National Library of Energy BETA

Sample records for total annual coal

  1. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  2. Annual Coal Consumption by Country - Datasets - OpenEI Datasets

    Open Energy Info (EERE)

    Annual Coal Consumption by Country Total annual coal consumption by country from 1980 to 2012 (available as Quadrillion Btu). Downloaded from the Energy Information Administration...

  3. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  4. Coal industry annual 1996

    SciTech Connect (OSTI)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  5. TOTAL ANNUAL Rent / Mortgage $

    E-Print Network [OSTI]

    Snider, Barry B.

    etc.) $ Child Care Expenses $ Educational Loans taken out in parent's name $ Other (itemize below): $ $ RESOURCES TOTAL ANNUAL AMOUNT Parent 1 Wages $ Parent 2 Wages $ Interest and/or Dividend Income $ Net Income $ Contributions to tax deferred plans(401K) $ Non Educational Veterans' Benefits $ Unemployment Compensation

  6. Annual Coal Distribution Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements)Grossc. Real73 Table

  7. Annual Coal Distribution Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements)Grossc. Real73

  8. Annual Coal Distribution Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements)Grossc. Real73and Foreign

  9. "Table 2. Real Average Annual Coal Transportation Costs, By Primary...

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Average Annual Coal Transportation Costs, By Primary Transport Mode and Supply Region" "(2013 dollars per ton)" "Coal Supply Region",2008,2009,2010,2011,2012,2013 "Railroad"...

  10. "Annual Coal Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes & Sources1) JuneAnnual

  11. AEO2011: World Total Coal Flows By Importing Regions and Exporting...

    Open Energy Info (EERE)

    Coal Flows By Importing Regions and Exporting Countries This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report...

  12. Second annual clean coal technology conference: Proceedings. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-09-09

    The Second Annual Clean Coal Technology Conference was held at Atlanta, Georgia, September 7--9, 1993. The Conference, cosponsored by the US Department of Energy (USDOE) and the Southern States Energy Board (SSEB), seeks to examine the status and role of the Clean Coal Technology Demonstration Program (CCTDP) and its projects. The Program is reviewed within the larger context of environmental needs, sustained economic growth, world markets, user performance requirements and supplier commercialization activities. This will be accomplished through in-depth review and discussion of factors affecting domestic and international markets for clean coal technology, the environmental considerations in commercial deployment, the current status of projects, and the timing and effectiveness of transfer of data from these projects to potential users, suppliers, financing entities, regulators, the interested environmental community and the public. Individual papers have been entered separately.

  13. COAL LIQUEFACTION ALLOY TEST PROGRAM ANNUAL REPORT FY 1978

    E-Print Network [OSTI]

    Levy, A.

    2014-01-01

    by weight of ground coal of the type used in the Wilsonvilleless coal particle degradation than centrifugal type pumps

  14. Proceedings, twenty-fourth annual international Pittsburgh coal conference

    SciTech Connect (OSTI)

    2007-07-01

    Topics covered include: gasification technologies; coal production and preparation; combustion technologies; environmental control technologies; synthesis of liquid fuels, chemicals, materials and other non-fuel uses of coal; hydrogen from coal; advanced synthesis gas cleanup; coal chemistry, geosciences and resources; Fischer-Tropsch technology; coal and sustainability; global climate change; gasification (including underground gasification); materials, instrumentation and controls; and coal utilisation byproducts.

  15. Proceedings, twenty-five annual international Pittsburgh coal conference

    SciTech Connect (OSTI)

    NONE

    2008-07-01

    The conference theme was 'coal - energy, environment and sustainable development'. The topics covered energy and environmental issues, and technologies related to coal and its byproducts. These included: gasification, hydrogen from coal, combustion technologies, coal production and preparation, synthesis of liquid fuels, gas turbines and fuel cells for synthesis gas and hydrogen applications, coal chemistry and geosciences, global climate change, underground coal gasification, environmental control technologies, and coal utilization byproducts.

  16. COAL LIQUEFACTION ALLOY TEST PROGRAM ANNUAL REPORT FY 1978

    E-Print Network [OSTI]

    Levy, A.

    2014-01-01

    lBl-8754 UC-90d · COAL LIQUEFACTION ALLOY TEST PROGRAMViscosity vs. Tempeature of Coal Slurries in Creosote OiLthe experiments are: Particles (coal. SiC, SiO )' Z liquid (

  17. Eleventh annual international Pittsburgh coal conference proceedings: Volume 2

    SciTech Connect (OSTI)

    Chiang, S.H.

    1994-12-31

    The conference presented over 300 papers in 39 separate sessions. These presentations are grouped into five topical areas: the technologies in pre- and post-utilization of coal; research and development in coal conversion; advanced coal combustion; environmental control technologies, and environmental policy issues related to coal use. The program has expanded its coverage in non-fuel use of coal. This is reflected in the three sessions on use of coal in the steel industry, and a sessions on carbon products and non-fuel coal applications. Volume 2 includes the following topics: Environmental systems and technologies/Environmental policy; Coal drying, dewatering and reconstitution; Coal cleaning technology; Slurry bed technology; Coal syngas, methanol, DME, olefins and oxygenates; Environmental issues in energy conversion technology; Applied coal geology; Use of coal in the steel industry; Recent developments in coal preparation; International coal gasification projects; Progress on Clean Coal projects; Retrofit air quality control technologies;Fluidized bed combustion; Commercialization of coal preparation technologies; Integrated gasification combined cycle program; the US Department of Energy`s Combustion 2000 program; and Environmental issues in coal utilization. All papers have been processed separately for inclusion on the data base.

  18. Table 12. Total Coal Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price toStocks 2009CubicAnalysisYear Jana. Coal Prices to

  19. Table 12. Total Coal Consumption, Projected vs. Actual Projected

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996Deutsche Bank AG Weekly7,674a. Coal

  20. 5. annual clean coal technology conference: powering the next millennium. Volume 2

    SciTech Connect (OSTI)

    NONE

    1997-06-01

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.

  1. Sixth annual coal preparation, utilization, and environmental control contractors conference

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    A conference was held on coal preparation, utilization and environmental control. Topics included: combustion of fuel slurries; combustor performance; desulfurization chemically and by biodegradation; coal cleaning; pollution control of sulfur oxides and nitrogen oxides; particulate control; and flue gas desulfurization. Individual projects are processed separately for the databases. (CBS).

  2. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers in the ManufacturingCoal Production andCoal

  3. Advanced coal-fueled gas turbine systems, Volume 1: Annual technical progress report

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    This is the first annual technical progress report for The Advanced Coal-Fueled Gas Turbine Systems Program. Two semi-annual technical progress reports were previously issued. This program was initially by the Department of Energy as an R D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular three-stage slagging combustor concept. Fuel-rich conditions inhibit NO/sub x/ formation from fuel nitrogen in the first stage; coal ash and sulfur is subsequently removed from the combustion gases by an impact separator in the second stage. Final oxidation of the fuel-rich gases and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage. 27 figs., 15 tabs.

  4. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers in the Manufacturing andAverageAverageCoal

  5. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers in the ManufacturingCoal Production and

  6. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers in the ManufacturingCoal Production

  7. MHD Coal-Fired Flow Facility. Quarterly/annual technical progress report, October-December 1979

    SciTech Connect (OSTI)

    Dicks, J. B.; Chapman, J. N.; Crawford, L. W.

    1980-02-01

    In this Fourth Quarterly/Annual Report submitted under DOE contracts EX-76-C-01-1760 and DE-AC02-79ET10815, the University of Tennessee Space Institute (UTSI) reports on significant activity, task status, planned research, testing, and development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Research and Development Laboratory. Work on the CFFF progressed with only minor problems. Total construction activity for all site work presently awarded is nearly 98% complete. Water analysis shows that Woods Reservoir baseline conditions are within EPA or Tennessee drinking water standards. For the primary combustor, the vitiation heater and primary combustor fabrication drawings were completed and the nozzle design was completed. The drum module for the radiant slagging furnace was awarded. On the MHD Power Generator, development continued in several areas of advanced analysis including development of time-dependent models for use with the one-dimensional code. For seed regeneration, the tentative determination is that the Tomlinson Tampella is the most economically viable method. With regard to capped electrode erosion, investigations have shown that the major degradation of the cladding still present is at the leading edge of the capped anode. To alleviate this, plans are to hot work the noble metal in the bending operation. In resolving another problem, a system employing the modified line-reversal method has been assembled and successfully tested to measure absolute plasma temperatures.

  8. Annual Energy Outlook 2014 1st Coal Working Group

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements)Grossc.:October 9,‹1 st

  9. Annual Energy Outlook 2015 1st Coal Working Group

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements)Grossc.:OctoberElectricity1

  10. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight....131MarketNewAverage NumberCoal

  11. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight....131MarketNewAverageCoal

  12. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight....131MarketNewAverageCoalUnderground

  13. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers in the Manufacturing and Coke Sectors, 2013

  14. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers in the Manufacturing and Coke Sectors,

  15. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers in the Manufacturing and Coke

  16. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers in the Manufacturing and CokeUnderground

  17. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers in the Manufacturing and

  18. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers in the Manufacturing andAverage Sales Price

  19. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers in the Manufacturing andAverage Sales

  20. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers in the Manufacturing andAverage

  1. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers in the Manufacturing andAverageAverage

  2. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers in the Manufacturing

  3. ENCOAL mild coal gasification demonstration project. Annual report, October 1994--September 1995

    SciTech Connect (OSTI)

    NONE

    1996-01-01

    This document is the combination of the fourth quarter report (July - September 1995) and the 1995 annual report for the ENCOAL project. The following pages include the background and process description for the project, brief summaries of the accomplishments for the first three quarters, and a detailed fourth quarter report. Its purpose is to convey the accomplishments and current progress of the project. ENCOAL Corporation, a wholly-owned subsidiary of SMC Mining Company (formerly Shell Mining company, now owned by Zeigler Coal Holding Company), has completed the construction and start-up of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basis coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The products, as alternative fuels sources, are expected to significantly lower current sulfur emissions at industrial and utility boiler sites throughout the nation, thereby reducing pollutants causing acid rain. In the LFC technology, coal is first deeply dried to remove water physically. The temperature is further raised in a second stage which results in decomposition reactions that form the new products. This chemical decomposition (mild gasification) creates gases by cracking reactions from the feed coal. The chemically altered solids are cooled and further processed to make PDF. The gases are cooled, condensing liquids as CDL, and the residual gases are burned in the process for heat. The process release for the ENCOAL plant predicted that one ton of feed coal would yield roughly {1/2} ton of PDF and {1/2} barrel of CDL. By varying plant running conditions, however, it has since been learned that the actual CDL recovery rate may be as much as 15% to 20% above the projections.

  4. Proceedings of the ninth annual underground coal gasification symposium

    SciTech Connect (OSTI)

    Wieber, P.R.; Martin, J.W.; Byrer, C.W.

    1983-12-01

    The Ninth Underground Coal Gasification Symposium was held August 7 to 10, 1983 at the Indian Lakes Resort and Conference Center in Bloomingdale, Illinois. Over one-hundred attendees from industry, academia, National Laboratories, State Government, and the US Government participated in the exchange of ideas, results and future research plans. Representatives from six countries including France, Belgium, United Kingdom, The Netherlands, West Germany, and Brazil also participated by presenting papers. Fifty papers were presented and discussed in four formal sessions and two informal poster sessions. The presentations described current and future field testing plans, interpretation of field test data, environmental research, laboratory studies, modeling, and economics. All papers were processed for inclusion in the Energy Data Base.

  5. H-coal pilot plant. Phase II. Construction. Phase III. Operation. Annual report No. 3

    SciTech Connect (OSTI)

    Not Available

    1981-02-04

    At the request of DOE Oak Ridge, ASFI agreed to assume responsibility for completion of Plant construction in December, 1979, at which time Badger Plants' on-site work was ended. This construction effort consisted of electric heat tracing and insulation of piping and instrumentation. At the close of the reporting period the work was completed, or was projected to be completed, within the ASFI budgeted amounts and by dates that will not impact Plant operations. Engineering design solutions were completed for problems encountered with such equipment as the High Pressure Letdown Valves; Slurry Block Valves; Slurry Pumps; the Bowl Mill System; the Dowtherm System; and the Ebullating Pump. A Corrosion Monitoring Program was established. With the exception of Area 500, the Antisolvent Deashing Unit, all operating units were commissioned and operated during the reporting period. Coal was first introduced into the Plant on May 29, 1980, with coal operations continuing periodically through September 30, 1980. The longest continuous coal run was 119 hours. A total of 677 tons of Kentucky No. 11 Coal were processed during the reporting period. The problems encountered were mechanical, not process, in nature. Various Environmental and Health programs were implemented to assure worker safety and protection and to obtain data from Plant operations for scientific analysis. These comprehensive programs will contribute greatly in determining the acceptability of long term H-Coal Plant operations.

  6. ANNUAL REPORT OCTOBER 1, 1979-SEPTEMBER 30, 1980 CHEMISTRY AND MORPHOLOGY OF COAL LIQUEFACTION

    E-Print Network [OSTI]

    Heinemann, Heinz

    2013-01-01

    AND MORPHOLOGY OF COAL LIQUEFACTION LA , . . ,:;. ~~Microscope Studies of Coal during Hydrogenation Taskspread evenly over the coal grains of this particular area.

  7. Annual Energy Review, 2008

    SciTech Connect (OSTI)

    2009-06-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are statistics on total energy production, consumption, trade, and energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and international energy; financial and environment indicators; and data unit conversions.

  8. Chemical coal cleaning process and costs refinement for coal-water slurry manufacture. Semi-annual progress report

    SciTech Connect (OSTI)

    Bhasin, A.K.; Berggren, M.H.; Smit, F.J.; Ames, L.B.; Ronzio, N.J.

    1985-03-01

    The Department of Energy, through the Morgantown Energy Technology Center (METC), has initiated a program to determine the feasibility and potential applications for direct firing of coal and coal-derived fuels in heat engines, specifically gas turbines and diesel engines. AMAX Extractive Research and Development, Inc. supplied METC with two lots of highly beneficiated coal slurry fuel for use in the Heat Engines programs. One of the lots was of ultra-clean coal-water slurry fuel (UCCSF) for which a two-stage caustic and acid leaching procedure was developed to chemically clean the coal. As a part of the contract, AMAX R and D developed a conceptual design and preliminary cost estimate for a commercial-scale process for UCCSF manufacture. The contract was extended to include the following objectives: define chemical cleaning and slurry preparation process conditions and costs more precisely; investigate methods to reduce the product cost; and determine the relationship, in dollars per million Btu, between product cost and fuel quality. Laboratory investigations have been carried out to define the chemical cleaning process conditions required to generate fuels containing from 0.17 to 1.0% ash. Capital and operating cost refinements are to be performed on the basis of the preferred process operating conditions identified during the laboratory investigations. Several such areas for cost reductions have been identified. Caustic strengths from 2 to 7% NaOH are currently anticipated while 25% NaOH was used as the basis for the preliminary cost estimate. In addition, leaching times for each of the process steps have been reduced to half or less of the times used for the preliminary cost estimate. Improvement of fuel quality has been achieved by use of a proprietary hot-water leaching step to reduce the residual alkali content to less than 250 ppM (Na/sub 2/O plus K/sub 2/O) on a dry coal basis. 2 refs., 3 figs., 24 tabs.

  9. Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    This report discusses the effects on SRC yields of seven process variables (reactor temperature, SRT, hydrogen partial pressure, recycle ash and coal concentrations, gas velocity and coal type) predicted by second-order regression models developed from a data base containing pilot plant data with both Kentucky and Powhatan coals. The only effect of coal type in the model is a shift in each yield by a constant factor. Although some differences were found between the models developed from the Kentucky data base (1) (which we call Kentucky models) and the pooled coal models, the general conclusions of the previous report are confirmed by the new models and the assumption of similar behavior of the two coals appears to be justified. In some respects the dependence of the yields (MAF coal basis) on variables such as pressure and temperature are clearer than in the previous models. The principal trends which emerge are discussed.

  10. Hot coal gas desulfurization with manganese-based sorbents. Annual report, September 1992--September 1993

    SciTech Connect (OSTI)

    Hepworth, M.T.

    1993-12-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E. T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Annual Topical Report documents progress in pelletizing and testing via thermo-gravimetric analysis of individual pellet formulations of manganese ore/ alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite. It includes the prior Quarterly Technical Reports which indicate that the manganese carbonate material, being of higher purity than the manganese ore, has a higher degree of sulfur capacity and more rapid absorption kinetics. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration.

  11. ANNUAL REPORT OCTOBER 1, 1979-SEPTEMBER 30, 1980 CHEMISTRY AND MORPHOLOGY OF COAL LIQUEFACTION

    E-Print Network [OSTI]

    Heinemann, Heinz

    2013-01-01

    effect on its behavior during gasification and liquefactionand observation of the gasification reactions in-situ in anfrom coal instead of gasification to CO and H 2 • Since

  12. ENCOAL Mild Coal Gasification Project. Annual report, October 1990--September 1991

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    ENCOAL Corporation, a wholly-owned subsidiary of Shell Mining Company, is constructing a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by Shell and SGI International, utilizes low-sulfur Powder River Basin Coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The products, as alternative fuels sources, are expected to significantly reduce current sulfur emissions at industrial and utility boiler sites throughout the nation, thereby reducing pollutants causing acid rain.

  13. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672(MillionFeet) Oil4)5,Product:

  14. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672(MillionFeet)

  15. Tenth annual coal preparation, utilization, and environmental control contractors conference: Proceedings. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    Volume I contains papers presented at the following sessions: high efficiency preparation; advanced physical coal cleaning; superclean emission systems; air toxics and mercury measurement and control workshop; and mercury measurement and control workshop. Selected papers have been processed for inclusion in the Energy Science and Technology Database.

  16. Ninth annual coal preparation, utilization, and environmental control contractors conference: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    Papers are grouped under the following sessions: compliance technology; high-efficiency preparation; characterization; advanced technologies; alternative fuels; coal utilization; industrial/commercial combustor development; combustion; superclean emission systems; carbon dioxide recovery and reuse; air toxics and fine particulates; air toxics sampling and analysis workshop; and combined poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  17. Analysis quality report on the EIA Annual Report to Congress 1978, volume III : coal supply

    E-Print Network [OSTI]

    Wood, David O.

    1981-01-01

    The Energy Information Administration (EIA) is charged by Congress to prepare an Annual Report to Congress (ARC) which includes projections of energy supplies, consumption and prices, as well as the relation of energy to ...

  18. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  19. Effects of effluents of coal combustion and gasification upon lung structure and function. Annual report

    SciTech Connect (OSTI)

    Hinton, D.E.

    1980-01-01

    The overall objective of the proposed research is to correlate both structural and functional alterations in cells and tissues of the lung brought about by exposure to fluidized bed combustion and fixed bed gasification effluents and reagent grade oxides of metals known to be associated with coal combustion gasification. Projected milestones are described. Progress during the first year in setting up aerosol exposure facilities, intratracheal instillations, pulmonary mechanics, and morphometric examinations is reported. (DMC)

  20. Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979

    SciTech Connect (OSTI)

    None

    1980-11-01

    Part 3 consists of appendices 5, 6 and 7, which have been entered individually into EDB and ERA. They deal with regression analysis of pilot plant SRC-II yields to develop thermal response models of the process and the possibility of predicting yields from coal properties. The possibility of a runaway exothermal reaction under some operating conditions on the demonstration plant scale is also considered. (LTN)

  1. Advanced coal-fueled gas turbine systems. Annual report, July 1991--June 1992

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    Westinghouse`s Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO{sub x} emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO{sub x} levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  2. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    Natural Gas Coal 233 billion tonnes coal equivalent 97% total fossil fuel reserve base Reserves by location, quality,

  3. Outlook and Challenges for Chinese Coal

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

    2008-06-20

    China has been, is, and will continue to be a coal-powered economy. The rapid growth of coal demand since 2001 has created deepening strains and bottlenecks that raise questions about supply security. Although China's coal is 'plentiful,' published academic and policy analyses indicate that peak production will likely occur between 2016 and 2029. Given the current economic growth trajectory, domestic production constraints will lead to a coal gap that is not likely to be filled with imports. Urbanization, heavy industry growth, and increasing per-capita consumption are the primary drivers of rising coal usage. In 2006, the power sector, iron and steel, and cement accounted for 71% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units could save only 14% of projected 2025 coal demand. If China follows Japan, steel production would peak by 2015; cement is likely to follow a similar trajectory. A fourth wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. New demand from coal-to-liquids and coal-to-chemicals may add 450 million tonnes of coal demand by 2025. Efficient growth among these drivers indicates that China's annual coal demand will reach 4.2 to 4.7 billion tonnes by 2025. Central government support for nuclear and renewable energy has not been able to reduce China's growing dependence on coal for primary energy. Few substitution options exist: offsetting one year of recent coal demand growth would require over 107 billion cubic meters of natural gas, 48 GW of nuclear, or 86 GW of hydropower capacity. While these alternatives will continue to grow, the scale of development using existing technologies will be insufficient to substitute significant coal demand before 2025. The central role of heavy industry in GDP growth and the difficulty of substituting other fuels suggest that coal consumption is inextricably entwined with China's economy in its current mode of growth. Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on its current growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Broadening awareness of the environmental costs of coal mining, transport, and combustion is raising the pressure on Chinese policy makers to find alternative energy sources. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China is short of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport. Transporting coal to users has overloaded the train system and dramatically increased truck use, raising transport oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 mt by 2025, significantly impacting regional markets. The looming coal gap threatens to derail China's growth path, possibly undermining political, economic, and social stability. High coal prices and domestic shortages will have regional and global effects. Regarding China's role as a global manufacturing center, a domestic coal gap will increase prices and constrain growth. Within the Asia-Pacific region, China's coal gap is likely to bring about increased competition with other coal-importing countries including Japan, South Korea, Taiwan, and India. As with petroleum, China may respond with a government-supported 'going-out' strategy of resource acquisition and vertical integration. Given its population and growing resource constraints, China may favor energy security, competitiveness, and local environmental protection over global climate change mitigation. The possibility of a large coal gap suggests that Chinese and international policy makers should maximize institutional and financial support

  4. Micropore diffusion in coal chars under reactive conditions: Annual topical report, 15 September 1987--15 September 1988

    SciTech Connect (OSTI)

    Calo, J.M.; Perkins, M.T.; Lilly, W.D.

    1988-01-01

    The current project is concerned with the development and application of a new technique to measure micropore diffusion under actual gasification conditions. The method is an outgrowth of and related to the transient kinetics approach to the measurement of kinetic rate parameters for char-gas reactions that has been developed in our laboratory. It can be shown that the initial transient behavior of a species introduced as a step-function into a ''gradientless'' reactor in which char is present, is controlled by the transport resistance offered by the char micropores. Therefore, this data can be analyzed for micropore diffusion time constants. In addition, due to the time-resolved nature of the process in the reactor, the initial diffusion step is separated (in time) from any subsequent gas-solid reaction steps. Therefore, diffusion measurements can be performed under gasification conditions. Diffusion time constant data have been obtained for a few microporous carbonaceous materials, including a Sigma (pine wood) char, a Fischer coconut char and PSOC-467 (Deadman No. 2) subbituminous coal char, in addition to the previously reported (DOE/PC/90529-Annual-1) 5A zeolite data. These data have been compared to other results, where possible, and, for the most part, they behave as expected. 65 refs., 12 figs.

  5. ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    world oil prices). Btu/year) Coal Oil Natural gas Nuclear (fuel) Total imports Total Regional production Coal Crude oil

  6. PressurePressure Indiana Coal Characteristics

    E-Print Network [OSTI]

    Fernández-Juricic, Esteban

    TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · Coal Indiana Total Consumption Electricity 59,664 Coke 4,716 Industrial 3,493 Major Coal- red power plantsTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL

  7. MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    310 Stainless Steel in Coal Gasification Environments, LBL-of Materials Used in Coal Gasification Plants, AGA- ERDA-MPCResistant Alloy for Coal Gasification Service Annual Report

  8. Energy and environmental research emphasizing low-rank coal. Semi-annual report, January--June 1994

    SciTech Connect (OSTI)

    1994-09-01

    Summaries of progress on the following tasks are presented: Mixed waste treatment; Hot water extraction of nonpolar organic pollutant from soils; Aqueous phase thermal oxidation wastewater treatment; Review of results from comprehensive characterization of air toxic emissions from coal-fired power plants; Air toxic fine particulate control; Effectiveness of sorbents for trace elements; Catalyst for utilization of methane in selective catalytic reduction of NOx; Fuel utilization properties; Hot gas cleaning; PFBC; catalytic tar cracking; sulfur forms in coal; resid and bitumen desulfurization; biodesulfurization; diesel fuel desulfurization; stability issues; Sorbent carbon development; Evaluation of carbon products; Stable and supercritical chars; Briquette binders; Carbon molecular sieves; Coal char fuel evaporation canister sorbent; Development of a coal by-product classification protocol for utilization; Use of coal ash in recycled plastics and composite materials; Corrosion of advanced structural materials; Joining of advanced structural materials; Resource data evaluation; and the Usti and Labem (Czech Republic) coal-upgrading program.

  9. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. First annual report, September 1, 1990--August 30, 1991

    SciTech Connect (OSTI)

    Wang, Xiang-Huai

    1991-12-31

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof, are directed at identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  10. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal, Annual Progress Report, October 1, 2005 through September 30, 2006

    SciTech Connect (OSTI)

    Bruce G. Miller

    2006-09-29

    Since 1998, The Pennsylvania State University has been successfully managing the Consortium for Premium Carbon Products from Coal (CPCPC), which is a vehicle for industry-driven research on the promotion, development, and transfer of innovative technology on premium carbon produces from coal to the U.S. industry. The CPCPC is an initiative being led by Penn State, its co-charter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provides the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity has continued under the present cooperative agreement, No. DE-FC26-03NT41874, which started October 1, 2003. The objective of the second agreement is to continue the successful operation of the CPCPC. The CPCPC has enjoyed tremendous success with its organizational structure, that includes Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC is its industry-led council that selects proposals submitted by CPCPC members to ensure CPCPC target areas have strong industrial support. Base funding for the selected projects is provided by NETL with matching funds from industry. At the annual funding meeting held in October 2003, ten projects were selected for funding. Subcontracts were let from Penn State to the subcontractors on March 1, 2004. Nine of the ten 2004 projects were completed during the previous annual reporting period and their final reports were submitted with the previous annual report (i.e., 10/01/04-09/30/05). The final report for the remaining project, which was submitted during this reporting period (i.e., 10/01/05-09/30/06), is attached. At the annual funding meeting held in November 2004, eleven projects were selected for funding. Subcontracts were let from Penn State to the subcontractors on March 1, 2005. Three additional projects were selected for funding during the April 2005 tutorial/funding meeting. Subcontracts were let from Penn State to the subcontractors on July 1, 2005. Of these fourteen 2005 projects, eleven have been completed and the final reports are attached. An annual funding meeting was held in November 2005 and the council selected five projects for funding. Subcontracts were let from Penn State to the subcontractors on March 1, 2006, except for one that started October 1, 2006.

  11. Coal Market Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System's (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 2014 (AEO2014). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM's two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS).

  12. Annual Coal Distribution Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotesShaleOil September 1999

  13. Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotesShaleOil September

  14. Low-rank coal research annual report, July 1, 1989--June 30, 1990 including quarterly report, April--June 1990

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    Research programs in the following areas are presented: control technology and coal preparation; advance research and technology development; combustion; liquefaction; and gasification. Sixteen projects are included. Selected items have been processed separately for inclusion in the Energy Science and Technology Database.

  15. Coal Production 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  16. State coal profiles, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-02

    The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

  17. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal, Annual Progress Report, October 1, 2004 through September 30, 2005

    SciTech Connect (OSTI)

    Miller, Bruce G

    2006-03-01

    Since 1998, The Pennsylvania State University (PSU) has been successfully operating the Consortium for Premium Carbon Products from Coal (CPCPC), which is a vehicle for industry-driven research on the promotion, development, and transfer of innovative technology on premium carbon produces from coal to the U.S. industry. The CPCPC is an initiative being led by PSU, its co-charter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provides the base funding for the program, with PSU responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity has continued under the present cooperative agreement, No. DE-FC26-03NT41874, which started October 1, 2003. The objective of the second agreement is to continue the successful operation of the CPCPC. The CPCPC has enjoyed tremendous success with its organizational structure, that includes PSU and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC is its industry-led council that selects proposals submitted by CPCPC members to ensure CPCPC target areas have strong industrial support. A second contract was executed with DOE NETL starting in October 2003 to continue the activities of CPCPC. An annual funding meeting was held in October 2003 and the council selected ten projects for funding. Base funding for the projects is provided by NETL with matching funds from industry. Subcontracts were let from Penn State to the subcontractors on March 1, 2004. Nine of the ten projects have been completed and the final reports for these 2004 projects are attached. An annual funding meeting was held in November 2004 and the council selected eleven projects for funding. Subcontracts were let from Penn State to the subcontractors on March 1, 2005. Three additional projects were selected for funding during the April 2005 tutorial/funding meeting. Subcontracts were let from Penn State to the subcontractors on July 1, 2005.

  18. CE IGCC repowering project: Clean Coal II Project. Annual report, 1 January, 1992--31 December, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    CE is participating in a $270 million coal gasification combined cycle repowering project that will provide a nominal 60 MW of electricity to City, Water, light and Power (CWL and P) in Springfield, Illinois. The IGCC system will consist of CE`s air-blown entrained flow two-stage gasifier; an advanced hot gas cleanup system; a combustion turbine adapted to use low-Btu gas: and all necessary coal handling equipment. The project is currently in the second budget period of five. The major activities during this budgeted period are: Establishment of an approved for design (AFD) engineering package; development of a detailed cost estimate; resolution of project business issues; CWL and P renewal and replacement activities; and application for environmental air permits. The Project Management Plan was updated. The conceptual design of the plant was completed and a cost and schedule baseline for the project was established previously in Budget Period One. This information was used to establish AFD Process Flow Diagrams, Piping and Instrument Diagrams, Equipment Data Sheets, material take offs, site modification plans and other information necessary to develop a plus or minus 20% cost estimate. Environmental permitting activities are continuing. At the end of 1992 the major activities remaining for Budget Period two is to finish the cost estimate and complete the Continuation Request Documents.

  19. Annual Environmental Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNaturalTestAnAlexAnnual Coal14, 20143Total

  20. Field study of disposed solid wastes from advanced coal processes. Annual technical progress report, October 1987--August 1988

    SciTech Connect (OSTI)

    NONE

    1988-08-01

    Radian Corporation and the North Dakota Mining and Mineral Resources Research Institute (MMRRI) are funded to develop information to be used by private industry and government agencies for managing solid waste produced by advanced coal processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. The first two tasks of this project involve the development of test plans. Through July of 1988 we have developed a generic test design manual, detailed test procedures manual, and test plans for three sites. Task three, field studies, will be initiated as soon as final site access is obtained and the facilities producing the waste are fully operational.

  1. Coal mine methane global review

    SciTech Connect (OSTI)

    2008-07-01

    This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

  2. Annual Energy Review 2011

    SciTech Connect (OSTI)

    Fichman, Barbara T.

    2012-09-01

    The Annual Energy Review (AER) is the U.S. Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are statistics on total energy production, consumption, trade, and energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, and renewable energy; financial and environment indicators; and data unit conversions. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding the content of the AER and other EIA publications.

  3. Annual Energy Review 2007

    SciTech Connect (OSTI)

    Seiferlein, Katherine E.

    2008-06-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, international energy, as well as financial and environment indicators; and data unit conversion tables. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....”

  4. Field study of disposed solid wastes from advanced coal processes. Annual technical progress report, October 1991--September 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute`s fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison`s limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United`s mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

  5. Coal sector profile

    SciTech Connect (OSTI)

    Not Available

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  6. Petroleum Data, Natural Gas Data, Coal Data, Macroeconomic Data, Petroleum Import Data

    SciTech Connect (OSTI)

    2009-01-18

    Supplemental tables to the Annual Energy Outlook (AEO) 2006 for petroleum, natural gas, coal, macroeconomic, and import data

  7. Coal use, stove improvement, and adult pneumonia mortality in Xuanwei, China: a retrospective cohort study

    SciTech Connect (OSTI)

    Shen, M.; Chapman, R.S.; Vermeulen, R.; Tian, L.W.; Zheng, T.Z.; Chen, B.E.; Engels, E.A.; He, X.Z.; Blair, A.; Lan, Q. [NCI, Bethesda, MD (USA)

    2009-02-15

    In Xuanwei County, China, unvented indoor coal burning is strongly associated with increased risk of lung cancer and chronic obstructive pulmonary disease. However, the impact of coal burning and stove improvement on risk of pneumonia is not clear. We conducted a retrospective cohort study among all farmers born 1917 through 1951 and living in Xuanwei as of 1 January 1976. The analysis included a total of 42,422 cohort members. Follow-up identified all deaths in the cohort from 1976 through 1996. Ages at entry into and at exit from follow-up ranged from 24 to 59 years and from 25 to 80 years, respectively. The record search detected 225 deaths from pneumonia, and 32,332 (76%) were alive as of 31 December 1996. We constructed multivariable Cox models (time variable = age) to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Use of coal, especially smokeless coal, was positively associated with pneumonia mortality. Annual tonnage and lifetime duration of smoky and smokeless coal use were positively associated with pneumonia mortality. Stove improvement was associated with a 50% reduction in pneumonia deaths (smoky coal users: HR, 0.521; 95% CI, 0.340-0.798; smokeless coal users: HR, 0.449; 95% CI, 0.215-0.937). Our analysis is the first to suggest that indoor air pollution from unvented coal burning is an important risk factor for pneumonia death in adults and that improving ventilation by installing a chimney is an effective measure to decrease it.

  8. Model documentation coal market module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1995-03-01

    This report documents the approaches used in developing the Annual Energy Outlook 1995 (AEO95). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of the coal market module`s three submodules. These are the Coal Production Submodule (CPS), the Coal Export Submodule (CES), the Coal Expert Submodule (CES), and the Coal Distribution Submodule (CDS).

  9. International Energy Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-14

    This report is prepared annually and presents the latest information and trends on world energy production and consumption for petroleum, natural gas, coal, and electricity. Trade and reserves are shown for petroleum, natural gas, and coal. Prices are included for selected petroleum products. Production and consumption data are reported in standard units as well as British thermal units (Btu) and joules.

  10. Fischer-Tropsch Fuels from Coal and Biomass Thomas G. Kreutz, Eric D. Larson, Guangjian Liu, Robert H. Williams

    E-Print Network [OSTI]

    Fischer-Tropsch Fuels from Coal and Biomass Thomas G. Kreutz, Eric D. Larson, Guangjian Liu, Robert for 25th Annual International Pittsburgh Coal Conference 29 September ­ 2 October, 2008 Pittsburgh.....................................................................................................8 2.2.1 Coal as feedstock

  11. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power

    SciTech Connect (OSTI)

    Milbrandt, A.; Mann, M.

    2009-02-01

    This paper estimates the quantity of hydrogen that could be produced from coal, natural gas, nuclear, and hydro power by county in the United States. The study estimates that more than 72 million tonnes of hydrogen can be produced from coal, natural gas, nuclear, and hydro power per year in the country (considering only 30% of their total annual production). The United States consumed about 396 million tonnes of gasoline in 2007; therefore, the report suggests the amount of hydrogen from these sources could displace about 80% of this consumption.

  12. Coal pump

    DOE Patents [OSTI]

    Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  13. Statistical review of coal in Canada, 1997

    SciTech Connect (OSTI)

    Not Available

    1999-01-01

    The paper presents an annual review of the coal industry, including production, exports and imports, and consumption. An overview is given, followed by more detailed statistical data for the current year and preceding decade (supply and demand, value and volume of supply by province, coal production by class or province, exports by destination, coal consumed in power generation by province, electrical energy production by fuel type, domestic demand for primary energy by type).

  14. Coal Transportation Issues (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Most of the coal delivered to U.S. consumers is transported by railroads, which accounted for 64% of total domestic coal shipments in 2004. Trucks transported approximately 12% of the coal consumed in the United States in 2004, mainly in short hauls from mines in the East to nearby coal-fired electricity and industrial plants. A number of minemouth power plants in the West also use trucks to haul coal from adjacent mining operations. Other significant modes of coal transportation in 2004 included conveyor belt and slurry pipeline (12%) and water transport on inland waterways, the Great Lakes, and tidewater areas (9%).

  15. Dating of coal fires in Xinjiang, north-west China Xiangmin Zhang,1

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Dating of coal fires in Xinjiang, north-west China Xiangmin Zhang,1 Salomon B. Kroonenberg2 and Cor, the Netherlands Introduction Coal fires are one of the most serious problems for the Chinese coal indus- try. The estimated annual loss of coal by fires in China ranges from about 10­20 million tonnes (Guan et al., 1998

  16. Model documentation Coal Market Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1996-04-30

    This report documents objectives and conceptual and methodological approach used in the development of the National Energy Modeling System (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1996 (AEO96). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s three submodules: Coal Production Submodule, Coal Export Submodule, and Coal Distribution Submodule.

  17. Quarterly coal report, April--June 1990

    SciTech Connect (OSTI)

    Not Available

    1990-11-02

    The Quarterly Coal Report provides comprehensive information about US coal production, exports, imports, receipts, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. This issue presents detailed quarterly data for April 1990 through June 1990, aggregated quarterly historical data for 1982 through the second quarter of 1990, and aggregated annual historical data for 1960 through 1989 and projected data for selected years from 1995 through 2010. To provide a complete picture of coal supply and demand in the United States, historical information and forecasts have been integrated in this report. 7 figs., 37 tabs.

  18. Coal Transportation Rate Sensitivity Analysis

    Reports and Publications (EIA)

    2005-01-01

    On December 21, 2004, the Surface Transportation Board (STB) requested that the Energy Information Administration (EIA) analyze the impact of changes in coal transportation rates on projected levels of electric power sector energy use and emissions. Specifically, the STB requested an analysis of changes in national and regional coal consumption and emissions resulting from adjustments in railroad transportation rates for Wyoming's Powder River Basin (PRB) coal using the National Energy Modeling System (NEMS). However, because NEMS operates at a relatively aggregate regional level and does not represent the costs of transporting coal over specific rail lines, this analysis reports on the impacts of interregional changes in transportation rates from those used in the Annual Energy Outlook 2005 (AEO2005) reference case.

  19. Coals and coal requirements for the COREX process

    SciTech Connect (OSTI)

    Heckmann, H. [Deutsche Voest-Alpine Industrieanlagenbau GmbH, Duesseldorf (Germany)

    1996-12-31

    The utilization of non met coals for production of liquid hot metal was the motivation for the development of the COREX Process by VAI/DVAI during the 70`s. Like the conventional ironmaking route (coke oven/blast furnace) it is based on coal as source of energy and reduction medium. However, in difference to blast furnace, coal can be used directly without the necessary prestep of cokemaking. Coking ability of coals therefore is no prerequisite of suitability. Meanwhile the COREX Process is on its way to become established in ironmaking industry. COREX Plants at ISCOR, Pretoria/South Africa and POSCO Pohang/Korea, being in operation and those which will be started up during the next years comprise already an annual coal consumption capacity of approx. 5 Mio. tonnes mtr., which is a magnitude attracting the interest of industrial coal suppliers. The increasing importance of COREX as a comparable new technology forms also a demand for information regarding process requirements for raw material, especially coal, which is intended to be met here.

  20. A centurial history of technological change and learning curves or pulverized coal-fired utility boilers

    E-Print Network [OSTI]

    Yeh, Sonia; Rubin, Edward S.

    2007-01-01

    and Japan, where higher coal prices justi?ed the higher costof the total O&M cost and the coal price remained relatively

  1. Rend Lake College celebrates the opening of a new coal miner training facility

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2009-09-15

    The Coal Miner Training Center at Rend Lake College recently hosted the Illinois Mining Institute's annual conference and a regional mine rescue competition. The article gives an outline of the coal miner training and refresher course offered. 3 photos.

  2. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01

    OF COAL MODEL COMPOUNDS AND COAL LIQUIDS James Anthony AprilCOAL MODEL COMPOUNDS AND COAL LIQUIDS James Anthony Wrathalla promising agent in coal-liquid desulfurization, assuming

  3. Hydroliquefaction of coal

    DOE Patents [OSTI]

    Sze, Morgan C. (Upper Montclair, NJ); Schindler, Harvey D. (Fairlawn, NJ)

    1982-01-01

    Coal is catalytically hydroliquefied by passing coal dispersed in a liquefaction solvent and hydrogen upwardly through a plurality of parallel expanded catalyst beds, in a single reactor, in separate streams, each having a cross-sectional flow area of no greater than 255 inches square, with each of the streams through each of the catalyst beds having a length and a liquid and gas superficial velocity to maintain an expanded catalyst bed and provide a Peclet Number of at least 3. If recycle is employed, the ratio of recycle to total feed (coal and liquefaction solvent) is no greater than 2:1, based on volume. Such conditions provide for improved selectivity to liquid product to thereby reduce hydrogen consumption. The plurality of beds are formed by partitions in the reactor.

  4. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear JanProfileDecadeJulyAnnual

  5. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear JanProfileDecadeJulyAnnual0

  6. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear JanProfileDecadeJulyAnnual00

  7. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear JanProfileDecadeJulyAnnual000

  8. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear JanProfileDecadeJulyAnnual0000

  9. COAL LIQUEFACTION STUDIES USING PHOSPHORIC ACID AT MODERATE TEMPERATURES AND PRESSURES

    E-Print Network [OSTI]

    McLean, J.B.

    2010-01-01

    by assuming that the coal recovery would have been 17,0used separately at the The coal recoveries same conditions»with a total recovery of 27.1 gm (treated coal plus liquid

  10. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01

    the western coal fields using surface mining methods; total29). The rapid growth of surface coal mining has in the pastProtection in Surface Mining of Coal," Grum, E. C. and R. D.

  11. International energy annual, 1989. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-02-01

    This report is prepared annually and presents the latest information and trends on world energy production, consumption, reserves, trade, and prices for five primary energy sources: petroleum, natural gas, coal, hydroelectricity, and nuclear electricity. It also presents information on petroleum products. Since the early 1980's the world's total output of primary energy has increased steadily. The annual average growth rate of energy production during the decade was 1.9 percent. Throughout the 1980's, petroleum was the world's most heavily used type of energy. In 1989, three countries--the United States, the USSR, and China--were the leading producers and consumers of world energy. Together, these countries consumed and produced almost 50 percent of the world's total energy. Global production and consumption of crude oil and natural gas liquids increased during the 1980's, despite a decline in total production and demand in the early part of the decade. World production of dry natural gas continued to rise steadily in the 1980's. For the last several years, China has been the leading producer of coal, followed by the United States. In 1989, hydroelectricity supply declined slightly from the upward trend of the last 10 years. Nuclear power generation rose slightly from the 1988 level, compared with the marked growth in earlier years. Prices for major crude oils all increased between 1988 and 1989, but remained well below the price levels at the beginning of the decade. 26 figs., 36 tabs.

  12. Annual Energy Review 2004

    SciTech Connect (OSTI)

    Seiferlein, Katherine E.

    2005-08-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, international energy, as well as financial and environment indicators; and data unit conversion tables. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.

  13. Annual Energy Review 2005

    SciTech Connect (OSTI)

    Seiferlein, Katherine E.

    2006-07-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, international energy, as well as financial and environment indicators; and data unit conversion tables. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.

  14. Annual Energy Review 2006

    SciTech Connect (OSTI)

    Seiferlein, Katherine E.

    2007-06-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, international energy, as well as financial and environment indicators; and data unit conversion tables. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.

  15. Annual Energy Review 2009

    SciTech Connect (OSTI)

    Fichman, Barbara T.

    2010-08-01

    The Annual Energy Review (AER) is the U.S. Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are statistics on total energy production, consumption, trade, and energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and international energy; financial and environment indicators; and data unit conversions. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding the content of the AER and other EIA publications.

  16. Zevenhoven & Kilpinen CROSS EFFECTS, TOTAL SYSTEM LAY-OUT 13.6.2001 10-1 Figure 10.1 Typical pulverised coal combustion and gas clean-up system: dry scrubber +

    E-Print Network [OSTI]

    Zevenhoven, Ron

    pulverised coal combustion and gas clean-up system: dry scrubber + baghouse filter for SO2 and particulate the emissions regulations depend on process type and plant size. Some compounds such as alkali or chlorine may For a conventional pulverised coal-fired power plant a set-up is shown in Figure 10.1, with a gas clean-up system

  17. Review of a Proposed Quarterly Coal Publication

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    This Review of a Proposed Quartery Coal Publication contains findings and recommendations regarding the content of a new summary Energy Information Administration (EIA) coal and coke publication entitled The Quarterly Coal Review (QCR). It is divided into five sections: results of interviews with selected EIA data users; identification of major functions of the coal and coke industries; analysis of coal and coke data collection activities; evaluation of issues conerning data presentation including recommendations for the content of the proposed QCR; and comparison of the proposed QCR with other EIA publications. Major findings and recommendations are as follows: (1) User interviews indicate a definite need for a compehensive publication that would support analyses and examine economic, supply and demand trends in the coal industry; (2) the organization of the publication should reflect the natural order of activities of the coal and coke industries. Based on an analysis of the industries, these functions are: production, stocks, imports, exports, distribution, and consumption; (3) current EIA coal and coke surveys collect sufficient data to provide a summary of the coal and coke industries on a quarterly basis; (4) coal and coke data should be presented separately. Coke data could be presented as an appendix; (5) three geographic aggregations are recommended in the QCR. These are: US total, coal producing districts, and state; (6) coal consumption data should be consolidated into four major consumer categories: electric utilities, coke plants, other industrial, and residential commercial; (7) several EIA publications could be eliminated by the proposed QCR.

  18. Regional refining models for alternative fuels using shale and coal synthetic crudes: identification and evaluation of optimized alternative fuels. Annual report, March 20, 1979-March 19, 1980

    SciTech Connect (OSTI)

    Sefer, N.R.; Russell, J.A.

    1980-11-01

    The initial phase has been completed in the project to evaluate alternative fuels for highway transportation from synthetic crudes. Three refinery models were developed for Rocky Mountain, Mid-Continent and Great Lakes regions to make future product volumes and qualities forecast for 1995. Projected quantities of shale oil and coal oil syncrudes were introduced into the raw materials slate. Product slate was then varied from conventional products to evaluate maximum diesel fuel and broadcut fuel in all regions. Gasoline supplement options were evaluated in one region for 10% each of methanol, ethanol, MTBE or synthetic naphtha in the blends along with syncrude components. Compositions and qualities of the fuels were determined for the variation in constraints and conditions established for the study. Effects on raw materials, energy consumption and investment costs were reported. Results provide the basis to formulate fuels for laboratory and engine evaluation in future phases of the project.

  19. Illinois Clean Coal Institute 2005 annual report. Final technical report for the period September 1st, 2004, through August 31, 2005 on projects funded by the Illinois Department of Commerce and Economic Opportunity

    SciTech Connect (OSTI)

    NONE

    2005-11-08

    This final technical report contains the abstracts and executive summaries of projects funded through the Illinois Clean Coal Institute solicitation entitled 'Request for proposals No. 04-1(ICCI/RFP04-1)'. Support of these projects is by the Office of Coal Development and Department of Commerce and Economic Opportunity. The projects fall into the following categories: advanced coal mining technologies; coal preparation and coal production business practice; management of coal combustion byproducts; commercialization and technology transfer. Final project extensions are also recorded.

  20. PRB Coal Users' Group enjoys growing interest in its concerns

    SciTech Connect (OSTI)

    Rahm, R.

    2008-07-15

    A review is given of some of the topics discussed at the PRB Coal Users' Group annual meeting, including combustion dusts and a new session on conveyor belts. 7 figs.

  1. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01

    Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

  2. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    that own the scores of coal power plants whose coal ismillion tons in 2006. Coal power plants currently accountan electric generating coal power plant that would be built

  3. Clean Coal Technology Programs: Completed Projects (Volume 2)

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2003-12-01

    Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  4. Clean Coal Technology Programs: Program Update 2003 (Volume 1)

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2003-12-01

    Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  5. Model documentation coal market module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1997-02-01

    This report documents the objectives and the conceptual and methodological approach used in the development of the Coal Production Submodule (CPS). It provides a description of the CPS for model analysts and the public. The Coal Market Module provides annual forecasts of prices, production, and consumption of coal.

  6. Clean coal

    SciTech Connect (OSTI)

    Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

    2006-07-15

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  7. Microbial solubilization of coal

    DOE Patents [OSTI]

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  8. Coal liquefaction and hydrogenation

    DOE Patents [OSTI]

    Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

    1985-01-01

    Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

  9. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01

    flow sheet of a K-T coal gasification complex for producingslag or bottom ash, coal gasification, or coal liquefactionCoal (Ref. 46). COAL PREPARATION GASIFICATION 3 K·T GASI FI

  10. Coal liquefaction

    DOE Patents [OSTI]

    Schindler, Harvey D. (Fairlawn, NJ)

    1985-01-01

    In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

  11. NETL: Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture CS Seminars Calendar HomeNETLCareersCoal

  12. X-ray Computed Tomography of coal: Final report

    SciTech Connect (OSTI)

    Maylotte, D.H.; Spiro, C.L.; Kosky, P.G.; Lamby, E.J.

    1986-12-01

    X-ray Computed Tomography (CT) is a method of mapping with x-rays the internal structures of coal. The technique normally produces 2-D images of the internal structures of an object. These images can be recast to create pseudo 3-D representations. CT of coal has been explored for a variety of different applications to coal and coal processing technology. In a comparison of CT data with conventional coal analyses and petrography, CT was found to offer a good indication of the total ash content of the coal. The spatial distribution of the coal mineral matter as seen with CT has been suggested as an indicator of coal washability. Studies of gas flow through coal using xenon gas as a tracer have shown the extremely complicated nature of the modes of penetration of gas through coal, with significant differences in the rates at which the gas can pass along and across the bedding planes of coal. In a special furnace designed to allow CT images to be taken while the coal was being heated, the pyrolysis and gasification of coal have been studied. Gasification rates with steam and CO/sub 2/ for a range of coal ranks have been obtained, and the location of the gasification reactions within the piece of coal can be seen. Coal drying and the progress of the pyrolysis wave into coal have been examined when the coal was subjected to the kind of sudden temperature jump that it might experience in fixed bed gasifier applications. CT has also been used to examine stable flow structures within model fluidized beds and the accessibility of lump coal to microbial desulfurization. 53 refs., 242 figs., 26 tabs.

  13. Emissions mitigation of blended coals through systems optimization

    SciTech Connect (OSTI)

    Don Labbe [IOM Invensys Operations Management (United States)

    2009-10-15

    For coal fired power stations, such as those located in the US, that have installed NOx and SOx emissions abatement equipment substantial carbon dioxide reduction could be achieved by shifting from pure PRB coal to blended coals with local bituminous coal. Don Labbe explains how. The article is based on a presentation at Power-Gen Asia 2009, which takes place 7-9 October in Bangkok, Thailand and an ISA POWID 2009 paper (19th Annual Joint ISA POWID/EPRI Controlls and Instrumentation Conference, Chicago, Illinois, May 2009). 4 refs., 3 figs.

  14. International energy annual 1995

    SciTech Connect (OSTI)

    1996-12-01

    The International Energy Annual presents information and trends on world energy production and consumption for petroleum, natural gas, coal, and electricity. Production and consumption data are reported in standard units as well as British thermal units (Btu). Trade and reserves are shown for petroleum, natural gas, and coal. Data are provided on crude oil refining capacity and electricity installed capacity by type. Prices are included for selected crude oils and for refined petroleum products in selected countries. Population and Gross Domestic Product data are also provided.

  15. Quarterly coal report, January--March 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-20

    The United States produced 242 million short tons of coal in the first quarter of 1993, a decrease of 6 percent (14 million short tons) from the amount produced during the first quarter of 1992. The decrease was due to a decline in production east of the Mississippi River. All major coal-producing States in this region had lower coal production levels led by West Virginia, which produced 5 million short tons less coal. The principal reasons for the overall drop in coal output compared to a year earlier were: A decrease in demand for US coal in foreign markets; a slower rate of producer/distributor stock build-up; and a drawn-down of electric utility coal stocks. Distribution of US coal in the first quarter of 1993 was 10 million short tons lower than in the first quarter of 1992, with 5 million short tons less distributed to both electric utilities and overseas markets. The average price of coal delivered to electric utilities during the first quarter of 1993 was $28.65 per short ton, the lowest value since the first quarter of 1980. Coal consumption in the first quarter of 1993 was 230 million short tons, 4 percent higher than in the first quarter of 1992, due primarily to a 5-percent increase in consumption at electric utility plants. Total consumer stocks, at 153 million short tons, and electric utility stocks, at 144 million short tons, were at their lowest quarterly level since the end of 1989. US. coal exports totaled 19 million short tons, 6 million short tons less than in the first quarter of 1992, and the lowest quarterly level since 1988. The decline was primarily due to a 1-million-short-ton drop in exports to each of the following destinations: Italy, France, Belgium and Luxembourg, and Canada.

  16. Coal Combustion Products | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal Combustion Products Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the...

  17. Coal operators prepare for a prosperous new year

    SciTech Connect (OSTI)

    Fiscor, S.

    2008-01-15

    Results are given of the Coal Age 2008 annual Forecast Survey of 17 coal mining executives which reinforces that 2008 could be a very good year. Coal operators are planning to invest in new equipment, development and new coal mine start-ups, based on a number of demand- and supply-side fundamentals. 71% of those surveyed thought coal production in 2008 would increase from 2007 levels and US exports are expected to climb due to the weak dollar. If the tax credit on synfuels expires on 31 December 2007 production of coal synfuel will likely cease. Asked about expensive planned purchases, companies answers ranged from $80,000 for an underground scoop to $500 m for a new mine installation. However, most producers admit they will not be able to operate at full capacity. 7 figs.

  18. International energy annual 1996

    SciTech Connect (OSTI)

    1998-02-01

    The International Energy Annual presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 220 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy reported in the International Energy Annual includes hydroelectric power, geothermal, solar, and wind electric power, biofuels energy for the US, and biofuels electric power for Brazil. New in the 1996 edition are estimates of carbon dioxide emissions from the consumption of petroleum and coal, and the consumption and flaring of natural gas. 72 tabs.

  19. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    is produced via coal gasification, then, depending on thenot be amenable to coal gasification and, thus, Eastern coalto represent a coal-to- hydrogen gasification process that

  20. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    transportation component of coal price should also increase;investment. Coal costs and prices are functions of a numberTable 15: Coal Supply, Disposition, and Prices”, http://

  1. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    increase in rail coal transportation costs in the future? (Ythus, the cost of coal transportation via unit trains ischance of the cost of coal transportation increasing are

  2. Hydrogen from Coal Edward Schmetz

    E-Print Network [OSTI]

    Hydrogen from Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U-based technology. (a) Based on equal quantities of coal used to produce hydrogen and electricity 4 #12;Why Hydrogen From Coal? Huge U.S. coal reserves Hydrogen can be produced cleanly from coal Coal can provide

  3. Coal data: A reference

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  4. COAL DESULFURIZATION PRIOR TO COMBUSTION

    E-Print Network [OSTI]

    Wrathall, J.

    2013-01-01

    90e COAL DESULFURIZATION PRIOR TO COMBUSTION J. Wrathall, T.of coal during combustion. The process involves the additionCOAL DESULFURIZATION PRIOR TO COMBUSTION Lawrence Berkeley

  5. 2001 annual report 2001 annual report

    E-Print Network [OSTI]

    New Mexico, University of

    2001 annual report 2001 annual report 2001 annual report 2001 annual report 2001 annual report 2001 annual report 2001 annual report 2001 annual reportelectrical & computer engineering 2001 annual report the university of new mexico department of 2001 annual report 2001 annual report 2001 annual report 2001 annual

  6. Annual Coal Distribution Report - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotesShaleOil September 1999current

  7. Annual Coal Distribution Report - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas ReservesAlabamaAbout EIA.govDistribution Report Release

  8. Annual Coal Report - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas ReservesAlabamaAbout EIA.govDistribution Report

  9. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01

    Coal Cleaning Costs Process Clean Coal Produced, * T/D (DryMM$ Net Operating Cost, $/T (Clean Coal Basis) Net OperatingCost, $/T (Clean Coal Bases) Case NA Hazen KVB Battelle

  10. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    Railroads”, Conference on the Future of Coal, U.S. SenateFuture Impacts of Coal Distribution Constraints on Coal Costone at that! -ii- Future Impacts of Coal Distribution

  11. Total Crude by Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672(MillionFeet)Product: Total

  12. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  13. Coal feed lock

    DOE Patents [OSTI]

    Pinkel, I. Irving (Fairview Park, OH)

    1978-01-01

    A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

  14. Coal combustion products 2007 production and use report

    SciTech Connect (OSTI)

    2009-07-01

    The American Coal Ash Association's 2007 Annual Coal Combustion Products (CCP) are derived from data from more than 170 power plants. The amount of CCPs used was 40.55%, a decrease of 2.88% from 2006, attributed to reduced fuel burn and a decrease in demand in the building industry. Figures are given for the production of fly ash, flue gas desulfurization gypsum, bottom ash, FBC ash and boiler slag. The article summarises results of the survey. 1 ref., 1 tab.

  15. Indonesian coal mining

    SciTech Connect (OSTI)

    NONE

    2008-11-15

    The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

  16. Microbial solubilization of coal

    DOE Patents [OSTI]

    Strandberg, Gerald W. (Farragut, TN); Lewis, Susan N. (Knoxville, TN)

    1990-01-01

    This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

  17. International perspectives on coal preparation

    SciTech Connect (OSTI)

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  18. Utilization ROLE OF COAL COMBUSTION

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    , materials left after combustion of coal in conventional and/ or advanced clean-coal technology combustors and advanced clean-coal technology combustors. This paper describes various coal combustion products produced (FGD) products from pulverized coal and advanced clean-coal technology combustors. Over 70% of the CCPs

  19. Coal gasification apparatus

    DOE Patents [OSTI]

    Nagy, Charles K. (Monaca, PA)

    1982-01-01

    Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

  20. Method for fluorinating coal

    DOE Patents [OSTI]

    Huston, John L. (Skokie, IL); Scott, Robert G. (Westmont, IL); Studier, Martin H. (Downers Grove, IL)

    1978-01-01

    Coal is fluorinated by contact with fluorine gas at low pressure. After pial fluorination, when the reaction rate has slowed, the pressure is slowly increased until fluorination is complete, forming a solid fluorinated coal of approximate composition CF.sub.1.55 H.sub.0.15. The fluorinated coal and a solid distillate resulting from vacuum pyrolysis of the fluorinated coal are useful as an internal standard for mass spectrometric unit mass assignments from about 100 to over 1500.

  1. Coal within a revised energy perspective

    SciTech Connect (OSTI)

    Darmstadter, J. [Resources for the Future (RFF), Washington, DC (United States)

    2006-07-15

    The author considers the use of coal within a revised energy perspective, focusing on the factors that will drive which fuels are used to generate electricity going forward. He looks at the world markets for fossil fuels and the difficulties of predicting oil and natural gas supply and prices, as demonstrated by the variability in projections from one year to another in the EIA's Annual Energy Outlook. 4 refs., 1 tab.

  2. Coal production 1989

    SciTech Connect (OSTI)

    Not Available

    1990-11-29

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  3. Coal Markets

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas ReservesAlabamaAboutTotalWhy I Chose EIA EIACoal Markets

  4. Coal recovery process

    DOE Patents [OSTI]

    Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

    1992-01-01

    A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

  5. Coal: the new black

    SciTech Connect (OSTI)

    Tullo, A.H.; Tremblay, J.-F.

    2008-03-15

    Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

  6. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    coal type mining. Production by coal type Since 1980, China maximizedthe production shares of coal types, the shares of different

  7. An efficient process for recovery of fine coal from tailings of coal washing plants

    SciTech Connect (OSTI)

    Cicek, T.; Cocen, I.; Engin, V.T.; Cengizler, H. [Dokuz Eylul University, Izmir (Turkey). Dept. for Mining Engineering

    2008-07-01

    Gravity concentration of hard lignites using conventional jigs and heavy media separation equipment is prone to produce coal-rich fine tailings. This study aims to establish a fine coal recovery process of very high efficiency at reasonable capital investment and operational costs. The technical feasibility to upgrade the properties of the predeslimed fine refuse of a lignite washing plant with 35.9% ash content was investigated by employing gravity separation methods. The laboratory tests carried out with the combination of shaking table and Mozley multi-gravity separator (MGS) revealed that the clean coal with 18% ash content on dry basis could be obtained with 58.9% clean coal recovery by the shaking table stage and 4.1% clean coal recovery by MGS stage, totaling to the sum of 63.0% clean coal recovery from a predeslimed feed. The combustible recovery and the organic efficiency of the shaking table + MGS combination were 79.5% and 95.5%, respectively. Based on the results of the study, a flow sheet of a high-efficiency fine coal recovery process was proposed, which is also applicable to the coal refuse pond slurry of a lignite washing plant.

  8. Notices Total Estimated Number of Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    through the use of automated collection techniques or other forms of information technology. DATES: Comments regarding this proposed information collection must be...

  9. Notices Total Estimated Number of Annual

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t e g r8480094626076 Federal

  10. Model documentation, Coal Market Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1998-01-01

    This report documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System`s (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1998 (AEO98). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS). CMM provides annual forecasts of prices, production, and consumption of coal for NEMS. In general, the CDS integrates the supply inputs from the CPS to satisfy demands for coal from exogenous demand models. The international area of the CDS forecasts annual world coal trade flows from major supply to major demand regions and provides annual forecasts of US coal exports for input to NEMS. Specifically, the CDS receives minemouth prices produced by the CPS, demand and other exogenous inputs from other NEMS components, and provides delivered coal prices and quantities to the NEMS economic sectors and regions.

  11. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01

    power plant pulverized coal power plant v Advanced Coal WindMW coal gasification combined cycle power plant equippedMW coal gasification, combined cycle power plant equipped

  12. Supplement to the Annual Energy Outlook 1993

    SciTech Connect (OSTI)

    Not Available

    1993-02-17

    The Supplement to the Annual Energy Outlook 1993 is a companion document to the Energy Information Administration`s (EIA) Annual Energy Outlook 1993 (AEO). Supplement tables provide the regional projections underlying the national data and projections in the AEO. The domestic coal, electric power, commercial nuclear power, end-use consumption, and end-use price tables present AEO forecasts at the 10 Federal Region level. World coal tables provide data and projections on international flows of steam coal and metallurgical coal, and the oil and gas tables provide the AEO oil and gas supply forecasts by Oil and Gas Supply Regions and by source of supply. All tables refer to cases presented in the AEO, which provides a range of projections for energy markets through 2010.

  13. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    a particular type of coal, each of which is inherentlyThere are four classes of coal: bituminous, sub-bituminous,minerals Metallic ores Coal Crude petroleum Gasoline Fuel

  14. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    Council (NCC), 2006, “Coal: America’s Energy Future”, VolumeCan Coal Deliver? America’s Coal Potential & Limits”, Studycoal generating units currently in operation throughout North America (

  15. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    5 Figure 1: Map of U.S. coal plants and generating1: Map of U.S. coal plants and generating units (GED, 2006a)of an electric generating coal power plant that would be

  16. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    than those of other coal types, depending on the location oftrue that different coal types (in terms of heating values,= installed capacity of i-type coal plants [GW]; HR i = heat

  17. Pulverized coal fuel injector

    DOE Patents [OSTI]

    Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

    1992-01-01

    A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

  18. Clean Coal Projects (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

  19. Balancing coal pipes

    SciTech Connect (OSTI)

    Earley, D.; Kirkenir, B.

    2009-11-15

    Balancing coal flow to the burners to optimise combustion by using real-time measurement systems (such as microwave mass measurement) is discussed. 3 figs.

  20. Coal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    capture, utilization and sequestration. Featured Energy Secretary Moniz Visits Clean Coal Facility in Mississippi On Friday, Nov. 8, 2013, Secretary Moniz and international...

  1. Coal liquefaction quenching process

    DOE Patents [OSTI]

    Thorogood, Robert M. (Macungie, PA); Yeh, Chung-Liang (Bethlehem, PA); Donath, Ernest E. (St. Croix, VI)

    1983-01-01

    There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

  2. Rail Coal Transportation Rates

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Recurring Reserves Stocks All reports Browse by Tag Alphabetical Frequency Tag Cloud Data For: 2001 Next Release Date: October 2003 U. S. Coal-Producing Districts...

  3. 2008 annual merit review

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The 2008 DOE Vehicle Technologies Program Annual Merit Review was held February 25-28, 2008 in Bethesda, Maryland. The review encompassed all of the work done by the Vehicle Technologies Program: a total of 280 individual activities were reviewed, by a total of just over 100 reviewers. A total of 1,908 individual review responses were received for the technical reviews, and an additional 29 individual review responses were received for the plenary session review.

  4. Clean Coal Technology Demonstration Program: Program Update 1999

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2000-04-01

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  5. Clean Coal Technology Demonstration Program: Program Update 2000

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2001-04-01

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  6. Clean Coal Technology Demonstration Program: Program Update 1998

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    1999-03-01

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  7. Clean Coal Technology Demonstration Program: Program Update 2001

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2002-07-30

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results. Also includes Power Plant Improvement Initiative Projects.

  8. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    coal (PC) or integrated gasification combined cycle ( IGCC)coal (PC) or integrated gasification combined cycle (IGCC)will be integrated gasification combined cycle (IGCC) (Same

  9. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    minerals Metallic ores Coal Crude petroleum Gasoline FuelMetallic ores and concentrates Coal Crude Petroleum Gasoline and aviation turbine fuel

  10. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01

    Credit Extra Fuel Oil Coal to gasifier Na cost· Na processoiL Replace res. with coal as gasifier feed. 543 ton/day @$

  11. COAL DESULFURIZATION PRIOR TO COMBUSTION

    E-Print Network [OSTI]

    Wrathall, J.

    2013-01-01

    Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

  12. Catalyst for coal liquefaction process

    DOE Patents [OSTI]

    Huibers, Derk T. A. (Pennington, NJ); Kang, Chia-Chen C. (Princeton, NJ)

    1984-01-01

    An improved catalyst for a coal liquefaction process; e.g., the H-Coal Process, for converting coal into liquid fuels, and where the conversion is carried out in an ebullated-catalyst-bed reactor wherein the coal contacts catalyst particles and is converted, in addition to liquid fuels, to gas and residual oil which includes preasphaltenes and asphaltenes. The improvement comprises a catalyst selected from the group consisting of the oxides of nickel molybdenum, cobalt molybdenum, cobalt tungsten, and nickel tungsten on a carrier of alumina, silica, or a combination of alumina and silica. The catalyst has a total pore volume of about 0.500 to about 0.900 cc/g and the pore volume comprises micropores, intermediate pores and macropores, the surface of the intermediate pores being sufficiently large to convert the preasphaltenes to asphaltenes and lighter molecules. The conversion of the asphaltenes takes place on the surface of micropores. The macropores are for metal deposition and to prevent catalyst agglomeration. The micropores have diameters between about 50 and about 200 angstroms (.ANG.) and comprise from about 50 to about 80% of the pore volume, whereas the intermediate pores have diameters between about 200 and 2000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume, and the macropores have diameters between about 2000 and about 10,000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume. The catalysts are further improved where they contain promoters. Such promoters include the oxides of vanadium, tungsten, copper, iron and barium, tin chloride, tin fluoride and rare earth metals.

  13. Beluga Coal Gasification - ISER

    SciTech Connect (OSTI)

    Steve Colt

    2008-12-31

    ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

  14. Illinois Coal Development Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Coal Development Program seeks to advance promising clean coal technologies beyond research and towards commercialization. The program provides a 50/50 match with private industry...

  15. COAL DESULFURIZATION PRIOR TO COMBUSTION

    E-Print Network [OSTI]

    Wrathall, J.

    2013-01-01

    10%. These two properties can be used to classify coals forsulfur in the coal to be burned. Other properties, such as

  16. Clean coal technologies market potential

    SciTech Connect (OSTI)

    Drazga, B. (ed.)

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  17. Tracking new coal-fired power plants: coal's resurgence in electric power generation

    SciTech Connect (OSTI)

    NONE

    2007-05-01

    This information package is intended to provide an overview of 'Coal's resurgence in electric power generation' by examining proposed new coal-fired power plants that are under consideration in the USA. The results contained in this package are derived from information that is available from various tracking organizations and news groups. Although comprehensive, this information is not intended to represent every possible plant under consideration but is intended to illustrate the large potential that exists for new coal-fired power plants. It should be noted that many of the proposed plants are likely not to be built. For example, out of a total portfolio (gas, coal, etc.) of 500 GW of newly planned power plant capacity announced in 2001, 91 GW have been already been scrapped or delayed. 25 refs.

  18. Method for coal liquefaction

    DOE Patents [OSTI]

    Wiser, Wendell H. (Kaysville, UT); Oblad, Alex G. (Salt Lake City, UT); Shabtai, Joseph S. (Salt Lake City, UT)

    1994-01-01

    A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400.degree. C. at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1.

  19. Mechanochemical hydrogenation of coal

    DOE Patents [OSTI]

    Yang, Ralph T. (Tonawanda, NY); Smol, Robert (East Patchogue, NY); Farber, Gerald (Elmont, NY); Naphtali, Leonard M. (Washington, DC)

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  20. Coal liquefaction process

    DOE Patents [OSTI]

    Carr, Norman L. (Allison Park, PA); Moon, William G. (Cheswick, PA); Prudich, Michael E. (Pittsburgh, PA)

    1983-01-01

    A C.sub.5 -900.degree. F. (C.sub.5 -482.degree. C.) liquid yield greater than 50 weight percent MAF feed coal is obtained in a coal liquefaction process wherein a selected combination of higher hydrogen partial pressure, longer slurry residence time and increased recycle ash content of the feed slurry are controlled within defined ranges.

  1. Coal. [Great Plains Project

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The status of various research projects related to coal is considered: gasification (approximately 30 processes) and in-situ gasification. Methanol production, retrofitting internal combustion engines to stratified charge engines, methanation (Conoco), direct reduction of iron ores, water resources, etc. Approximately 200 specific projects related to coal are considered with respect to present status. (LTN)

  2. Cooperative research program in coal liquefaction

    SciTech Connect (OSTI)

    Huffman, G.P.

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  3. Regional Effort to Deploy Clean Coal Technologies

    SciTech Connect (OSTI)

    Gerald Hill; Kenneth Nemeth; Gary Garrett; Kimberly Sams

    2009-01-31

    The Southern States Energy Board's (SSEB) 'Regional Effort to Deploy Clean Coal Technologies' program began on June 1, 2003, and was completed on January 31, 2009. The project proved beneficial in providing state decision-makers with information that assisted them in removing barriers or implementing incentives to deploy clean coal technologies. This was accomplished through two specific tasks: (1) domestic energy security and diversity; and (2) the energy-water interface. Milestones accomplished during the project period are: (1) Presentations to Annual Meetings of SSEB Members, Associate Member Meetings, and the Gasification Technologies Council. (2) Energy: Water reports - (A) Regional Efforts to Deploy Clean Coal Technologies: Impacts and Implications for Water Supply and Quality. June 2004. (B) Energy-Water Interface Challenges: Coal Bed Methane and Mine Pool Water Characterization in the Southern States Region. 2004. (C) Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S. June 2008. (3) Blackwater Interactive Tabletop Exercise - Decatur, Georgia April 2007. (4) Blackwater Report: Blackwater: Energy and Water Interdependency Issues: Best Practices and Lessons Learned. August 2007. (5) Blackwater Report: BLACKWATER: Energy Water Interdependency Issues REPORT SUMMARY. April 2008.

  4. Coal in China

    SciTech Connect (OSTI)

    Minchener, A.J. [IEA Clean Coal Centre, London (United Kingdom)

    2005-07-01

    The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

  5. APEC experts` group on clean coal technology

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    The proceedings of the Asia-Pacific Economic Cooperation (APEC) Expert`s Group on Clean Coal Technology`s Technical Seminar held in Jakarta, Indonesia, from October 10-13, 1994 are presented. A total of 28 papers were presented at the seminar. These papers addressed issues of relevance to APEC member economies associated with the application of clean coal technologies (CCTs) and created a forum where information and ideas about CCTs and their application in the Asia-Pacific Region could be exchanged. A separate abstract was prepared for each paper for inclusion in the Energy Science and Technology Database.

  6. Cermet composite thermal spray coatings for erosion and corrosion protection in combustion environments of advanced coal-fired boilers. Semi-annual technical progress report, February 1996--July 1996

    SciTech Connect (OSTI)

    Banovic, S.W.; Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1996-08-01

    Present coal-fired boiler environments remain hostile to the materials of choice since corrosion and erosion can be a serious problem in certain regions of the boiler. Recently, the Clean Air Act Amendment is requiring electric power plants to reduce NO{sub x}, emissions to the environment. To reduce NO{sub x}, emissions, new low NO{sub x}, combustors are utilized which burn fuel with a substoichiometric amount of oxygen (i.e., low oxygen partial pressure). In these low NO{sub x} environments, H{sub 2}S gas is a major source of sulfur. Due to the sulfidation process, corrosion rates in reducing parts of boilers have increased significantly and existing boiler tube materials do not always provide adequate corrosion resistance. Combined attack due to corrosion and erosion is a concern because of the significantly increased operating costs which result in material failures. One method to combat corrosion and erosion in coal-fired boilers is to apply coatings to the components subjected to aggressive environments. Thermal spray coatings, a cermet composite comprised of hard ceramic phases of oxide and/or carbide in a metal binder, have been used with some success as a solution to the corrosion and erosion problems in boilers. However, little is known on the effect of the volume fraction, size, and shape of the hard ceramic phase on the erosion and corrosion resistance of the thermally sprayed coatings. It is the objective of this research to investigate metal matrix composite (cermet) coatings in order to determine the optimum ceramic/metal combination that will give the best erosion and corrosion resistance in new advanced coal-fired boilers.

  7. Decreasing Utility Contract Interest through Annual Payments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    total interest paid. Annual payments allow Federal agencies to pay for an entire fiscal year (12 months) of payments in advance. This method is attractive to finance companies...

  8. Trace elements in coal by glow discharge mass spectrometry

    SciTech Connect (OSTI)

    Jacobs, M.L.; Wilson, C.R.; Pestovich, J. Jr.

    1995-08-01

    A need and a demand exist for determining trace elements in coal and coal related by-products, especially those elements which may potentially be a health hazard. The provisions of the 1990 clean air act require that the EPA evaluate the emissions of electric utilities for trace elements and other potentially hazardous organic compounds. The coal fired electric utility industry supplies roughly 60% of the total generating capacity of 2,882,525 million kilowatt hours (nearly 3 trillion kilowatt hours) generated in the U.S. This is accomplished by 414 power plants scattered across the country that burned 813,508,000 short tons of coal in 1993. The relative volatility of some inorganic constituents in coal makes them more prone to be emitted to the atmosphere following combustion. The production of analytical data for trace elements is known to be a difficult task in coal and by-products of coal combustion (fly ash, bottom ash, gas streams, etc.), in terms of both sample collection and analytical determinations. There are several common analytical methods available to the analyst to determine trace elements in coal and coal by-products. In general analytical germs, the material to be analyzed can be totally solubilized (or extracted), or the elements analytes can be determined in the material as a solid. A relatively new elemental technique, Glow Discharge Mass Spectrometry (GDMS) can be used with solids as well. This new analytical technique had never before been applied directly to coal. The radio frequency-glow discharge quadropole mass spectrometer was used to analyze coal directly for the first time ever by rf-GDMS. The rf-GDMS technique is described.

  9. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    coal are least expensive when produced from the Powder River Basin region, where cheaper surface mining

  10. Clean coal technology: The new coal era

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The Clean Coal Technology Program is a government and industry cofunded effort to demonstrate a new generation of innovative coal processes in a series of full-scale showcase`` facilities built across the country. Begun in 1986 and expanded in 1987, the program is expected to finance more than $6.8 billion of projects. Nearly two-thirds of the funding will come from the private sector, well above the 50 percent industry co-funding expected when the program began. The original recommendation for a multi-billion dollar clean coal demonstration program came from the US and Canadian Special Envoys on Acid Rain. In January 1986, Special Envoys Lewis and Davis presented their recommendations. Included was the call for a 5-year, $5-billion program in the US to demonstrate, at commercial scale, innovative clean coal technologies that were beginning to emerge from research programs both in the US and elsewhere in the world. As the Envoys said: if the menu of control options was expanded, and if the new options were significantly cheaper, yet highly efficient, it would be easier to formulate an acid rain control plan that would have broader public appeal.

  11. Total Imports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight Paths30,2,8,Product: Total Crude

  12. Consensus Coal Production Forecast for

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Consensus Coal Production Forecast for West Virginia 2009-2030 Prepared for the West Virginia Summary 1 Recent Developments 2 Consensus Coal Production Forecast for West Virginia 10 Risks References 27 #12;W.Va. Consensus Coal Forecast Update 2009 iii List of Tables 1. W.Va. Coal Production

  13. Controlled short residence time coal liquefaction process

    DOE Patents [OSTI]

    Anderson, Raymond P. (Overland Park, KS); Schmalzer, David K. (Englewood, CO); Wright, Charles H. (Overland Park, KS)

    1982-05-04

    Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -455.degree. C. is an amount at least equal to that obtainable by performing the process under the same conditions except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent.

  14. Aqueous coal slurry

    SciTech Connect (OSTI)

    Berggren, M.H.; Smit, F.J.; Swanson, W.W.

    1989-10-30

    A principal object of the invention is the provision of an aqueous coal slurry containing a dispersant, which is of low-cost and which contains very low or no levels of sodium, potassium, sulfur and other contaminants. In connection with the foregoing object, it is an object of the invention to provide an aqueous slurry containing coal and dextrin as a dispersant and to provide a method of preparing an aqueous coal slurry which includes the step of adding an effective amount of dextrin as a dispersant. The invention consists of certain novel features and a combination of parts hereinafter fully described, and particularly pointed out in the appended claims. 6 tabs.

  15. Coal liquefaction process

    DOE Patents [OSTI]

    Wright, Charles H. (Overland Park, KS)

    1986-01-01

    A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

  16. MTCI advanced coal technologies

    SciTech Connect (OSTI)

    Mansour, M.N.; Chandran, R.R. [Manufacturing and Technology Conversion International, Inc., Columbia, MD (United States)

    1994-12-31

    MTCI is pursuing the development and commercialization of several advanced combustion and gasification systems based on pulse combustion technology. The systems include indirectly heated thermochemical reactor, atmospheric pressure pulse combustor, pulsed atmospheric fluidized bed combustor, direct coal-fired gas turbine pulse combustor island, and advanced concept second-generation pressurized fluidized bed combustor island. Although the systems in toto are capable of processing lignite, subbituminous, bituminous, and anthracite coals in an efficient, economical and environmentally acceptable manner, each system is considered ideal for certain coal types. Brief descriptions of the systems, applications, selected test results and technology status are presented.

  17. Clean coal today

    SciTech Connect (OSTI)

    none,

    1990-01-01

    This is the first issue of the Clean Coal Today publication. Each issue will provide project status reports, feature articles about certain projects and highlight key events concerning the US Clean Coal Technology Demonstration Program. Projects described in this publication include: Colorado-Ute Electric Association Circulating Fluidized Bed Combustor Project at Nucla, Colorado; Babcock and Wilcox coolside and limestone injection multistage burner process (dry sorbent injection); Coal Tech's Advanced Cyclone Combustor Project; and the TIDD pressurized fluidized bed combustor combined cycle facility in Brilliant, Ohio. The status of other projects is included.

  18. Coal liquefaction process

    DOE Patents [OSTI]

    Wright, C.H.

    1986-02-11

    A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

  19. Coal News and Markets - Energy Information Administration

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYearEnergy InformationSign upAnnual Energynatural gasInternshipsBrowserCoal

  20. International energy annual 1990. [Contains Glossary

    SciTech Connect (OSTI)

    1992-01-23

    The International Energy Annual presents current data and trends for production, consumption, imports, and exports of primary energy commodities in more than 190 countries, dependencies, and area of special sovereignty. Also included are prices on crude oil, petroleum products, natural gas, electricity, and coal in selected countries. (VC)

  1. Recent advances in coal geochemistry

    SciTech Connect (OSTI)

    Chyi, L.L. (Dept. of Geology, Univ. of Akron, Akron, OH (US)); Chou, C.-L. (Illinois State Geological Survey, 615 E. Peabody Drive, Champaign, IL (US))

    1990-01-01

    Chapters in this collection reflect the recent emphasis both on basic research in coal geochemistry and on applied aspects related to coal utilization. Geochemical research on peat and coal generates compositional data that are required for the following reasons. First, many studies in coal geology require chemical data to aid in interpretation for better understanding of the origin and evolution of peat and coal. Second, coal quality assessment is based largely on composition data, and these data generate useful insights into the geologic factors that control the quality of coal. Third, compositional data are needed for effective utilization of coal resources and to reflect the recent emphasis on both basic research in coal geochemistry and environmental aspects related to coal utilization.

  2. Aqueous coal slurry

    SciTech Connect (OSTI)

    Berggren, Mark H.; Smit, Francis J.; Swanson, Wilbur W.

    1993-04-06

    An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

  3. Aqueous coal slurry

    DOE Patents [OSTI]

    Berggren, Mark H. (Golden, CO); Smit, Francis J. (Arvada, CO); Swanson, Wilbur W. (Golden, CO)

    1993-01-01

    An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

  4. Clean Coal Technology (Indiana)

    Broader source: Energy.gov [DOE]

    A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

  5. Quarterly coal report

    SciTech Connect (OSTI)

    Young, P.

    1996-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  6. Method for coal liquefaction

    DOE Patents [OSTI]

    Wiser, W.H.; Oblad, A.G.; Shabtai, J.S.

    1994-05-03

    A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400 C at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1. 1 figures.

  7. Coal liquefaction process

    DOE Patents [OSTI]

    Skinner, Ronald W. (Allentown, PA); Tao, John C. (Perkiomenville, PA); Znaimer, Samuel (Vancouver, CA)

    1985-01-01

    This invention relates to an improved process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal. The claimed improved process includes the hydrocracking of the light SRC mixed with a suitable hydrocracker solvent. The recycle of the resulting hydrocracked product, after separation and distillation, is used to produce a solvent for the hydrocracking of the light solvent refined coal.

  8. Underground coal mining is an industry well suited for robotic automation. Human operators are severely hampered in

    E-Print Network [OSTI]

    Stentz, Tony

    Abstract Underground coal mining is an industry well suited for robotic automation. Human operators approach meets the requirements for cutting straight entries and mining the proper amount of coal per cycle. Introduction The mining of soft materials, such as coal, is a large industry. Worldwide, a total of 435 million

  9. WEAR RESISTANT ALLOYS FOR COAL HANDLING EQUIPMENT

    E-Print Network [OSTI]

    Bhat, M.S.

    2011-01-01

    Proceedings of the Conference on Coal Feeding Systems, HeldWear Resistant Alloys for Coal Handling Equipment", proposalWear Resistant Alloys for Coal Handling Equi pment". The

  10. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    mines in China lowers the coal recovery rate and increasesthat China’s average coal recovery rate is 30% nationallyimproved aggregate coal recovery rates and local- scale

  11. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    of deploying advanced coal power in the Chinese context,”12 2.6. International coal prices and12 III. Chinese Coal

  12. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

  13. Coal Gasification and Transportation Fuels Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Gasification and Transportation Fuels Magazine Current Edition: Coal Gasification and Transportation Fuels Quarterly News, Vol.1, Issue 4 (July 2015) Archived Editions: Coal...

  14. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    19 3.4. Coking coal for iron & steels FOB export value for coking coal was relatively stables FOB export value for coking coal significantly increased

  15. Particulate control for low rank coals

    SciTech Connect (OSTI)

    Touzel, R.McD.

    1993-12-31

    The power generating system in Victoria currently comprises a total capacity of 6650 MW. Eighty percent of this capacity consists of base load stations in the Latrobe Valley using brown coal. The Latrobe Valley brown coals have unique characteristics with high moisture content ranging from 58 percent to 70 percent and an ash content which is relatively low but very variable in nature. These and other factors associated with the coal have caused special problems in handling and combustion of the coal and the de-dusting of the boiler flue gases. In recent years, this has been the basis for the design parameters adopted for all the plants in the system. With respect to flue gas de-dusting, the SECV has carried out extensive laboratory studies to characterize the different ashes obtained from the Latrobe Valley brown coals, including precipitability and aerodynamic tests. It also carried out full-scale tests on operating plants and pilot tests have been conducted on inertial collectors, precipitators and bag filters. The Environmental Protection Authority of Victoria has established a particulate emission level of 0.150 grams/m{sup 3} n.t.p. dry for recent Latrobe Valley boilers. However, the mandated emission level takes into account wide variations in operating conditions, and the plants normally achieve much lower emission levels. The Latrobe Valley plants presently in operation include Yallourn W (2x350 MW + 2x375 MW), Morwell (170 MW total and briquette factory), Hazelwood (8x200 MW) and Loy Yang (4x500 MW). The Yalloum W boilers are supplied with coal from the Yalloum Open Cut, the Morwell and Hazelwood boilers from the Morwell Open Cut and Loy Yang boilers from the Loy Yang Open Cut. All boilers are pulverized coal fired (PCF) and incorporate special firing equipment to enable the as-mined wet coal to be fired directly into the furnaces. All boilers are fitted with electrostatic precipitators. The locations of the stations and open cuts are shown.

  16. Healy Clean Coal Project: A DOE Assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2003-09-01

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to provide the energy marketplace with advanced, more efficient, and environmentally responsible coal utilization options by conducting demonstrations of new technologies. These demonstration projects are intended to establish the commercial feasibility of promising advanced coal technologies that have been developed to a level at which they are ready for demonstration testing under commercial conditions. This document serves as a DOE post-project assessment (PPA) of the Healy Clean Coal Project (HCCP), selected under Round III of the CCT Program, and described in a Report to Congress (U.S. Department of Energy, 1991). The desire to demonstrate an innovative power plant that integrates an advanced slagging combustor, a heat recovery system, and both high- and low-temperature emissions control processes prompted the Alaska Industrial Development and Export Authority (AIDEA) to submit a proposal for this project. In April 1991, AIDEA entered into a cooperative agreement with DOE to conduct this project. Other team members included Golden Valley Electric Association (GVEA), host and operator; Usibelli Coal Mine, Inc., coal supplier; TRW, Inc., Space & Technology Division, combustor technology provider; Stone & Webster Engineering Corp. (S&W), engineer; Babcock & Wilcox Company (which acquired the assets of Joy Environmental Technologies, Inc.), supplier of the spray dryer absorber technology; and Steigers Corporation, provider of environmental and permitting support. Foster Wheeler Energy Corporation supplied the boiler. GVEA provided oversight of the design and provided operators during demonstration testing. The project was sited adjacent to GVEA's Healy Unit No. 1 in Healy, Alaska. The objective of this CCT project was to demonstrate the ability of the TRW Clean Coal Combustion System to operate on a blend of run-of-mine (ROM) coal and waste coal, while meeting strict environmental requirements. DOE provided $117,327,000 of the total project cost of $282,300,000, or 41.6 percent. Construction for the demonstration project was started in May 1995, and completed in November 1997. Operations were initiated in January 1998, and completed in December 1999. The evaluation contained herein is based primarily on information from the AIDEA's Final Report (Alaska Industrial Development and Export Authority, 2001), as well as other references cited.

  17. Characterization of the surface properties of Illinois Basin Coals

    SciTech Connect (OSTI)

    Demir, I.

    1991-01-01

    The overall objective of this research project is to provide fundamental data on the physical and chemical surface properties of Illinois coals, specifically those of the Illinois Basin Coal Sample Program (IBCSP). This will help coal researchers achieve an optimal match between Illinois Basin coals and potential coal cleaning and conversion processes (or at least reduce the number of coals suitable for a particular process) and may lead to improved desulfurization and increased utilization of Illinois Basin coals. The specific tasks scheduled to meet our objective are: (1) Physical Characterization: Determine total surface area, porosity, pore size and volume distributions of IBCSP coals crushed to two particle sizes, {minus}100 and {minus}400 mesh (exclusive of IBC-108 which is available only in {minus}400 mesh form), in both an unoxidized and oxidized state. (2) Chemical Characterization: Determine the surface charge (electrokinetic mobility) as a function of pH by electrophoresis and analyze the surface chemical structure of the above samples using Diffuse Reflectance Infrared Spectroscopy (DRIS). (3) Multivariate Statistical Analyses: Explore possible relationships among the newly determined surface properties and other available characterization data, including chemical and petrographic compositions, vitrinite reflectance, free swelling index, ash yield, sulfur forms, and other relevant properties.

  18. Blackout: coal, climate and the last energy crisis

    SciTech Connect (OSTI)

    Heinberg, R. [Post Carbon Institute in California, CA (United States)

    2009-07-15

    Coal fuels more than 30 per cent of UK electricity production, and about 50 per cent in the US, providing a significant portion of total energy output. China and India's recent ferocious economic growth has been based almost entirely on coal-generated electricity. Coal currently looks like a solution to many of our fast-growing energy problems. However, while coal advocates are urging us full steam ahead, the increasing reliance on this dirtiest of all fossil fuels has crucial implications for energy policy, pollution levels, the global climate, world economy and geopolitics. Drawbacks to a coal-based energy strategy include: Scarcity - new studies suggest that the peak of world coal production may actually be less than two decades away; Cost - the quality of produced coal is declining, while the expense of transportation is rising, leading to spiralling costs and increasing shortages; and, Climate impacts - our ability to deal with the historic challenge of climate change may hinge on reducing coal consumption in future years.

  19. Coal resource estimation in the Bayir field, Yatagan-Mugla, SW Turkey

    SciTech Connect (OSTI)

    Inaner, H.; Nakoman, E.; Karayigit, A.I. [Dokuz Eylul University, Buca Izmir (Turkey). Dept. of Geological Engineering

    2008-07-01

    This study focuses on some coal properties and calculation of coal resources with two classical (isopach and polygon) methods in the Bayir field, Yatagan-Mugla, which is located in southwestern Anatolia. This field has not been mined because it is still in the exploration stage. A productive coal seam of Early (?)-Middle Miocene age has a mineable coal thickness of 1.25 m to 18.01 m. Proximate analysis results indicated that this coal seam contains high moisture, ash, volatile matter, total sulphur content, and net calorific values. The weighted average mineable coal thickness calculated from the isopachs is 7.52 m and 7.82 m from polygonal methods. The in situ tonnages with isopach and polygonal methods were calculated to be 122.8 Mt and 130 Mt, respectively. The average value of the two methods shows 126.4 Mt in situ coal tonnages. Total amount of the in situ mineable coal resources is 77.7 Mt, which indicates an important coal potential in the Bayir field. The overburden thickness ranges from 72 m to 493 m in the Bayir field, averaging 257 m, indicating a deep coal mine. The overburden ratio averages 37 m{sup 3}/ton, indicating an underground coal mine to feed a power plant in near future.

  20. COFIRING BIOMASS WITH LIGNITE COAL

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  1. Annual Energy Review, 1995

    SciTech Connect (OSTI)

    1996-07-01

    This document presents statistics on energy useage for 1995. A reviving domestic economy, generally low energy prices, a heat wave in July and August, and unusually cold weather in November and December all contributed to the fourth consecutive year of growth in U.S. total energy consumption, which rose to an all-time high of almost 91 quadrillion Btu in 1995 (1.3). The increase came as a result of increases in the consumption of natural gas, coal, nuclear electric power, and renewable energy. Petroleum was the primary exception, and its use declined by only 0.3 percent. (Integrating the amount of renewable energy consumed outside the electric utility sector into U.S. total energy consumption boosted the total by about 3.4 quadrillion Btu, but even without that integration, U.S. total energy consumption would have reached a record level in 1995.)

  2. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2004-01-01

    Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in Alabama emit approximately 31 MMst (2.4 Tcf) of CO{sub 2} annually. The total sequestration capacity of the Black Warrior coalbed methane fairway at 350 psi is about 189 MMst (14.9 Tcf), which is equivalent to 6.1 years of greenhouse gas emissions from the coal-fired power plants. Applying the geologic screening model indicates that significant parts of the coalbed methane fairway are not accessible because of fault zones, coal mines, coal reserves, and formation water with TDS content less than 3,000 mg/L. Excluding these areas leaves a sequestration potential of 60 MMst (4.7 Tcf), which is equivalent to 1.9 years of emissions. Therefore, if about10 percent of the flue gas stream from nearby power plants is dedicated to enhanced coalbed methane recovery, a meaningful reduction of CO{sub 2} emissions can be realized for nearly two decades. If the fresh-water restriction were removed for the purposes of CO{sub 2} sequestration, an additional 10 MMst (0.9 Tcf) of CO{sub 2} could feasibly be sequestered. The amount of unswept coalbed methane in the fairway is estimated to be 1.49 Tcf at a pressure of 50 psi. Applying the screening model results in an accessible unswept gas resource of 0.44 Tcf. Removal of the fresh-water restriction would elevate this number to 0.57 Tcf. If a recovery factor of 80 percent can be realized, then enhanced recovery activities can result in an 18 percent expansion of coalbed methane reserves in the Black Warrior basin.

  3. Method of extracting coal from a coal refuse pile

    DOE Patents [OSTI]

    Yavorsky, Paul M. (Monongahela, PA)

    1991-01-01

    A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

  4. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01

    of coal sulfur K-T gasification process SRC I process U. S.flow sheet of a K-T coal gasification complex for producingProduction via K-T Gasification" © CEP Aug. 78. Feed

  5. Task 2.3 - Review and Assessment of Results from the Comprehensive Characterization of Toxic Emissions from Coal-Fired Power Plants: Semi-annual report, July 1-December 31, 1996.

    SciTech Connect (OSTI)

    Ness, S.R.

    1997-12-31

    The air toxic emission data from Phase I were summarized and evaluated in the final Phase I summary report, published in September 1996 and available for distribution in October 1996. Data from Phase I were presented at the Center for Air Toxic Metals annual review meeting at the Energy {ampersand} Environmental Research Center in October 1996. The objective of the project was to provide. an independent review of the Phase I data, evaluate the scientific validity of the conclusions, identify significant correlations between emissions and fuel or process parameters, compare the data with available data from EPRI studies, make recommendations for future studies, and complete a combined report that summarizes Phase I, Phase II, and EPRI findings.

  6. Hydrocracking catalysts from coals

    SciTech Connect (OSTI)

    Farcasiu, M.; Petrosius, S.C.; Pladner, E. [USDOE Pittsburgh Energy Technology Center, PA (United States); Derbyshire, F.; Jagtoyen, M. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1994-12-31

    In previous work at PETC it was shown that carbon blacks and carbonized polymers could be active and selective catalysts in hydrocracking reactions of interest for fossil fuels processing. Work at CAER for the production of various activated carbons from coals have shown that the properties of the materials could be varied if they are produced under different conditions. The authors will report work to optimize the catalytic properties of some coal based carbon materials prepared at CAER. One of the most promising materials for this purpose is obtained from an Illinois bituminous coal. The procedure hydroxide solution with coal and reacting in two stages; (1) heat treatment of the solution at 75 C under nitrogen for one hour followed by drying and (2) heat treatment at 400--1,100 C followed by leaching to remove KOH. The product was extensively characterized and its catalytic activity was measured. The catalytic activity of some of the materials is comparable with other, more expensive carbon materials. The catalysts have potential use in upgrading petroleum heavy ends and coal liquefaction.

  7. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01

    2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/this operational mode, the gasifiers and other parts of the

  8. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    pollution. With coal and liquid transport fuel deficits in26 3.6. Coal-to-liquids and coal-to-70 million tonnes and coal-to-liquids capacity reaches 60

  9. Coal Problems 1. Name two examples of clean coal technology and in what manner do they clean the coal?

    E-Print Network [OSTI]

    Bowen, James D.

    Coal Problems 1. Name two examples of clean coal technology and in what manner do they clean the coal? a. Coal Washing- Crushing coal then mixing it with a liquid to allow the impurities to settle. b burning coal altogether. With integrated gasification combined cycle (IGCC) systems, steam and hot

  10. Composition and properties of coals from the Yurty coal occurrence

    SciTech Connect (OSTI)

    N.G. Vyazova; L.N. Belonogova; V.P. Latyshev; E.A. Pisar'kova [Irkutsk State University, Irkutsk (Russia). Research Institute of Oil and Coal Chemistry and Synthesis

    2008-10-15

    Coals from the Yurty coal occurrence were studied. It was found that the samples were brown non-coking coals with low sulfur contents (to 1%) and high yields of volatile substances. The high heat value of coals was 20.6-27.7 MJ/kg. The humic acid content varied from 5.45 to 77.62%. The mineral matter mainly consisted of kaolinite, a-quartz, and microcline. The concentration of toxic elements did not reach hazardous values.

  11. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01

    application of new clean coal technologies with near zeroapplication of new clean coal technologies with near zero

  12. Coal and Coal-Biomass to Liquids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsCluster Compatibility Mode Cluster CompatibilityCoal Markets

  13. Pyrolysis of coal

    DOE Patents [OSTI]

    Babu, Suresh P. (Willow Springs, IL); Bair, Wilford G. (Morton Grove, IL)

    1992-01-01

    A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.

  14. Healy Clean Coal Project

    SciTech Connect (OSTI)

    None

    1997-12-31

    The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

  15. Dry cleaning of Turkish coal

    SciTech Connect (OSTI)

    Cicek, T. [Dokuz Eylul University, Izmir (Turkey). Faculty of Engineering

    2008-07-01

    This study dealt with the upgrading of two different type of Turkish coal by a dry cleaning method using a modified air table. The industrial size air table used in this study is a device for removing stones from agricultural products. This study investigates the technical and economical feasibility of the dry cleaning method which has never been applied before on coals in Turkey. The application of a dry cleaning method on Turkish coals designated for power generation without generating environmental pollution and ensuring a stable coal quality are the main objectives of this study. The size fractions of 5-8, 3-5, and 1-3 mm of the investigated coals were used in the upgrading experiments. Satisfactory results were achieved with coal from the Soma region, whereas the upgrading results of Hsamlar coal were objectionable for the coarser size fractions. However, acceptable results were obtained for the size fraction 1-3 mm of Hsamlar coal.

  16. The world price of coal

    E-Print Network [OSTI]

    Ellerman, A. Denny

    1994-01-01

    A significant increase in the seaborne trade for coal over the past twenty years has unified formerly separate coal markets into a world market in which prices move in tandem. Due to its large domestic market, the United ...

  17. 2009 Coal Age Buyers Guide

    SciTech Connect (OSTI)

    2009-07-15

    The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

  18. 2008 Coal Age buyers guide

    SciTech Connect (OSTI)

    2008-07-15

    The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

  19. Low-rank coal research

    SciTech Connect (OSTI)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  20. (Basic properties of coals and other solids)

    SciTech Connect (OSTI)

    Not Available

    1991-11-25

    This report discusses basic properties of bituminous, subbituminous, and lignite coals. Properties of coal liquids are also investigated. Heats of immersion in strong acids are found for Pittsburgh {number sign}8, Illinois {number sign}6, and Wyodak coals. Production of coal liquids by distillation is discussed. Heats of titration of coal liquids and coal slurries are reported. (VC)

  1. Development of an Advanced Fine Coal Suspension Dewatering Process

    SciTech Connect (OSTI)

    B. K. Parekh; D. P. Patil

    2008-04-30

    With the advancement in fine coal cleaning technology, recovery of fine coal (minus 28 mesh) has become an attractive route for the U.S. coal industry. The clean coal recovered using the advanced flotation technology i.e. column flotation, contains on average 20% solids and 80% water, with an average particle size of 35 microns. Fine coal slurry is usually dewatered using a vacuum dewatering technique, providing a material with about 25 to 30 percent moisture. The process developed in this project will improve dewatering of fine (0.6mm) coal slurry to less than 20 percent moisture. Thus, thermal drying of dewatered wet coal will be eliminated. This will provide significant energy savings for the coal industry along with some environmental benefits. A 1% increase in recovery of coal and producing a filter cake material of less than 20 % moisture will amount to energy savings of 1900 trillion Btu/yr/unit. In terms of the amount of coal it will be about 0.8% of the total coal being used in the USA for electric power generation. It is difficult to dewater the fine clean coal slurry to about 20% moisture level using the conventional dewatering techniques. The finer the particle, the larger the surface area and thus, it retains large amounts of moisture on the surface. The coal industry has shown some reluctance in using the advanced coal recovery techniques, because of unavailability of an economical dewatering technique which can provide a product containing less than 20% moisture. The U.S.DOE and Industry has identified the dewatering of coal fines as a high priority problem. The goal of the proposed program is to develop and evaluate a novel two stage dewatering process developed at the University of Kentucky, which involves utilization of two forces, namely, vacuum and pressure for dewatering of fine coal slurries. It has been observed that a fine coal filter cake formed under vacuum has a porous structure with water trapped in the capillaries. When this porous cake is subjected to pressure for a short time, the free water present is released from the filter cake. Laboratory studies have shown that depending on the coal type a filter cake containing about 15% moisture could be obtained using the two-stage filtration technique. It was also noted that applying intermittent breaks in vacuum force during cake formation, which disturbed the cake structure, helped in removing moisture from the filter cakes. In this project a novel approach of cleaning coal using column flotation was also developed. With this approach the feed capacity of the column is increased significantly, and the column was also able to recover coarser size coal which usually gets lost in the process. The outcome of the research benefits the coal industry, utility industry, and indirectly the general public. The benefits can be counted in terms of clean energy, cleaner environment, and lower cost power.

  2. Underground coal gasification. Presentations

    SciTech Connect (OSTI)

    NONE

    2007-07-01

    The 8 presentations are: underground coal gasification (UCG) and the possibilities for carbon management (J. Friedmann); comparing the economics of UCG with surface gasification technologies (E. Redman); Eskom develops UCG technology project (C. Gross); development and future of UCG in the Asian region (L. Walker); economically developing vast deep Powder River Basin coals with UCG (S. Morzenti); effectively managing UCG environmental issues (E. Burton); demonstrating modelling complexity of environmental risk management; and UCG research at the University of Queensland, Australia (A.Y. Klimenko).

  3. Clean Coal Power Initiative

    SciTech Connect (OSTI)

    Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

    2006-03-31

    This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

  4. PNNL Coal Gasification Research

    SciTech Connect (OSTI)

    Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

    2010-07-28

    This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

  5. Coal Research FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsCluster Compatibility Mode Cluster CompatibilityCoal Markets ReleaseCoal

  6. Synthesis gas production with an adjustable H{sub 2}/CO ratio through the coal gasification process: effects of coal ranks and methane addition

    SciTech Connect (OSTI)

    Yan Cao; Zhengyang Gao; Jing Jin; Hongchang Zhou; Marten Cohron; Houying Zhao; Hongying Liu; Weiping Pan [Western Kentucky University (WKU), Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology (ICSET)

    2008-05-15

    Direct production of synthesis gas using coal as a cheap feedstock is attractive but challenging due to its low H{sub 2}/CO ratio of generated synthesis gas. Three typical U.S. coals of different ranks were tested in a 2.5 in. coal gasifier to investigate their gasification reactivity and adjustability on H{sub 2}/CO ratio of generated synthesis gas with or without the addition of methane. Tests indicated that lower-rank coals (lignite and sub-bituminous) have higher gasification reactivity than bituminous coals. The coal gasification reactivity is correlated to its synthesis-gas yield and the total percentage of H{sub 2} and CO in the synthesis gas, but not to the H{sub 2}/CO ratio. The H{sub 2}/CO ratio of coal gasification was found to be correlated to the rank of coals, especially the H/C ratio of coals. Methane addition into the dense phase of the pyrolysis and gasification zone of the cogasification reactor could make the best use of methane in adjusting the H{sub 2}/CO ratio of the generated synthesis gas. The maximum methane conversion efficiency, which was likely correlated to its gasification reactivity, could be achieved by 70% on average for all tested coals. The actual catalytic effect of generated coal chars on methane conversion seemed coal-dependent. The coal-gasification process benefits from methane addition and subsequent conversion on the adjustment of the H{sub 2}/CO ratio of synthesis gas. The methane conversion process benefits from the use of coal chars due to their catalytic effects. This implies that there were likely synergistic effects on both. 25 refs., 3 figs., 3

  7. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    found in EIA’s Annual Energy Outlook 2006 with ProjectionsEIA), 2006a, Annual Energy Outlook 2006 with Projections toEIA), 2006b, Annual Energy Outlook 2006 with Projections to

  8. CONSORTIUM FOR CLEAN COAL UTILIZATION

    E-Print Network [OSTI]

    Subramanian, Venkat

    1 CONSORTIUM FOR CLEAN COAL UTILIZATION Request for Proposals Date of Issue: February 16, 2015 The Consortium for Clean Coal Utilization (CCCU) at Washington University in St. Louis was established in January of 2009. The mission of the CCCU is to enable environmentally benign and sustainable use of coal, both

  9. CONSORTIUM FOR CLEAN COAL UTILIZATION

    E-Print Network [OSTI]

    Subramanian, Venkat

    CONSORTIUM FOR CLEAN COAL UTILIZATION Call for Proposals Date of Issue: July 29, 2013 The Consortium for Clean Coal Utilization (CCCU) at Washington University in St. Louis was established in January of Clean Coal Utilization. The format may be a conference or workshop, or a seminar given by a leading

  10. Annual Report of the EURATOM/CCFE Fusion Programme 2010/11 2 General Introduction

    E-Print Network [OSTI]

    electricity consumption for 30 years. Figure 2.2: Half a bath of water plus the lithium in one laptop battery for 200,000 kW-hours of electricity ­ the same as 70 tonnes of coal, and equal to the UK's per capita would provide the fuel needed for the same amount of electricity as 70 tonnes of coal. #12;Annual Report

  11. Annual Report of the EURATOM/CCFE Fusion Programme 2011/12 2 General Introduction

    E-Print Network [OSTI]

    of coal, and equal to the UK's per capita electricity consumption for 30 years. Figure 2.2: Half a bath a bath of water, would provide the fuel for 200,000 kW-hours of electricity ­ the same as 70 tonnes of electricity as 70 tonnes of coal. Deuterium Tritium Neutron HeliumDeuterium Tritium Neutron Helium #12;Annual

  12. Kinetics of coal pyrolysis

    SciTech Connect (OSTI)

    Seery, D.J.; Freihaut, J.D.; Proscia, W.M. ); Howard, J.B.; Peters, W.; Hsu, J.; Hajaligol, M.; Sarofim, A. ); Jenkins, R.; Mallin, J.; Espindola-Merin, B. ); Essenhigh, R.; Misra, M.K. )

    1989-07-01

    This report contains results of a coordinated, multi-laboratory investigation of coal devolatilization. Data is reported pertaining to the devolatilization for bituminous coals over three orders of magnitude in apparent heating rate (100 to 100,000 + {degree}C/sec), over two orders of magnitude in particle size (20 to 700 microns), final particle temperatures from 400 to 1600{degree}C, heat transfer modes ranging from convection to radiative, ambient pressure ranging from near vacuum to one atmosphere pressure. The heat transfer characteristics of the reactors are reported in detail. It is assumed the experimental results are to form the basis of a devolatilization data base. Empirical rate expressions are developed for each phase of devolatilization which, when coupled to an awareness of the heat transfer rate potential of a particular devolatilization reactor, indicate the kinetics emphasized by a particular system reactor plus coal sample. The analysis indicates the particular phase of devolatilization that will be emphasized by a particular reactor type and, thereby, the kinetic expressions appropriate to that devolatilization system. Engineering rate expressions are developed from the empirical rate expressions in the context of a fundamental understanding of coal devolatilization developed in the course of the investigation. 164 refs., 223 figs., 44 tabs.

  13. Biochemical transformation of coals

    DOE Patents [OSTI]

    Lin, Mow S. (Rocky Point, NY); Premuzic, Eugene T. (East Moriches, NY)

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  14. Biochemical transformation of coals

    DOE Patents [OSTI]

    Lin, M.S.; Premuzic, E.T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  15. Graphic values for some organic constituents of beneficiated coal samples

    SciTech Connect (OSTI)

    Kohlenberger, L.B.

    1991-01-01

    The first objective of this one-year project is to obtain analytical data on a series of fractions of coal sample IBC-101 of widely varying ash content obtained via a froth flotation physical coal cleaning process. Froth flotation is the fractionation technique to be used rather than float/sink testing as in the Stansfield-Sutherland method because (1) most of the data in our files which were used in the development of these techniques were froth flotation tests and (2) as a way of showing that the fractionating is as effective by one technique as the other, so long as no chemical changes are effected. Analytical values will be obtained in the Coal Analysis Laboratory for moisture, ash, volatile matter, fixed carbon, total carbon, hydrogen, nitrogen, oxygen, total sulfur, sulfate sulfur, organic sulfur, and calorific value. The next objective will be to plot the various values of each of the analyzed species versus its corresponding ash values to obtain x/y plots for each as a function of ash. From the resulting curves, it should be possible to calculate for coal sample IBC-101 a precise measure of its mineral matter content, its dry or moist ,mineral-matter-free calorific value as used in determining the rank of the coal sample, calculate organic sulfur values corresponding to each ash value in cases where the relationship is linear, and possibly find other analyzed values which have a direct correlation with the mineral matter content of the coal.

  16. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

    2011-10-30

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

  17. Lignin-assisted coal depolymerization. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    Lalvani, S.B.

    1992-08-01

    Previous research has shown that addition of lignin and lignin-derived liquids to coal stirred in tetralin under mild reaction conditions (375{degrees}C and 300--500 psig) results in a marked enhancement in the rate of coal depolymerization. In this quarterly report, overall mass balances on experiments conducted with tetralin, coal, lignin and coal-lignin mixture are reported. Overall mass recoveries of 95--99% of the total mass charged to the reactor were obtained. A number of experiments were conducted on coal, lignin and coal-lignin depolymerization. A careful statistical analysis of the data shows that coal depolymerization is enhanced by 10.4%, due to the lignin addition. The liquids obtained are being examined for their elemental composition, and molecular weight determination by size exclusion chromatography. The stability of the liquid products is being examined in various environments. The gaseous product analyses show that the major gases produced during the course of depolymerization are CO, CH{sub 4}, and CO{sub 2}. When coal and lignin are reacted together, the amount of CO and CH{sub 4}produced respectively 12% and 38% greater than the corresponding amount of gases calculated, based on the weighted average of values obtained for coal and lignin alone. The data obtained show that lignin addition to coal is synergistic in that not only is the extent of coal depolymerization increased, but the gas produced contains higher concentrations of more desirable gaseous products.

  18. Lignin-assisted coal depolymerization

    SciTech Connect (OSTI)

    Lalvani, S.B.

    1991-01-01

    Previous research has shown that addition of lignin-derived liquids to coal stirred in tetralin under mild reaction conditions (375{degree}C and 300--500 psig) results in a marked enhancement in the rate of coal depolymerization. A mathematical model was developed to study the kinetics of coal depolymerization in the presence of liquid-derived liquids. In the present study, a reaction pathway was formulated to explain the enhancement in coal depolymerization due to lignin (solid) addition. The model postulated assumes that the products of lignin obtained during thermolysis interact with the reactive moieties present in coal while simultaneous depolymerization of coal occurs. A good fit between the experimental data and the kinetic model was found. The results show that in addition to the enhancement in the rate of coal depolymerization, lignin also reacts (and enhances the extent of depolymerization of coal) with those reaction sites in coal that are not susceptible to depolymerization when coal alone is reacted in tetralin under identical reaction conditions. Additional work is being carried out to determine a thorough materials balance on the lignin-assisted coal depolymerization process. A number of liquid samples have been obtained which are being studied for their stability in various environments. 5 refs., 4 figs., 1 tab.

  19. National Coal Quality Inventory (NACQI)

    SciTech Connect (OSTI)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  20. Coal-oil slurry preparation

    DOE Patents [OSTI]

    Tao, John C. (Perkiomenville, PA)

    1983-01-01

    A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

  1. Create a Consortium and Develop Premium Carbon Products from Coal

    SciTech Connect (OSTI)

    Frank Rusinko; John Andresen; Jennifer E. Hill; Harold H. Schobert; Bruce G. Miller

    2006-01-01

    The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuel industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the projects funded did not meet their original goals, the overall objectives of the CPCPC were completed as many new applications for coal-derived feedstocks have been researched. Future research in many of these areas is necessary before implementation into industry.

  2. The International Coal Statistics Data Base operations guide

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    The International Coal Statistics Data base (ICSD) is a micro- computer based system which contains informations related to international coal trade. This includes coal production, consumption, imports and exports information. The ICSD is a secondary data base, meaning that information contained therein is derived entirely from other primary sources. It uses dBase 3+ and Lotus 1-2-3 to locate, report and display data. The system is used for analysis in preparing the Annual Prospects for World Coal Trade (DOE/EIA-0363) publication. The ICSD system is menu driven, and also permits the user who is familiar with dBase and Lotus operations to leave the menu structure to perform independent queries. Documentation for the ICSD consists of three manuals -- the User's Guide, the Operations Manual and the Program Maintenance Manual. This Operations Manual explains how to install the programs, how to obtain reports on coal trade, what systems requirements apply, and how to update the major data files. It also explains file naming conventions, what each file does, and the programming procedures used to make the system work. The Operations Manual explains how to make the system respond to customized queries. It is organized around the ICSD menu structure and describes what each selection will do. Sample reports and graphs generated from individual menu selection are provided to acquaint the user with the various types of output. 17 figs.

  3. Clean coal preparation using the Liquids From Coal (LFC) process

    SciTech Connect (OSTI)

    Klugh, D.M.; Marquardt, M.M.; Hoften, S.A. van [SGI International, La Jolla, CA (United States)

    1994-12-31

    With an abundance of coal located in the Pacific Rim region, many economies offer excellent opportunities for the application of clean coal technologies. SGI International`s Liquids From Coal (LFC) Mild Gasification Process is a clean coal technology that can greatly enhance both the economical and environmental use of coal in this area. Indonesia, with its large population and emerging industrial infrastructure, has exhibited one of the fastest growth rates of electrical power consumption in Asia. This paper demonstrates the economic and environmental advantages of the LFC Process as it applies to coals in the Pacific Rim. These advantages are assessed from the results of a technical feasibility study of coal from the Tanjung Enim Region of Indonesia. While Tanjung Enim provides an example of added value and increased lifetime of an existing resource with some environmental benefits, other examples illustrate the excellent opportunity for upgrading coals for export into the Pacific Rim Steaming Coal Trade. These upgraded coals are expected to be very competitive in cost and are expected to be environmentally attractive.

  4. Water vulnerabilities for existing coal-fired power plants.

    SciTech Connect (OSTI)

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were evaluated. The first type consisted of geographical areas where specific conditions can generate demand vulnerabilities. These conditions include high projected future water consumption by thermoelectric power plants, high projected future water consumption by all users, high rates of water withdrawal per square mile (mi{sup 2}), high projected population increases, and areas projected to be in a water crisis or conflict by 2025. The second type of demand indicator was plant specific. These indicators were developed for each plant and include annual water consumption and withdrawal rates and intensities, net annual power generation, and carbon dioxide (CO{sub 2}) emissions. The supply indictors, which are also area based, include areas with low precipitation, high temperatures, low streamflow, and drought. The indicator data, which were in various formats (e.g., maps, tables, raw numbers) were converted to a GIS format and stored, along with the individual plant data from the CPPDB, in a single GIS database. The GIS database allowed the indicator data and plant data to be analyzed and visualized in any combination. To determine the extent to which a plant would be considered 'vulnerable' to a given demand or supply concern (i.e., that the plant's operations could be affected by water shortages represented by a potential demand or supply indicator), criteria were developed to categorize vulnerability according to one of three types: major, moderate, or not vulnerable. Plants with at least two major demand indicator values and/or at least four moderate demand indicator values were considered vulnerable to demand concerns. By using this approach, 144 plants were identified as being subject to demand concerns only. Plants with at least one major supply indicator value and/or at least two moderate supply indicator values were considered vulnerable to supply concerns. By using this approach, 64 plants were identified as being subject to supply concerns only. In addition, 139 plants were identified as subject to both demand and supply concerns. Therefore, a total of 347 plants were considere

  5. Electric power annual 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-06

    The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

  6. Summary of coal export project

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    Through the international coal project and related activities, SSEB has called attention to the problems and potential of the US coal industry. The program has provided an excellent format for frank discussions on the problems facing US coal exports. Every effort must be made to promote coal and its role in the southern economy. Coal is enjoying its best years in the domestic market. While the export market is holding its own, there is increased competition in the world market from Australia, Columbia, China and, to a lesser extent, Russia. This is coming at a time when the US has enacted legislation and plans are underway to deepen ports. In addition there is concern that increased US coal and electricity imports are having a negative impact on coal production. These limiting factors suggest the US will remain the swing supplier of coal on the world market in the near future. This presents a challenge to the US coal and related industry to maintain the present market and seek new markets as well as devote research to new ways to use coal more cleanly and efficiently.

  7. Moist caustic leaching of coal

    DOE Patents [OSTI]

    Nowak, Michael A. (Elizabeth, PA)

    1994-01-01

    A process for reducing the sulfur and ash content of coal. Particulate coal is introduced into a closed heated reaction chamber having an inert atmosphere to which is added 50 mole percent NaOH and 50 mole percent KOH moist caustic having a water content in the range of from about 15% by weight to about 35% by weight and in a caustic to coal weight ratio of about 5 to 1. The coal and moist caustic are kept at a temperature of about 300.degree. C. Then, water is added to the coal and caustic mixture to form an aqueous slurry, which is washed with water to remove caustic from the coal and to produce an aqueous caustic solution. Water is evaporated from the aqueous caustic solution until the water is in the range of from about 15% by weight to about 35% by weight and is reintroduced to the closed reaction chamber. Sufficient acid is added to the washed coal slurry to neutralize any remaining caustic present on the coal, which is thereafter dried to produce desulfurized coal having not less than about 90% by weight of the sulfur present in the coal feed removed and having an ash content of less than about 2% by weight.

  8. Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program

    Broader source: Energy.gov [DOE]

    DOE has selected eight new projects to further advanced coal research under the University Coal Research Program. The selected projects will improve coal conversion and use and will help propel technologies for future advanced coal power systems.

  9. Exploration for deep coal

    SciTech Connect (OSTI)

    NONE

    2008-12-15

    The most important factor in safe mining is the quality of the roof. The article explains how the Rosebud Mining Co. conducts drilling and exploration in 11 deep coal mine throughout Pennsylvania and Ohio. Rosebud uses two Atlas Copco CS10 core drilling rigs mounted on 4-wheel drive trucks. The article first appeared in Atlas Copco's in-house magazine, Deep Hole Driller. 3 photos.

  10. Coal Bed Methane Primer

    SciTech Connect (OSTI)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

  11. Process for changing caking coals to noncaking coals

    DOE Patents [OSTI]

    Beeson, Justin L. (Woodridge, IL)

    1980-01-01

    Caking coals are treated in a slurry including alkaline earth metal hydroxides at moderate pressures and temperatures in air to form noncaking carbonaceous material. Hydroxides such as calcium hydroxide, magnesium hydroxide or barium hydroxide are contemplated for slurrying with the coal to interact with the agglomerating constituents. The slurry is subsequently dewatered and dried in air at atmospheric pressure to produce a nonagglomerating carbonaceous material that can be conveniently handled in various coal conversion and combustion processes.

  12. Zero emission coal

    SciTech Connect (OSTI)

    Ziock, H.; Lackner, K.

    2000-08-01

    We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

  13. MAINTENANCE OF THE COAL SAMPLE BANK AND DATABASE

    SciTech Connect (OSTI)

    NONE

    1999-01-01

    This project generates and provides coal samples and accompanying analytical data for research by DOE contractors and others. The five-year contract has been completed and a six-month no-cost extension is under way; this will continue the limited distribution of samples and data to DOE, its contractors and grantees. All activities specified under the five-year contract have been completed. Eleven DECS samples were collected, processed to a variety of particle sizes, heat-sealed in foil laminate bags under argon, and placed in refrigerated storage. All were analyzed for basic chemical composition, inorganic major and trace element composition including hazardous air pollutant elements, petrographic composition and characteristics, thermoplastic behavior (if applicable), and other properties relevant to commercial utilization. Most were also analyzed by NMR, py/gc/ms, and a standardized liquefaction test; trends and relationships observed were evaluated and summarized. Twenty-two DECS samples collected under the previous contract received further processing, and most of these were subjected to organic geochemical and standardized liquefaction tests as well. Selected DECS samples were monitored annually to evaluate the effectiveness of foil laminate bags for long-term sample storage. Twenty-three PSOC samples collected under previous contracts and purged with argon before storage were also maintained and distributed, for a total of 56 samples covered by the contract. During the five years, 524 samples in 1501 containers, 2075 data printouts, and individual data items from 30327 samples were distributed. In the subject quarter, 23 samples, 16 data printouts, and individual data items from 2507 samples were distributed. All DECS samples are now available for immediate distribution at minus 6 mm (-1/4 inch), minus 0.85 mm (- 20 mesh U.S.), and minus 0.25 mm (- 60 mesh U.S.).

  14. Environmental development plan: coal liquefaction

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    This Environmental Development plan (EDP) examines environmental concerns that are being evaluated for the technologies in DOE's Coal Liquefaction Program. It identifies the actions that are planned or underway to resolve these concerns while the technologies are being developed. Research is scheduled on the evaluation and mitigation of potential environmental impacts. This EDP updates the FY 1977 Coal Liquefaction Program EDP. Chapter II describes the DOE Coal Liquefaction Program and focuses on the Solvent Refined Coal (SRC), H-Coal, and Exxon donor solvent (EDS) processes because of their relatively advanced R and D stages. The major unresolved environmental concerns associated with the coal liquefaction subactivities and projects are summarized. The concerns were identified in the 1977 EDP's and research was scheduled to lead to the resolution of the concerns. Much of this research is currently underway. The status of ongoing and planned research is shown in Table 4-1.

  15. Iron catalyzed coal liquefaction process

    DOE Patents [OSTI]

    Garg, Diwakar (Macungie, PA); Givens, Edwin N. (Bethlehem, PA)

    1983-01-01

    A process is described for the solvent refining of coal into a gas product, a liquid product and a normally solid dissolved product. Particulate coal and a unique co-catalyst system are suspended in a coal solvent and processed in a coal liquefaction reactor, preferably an ebullated bed reactor. The co-catalyst system comprises a combination of a stoichiometric excess of iron oxide and pyrite which reduce predominantly to active iron sulfide catalysts in the reaction zone. This catalyst system results in increased catalytic activity with attendant improved coal conversion and enhanced oil product distribution as well as reduced sulfide effluent. Iron oxide is used in a stoichiometric excess of that required to react with sulfur indigenous to the feed coal and that produced during reduction of the pyrite catalyst to iron sulfide.

  16. Safety in Mine Research EstablishmentPresent-day requirements for protection against fire in coal mines 

    E-Print Network [OSTI]

    Kushnarev, A.; Koslyuk, A.; Petrov, P.

    Analysis of a statistical data shows that, on an average, about 50% of the total underground emergencies occurring in coal mines in the USSR are due to fires. Great attention is, therefore, paid in our country to the problem ...

  17. Assessment of underground coal gasification in bituminous coals: catalog of bituminous coals and site selection. Appendix A. National coal resource data system: Ecoal, Wcoal, and Bmalyt. Final report, Phase I. [Bituminous coal; by state; coal seam depth and thickness; identification

    SciTech Connect (OSTI)

    1982-01-31

    Appendix A is a catalog of the bituminous coal in 29 states of the contiguous United States which contain identified bituminous coal resources.

  18. ENCOAL Mild Coal Gasification Project

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    ENCOAL Corporation, a wholly-owned subsidiary of Shell Mining Company, is constructing a mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by Shell and SGI International, utilizes low-sulfur Powder River Basin Coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The products, as alternative fuels sources, are expected to significantly reduce current sulfur emissions at industrial and utility boiler sites throughout the nation, thereby reducing pollutants causing acid rain.

  19. Process for electrochemically gasifying coal

    DOE Patents [OSTI]

    Botts, T.E.; Powell, J.R.

    1985-10-25

    A process is claimed for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution. 7 figs.

  20. The Caterpillar Coal Gasification Facility 

    E-Print Network [OSTI]

    Welsh, J.; Coffeen, W. G., III

    1983-01-01

    THE FUEL IS FED FROM THE HOPPER INTO THE TOP OF THE GASIFIER RETORT THROUGH AN AUTOMATIC COAL FEEDER SYSTEM. COAL FROM THE (100 TON) TOP BUNKERS FLOWS THROUGH A STEEL INLET COMPARTMENT INTO A CAST IRON ROTARY DRUM FEEDER. THE 21" I.D. DRUM HAS A 60...? OPENING THROUGH WHICH IT RECEIVES APPROXIMATELY 6 CU. FT. (300 LBS) OF COAL FROM THE BUNKER. LIP SEALS ARE LOCATED AT THE EDGE OF THE OPENINGS TO CUTOFF THE COAL COLUMN AS THE DRUM ROTATES. A KNIFE GATE VALVE IS LOCATED BENEATH THE DRUM TO SEAL...

  1. China Brief, Volume 7, Issue 1 SAFETY CHALLENGES IN CHINA'S COAL MINING INDUSTRY

    E-Print Network [OSTI]

    ) of coal produced in China was 2.73 in 2005, it was a mere 0.04 in the United States [2]. Even India,995 deaths annually in the last decade, though independent experts state that China's actual death toll technologies and strict regulations. Therefore, while the official fatality rate per million tonnes (mt

  2. Wood-Coal Fired "Small" Boiler Case Study 

    E-Print Network [OSTI]

    Pincelli, R. D.

    1980-01-01

    Galaxy Carpet Corporation installed a coal and wood waste fired boiler approximately twelve months ago. Its first year net savings were $195,000.00 Total capital investment was paid off in 1.9 years. 20% investment tax credits were granted...

  3. MAINTENANCE OF THE COAL SAMPLE BANK AND DATABASE

    SciTech Connect (OSTI)

    NONE

    1998-10-01

    This project generates and provides coal samples and accompanying analytical data for research by DOE contractors and others. The five-year contract has been completed and a six-month no-cost extension is under way; this will continue the limited distribution of samples and data to DOE, its contractors and grantees. All activities specified under the five-year contract have been completed. Eleven DECS samples were collected, processed to a variety of particle sizes, heat-sealed in foil laminate bags under argon, and placed in refrigerated storage. All were analyzed for basic chemical composition, inorganic major and trace element composition including hazardous air pollutant elements, petrographic composition and characteristics, thermoplastic behavior (if applicable), and other properties relevant to commercial utilization. Most were also analyzed by NMR, py/gc/ms, and a standardized liquefaction test; trends and relationships observed were evaluated and summarized. Twenty-two DECS samples collected under the previous contract received further processing, and most of these were subjected to organic geochemical and standardized liquefaction tests as well. Selected DECS samples were monitored annually to evaluate the effectiveness of foil laminate bags for long-term sample storage. Twenty-three PSOC samples collected under previous contracts and purged with argon before storage were also maintained and distributed, for a total of 56 samples covered by the contract. During the five years, 524 samples in 1501 containers, 2075 data printouts, and individual data items from 30327 samples were distributed. In the subject quarter, 45 samples, 101 data printouts, and individual data items from 1237 samples were distributed. Splits of the last two samples from the previous contract received processing to minus 0.25 mm; all DECS samples are now available for immediate distribution at minus 6 mm (-1/4 inch), minus 0.85 mm (- 20 mesh U.S.), and minus 0.25 mm (minus 60 mesh U.S.). The final annual monitoring of foil laminate bag storage was completed, with most samples showing little or no deterioration.

  4. (Recovery of coal fines from preparation plant effluents)

    SciTech Connect (OSTI)

    Choudhry, V. (Praxis Engineers, Inc., Milpitas, CA (USA)); Khan, L. (Illinois State Geological Survey, Champaign, IL (USA)); Yang, D. (Michigan Technological Univ., Houghton, MI (USA))

    1991-01-01

    The objectives of this project are to test and demonstrate the feasibility of recovering coal fines which are currently disposed of with plant effluent streams, in order to produce a fine clean coal product. This product can then be blended with the coarse clean coal from the preparation plant. Recovery of coal from the effluent stream samples will be effected by means of Michigan Technological University's static tube flotation process. This process has been successfully demonstrated on a number of raw coals to reject 85% of the pyritic sulfur and recover 90% of the combustible matter. The process parameters will be modified so that this technology can be applied to preparation plant effluents in order to recover a low-ash, low-sulfur clean coal that is, at a minimum, compatible with the quality of the clean coal currently produced from the preparation plant. The main activities during this period were setting up the static tube test unit to conduct the experimental work as outlined in the project work plan. The first of four effluent slurry samples collected from four operating Illinois preparation plants was tested at Michigan Technological University. The first batch of tests resulted in a clean coal containing 7.5% ash at 94.5% combustible matter recovery. Another test aimed at lowering the ash further analyzed at 3.0% ash and 0.92% total sulfur. In addition, analyses of particle size distribution and sink-float testing of the +200 mesh material were undertaken as a part of the effluent characterization work. 5 tabs.

  5. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01

    ACWH consists of a 3,000 MW coal gasification combined cycleconsists of a 3,000 MW coal gasification, combined cycleless expensive in a coal gasification, combined cycle power

  6. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01

    We use the AEO 2007 forecast of coal prices. This analysisforecast is available only until 2030; we project coal priceslevelized price of coal is based on EIA AEO 2007 forecast

  7. Carbon Dioxide Emission Factors for Coal

    Reports and Publications (EIA)

    1994-01-01

    The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

  8. WEAR RESISTANT ALLOYS FOR COAL HANDLING EQUIPMENT

    E-Print Network [OSTI]

    Bhat, M.S.

    2011-01-01

    of a three-body type, involving coal particles (sizes of hin dry coal feeders wi11 be predominantly type involvingabrasion of a two-body type. Coal crushing and mi 11ing

  9. Low-rank coal oil agglomeration

    DOE Patents [OSTI]

    Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND)

    1991-01-01

    A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

  10. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    unit water requirement of coal-fired electricity generationin electricity demand. Coal-fired power generation accounted12, the absolute amount of coal-fired capacity grew at an

  11. Volatile coal prices reflect supply, demand uncertainties

    SciTech Connect (OSTI)

    Ryan, M.

    2004-12-15

    Coal mine owners and investors say that supply and demand are now finally in balance. But coal consumers find that both spot tonnage and new contract coal come at a much higher price.

  12. Rail Coal Transportation Rates

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubicFracking,MichiganThousand47,959.15 KeroseneCoal Glossary

  13. Rail Coal Transportation Rates

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubicFracking,MichiganThousand47,959.15 KeroseneCoal

  14. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear

  15. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy Information

  16. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy Information1 U.S.

  17. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy Information1

  18. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy Information12

  19. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy

  20. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy0 U.S. Energy

  1. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy0 U.S. Energy0

  2. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy0 U.S. Energy00

  3. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy0 U.S. Energy000

  4. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy0 U.S. Energy0001

  5. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy0 U.S. Energy00011

  6. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy0 U.S.

  7. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy0 U.S.1 U.S.

  8. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy0 U.S.1 U.S.2 U.S.

  9. Coal Distribution Database, 2006

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) Gas Wells (Million7 December 2008

  10. Coal Distribution Database, 2006

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) Gas Wells (Million7 December 2008

  11. Coal Distribution Database, 2006

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) Gas Wells (Million7 December

  12. Coal Distribution Database, 2008

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) Gas Wells (Million7 December3Q 2009

  13. Coal Distribution Database, 2008

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) Gas Wells (Million7 December3Q 20093Q

  14. Coal Distribution Database, 2008

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) Gas Wells (Million7 December3Q

  15. Coal Distribution Database, 2008

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) Gas Wells (Million7 December3Q4Q 2009

  16. Rail Coal Transportation Rates

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic Feet)698 1.873 -Coal

  17. Coal combustion products (CCPs

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment of Energyof the CleanClient education istheCoalFocuses

  18. EIA -Quarterly Coal Distribution

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table272/SPipelineNatural Gas Energy MarketsCoal

  19. Rail Coal Transportation Rates

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a. Space Heatingreports Coal

  20. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

  1. Utility Generation and Clean Coal Technology (Indiana)

    Broader source: Energy.gov [DOE]

    This statute establishes the state's support and incentives for the development of new energy production and generating facilities implementing advanced clean coal technology, such as coal...

  2. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    s ability to mitigate carbon dioxide emissions growth. Ifgrowth path, carbon dioxide emissions from coal combustiondependence. 4.4.1. Carbon dioxide emissions Coal is China’s

  3. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic21 Figure 6. Comparison of ACWH and CCGT-Wind

  4. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    materials (6%), delivered heating (district heating) (6%),coal growth. As district heating expands with urbanizationzone, coal use for district heating will depend on the

  5. DOE's Advanced Coal Research, Development, and Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    (DOE's) advanced coal research, development, and demonstration program to develop low-carbon emission coal technologies. Introduction Fossil fuel resources represent a tremendous...

  6. SciTech Connect: "clean coal"

    Office of Scientific and Technical Information (OSTI)

    clean coal" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "clean coal" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  7. Commercialization of clean coal technologies

    SciTech Connect (OSTI)

    Bharucha, N. [Dept. of Primary Industries and Energy, Canberra (Australia)

    1994-12-31

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

  8. Coal: Energy for the future

    SciTech Connect (OSTI)

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  9. Centrifuge treatment of coal tar

    SciTech Connect (OSTI)

    L.A. Kazak; V.Z. Kaidalov; L.F. Syrova; O.S. Miroshnichenko; A.S. Minakov

    2009-07-15

    New technology is required for the removal of water and heavy fractions from regular coal tar. Centrifuges offer the best option. Purification of coal tar by means of centrifuges at OAO NLMK permits the production of pitch coke or electrode pitch that complies with current standards.

  10. Coal Age buyers guide 2007

    SciTech Connect (OSTI)

    2007-07-15

    The buyers guide provides a comprehensive list of more than 1,200 suppliers that provide equipment and services to US coal mine and coal preparation plants, mainly based in the USA. Telephone numbers of companies are provided for each product category.

  11. Coal Age buyers guide 2006

    SciTech Connect (OSTI)

    2006-07-15

    The Buyers Guide provides a comprehensive list of more than 1,200 suppliers that provide equipment and services to US coal mine and coal preparation plants, mainly based in the USA. Telephone numbers of companies are provided for each product category.

  12. Coal Age buyers guide 2005

    SciTech Connect (OSTI)

    2005-07-01

    The Buyers Guide provides a comprehensive list of more than 1,200 suppliers that provide equipment and services to US coal mine and coal preparation plants, mainly based in the USA. Telephone numbers of companies are provided for each product category.

  13. ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT, 1977

    E-Print Network [OSTI]

    Budnitz, R.J.

    2011-01-01

    solvent refined coal, and coal liquid--thereby providing afor conversion of coal to liquids, with minimum hydrogengreater conversions of coal to liquid products under

  14. Annual Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropaneandAn319 125 U.S.812AnnualFinalAnnual

  15. Annual Report

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And StatisticsProgram ManagerCorridor Designations inEnergy 4 Report AnnualAnnual Planning09

  16. Annual Report

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t yWaste |4 2014 Annual Planning Summary for the2011 Annual

  17. Electric power annual 1996. Volume 1

    SciTech Connect (OSTI)

    NONE

    1997-08-01

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1--with a focus on US electric utilities--contains final 1996 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1996 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold. Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA. Data published in the Electric Power Annual Volume 1 are compiled from three statistical forms filed monthly and two forms filed annually by electric utilities. These forms are described in detail in the Technical Notes. 5 figs., 30 tabs.

  18. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. [Coal pyrite electrodes

    SciTech Connect (OSTI)

    Doyle, F.M.

    1992-01-01

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eighth quarter, wet chemical and dry oxidation tests were done on Upper Freeport coal from the Troutville [number sign]2 Mine, Clearfield County, Pennsylvania. In addition electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania.

  19. NREL Annual Environmental Performance Reports (Annual Site Environment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL Annual Environmental Performance Reports (Annual Site Environmental Reports) NREL Annual Environmental Performance Reports (Annual Site Environmental Reports) Every year NREL...

  20. Coal Technology '80. Volume 5. Synthetic fuels from coal. Volume 6. Industrial/utility applications for coal

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The 3rd international coal utilization exhibition and conference Coal Technology '80 was held at the Astrohall, Houston, Texas, November 18-20, 1980. Volume 5 deals with coal gasification and coal liquefaction. Volume 6 deals with fluidized-bed combustion of coal, cogeneration and combined-cycle power plants, coal-fuel oil mixtures (COM), chemical feedstocks via coal gasification and Fischer-Tropsch synthesis. Thirty-six papers have been entered individually into EDB and seven also into ERA; three had been entered previously from other sources. (LTN)

  1. Assumptions to the Annual Energy Outlook 2014 - Coal Market Module

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProved Reserves (BillionTechnical InformationDecade Year-0 2Market ModuleOil and ThisMarket

  2. COAL LIQUEFACTION ALLOY TEST PROGRAM ANNUAL REPORT FY 1978

    E-Print Network [OSTI]

    Levy, A.

    2014-01-01

    Control of Corrosion- Erosion in Slurry Pipelines; Paper G4;of erosion-corrosion in a slurry pipeline can be studied in

  3. DOE Announces Winners of Annual University Coal Research Grants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    not susceptible to chemical poisons. (DOE award: 50,000; project duration: 12 months.) Hydrogen Production and Separation-Hydrogen separation membranes are critical supporting...

  4. Table 3a. Real Average Annual Coal Transportation Costs from...

    U.S. Energy Information Administration (EIA) Indexed Site

    a","W","-","-","-","-","-" "Uinta Basin","Alabama","W","-","-","-","-","-" "Uinta Basin","California","-","W","-","-","-","-" "Uinta Basin","Colorado","W","W","W","W","-","-"...

  5. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight....131MarketNew York CityJune

  6. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight....131MarketNew York

  7. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight....131MarketNew YorkCapacity

  8. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight....131MarketNew YorkCapacityProductive

  9. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight....131MarketNew

  10. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight....131MarketNewAverage Number of

  11. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight....131MarketNewAverage Number

  12. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight....131MarketNewAverage

  13. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979

  14. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat's New inconsumptionAverage Sales

  15. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat's New inconsumptionAverage

  16. DOE Announces Winners of Annual University Coal Research Grants |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10 DOE ASSESSMENTathasBest Practices forDepartment of

  17. The ENCOAL Mild Coal Gasification Project, A DOE Assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-03-15

    This report is a post-project assessment of the ENCOAL{reg_sign} Mild Coal Gasification Project, which was selected under Round III of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Demonstration Program. The CCT Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of commercial-scale facilities. The ENCOAL{reg_sign} Corporation, a wholly-owned subsidiary of Bluegrass Coal Development Company (formerly SMC Mining Company), which is a subsidiary of Ziegler Coal Holding Company, submitted an application to the DOE in August 1989, soliciting joint funding of the project in the third round of the CCT Program. The project was selected by DOE in December 1989, and the Cooperative Agreement (CA) was approved in September 1990. Construction, commissioning, and start-up of the ENCOAL{reg_sign} mild coal gasification facility was completed in June 1992. In October 1994, ENCOAL{reg_sign} was granted a two-year extension of the CA with the DOE, that carried through to September 17, 1996. ENCOAL{reg_sign} was then granted a six-month, no-cost extension through March 17, 1997. Overall, DOE provided 50 percent of the total project cost of $90,664,000. ENCOAL{reg_sign} operated the 1,000-ton-per-day mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming, for over four years. The process, using Liquids From Coal (LFC{trademark}) technology originally developed by SMC Mining Company and SGI International, utilizes low-sulfur Powder River Basin (PRB) coal to produce two new fuels, Process-Derived Fuel (PDF{trademark}) and Coal-Derived Liquids (CDL{trademark}). The products, as alternative fuel sources, are capable of significantly lowering current sulfur emissions at industrial and utility boiler sites throughout the nation thus reducing pollutants causing acid rain. In support of this overall objective, the following goals were established for the ENCOAL{reg_sign} Project: Provide sufficient quantity of products for full-scale test burns; Develop data for the design of future commercial plants; Demonstrate plant and process performance; Provide capital and O&M cost data; and Support future LFC{trademark} technology licensing efforts. Each of these goals has been met and exceeded. The plant has been in operation for nearly 5 years, during which the LFC{trademark} process has been demonstrated and refined. Fuels were made, successfully burned, and a commercial-scale plant is now under contract for design and construction.

  18. Coal gasification vessel

    DOE Patents [OSTI]

    Loo, Billy W. (Oakland, CA)

    1982-01-01

    A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

  19. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  20. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2004-11-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. there were two main objectives for this reporting period. first, they wanted to collect wilcox coal samples from depths similar to those of probable sequestration sites, with the objective of determining accurate parameters for reservoir model description and for reservoir simulation. The second objective was to pursue opportunities for determining permeability of deep Wilcox coal to use as additional, necessary data for modeling reservoir performance during CO{sub 2} sequestration and enhanced coalbed methane recovery. In mid-summer, Anadarko Petroleum Corporation agreed to allow the authors to collect Wilcox Group coal samples from a well that was to be drilled to the Austin Chalk, which is several thousand feet below the Wilcox. In addition, they agreed to allow them to perform permeability tests in coal beds in an existing shut-in well. Both wells are in the region of the Sam K. Seymour power station, a site that they earlier identified as a major point source of CO{sub 2}. They negotiated contracts for sidewall core collection and core analyses, and they began discussions with a service company to perform permeability testing. To collect sidewall core samples of the Wilcox coals, they made structure and isopach maps and cross sections to select coal beds and to determine their depths for coring. On September 29, 10 sidewall core samples were obtained from 3 coal beds of the Lower Calvert Bluff Formation of the Wilcox Group. The samples were desorbed in 4 sidewall core canisters. Desorbed gas samples were sent to a laboratory for gas compositional analyses, and the coal samples were sent to another laboratory to measure CO{sub 2}, CH{sub 4}, and N{sub 2} sorption isotherms. All analyses should be finished by the end of December. A preliminary report shows methane content values for the desorbed coal samples ranged between 330 and 388 scf/t., on ''as received'' basis. Residual gas content of the coals was not included in the analyses, which results in an approximate 5-10% underestimation of in-situ gas content. Coal maps indicate that total coal thickness is 40-70 ft in the Lower Calvert Bluff Formation of the Wilcox Group in the vicinity of the Sam K. Seymour power plant. A conservative estimate indicates that methane in place for a well on 160-acre spacing is approximately 3.5 Bcf in Lower Calvert Bluff coal beds. When they receive sorption isotherm data from the laboratory, they will determine the amount of CO{sub 2} that it may be possible to sequester in Wilcox coals. In December, when the final laboratory and field test data are available, they will complete the reservoir model and begin to simulate CO{sub 2} sequestration and enhanced CH{sub 4} production.

  1. Formation and retention of methane in coal

    SciTech Connect (OSTI)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  2. 2011 International Pittsburgh Coal Conference Pittsburgh, PA

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Sequestration in Unmineable Coal with Enhanced Coal Bed Methane Recovery: The Marshall County Project James E conducted in Marshall County, West Virginia, USA, to evaluate enhanced coal bed methane recovery2011 International Pittsburgh Coal Conference Pittsburgh, PA September 12 ­ 15, 2011 CO2

  3. Carbon Dioxide Capture from Coal-Fired

    E-Print Network [OSTI]

    Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis May 2005 MIT LFEE 2005. LFEE 2005-002 Report #12;#12;i ABSTRACT Investments in three coal-fired power generation technologies environment. The technologies evaluated are pulverized coal (PC), integrated coal gasification combined cycle

  4. Biogeochemistry of Microbial Coal-Bed Methane

    E-Print Network [OSTI]

    Macalady, Jenn

    Biogeochemistry of Microbial Coal-Bed Methane Dariusz Strapo´c,1, Maria Mastalerz,2 Katherine, biodegradation Abstract Microbial methane accumulations have been discovered in multiple coal- bearing basins low-maturity coals with predominantly microbial methane gas or uplifted coals containing older

  5. Low temperature aqueous desulfurization of coal

    DOE Patents [OSTI]

    Slegeir, William A. (Hampton Bays, NY); Healy, Francis E. (Massapequa, NY); Sapienza, Richard S. (Shoreham, NY)

    1985-01-01

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  6. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    China Primary Energy Consumption, 1980-2007 Primary Energy Consumption (mtce) hydro & nuclear coal natural gas

  7. Low temperature aqueous desulfurization of coal

    DOE Patents [OSTI]

    Slegeir, W.A.; Healy, F.E.; Sapienza, R.S.

    1985-04-18

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  8. Color Removal from Pulp Mill Effluent Using Coal Ash Produced from Georgia Coal Combustion Power Plants

    E-Print Network [OSTI]

    Hutcheon, James M.

    Color Removal from Pulp Mill Effluent Using Coal Ash Produced from Georgia Coal Combustion Power color from pulp mill effluent using coal ash. Prevent coal ash adsorbent from leaching arsenic, chromium, lead, and zinc. Define a treatment procedure using coal ash that will result in the maximum

  9. Short residence time coal liquefaction process including catalytic hydrogenation

    DOE Patents [OSTI]

    Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

    1982-05-18

    Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone, the hydrogen pressure in the preheating-reaction zone being at least 1,500 psig (105 kg/cm[sup 2]), reacting the slurry in the preheating-reaction zone at a temperature in the range of between about 455 and about 500 C to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid to substantially immediately reduce the temperature of the reaction effluent to below 425 C to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C[sub 5]-454 C is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent. The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance. 6 figs.

  10. Short residence time coal liquefaction process including catalytic hydrogenation

    DOE Patents [OSTI]

    Anderson, Raymond P. (Overland Park, KS); Schmalzer, David K. (Englewood, CO); Wright, Charles H. (Overland Park, KS)

    1982-05-18

    Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -454.degree. C. is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent (83) and recycled as process solvent (16). The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance.

  11. Clean coal technology. Coal utilisation by-products

    SciTech Connect (OSTI)

    NONE

    2006-08-15

    The need to remove the bulk of ash contained in flue gas from coal-fired power plants coupled with increasingly strict environmental regulations in the USA result in increased generation of solid materials referred to as coal utilisation by-products, or CUBs. More than 40% of CUBs were sold or reused in the USA in 2004 compared to less than 25% in 1996. A goal of 50% utilization has been established for 2010. The American Coal Ash Association (ACCA) together with the US Department of Energy's Power Plant Improvement Initiative (PPPI) and Clean Coal Power Initiative (CCPI) sponsor a number of projects that promote CUB utilization. Several are mentioned in this report. Report sections are: Executive summary; Introduction; Where do CUBs come from?; Market analysis; DOE-sponsored CUB demonstrations; Examples of best-practice utilization of CUB materials; Factors limiting the use of CUBs; and Conclusions. 14 refs., 1 fig., 5 tabs., 14 photos.

  12. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01

    Their in combination with fly-ash aromatics such as benzo-(are also poorly known. Fly ash containing benzo-(a)-pyrenesand coal that form little fly ash and trap sulfur in the

  13. Interest in coal chemistry intensifies

    SciTech Connect (OSTI)

    Haggin, J.

    1982-08-09

    Research on coal structure has increased greatly in recent years as the future role of coal as a source of gaseous and liquid fuels, as well as chemicals, becomes more apparent. This paper reviews in some detail work being carried out in the US, particularly in the laboratories of Mobil and Exxon, and in the universities. New ideas on the chemical and physical structure of coal are put forward, and a proposal for a new classification system based on the fundamental properties of the vitrinite macerals is introduced.

  14. Bioprocessing of lignite coals using reductive microorganisms

    SciTech Connect (OSTI)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  15. Clean coal technologies: A business report

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base.

  16. Biodegradation of naphthalene from coal tar. Research progress report

    SciTech Connect (OSTI)

    Ghoshal, S.; Ramaswami, A.; Luthy, R.G.

    1994-02-07

    Biodegradation experiments were conducted to evaluate the mineralization of naphthalene released from coal tar entrapped in microporous silica media. Tests were performed with two coal tars recovered from former manufactured gas plant sites. Results from these tests showed that the degradation end point for naphthalene was significantly lower than the total amount of naphthalene present in coal tar. The role of physico-chemical and biological processes on the rate of biotransformation of naphthalene was evaluated. Mass transfer rates for dissolution of naphthalene from entrapped coal tar were measured in batch, flow-through systems. The rate of naphthalene mass transfer from the coal tar was found to be significantly greater than the rate of naphthalene biomineralization in batch slurry reactors. This implied that the rate acting factor for the biodegradation process was related to biokinetic phenomena rather than mass transfer processes. Further tests indicated that conditions inhibitory to bacteria limited the biodegradation of naphthalene, and in some cases the inhibition was reversible upon dilution of the reactor contents.

  17. Coal: the cornerstone of America's energy future

    SciTech Connect (OSTI)

    Beck, R.A. [National Coal Council (United Kingdom)

    2006-06-15

    In April 2005, US Secretary of Energy Samuel W. Bodman asked the National Coal Council to develop a 'report identifying the challenges and opportunities of more fully exploring our domestic coal resources to meet the nation's future energy needs'. The Council has responded with eight specific recommendations for developing and implementing advanced coal processing and combustion technologies to satisfy our unquenchable thirst for energy. These are: Use coal-to-liquids technologies to produce 2.6 million barrels/day; Use coal-to-natural gas technologies to produce 4 trillion ft{sup 3}/yr; Build 100 GW of clean coal plants by 2025; Produce ethanol from coal; Develop coal-to-hydrogen technologies; Use CO{sub 2} to enhance recovery of oil and coal-bed methane; Increase the capacity of US coal mines and railroads; and Invest in technology development and implementation. 1 ref.; 4 figs.; 1 tab.

  18. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01

    74. Any coal application (coal gasification, coal combustionFixed-Bed Low-Btu Coal Gasification Systems for RetrofittingPower Plants Employing Coal Gasification," Bergman, P. D. ,

  19. 2010 ANNUAL RESEARCH REPORT 2010 ANNUAL RESEARCH REPORT 2010 ANNUAL RESEARCH REPORT RESEARCH REPORT2010ANNUAL RESEARCH REPORT2010ANNUAL RESEARCH REPORT

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    2010 ANNUAL RESEARCH REPORT 2010 ANNUAL RESEARCH REPORT 2010 ANNUAL RESEARCH REPORT RESEARCH REPORT2010ANNUAL RESEARCH REPORT2010ANNUAL RESEARCH REPORT 2010 ANNUAL RESEARCH REPORT 2010 ANNUAL RESEARCH REPORT 2010 ANNUAL RESEARCH REPORT RESEARCH REPORT2010ANNUAL RESEARCH REPORT2010ANNUAL RESEARCH REPORT

  20. Coal competition: prospects for the 1980s

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    This report consists of 10 chapters which present an historical overview of coal and the part it has played as an energy source in the economic growth of the United States from prior to World War II through 1978. Chapter titles are: definition of coals, coal mining; types of coal mines; mining methods; mining work force; development of coal; mine ownership; production; consumption; prices; exports; and imports. (DMC)

  1. Pore accessibility by methane and carbon dioxide in coal as determined by neutron scattering

    SciTech Connect (OSTI)

    He, Lilin [ORNL; Melnichenko, Yuri B [ORNL; Mastalerz, Maria [Indiana Geological Survey; Sakurovs, Richard [ORNL; Radlinski, Andrzej Pawell [ORNL; Blach, Tomasz P [ORNL

    2012-01-01

    Contrast-matching ultrasmall-angle neutron scattering (USANS) and small-angle neutron scattering (SANS) techniques were used for the first time to determine both the total pore volume and the fraction of the pore volume that is inaccessible to deuterated methane, CD{sub 4}, in four bituminous coals in the range of pore sizes between {approx}10 {angstrom} and {approx}5 {micro}m. Two samples originated from the Illinois Basin in the U.S.A., and the other two samples were commercial Australian bituminous coals from the Bowen Basin. The total and inaccessible porosity were determined in each coal using both Porod invariant and the polydisperse spherical particle (PDSP) model analysis of the scattering data acquired from coals both in vacuum and at the pressure of CD{sub 4}, at which the scattering length density of the pore-saturating fluid is equal to that of the solid coal matrix (zero average contrast pressure). The total porosity of the coals studied ranged from 7 to 13%, and the volume of pores inaccessible to CD{sub 4} varied from {approx}13 to {approx}36% of the total pore volume. The volume fraction of inaccessible pores shows no correlation with the maceral composition; however, it increases with a decreasing total pore volume. In situ measurements of the structure of one coal saturated with CO{sub 2} and CD{sub 4} were conducted as a function of the pressure in the range of 1-400 bar. The neutron scattering intensity from small pores with radii less than 35 {angstrom} in this coal increased sharply immediately after the fluid injection for both gases, which demonstrates strong condensation and densification of the invading subcritical CO{sub 2} and supercritical methane in small pores.

  2. Heat Recovery from Coal Gasifiers 

    E-Print Network [OSTI]

    Wen, H.; Lou, S. C.

    1981-01-01

    In coal conversion processes, generally, liquefaction is done at high pressure and relatively low tempera tures, while gasification involves high temperature conditions. In order to protect the gasifier shell from overheating, a complex refractory...

  3. Process for low mercury coal

    DOE Patents [OSTI]

    Merriam, Norman W. (Laramie, WY); Grimes, R. William (Laramie, WY); Tweed, Robert E. (Laramie, WY)

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  4. Coal beneficiation by gas agglomeration

    DOE Patents [OSTI]

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  5. An Overview of Coal based

    E-Print Network [OSTI]

    An Overview of Coal based Integrated Gasification Combined Cycle (IGCC) Technology September 2005. LFEE 2005-002 WP #12;#12;Table of Contents 1 Integrated Gasification Combined Cycle (IGCC.......................................................................... 17 2.1 Gasification

  6. Two stage liquefaction of coal

    DOE Patents [OSTI]

    Neuworth, Martin B. (Chevy Chase, MD)

    1981-01-01

    A two stage coal liquefaction process and apparatus comprising hydrogen donor solvent extracting, solvent deashing, and catalytic hydrocracking. Preferrably, the catalytic hydrocracking is performed in an ebullating bed hydrocracker.

  7. Which route to coal liquefaction

    SciTech Connect (OSTI)

    Nene, R.G.

    1981-11-01

    Two main methods for producing liquid fuels from coal are currently undergoing intensive evaluation. One, direct liquefaction (e.g., SRC-II, Exxon Donor Solvent (EDS), and H-Coal) produces liquid fuels directly from coal; the other, indirect liquefaction (e.g., Lurgi gasifier followed by Fischer-Tropsch, and Shell-Koppers gasifier followed by methanol synthesis and Mobil's MTG process) first gasifies coal and then converts the gaseous material into liquid products. This paper compares both routes basing its assessment on yields, thermal efficiencies, elemental balances, investment, complexity, and state of development. It is shown that direct liquefaction is more efficient and produces more product per investment dollar. Higher efficiency for direct liquefaction is verified bY stoichiometric and thermodynamic analysis. All approaches require about the same capital investment per unit of feed. Indirect liquefaction can be either more or less complex than direct liquefaction, depending upon the process. Direct liquefaction is least developed. 8 refs.

  8. Coal Beneficiation by Gas Agglomeration

    SciTech Connect (OSTI)

    Thomas D. Wheelock; Meiyu Shen

    2000-03-15

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  9. Coal-fired power materials

    SciTech Connect (OSTI)

    Viswanathan, V.; Purgert, R.; Rawls, P. [Electric Power Research Institute, Palo Alto, CA (United States)

    2008-08-15

    Advances in materials technologies over the last decade that is allowing coal-fired power plants to be built with higher efficiencies than the current generation are described. 2 figs., 2 tabs.

  10. Upgrading coal plant damper drives

    SciTech Connect (OSTI)

    Hood, N.R.; Simmons, K. [Alamaba Power (United States)

    2009-11-15

    The replacement of damper drives on two coal-fired units at the James H. Miller Jr. electric generating plant by Intelligent Contrac electric rotary actuators is discussed. 2 figs.

  11. Clean Coal Diesel Demonstration Project

    SciTech Connect (OSTI)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  12. Process for low mercury coal

    DOE Patents [OSTI]

    Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

    1995-04-04

    A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

  13. Streamline coal slurry letdown valve

    DOE Patents [OSTI]

    Platt, R.J.; Shadbolt, E.A.

    1983-11-08

    A streamlined coal slurry letdown valve is featured which has a two-piece throat comprised of a seat and seat retainer. The two-piece design allows for easy assembly and disassembly of the valve. A novel cage holds the two-piece throat together during the high pressure letdown. The coal slurry letdown valve has long operating life as a result of its streamlined and erosion-resistance surfaces. 5 figs.

  14. Coal liquefaction and gasification technologies

    SciTech Connect (OSTI)

    Mangold, E.C.; Muradaz, M.A.; Ouellette, R.P.; Farah, O.G.; Cheremisinoff, P.N.

    1982-01-01

    The state-of-the-art of selected coal liquefaction and gasification processes developed with support from the United States are reviewed. The Exxon Donor Solvent, H-Coal, SRC-I, SRC-II, Mobile Gasoline Synthesis, Fischer-Tropsch Synthesis, and Zinc Halide Hydrocracking liquefaction processes and the Slagging Lurgi, Texaco, Combustion Engineering, COGAS, and Shell-Koppers gasification processes are covered. Separate abstracts were prepared for 5 chapters.

  15. Apparatus for entrained coal pyrolysis

    DOE Patents [OSTI]

    Durai-Swamy, Kandaswamy (Culver City, CA)

    1982-11-16

    This invention discloses a process and apparatus for pyrolyzing particulate coal by heating with a particulate solid heating media in a transport reactor. The invention tends to dampen fluctuations in the flow of heating media upstream of the pyrolysis zone, and by so doing forms a substantially continuous and substantially uniform annular column of heating media flowing downwardly along the inside diameter of the reactor. The invention is particularly useful for bituminous or agglomerative type coals.

  16. 2014 Retail Power Marketers Sales- Total

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, APRILCustomersTotal (Data from

  17. 2014 Total Electric Industry- Revenue (Thousands Dollars)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, APRILCustomersTotal (DataRevenue

  18. Total Natural Gas Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672(MillionFeet)Product: Total

  19. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect (OSTI)

    T.D. Wheelock

    1999-03-01

    The technical feasibility of a gas agglomeration method for cleaning coal was demonstrated by means of bench-scale tests conducted with a mixing system which enabled the treatment of ultra-fine coal particles with a colloidal suspension of microscopic gas bubbles in water. A suitable suspension of microbubbles was prepared by first saturating water with air or carbon dioxide under pressure then reducing the pressure to release the dissolved gas. The formation of microbubbles was facilitated by agitation and a small amount of i-octane. When the suspension of microbubbles and coal particles was mixed, agglomeration was rapid and small spherical agglomerates were produced. Since the agglomerates floated, they were separated from the nonfloating tailings in a settling chamber. By employing this process in numerous agglomeration tests of moderately hydrophobic coals with 26 wt.% ash, it was shown that the ash content would be reduced to 6--7 wt.% while achieving a coal recovery of 75 to 85% on a dry, ash-free basis. This was accomplished by employing a solids concentration of 3 to 5 w/w%, an air saturation pressure of 136 to 205 kPa (5 to 15 psig), and an i-octane concentration of 1.0 v/w% based on the weight of coal.

  20. MULTIPHASE REACTOR MODELING FOR ZINC CHLORIDE CATALYZED COAL LIQUEFACTION

    E-Print Network [OSTI]

    Joyce, Peter James

    2011-01-01

    ix Introduction. A. Coal Liquefaction Overview B.L ZnCl 2-catalyzed Coal Liquefaction . . . . . . . . . • ,Results. . . • . ZnC1 2/MeOH Coal liquefaction Process

  1. Southern Coal finds value in the met market

    SciTech Connect (OSTI)

    Fiscor, S.

    2009-11-15

    The Justice family launches a new coal company (Southern Coal Corp.) to serve metallurgical and steam coal markets. 1 tab., 3 photos.

  2. COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER

    E-Print Network [OSTI]

    Chin, W.K.

    2010-01-01

    1. Pittsburgh seam coal properties, Grosshandler (1976)a 35 mesh sieve (417 Properties of this coal are reported inthe reported properties of the pulverized coal. The pressed

  3. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics

    SciTech Connect (OSTI)

    Doyle, F.M.

    1992-01-01

    During the ninth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis were done to characterize the morphology and composition of the surface of as-received coal, oxidized coal and coal pyrite. In addition, electrokinetic tests were done on Upper Freeport coal pyrite.

  4. Oxy-coal Combustion Studies

    SciTech Connect (OSTI)

    J. Wendt; E. Eddings; J. Lighty; T. Ring; P. Smith; J. Thornock; Y. Jia, W. Morris; J. Pedel; D. Rezeai; L. Wang; J. Zhang; K. Kelly

    2012-01-01

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol. To these ends, the project has focused on the following: â?¢ The development of reliable Large Eddy Simulations (LES) of oxy-coal flames using the Direct Quadrature Method of Moments (DQMOM) (Subtask 3.1). The simulations were validated for both non-reacting particle-laden jets and oxy-coal flames. â?¢ The modifications of an existing oxy-coal combustor to allow operation with high levels of input oxygen to enable in-situ laser diagnostic measurements as well as the development of strategies for directed oxygen injection (Subtask 3.2). Flame stability was quantified for various burner configurations. One configuration that was explored was to inject all the oxygen as a pure gas within an annular oxygen lance, with burner aerodynamics controlling the subsequent mixing. â?¢ The development of Particle Image Velocimetry (PIV) for identification of velocity fields in turbulent oxy-coal flames in order to provide high-fidelity data for the validation of oxy-coal simulation models (Subtask 3.3). Initial efforts utilized a laboratory diffusion flame, first using gas-fuel and later a pulverized-coal flame to ensure the methodology was properly implemented and that all necessary data and image-processing techniques were fully developed. Success at this stage of development led to application of the diagnostics in a large-scale oxy-fuel combustor (OFC). â?¢ The impact of oxy-coal-fired vs. air-fired environments on SO{sub x} (SO{sub 2}, SO{sub 3}) emissions during coal combustion in a pilot-scale circulating fluidized-bed (CFB) (Subtask 3.4). Profiles of species concentration and temperature were obtained for both conditions, and profiles of temperature over a wide range of O{sub 2} concentration were studied for oxy-firing conditions. The effect of limestone addition on SO{sub 2} and SO{sub 3} emissions were also examined for both air- and oxy- firing conditions. â?¢ The investigation of O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments on SO{sub 2 emissions during coal combustion in a bench-scale single-particle fluidized-bed reactor (Subtask 3.5). Moreover, the sulfation mechanisms of limestone in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments were studied, and a generalized gassolid and diffusion-reaction single-particle model was developed to study the effect of major operating variables. â?¢ The investigation of the effect of oxy-coal combustion on ash formation, particle size distributions (PSD), and size-segregated elemental composition in a drop-tube furnace and the 100 kW OFC (Subtask 3.6). In particular, the effect of coal type and flue gas recycle (FGR, OFC only) was investigated.

  5. ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979

    E-Print Network [OSTI]

    Cairns, E.J.

    2010-01-01

    of Coal Model Compounds and Coal Liquids," Lawrence Berkeleyof coal and/or coal-derived liquid fuels from Australia,project is to convert coal to liquid products by the use of

  6. Coal-water slurry fuel internal combustion engine and method for operating same

    DOE Patents [OSTI]

    McMillian, Michael H. (Fairmont, WV)

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  7. Cooperative research in coal liquefaction. Final report, May 1, 1992--April 30, 1993

    SciTech Connect (OSTI)

    Huffman, G.P.

    1996-03-01

    Research on sulfate and metal (Mo, Sn) promoted Fe{sub 2}O{sub 3} catalysts in the current year focused on optimization of conditions. Parameters varied included temperature, solvent, solvent-to-coal ratio, and the effect of presulfiding versus in situ sulfiding. Oil yields were found to increase approximately proportionately with both temperature and solvent-to-coal ratio. The donor solvent, tetralin, proved to give better total conversion and oil yields than either 1-methylnaphthalene or Wilsonville recycle oil. A significant enhancement of both total liquefaction yields and oil yields from lignites and subbituminous coals has been achieved by incorporating iron into the coal matrix by cation exchange. A study has been conducted on the synthesis of iron, molybdenum, and tungsten catalysts using a laser pyrolysis technique.

  8. Lignin-assisted coal depolymerization. [Final] technical report, September 1, 1991--August 31, 1992

    SciTech Connect (OSTI)

    Lalvani, S.B.; Muchmore, C.B.; Koropchak, J.A.; Kim, Jong Won

    1992-12-31

    Liquefaction of an Illinois bituminous and a caustic lignin was studied in an initial hydrogen pressure of 140 psig. Experiments were conducted in the temperature range of 325-375{degree}C in tetralin. The addition of lignin to coal was found to be synergistic in that it significantly improves the quality and yield of the liquid products obtained. Kinetic data for coal conversion enhancement due to lignin addition were obtained. A mathematical model describing the reaction chemistry, using lignin, has been proposed and developed. The analysis of the results indicates that the intermediates produced from lignin were responsible for enhancement in coal depolymerization rate, however, the intermediates are short-lived as compared to the time needed for a significant coal conversion yield. Coal depolymerization rate was found to be a function of time; compared to processing coal alone, it doubled upon reacting coal with lignin at 375{degree}C and after 67 minutes from the beginning of the experiment. Overall mass recoveries of 95--98% of the total mass charged to the reactor were obtained. A careful statistical analysis of the data shows that coal depolymerization yield is enhanced by 11.9% due to the lignin addition. The liquids obtained were examined for their elemental composition, and molecular weight determination by size exclusion chromatography. The stability of liquid products was characterized by determining their solubility in pentane and benzene, and by evaluating the molecular weight.

  9. Lignin-assisted coal depolymerization. [Quarterly] report, March 1, 1992--May 31, 1992

    SciTech Connect (OSTI)

    Lalvani, S.B.; Muchmore, C.B.; Koropchak, J.A.; Kim, Jong Won

    1992-10-01

    In the last report, it was shown that when lignin is added to coal, the rate of coal depolymerization is enhanced. The results,-reported were based upon a number of experiments conducted for the following three reasons: (i) to generate enough quantities of liquid products so that their stability in various environments can be ascertained, (ii) to closely characterize the reaction products, so that individual atomic mass balances can be performed, and (iii) to determine the reproducibility of the experiments conducted. The stability of liquid products was characterized by determining their solubility in pentane and benzene. Exposure of the coal- and coal+lignin-derived liquids to air at 40 and 80{degrees}C led to a decrease in the pentane-soluble and asphaltene fractions with a concomitant enhancement in the benzene insoluble fraction. However, relatively no degradation was observed for the liquid samples exposed to an inert (N{sub 2}) atmosphere. Preliminary data show that the coal+lignin-derived liquids are more stable than that obtained by coal liquefaction. In this quarterly report, individual atomic mass balances on various experiments conducted with coal, lignin and coal+lignin mixtures are also reported. Although the overall mass recoveries of 95--98% of the total mass charged to the reactor were obtained, the atomic mass balance data are somewhat difficult to interpret due to the possible incorporation of tetralin (solvent) in the reaction products.

  10. Characterization of the surface properties of Illinois Basin Coals. Technical report, September 1--November 30, 1991

    SciTech Connect (OSTI)

    Demir, I.

    1991-12-31

    The overall objective of this research project is to provide fundamental data on the physical and chemical surface properties of Illinois coals, specifically those of the Illinois Basin Coal Sample Program (IBCSP). This will help coal researchers achieve an optimal match between Illinois Basin coals and potential coal cleaning and conversion processes (or at least reduce the number of coals suitable for a particular process) and may lead to improved desulfurization and increased utilization of Illinois Basin coals. The specific tasks scheduled to meet our objective are: (1) Physical Characterization: Determine total surface area, porosity, pore size and volume distributions of IBCSP coals crushed to two particle sizes, {minus}100 and {minus}400 mesh (exclusive of IBC-108 which is available only in {minus}400 mesh form), in both an unoxidized and oxidized state. (2) Chemical Characterization: Determine the surface charge (electrokinetic mobility) as a function of pH by electrophoresis and analyze the surface chemical structure of the above samples using Diffuse Reflectance Infrared Spectroscopy (DRIS). (3) Multivariate Statistical Analyses: Explore possible relationships among the newly determined surface properties and other available characterization data, including chemical and petrographic compositions, vitrinite reflectance, free swelling index, ash yield, sulfur forms, and other relevant properties.

  11. Characterization of the surface properties of Illinois basin coals. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect (OSTI)

    Demir, I.; Harvey, R.D.; Lizzio, A.A. [Illinois State Geological Survey, Champaign, IL (United States)

    1992-12-31

    Surface area and pore volume distributions, surface charge, and surface chemical structure of the eight coals in the Illinois Basin Coal Sample Program (IBCSP) were determined. The IBC-101 coal has the lowest total and micropore (3.5-20.0 {Angstrom}) surface areas. The IBC-103 coal has the lowest mesopore (20-500 {Angstrom}) surface area. The mesopore surface areas of IBC-101, IBC-102, and IBC-107 coals are higher than the other four coals. Pore volume in pores <1800 {Angstrom} in diameter varies almost five-fold with IBC-103 coal having the lowest value. These differences may affect the reactivity of these coals during cleaning, conversion, and combustion processes. Surface charge and isoelectric points vary among the samples. The isoelectric point, where processes such as agglomeration and dewatering is most efficient, shifted to higher pH values for some of the samples upon exposure to air oxidation at room temperature. Diffuse reflectance infrared spectroscopy (DRIS) data indicate that the surfaces of the IBCSP coals contain aromatic hydrocarbon components, aliphatic hydrocarbons, and an aldehyde group. Ball-mill grinding reduced the organic hydroxyls and thus enriched relative concentrations of nonpolar aliphatic functional groups in the samples. The room temperature air oxidation did not cause any significant change on the surface chemical structure of the coals.

  12. Annual Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropaneandAn319 125 U.S.812Annual ProgressANNUALY

  13. Annual Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropaneandAn319 125 U.S.812Annual

  14. Annual Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery ActTools to someone by AllocationAnnual Energy

  15. Annual Report

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t yWaste |4 2014 Annual Planning Summary for the2011

  16. Measures used to tackle environmental problems related to global warming and climate change resulting from the use of coal

    SciTech Connect (OSTI)

    Hoppe, J.A.

    1996-12-31

    Environmental issues continue to play a major role in strategic planning associated with the use of coal for power generation. Problems, such as Acid Rain resulting from SO{sub 2} emissions produced from the sulfur content of coal during coal combustion, have recently cornered the attention of policy makers and planners. More recently the carbon content of coal, which provides for most of the coals heating value, has been identified as the major contributor to the production of CO{sub 2} and other emissions associated with Global Warming and Climate Change. Total world carbon emissions resulting from the burning of fossil fuels were approximately 6 billion metric tons in 1990, of which 44% were from the consumption of oil, 39% from coal, and 17% from natural gas. Assuming no change in current regulations, carbon emissions are anticipated to grow by 1.5% per year, and are predicted to reach more than 8 billion tons by the year 2010. Most of this increase in carbon emissions is expected to come from developing countries in the Asian Pacific Region such as China where coal use dominates the power production industry and accounts for 71% of its total CO{sub 2} emissions. Asian Pacific coal demand is expected to double over the next 15 years accounting for a 46% increase in total primary energy demand, and China currently produces approximately 11% of the world`s global greenhouse gas emissions which is expected to grow to 15% by the year 2010.

  17. Coal and nuclear power: Illinois' energy future

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  18. Coal combustion by wet oxidation

    SciTech Connect (OSTI)

    Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

    1980-11-15

    The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

  19. Enhancement of surface properties for coal beneficiation

    SciTech Connect (OSTI)

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  20. Annual Reports | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in PDF and will require Adobe Reader for viewing. Freedom of Information Act Annual Reports Annual Report for 2014 Annual Report for 2013 Annual Report for 2012 Annual Report...

  1. Annual Total Number of Internships 74 59 70 203

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Apparel/Beauty 4 Computer/Software 28 Accounting 3 Healthcare 15 Entertainment 3 Transportation 14 Market/Information Technology and Management Internships for the 2011-12 Academic Year Breakdown by Industry of Companies Hiring Enterprise Services Rockwell Collins, Inc Aspire HR iBiz Software Ryder Avion Systems Inc IBM Samsung America

  2. Chemical composition and some trace element contents in coals and coal ash from Tamnava-Zapadno Polje Coal Field, Serbia

    SciTech Connect (OSTI)

    Vukasinovic-Pesic, V.; Rajakovic, L.J. [University of Montenegro, Podgorica (Montenegro)

    2009-07-01

    The chemical compositions and trace element contents (Zn, Cu, Co, Cr, Ni, Pb, Cd, As, B, Hg, Sr, Se, Be, Ba, Mn, Th, V, U) in coal and coal ash samples from Tamnava-Zapadno Polje coal field in Serbia were studied. The coal from this field belongs to lignite. This high volatility coal has high moisture and low S contents, moderate ash yield, and high calorific value. The coal ash is abundant in alumosilicates. Many trace elements such as Ni > Cd > Cr > B > As > Cu > Co > Pb > V > Zn > Mn in the coal and Ni > Cr > As > B > Cu > Co = Pb > V > Zn > Mn in the coal ash are enriched in comparison with Clarke concentrations.

  3. Clean Coal Program Research Activities

    SciTech Connect (OSTI)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  4. PARAMETRIC STUDY OF SUBMICRON PARTICULATES FROM PULVERIZED COAL COMBUSTION

    E-Print Network [OSTI]

    Pennucci, J.

    2014-01-01

    TABLE l PITTSBURG SEAM COAL PROPERTIES Proximate Analysiscoal boiler. The coal, whose properties are given in Table

  5. Annual Energy Review 1999

    SciTech Connect (OSTI)

    Seiferlein, Katherine E.

    2000-07-01

    A generation ago the Ford Foundation convened a group of experts to explore and assess the Nation’s energy future, and published their conclusions in A Time To Choose: America’s Energy Future (Cambridge, MA: Ballinger, 1974). The Energy Policy Project developed scenarios of U.S. potential energy use in 1985 and 2000. Now, with 1985 well behind us and 2000 nearly on the record books, it may be of interest to take a look back to see what actually happened and consider what it means for our future. The study group sketched three primary scenarios with differing assumptions about the growth of energy use. The Historical Growth scenario assumed that U.S. energy consumption would continue to expand by 3.4 percent per year, the average rate from 1950 to 1970. This scenario assumed no intentional efforts to change the pattern of consumption, only efforts to encourage development of our energy supply. The Technical Fix scenario anticipated a “conscious national effort to use energy more efficiently through engineering know-how." The Zero Energy Growth scenario, while not clamping down on the economy or calling for austerity, incorporated the Technical Fix efficiencies plus additional efficiencies. This third path anticipated that economic growth would depend less on energy-intensive industries and more on those that require less energy, i.e., the service sector. In 2000, total energy consumption was projected to be 187 quadrillion British thermal units (Btu) in the Historical Growth case, 124 quadrillion Btu in the Technical Fix case, and 100 quadrillion Btu in the Zero Energy Growth case. The Annual Energy Review 1999 reports a preliminary total consumption for 1999 of 97 quadrillion Btu (see Table 1.1), and the Energy Information Administration’s Short-Term Energy Outlook (April 2000) forecasts total energy consumption of 98 quadrillion Btu in 2000. What energy consumption path did the United States actually travel to get from 1974, when the scenarios were drawn, to the end of the century? What happened to the relationship between growth and energy consumption? How did the fuel mix change over this period? What are the effects of energy usage on our environment? What level of consumption will the United States—and the world—record in the Annual Energy Review 2025? We present this edition of the Annual Energy Review to help investigate these important questions and to stimulate and inform our thinking about what the future holds.

  6. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    ??????? ??????????????"); IEA, WEO 2007; IEA Greenhouse Gastonnes exceeded the IEA’s WEO 2000 forecast for 2020 coalCoal Consumption, 1980-2025 WEO 2008 IEO 2008 IEO 2000 NDRC

  7. Clean Coal Incentive Tax Credit (Kentucky)

    Broader source: Energy.gov [DOE]

    Clean Coal Incentive Tax Credit provides for a property tax credit for new clean coal facilities constructed at a cost exceeding $150 million and used for the purposes of generating electricity....

  8. Clean Coal Power Initiative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other pollutants from coal-burning power plants. In the late 1980s and...

  9. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's penumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  10. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's pneumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  11. Integrated coal cleaning, liquefaction, and gasification process

    DOE Patents [OSTI]

    Chervenak, Michael C. (Pennington, NJ)

    1980-01-01

    Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

  12. February 21 -22, 2014 Coast Coal Harbour

    E-Print Network [OSTI]

    Handy, Todd C.

    February 21 - 22, 2014 Coast Coal Harbour 1180 W Hastings St Vancouver, BC Healthy Mothers contact by phone: +1 604-822- 7708 or by e-mail: melissa.ipce@ubc.ca. Location The Coast Coal Harbour

  13. ASHLAND COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL

    E-Print Network [OSTI]

    Chapter PA ASHLAND COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

  14. EFFECT OF COAL DUST ONEFFECT OF COAL DUST ON RAILROAD BALLAST STRENGTHRAILROAD BALLAST STRENGTH

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    1 EFFECT OF COAL DUST ONEFFECT OF COAL DUST ON RAILROAD BALLAST STRENGTHRAILROAD BALLAST STRENGTH for Laboratory StudyFouling Mechanism / Need for Laboratory Study Mechanical Properties of Coal DustMechanical Properties of Coal Dust Grain Size AnalysisGrain Size Analysis AtterbergAtterberg LimitsLimits Specific

  15. Argonne Premium Coal Sample Bank The Argonne Premium Coal (APC) Sample Bank can supply

    E-Print Network [OSTI]

    Maranas, Costas

    Argonne Premium Coal Sample Bank Background Overview T The Argonne Premium Coal (APC) Sample Bank can supply researchers with highly uniform, well-protected coal samples unexposed to oxygen. Researchers investigating coal structure, properties, and behavior can benefit greatly from these samples

  16. Arrowhead Center: Coal Production and Regional Economic Growth Report Title: Coal Production and Regional Economic Growth

    E-Print Network [OSTI]

    Johnson, Eric E.

    Arrowhead Center: Coal Production and Regional Economic Growth Report Title: Coal Production@nmsu.edu #12;Arrowhead Center: Coal Production and Regional Economic Growth i Disclaimer This report States Government or any agency thereof. #12;Arrowhead Center: Coal Production and Regional Economic

  17. DECKER COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL

    E-Print Network [OSTI]

    Chapter PD DECKER COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL RESOURCES Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

  18. SHERIDAN COALFIELD, POWDER RIVER BASIN: GEOLOGY, COAL QUALITY, AND COAL RESOURCES

    E-Print Network [OSTI]

    Chapter PH SHERIDAN COALFIELD, POWDER RIVER BASIN: GEOLOGY, COAL QUALITY, AND COAL RESOURCES By M assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

  19. 2008 Annual Report

    SciTech Connect (OSTI)

    none,

    2008-01-01

    This annual report includes: a brief overview of Western; FY 2008 operational highlights; and financial data.

  20. Coal liquefaction with preasphaltene recycle

    DOE Patents [OSTI]

    Weimer, Robert F. (Allentown, PA); Miller, Robert N. (Allentown, PA)

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  1. Cokemaking from coals of Kuzbas and Donbas

    SciTech Connect (OSTI)

    Umansky, R.Z. [Resourcecomplect, Donetsk (Ukraine); Kovalev, E.T.; Drozdnik, I.D. [UKHIN, Kharkov (Ukraine)

    1997-12-31

    The paper discusses features of Donetsk and Kuznetsk coals, the export capability of Ukraine coking industry, the selection of coal blends involving coals from different basins, and practical recommendations and techno-economic considerations. It is concluded that by raising the share of low-sulfur Kuznetsk coal in the blend to 50%, coke produced will meet all the requirements of European and American consumers.

  2. National Coal celebrates its fifth anniversary

    SciTech Connect (OSTI)

    Fiscor, S.

    2008-06-15

    The growth and activities of the National Coal Corp since its formation in 2003 are described. 5 photos.

  3. Canada's coal industry: full swing ahead

    SciTech Connect (OSTI)

    Stone, K. [Natural Resources Canada (Canada). Minerals and Metals Sector

    2007-03-15

    The article presents facts and figures about Canada's coal industry in 2006 including production, exports, imports, mines in operation, the Genesee 3 coal-fired generation unit, the Dodds-Roundhill Gasification Project, and new coal mine development plans. The outlook for 2007 is positive, with coal production expected to increase from 67 Mt in 2006 to 70 Mt in 2007 and exports expected to increase from 28 Mt in 2006 to 30 Mt in 2007.

  4. Annual energy review 2003

    SciTech Connect (OSTI)

    Seiferlein, Katherin E.

    2004-09-30

    The Annual Energy Review 2003 is a statistical history of energy activities in the United States in modern times. Data are presented for all major forms of energy by production (extraction of energy from the earth, water, and other parts of the environment), consumption by end-user sector, trade with other nations, storage changes, and pricing. Much of the data provided covers the fossil fuels—coal, petroleum, and natural gas. Fossil fuels are nature’s batteries; they have stored the sun’s energy over millennia past. It is primarily that captured energy that we are drawing on today to fuel the activities of the modern economy. Data in this report measure the extraordinary expansion of our use of fossil fuels from 29 quadrillion British thermal units (Btu) in 1949 to 84 quadrillion Btu in 2003. In recent years, fossil fuels accounted for 86 percent of all energy consumed in the United States. This report also records the development of an entirely new energy industry—the nuclear electric power industry. The industry got its start in this country in 1957 when the Shippingport, Pennsylvania, nuclear electric power plant came on line. Since that time, the industry has grown to account for 20 percent of our electrical output and 8 percent of all energy used in the country. Renewable energy is a third major category of energy reported in this volume. Unlike fossil fuels, which are finite in supply, renewable energy is essentially inexhaustible because it can be replenished. Types of energy covered in the renewable category include conventional hydroelectric power, which is power derived from falling water; wood; waste; alcohol fuels; geothermal; solar; and wind. Together, these forms of energy accounted for about 6 percent of all U.S. energy consumption in recent years.

  5. Chemical Fixation of CO2 in Coal Combustion Products and Recycling through Biosystems

    SciTech Connect (OSTI)

    C. Henry Copeland; Paul Pier; Samantha Whitehead; David Behel

    2002-09-30

    This Annual Technical Progress Report presents the principal results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. Optimal production of biomass depends on a number of factors. These factors include pH management, harvesting, and impact of auxiliary operations on the algae population. A number of experiments are presented which attempt to identify and characterize the impact of these factors.

  6. Estimating coal production peak and trends of coal imports in China

    SciTech Connect (OSTI)

    Bo-qiang Lin; Jiang-hua Liu

    2010-01-15

    More than 20 countries in the world have already reached a maximum capacity in their coal production (peak coal production) such as Japan, the United Kingdom and Germany. China, home to the third largest coal reserves in the world, is the world's largest coal producer and consumer, making it part of the Big Six. At present, however, China's coal production has not yet reached its peak. In this article, logistic curves and Gaussian curves are used to predict China's coal peak and the results show that it will be between the late 2020s and the early 2030s. Based on the predictions of coal production and consumption, China's net coal import could be estimated for coming years. This article also analyzes the impact of China's net coal import on the international coal market, especially the Asian market, and on China's economic development and energy security. 16 refs., 5 figs., 6 tabs.

  7. Electric power annual 1997. Volume 1

    SciTech Connect (OSTI)

    NONE

    1998-07-01

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1 -- with a focus on US electric utilities -- contains final 1997 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1997 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold (based on a monthly sample: Form EIA-826, ``Monthly Electric Utility Sales and Revenue Report with State Distributions``). Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA.

  8. Supersonic coal water slurry fuel atomizer

    DOE Patents [OSTI]

    Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Balsavich, John (Foxborough, MA)

    1991-01-01

    A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

  9. Chlorine in coal and boiler corrosion

    SciTech Connect (OSTI)

    Chou, M.I.M.; Lytle, J.M. [Illinois State Geological Survey, Champaign, IL (United States); Pan, W.P.; Liu, L. [Western Kentucky Univ., Bowling Green, KY (United States); Huggins, F.E.; Huffman, G.P. [Univ. of Kentucky, Lexington, KY (United States); Ho, K.K. [Illinois Clean Coal Inst., Carbondale, IL (United States)

    1994-12-31

    Corrosion of superheaters in the United Kingdom has been attributed to the high level of chlorine (Cl) in British coals. On the other hand, similar high-Cl Illinois coals have not caused boiler corrosion. This suggests that the extent of boiler corrosion due to Cl may not be directly related to the amount of Cl in the coal but to how the Cl occurs in the coal or to other factors. In this study, both destructive temperature-programmed Thermogravimetry with Fourier transform infrared (TGA-FTIR) and non-destructive X-ray absorption near-edge structure (XANES) techniques were used to examine the thermal evolution characteristics and the forms of Cl in four Illinois and four British coals. The TGA-FTIR results indicate that under oxidizing conditions, both British and Illinois coals release hydrogen chloride (HCl) gas. Maximum evolution of HCl gas from Illinois coals occurs near 425 C, whereas, the temperature of maximum HCl release from British coals occurs between 210 and 280 C. The XANES results indicate that Cl in coal exists in ionic forms including a solid salt form. The HCl evolution profiles of the Illinois and British coals suggests that the way in which Cl ions are associated in Illinois coals is of different from the way they are associated in British coals.

  10. Energy Systems Engineering 1 Clean Coal Technologies

    E-Print Network [OSTI]

    Banerjee, Rangan

    Energy Systems Engineering 1 Clean Coal Technologies Presentation at BARC 4th December 2007 #12/kWh) 0.14 0.03 0.6 #12;Energy Systems Engineering 9 Status of Advanced Coal Technologies Types of advanced coal technologies Supercritical Pulverised Combustion Circulating Fluidised Bed Combustion (CFBC

  11. Selective flotation of inorganic sulfides from coal

    DOE Patents [OSTI]

    Miller, K.J.; Wen, Wu-Wey

    1988-05-31

    Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow. 1 fig., 2 tabs.

  12. Selective flotation of inorganic sulfides from coal

    DOE Patents [OSTI]

    Miller, Kenneth J. (Floreffe, PA); Wen, Wu-Wey (Murrysville, PA)

    1989-01-01

    Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow.

  13. Low-rank coal oil agglomeration

    DOE Patents [OSTI]

    Knudson, C.L.; Timpe, R.C.

    1991-07-16

    A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.

  14. Firing of pulverized solvent refined coal

    DOE Patents [OSTI]

    Derbidge, T. Craig (Sunnyvale, CA); Mulholland, James A. (Chapel Hill, NC); Foster, Edward P. (Macungie, PA)

    1986-01-01

    An air-purged burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired without the coking thereof on the burner components. The air-purged burner is designed for the firing of pulverized solvent refined coal in a tangentially fired boiler.

  15. Oil and coal: reserves and production

    E-Print Network [OSTI]

    Canada Japan F.R I United Germany Kingdom France Italy Fig. 2. Oil's share of the increase in energy useOil and coal: reserves and production Anton Ziolkowski* The 1984-85 strike by British coal miners has focused attention on the difficulties of the coal industry at a time when demand for energy

  16. Steam Plant Conversion Eliminating Campus Coal Use

    E-Print Network [OSTI]

    Dai, Pengcheng

    Steam Plant Conversion Eliminating Campus Coal Use at the Steam Plant #12;· Flagship campus region produce 14% of US coal (TN only 0.2%) Knoxville and the TN Valley #12;· UT is one of about 70 U.S. colleges and universities w/ steam plant that burns coal · Constructed in 1964, provides steam for

  17. Consensus Coal Production And Price Forecast For

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Consensus Coal Production And Price Forecast For West Virginia: 2011 Update Prepared for the West December 2011 © Copyright 2011 WVU Research Corporation #12;#12;W.Va. Consensus Coal Forecast Update 2011 i Table of Contents Executive Summary 1 Recent Developments 3 Consensus Coal Production And Price Forecast

  18. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  19. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  20. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  1. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  2. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  3. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  4. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  5. An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies

    SciTech Connect (OSTI)

    Spencer, D.F. [SIMTECHE, Half Moon Bay, CA (United States)

    1997-12-31

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

  6. Clean coal technology: selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect (OSTI)

    NONE

    2005-05-01

    The report discusses a project carried out under the US Clean Coal Technology (CCT) Demonstration Program which demonstrated selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulphur coal-fired boilers under typical boilers conditions in the United States. The project was conducted by Southern Company Services, Inc., who served as a co-funder and as the host at Gulf Power Company's Plant Crist. The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the flue gas through a catalyst bed where the Nox and NH{sub 3} react to form nitrogen and water vapor. The results of the CCTDP project confirmed the applicability of SCR for US coal-fired power plants. In part as a result of the success of this project, a significant number of commercial SCR units have been installed and are operating successfully in the United States. By 2007, the total installed SCR capacity on US coal-fired units will number about 200, representing about 100,000 MWe of electric generating capacity. This report summarizes the status of SCR technology. 21 refs., 3 figs., 2 tabs., 10 photos.

  7. Coal Data Browser

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas ReservesAlabamaAboutTotalWhy I Chose EIA EIA istoBrowser

  8. Coal-Producing Region

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas ReservesAlabamaAboutTotalWhy I Chose EIA EIACoal

  9. ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    nationwide deep and surface coal mining activity. As notedimpacts of surface coal mining and surface effects of under-Groundwater Surface and underground coal mining may affect

  10. ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    substantial conversion of coal to liquid at temperaturesproject's aim is to convert coal to liquid products by usingby renewed interest in coal conversion to liquid and gaseous

  11. Reduction of NO sub x and SO sub 2 emissions from coal burning pulse combustors

    SciTech Connect (OSTI)

    Powell, E.A.; Zinn, B.T.; Miller, N.; Chen, F.

    1990-12-01

    In this investigation, a Rijke pulse combustor was constructed, in which unpulverized coal was burned on a rotating bed where the presence of acoustic velocity oscillations resulted in bed fluidization and intensification of the combustion process. The objectives of this investigation were to determine (1) if the nitrogen oxides emissions of the experimental Rijke pulse combustor could be reduced by air staging the combustion process and (2) if the sulfur dioxide emissions of this pulse combustor could be reduced by the addition of sorbent materials such as limestone to the coal bed or to the gas stream above the bed. Air staging experiments were conducted for total dimensionless air fuel ratios ranging from 1.0 to 1.4 and primary dimensionless air/fuel ratios ranging from 0.6 to 0.9. Injection heights ranged from 20 cm to 52 cm above the coal bed. Air staging was effective in reducing the nitrogen oxides emissions of coal burning Rijke type pulse combustors under the proper conditions. Another series of experiments was conducted using sorbent addition to reduce sulfur dioxide emissions. In some of these experiments, pulverized dolomitic limestone was introduced along with the coal through the coal delivery tube just above the bed, while in the remainder of the experiments, the sorbent was dispersed in an air stream and injected at 15 cm or 23 cm above the coal bed. 9 refs., 49 figs., 9 tabs.

  12. Coal conversion. 1979 technical report

    SciTech Connect (OSTI)

    None

    1980-09-01

    Individual reports are made on research programs which are being conducted by various organizations and institutions for the commercial development of processes for converting coal into products that substitute for these derived from oil and natural gas. Gasification, liquefaction, and demonstration processes and plants are covered. (DLC)

  13. Configurational diffusion of coal macromolecules

    SciTech Connect (OSTI)

    Guin, J.A.; Curtis, C.W.; Tarrer, A.R.; Kim, S.; Hwang, D.; Chen, C.C.; Chiou, Z.

    1991-01-01

    The objective of our research was to obtain fundamental information regarding the functional dependence of the diffusion coefficient of coal molecules on the ratio of molecule to pore diameter. That is, the objective of our study was to examine the effect of molecule size and configuration on hindered diffusion of coal macromolecules through as porous medium. To best accomplish this task, we circumvented the complexities of an actual porous catalyst by using a well defined porous matrix with uniform capillaric pores, i.e., a track-etched membrane. In this way, useful information was obtained regarding the relationship of molecular size and configuration on the diffusion rate of coal derived macromolecules through a pore structure with known geometry. Similar studies were performed using a pellet formed of porous alumina, to provide a link between the idealized membranes and the actual complex pore structure of real catalyst extrudates. The fundamental information from our study will be useful toward the tailoring of catalysts to minimize diffusional influences and thereby increase coal conversion and selectivity for desirable products. (VC)

  14. Cooperative research in coal liquefaction

    SciTech Connect (OSTI)

    Huffman, G.P.; Sendlein, L.V.A. (eds.)

    1991-05-28

    Significant progress was made in the May 1990--May 1991 contract period in three primary coal liquefaction research areas: catalysis, structure-reactivity studies, and novel liquefaction processes. A brief summary of the accomplishments in the past year in each of these areas is given.

  15. Coke from coal and petroleum

    DOE Patents [OSTI]

    Wynne, Jr., Francis E. (Allison Park, PA); Lopez, Jaime (Pittsburgh, PA); Zaborowsky, Edward J. (Harwick, PA)

    1981-01-01

    A carbonaceous coke is manufactured by the delayed coking of a slurry mixture of from about 10 to about 30 weight percent of caking or non-caking coal and the remainder a petroleum resid blended at below 50.degree. C.

  16. COAL LIQUEFACTION USING ZINC CHLORIDE CATALYST IN AN EXTRACTING SOLVENT MEDIUM

    E-Print Network [OSTI]

    Gandhi, Shamim Ahmed

    2013-01-01

    18 Effect of React Run No. Coal Type on Cat. /Coal Ratios of300°C P = 2000 ps Run No. Coal Type Wyodak Imp reg- Sol. , %Wyodak Coal, and Illinois #6 Coal Type of Coal Carbon Wyodak

  17. Effect of microwave radiation on coal flotation

    SciTech Connect (OSTI)

    Ozbayoglu, G.; Depci, T.; Ataman, N. [Middle East Technical University, Ankara (Turkey). Mining Engineering Department

    2009-07-01

    Most low-rank coals are high in moisture and acid functional groups, therefore showing poor floatability. Drying, which removes the water molecules trapped in the pores and adsorbed at the surface of coal, decreases the hydrophilic character and improves the floatability. Microwave heating, whose simplest application is drying, was applied at 0.9 kW power level for 60 sec exposure time in the experiments to decrease the moisture content of coal in order to enhance the hydrophobicity. The flotation tests of microwave-treated coal by using heptanol and octanol lead to a higher flotation yield and ash removal than original coal.

  18. Coal storage hopper with vibrating screen agitator

    DOE Patents [OSTI]

    Daw, Charles S. (Knoxville, TN); Lackey, Mack E. (Oak Ridge, TN); Sy, Ronald L. (Clinton, TN)

    1984-01-01

    The present invention is directed to a vibrating screen agitator in a coal storage hopper for assuring the uniform feed of coal having sufficient moisture content to effect agglomeration and bridging thereof in the coal hopper from the latter onto a conveyor mechanism. The vibrating screen agitator is provided by a plurality of transversely oriented and vertically spaced apart screens in the storage hopper with a plurality of vertically oriented rods attached to the screens. The rods are vibrated to effect the vibration of the screens and the breaking up of agglomerates in the coal which might impede the uniform flow of the coal from the hopper onto a conveyer.

  19. Process for selective grinding of coal

    SciTech Connect (OSTI)

    Venkatachari, Mukund K.; Benz, August D.; Huettenhain, Horst

    1991-01-01

    A process for preparing coal for use as a fuel. Forming a coal-water slurry having solid coal particles with a particle size not exceeding about 80 microns, transferring the coal-water slurry to a solid bowl centrifuge, and operating same to classify the ground coal-water slurry to provide a centrate containing solid particles with a particle size distribution of from about 5 microns to about 20 microns and a centrifuge cake of solids having a particle size distribution of from about 10 microns to about 80 microns. The classifer cake is reground and mixed with fresh feed to the solid bowl centrifuge for additional classification.

  20. Quarterly coal report, October--December 1996

    SciTech Connect (OSTI)

    1997-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1996 and aggregated quarterly historical data for 1990 through the third quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 72 tabs.