time be looking into upgrades that will allow for generating additional power for sale on the grid. This is the case for the feasibility study being done currently for a small (<1-MW) stoker facility at the North Dakota State Penitentiary, which is considering not only the incorporation of a lower-cost biomass fuel but also a refurbishing of the stoker boiler to burn slightly hotter with the ability to generate more power and sell excess energy on the grid. These types of fuel and boiler changes can greatly affect ash behavior issues.

  15. Nuclear war, US agriculture, and biomass energy

    SciTech Connect (OSTI)

    Chester, C.V.

    1986-01-01T23:59:59.000Z

    In the event of most of the plausible scenarios for nuclear war, most US farms and farm populations are likely to survive. Fallout and ''Nuclear Winter'' are likely to cause loss of at least one year's production, which can be endured if surviving grain stocks can be distributed to the surviving population. A year after the attack when fallout radiation has decayed by a factor of 10/sup 5/, in most areas the major threat to resumed farm production is damage to oil refining capability. Biomass could be an invulnerable alternative to petroleum fuels on the farm if in peacetime the costs can be made competitive and ease and convenience of use made acceptable. The long-term prospect of increasing oil prices and decreasing food prices may eventually make some source of biomass energy (gasification, vegetable oils) economically competitive. Development of on-farm biomass energy would enhance US security.

  16. Soil-related Input Parameters for the Biosphere Model

    SciTech Connect (OSTI)

    A. J. Smith

    2003-07-02T23:59:59.000Z

    This analysis is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN biosphere model is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003 [163602]). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. ''The Biosphere Model Report'' (BSC 2003 [160699]) describes in detail the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis was to develop the biosphere model parameters needed to evaluate doses from pathways associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation and ash deposition and, as a direct consequence, radionuclide concentration in resuspended particulate matter in the atmosphere. The analysis was performed in accordance with the technical work plan for the biosphere modeling and expert support (TWP) (BSC 2003 [163602]). This analysis revises the previous one titled ''Evaluate Soil/Radionuclide Removal by Erosion and Leaching'' (CRWMS M&O 2001 [152517]). In REV 00 of this report, the data generated were fixed (i.e., taking no account of uncertainty and variability) values. This revision incorporates uncertainty and variability into the values for the bulk density, elemental partition coefficients, average annual loss of soil from erosion, resuspension enhancement factor, and field capacity water content.

  17. Understanding Substrate Features Influenced by Pretreatments that Limit Biomass Deconstruction by Enzymes

    E-Print Network [OSTI]

    Gao, Xiadi

    2013-01-01T23:59:59.000Z

    fuels, chemicals, and energy from lignocellulosic biomass [fuel, chemical and energy from lignocellulosic biomass [fuels, chemicals, and energy from lignocellulosic biomass [

  18. Estimation of Biomass Heat Storage Using Thermal Infrared Imagery: Application to a Walnut Orchard

    E-Print Network [OSTI]

    Garai, Anirban; Kleissl, Jan; Llewellyn Smith, Stefan G.

    2010-01-01T23:59:59.000Z

    NOTE Estimation of Biomass Heat Storage Using Thermalmethod to estimate tree biomass heat storage from thermalinfrared (TIR) imaging of biomass surface temperature is

  19. Biomass burning and urban air pollution over the Central Mexican Plateau

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    J. D. Crounse et al. : Biomass burning pollution overChemistry and Physics Biomass burning and urban airprimary anthropogenic and biomass burning organic aerosols

  20. The Effects of Surfactant Pretreatment and Xylooligomers on Enzymatic Hydrolysis of Cellulose and Pretreated Biomass

    E-Print Network [OSTI]

    Qing, Qing

    2010-01-01T23:59:59.000Z

    Enzymatic Conversion of Biomass for Fuels Production, 566,B. , 2002. Lignocellulosic Biomass to Ethanol Process DesignSummary of findings from the Biomass Refining Consortium for

  1. Biomass crops can be used for biological disinfestation and remediation of soils and water

    E-Print Network [OSTI]

    Stapleton, James J; Banuelos, Gary

    2009-01-01T23:59:59.000Z

    liquid biofuels from biomass: The writings on the walls. Newreduced feed intake. Biomass crop sustainability flexibilityMC, et al. 2009. Cali- fornia biomass resources, potentials,

  2. Biomass burning contribution to black carbon in the Western United States Mountain Ranges

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    and the atmosphere from biomass burning, Climatic Change, 2,Chemistry and Physics Biomass burning contribution to black2011 Y. H. Mao et al. : Biomass burning contribution to

  3. Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass

    E-Print Network [OSTI]

    FAN, XIN

    2012-01-01T23:59:59.000Z

    CO 2 gasification reactivity of biomass char, Biotechnologyand economic feasibility of biomass gasification for powerLi, X.T. , et al. , Biomass gasification in a circulating

  4. Do biomass burning aerosols intensify drought in equatorial Asia during El Nińo?

    E-Print Network [OSTI]

    Tosca, M. G; Randerson, J. T; Zender, C. S; Flanner, M. G; Rasch, P. J

    2010-01-01T23:59:59.000Z

    fication of drought-induced biomass burning in Indonesiavariability in global biomass burning emissions from 1997 toChemistry and Physics Do biomass burning aerosols intensify

  5. Biomass power and state renewable energy policies under electric industry restructuring

    E-Print Network [OSTI]

    Porter, Kevin; Wiser, Ryan

    2000-01-01T23:59:59.000Z

    for existing renewable resources, mostly biomass, municipalII renewable applies to existing MSW and biomass facilitiessome renewable energy capacity, including biomass. State RPS

  6. Sustainable use of California biomass resources can help meet state and national bioenergy targets

    E-Print Network [OSTI]

    Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

    2009-01-01T23:59:59.000Z

    electricity from biomass and other renewable sources wereMethanol Biomass-to-liquids (BTL) Renewable diesels,products, biomass refers to biologi- cally derived renewable

  7. Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance

    E-Print Network [OSTI]

    DeMartini, Jaclyn Diana

    2011-01-01T23:59:59.000Z

    of cellulosic biomass to renewable fuels is a plant’sof lignocellulosic biomass to renewable fuels and chemicalsof lignocellulosic biomass to renewable fuels is the plants’

  8. Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass

    E-Print Network [OSTI]

    FAN, XIN

    2012-01-01T23:59:59.000Z

    Overend, R.P. , Biomass and renewable fuels, Fuel Processingto use as the biomass feedstock for renewable electricity12, 13]. Biomass is the only renewable energy source to

  9. Understanding Substrate Features Influenced by Pretreatments that Limit Biomass Deconstruction by Enzymes

    E-Print Network [OSTI]

    Gao, Xiadi

    2013-01-01T23:59:59.000Z

    petroleum to renewable biomass, a different manufacturingto converting renewable biomass to valuable fuels andaway from petroleum to renewable biomass resource, a new

  10. Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance

    E-Print Network [OSTI]

    DeMartini, Jaclyn Diana

    2011-01-01T23:59:59.000Z

    lignocellulosic biomass feedstocks (Lynd et al. , 1991;as well as superior biomass feedstocks be intelligentlyrecalcitrance for all biomass feedstocks. Consequently, more

  11. Environmental analysis of biomass-ethanol facilities

    SciTech Connect (OSTI)

    Corbus, D.; Putsche, V.

    1995-12-01T23:59:59.000Z

    This report analyzes the environmental regulatory requirements for several process configurations of a biomass-to-ethanol facility. It also evaluates the impact of two feedstocks (municipal solid waste [MSW] and agricultural residues) and three facility sizes (1000, 2000, and 3000 dry tons per day [dtpd]) on the environmental requirements. The basic biomass ethanol process has five major steps: (1) Milling, (2) Pretreatment, (3) Cofermentation, (4) Enzyme production, (5) Product recovery. Each step could have environmental impacts and thus be subject to regulation. Facilities that process 2000 dtpd of MSW or agricultural residues would produce 69 and 79 million gallons of ethanol, respectively.

  12. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect (OSTI)

    Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2001-10-01T23:59:59.000Z

    The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low volatile fuels with lower reactivities can experience damaging fouling when switched to higher volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early for biomass fuels compared to the design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides, in combination with different flue gas temperatures because of changes in fuel heating value which can adversely affect ash deposition behavior. The goal of this project is to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project are: Modification of an existing EERC pilot-scale combustion system to simulate a grate-fired system; Verification testing of the simulator; Laboratory-scale testing and fuel characterization to determine ash formation and potential fouling mechanisms and to optimize activities in the modified pilot-scale system; and Pilot-scale testing in the grate-fired system. The resulting data will be collected, analyzed, and reported to elucidate ash-related problems during biomass-coal cofiring and offer a range of potential solutions.

  13. Biomass thermochemical conversion program. 1985 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01T23:59:59.000Z

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  14. Hydrolysis and fractionation of lignocellulosic biomass

    DOE Patents [OSTI]

    Torget, Robert W. (Littleton, CO); Padukone, Nandan (Denver, CO); Hatzis, Christos (Denver, CO); Wyman, Charles E. (Lakewood, CO)

    2000-01-01T23:59:59.000Z

    A multi-function process is described for the hydrolysis and fractionation of lignocellulosic biomass to separate hemicellulosic sugars from other biomass components such as extractives and proteins; a portion of the solubilized lignin; cellulose; glucose derived from cellulose; and insoluble lignin from said biomass comprising one or more of the following: optionally, as function 1, introducing a dilute acid of pH 1.0-5.0 into a continual shrinking bed reactor containing a lignocellulosic biomass material at a temperature of about 94 to about 160.degree. C. for a period of about 10 to about 120 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of extractives, lignin, and protein by keeping the solid to liquid ratio constant throughout the solubilization process; as function 2, introducing a dilute acid of pH 1.0-5.0, either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing either fresh biomass or the partially fractionated lignocellulosic biomass material from function 1 at a temperature of about 94-220.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of hemicellulosic sugars, semisoluble sugars and other compounds, and amorphous glucans by keeping the solid to liquid ratio constant throughout the solubilization process; as function 3, optionally, introducing a dilute acid of pH 1.0-5.0 either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing the partially fractionated lignocellulosic biomass material from function 2 at a temperature of about 180-280.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of 1 to about 5 reactor volumes to effect solubilization of cellulosic sugars by keeping the solid to liquid ratio constant throughout the solubilization process; and as function 4, optionally, introducing a dilute acid of pH 1.0-5.0 either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing the partially fractionated lignocellulosic biomass material from function 3 at a temperature of about 180-280.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of cellulosic sugars by keeping the solid to liquid ratio constant throughout the solubilization process.

  15. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect (OSTI)

    Bruce C. Folkedahl; Jay R. Gunderson; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2002-09-01T23:59:59.000Z

    The Energy & Environmental Research Center (EERC) has completed a project to examine fundamental issues that could limit the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC attempted to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience problematic fouling when switched to higher-volatile and more reactive coal-biomass blends. Higher heat release rates at the grate can cause increased clinkering or slagging at the grate due to higher temperatures. Combustion and loss of volatile matter can start much earlier for biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates, various chlorides, and phosphates. These species in combination with different flue gas temperatures, because of changes in fuel heating value, can adversely affect ash deposition behavior. The goal of this project was to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project were: (1) Modification of an existing pilot-scale combustion system to simulate a grate-fired system. (2) Verification testing of the simulator. (3) Laboratory-scale testing and fuel characterization to determine ash formation and potential fouling mechanisms and to optimize activities in the modified pilot-scale system. (4) Pilot-scale testing in the grate-fired system. The resulting data were used to elucidate ash-related problems during coal-biomass cofiring and offer a range of potential solutions.

  16. Successful strategies for biomass energy projects

    SciTech Connect (OSTI)

    Sanderson, G.A. [Gomel & Davis, Atlanta, GA (United States); Harris, R.A. [Power Management, Inc., Florence, SC (United States); Segrest, S.A. [Sterling Energy Services, Inc., Atlanta, GA (United States)

    1996-12-31T23:59:59.000Z

    The purpose of this paper is to provide a guide for developing and promoting wood and biomass energy projects. It addresses practical issues, such as equipment selection and operating considerations, as well as tax incentives and policy implications. The authors are currently collaborating on a study, entitled Wood Energy in the United States: An Assessment of the Economic, Environmental, and Energy Policies Enhanced by Incorporating Wood into Our Nation`s Energy Mix, being funded by private industry and published with the support of Clemson University and the Southeastern Regional Biomass Energy Program. This paper briefly outlines some of the topics addressed in the study.

  17. Biomass Power Association (BPA) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyons BiomassBiofuels)Biomass FacilityPower

  18. Atlantic Biomass Conversions Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to: navigation, search Name: Atlantic Biomass

  19. Biomass Resources Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 | OpenEI Community Biomass Power

  20. Biomass Scenario Model | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 | OpenEI Community Biomass PowerScenario Model

  1. TotalView Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliances » Top InnovativeTopoisomeraseTotalView

  2. Ground motion input in seismic evaluation studies

    SciTech Connect (OSTI)

    Sewell, R.T.; Wu, S.C.

    1996-07-01T23:59:59.000Z

    This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants.

  3. Effects of Biomass Fuels on Engine & System Out Emissions for...

    Broader source: Energy.gov (indexed) [DOE]

    Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Endurance Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Endurance Results of an...

  4. Biomass Company Sets Up Shop in High School Lab | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Biomass Company Sets Up Shop in High School Lab Biomass Company Sets Up Shop in High School Lab March 30, 2010 - 2:45pm Addthis Stephen Graff Former Writer & editor for Energy...

  5. A Path Forward for Low Carbon Power from Biomass

    E-Print Network [OSTI]

    Cuellar, Amanda

    The two major pathways for energy utilization from biomass are conversion to a liquid fuel (i.e., biofuels) or conversion to electricity (i.e., biopower). In the United States (US), biomass policy has focused on biofuels. ...

  6. Survey of Biomass Resource Assessments and Assessment Capabilities

    E-Print Network [OSTI]

    Survey of Biomass Resource Assessments and Assessment Capabilities in APEC Economies Energy ...................................................................................................................................4 Biomass Resource Assessment Products and Assessment Methodologies, Department of Industry, Tourism and Resources, Australia Ms. Siti Hafsah, Office of the Minister of Energy

  7. Global observations of desert dust and biomass burning aerosols

    E-Print Network [OSTI]

    Graaf, Martin de

    Global observations of desert dust and biomass burning aerosols Martin de Graaf KNMI #12; Outline · Absorbing Aerosol Index - Theory · Absorbing Aerosol Index - Reality · Biomass burning and desert dust observations from GOME and SCIAMACHY · Conclusions and Outlook #12; · Absorbing Aerosol

  8. Treatment of biomass to obtain a target chemical

    DOE Patents [OSTI]

    Dunson, Jr., James B. (Newark, DE); Tucker, III, Melvin P. (Lakewood, CO); Elander, Richard T. (Evergreen, CO); Hennessey, Susan Marie (Avondale, PA)

    2010-08-24T23:59:59.000Z

    Target chemicals were produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

  9. Stability of Biomass-derived Black Carbon in Soils . | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stability of Biomass-derived Black Carbon in Soils . Stability of Biomass-derived Black Carbon in Soils . Abstract: Black carbon (BC) may play an important role in the global C...

  10. Direct Conversion of Biomass to Fuel | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Conversion of Biomass to Fuel UGA, ORNL research team engineers microbes for the direct conversion of biomass to fuel July 11, 2014 New research from the University of...

  11. Economic Analysis of a 3MW Biomass Gasification Power Plant

    E-Print Network [OSTI]

    Cattolica, Robert; Lin, Kathy

    2009-01-01T23:59:59.000Z

    facilities that use biomass, waste, or renewable resources (Renewable Power Purchase and Sale Agreement, Accessed May 2008 from www.sce.com 9. The California Biomassrenewable projects. Southern California Edison (SCE) has one such program for biomass

  12. aus biomasse durch: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lignin - en hypotetisk delstruktur CH HC OH CH3O O CH CH2OH HC O OH CH 247 Biomass Gasification at The Evergreen State College Biology and Medicine Websites Summary: Biomass...

  13. act biomass utilisation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lignin - en hypotetisk delstruktur CH HC OH CH3O O CH CH2OH HC O OH CH 107 Biomass Gasification at The Evergreen State College Biology and Medicine Websites Summary: Biomass...

  14. airborne biomass sensing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 161 Biomass Gasification at The Evergreen State College Biology and Medicine Websites Summary: Biomass...

  15. aboveground live biomass: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lignin - en hypotetisk delstruktur CH HC OH CH3O O CH CH2OH HC O OH CH 120 Biomass Gasification at The Evergreen State College Biology and Medicine Websites Summary: Biomass...

  16. Economic Analysis of a 3MW Biomass Gasification Power Plant

    E-Print Network [OSTI]

    Cattolica, Robert; Lin, Kathy

    2009-01-01T23:59:59.000Z

    Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cas a feedstock for gasification for a 3 MW power plant was

  17. 5th International Conference on Algal Biomass, Biofuels and Bioproduct...

    Energy Savers [EERE]

    5th International Conference on Algal Biomass, Biofuels and Bioproducts 5th International Conference on Algal Biomass, Biofuels and Bioproducts June 7, 2015 8:00AM EDT to June 10,...

  18. Method for making adhesive from biomass

    DOE Patents [OSTI]

    Russell, Janet A. (Richland, WA); Riemath, William F. (Pasco, WA)

    1985-01-01T23:59:59.000Z

    A method is described for making adhesive from biomass. A liquefaction oil is prepared from lignin-bearing plant material and a phenolic fraction is extracted therefrom. The phenolic fraction is reacted with formaldehyde to yield a phenol-formaldehyde resin.

  19. Energy from Forest Biomass: Potential Economic Impacts

    E-Print Network [OSTI]

    Schweik, Charles M.

    be small by fossil-fuel standards, and may increasingly produce both useful heat and electricity, though and describes a scenario of 165 MW of new biomass electricity generation facilities (as well as some smaller at present are most likely to produce only electricity. Plants will likely be sited in areas with good road

  20. Ris Energy Report 2 Biomass production

    E-Print Network [OSTI]

    and the EU (Venendaal et al., 1997). No new inventory of European energy crop area has been done since 19966.1 Risř Energy Report 2 Biomass production This chapter mainly concerns the production of ligno for renewable energy increases to fulfil the ambitious goals of the EU's White Paper on renewable energy, new