National Library of Energy BETA

Sample records for torus experiment nstx

  1. National Spherical Torus Experiment Upgrade (NSTX-U) | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab National Spherical Torus Experiment Upgrade (NSTX-U) NSTX-U The National Spherical Torus Experiment Upgrade (NSTX-U) is an innovative magnetic fusion device that was constructed by the Princeton Plasma Physics Laboratory (PPPL) in collaboration with the Oak Ridge National Laboratory, Columbia University, and the University of Washington at Seattle. History First plasma was obtained on NSTX on Friday, February 12, 1999 at 6:06 p.m. NSTX-U is being used to study the physics

  2. National Spherical Torus Experiment (NSTX) Torus Design, Fabrication and Assembly

    SciTech Connect (OSTI)

    C. Neumeyer; G. Barnes; J.H. Chrzanowski; P. Heitzenroeder; et al

    1999-11-01

    The National Spherical Torus Experiment (NSTX) is a low aspect ratio spherical torus (ST) located at Princeton Plasma Physics Laboratory (PPPL). Fabrication, assembly, and initial power tests were completed in February of 1999. The majority of the design and construction efforts were constructed on the Torus system components. The Torus system includes the centerstack assembly, external Poloidal and Toroidal coil systems, vacuum vessel, torus support structure and plasma facing components (PFC's). NSTX's low aspect ratio required that the centerstack be made with the smallest radius possible. This, and the need to bake NSTXs carbon-carbon composite plasma facing components at 350 degrees C, was major drivers in the design of NSTX. The Centerstack Assembly consists of the inner legs of the Toroidal Field (TF) windings, the Ohmic Heating (OH) solenoid and its associated tension cylinder, three inner Poloidal Field (PF) coils, thermal insulation, diagnostics and an Inconel casing which forms the inner wall of the vacuum vessel boundary. It took approximately nine months to complete the assembly of the Centerstack. The tight radial clearances and the extreme length of the major components added complexity to the assembly of the Centerstack components. The vacuum vessel was constructed of 304-stainless steel and required approximately seven months to complete and deliver to the Test Cell. Several of the issues associated with the construction of the vacuum vessel were control of dimensional stability following welding and controlling the permeability of the welds. A great deal of time and effort was devoted to defining the correct weld process and material selection to meet our design requirements. The PFCs will be baked out at 350 degrees C while the vessel is maintained at 150 degrees C. This required care in designing the supports so they can accommodate the high electromagnetic loads resulting from plasma disruptions and the resulting relative thermal expansions

  3. National Spherical Torus Experiment (NSTX) | U.S. DOE Office...

    Office of Science (SC) Website

    It is one of the world's two largest embodiments of the spherical torus confinement concept. NSTX has a unique, nearly spherical plasma shape that provides a test of the theory of ...

  4. Overview of Results from the National Spherical Torus Experiment (NSTX)

    SciTech Connect (OSTI)

    Gates, D; Ahn, J; Allain, J; Andre, R; Bastasz, R; Bell, M; Bell, R; Belova, E; Berkery, J; Betti, R; Bialek, J; Biewer, T; Bigelow, T; Bitter, M; Boedo, J; Bonoli, P; Bozzer, A; Brennan, D; Breslau, J; Brower, D; Bush, C; Canik, J; Caravelli, G; Carter, M; Caughman, J; Chang, C; Choe, W; Crocker, N; Darrow, D; Delgado-Aparicio, L; Diem, S; D'Ippolito, D; Domier, C; Dorland, W; Efthimion, P; Ejiri, A; Ershov, N; Evans, T; Feibush, E; Fenstermacher, M; Ferron, J; Finkenthal, M; Foley, J; Frazin, R; Fredrickson, E; Fu, G; Funaba, H; Gerhardt, S; Glasser, A; Gorelenkov, N; Grisham, L; Hahm, T; Harvey, R; Hassanein, A; Heidbrink, W; Hill, K; Hillesheim, J; Hillis, D; Hirooka, Y; Hosea, J; Hu, B; Humphreys, D; Idehara, T; Indireshkumar, K; Ishida, A; Jaeger, F; Jarboe, T; Jardin, S; Jaworski, M; Ji, H; Jung, H; Kaita, R; Kallman, J; Katsuro-Hopkins, O; Kawahata, K; Kawamori, E; Kaye, S; Kessel, C; Kim, J; Kimura, H; Kolemen, E; Krasheninnikov, S; Krstic, P; Ku, S; Kubota, S; Kugel, H; La Haye, R; Lao, L; LeBlanc, B; Lee, W; Lee, K; Leuer, J; Levinton, F; Liang, Y; Liu, D; Luhmann, N; Maingi, R; Majeski, R; Manickam, J; Mansfield, D; Maqueda, R; Mazzucato, E; McCune, D; McGeehan, B; McKee, G; Medley, S; Menard, J; Menon, M; Meyer, H; Mikkelsen, D; Miloshevsky, G; Mitarai, O; Mueller, D; Mueller, S; Munsat, T; Myra, J; Nagayama, Y; Nelson, B; Nguyen, X; Nishino, N; Nishiura, M; Nygren, R; Ono, M; Osborne, T; Pacella, D; Park, H; Park, J; Paul, S; Peebles, W; Penaflor, B; Peng, M; Phillips, C; Pigarov, A; Podesta, M; Preinhaelter, J; Ram, A; Raman, R; Rasmussen, D; Redd, A; Reimerdes, H; Rewoldt, G; Ross, P; Rowley, C; Ruskov, E; Russell, D; Ruzic, D; Ryan, P; Sabbagh, S; Schaffer, M; Schuster, E; Scott, S; Shaing, K; Sharpe, P; Shevchenko, V; Shinohara, K; Sizyuk, V; Skinner, C; Smirnov, A; Smith, D; Smith, S; Snyder, P; Soloman, W; Sontag, A; Soukhanovskii, V; Stoltzfus-Dueck, T; Stotler, D; Strait, T; Stratton, B; Stutman, D; Takahashi, R; Takase, Y; Tamura, N; Tang, X; Taylor, G; Taylor, C; Ticos, C; Tritz, K; Tsarouhas, D; Turrnbull, A; Tynan, G; Ulrickson, M; Umansky, M; Urban, J; Utergberg, E; Walker, M; Wampler, W; Wang, J; Wang, W; Weland, A

    2009-01-05

    The mission of NSTX is the demonstration of the physics basis required to extrapolate to the next steps for the spherical torus (ST), such as a plasma facing component test facility (NHTX) or an ST based component test facility (ST-CTF), and to support ITER. Key issues for the ST are transport, and steady state high {beta} operation. To better understand electron transport, a new high-k scattering diagnostic was used extensively to investigate electron gyro-scale fluctuations with varying electron temperature gradient scale-length. Results from n = 3 braking studies confirm the flow shear dependence of ion transport. New results from electron Bernstein wave emission measurements from plasmas with lithium wall coating applied indicate transmission efficiencies near 70% in H-mode as a result of reduced collisionality. Improved coupling of High Harmonic Fast-Waves has been achieved by reducing the edge density relative to the critical density for surface wave coupling. In order to achieve high bootstrap fraction, future ST designs envision running at very high elongation. Plasmas have been maintained on NSTX at very low internal inductance l{sub i} {approx} 0.4 with strong shaping ({kappa} {approx} 2.7, {delta} {approx} 0.8) with {beta}{sub N} approaching the with-wall beta limit for several energy confinement times. By operating at lower collisionality in this regime, NSTX has achieved record non-inductive current drive fraction f{sub NI} {approx} 71%. Instabilities driven by super-Alfvenic ions are an important issue for all burning plasmas, including ITER. Fast ions from NBI on NSTX are super-Alfvenic. Linear TAE thresholds and appreciable fast-ion loss during multi-mode bursts are measured and these results are compared to theory. RWM/RFA feedback combined with n = 3 error field control was used on NSTX to maintain plasma rotation with {beta} above the no-wall limit. The impact of n > 1 error fields on stability is a important result for ITER. Other highlights are

  5. Overview of Results from the National Spherical Torus Experiment (NSTX)

    SciTech Connect (OSTI)

    Gates, D. A.; Ahn, J.; Allain, J.; Andre, R.; Bastasz, R.; Bell, M.; Bell, R.; Belova, E.; Berkery, J.; Betti, R.; Bialek, J.; Biewer, T.; Bigelow, T.; Bitter, M.; Choe, W.; Crocker, N.; Darrow, D.; Delgado-Aparicio, L.; Diem, S.; DIppolito, D.; Domier, C.; Dorland, W.; Efthimion, P.; Ejiri, A.; Ershov, N.; Evans, T.; Feibush, E.; Fenstermacher, M.; Ferron, J.; Finkenthal, M.; Foley, J.; Frazin, R.; Fredrickson, E.; Fu, G.; Funaba, H.; Gerhardt, S.; Glasser, A.; Gorelenkov, N.; Grisham, L.; Hahm, T.; Harvey, R.; Hassanein, A.; Heidbrink, W.; Hill, K.; Hillesheim, J.; Hillis, D.; Hirooka, Y.; Hu, B.; Humphreys, D.; Idehara, T.; Indireshkumar, K.; Ishida, A.; Jaeger, F.; Jarboe, T.; Jardin, S.; Jaworski, M.; Ji, H.; Jung, H.; Kaita, R.; Kallman, J.; Katsuro-Hopkins, O.; Kawahata, K.; Kawamori, E.; Kaye, S.; Kessel, C.; Kim, J.; Kimura, H.; Kolemen, E.; Krasheninnikov, S.; Krstic, P.; Ku, S.; Kubota, S.; Kugel, H.; La Haye, R.; Lao, L.; LeBlanc, B.; Lee, W.; Lee, K.; Leuer, J.; Levinton, F.; Liang, Y.; Liu, D.; Luhmann, Jr., N.; Maingi, R.; Majeski, R.; Manickam, J.; Mansfield, D.; Maqueda, R.; Mazzucato, E.; McCune, D.; McGeehan, B.; McKee, G.; Medley, S.; Menard, J.; Menon, M.; Meyer, H.; Mikkelsen, D.; Miloshevsky, G.; Mitarai, O.; Mueller, D.; Mueller, S.; Munsat, T.; Myra, J.; Nagayama, Y.; Nelson, B.; Nguyen, X.; Nishino, N.; Nishiura, M.; Nygren, R.; Ono, M.; Osborne, T.; Pacella, D.; Park, H.; Park, J.; Paul, S.; Peebles, W.; Penaflor, B.; Peng, M.; Phillips, C.; Pigarov, A.; Podesta, M.; Preinhaelter, J.; Ram, A.; Raman, R.; Rasmussen, D.; Redd, A.; Reimerdes, H.; Rewo, G.; Ross, P.; Rowley, C.; Ruskov, E.; Russell, D.; Ruzic, D.; Ryan, P.; Sabbagh, S.; Schaffer, M.; Schuster, E.; Scott, S.; Shaing, K.; Sharpe, P.; Shevchenko, V.; Shinohara, K.; Sizyuk, V.; Skinner, C.; Smirnov, A.; Smith, D.; Smith, S.; Snyder, P.; Solomon, W.; Sontag, A.; Soukhanovskii, V.; Stoltzfus-Dueck, T.; Stotler, D.; Strait, T.; Stratton, B.; Stutman, D.; Takahashi, R.; Takase, Y.; Tamura, N.; Tang, X.; Taylor, G.; Taylor, C.; Ticos, C.; Tritz, K.; Tsarouhas, D.; Turrnbull, A.; Tynan, G.; Ulrickson, M.; Umansky, M.; Urban, J.; Utergberg, E.; Walker, M.; Wampler, W.; Wang, J.; Wang, W.; Welander, A.; Whaley, J.; White, R.; Wilgen, J.; Wilson, R.; Wong, K.; Wright, J.; Xia, Z.; Xu, X.; Youchison, D.; Yu, G.; Yuh, H.; Zakharov, L.; Zemlyanov, D.; Zweben, S.

    2009-03-24

    The mission of NSTX is the demonstration of the physics basis required to extrapolate to the next steps for the spherical torus (ST), such as a plasma facing component test facility (NHTX) or an ST based component test facility (ST-CTF), and to support ITER. Key issues for the ST are transport, and steady state high ? operation. To better understand electron transport, a new high-k scattering diagnostic was used extensively to investigate electron gyro-scale fluctuations with varying electron temperature gradient scale-length. Results from n = 3 braking studies are consistent with the flow shear dependence of ion transport. New results from electron Bernstein wave emission measurements from plasmas with lithium wall coating applied indicate transmission efficiencies near 70% in H-mode as a result of reduced collisionality. Improved coupling of High Harmonic Fast-Waves has been achieved by reducing the edge density relative to the critical density for surface wave coupling. In order to achieve high bootstrap current fraction, future ST designs envision running at very high elongation. Plasmas have been maintained on NSTX at very low internal inductance li ~0.4 with strong shaping (? ~ 2.7, ? ~ 0.8) with ?N approaching the with-wall beta limit for several energy confinement times. By operating at lower collisionality in this regime, NSTX has achieved record non-inductive current drive fraction fNI ~71%. Instabilities driven by super-Alfvenic ions will be an important issue for all burning plasmas, including ITER. Fast ions from NBI on NSTX are super-Alfvenic. Linear TAE thresholds and appreciable fast-ion loss during multi-mode bursts are measured and these results are compared to theory. The impact of n > 1 error fields on stability is a important result for ITER. RWM/RFA feedback combined with n=3 error field control was used on NSTX to maintain plasma rotation with ? above the no-wall limit. Other highlights are: results of

  6. Enhanced Conversion of Thermal Electron Bernstein Waves to the Extraordinary Electromagnetic Mode on the National Spherical Torus Experiment (NSTX)

    SciTech Connect (OSTI)

    G. Taylor; P.C. Efthimion; B. Jones; B.P. LeBlanc; J.R. Wilson; J.B. Wilgen; G.L. Bell; T.S. Bigelow; R. Maingi; D.A. Rasmussen; R.W. Harvey; A.P. Smirnov; F. Paoletti; S.A. Sabbagh

    2002-10-15

    A four-fold increase in the conversion of thermal electron-Bernstein waves (EBW) to the extraordinary mode (X-mode) was measured when the density scale length (L subscript ''n'') was progressively shortened by a local Boron nitride limiter in the scrape-off of an ohmically heated National Spherical Torus Experiment (NSTX) plasma [M. Ono, S. Kaye, M. Peng, et al., Proceedings 17th IAEA Fusion Energy Conference (IAEA, Vienna, Austria, 1999), Vol. 3, p. 1135]. The maximum conversion efficiency approached 50% when L subscript ''n'' was reduced to 0.7 cm, in agreement with theoretical predictions that used locally measured L subscript ''n''. Calculations indicate that it is possible to establish L subscript ''n'' < 0.3 cm with a local limiter, a value predicted to attain approximately 100% EBW conversion to the X-mode in support of proposed EBW heating and current drive scenarios.

  7. MHD-induced Energetic Ion Loss during H-mode Discharges in the National Spherical Torus Experiment (NSTX)

    SciTech Connect (OSTI)

    S.S. Medley; N.N. Gorelenkov; R. Andre; R.E. Bell; D.S. Darrow; E.D. Fredrickson; S.M. Kaye; B.P. LeBlanc; A.L. Roquemore; and the NSTX Team

    2004-03-15

    MHD-induced energetic ion loss in neutral-beam-heated H-mode [high-confinement mode] discharges in NSTX [National Spherical Torus Experiment] is discussed. A rich variety of energetic ion behavior resulting from magnetohydrodynamic (MHD) activity is observed in the NSTX using a horizontally scanning Neutral Particle Analyzer (NPA) whose sightline views across the three co-injected neutral beams. For example, onset of an n = 2 mode leads to relatively slow decay of the energetic ion population (E {approx} 10-100 keV) and consequently the neutron yield. The effect of reconnection events, sawteeth, and bounce fishbones differs from that observed for low-n, low-frequency, tearing-type MHD modes. In this case, prompt loss of the energetic ion population occurs on a time scale of less than or equal to 1 ms and a precipitous drop in the neutron yield occurs. This paper focuses on MHD-induced ion loss during H-mode operation in NSTX. After H-mode onset, the NPA charge-exchange spectrum usually exhibits a significant loss of energetic ions only for E > E(sub)b/2 where E(sub)b is the beam injection energy. The magnitude of the energetic ion loss was observed to decrease with increasing tangency radius, R(sub)tan, of the NPA sightline, increasing toroidal field, B(sub)T, and increasing neutral-beam injection energy, E(sub)b. TRANSP modeling suggests that MHD-induced ion loss is enhanced during H-mode operation due to an evolution of the q and beam deposition profiles that feeds both passing and trapped ions into the region of low-n MHD activity. ORBIT code analysis of particle interaction with a model magnetic perturbation supported the energy selectivity of the MHD-induced loss observed in the NPA measurements. Transport analysis with the TRANSP code using a fast-ion diffusion tool to emulate the observed MHD-induced energetic ion loss showed significant modifications of the neutral- beam heating as well as the power balance, thermal diffusivities, energy confinement times

  8. Status of the Control System on the National Spherical Torus Experiment (NSTX)

    SciTech Connect (OSTI)

    D.A. Gates; J.R. Ferron; M. Bell; T. Gibney; R. Johnson; R.J. Marsala; D. Mastrovito; J.E. Menard; D. Mueller; B. Penaflor; T. Stevenson

    2005-08-05

    In 2003, the NSTX plasma control system was used for plasma shape control using real-time equilibrium reconstruction (using the rtEFIT code - J. Ferron, et al., Nucl. Fusion 38 1055 (1998)). rtEFIT is now in routine use for plasma boundary control [D. A. Gates, et al., submitted to Nuclear Fusion (2005)]. More recently, the system has been upgraded to support feedback control of the resistive wall mode (RWM). This paper describes the hardware and software improvements that were made in support of these physics requirements. The real-time data acquisition system now acquires 352 channels of data at 5kHz for each NSTX plasma discharge. The latency for the data acquisition, which uses the FPDP (Front Panel Data Port) protocol, is measured to be {approx}8 microseconds. A Stand-Alone digitizer (SAD), designed at PPPL, along with an FPDP Input multiplexing module (FIMM) allows for simple modular upgrades. An interface module was built to interface between the FPDP output of the NSTX control system and the legacy Power Conversion link (PCLINK) used for communicating with the PPPL power supplies (first used for TFTR). Additionally a module has been built for communicating with the switching power amplifiers (SPA) recently installed on NSTX. In addition to the hardware developments, the control software [D. Mastrovito, Fusion Eng. And Design 71 65 (2004)] on the NSTX control system has been upgraded. The control computer is an eight processor (8x333MHz G4) built by Sky Computers (Helmsford, MA). The device driver software for the hardware described above will be discussed, as well as the new control algorithms that have been developed to control the switching power supplies for RWM control. An important initial task in RWM feedback is to develop a reliable mode detection algorithm.

  9. Chosen Solutions to the Engineering Challenges of the National Spherical Torus Experiment (NSTX) Magnets

    SciTech Connect (OSTI)

    C. Neumeyer; H.M. Fan; J. Chrzanowski; P. Heitzenroeder; and the NSTX Team

    1999-10-01

    NSTX is one of the largest of a new class of magnetic plasma research devices known as spherical toroids (STs). The plasma in a ST is characterized by its almost spherical shape with a slender cylindrical region through its vertical axis. The so-called ''center stack'' is located in this region. It contains magnetic windings for confining the plasma, induce the plasma current, and shape the plasma. This paper will describe the engineering challenges of designing the center stack magnets to meet their operational requirements within this constrained space.

  10. Diagnostics for the biased electrode experiment on NSTX (Journal...

    Office of Scientific and Technical Information (OSTI)

    Diagnostics for the biased electrode experiment on NSTX Citation Details In-Document Search Title: Diagnostics for the biased electrode experiment on NSTX A linear array of four ...

  11. Characteristics of Energy Transport of Li-conditioned and non-Li-conditioned Plasmas in the National Spherical Torus Experiment (NSTX)

    SciTech Connect (OSTI)

    Ding, S.; Kaye, S. M.; Bell, R. E.; Kaita, R.; Kugel, H.; LeBlanc, B. P.; Paul, S.; Wan, B.

    2009-10-21

    The transport properties of NSTX plasmas obtained during the 2008 experimental cam- paign have been studied and are reported here. Transport trends and dependences have been isolated, and it is found that both electron and ion energy transport coefficients have strong dependences on local values of n?T, which in turn is strongly dependent on local current density profile. Without identifying this dependence, it is difficult to identify others, such as the dependence of transport coefficients on Bp (or q), Ip and Pheat. In addition, a comparison between discharges with and without Lithium wall conditioning has been made. While the trends in the two sets of data are similar, the thermal transport loss, especially in the electron channel, is found to strongly depend on the amount of Lithium deposited, decreasing by up to 50% of its no-Lithium value.

  12. Completed NSTX-U. After

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    panel (15 tons) being inserted into the new neutral beam box. New neutral beam box (40 tons) being moved into the NSTX-U test cell. Center stack encased within the vacuum boundary and lowered into the NSTX-U. Completed center stack installed in the NSTX-U. Completed NSTX-U. After Original NSTX prior to the upgrade. Before Building the first quadrant of the center stack magnet. Winding the ohmic heating coil around the center stack. National Spherical Torus Experiment - Upgrade NSTX was a

  13. Disruptions, Disruptivity, and Safer Operating Windows in the High-? Spherical Torus NSTX

    SciTech Connect (OSTI)

    Gerhardt, S P; Diallo, A; Gates, D; LeBlanc, B P; Menard, J E; Mueller, D; Sabbagh, S A; Soukhanovskii, V; Tritz, K

    2012-09-27

    This paper discusses disruption rates, disruption causes, and disruptivity statistics in the high- ?N National Spherical Torus Experiment (NSTX) [M. Ono, et al. Nuclear Fusion 40, 557 (2000)]. While the overall disruption rate is rather high, configurations with high ?N , moderate q*, strong boundary shaping, sufficient rotation, and broad pressure and current profiles are found to have the lowest disruptivity; active n=1 control further reduces the disruptivity. The disruptivity increases rapidly for q*<2.7, which is substantially above the ideal MHD current limit. In quiescent conditions, qmin >1.25 is generally acceptable for avoiding the onset of core rotating n=1 kink/tearing modes; when EPM and ELM disturbances are present, the required qmin for avoiding those modes is raised to ~1.5. The current ramp and early flat-top phase of the discharges are prone to n=1 core rotating modes locking to the wall, leading to a disruption. Small changes to the discharge fueling during this phase can often mitigate the rotation damping associated with these modes and eliminate the disruption. The largest stored energy disruptions are those that occur at high current when a plasma current rampdown is initiated incorrectly.

  14. Local Scrape-Off Layer Control Using Biased electrodes in NSTX...

    Office of Scientific and Technical Information (OSTI)

    Title: Local Scrape-Off Layer Control Using Biased electrodes in NSTX An experiment was ... near the outer midplane in the SOL of the National Spherical Torus Experiment (NSTX). ...

  15. Electron Bernstein Wave Research on the National Spherical Torus Experiment

    SciTech Connect (OSTI)

    G. Taylor; A. Bers; T.S. Bigelow; M.D. Carter; J.B. Caughman; J. Decker; S. Diem; P.C. Efthimion; N.M. Ershov; E. Fredd; R.W. Harvey; J. Hosea; F. Jaeger; J. Preinhaelter; A.K. Ram; D.A. Rasmussen; A.P. Smirnov; J.B. Wilgen; J.R. Wilson

    2005-04-21

    Off-axis electron Bernstein wave current drive (EBWCD) may be critical for sustaining noninductive high-beta National Spherical Torus Experiment (NSTX) plasmas. Numerical modeling results predict that the {approx}100 kA of off-axis current needed to stabilize a solenoid-free high-beta NSTX plasma could be generated via Ohkawa current drive with 3 MW of 28 GHz EBW power. In addition, synergy between EBWCD and bootstrap current may result in a 10% enhancement in current-drive efficiency with 4 MW of EBW power. Recent dual-polarization EBW radiometry measurements on NSTX confirm that efficient coupling to EBWs can be readily accomplished by launching elliptically polarized electromagnetic waves oblique to the confining magnetic field, in agreement with numerical modeling. Plans are being developed for implementing a 1 MW, 28 GHz proof-of-principle EBWCD system on NSTX to test the EBW coupling, heating and current-drive physics at high radio-frequency power densities.

  16. NSTX-U | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSTX-U Subscribe to RSS - NSTX-U The National Spherical Torus Experiment (NSTX), which is undergoing a $94 million upgrade that will make it the most powerful experimental fusion facility, or tokamak, of its type in the world when work is completed in 2015. Experiments will test the ability of the upgraded spherical facility to maintain a high-performance plasma under conditions of extreme heat and power. Results could strongly influence the design of future fusion reactors. PPPL intern creates

  17. Simulation of microtearing turbulence in national spherical torus experiment

    SciTech Connect (OSTI)

    Guttenfelder, W.; Kaye, S. M.; Bell, R. E.; Hammett, G. W.; LeBlanc, B. P.; Mikkelsen, D. R.; Ren, Y.; Candy, J.; Nevins, W. M.; Wang, E.; Zhang, J.; Crocker, N. A.; Yuh, H.

    2012-05-15

    Thermal energy confinement times in National Spherical Torus Experiment (NSTX) dimensionless parameter scans increase with decreasing collisionality. While ion thermal transport is neoclassical, the source of anomalous electron thermal transport in these discharges remains unclear, leading to considerable uncertainty when extrapolating to future spherical tokamak (ST) devices at much lower collisionality. Linear gyrokinetic simulations find microtearing modes to be unstable in high collisionality discharges. First non-linear gyrokinetic simulations of microtearing turbulence in NSTX show they can yield experimental levels of transport. Magnetic flutter is responsible for almost all the transport ({approx}98%), perturbed field line trajectories are globally stochastic, and a test particle stochastic transport model agrees to within 25% of the simulated transport. Most significantly, microtearing transport is predicted to increase with electron collisionality, consistent with the observed NSTX confinement scaling. While this suggests microtearing modes may be the source of electron thermal transport, the predictions are also very sensitive to electron temperature gradient, indicating the scaling of the instability threshold is important. In addition, microtearing turbulence is susceptible to suppression via sheared E Multiplication-Sign B flows as experimental values of E Multiplication-Sign B shear (comparable to the linear growth rates) dramatically reduce the transport below experimental values. Refinements in numerical resolution and physics model assumptions are expected to minimize the apparent discrepancy. In cases where the predicted transport is strong, calculations suggest that a proposed polarimetry diagnostic may be sensitive to the magnetic perturbations associated with the unique structure of microtearing turbulence.

  18. Modification Of The Electron Energy Distribution Function During Lithium Experiments On The National Spherical Torus Experiment

    SciTech Connect (OSTI)

    Jaworski, M A; Gray, T K; Kaita, R; Kallman, J; Kugel, H; LeBlanc, B; McLean, A; Sabbagh, S A; Soukanovskii, V; Stotler, D P

    2011-06-03

    The National Spherical Torus Experiment (NSTX) has recently studied the use of a liquid lithium divertor (LLD). Divertor Langmuir probes have also been installed for making measurements of the local plasma conditions. A non-local probe interpretation method is used to supplement the classical probe interpretation and obtain measurements of the electron energy distribution function (EEDF) which show the occurrence of a hot-electron component. Analysis is made of two discharges within a sequence that exhibited changes in plasma fueling efficiency. It is found that the local electron temperature increases and that this increase is most strongly correlated with the energy contained within the hot-electron population. Preliminary interpretative modeling indicates that kinetic effects are likely in the NSTX.

  19. New Capabilities and Results for the National Spherical Torus Experiment

    SciTech Connect (OSTI)

    M.G. Bell, R.E. Bell, D.A. Gates, S.M. Kaye, H. Kugel, B.P. LeBlanc, F.M. Levinton, R. Maingi, J.E. Menard, R. Raman, S.A. Sabbagh, D. Stutman and the NSTX Research Team

    2008-02-29

    The National Spherical Torus Experiment (NSTX) produces plasmas with toroidal aspect ratio as low as 1.25, which can be heated by up to 6 MW High-Harmonic Fast Waves and up to 7 MW of deuterium Neutral Beam Injection. Using new poloidal fields coils, plasmas with cross-section elongation up to 2.7, triangularity 0.8, plasma currents Ip up to 1.5 MA and normalized currents Ip/a?BT up to 7.5 MA/m?T have been achieved. A significant extension of the plasma pulse length, to 1.5 s at a plasma current of 0.7 MA, has been achieved by exploiting the bootstrap and NBI-driven currents to reduce the dissipation of poloidal flux. Inductive plasma startup has been supplemented by Coaxial Helicity Injection (CHI) and the production of persistent current on closed flux surfaces by CHI has now been demonstrated in NSTX. The plasma response to magnetic field perturbations with toroidal mode numbers n = 1 or 3 and the effects on the plasma rotation have been investigated using three pairs of coils outside the vacuum vessel. Recent studies of both MHD stability and of transport benefitted from improved diagnostics, including measurements of the internal poloidal field using the motional Stark effect (MSE). In plasmas with a region of reversed magnetic shear in the core, now confirmed by the MSE data, improved electron confinement has been observed.

  20. Hardwired Control Changes For NSTX DC Power Feeds

    SciTech Connect (OSTI)

    Ramakrishnan, S.

    2013-06-28

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physics Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The original TFTR Hardwired Control System (HCS) with electromechanical relays was used for NSTX DC Power loop control and protection during NSTX operations. As part of the NSTX Upgrade, the HCS is being changed to a PLC-based system with the same control logic. This paper gives a description of the changeover to the new PLC-based system __________________________________________________

  1. NSTX-U Digital Coil Protection System Software Detailed Design

    SciTech Connect (OSTI)

    2014-06-01

    The National Spherical Torus Experiment (NSTX) currently uses a collection of analog signal processing solutions for coil protection. Part of the NSTX Upgrade (NSTX-U) entails replacing these analog systems with a software solution running on a conventional computing platform. The new Digital Coil Protection System (DCPS) will replace the old systems entirely, while also providing an extensible framework that allows adding new functionality as desired.

  2. Progress in Understanding Error-field Physics in NSTX Spherical Torus Plasmas

    SciTech Connect (OSTI)

    E. Menard, R.E. Bell, D.A. Gates, S.P. Gerhardt, J.-K. Park, S.A. Sabbagh, J.W. Berkery, A. Egan, J. Kallman, S.M. Kaye, B. LeBlanc, Y.Q. Liu, A. Sontag, D. Swanson, H. Yuh, W. Zhu and the NSTX Research Team

    2010-05-19

    The low aspect ratio, low magnetic field, and wide range of plasma beta of NSTX plasmas provide new insight into the origins and effects of magnetic field errors. An extensive array of magnetic sensors has been used to analyze error fields, to measure error field amplification, and to detect resistive wall modes in real time. The measured normalized error-field threshold for the onset of locked modes shows a linear scaling with plasma density, a weak to inverse dependence on toroidal field, and a positive scaling with magnetic shear. These results extrapolate to a favorable error field threshold for ITER. For these low-beta locked-mode plasmas, perturbed equilibrium calculations find that the plasma response must be included to explain the empirically determined optimal correction of NSTX error fields. In high-beta NSTX plasmas exceeding the n=1 no-wall stability limit where the RWM is stabilized by plasma rotation, active suppression of n=1 amplified error fields and the correction of recently discovered intrinsic n=3 error fields have led to sustained high rotation and record durations free of low-frequency core MHD activity. For sustained rotational stabilization of the n=1 RWM, both the rotation threshold and magnitude of the amplification are important. At fixed normalized dissipation, kinetic damping models predict rotation thresholds for RWM stabilization to scale nearly linearly with particle orbit frequency. Studies for NSTX find that orbit frequencies computed in general geometry can deviate significantly from those computed in the high aspect ratio and circular plasma cross-section limit, and these differences can strongly influence the predicted RWM stability. The measured and predicted RWM stability is found to be very sensitive to the E B rotation profile near the plasma edge, and the measured critical rotation for the RWM is approximately a factor of two higher than predicted by the MARS-F code using the semi-kinetic damping model.

  3. Recent progress toward an advanced spherical torus operating point in NSTX

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    S. P. Gerhardt; Gates, D. A.; Kaye, S.; Maingi, R.; Menard, J. E.; Sabbagh, S. A.; Soukhanovskii, V.; Bell, M. G.; Bell, R. E.; Canik, J. M.; et al

    2011-05-13

    Progress in the development of integrated advanced ST plasma scenarios in NSTX (Ono et al., 2000 Nucl. Fusion 40 557) is reported. Recent high-performance plasmas in NSTX following lithium coating of the plasma facing surfaces have achieved higher elongation and lower internal inductance than previously. Analysis of the thermal confinement in these lithiumized discharges shows a stronger plasma current and weaker toroidal field dependence than in previous ST confinement scaling studies; the ITER-98(y, 2) scaling expression describes these scenarios reasonably well. Analysis during periods free of MHD activity has shown that the reconstructed current profile can be understood as themore » sum of pressure driven, inductive and neutral beam driven currents, without requiring any anomalous fast-ion transport. Non-inductive fractions of 65–70%, and βP > 2, have been achieved at lower plasma current. Some of these low-inductance discharges have a significantly reduced no-wall βN limit, and often have βN at or near the with-wall limit. Coupled m/n = 1/1 + 2/1 kink/tearing modes can limit the sustained β values when rapidly growing ideal modes are avoided. A βN controller has been commissioned and utilized in sustaining high-performance plasmas. 'Snowflake' divertors compatible with high-performance plasmas have been developed. Scenarios with significantly larger aspect ratios have also been developed, in support of next-step ST devices. Furthermore, these NSTX plasmas have many characteristics required for next-step ST devices.« less

  4. Physics of forced magnetic reconnection in coaxial helicity injection experiments in National Spherical Torus Experiment

    SciTech Connect (OSTI)

    Ebrahimi, F.; Bhattacharjee, A.; Raman, R.; Hooper, E. B.; Sovinec, C. R.

    2014-05-15

    We numerically examine the physics of fast flux closure in transient coaxial helicity injection (CHI) experiments in National Spherical Torus Experiment (NSTX). By performing resistive Magnetohydrodynamics (MHD) simulations with poloidal injector coil currents held constant in time, we find that closed flux surfaces are formed through forced magnetic reconnection. Through a local Sweet-Parker type reconnection with an elongated current sheet in the injector region, closed flux surfaces expand in the NSTX global domain. Simulations demonstrate outflows approaching poloidally Alfvénic flows and reconnection times consistent with the Sweet-Parker model. Critical requirements for magnetic reconnection and flux closure are studied in detail. These primary effects, which are magnetic diffusivity, injector flux, injector flux footprint width, and rate of injector voltage reduction, are simulated for transient CHI experiments. The relevant time scales for effective reconnection are τ{sub V}<τ{sub rec}≈τ{sub A}√(S)(1+Pm){sup 1/4}<τ{sub R}, where τ{sub V} is the time for the injector voltage reduction, τ{sub A} is the poloidal Alfvén transit time, τ{sub R} is the global resistive diffusion time, and Pm and S are Prandtl and Lundquist numbers.

  5. The Impact Of Lithium Wall Coatings On NSTX Discharges And The Engineering Of The Lithium Tokamak eXperiment (LTX)

    SciTech Connect (OSTI)

    R. Majeski, H. Kugel and R. Kaita

    2010-03-18

    Recent experiments on the National Spherical Torus eXperiment (NSTX) have shown the benefits of solid lithium coatings on carbon PFC's to diverted plasma performance, in both Land H- mode confinement regimes. Better particle control, with decreased inductive flux consumption, and increased electron temperature, ion temperature, energy confinement time, and DD neutron rate were observed. Successive increases in lithium coverage resulted in the complete suppression of ELM activity in H-mode discharges. A liquid lithium divertor (LLD), which will employ the porous molybdenum surface developed for the LTX shell, is being installed on NSTX for the 2010 run period, and will provide comparisons between liquid walls in the Lithium Tokamak eXperiment (LTX) and liquid divertor targets in NSTX. LTX, which recently began operations at the Princeton Plasma Physics Laboratory, is the world's first confinement experiment with full liquid metal plasma-facing components (PFCs). All materials and construction techniques in LTX are compatible with liquid lithium. LTX employs an inner, heated, stainless steel-faced liner or shell, which will be lithium-coated. In order to ensure that lithium adheres to the shell, it is designed to operate at up to 500 - 600 oC to promote wetting of the stainless by the lithium, providing the first hot wall in a tokamak to operate at reactor-relevant temperatures. The engineering of LTX will be discussed.

  6. NSTX Electrical Power Systems

    SciTech Connect (OSTI)

    A. Ilic; E. Baker; R. Hatcher; S. Ramakrishnan; et al

    1999-12-16

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physic Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The design of the NSTX electrical power system was tailored to suit the available infrastructure and electrical equipment on site. Components were analyzed to verify their suitability for use in NSTX. The total number of circuits and the location of the NSTX device drove the major changes in the Power system hardware. The NSTX has eleven (11) circuits to be fed as compared to the basic three power loops for TFTR. This required changes in cabling to insure that each cable tray system has the positive and negative leg of cables in the same tray. Also additional power cabling had to be installed to the new location. The hardware had to b e modified to address the need for eleven power loops. Power converters had to be reconnected and controlled in anti-parallel mode for the Ohmic heating and two of the Poloidal Field circuits. The circuit for the Coaxial Helicity Injection (CHI) System had to be carefully developed to meet this special application. Additional Protection devices were designed and installed for the magnet coils and the CHI. The thrust was to making the changes in the most cost-effective manner without compromising technical requirements. This paper describes the changes and addition to the Electrical Power System components for the NSTX magnet systems.

  7. Imaging x-ray crystal spectrometers for the National Spherical Torus Experiment

    SciTech Connect (OSTI)

    Bitter, M.; Hill, K.W.; Roquemore, A.L.; Beiersdorfer, P.; Kahn, S.M.; Elliott, S.R.; Fraenkel, B.

    1999-01-01

    A new type of high-resolution x-ray imaging crystal spectrometers is described for implementation on the National Spherical Torus Experiment (NSTX) to provide spatially and temporally resolved data on the ion temperature, toroidal and poloidal plasma rotation, electron temperature, impurity ion-charge state distributions, and impurity transport. These data are derived from observations of the satellite spectra of heliumlike argon, ArthinspXVII, which is the dominant charge state for electron temperatures in the range from 0.4 to 3.0 keV and which is accessible to NSTX. Experiments at the Torus Experiment for Technology Oriented Research (TEXTOR) demonstrate that a throughput of 2{times}10{sup 5}thinspphotons/s (corresponding to the count-rate limit of the present detectors) can easily be obtained with small, nonperturbing argon gas puffs of less than 1{times}10{sup {minus}3}thinspTorrthinspscr(l)/s, so that it is possible to record spectra with a small statistical error and a good time resolution (typically 50 and 1 ms in some cases). Employing a novel design, which is based on the imaging properties of spherically bent crystals, the spectrometers will provide spectrally and spatially resolved images of the plasma for all experimental conditions, which include ohmically heated discharges as well as plasmas with rf and neutral-beam heating. The conceptual design, experimental results on the focusing properties, and relevant spectral data from TEXTOR are presented. {copyright} {ital 1999 American Institute of Physics.}

  8. Control System for the NSTX Lithium Pellet Injector

    SciTech Connect (OSTI)

    P. Sichta; J. Dong; R. Gernhardt; G. Gettelfinger; H. Kugel

    2003-10-27

    The Lithium Pellet Injector (LPI) is being developed for the National Spherical Torus Experiment (NSTX). The LPI will inject ''pellets'' of various composition into the plasma in order to study wall conditioning, edge impurity transport, liquid limiter simulations, and other areas of research. The control system for the NSTX LPI has incorporated widely used advanced technologies, such as LabVIEW and PCI bus I/O boards, to create a low-cost control system which is fully integrated into the NSTX computing environment. This paper will present the hardware and software design of the computer control system for the LPI.

  9. Electron Bernstein Wave Research on NSTX and CDX-U

    SciTech Connect (OSTI)

    G. Taylor; P.C. Efthimion; B. Jones; G.L. Bell; A. Bers; T.S. Bigelow; M.D. Carter; R.W. Harvey; A.K. Ram; D.A. Rasmussen; A.P. Smirnov; J.B. Wilgen; J.R. Wilson

    2003-06-10

    Studies of thermally emitted electron Bernstein waves (EBWs) on CDX-U and NSTX, via mode conversion (MC) to electromagnetic radiation, support the use of EBWs to measure the Te profile and provide local electron heating and current drive (CD) in overdense spherical torus plasmas. An X-mode antenna with radially adjustable limiters successfully controlled EBW MC on CDX-U and enhanced MC efficiency to {approx} 100%. So far the X-mode MC efficiency on NSTX has been increased by a similar technique to 40-50% and future experiments are focused on achieving * 80% MC. MC efficiencies on both machines agree well with theoretical predictions. Ray tracing and Fokker-Planck modeling for NSTX equilibria are being conducted to support the design of a 3 MW, 15 GHz EBW heating and CD system for NSTX to assist non-inductive plasma startup, current ramp up, and to provide local electron heating and CD in high beta NSTX plasmas.

  10. NSTX-U: Builders and Users | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSTX-U: Builders and Users Constructing the National Spherical Torus Experiment Upgrade took years of detailed planning and oversight. The team in charge brought decades of experience to the task, working together to make the $94 million upgrade a reality. Publication File: PDF icon Builders and Users Publication Type: Fact Sheets

  11. Using LGI experiments to achieve better understanding of pedestal-edge coupling in NSTX-U

    SciTech Connect (OSTI)

    Wang, Zhehui

    2015-02-23

    PowerPoint presentation. Latest advances in granule or dust injection technologies, fast and high-resolution imaging, together with micro-/nano-structured material fabrication, provide new opportunities to examine plasma-material interaction (PMI) in magnetic fusion environment. Some of our previous work in these areas is summarized. The upcoming LGI experiments in NSTX-U will shed new light on granular matter transport in the pedestal-edge region. In addition to particle control, these results can also be used for code validation and achieving better understanding of pedestal-edge coupling in fusion plasmas in both NSTX-U and others.

  12. Quasi-linear gyrokinetic predictions of the Coriolis momentum pinch in National Spherical Torus Experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guttenfelder, W.; Kaye, S. M.; Ren, Y.; Solomon, W.; Bell, R. E.; Candy, J.; Gerhardt, S. P.; LeBlanc, B. P.; Yuh, H.

    2016-05-11

    This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio National Spherical Torus Experiment (NSTX) H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostaticballooning modes are also unstable, which are effective at transporting energy, particles, and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes inmore » a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at a finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. Lastly, as the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.« less

  13. Comparison of Gas Puff Imaging Data in NSTX with the DEGAS 2 Simulation

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Comparison of Gas Puff Imaging Data in NSTX with the DEGAS 2 Simulation Citation Details In-Document Search Title: Comparison of Gas Puff Imaging Data in NSTX with the DEGAS 2 Simulation Gas-Pu -Imaging (GPI) is a two dimensional diagnostic which measures the edge Dα light emission from a neutral Dα gas puff near the outer mid- plane of the National Spherical Torus Experiment (NSTX). DEGAS 2 is a 3-D Monte Carlo code used to model neutral transport and

  14. A dual wavelength imaging system for plasma-surface interaction studies on the National Spherical Torus Experiment Upgrade

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scotti, F.; Soukhanovskii, V. A.

    2015-12-09

    A two-channel spectral imaging system based on a charge injection device radiation-hardened intensified camera was built for studies of plasma-surface interactions on divertor plasma facing components in the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak. By means of commercially available mechanically referenced optical components, the two-wavelength setup images the light from the plasma, relayed by a fiber optic bundle, at two different wavelengths side-by-side on the same detector. Remotely controlled filter wheels are used for narrow band pass and neutral density filters on each optical path allowing for simultaneous imaging of emission at wavelengths differing in brightness up to 3more » orders of magnitude. Applications on NSTX-U will include the measurement of impurity influxes in the lower divertor strike point region and the imaging of plasma-material interaction on the head of the surface analysis probe MAPP (Material Analysis and Particle Probe). Furthermore, the diagnostic setup and initial results from its application on the lithium tokamak experiment are presented.« less

  15. Direct X-B mode conversion for high-? national spherical torus experiment in nonlinear regime

    SciTech Connect (OSTI)

    Ali Asgarian, M. E-mail: maa@msu.edu; Parvazian, A.; Abbasi, M.; Verboncoeur, J. P.

    2014-09-15

    Electron Bernstein wave (EBW) can be effective for heating and driving currents in spherical tokamak plasmas. Power can be coupled to EBW via mode conversion of the extraordinary (X) mode wave. The most common and successful approach to study the conditions for optimized mode conversion to EBW was evaluated analytically and numerically using a cold plasma model and an approximate kinetic model. The major drawback in using radio frequency waves was the lack of continuous wave sources at very high frequencies (above the electron plasma frequency), which has been addressed. A future milestone is to approach high power regime, where the nonlinear effects become significant, exceeding the limits of validity for present linear theory. Therefore, one appropriate tool would be particle in cell (PIC) simulation. The PIC method retains most of the nonlinear physics without approximations. In this work, we study the direct X-B mode conversion process stages using PIC method for incident wave frequency f{sub 0}?=?15?GHz, and maximum amplitude E{sub 0}?=?10{sup 5?}V/m in the national spherical torus experiment (NSTX). The modelling shows a considerable reduction in X-B mode conversion efficiency, C{sub modelling}?=?0.43, due to the presence of nonlinearities. Comparison of system properties to the linear state reveals predominant nonlinear effects; EBW wavelength and group velocity in comparison with linear regime exhibit an increment around ?36% and 17%, respectively.

  16. Analysis Efforts Supporting NSTX Upgrades

    SciTech Connect (OSTI)

    H.Zhang, P. Titus, P. Rogoff, A.Zolfaghari, D. Mangra, M. Smith

    2010-11-29

    The National Spherical Torus Experiment (NSTX) is a low aspect ratio, spherical torus (ST) configuration device which is located at Princeton Plasma Physics Laboratory (PPPL) This device is presently being updated to enhance its physics by doubling the TF field to 1 Tesla and increasing the plasma current to 2 Mega-amperes. The upgrades include a replacement of the centerstack and addition of a second neutral beam. The upgrade analyses have two missions. The first is to support design of new components, principally the centerstack, the second is to qualify existing NSTX components for higher loads, which will increase by a factor of four. Cost efficiency was a design goal for new equipment qualification, and reanalysis of the existing components. Showing that older components can sustain the increased loads has been a challenging effort in which designs had to be developed that would limit loading on weaker components, and would minimize the extent of modifications needed. Two areas representing this effort have been chosen to describe in more details: analysis of the current distribution in the new TF inner legs, and, second, analysis of the out-of-plane support of the existing TF outer legs.

  17. Visible imaging of edge turbulence in NSTX

    SciTech Connect (OSTI)

    S. Zweben; R. Maqueda; K. Hill; D. Johnson; et al

    2000-06-13

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radical heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of gas puff imaging to locally illuminate the edge density turbulence.

  18. Power Supply Changes for NSTX Resistive Wall Mode Coils

    SciTech Connect (OSTI)

    Ramakrishnan, S S.

    2013-06-28

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physics Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. Prior to 2004, the NSTX power system was feeding twelve (12) circuits in the machine. In 2004 the Resistive Wall Mode (RWM) Coils were installed on the machine to correct error fields. There are six of these coils installed around the machine in the mid-plane. Since these coils need fast and accurate controls, a Switching Power Amplifier (SPA) with three sub-units was procured, installed and commissioned along with other power loop components. Two RWM Coils were connected in series and fed from one SPA sub-unit. After the initial RWM campaign, operational requirements evolved such that each of the RWM coils now requires separate power and control. Hence a second SPA with three sub-units has been procured and installed. The second unit is of improved design and has the controls and power components completely isolated. The existing thyristor rectifier is used as DC Link to both of the Switching Power Amplifiers. The controls for the RWM are integrated into the overall computer control of the DC Power systems for NSTX. This paper describes the design changes in the RWM Power system for NSTX.

  19. Associate Research Physicist (Post-doc) - NSTX-U | Princeton Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab (Post-doc) - NSTX-U Department: Experimental Supervisor(s): Dr. Luis F. Delgado-Aparicio Staff: RM 1 Requisition Number: 1600451 The Princeton University Plasma Physics Laboratory (PPPL) seeks to fill a post-doctoral research physicist position at the National Spherical Torus Experiment Upgrade (NSTX-U) in Princeton, NJ. For tokamaks and future facilities to operate safely in a high-pressure long-pulse discharge, it is imperative to address key issues associated with impurity sources,

  20. NSTX Diagnostics for Fusion Plasma Science Studies

    SciTech Connect (OSTI)

    R. Kaita; D. Johnson; L. Roquemore; M. Bitter; F. Levinton; F. Paoletti; D. Stutman; and the NSTX Team

    2001-07-05

    This paper will discuss how plasma science issues are addressed by the diagnostics for the National Spherical Torus Experiment (NSTX), the newest large-scale machine in the magnetic confinement fusion (MCF) program. The development of new schemes for plasma confinement involves the interplay of experimental results and theoretical interpretations. A fundamental requirement, for example, is a determination of the equilibria for these configurations. For MCF, this is well established in the solutions of the Grad-Shafranov equation. While it is simple to state its basis in the balance between the kinetic and magnetic pressures, what they are as functions of space and time are often not easy to obtain. Quantities like the plasma pressure and current density are not directly measurable. They are derived from data that are themselves complex products of more basic parameters. The same difficulties apply to the understanding of plasma instabilities. Not only are the needs for spatial and temporal resolution more stringent, but the wave parameters which characterize the instabilities are difficult to resolve. We will show how solutions to the problems of diagnostic design on NSTX, and the physics insight the data analysis provides, benefits both NSTX and the broader scientific community.

  1. Lithium Pellet Injector Development for NSTX

    SciTech Connect (OSTI)

    G. Gettelfinger; J. Dong; R. Gernhardt; H. Kugel; P. Sichta; J. Timberlake

    2003-12-04

    A pellet injector suitable for the injection of lithium and other low-Z pellets of varying mass into plasmas at precise velocities from 5 to 500 m/s is being developed for use on NSTX (National Spherical Torus Experiment). The ability to inject low-Z impurities will significantly expand NSTX experimental capability for a broad range of diagnostic and operational applications. The architecture employs a pellet-carrying cartridge propelled through a guide tube by deuterium gas. Abrupt deceleration of the cartridge at the end of the guide tube results in the pellet continuing along its intended path, thereby giving controlled reproducible velocities for a variety of pellets materials and a reduced gas load to the torus. The planned injector assembly has four hundred guide tubes contained in a rotating magazine with eight tubes provided for injection into plasmas. A PC-based control system is being developed as well and will be described elsewhere in these Proceedings. The development path and mechanical performance of the injector will be described.

  2. Measured improvement of global magnetohydrodynamic mode stability at high-beta, and in reduced collisionality spherical torus plasmas

    SciTech Connect (OSTI)

    Berkery, J. W.; Sabbagh, S. A.; Balbaky, A.; Bell, R. E.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B. P.; Manickam, J.; Menard, J. E.; Podest, M.; Betti, R.

    2014-05-15

    Global mode stability is studied in high-? National Spherical Torus Experiment (NSTX) plasmas to avoid disruptions. Dedicated experiments in NSTX using low frequency active magnetohydrodynamic spectroscopy of applied rotating n?=?1 magnetic fields revealed key dependencies of stability on plasma parameters. Observations from previous NSTX resistive wall mode (RWM) active control experiments and the wider NSTX disruption database indicated that the highest ?{sub N} plasmas were not the least stable. Significantly, here, stability was measured to increase at ?{sub N}?l{sub i} higher than the point where disruptions were found. This favorable behavior is shown to correlate with kinetic stability rotational resonances, and an experimentally determined range of measured E??B frequency with improved stability is identified. Stable plasmas appear to benefit further from reduced collisionality, in agreement with expectation from kinetic RWM stabilization theory, but low collisionality plasmas are also susceptible to sudden instability when kinetic profiles change.

  3. Electron Bernstein Wave Research on CDX-U and NSTX

    SciTech Connect (OSTI)

    Taylor, G.; Efthimion, P.C.; Jones, B.; Hosea, J.C.; Kaita, R.; LeBlanc, B.P.; Majeski, R.; Munsat, T.; Phillips, C.K.; Spaleta, J.; Wilson, J.R.; Rasmussen, D.; Bell, G.; Bigelow, T.S.; Carter, M.D.; Swain, D.W.; Wilgen, J.B.; Ram, A.K.; Bers, A.; Harvey, R.W.; and Forest, C.B.

    2001-05-18

    Mode-converted electron Bernstein waves (EBWs) potentially allow the measurement of local electron temperature (Te) and the implementation of local heating and current drive in spherical torus (ST) devices, which are not directly accessible to low harmonic electron cyclotron waves. This paper reports on the measurement of X-mode radiation mode-converted from EBWs observed normal to the magnetic field on the midplane of the Current Drive Experiment-Upgrade (CDX-U) and the National Spherical Torus Experiment (NSTX) spherical torus plasmas. The radiation temperature of the EBW emission was compared to Te measured by Thomson scattering and Langmuir probes. EBW mode-conversion efficiencies of over 20% were measured on both CDX-U and NSTX. Sudden increases of mode-conversion efficiency, of over a factor of three, were observed at high-confinement-mode transitions on NSTX, when the measured edge density profile steepened. The EBW mode-conversion efficiency was found to depend on the density gradient at the mode-conversion layer in the plasma scrape-off, consistent with theoretical predictions. The EBW emission source was determined by a perturbation technique to be localized at the electron cyclotron resonance layer and was successfully used for radial transport studies. Recently, a new in-vessel antenna and Langmuir probe array were installed on CDX-U to better characterize and enhance the EBW mode-conversion process. The probe incorporates a local adjustable limiter to control and maximize the mode-conversion efficiency in front of the antenna by modifying the density profile in the plasma scrape-off where fundamental EBW mode conversion occurs. Initial results show that the mode-conversion efficiency can be increased to {approximately}100% when the local limiter is inserted near the mode-conversion layer. Plans for future EBW research, including EBW heating and current-drive studies, are discussed.

  4. Progress Towards High Performance, Steady-state Spherical Torus

    SciTech Connect (OSTI)

    M. Ono; M.G. Bell; R.E. Bell; T. Bigelow; M. Bitter; W. Blanchard; J. Boedo; C. Bourdelle; C. Bush; W. Choe; J. Chrzanowski; D.S. Darrow; S.J. Diem; R. Doerner; P.C. Efthimion; J.R. Ferron; R.J. Fonck; E.D. Fredrickson; G.D. Garstka; D.A. Gates; T. Gray; L.R. Grisham; W. Heidbrink; K.W. Hill; D. Hoffman; T.R. Jarboe; D.W. Johnson; R. Kaita; S.M. Kaye; C. Kessel; J.H. Kim; M.W. Kissick; S. Kubota; H.W. Kugel; B.P. LeBlanc; K. Lee; S.G. Lee; B.T. Lewicki; S. Luckhardt; R. Maingi; R. Majeski; J. Manickam; R. Maqueda; T.K. Mau; E. Mazzucato; S.S. Medley; J. Menard; D. Mueller; B.A. Nelson; C. Neumeyer; N. Nishino; C.N. Ostrander; D. Pacella; F. Paoletti; H.K. Park; W. Park; S.F. Paul; Y.-K. M. Peng; C.K. Phillips; R. Pinsker; P.H. Probert; S. Ramakrishnan; R. Raman; M. Redi; A.L. Roquemore; A. Rosenberg; P.M. Ryan; S.A. Sabbagh; M. Schaffer; R.J. Schooff; R. Seraydarian; C.H. Skinner; A.C. Sontag; V. Soukhanovskii; J. Spaleta; T. Stevenson; D. Stutman; D.W. Swain; E. Synakowski; Y. Takase; X. Tang; G. Taylor; J. Timberlake; K.L. Tritz; E.A. Unterberg; A. Von Halle; J. Wilgen; M. Williams; J.R. Wilson; X. Xu; S.J. Zweben; R. Akers; R.E. Barry; P. Beiersdorfer; J.M. Bialek; B. Blagojevic; P.T. Bonoli; M.D. Carter; W. Davis; B. Deng; L. Dudek; J. Egedal; R. Ellis; M. Finkenthal; J. Foley; E. Fredd; A. Glasser; T. Gibney; M. Gilmore; R.J. Goldston; R.E. Hatcher; R.J. Hawryluk; W. Houlberg; R. Harvey; S.C. Jardin; J.C. Hosea; H. Ji; M. Kalish; J. Lowrance; L.L. Lao; F.M. Levinton; N.C. Luhmann; R. Marsala; D. Mastravito; M.M. Menon; O. Mitarai; M. Nagata; G. Oliaro; R. Parsells; T. Peebles; B. Peneflor; D. Piglowski; G.D. Porter; A.K. Ram; M. Rensink; G. Rewoldt; P. Roney; K. Shaing; S. Shiraiwa; P. Sichta; D. Stotler; B.C. Stratton; R. Vero; W.R. Wampler; G.A. Wurden

    2003-10-02

    Research on the Spherical Torus (or Spherical Tokamak) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect-ratio devices, such as the conventional tokamak. The Spherical Tours (ST) experiments are being conducted in various U.S. research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium-size ST research facilities: Pegasus at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the U.S., an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high-performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (B), noninductive sustainment, ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values bT of up to 35% with the near unity central betaT have been obtained. NSTX will be exploring advanced regimes where bT up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for noninductive sustainment in NSTX is the high beta-poloidal regime, where discharges with a high noninductive fraction ({approx}60% bootstrap current + neutral-beam-injected current drive) were sustained over the resistive skin time. Research on radio-frequency-based heating and current drive utilizing HHFW (High Harmonic Fast Wave) and EBW (Electron Bernstein Wave) is also pursued on NSTX, Pegasus, and CDX-U. For noninductive start-up, the Coaxial Helicity Injection (CHI), developed in HIT/HIT-II, has been

  5. Addressing the challenges of plasma-surface interactions in NSTX-U*

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kaita, Robert; Abrams, Tyler; Jaworski, Michael; Lucia, Matthew; Nichols, Jacob H.; Skinner, Charles H.; Stotler, Daren; Allain, Jean Paul; Bedoya, Felipe

    2015-04-01

    The importance of conditioning plasma-facing components (PFCs) has long been recognized as a critical element in obtaining high-performance plasmas in magnetic confinement devices. Lithium coatings, for example, have been used for decades for conditioning PFCs. Since the initial studies on the Tokamak Fusion Test Reactor, experiments on devices with different aspect ratios and magnetic geometries like the National Spherical Torus Experiment (NSTX) continue to show the relationship between lithium PFCs and good confinement and stability. While such results are promising, their empirical nature do not reflect the detailed relationship between PFCs and the dynamic conditions that occur in the tokamakmore » environment. A first step developing an understanding such complexity will be taken in the upgrade to NSTX (NSTX-U) that is nearing completion. New measurement capabilities include the Materials Analysis and Particle Probe (MAPP) for in situ surface analysis of samples exposed to tokamak plasmas. The OEDGE suite of codes, for example, will provide a new way to model the underlying mechanisms for such material migration in NSTX-U. This will lead to a better understanding of how plasma-facing surfaces evolve during a shot, and how the composition of the plasma facing surface influences the discharge performance we observe. This paper will provide an overview of these capabilities, and highlight their importance for NSTX-U plans to transition from carbon to high-Z PFCs.« less

  6. Addressing the challenges of plasma-surface interactions in NSTX-U*

    SciTech Connect (OSTI)

    Kaita, Robert; Abrams, Tyler; Jaworski, Michael; Lucia, Matthew; Nichols, Jacob H.; Skinner, Charles H.; Stotler, Daren; Allain, Jean Paul; Bedoya, Felipe

    2015-04-01

    The importance of conditioning plasma-facing components (PFCs) has long been recognized as a critical element in obtaining high-performance plasmas in magnetic confinement devices. Lithium coatings, for example, have been used for decades for conditioning PFCs. Since the initial studies on the Tokamak Fusion Test Reactor, experiments on devices with different aspect ratios and magnetic geometries like the National Spherical Torus Experiment (NSTX) continue to show the relationship between lithium PFCs and good confinement and stability. While such results are promising, their empirical nature do not reflect the detailed relationship between PFCs and the dynamic conditions that occur in the tokamak environment. A first step developing an understanding such complexity will be taken in the upgrade to NSTX (NSTX-U) that is nearing completion. New measurement capabilities include the Materials Analysis and Particle Probe (MAPP) for in situ surface analysis of samples exposed to tokamak plasmas. The OEDGE suite of codes, for example, will provide a new way to model the underlying mechanisms for such material migration in NSTX-U. This will lead to a better understanding of how plasma-facing surfaces evolve during a shot, and how the composition of the plasma facing surface influences the discharge performance we observe. This paper will provide an overview of these capabilities, and highlight their importance for NSTX-U plans to transition from carbon to high-Z PFCs.

  7. Fast Camera Movies of NSTX Plasmas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maqueda, Ricky; Wurden, Glenn

    The National Spherical Torus Experiment (NSTX) is an innovative magnetic fusion device that is being used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which nuclear fusion will occur under the appropriate conditions of temperature, density, and confinement in a magnetic field. Fusion is the energy source of the Sun and all the stars. Scientists believe it can provide an inexhaustible, safe, and environmentally attractive source. NSTX was constructed by the Princeton Plasma Physics Laboratory (PPPL) in conjunction with Oak Ridge National Laboratory, Columbia University, and the University of Washington Seattle. The original TIF images recorded by the KODAK digital camera (i.e., "raw data") are available, using the contact information given on the same web page that provides access to these fast camera movies. MPEG clips are organized under the following headings: • Gas Puff Imaging (GPI) diagnostic • GPI experiments • H-modes (longer) • H-modes (short) • Coaxial Helicity Injection experiments More than 100 MPEGS dating back to 1999 are available for public access.

  8. Liquid Lithium Divertor and Scrape-Off-Layer Interactions on the National Spherical Torus Experiment: 2010 ? 2013 Progress Report

    SciTech Connect (OSTI)

    2013-08-27

    The implementation of the liquid Lithium Divertor (LLD) in NSTX presented a unique opportunity in plasma-material interactions studies. A high density Langmuir Probe (HDLP) array utilizing a dense pack of triple Langmuir probes was built at PPPL and the electronics designed and built by UIUC. It was shown that the HDLP array could be used to characterize the modification of the EEDF during lithium experiments on NSTX as well as characterize the transient particle loads during lithium experiments as a means to study ELMs. With NSTX being upgraded and a new divertor being installed, the HDLP array will not be used in NSTX-U. However UIUC is currently helping to develop two new systems for depositing lithium into NSTX-U, a Liquid Lithium Pellet Dripper (LLPD) for use with the granular injector for ELM mitigation and control studies as well as an Upward-Facing Lithium Evaporator (U-LITER) based on a flash evaporation system using an electron beam. Currently UIUC has Daniel Andruczyk Stationed at PPPL and is developing these systems as well as being involved in preparing the Materials Analysis Particle Probe (MAPP) for use in LTX and NSTX-U. To date the MAPP preparations have been completed. New sample holders were designed by UIUC?s Research Engineer at PPPL and manufactured at PPPL and installed. MAPP is currently being used on LTX to do calibration and initial studies. The LLPD has demonstrated that it can produce pellets. There is still some adjustments needed to control the frequency and particle size. Equipment for the U-LITER has arrived and initial test are being made of the electron beam and design of the U-LITER in progress. It is expected to have these ready for the first run campaign of NSTX-U.

  9. The Role of Lithium Conditioning in Achieving High Performance, Long Pulse H-mode Discharges in the NSTX and EAST Devices

    SciTech Connect (OSTI)

    Maingi, Rajesh; Mansfield, D. K.; Gong, X. Z.; Sun, Z.; Bell, M. G.

    2014-10-01

    In this paper, the role of lithium wall conditioning on the achievement of high performance, long pulse discharges in the National Spherical Torus Experiment (NSTX) and the Experimental Advanced Superconducting Tokamak (EAST) is documented. Common observations include recycling reduction and elimination of ELMs. In NSTX, lithium conditioning typically resulted in ELM-free operation with impurity accumulation, which was ameliorated e.g. with pulsed 3D fields to trigger controlled ELMs. Active lithium conditioning in EAST discharges has overcome this problem, producing an ELM-free Hmode with controlled density and impurities.

  10. An overview of recent physics results from NSTX

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kaye, S. M.; Abrams, T.; Ahn, J. -W.; Allain, J. P.; Andre, R.; Andruczyk, D.; Barchfeld, R.; Battaglia, D.; Bhattacharjee, A.; Bedoya, F.; et al

    2015-03-27

    Currently, the National Spherical Torus Experiment (NSTX) is being upgraded to operate at twice the toroidal field and plasma current (up to 1 T and 2 MA), with a second, more tangentially aimed neutral beam (NB) for current and rotation control, allowing for pulse lengths up to 5 s. Recent NSTX physics analyses have addressed topics that will allow NSTX-Upgrade to achieve the research goals critical to a Fusion Nuclear Science Facility. These include producing stable, 100% non-inductive operation in high-performance plasmas, assessing plasma-material interface (PMI) solutions to handle the high heat loads expected in the next-step devices and exploringmore » the unique spherical torus (ST) parameter regimes to advance predictive capability. Non-inductive operation and current profile control in NSTX-U will be facilitated by co-axial helicity injection (CHI) as well as radio frequency (RF) and NB heating. CHI studies using NIMROD indicate that the reconnection process is consistent with the 2D Sweet-Parker theory. Full-wave AORSA simulations show that RF power losses in the scrape-off layer (SOL) increase significantly for both NSTX and NSTX-U when the launched waves propagate in the SOL. Moreover, Toroidal Alfven eigenmode avalanches and higher frequency Alfven eigenmodes can affect NB-driven current through energy loss and redistribution of fast ions. The inclusion of rotation and kinetic resonances, which depend on collisionality, is necessary for predicting experimental stability thresholds of fast growing ideal wall and resistive wall modes. Neutral beams and neoclassical toroidal viscosity generated from applied 3D fields can be used as actuators to produce rotation profiles optimized for global stability. DEGAS-2 has been used to study the dependence of gas penetration on SOL temperatures and densities for the MGI system being implemented on the Upgrade for disruption mitigation. PMI studies have focused on the effect of ELMs and 3D fields on plasma

  11. NSTX: Facility/Research Highlights and Near Term Facility Plans

    SciTech Connect (OSTI)

    M. Ono

    2008-11-19

    The National Spherical Torus Experiment (NSTX) is a collaborative mega-ampere-class spherical torus research facility with high power heating and current drive systems and the state-of-the-art comprehensive diagnostics. For the 2008 experimental campaign, the high harmonic fast wave (HHFW) heating efficiency in deuterium improved significantly with lithium evaporation and produced a record central Te of 5 keV. The HHFW heating of NBI-heated discharges was also demonstrated for the first time with lithium application. The EBW emission in H-mode was also improved dramatically with lithium which was shown to be attributable to reduced edge collisional absorption. Newly installed FIDA energetic particle diagnostic measured significant transport of energetic ions associated with TAE avalanche as well as n=1 kink activities. A full 75 channel poloidal CHERS system is now operational yielding tantalizing initial results. In the near term, major upgrade activities include a liquid-lithium divertor target to achieve lower collisionality regime, the HHFW antenna upgrades to double its power handling capability in H-mode, and a beam-emission spectroscopy diagnostic to extend the localized turbulence measurements toward the ion gyro-radius scale from the present concentration on the electron gyro-radius scale. For the longer term, a new center stack to significantly expand the plasma operating parameters is planned along with a second NBI system to double the NBI heating and CD power and provide current profile control. These upgrades will enable NSTX to explore fully non-inductive operations over a much expanded plasma parameter space in terms of higher plasma temperature and lower collisionality, thereby significantly reducing the physics parameter gap between the present NSTX and the projected next-step ST experiments.

  12. Simulations towards the achievement of non-inductive current ramp-up and sustainment in the National Spherical Torus Experiment Upgrade

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Poli, F. M.; Andre, R. G.; Bertelli, N.; Gerhardt, S. P.; Mueller, D.; Taylor, G.

    2015-10-30

    One of the goals of the National Spherical Torus Experiment Upgrade (NSTX-U) (Menard et al 2012 Nucl. Fusion 52 083015) is the demonstration of fully non-inductive start-up, current ramp-up and sustainment. This work discusses predictive simulations where the available heating and current drive systems are combined to maximize the non-inductive current and minimize the solenoidal contribution. Radio-frequency waves at harmonics higher than the ion cyclotron resonance (high-harmonic fast waves (HHFW)) and neutral beam injection are used to ramp the plasma current non-inductively starting from an initial Ohmic plasma. An interesting synergy is observed in the simulations between the HHFW andmore » electron cyclotron (EC) wave heating. Furthermore, time-dependent simulations indicate that, depending on the phasing of the HHFW antenna, EC wave heating can significantly increase the effectiveness of the radio-frequency power, by heating the electrons and increasing the current drive efficiency, thus relaxing the requirements on the level of HHFW power that needs to be absorbed in the core plasma to drive the same amount of fast-wave current.« less

  13. Simulations towards the achievement of non-inductive current ramp-up and sustainment in the National Spherical Torus Experiment Upgrade

    SciTech Connect (OSTI)

    Poli, F. M.; Andre, R. G.; Bertelli, N.; Gerhardt, S. P.; Mueller, D.; Taylor, G.

    2015-10-30

    One of the goals of the National Spherical Torus Experiment Upgrade (NSTX-U) (Menard et al 2012 Nucl. Fusion 52 083015) is the demonstration of fully non-inductive start-up, current ramp-up and sustainment. This work discusses predictive simulations where the available heating and current drive systems are combined to maximize the non-inductive current and minimize the solenoidal contribution. Radio-frequency waves at harmonics higher than the ion cyclotron resonance (high-harmonic fast waves (HHFW)) and neutral beam injection are used to ramp the plasma current non-inductively starting from an initial Ohmic plasma. An interesting synergy is observed in the simulations between the HHFW and electron cyclotron (EC) wave heating. Furthermore, time-dependent simulations indicate that, depending on the phasing of the HHFW antenna, EC wave heating can significantly increase the effectiveness of the radio-frequency power, by heating the electrons and increasing the current drive efficiency, thus relaxing the requirements on the level of HHFW power that needs to be absorbed in the core plasma to drive the same amount of fast-wave current.

  14. The contribution of radio-frequency rectification to field-aligned losses of high-harmonic fast wave power to the divertor in the National Spherical Torus eXperiment

    SciTech Connect (OSTI)

    Perkins, R. J. Hosea, J. C.; Jaworski, M. A.; Diallo, A.; Bell, R. E.; Bertelli, N.; Gerhardt, S.; Kramer, G. J.; LeBlanc, B. P.; Phillips, C. K.; Podestà, M.; Roquemore, L.; Taylor, G.; Wilson, J. R.; Ahn, J.-W.; Gray, T. K.; McLean, A.; Sabbagh, S.

    2015-04-15

    The National Spherical Torus eXperiment (NSTX) can exhibit a major loss of high-harmonic fast wave (HHFW) power along scrape-off layer (SOL) field lines passing in front of the antenna, resulting in bright and hot spirals on both the upper and lower divertor regions. One possible mechanism for this loss is RF sheaths forming at the divertors. Here, we demonstrate that swept-voltage Langmuir probe characteristics for probes under the spiral are shifted relative to those not under the spiral in a manner consistent with RF rectification. We estimate both the magnitude of the RF voltage across the sheath and the sheath heat flux transmission coefficient in the presence of the RF field. Although precise comparison between the computed heat flux and infrared (IR) thermography cannot yet be made, the computed heat deposition compares favorably with the projections from IR camera measurements. The RF sheath losses are significant and contribute substantially to the total SOL losses of HHFW power to the divertor for the cases studied. This work will guide future experimentation on NSTX-U, where a wide-angle IR camera and a dedicated set of coaxial Langmuir probes for measuring the RF sheath voltage directly will quantify the contribution of RF sheath rectification to the heat deposition from the SOL to the divertor.

  15. Status and Plans for the National Spherical Torus Experimental Research Facility

    SciTech Connect (OSTI)

    M. Ono; M.G. Bell; R.E. Bell; J.M. Bialek; T. Bigelow; M. Bitter; plus 148 additional authors

    2005-07-27

    An overview of the research capabilities and the future plans on the MA-class National Spherical Torus Experiment (NSTX) at Princeton is presented. NSTX research is exploring the scientific benefits of modifying the field line structure from that in more conventional aspect ratio devices, such as the tokamak. The relevant scientific issues pursued on NSTX include energy confinement, MHD stability at high beta, non-inductive sustainment, solenoid-free start-up, and power and particle handling. In support of the NSTX research goal, research tools are being developed by the NSTX team. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a high beta Demo device based on the ST, are being considered. For these, it is essential to develop high performance (high beta and high confinement), steady-state (non-inductively driven) ST operational scenarios and an efficient solenoid-free start-up concept. We will also briefly describe the Next-Step-ST (NSST) device being designed to address these issues in fusion-relevant plasma conditions.

  16. PPPL intern creates software for snapshot of plasma in NSTX-U | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab PPPL intern creates software for snapshot of plasma in NSTX-U By Jeanne Jackson DeVoe September 2, 2016 Tweet Widget Google Plus One Share on Facebook Max Wallace, a Community College intern from Laney College in Oakland, California, shows fellow intern Priya Jaglal a poster on his research during a student poster session at PPPL on Aug. 10. Wallace developed software to allow scientists to get a quick snapshot of experiments on the National Spherical Torus

  17. Advanced ST Plasma Scenario Simulations for NSTX

    SciTech Connect (OSTI)

    C.E. Kessel; E.J. Synakowski; D.A. Gates; R.W. Harvey; S.M. Kaye; T.K. Mau; J. Menard; C.K. Phillips; G. Taylor; R. Wilson; the NSTX Research Team

    2004-10-28

    Integrated scenario simulations are done for NSTX [National Spherical Torus Experiment] that address four primary milestones for developing advanced ST configurations: high {beta} and high {beta}{sub N} inductive discharges to study all aspects of ST physics in the high-beta regime; non-inductively sustained discharges for flattop times greater than the skin time to study the various current-drive techniques; non-inductively sustained discharges at high {beta} for flattop times much greater than a skin time which provides the integrated advanced ST target for NSTX; and non-solenoidal start-up and plasma current ramp-up. The simulations done here use the Tokamak Simulation Code (TSC) and are based on a discharge 109070. TRANSP analysis of the discharge provided the thermal diffusivities for electrons and ions, the neutral-beam (NB) deposition profile, and other characteristics. CURRAY is used to calculate the High Harmonic Fast Wave (HHFW) heating depositions and current drive. GENRAY/CQL3D is used to establish the heating and CD [current drive] deposition profiles for electron Bernstein waves (EBW). Analysis of the ideal-MHD stability is done with JSOLVER, BALMSC, and PEST2. The simulations indicate that the integrated advanced ST plasma is reachable, obtaining stable plasmas with {beta} {approx} 40% at {beta}{sub N}'s of 7.7-9, I{sub P} = 1.0 MA, and B{sub T} = 0.35 T. The plasma is 100% non-inductive and has a flattop of 4 skin times. The resulting global energy confinement corresponds to a multiplier of H{sub 98(y,2)} = 1.5. The simulations have demonstrated the importance of HHFW heating and CD, EBW off-axis CD, strong plasma shaping, density control, and early heating/H-mode transition for producing and optimizing these plasma configurations.

  18. Flow and shear behavior in the edge and scrape-off layer of L-mode plasmas in National Spherical Torus Experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sechrest, Y.; Munsat, T.; D’Ippolito, D. A.; Maqueda, R. J.; Myra, J. R.; Russell, D.; Zweben, S. J.

    2011-01-01

    Fluctuations in the edge and scrape-off layer (SOL) of L-mode plasmas in the National Spherical Torus Experiment (NSTX) as observed by the gas puff imaging (GPI) diagnostic are studied. Calculation of local, time resolved velocity maps using the Hybrid Optical Flow and Pattern Matching Velocimetry (HOP-V) code enables analysis of turbulent flow and shear behavior. Periodic reversals in the direction of the poloidal flow near the separatrix are observed. Also, poloidal velocities and their radial shearing rate are found to be well correlated with the fraction of Dα light contained in the SOL, which acts as a measure of turbulentmore » bursts. The spectra of GPI intensity and poloidal velocity both have a strong feature near 3 kHz, which appears to correspond with turbulent bursts. This mode exhibits a poloidal structure with poloidal wavenumber of 7.7 m-1 for GPI intensity and 3.4 m-1 for poloidal velocity, and the poloidal velocity fluctuations near 3 kHz remain coherent over length scales in excess of the turbulent scales. Furthermore, recent SOL Turbulence (SOLT) simulations find a parameter regime that exhibits periodic bursty transport and shares many qualitative similarities with the experimental data. Strong correlations between the shearing rate and the turbulent bursts are observed for time periods of ~ 2 ms, but the relationship is complicated by several factors. Finally, measurements of the radial profiles of the Reynolds shear stresses are reported. These radial profiles exhibit many similarities for several shots, and a region with positive radial gradient is seen to be coincident with local flow shear.« less

  19. Analysis of NSTX Upgrade OH Magnet and Center Stack

    SciTech Connect (OSTI)

    A. Zolfaghari, P. Titus, J. Chrzanowski, A. Salehzadeh, F. Dahlgren

    2010-11-30

    The new ohmic heating (OH) coil and center stack for the National Spherical Torus Experiment (NSTX) upgrade are required to meet cooling and structural requirements for operation at the enhanced 1 Tesla toroidal field and 2 MA plasma current. The OH coil is designed to be cooled in the time between discharges by water flowing in the center of the coil conductor. We performed resistive heating and thermal hydraulic analyses to optimize coolant channel size to keep the coil temperature below 100 C and meet the required 20 minute cooling time. Coupled electromagnetic, thermal and structural FEA analyses were performed to determine if the OH coil meets the requirements of the structural design criteria. Structural response of the OH coil to its self-field and the field from other coils was analyzed. A model was developed to analyze the thermal and electromagnetic interaction of centerstack components such as the OH coil, TF inner legs and the Bellville washer preload mechanism. Torsional loads from the TF interaction with the OH and poloidal fields are transferred through the TF flag extensions via a torque transfer coupling to the rest of the tokamak structure. A 3D FEA analysis was performed to qualify this design. The results of these analyses, which will be presented in this paper, have led to the design of OH coil and centerstack components that meet the requirements of the NSTX-upgrade structural design criteria.

  20. Solenoid-free Plasma Startup in NSTX using Coaxial Helicity Injection

    SciTech Connect (OSTI)

    Roger Raman; Thomas R. Jarboe; Michael G. Bell; Dennis Mueller; Brian A. Nelson; Benoit LeBlanc; Charles Bush; Masayoshi Nagata; Ted Biewer

    2005-01-03

    The favorable properties of the Spherical Torus (ST) arise from its very small aspect ratio. However, small aspect ratio devices have very restricted space for a substantial central solenoid. Thus methods for initiating the plasma current without relying on induction from a central solenoid are essential for the viability of the ST concept. Coaxial Helicity Injection (CHI) is a promising candidate for solenoid-free plasma startup in a ST. Recent experiments on the HIT-II ST at the University of Washington, have demonstrated the capability of a new method, referred to as transient CHI, to produce a high quality, closed-flux equilibrium that has then been coupled to induction, with a reduced requirement for transformer flux [R. Raman, T.R. Jarboe, B.A. Nelson, et al., Phys. Rev. Lett. 90 (February 2003) 075005-1]. An initial test of this method on the National Spherical Torus Experiment (NSTX) has produced about 140 kA of toroidal current. Modifications are now underway to improve capability for transient CHI in NSTX.

  1. Recent Progress on Spherical Torus Research

    SciTech Connect (OSTI)

    Ono, Masayuki; Kaita, Robert

    2014-01-01

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.

  2. Fast response of electron-scale turbulence to auxiliary heating cessation in National Spherical Torus Experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ren, Y.; Wang, W. X.; LeBlanc, B. P.; Guttenfelder, W.; Kaye, S. M.; Ethier, S.; Mazzucato, E.; Lee, K. C.; Domier, C. W.; Bell, R.; et al

    2015-11-03

    In this letter, we report the first observation of the fast response of electron-scale turbulence to auxiliary heating cessation in National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)]. The observation was made in a set of RF-heated L-mode plasmas with toroidal magnetic field of 0.55 T and plasma current of 300 kA. It is observed that electron-scale turbulence spectral power (measured with a high-k collective microwave scattering system) decreases significantly following fast cessation of RF heating that occurs in less than 200 μs. The large drop in the turbulence spectral power has a short time delaymore » of about 1–2 ms relative to the RF cessation and happens on a time scale of 0.5–1 ms, much smaller than the energy confinement time of about 10 ms. Power balance analysis shows a factor of about 2 decrease in electron thermal diffusivity after the sudden drop of turbulence spectral power. Measured small changes in equilibrium profiles across the RF cessation are unlikely able to explain this sudden reduction in the measured turbulence and decrease in electron thermal transport, supported by local linear stability analysis and both local and global nonlinear gyrokinetic simulations. Furthermore, the observations imply that nonlocal flux-driven mechanism may be important for the observed turbulence and electron thermal transport.« less

  3. Characterization of the plasma current quench during disruptions in the National Spherical Torus Experiment

    SciTech Connect (OSTI)

    Gerhardt, S.P., Menard, J.E., and the NSTX Research Team

    2008-12-17

    A detailed analysis of the plasma current quench in the National Spherical Torus Experiment [M.Ono, et al Nuclear Fusion 40, 557 (2000)] is presented. The fastest current quenches are fit better by a linear waveform than an exponential one. Area-normalized current quench times down to .4 msec/m2 have been observed, compared to the minimum of 1.7 msec/m2 recommendation based on conventional aspect ratio tokamaks; as noted in previous ITPA studies, the difference can be explained by the reduced self-inductance at low aspect ratio and high-elongation. The maximum instantaneous dIp/dt is often many times larger than the mean quench rate, and the plasma current before the disruption is often substantially less than the flat-top value. The poloidal field time-derivative during the disruption, which is directly responsible for driving eddy currents, has been recorded at various locations around the vessel. The Ip quench rate, plasma motion, and magnetic geometry all play important roles in determining the rate of poloidal field change.

  4. Techniques for the measurement of disruption halo currents in the National Spherical Torus Experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gerhardt, S. P.; Fredrickson, E.; Guttadora, L.; Kaita, R.; Kugel, H.; Menard, J.; Takahashi, H.

    2011-10-06

    This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments. The measurements are based on three techniques: (i) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (ii) the direct measurement of halo currents into specially instrument tiles, and (iii) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peakingmore » factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems is shown.« less

  5. Snowflake divertor configuration studies for NSTX-Upgrade

    SciTech Connect (OSTI)

    Soukhanovskii, V A

    2011-11-12

    Snowflake divertor experiments in NSTX provide basis for PMI development toward NSTX-Upgrade. Snowflake configuration formation was followed by radiative detachment. Significant reduction of steady-state divertor heat flux observed in snowflake divertor. Impulsive heat loads due to Type I ELMs are partially mitigated in snowflake divertor. Magnetic control of snowflake divertor configuration is being developed. Plasma material interface development is critical for NSTX-U success. Four divertor coils should enable flexibility in boundary shaping and control in NSTX-U. Snowflake divertor experiments in NSTX provide good basis for PMI development in NSTX-Upgrade. FY 2009-2010 snowflake divertor experiments in NSTX: (1) Helped understand control of magnetic properties; (2) Core H-mode confinement unchanged; (3) Core and edge carbon concentration reduced; and (4) Divertor heat flux significantly reduced - (a) Steady-state reduction due to geometry and radiative detachment, (b) Encouraging results for transient heat flux handling, (c) Combined with impurity-seeded radiative divertor. Outlook for snowflake divertor in NSTX-Upgrade: (1) 2D fluid modeling of snowflake divertor properties scaling - (a) Edge and divertor transport, radiation, detachment threshold, (b) Compatibility with cryo-pump and lithium conditioning; (2) Magnetic control development; and (3) PFC development - PFC alignment and PFC material choice.

  6. Dependence of Recycling and Edge Profiles on Lithium Evaporation in High Triangularity, High Performance NSTX H-mode Discharges

    SciTech Connect (OSTI)

    Maingi, R; Osborne, T H; Bell, M G; Bell, R E; Boyle, D P; Canik, J M; Dialla, A; Kaita, R; Kaye, S M; Kugel, H W; LeBlanc, B P; Sabbagh, S A; Skinner, C H; Soukhanovskii, V A

    2014-04-01

    In this paper, the effects of a pre-discharge lithium evaporation scan on highly shaped discharges in the National Spherical Torus Experiment (NSTX) are documented. Lithium wall conditioning ('dose') was routinely applied onto graphite plasma facing components between discharges in NSTX, partly to reduce recycling. Reduced D[sub]α emission from the lower and upper divertor and center stack was observed, as well as reduced midplane neutral pressure; the magnitude of reduction increased with the pre-discharge lithium dose. Improved energy confinement, both raw τ[sub]E and H-factor normalized to scalings, with increasing lithium dose was also observed. At the highest doses, we also observed elimination of edge-localized modes. The midplane edge plasma profiles were dramatically altered, comparable to lithium dose scans at lower shaping, where the strike point was farther from the lithium deposition centroid. This indicates that the benefits of lithium conditioning should apply to the highly shaped plasmas planned in NSTX-U.

  7. Energy Secretary Moniz Launches the Nation's Newest Fusion Experiment at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL | Princeton Plasma Physics Lab Energy Secretary Moniz Launches the Nation's Newest Fusion Experiment at PPPL National Spherical Torus Experiment - Upgrade will help determine the course of fusion energy for years to come By Larry Bernard May 20, 2016 Tweet Widget Google Plus One Share on Facebook U.S. Energy Secretary Ernest Moniz, center, in the NSTX-U test cell. From left: PPPL physicist Stefan Gerhardt; Princeton University President Christopher L. Eisgruber; Princeton University

  8. Ion heating during magnetic relaxation in the helicity injected torus-II experiment

    SciTech Connect (OSTI)

    O'Neill, R.G.; Redd, A.J.; Hamp, W.T.; Smith, R.J.; Jarboe, T.R.

    2005-12-15

    Ion doppler spectroscopy (IDS) is applied to the helicity injected torus (HIT-II) spherical torus to measure impurity ion temperature and flows. [A. J. Redd et al., Phys. Plasmas 9, 2006 (2002)] The IDS instrument employs a 16-channel photomultiplier and can track temperature and velocity continuously through a discharge. Data for the coaxial helicity injection (CHI), transformer, and combined current drive configurations are presented. Ion temperatures for transformer-driven discharges are typically equal to or somewhat lower than electron temperatures measured by Thomson scattering. Internal reconnection events in transformer-driven discharges cause rapid ion heating. The CHI discharges exhibit anomalously high ion temperatures >250 eV, which are an order of magnitude higher than Thomson measurements, indicating ion heating through magnetic relaxation. The CHI discharges that exhibit current and poloidal flux buildup after bubble burst show sustained ion heating during current drive.

  9. NSTX-U Advances in Real-Time C++11 on Linux

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Erickson, Keith G.

    2015-08-14

    Programming languages like C and Ada combined with proprietary embedded operating systems have dominated the real-time application space for decades. The new C++11standard includes native, language-level support for concurrency, a required feature for any nontrivial event-oriented real-time software. Threads, Locks, and Atomics now exist to provide the necessary tools to build the structures that make up the foundation of a complex real-time system. The National Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton Plasma Physics Laboratory (PPPL) is breaking new ground with the language as applied to the needs of fusion devices. A new Digital Coil Protection System (DCPS) willmore » serve as the main protection mechanism for the magnetic coils, and it is written entirely in C++11 running on Concurrent Computer Corporation's real-time operating system, RedHawk Linux. It runs over 600 algorithms in a 5 kHz control loop that determine whether or not to shut down operations before physical damage occurs. To accomplish this, NSTX-U engineers developed software tools that do not currently exist elsewhere, including real-time atomic synchronization, real-time containers, and a real-time logging framework. Together with a recent (and carefully configured) version of the GCC compiler, these tools enable data acquisition, processing, and output using a conventional operating system to meet a hard real-time deadline (that is, missing one periodic is a failure) of 200 microseconds.« less

  10. NSTX-U Advances in Real-Time C++11 on Linux

    SciTech Connect (OSTI)

    Erickson, Keith G.

    2015-08-14

    Programming languages like C and Ada combined with proprietary embedded operating systems have dominated the real-time application space for decades. The new C++11standard includes native, language-level support for concurrency, a required feature for any nontrivial event-oriented real-time software. Threads, Locks, and Atomics now exist to provide the necessary tools to build the structures that make up the foundation of a complex real-time system. The National Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton Plasma Physics Laboratory (PPPL) is breaking new ground with the language as applied to the needs of fusion devices. A new Digital Coil Protection System (DCPS) will serve as the main protection mechanism for the magnetic coils, and it is written entirely in C++11 running on Concurrent Computer Corporation's real-time operating system, RedHawk Linux. It runs over 600 algorithms in a 5 kHz control loop that determine whether or not to shut down operations before physical damage occurs. To accomplish this, NSTX-U engineers developed software tools that do not currently exist elsewhere, including real-time atomic synchronization, real-time containers, and a real-time logging framework. Together with a recent (and carefully configured) version of the GCC compiler, these tools enable data acquisition, processing, and output using a conventional operating system to meet a hard real-time deadline (that is, missing one periodic is a failure) of 200 microseconds.

  11. NSTX-U Advances in Real-Time C++11 on Linux

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Erickson, Keith G.

    2015-08-14

    Programming languages like C and Ada combined with proprietary embedded operating systems have dominated the real-time application space for decades. The new C++11standard includes native, language-level support for concurrency, a required feature for any nontrivial event-oriented real-time software. Threads, Locks, and Atomics now exist to provide the necessary tools to build the structures that make up the foundation of a complex real-time system. The National Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton Plasma Physics Laboratory (PPPL) is breaking new ground with the language as applied to the needs of fusion devices. A new Digital Coil Protection System (DCPS) willmore »serve as the main protection mechanism for the magnetic coils, and it is written entirely in C++11 running on Concurrent Computer Corporation's real-time operating system, RedHawk Linux. It runs over 600 algorithms in a 5 kHz control loop that determine whether or not to shut down operations before physical damage occurs. To accomplish this, NSTX-U engineers developed software tools that do not currently exist elsewhere, including real-time atomic synchronization, real-time containers, and a real-time logging framework. Together with a recent (and carefully configured) version of the GCC compiler, these tools enable data acquisition, processing, and output using a conventional operating system to meet a hard real-time deadline (that is, missing one periodic is a failure) of 200 microseconds.« less

  12. Local Effects of Biased Electrodes in the Divertor of NSTX

    Office of Scientific and Technical Information (OSTI)

    ... Evidence for convective cell formation induced by non-axisymmetric biased electrodes was previously obtained in JFT-2M 11, CASTOR 15, and MAST 18. A prior experiment on NSTX ...

  13. Electron Bernstein wave-bootstrap current synergy in the National Spherical Torus Experiment

    SciTech Connect (OSTI)

    Harvey, R.W.; Taylor, G.

    2005-05-15

    Current driven by electron Bernstein waves (EBW) and by the electron bootstrap effect are calculated separately and concurrently with a kinetic code to determine the degree of synergy between them. A target {beta}=40% NSTX [M. Ono, S. Kaye, M. Peng et al., Proceedings of the 17th IAEA Fusion Energy Conference, edited by M. Spak (IAEA, Vienna, Austria, 1999), Vol. 3, p. 1135] plasma is examined. A simple bootstrap model in the collisional-quasilinear CQL3D Fokker-Planck code (National Technical Information Service document No. DE93002962) is used in these studies: the transiting electron distributions are connected in velocity space at the trapped-passing boundary to trapped-electron distributions that are displaced radially by a half-banana-width outwards/inwards for the co-passing/counter-passing regions. This model agrees well with standard bootstrap current calculations over the outer 60% of the plasma radius. Relatively small synergy net bootstrap current is obtained for EBW power up to 4 MW. Locally, bootstrap current density increases in proportion to increased plasma pressure, and this effect can significantly affect the radial profile of driven current.

  14. NSTX power supply real time controller

    SciTech Connect (OSTI)

    Neumeyer, C.; Hatcher, R.; Marsala, R.; Ramakrishnan, S.

    2000-01-06

    The NSTX is a new national facility for the study of plasma confinement, heating, and current drive in a low aspect ratio, spherical torus (ST) configuration. The ST configuration is an alternate magnetic confinement concept which is characterized by high beta (ratio plasma pressure to magnetic field pressure) and low toroidal field compared to conventional tokamaks, and could provide a pathway to the realization of a practical fusion power source. The NSTX depends on a real time, high speed, synchronous, and deterministic control system acting on a system of thyristor rectifier power supplies to (1) establish the initial magnetic field configuration; (2) initiate plasma within the vacuum vessel; (3) inductively drive plasma current; and (4) control plasma position and shape. For the initial ``day 0'' 1st plasma operations (Feb. 1999), the system was limited to closed loop proportional-integral current control of the power supplies based on preprogrammed reference waveforms. For the ``day 1'' phase of operations beginning Sept. 1999 the loop has been closed on plasma current and position. This paper focuses on the Power Supply Real Time Controller (PSRTC).

  15. Novel Use of Water Soluble "Aquapour" As A Temporary Spacer During Coil Winding For The NSTX-U Centerstack

    SciTech Connect (OSTI)

    Mardenfeld, Michael

    2013-07-01

    A major facility upgrade to the National Spherical Torus eXperiment (NSTX-U) is currently underway at Princeton Plasma Physics Laboratory (PPPL). A key component of NSTX-U is the fabrication of a new, higher field centerstack (CS). In order to simultaneously provide robust joints between the inner and outer legs of the Toroidal Field Coils (TF) and minimize radial build, the NSTX-U CS design requires that the Ohmic Heating solenoid (OH) be wound directly on the inner TF bundle. To protect the OH against thermal expansion stress during scenarios where the inner TF bundle is hot but the OH is relatively cool, the completed CS will have a 0.100 inch annular gap between the outer diameter of the TF bundle and the inner diameter of the OH solenoid. "Aquapour", a proprietary material produced by the Advanced Ceramics Manufacturing Company will be used during manufacture to produce this gap. After the TF bundle is vacuum pressure impregnated and cured, a cylindrical "clam shell" mold will be assembled around it, and a slurry of powdered Aquapour and water will be pumped into the annular space between the mold and TF bundle. Subsequent baking will turn the Aquapour solid, and a protective layer of wet lay-up fiberglass and resin will be added. The OH solenoid will be wound directly on this wet lay-up shell. After vacuum pressure impregnation of the OH, the water soluble Aquapour will be washed away, leaving the required radial clearance between the TF and OH. This paper will describe prototyping and testing of this process, and plans for use on the actual CS fabrication.

  16. Evaluation of thermal helium beam and line-ratio fast diagnostic on the National Spherical Torus Experiment-Upgrade

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Munoz Burgos, Jorge M.; Agostini, Matteo; Scarin, Paolo; Stotler, Daren P.; Unterberg, Ezekial A.; Loch, Stuart D.; Schmitz, Oliver; Tritz, Kevin; Stutman, Dan

    2015-05-06

    A 1-D kinetic collisional radiative model (CRM) with state-of-the-art atomic data is developed and employed to simulate line emission to evaluate the Thermal Helium Beam (THB) diagnostic on NSTX-U. This diagnostic is currently in operation on RFX-mod, and it is proposed to be installed on NSTX-U. The THB system uses the intensity ratios of neutral helium lines 667.8, 706.5, and 728.1 nm to derive electron temperature (eV ) and density (cm–3) profiles. The purpose of the present analysis is to evaluate the applications of this diagnostic for determining fast (~4 μs) electron temperature and density radial profiles on the scrape-offmore » layer (SOL) and edge regions of NSTX-U that are needed in turbulence studies. The diagnostic is limited by the level of detection of the 728.1 nm line, which is the weakest of the three. In conclusion, this study will also aid in future design of a similar 2-D diagnostic systems on the divertor.« less

  17. NSTX-U Control System Upgrades

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Erickson, K. G.; Gates, D. A.; Gerhardt, S. P.; Lawson, J. E.; Mozulay, R.; Sichta, P.; Tchilinguirian, G. J.

    2014-06-01

    The National Spherical Tokamak Experiment (NSTX) is undergoing a wealth of upgrades (NSTX-U). These upgrades, especially including an elongated pulse length, require broad changes to the control system that has served NSTX well. A new fiber serial Front Panel Data Port input and output (I/O) stream will supersede the aging copper parallel version. Driver support for the new I/O and cyber security concerns require updating the operating system from Redhat Enterprise Linux (RHEL) v4 to RedHawk (based on RHEL) v6. While the basic control system continues to use the General Atomics Plasma Control System (GA PCS), the effort to forwardmore » port the entire software package to run under 64-bit Linux instead of 32-bit Linux included PCS modifications subsequently shared with GA and other PCS users. Software updates focused on three key areas: (1) code modernization through coding standards (C99/C11), (2) code portability and maintainability through use of the GA PCS code generator, and (3) support of 64-bit platforms. Central to the control system upgrade is the use of a complete real time (RT) Linux platform provided by Concurrent Computer Corporation, consisting of a computer (iHawk), an operating system and drivers (RedHawk), and RT tools (NightStar). Strong vendor support coupled with an extensive RT toolset influenced this decision. The new real-time Linux platform, I/O, and software engineering will foster enhanced capability and performance for NSTX-U plasma control.« less

  18. Progress In Understanding The Enhanced Petestal H-mode In NSTX

    SciTech Connect (OSTI)

    Gerhardt, S. P.; Canik, J. M.; Maingi, R.; Battaglia, D.; Bell, R. E.; Guttenfelder, W.; LeBlanc, B. P.; Smith, D. R.; Yuh, H.; Sabbagh, S.

    2014-06-26

    ThIS paper describes the enhanced pedestal (EP) H-mode observed in the National Spherical Torus Experiment (NSTX). The defining characteristics of EP H-mode are given, namely i)transition after the L- to H-mode transition, ii) region of very steep ion temperature gradient, and iii) associated region of strong rotational shear. A newly observed long-pulse EP H-mode example shows quiescent behavior for as long as the heating and current drive sources are maintained. Cases are shown where the region of steep ion temperature gradient is located at the very edge, and cases where it is shifted up to 10 cm inward from the plasma edge; these cases are united by a common dependence of the ion temperature gradient on the toroidal rotation frequency shear. EP H-mode examples have been observed across a wide range of q95 and pedestal collisionality. No strong changes in the fluctuation amplitudes have been observed following the eP H-mode transition, and transport analysis indicates that the ion t hermal transport is comparable to or less than anticipated from a simple neoclassical transport model. Cases are shown where EP H-modes were reliably generated, through these low-q95 examples were difficult to sustain. A case where an externally triggered ELM precipitates the transition to EP H-mode is also shown, though an initial experiment designed to trigger EP-H-modes in this fashion was successful.

  19. Progress in understanding the enhanced pedestal H-mode in NSTX

    SciTech Connect (OSTI)

    Gerhardt, S. P.; Canik, J. M.; Maingi, R.; Battaglia, D.; Bell, R. E.; Guttenfelder, W.; LeBlanc, B. P.; Smith, D. R.; Yuh, H.; Sabbagh, S.

    2014-08-01

    The paper describes the enhanced pedestal (EP) H-mode observed in the National Spherical Torus Experiment (NSTX). The defining characteristics of EP H-mode are given, namely i)transition after the L- to H-mode transition, ii) region of very steep ion temperature gradient, and iii) associated region of strong rotational shear. A newly observed long-pulse EP H-mode example shows quiescent behavior for as long as the heating and current drive sources are maintained. Cases are shown where the region of steep ion temperature gradient is located at the very edge, and cases where it is shifted up to 10 cm inward from the plasma edge; these cases are united by a common dependence of the ion temperature gradient on the toroidal rotation frequency shear. EP H-mode examples have been observed across a wide range of q95 and pedestal collisionality. No strong changes in the fluctuation amplitudes have been observed following the eP H-mode transition, and transport analysis indicates that the ion t hermal transport is comparable to or less than anticipated from a simple neoclassical transport model. Cases are shown where EP H-modes were reliably generated, through these low-q95 examples were difficult to sustain. A case where an externally triggered ELM precipitates the transition to EP H-mode is also shown, though an initial experiment designed to trigger EP-H-modes in this fashion was successful.

  20. Progress in understanding the enhanced pedestal H-mode in NSTX

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gerhardt, S. P.; Canik, J. M.; Maingi, R.; Battaglia, D.; Bell, R. E.; Guttenfelder, W.; LeBlanc, B. P.; Smith, D. R.; Yuh, H.; Sabbagh, S.

    2014-08-01

    The paper describes the enhanced pedestal (EP) H-mode observed in the National Spherical Torus Experiment (NSTX). The defining characteristics of EP H-mode are given, namely i)transition after the L- to H-mode transition, ii) region of very steep ion temperature gradient, and iii) associated region of strong rotational shear. A newly observed long-pulse EP H-mode example shows quiescent behavior for as long as the heating and current drive sources are maintained. Cases are shown where the region of steep ion temperature gradient is located at the very edge, and cases where it is shifted up to 10 cm inward from themore » plasma edge; these cases are united by a common dependence of the ion temperature gradient on the toroidal rotation frequency shear. EP H-mode examples have been observed across a wide range of q95 and pedestal collisionality. No strong changes in the fluctuation amplitudes have been observed following the eP H-mode transition, and transport analysis indicates that the ion t hermal transport is comparable to or less than anticipated from a simple neoclassical transport model. Cases are shown where EP H-modes were reliably generated, through these low-q95 examples were difficult to sustain. A case where an externally triggered ELM precipitates the transition to EP H-mode is also shown, though an initial experiment designed to trigger EP-H-modes in this fashion was successful.« less

  1. Edge transport studies in the edge and scrape-off layer of the National Spherical Torus Experiment with Langmuir probes

    SciTech Connect (OSTI)

    Boedo, J. A. Rudakov, D. L.; Myra, J. R.; D'Ippolito, D. A.; Zweben, S.; Maingi, R.; Maqueda, R. J.; Bell, R.; Kugel, H.; Leblanc, B.; Roquemore, L. A.; Soukhanovskii, V. A.; Ahn, J. W.; Canik, J.; Crocker, N.

    2014-04-15

    Transport and turbulence profiles were directly evaluated using probes for the first time in the edge and scrape-off layer (SOL) of NSTX [Ono et al., Nucl. Fusion 40, 557 (2000)] in low (L) and high (H) confinement, low power (P{sub in}? 1.3?MW), beam-heated, lower single-null discharges. Radial turbulent particle fluxes peak near the last closed flux surface (LCFS) at ?410{sup 21}?s{sup ?1} in L-mode and are suppressed to ?0.210{sup 21}?s{sup ?1} in H mode (80%90% lower) mostly due to a reduction in density fluctuation amplitude and of the phase between density and radial velocity fluctuations. The radial particle fluxes are consistent with particle inventory based on SOLPS fluid modeling. A strong intermittent component is identified. Hot, dense plasma filaments 410?cm in diameter, appear first ?2?cm inside the LCFS at a rate of ?110{sup 21}?s{sup ?1} and leave that region with radial speeds of ?35?km/s, decaying as they travel through the SOL, while voids travel inward toward the core. Profiles of normalized fluctuations feature levels of 10% inside LCFS to ?150% at the LCFS and SOL. Once properly normalized, the intermittency in NSTX falls in similar electrostatic instability regimes as seen in other devices. The L-H transition causes a drop in the intermittent filaments velocity, amplitude and number in the SOL, resulting in reduced outward transport away from the edge and a less dense SOL.

  2. Dependence of various SOL widths on plasma current and density in NSTX H-mode plasmas

    SciTech Connect (OSTI)

    Ahn, J; Maingi, R; Boedo, J; Soukhanovskii, V A

    2009-02-12

    The dependence of various SOL widths on the line-averaged density ({ovr n}{sub e}) and plasma current (l{sub p}) for the quiescent H-mode plasmas with Type-V ELMs in the National Spherical Torus Experiment (NSTX) was investigated. It is found that the heat flux SOL width ({lambda}{sub q}), measured by the IR camera, is virtually insensitive to {ovr n}{sub e} and has a strong negative dependence on l{sub p}. This insensitivity of {lambda}{sub q} to {ovr n}{sub e} is consistent with the scaling law from JET H-mode plasmas that shows a very weak dependence on the upstream density. The electron temperature, ion saturation current density, electron density, and electron pressure decay lengths ({lambda}{sub Te}, {lambda}{sub jsat}, {lambda}{sub ne}, and {lambda}{sub pe}, respectively) measured by the probe showed that {lambda}{sub Te} and {lambda}{sub jsat} have strong negative dependence on l{sub p}, whereas {lambda}{sub ne} and {lambda}{sub pe} revealed only a little or no dependence. The dependence of {lambda}{sub Te} on l{sub p} is consistent with the scaling law in the literature while {lambda}{sub ne} and {lambda}{sub pe} dependence shows a different trend.

  3. Mitigation of Alfvenic activity by 3D magnetic perturbations on NSTX

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kramer, G. J.; Bortolon, A.; Ferraro, N. M.; Spong, D. A.; Crocker, N. A.; Darrow, D. S.; Fredrickson, E. D.; Kubota, S.; Park, J. -K.; Podesta, M.; et al

    2016-05-20

    Observations on the National Spherical Torus eXperiment (NSTX) indicate that externally applied non-axisymmetric magnetic perturbations (MP) can reduce the amplitude of Toroidal Alfv´en Eigenmodes (TAE) and Global Alf´ven Eigenmodes (GAE) in response to pulsed n=3 non-resonant fields. From full-orbit following Monte Carlo simulations with the 1- and 2-fluid resistive MHD plasma response to the magnetic perturbation included, it was found that in response to MP pulses the fast-ion losses increased and the fast-ion drive for the GAEs was reduced. The MP did not affect the fast-ion drive for the TAEs significantly but the Alfv´en continuum at the plasma edge wasmore » found to be altered due to the toroidal symmetry breaking which leads to coupling of different toroidal harmonics. The TAE gap was reduced at the edge creating enhanced continuum damping of the global TAEs, which is consistent with the observations. Furthermore, the results suggest that optimized non-axisymmetric MP might be exploited to control and mitigate Alfv´en instabilities by tailoring the fast-ion distribution function and/or continuum structure.« less

  4. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus

    SciTech Connect (OSTI)

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae; Hwang, Y. S.; Center for Advance Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744

    2014-02-15

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 120 120 mm{sup 3}), four helicon plasma injectors with annular permanent magnets and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.

  5. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Torus Experiment-Upgrade. Technicians inspect the new center stack that forms the heart of the NSTX-U. The new neutral beam box arrives in the NSTX-U test cell. The NSTX-U...

  6. NSTX Plasma Response to Lithium Coated Divertor

    SciTech Connect (OSTI)

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  7. NSTX-U Press Kit | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports NSTX-U Education Organization Contact Us Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports NSTX-U NSTX-U Press Kit Upgraded NSTX center stack. (photo by Elle Starkman/ PPPL Office of Communications The NSTX-U

  8. Lithium Wall Conditioning And Surface Dust Detection On NSTX

    SciTech Connect (OSTI)

    Skinner, C H; Bell, M G; Friesen, F.Q.L.; Heim, B; Jaworski, M A; Kugel, H; Maingi, R; Rais, B

    2011-05-23

    Lithium evaporation onto NSTX plasma facing components (PFC) has resulted in improved energy confinement, and reductions in the number and amplitude of edge-localized modes (ELMs) up to the point of complete ELM suppression. The associated PFC surface chemistry has been investigated with a novel plasma material interface probe connected to an in-vacuo surface analysis station. Analysis has demonstrated that binding of D atoms to the polycrystalline graphite material of the PFCs is fundamentally changed by lithium - in particular deuterium atoms become weakly bonded near lithium atoms themselves bound to either oxygen or the carbon from the underlying material. Surface dust inside NSTX has been detected in real-time using a highly sensitive electrostatic dust detector. In a separate experiment, electrostatic removal of dust via three concentric spiral-shaped electrodes covered by a dielectric and driven by a high voltage 3-phase waveform was evaluated for potential application to fusion reactors

  9. Lithium Surface Coatings for Improved Plasma Performance in NSTX

    SciTech Connect (OSTI)

    Kugel, H W; Ahn, J -W; Allain, J P; Bell, R; Boedo, J; Bush, C; Gates, D; Gray, T; Kaye, S; Kaita, R; LeBlanc, B; Maingi, R; Majeski, R; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, C H; Soukhanovskii, V; Stevenson, T; Timberlake, J; Wampler, W R

    2008-02-19

    NSTX high-power divertor plasma experiments have shown, for the first time, significant and frequent benefits from lithium coatings applied to plasma facing components. Lithium pellet injection on NSTX introduced lithium pellets with masses 1 to 5 mg via He discharges. Lithium coatings have also been applied with an oven that directed a collimated stream of lithium vapor toward the graphite tiles of the lower center stack and divertor. Lithium depositions from a few mg to 1 g have been applied between discharges. Benefits from the lithium coating were sometimes, but not always seen. These improvements sometimes included decreases plasma density, inductive flux consumption, and ELM frequency, and increases in electron temperature, ion temperature, energy confinement and periods of MHD quiescence. In addition, reductions in lower divertor D, C, and O luminosity were measured.

  10. Design and Construction of the NSTX Bakeout, Cooling and Vacuum Systems

    SciTech Connect (OSTI)

    L.E. Dudek; M. Kalish; R. Gernhardt; R.F. Parsells; W. Blanchard

    1999-11-01

    This paper will describe the design, construction and initial operation of the NSTX bakeout, water cooling and vacuum systems. The bakeout system is designed for two modes of operation. The first mode allows heating of the first wall components to 350 degrees C while the external vessel is cooled to 150 degrees C. The second mode cools the first wall to 150 degrees C and the external vessel to 50 degrees C. The system uses a low viscosity heat transfer oil which is capable of high temperature low pressure operation. The NSTX Torus Vacuum Pumping System (TVPS) is designed to achieve a base pressure of approximately 1x10 (superscript -8) Torr and to evacuate the plasma fuel gas loads in less than 5 minutes between discharges. The vacuum pumping system is capable of a pumping speed of approximately 3400 l/s for deuterium. The hardware consists of two turbo molecular pumps (TMPs) and a mechanical pump set consisting of a mechanical and a Roots blower pump. A PLC is used as the control system to provide remote monitoring, control and software interlock capability. The NSTX cooling water provides chilled, de ionized water for heat removal in the TF, OH and PF, power supplies, bus bar systems, and various diagnostics. The system provides flow monitoring via a PLC to prevent damage due to loss of flow.

  11. Simulation of Diffusive Lithium Evaporation Onto the NSTX Vessel Walls

    SciTech Connect (OSTI)

    Stotler, D. P.; Skinner, C. H.; Blanchard, W. R.; Krstic, P. S.; Kugel, H. W.; Schneider, H.; Zakharov, L. E.

    2010-12-09

    A model for simulating the diffusive evaporation of lithium into a helium filled NSTX vacuum vessel is described and validated against an initial set of deposition experiments. The DEGAS 2 based model consists of a three-dimensional representation of the vacuum vessel, the elastic scattering process, and a kinetic description of the evaporated atoms. Additional assumptions are required to account for deuterium out-gassing during the validation experiments. The model agrees with the data over a range of pressures to within the estimated uncertainties. Suggestions are made for more discriminating experiments that will lead to an improved model.

  12. MPI Multicore Torus Communication Benchmark

    Energy Science and Technology Software Center (OSTI)

    2008-02-05

    The MPI Multicore Torus Communications Benchmark (TorusTest) measues the aggegate bandwidth across all six links from/to any multicore node in a logical torus. It can run in wo modi: using a static or a random mapping of tasks to torus locations. The former can be used to achieve optimal mappings and aggregate bandwidths that can be achieved with varying node mappings.

  13. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  14. Effect of Lithium PFC Coatings on NSTX Density Control (Journal...

    Office of Scientific and Technical Information (OSTI)

    Effect of Lithium PFC Coatings on NSTX Density Control Citation Details In-Document Search Title: Effect of Lithium PFC Coatings on NSTX Density Control Lithium coatings on the ...

  15. Effect of Lithium PFC Coatings on NSTX Density Control (Journal...

    Office of Scientific and Technical Information (OSTI)

    Effect of Lithium PFC Coatings on NSTX Density Control Citation Details In-Document Search Title: Effect of Lithium PFC Coatings on NSTX Density Control You are accessing a ...

  16. Comparison of Gas Puff Imaging Data in NSTX with the DEGAS 2 Simulation

    SciTech Connect (OSTI)

    Cao, B.; Stotler, D. P.; Zweben, S. J.; Bell, M.; Diallo, A.; Leblanc, B.

    2012-10-27

    Gas-Puff-Imaging (GPI) is a two dimensional diagnostic which measures the edge D? light emission from a neutral D2 gas puff nears the outer mid-plane of NSTX. DEGAS 2 is a 3-D Monte Carlo code used to model neutral transport and atomic physics in tokamak plasmas. In this paper we compare measurements of the D? light emission obtained by GPI on NSTX with DEGAS 2 simulations of D? light emission for specific experiments. Both the simulated spatial distribution and absolute intensity of the D? light emission agree well with the experimental data obtained between ELMs in H-mode.

  17. Comparison of Gas Puff Imaging Data in NSTX with the DEGAS 2 Simulation

    SciTech Connect (OSTI)

    Cao, B.; Stotler, D. P.; Zweben, S. J.; Bell, M.; Diallo, A.; Leblanc, B.

    2012-11-08

    Gas-Puff-Imaging (GPI) is a two dimensional diagnostic which measures the edge D? light emission from a neutral D2 gas puff nears the outer mid-plane of NSTX. DEGAS 2 is a 3-D Monte Carlo code used to model neutral transport and atomic physics in tokamak plasmas. In this paper we compare measurements of the D? light emission obtained by GPI on NSTX with DEGAS 2 simulations of D? light emission for specific experiments. Both the simulated spatial distribution and absolute intensity of the D? light emission agree well with the experimental data obtained between ELMs in H-mode. __________________________________________________

  18. Intermittency in the Scrape-off Layer of the National Spherical Torus Experiment During H-mode Confinement

    SciTech Connect (OSTI)

    R.J. Maqueda, D.P. Stotler, S.J. Zweben, and the NSTX Team

    2010-11-22

    A gas puff imaging diagnostic is used in the National Spherical Tokamak Experiment [M. Ono, et al., Nucl. Fusion 40, 557 (2000)] to study the edge turbulence and intermittency present during H-mode discharges. In the case of low power Ohmic H-modes the suppression of turbulence/blobs is maintained through the duration of the (short lived) H-modes. Similar quiescent edges are seen during the early stages of H-modes created with the use of neutral beam injection. Nevertheless, as time progresses following the L-H transition, turbulence and blobs reappear although at a lower level than that typically seen during L-mode confinement. It is also seen that the time-averaged SOL emission profile broadens, as the power loss across the separatrix increases. These broad profiles are characterized by a large level of fluctuations and intermittent events.

  19. Implementation of BN Control in the National Spherical Torus...

    Office of Scientific and Technical Information (OSTI)

    the normalized B in the National Spherical Torus Experiment M. Ono, et al., Nuclear Fusion 40, 557 (2000). A PID operator is applied to the difference between the present value...

  20. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Peng, Yueng-Kay M.

    1989-04-04

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  1. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Peng, Yueng-Kay M.

    1989-01-01

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  2. Microsoft Word - 9-Menard.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2015 Scientific Opportunities and Challenges in the Upgraded National Spherical Torus Experiment* Dr. Jonathan Menard Program Director for the National Spherical Torus eXperiment - Upgrade (NSTX-U) Princeton Plasma Physics Laboratory Princeton, NJ ABSTRACT: Upon completion, the National Spherical Torus Experiment - Upgrade (NSTX-U) will be the most capable spherical torus (ST) facility in the world fusion program. A major mission of NSTX-U is to develop the physics and technology basis for

  3. Overview of Innovative PMI Research on NSTX-U and Associated PMI Facilities at PPPL

    SciTech Connect (OSTI)

    M. Ono, M. Jaworski, R. Kaita, C. N. Skinner, J.P. Allain, R. Maingi, F. Scotti, V.A. Soukhanovskii, and the NSTX-U Team

    2012-09-19

    Developing a reactor compatible divertor and managing the associated plasma material interaction (PMI) has been identified as a high priority research area for magnetic confinement fusion. Accordingly on NSTXU, the PMI research has received a strong emphasis. With ~ 15 MW of auxiliary heating power, NSTX-U will be able to test the PMI physics with the peak divertor plasma facing component (PFC) heat loads of up to 40-60 MW/m2 . To support the PMI research, a comprehensive set of PMI diagnostic tools are being implemented. The snow-flake configuration can produce exceptionally high divertor flux expansion of up to ~ 50. Combined with the radiative divertor concept, the snow-flake configuration has reduced the divertor heat flux by an order of magnitude in NSTX. Another area of active PMI investigation is the effect of divertor lithium coating (both in solid and liquid phases). The overall NSTX lithium PFC coating results suggest exciting opportunities for future magnetic confinement research including significant electron energy confinement improvements, Hmode power threshold reduction, the control of Edge Localized Modes (ELMs), and high heat flux handling. To support the NSTX-U/PPPL PMI research, there are also a number of associated PMI facilities implemented at PPPL/Princeton University including the Liquid Lithium R&D facility, Lithium Tokamak Experiment, and Laboratories for Materials Characterization and Surface Chemistry.

  4. NSTX Report on FES Joint Facilities Research Milestone 2010

    SciTech Connect (OSTI)

    Maingi, R.; Ahn, J- W.; Gray, T. K.; McLean, A. G.; Soukhanovskii, V. A.

    2011-03-24

    Annual Target: Conduct experiments on major fusion facilities to improve understanding of the heat transport in the tokamak scrape-off layer (SOL) plasma, strengthening the basis for projecting divertor conditions in ITER. The divertor heat flux profiles and plasma characteristics in the tokamak scrape-off layer will be measured in multiple devices to investigate the underlying thermal transport processes. The unique characteristics of C-Mod, DIII-D, and NSTX will enable collection of data over a broad range of SOL and divertor parameters (e.g., collisionality ?*, beta ?, parallel heat flux q||, and divertor geometry). Coordinated experiments using common analysis methods will generate a data set that will be compared with theory and simulation.

  5. Detection of Disruptions in the High-β Spherical Torus NSTX...

    Office of Scientific and Technical Information (OSTI)

    Publisher: Nuclear Fusion (January 2013) Research Org: Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States) Sponsoring Org: USDOE Office of Science (SC) ...

  6. Detection of Disruptions in the High-β Spherical Torus NSTX

    Office of Scientific and Technical Information (OSTI)

    ... This actual point total is based on that associated with a 1.5% false positive rate; see discussion below for motivation on the connections between point totals and false positive ...

  7. Numerical optimization of three-dimensional coils for NSTX-U

    SciTech Connect (OSTI)

    Lazerson, S. A.; Park, J. -K.; Logan, N.; Boozer, A.

    2015-09-03

    A tool for the calculation of optimal three-dimensional (3D) perturbative magnetic fields in tokamaks has been developed. The IPECOPT code builds upon the stellarator optimization code STELLOPT to allow for optimization of linear ideal magnetohydrodynamic perturbed equilibrium (IPEC). This tool has been applied to NSTX-U equilibria, addressing which fields are the most effective at driving NTV torques. The NTV torque calculation is performed by the PENT code. Optimization of the normal field spectrum shows that fields with n = 1 character can drive a large core torque. It is also shown that fields with n = 3 features are capable of driving edge torque and some core torque. Coil current optimization (using the planned in-vessel and existing RWM coils) on NSTX-U suggest the planned coils set is adequate for core and edge torque control. In conclusion, comparison between error field correction experiments on DIII-D and the optimizer show good agreement.

  8. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    The primary goal of ITER is achieving and maintaining a burning plasma with a peak output ... Torus Experiment (NSTX) at Princeton Plasma Physics Laboratory (PPPL) in Princeton, ...

  9. Kelsey Tresemer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tresemer has been the primary design engineer and cost account manager for plasma-facing components for the National Spherical Torus Experiment (NSTX), and currently serves as...

  10. Edge Turbulence Velocity Changes with Lithium Coating on NSTX

    SciTech Connect (OSTI)

    Cao, A.; Zweben, S. J.; Stotler, D. P.; Bell, M.; Diallo, A.; Kaye, S. M.; LeBlanc, B.

    2012-08-10

    Lithium coating improves energy confinement and eliminates edge localized modes in NSTX, but the mechanism of this improvement is not yet well understood. We used the gas-puff-imaging (GPI) diagnostic on NSTX to measure the changes in edge turbulence which occurred during a scan with variable lithium wall coating, in order to help understand the reason for the confinement improvement with lithium. There was a small increase in the edge turbulence poloidal velocity and a decrease in the poloidal velocity fluctuation level with increased lithium. The possible effect of varying edge neutral density on turbulence damping was evaluated for these cases in NSTX. __________________________________________________

  11. Solenoid-free Plasma Start-up in NSTX using Transient CHI

    SciTech Connect (OSTI)

    Raman, R; Jarboe, T; Nelson, B; Mueller, D; Soukhanovskii, V A

    2009-01-05

    Experiments in NSTX have now demonstrated the coupling of toroidal plasmas produced by the technique of Coaxial Helicity Injection (CHI) to inductive sustainment and ramp-up of the toroidal plasma current. In these discharges, the central Ohmic transformer was used to apply an inductive loop voltage to discharges with a toroidal current of about 100 kA created by CHI. The coupled discharges have ramped up to >700 kA and transitioned into an H-mode demonstrating compatibility of this startup method with conventional operation. The electron temperature in the coupled discharges reached over 800 eV and the resulting plasma had low inductance, which is preferred for long-pulse high performance discharges. These results from NSTX in combination with the previously obtained record 160 kA non-inductively-generated startup currents in an ST or tokamak in NSTX demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and tokamaks.

  12. Reduced model simulations of the scrape-off-layer heat-flux width and comparison with experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Myra, J. R.; Russell, D. A.; D’Ippolito, D. A.; Ahn, J.-W.; Maingi, R.; Maqueda, R. J.; Lundberg, D. P.; Stotler, D. P.; Zweben, S. J.; Boedo, J.; et al

    2011-01-01

    Reduced model simulations of turbulence in the edge and scrape-off-layer (SOL) region of a spherical torus or tokamak plasma are employed to address the physics of the scrape-off-layer heat flux width. The simulation model is an electrostatic two-dimensional fluid turbulence model, applied in the plane perpendicular to the magnetic field at the outboard midplane of the torus. The model contains curvature-driven-interchange modes, sheath losses, and both perpendicular turbulent diffusive and convective (blob) transport. These transport processes compete with classical parallel transport to set the SOL width. Midplane SOL profiles of density, temperature and parallel heat flux are obtained from themore » simulation and compared with experimental results from the National Spherical Torus Experiment (NSTX) to study the scaling of the heat flux width with power and plasma current. It is concluded that midplane turbulence is the main contributor to the SOL heat flux width for the low power H-mode discharges studied, while additional physics is required to explain the plasma current scaling of the SOL heat flux width observed experimentally in higher power discharges. Intermittent separatrix spanning convective cells are found to be the main mechanism that sets the near-SOL width in the simulations. The roles of sheared flows and blob trapping vs. emission are discussed.« less

  13. Unusual emission lines of carbon in the 170-190 A region on NSTX...

    Office of Scientific and Technical Information (OSTI)

    Unusual emission lines of carbon in the 170-190 A region on NSTX Citation Details In-Document Search Title: Unusual emission lines of carbon in the 170-190 A region on NSTX Authors: ...

  14. Unusual emission lines of carbon in the 170-190 A region on NSTX...

    Office of Scientific and Technical Information (OSTI)

    Unusual emission lines of carbon in the 170-190 A region on NSTX Citation Details In-Document Search Title: Unusual emission lines of carbon in the 170-190 A region on NSTX You...

  15. Fast soft x-ray images of magnetohydrodynamic phenomena in NSTX...

    Office of Scientific and Technical Information (OSTI)

    Fast soft x-ray images of magnetohydrodynamic phenomena in NSTX Citation Details In-Document Search Title: Fast soft x-ray images of magnetohydrodynamic phenomena in NSTX A variety ...

  16. Developing the digital safeguard that protects the National Spherical Torus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment-Upgrade at PPPL | Princeton Plasma Physics Lab Developing the digital safeguard that protects the National Spherical Torus Experiment-Upgrade at PPPL By John Greenwald February 22, 2016 Tweet Widget Google Plus One Share on Facebook Members of the team that developed the DCPS, from left: Gretchen Zimmer, Kevin Lamb, Greg Tchillingarian, Paul Sichta, John Lawson, Tim Stevenson, Stefan Gerhardt and Roman Rozenblat. Not shown: Vince Mastrocola, John Dong, Gary Gibilisco. (Photo by

  17. Developing the digital safeguard that protects the National Spherical Torus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment-Upgrade at PPPL | Princeton Plasma Physics Lab Developing the digital safeguard that protects the National Spherical Torus Experiment-Upgrade at PPPL By John Greenwald February 22, 2016 Tweet Widget Google Plus One Share on Facebook Members of the team that developed the DCPS, from left: Gretchen Zimmer, Kevin Lamb, Greg Tchillingarian, Paul Sichta, John Lawson, Tim Stevenson, Stefan Gerhardt and Roman Rozenblat. Not shown: Vince Mastrocola, John Dong, Gary Gibilisco. (Photo by

  18. Dynamics of the Disruption Halo Current Toroidal Asymmetry in NSTX

    SciTech Connect (OSTI)

    S.P. Gerhardt

    2012-09-27

    This paper describes the dynamics of disruption halo current non-axisymmetries in the lower divertor of the National Spherical Torus Experiment [M. Ono, et al. Nuclear Fusion 40, 557 (2000)]. While. The halo currents typically have a strongly asymmetric structure where they enter the divertor floor, and this asymmetry has been observed to complete up to 7 toroidal revolutions over the duration of the halo current pulse. However, the rotation speed and toroidal extend of the asymmetry can vary significantly during the pulse. The rotation speed, halo current pulse duration, and total number of revolutions tend to be smaller in cases with large halo currents. The halo current pattern is observed to become toroidally symmetric at the end of the halo current pulse. It is proposed that this symmeterization is due to the loss of most or all of the closed field line geometry in the final phase of the vertical displacement event.

  19. CONSTRUCTING THE NATIONAL Spherical Torus Experiment Upgrade...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 5 a.m. to check emails each day. He oversaw the progress of construction twice every morning and twice in the afternoon, seven days a week, then rechecked emails at 10 p.m. when ...

  20. Implications of NSTX Lithium Results for Magnetic Fusion Research

    SciTech Connect (OSTI)

    M. Ono, M.G. Bell, R.E. Bell, R. Kaita, H.W. Kugel, B.P. LeBlanc, J.M. Canik, S. Diem, S.P.. Gerhardt, J. Hosea, S. Kaye, D. Mansfield, R. Maingi, J. Menard, S. F. Paul, R. Raman, S.A. Sabbagh, C.H. Skinner, V. Soukhanovskii, G. Taylor, and the NSTX Research Team

    2010-01-14

    Lithium wall coating techniques have been experimentally explored on NSTX for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to ~ 100 g of lithium onto the lower divertor plates between lithium reloadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, ELM control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

  1. Numerical optimization of three-dimensional coils for NSTX-U

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lazerson, S. A.; Park, J. -K.; Logan, N.; Boozer, A.

    2015-09-03

    A tool for the calculation of optimal three-dimensional (3D) perturbative magnetic fields in tokamaks has been developed. The IPECOPT code builds upon the stellarator optimization code STELLOPT to allow for optimization of linear ideal magnetohydrodynamic perturbed equilibrium (IPEC). This tool has been applied to NSTX-U equilibria, addressing which fields are the most effective at driving NTV torques. The NTV torque calculation is performed by the PENT code. Optimization of the normal field spectrum shows that fields with n = 1 character can drive a large core torque. It is also shown that fields with n = 3 features are capablemore » of driving edge torque and some core torque. Coil current optimization (using the planned in-vessel and existing RWM coils) on NSTX-U suggest the planned coils set is adequate for core and edge torque control. In conclusion, comparison between error field correction experiments on DIII-D and the optimizer show good agreement.« less

  2. 3D TORUS V1.0

    Energy Science and Technology Software Center (OSTI)

    002440MLTPL00 3D Torus Routing Engine Module for OFA OpenSM v. 1.0 http://www.openfabrics.org/git?p=sashak/management.git;a=sum

  3. HEATING AND CURRENT DRIVE IN NSTX WITH ELECTRON BERNSTEIN WAVES AND HIGH HARMONIC FAST WAVES

    SciTech Connect (OSTI)

    Ram, Abhay K

    2010-06-14

    A suitable theoretical and computational framework for studying heating and current drive by electron Bernstein waves in the National Spherical Torus Experiment has been developed. This framework can also be used to study heating and current drive by electron Bernstein waves in spherical tori and other magnetic confinement devices. It is also useful in studying the propagation and damping of electron cyclotron waves in the International Thermonuclear Experimental Reactor

  4. Jonathan E Menard | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jonathan E Menard Principal Research Physicst, Program Director for NSTX Jonathan Menard is program director for the National Spherical Torus Experiment-Upgrade (NSTX-U) and is responsible for guiding the scientific research program of NSTX-U working with an international research team. His research interests include the magnetohydrodynamic (MHD) equilibrium and stability properties of spherical torus (ST) and tokamak plasmas, advanced operating scenarios in the ST, and the development of next-

  5. Upward-facing Lithium Flash Evaporator for NSTX-U

    SciTech Connect (OSTI)

    Roquemore, A. L.

    2013-07-09

    NSTX plasma performance has been significantly enhanced by lithium conditioning [1]. To date, the lower divertor and passive plates have been conditioned by downward facing lithium evaporators (LITER) as appropriate for lower null plasmas. The higher power operation expected from NSTX-U requires double null plasma operation in order to distribute the heat flux between the upper and lower divertors making it desirable to coat the upper divertor region with Li as well. An upward aiming LITER (U-LITER) is presently under development and will be inserted into NSTX-U using a horizontal probe drive located in a 6" upper midplane port. In the retracted position the evaporator will be loaded with up to 300 mg of Li granules utilizing one of the calibrated NSTX Li powder droppers[2]. The evaporator will then be inserted into the vessel in a location within the shadow of the RF limiters and will remain in the vessel during the discharge. About 10 seconds before a discharge, it will be rapidly heated and the lithium completely evaporated onto the upper divertor, thus avoiding the complication of a shutter that prevents evaporation during the shot when the diagnostic shutters are open. The minimal time interval between the evaporation and the start of the discharge will avoid the passivation of the lithium by residual gases and enable the study of the conditioning effects of un-passivated Li surfaces [3]. Two methods are being investigated to accomplish the rapid (few second) heating of the lithium. A resistive method relies on passing a large current through a Li filled crucible. A second method requires using a 3 kW e-beam gun to heat the Li. In this paper the evaporator systems will be described and the pros and cons of each heating method will be discussed.

  6. Masayuki Ono | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Masayuki Ono Principal Research Physicist, Head, NSTX Department Masa Ono is project director of the National Spherical Torus Experiment-Upgrade (NSTX-U). Ono has led a number of PPPL research teams including those involved in the Advanced Concept Torus (ACT-1), the Current Drive Experiment (CDX), the Current Drive Experiment Upgrade (CDX-U) and the NSTX. He is a fellow of the American Physical Society and the author of more than 250 scientific papers. Interests Fusion energy NSTX-U Contact

  7. Results from the NSTX X-ray Crystal Spectrometer

    SciTech Connect (OSTI)

    M. Bitter; K. Hill; L. Roquemore; P. Beiersdorfer; D. Thorn; Ming Feng Gu

    2003-01-14

    A high-resolution X-ray crystal spectrometer has recently been installed at the National Spherical Torus Experiment to record the satellite spectra of helium-like argon, ArXVII, in the wavelength range from 3.94 to 4.00 {angstrom} for measurements of ion and electron temperatures, and measurements of the ionization equilibrium of argon, which is of interest for studies of ion transport. The instrument presently consists of a spherically bent quartz crystal and a conventional one-dimensional position-sensitive multi-wire proportional counter, but it will soon be upgraded to a new type of X-ray imaging crystal spectrometer by the installation of a large size (10 cm x 30 cm) two-dimensional position-sensitive detector that will allow us to obtain temporally and spatially resolved spectra from an 80 cm high cross-section of the plasma. In its present configuration, the spectrometer has been optimized for high throughput so that it is possible to record spectra with small statistical errors with a time resolution of 10 ms by adding only small, nonperturbing amounts of argon to the plasma. The spectrometer is most valuable for measurements of the ion temperature in the absence of a neutral beam in ohmically heated and radio-frequency heated discharges, when charge exchange recombination spectroscopy does not function. Electron temperature measurements from the satellite-to-resonance line ratios have been important for a quantitative comparison with (and verification of) the Thomson scattering data. The paper will describe the instrumental details of the present and future spectrometer configurations, and present recent experimental results.

  8. Energy Secretary Moniz Launches the Nation's Newest Fusion Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Secretary Moniz Launches the Nation's Newest Fusion Experiment at PPPL National ... One Share on Facebook U.S. Energy Secretary Ernest Moniz, center, in the NSTX-U test cell. ...

  9. Raman Spectroscopy of Carbon Dust Samples from NSTX

    SciTech Connect (OSTI)

    Y. Raitses, C.H. Skinner, F. Jiang and T.S. Duffy

    2008-02-21

    The Raman spectrum of dust particles exposed to the NSTX plasma is different from the spectrum of unexposed particles scraped from an unused graphite tile. For the unexposed particles, the high energy G-mode peak (Raman shift ~1580 cm-1) is much stronger than the defect-induced D-mode peak (Raman shift ~ 1350 cm-1), a pattern that is consistent with Raman spectrum for commercial graphite materials. For dust particles exposed to the plasma, the ratio of G-mode to D-mode peaks is lower and becomes even less than 1. The Raman measurements indicate that the production of carbon dust particles in NSTX involves modifications of the physical and chemical structure of the original graphite material. These modifications are shown to be similar to those measured for carbon deposits from atmospheric pressure helium arc discharge with an ablating anode electrode made from a graphite tile material. We also demonstrate experimentally that heating to 2000-2700 K alone can not explain the observed structural modifications indicating that they must be due to higher temperatures needed for graphite vaporization, which is followed either by condensation or some plasma-induced processes leading to the formation of more disordered forms of carbon material than the original graphite.

  10. Lithium Coatings on NSTX Plasma Facing Components and Its Effects On Boundary Control, Core Plasma Performance, and Operation

    SciTech Connect (OSTI)

    H.W.Kugel, M.G.Bell, H.Schneider, J.P.Allain, R.E.Bell, R Kaita, J.Kallman, S. Kaye, B.P. LeBlanc, D. Mansfield, R.E. Nygen, R. Maingi, J. Menard, D. Mueller, M. Ono, S. Paul, S.Gerhardt, R.Raman, S.Sabbagh, C.H.Skinner, V.Soukhanovskii, J.Timberlake, L.E.Zakharov, and the NSTX Research Team

    2010-01-25

    NSTX high-power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a Liquid Lithium Divertor surface on the outer part of the lower divertor.

  11. Lithium coatings on NSTX plasma facing components and its effects on boundary control, core plasma performance, and operation

    SciTech Connect (OSTI)

    Kugel, H. W.; Bell, M. G.; Maingi, R.

    2010-01-01

    NSTX high power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following the wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a liquid lithium divertor surface on the outer part of the lower divertor.

  12. NSTX-U Advances in Real-time C++11 on Linux | Princeton Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSTX-U Advances in Real-time C++11 on Linux Programming languages like C and Ada combined ... The new C++11 standard includes native, language-level support for concurrency, a ...

  13. Central safety factor and β N control on NSTX-U via beam power...

    Office of Scientific and Technical Information (OSTI)

    Central safety factor and N control on NSTX-U via beam power and plasma boundary shape ... Citation Details In-Document Search Title: Central safety factor and N control on ...

  14. Local Scrape-Off Layer Control Using Biased electrodes in NSTX...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Local Scrape-Off Layer Control Using Biased electrodes in NSTX Citation Details In-Document Search Title: Local Scrape-Off Layer Control Using Biased electrodes in ...

  15. Overview of innovative PMI research on NSTX-U and associated PMI facilities at PPPL

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    M. Ono; Jaworski, M.; Kaita, R.; Skinner, C. N.; Allain, J. P.; Maingi, R.; Scotti, F.; Soukhanovskii, V. A.

    2013-05-01

    Developing a reactor compatible divertor and managing the associated plasma material interaction (PMI) has been identified as a high priority research area for magnetic confinement fusion. Accordingly on NSTX-U, the PMI research has received a strong emphasis. Moreover, with ˜15 MW of auxiliary heating power, NSTX-U will be able to test the PMI physics with the peak divertor plasma facing component (PFC) heat loads of up to 40-60 MW/m2.

  16. Panel ensures safe operation of the $94 million NSTX Upgrade | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab Panel ensures safe operation of the $94 million NSTX Upgrade By John Greenwald January 15, 2015 Tweet Widget Google Plus One Share on Facebook Members inspect the chief operating engineer's station in the NSTX-U control room. Seated from left, John Lacenere, Larry Dudek. Standing from left, Anthony Indelicato, Tracy Estes, Stefan Gerhardt, Tim Stevenson, Al von Halle, Jerry Levine, Charles Gentile. (Photo by Elle Starkman/PPPL Office of Communications) Members inspect the

  17. Frelinghuysen, Holt visit PPPL to report on bipartisan efforts...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Rep. Rush Holt (D-NJ-12), Plainsboro Mayor Peter Cantu, and PPPL Director Stewart Prager next to the National Spherical Torus Experiment (NSTX) during a June 13 visit...

  18. DOE Policy for Digital Research Data Management: Resources at...

    Energy Savers [EERE]

    Facility Host Institution Data Management Resources DIII-D General Atomics Link National Spherical Torus Experiment (NSTX) PPPL Link Alcator C-Mod MIT Link High Energy Physics (HEP...

  19. Arithmetic functions in torus and tree networks

    DOE Patents [OSTI]

    Bhanot, Gyan; Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos M.

    2007-12-25

    Methods and systems for performing arithmetic functions. In accordance with a first aspect of the invention, methods and apparatus are provided, working in conjunction of software algorithms and hardware implementation of class network routing, to achieve a very significant reduction in the time required for global arithmetic operation on the torus. Therefore, it leads to greater scalability of applications running on large parallel machines. The invention involves three steps in improving the efficiency and accuracy of global operations: (1) Ensuring, when necessary, that all the nodes do the global operation on the data in the same order and so obtain a unique answer, independent of roundoff error; (2) Using the topology of the torus to minimize the number of hops and the bidirectional capabilities of the network to reduce the number of time steps in the data transfer operation to an absolute minimum; and (3) Using class function routing to reduce latency in the data transfer. With the method of this invention, every single element is injected into the network only once and it will be stored and forwarded without any further software overhead. In accordance with a second aspect of the invention, methods and systems are provided to efficiently implement global arithmetic operations on a network that supports the global combining operations. The latency of doing such global operations are greatly reduced by using these methods.

  20. NSTX-U IS ONE OF AN ELITE GROUP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U IS ONE OF AN ELITE GROUP of magnetic fusion facilities scattered across the globe. These powerful and complex machines are advancing mankind's quest to harness fusion as a safe, clean and abundant source of energy for producing electricity. Here is a selection of major facilities. Joint European Torus (JET) Location: Culham Centre for Fusion Energy in the United Kingdom Start Date: 1984 Major Radius: 2.96 meters Magnetic Field Strength: 3.45 teslas JET is the largest tokamak now in operation.

  1. NSTX Protection And Interlock Systems For Coil And Powers Supply Systems

    SciTech Connect (OSTI)

    X. Zhao, S. Ramakrishnan, J. Lawson, C.Neumeyer, R. Marsala, H. Schneider, Engineering Operations

    2009-09-24

    NSTX at Princeton Plasma Physics Laboratory (PPPL) requires sophisticated plasma positioning control system for stable plasma operation. TF magnetic coils and PF magnetic coils provide electromagnetic fields to position and shape the plasma vertically and horizontally respectively. NSTX utilizes twenty six coil power supplies to establish and initiate electromagnetic fields through the coil system for plasma control. A power protection and interlock system is utilized to detect power system faults and protect the TF coils and PF coils against excessive electromechanical forces, overheating, and over current. Upon detecting any fault condition the power system is restricted, and it is either prevented from initializing or suppressed to de-energize coil power during pulsing. Power fault status is immediately reported to the computer system. This paper describes the design and operation of NSTX's protection and interlocking system and possible future expansion.

  2. Mechanical Design of the NSTX Liquid Lithium Divertor

    SciTech Connect (OSTI)

    R. Ellis, R. Kaita, H. Kugel, G. Paluzzi, M. Viola and R. Nygren

    2009-02-19

    The Liquid Lithium Divertor (LLD) on NSTX will be the first test of a fully-toroidal liquid lithium divertor in a high-power magnetic confinement device. It will replace part of the lower outboard divertor between a specified inside and outside radius, and ultimately provide a lithium surface exposed to the plasma with enough depth to absorb a significant particle flux. There are numerous technical challenges involved in the design. The lithium layer must be as thin as possible, and maintained at a temperature between 200 and 400 degrees Celsius to minimize lithium evaporation. This requirement leads to the use of a thick copper substrate, with a thin stainless steel layer bonded to the plasma-facing surface. A porous molybdenum layer is then plasma-sprayed onto the stainless steel, to provide a coating that facilitates full wetting of the surface by the liquid lithium. Other challenges include the design of a robust, vacuumcompatible heating and cooling system for the LLD. Replacement graphite tiles that provided the proper interface between the existing outer divertor and the LLD also had to be designed, as well as accommodation for special LLD diagnostics. This paper describes the mechanical design of the LLD, and presents analyses showing the performance limits of the LLD.

  3. Divertor Heat Flux Mitigation in the National Spherical Torus...

    Office of Scientific and Technical Information (OSTI)

    for both ITER and spherical torus-based devices with compact high power density divertors. ... Fusion 40, 557 2000 using high magnetic flux expansion at the divertor strike point and ...

  4. Torus through Integrated Data Analysis Mark Nornberg Matthew...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Z eff in the Madison Symmetric Torus through Integrated Data Analysis Mark Nornberg Matthew Galante (Nova Photonics) L.M. Reusch, D.J. Den Hartog, J.R. Johnson, M.B. McGarry H. D. ...

  5. Nonlinear coupling of tearing fluctuations in the Madison Symmetric Torus

    SciTech Connect (OSTI)

    Sarff, J.S.; Almagri, A.F.; Cekic, M.; Den Hartog, D.J.; Fiksel, G.; Hokin, S.A.; Ji, H.; Prager, S.C.; Shen, W.; Stoneking, M.R.; Assadi, S.; Sidikman, K.L.

    1992-11-01

    Three-wave, nonlinear, tearing mode coupling has been measured in the Madison Symmetric Torus (MST) reversed-field pinch (RFP) [Fusion Technol. 19, 131 (1991)] using bispectral analysis of edge magnetic fluctuations resolved in ``k-space. The strength of nonlinear three-wave interactions satisfying the sum rules m{sub 1} + m{sub 2} = m{sub 3} and n{sub 1} + n{sub 2} = n{sub 3} is measured by the bicoherency. In the RFP, m=l, n{approximately}2R/a (6 for MST) internally resonant modes are linearly unstable and grow to large amplitude. Large values of bicoherency occur for two m=l modes coupled to an m=2 mode and the coupling of intermediate toroidal modes, e.g., n=6 and 7 coupled to n=13. These experimental bispectral features agree with predicted bispectral features derived from MHD computation. However, in the experiment, enhanced coupling occurs in the ``crash`` phase of a sawtooth oscillation concomitant with a broadened mode spectrum suggesting the onset of a nonlinear cascade.

  6. Nonlinear coupling of tearing fluctuations in the Madison Symmetric Torus

    SciTech Connect (OSTI)

    Sarff, J.S.; Almagri, A.F.; Cekic, M.; Den Hartog, D.J.; Fiksel, G.; Hokin, S.A.; Ji, H.; Prager, S.C.; Shen, W.; Stoneking, M.R. ); Assadi, S. ); Sidikman, K.L. )

    1992-11-01

    Three-wave, nonlinear, tearing mode coupling has been measured in the Madison Symmetric Torus (MST) reversed-field pinch (RFP) [Fusion Technol. 19, 131 (1991)] using bispectral analysis of edge magnetic fluctuations resolved in k-space. The strength of nonlinear three-wave interactions satisfying the sum rules m[sub 1] + m[sub 2] = m[sub 3] and n[sub 1] + n[sub 2] = n[sub 3] is measured by the bicoherency. In the RFP, m=l, n[approximately]2R/a (6 for MST) internally resonant modes are linearly unstable and grow to large amplitude. Large values of bicoherency occur for two m=l modes coupled to an m=2 mode and the coupling of intermediate toroidal modes, e.g., n=6 and 7 coupled to n=13. These experimental bispectral features agree with predicted bispectral features derived from MHD computation. However, in the experiment, enhanced coupling occurs in the crash'' phase of a sawtooth oscillation concomitant with a broadened mode spectrum suggesting the onset of a nonlinear cascade.

  7. Reversed-field pinch studies in the Madison Symmetric Torus

    SciTech Connect (OSTI)

    Hokin, S.; Almagri, A.; Cekic, M.; Chapman, B.; Crocker, N.; Den Hartog, D.J.; Fiksel, G.; Henry, J.; Ji, H.; Prager, S.; Sarff, J.; Scime, E.; Shen, W.; Stoneking, M.; Watts, C.

    1993-04-03

    Studies of large-size (R = 1.5 m, a = 0.5 m), moderate current (I < 750 kA) reversed-field pinch (RFP) plasmas are carried out in the Madison Symmetric Torus in order to evaluate and improve RFP confinement, study general toroidal plasma MHD issues, determine the mechanism of the RFP dynamo, and measure fluctuation-induced transport and anomalous ion heating. MST confinement has been improved by reduction of magnetic field errors with correction coils in the primary circuit and reduction of impurities using boronization; high densities have been achieved with hydrogen pellet injection. MHD tearing modes with poloidal mode number m = 1 and toroidal mode numbers n = 5--7 are prevalent and nonlinearly couple to produce sudden relaxations akin to tokamak sawteeth. Edge fluctuation-induced transport has been measured with a variety of insertable probes. Ions exhibit anomalous heating, with increases of ion temperature occuring during strong MHD relaxation. The RFP dynamo has been studied with attention to various possible mechanisms, including motion-EMF drive, the Hall effect, and superthermal electrons. Initial profile control experiments have begun using insertable biased probes and plasma guns. The toroidal field capacity of MST will be upgraded during Summer, 1993 to allow low-current tokamak operation as well as improved RFP operation.

  8. Magnetic Diagnostics For Equilibrium Reconstruction And Realtime Plasma Control In NSTX-Upgrade

    SciTech Connect (OSTI)

    Gerhardt, Stefan P.; Erickson, Keith; Kaita, Robert; Lawson, John; Mozulay, Robert; Mueller, Dennis; Que, Weiguo; Rahman, Nabidur; Schneider, Hans; Smalley, Gustav; Tresemer, Kelsey

    2014-06-01

    This paper describes aspects of magnetic diagnostics for realtime control in NSTX-U. The sensor arrangement on the upgraded center column is described. New analog and digital circuitry for processing the plasma current rogowski data are presented. An improved algorithm for estimating the plasma vertical velocity for feedback control is presented.

  9. Maass Cusp Forms on Singly Punctured Two-Torus

    SciTech Connect (OSTI)

    Siddig, Abubaker Ahmed Mohamed [Laboratory of Computational Sciences and Informatics, Institute for Mathematical Research Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Shah, Nurisya Mohd [Theoretical Physics Group, Department of Physics, Faculty of Science Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Zainuddin, Hishamuddin [Laboratory of Computational Sciences and Informatics, Institute for Mathematical Research Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Theoretical Physics Group, Department of Physics, Faculty of Science Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2009-07-07

    Quantum mechanical systems on punctured surfaces modeled by hyperbolic spaces can play an interesting role in exploring quantum chaos and in studying behaviour of future quantum nano-devices. The case of singly-punctured two-torus, for example, has been well-studied in the literature particularly for its scattering states. However, the bound states on the punctured torus given by Maass cusp forms are lesser known. In this note, we report on the algorithm of numerically computing these functions and we present ten lower-lying eigenvalues for each odd and even Maass cusp forms.

  10. The CLAS12 Torus Detector Magnet at Jefferson Laboratory

    SciTech Connect (OSTI)

    Luongo, Cesar; Ballard, Joshua; Biallas, George; Elouadrhiri, Latifa; Fair, Ruben; Ghoshal, Probir; Kashy, Dave; Legg, Robert; Pastor, Orlando; Rajput-Ghoshal, Renuka; Rode, Claus; Wiseman, Mark; Young, Glenn; Elementi, Luciano; Krave, Steven; Makarov, Alexander; Nobrega, Fred; Velev, George

    2015-12-17

    The CLAS12 Torus is a toroidal superconducting magnet, which is part of the detector for the 12-GeV accelerator upgrade at Jefferson Laboratory (JLab). The coils were wound/fabricated by Fermilab, with JLab responsible for all other parts of the project scope, including design, integration, cryostating the individual coils, installation, cryogenics, I&C, etc. This paper provides an overview of the CLAS12 Torus magnet features and serves as a status report of its installation in the experimental hall. Completion and commissioning of the magnet is expected in 2016.

  11. The CLAS12 torus detector magnet at Jefferson Laboratory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luongo, Cesar; Wiseman, Mark A.; Kashy, David H.; Pastor, Orlando; Ghoshal, Probir K.; Fair, Ruben J.; Ballard, Joshua T.; Legg, Robert A.; Rajput-Ghoshal, Renuka; Biallas, George H.; et al

    2015-12-17

    The CLAS12 Torus is a toroidal superconducting magnet, part of the detector for the 12GeV accelerator upgrade at Jefferson Lab. The coils were wound/fabricated by Fermi Lab, with Jlab responsible for all other parts of the project scope, including design, integration, cryostating the individual coils, installation, cryogenics, I&C, etc. The study provides an overview of the CLAS12 Torus magnet features, and serves as a status report of its installation in the experimental hall. Completion and commissioning of the magnet is expected in 2016.

  12. Hole in one: Technicians smoothly install the center stack in the NSTX-U

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vacuum vessel | Princeton Plasma Physics Lab Hole in one: Technicians smoothly install the center stack in the NSTX-U vacuum vessel By John Greenwald November 10, 2014 Tweet Widget Google Plus One Share on Facebook Closeup of the center stack being lowered into position by an overhead crane. (Photo by Elle Starkman/PPPL Office of Communications) Closeup of the center stack being lowered into position by an overhead crane. Gallery: Technicians guide the unit into place. (Photo by Elle

  13. Fivefold confinement time increase in the Madison Symmetric Torus using inductive poloidal current drive

    SciTech Connect (OSTI)

    Stoneking, M.R.; Lanier, N.E.; Prager, S.C.; Sarff, J.S.; Sinitsyn, D.

    1996-12-01

    Current profile control is employed in the Madison Symmetric Torus reversed field pinch to reduce the magnetic fluctuations responsible for anomalous transport. An inductive poloidal electric field pulse is applied in the sense to flatten the parallel current profile, reducing the dynamo fluctuation amplitude required to sustain the equilibrium. This technique demonstrates a substantial reduction in fluctuation amplitude (as much as 50%), and improvement in energy confinement (from 1 ms to 5 ms); a record low fluctuation (0.8%) and record high temperature (615 eV) for this device were observed simultaneously during current drive experiments. Plasma beta increases by 50% and the Ohmic input power is three times lower. Particle confinement improves and plasma impurity contamination is reduced. The results of the transient current drive experiments provide motivation for continuing development of steady-state current profile control strategies for the reversed field pinch.

  14. Stefan Gerhardt | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stefan Gerhardt Principal Research Physicist Stefan Gerhardt is head of Experimental Research Operations for the National Spherical Torus Experiment- Upgrade (NSTX-U). He operates numerous diagnostics on NSTX-U, along with designing plasma control schemes and running physics experiments. He has previously worked on a wide variety of fusion machines, including spherical tokamaks, stellarators, and field reversed configurations. Interests Fusion energy Plasma diagnostics Plasma physics

  15. T

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wo major new components power the National Spherical Torus Experiment-Upgrade: A widened center stack that doubles the magnetic field strength and plasma current and quintuples the length of fusion experiments, and a second neutral beam injector that doubles the tokamak's heating power. Taken together, the new parts boost the NSTX-U operating conditions closer to those that will be found in a commercial fusion power plant. "This project was more complex than building the NSTX in the first

  16. Disruption Analysis and Response Implicattions of Passive Plates for the NSTX Upgrade

    SciTech Connect (OSTI)

    Yuhu Zhai, Peter Titus, Art Brooks, and Ron Hatcher

    2012-08-27

    The NSTX upgrade project requires analysis qualifications of existing vacuum vessel and passive stabilizing plates for increased plasma performance. Vertical stability is critically dependent on the passive conducting structure that surrounds the plasma. In this paper, the passive conducting structure is analyzed for the upgrade condition during plasma disruption to ensure the level of stress in the stabilizing plates and the fastener is within its design limits. The counter-bore of the passive plates for bolting is evaluated in details and counter-bore bushing is redesigned to prevent shear failure during disruptions as a result of high pulling and pushing forces, particularly for support at the corner bolts

  17. Laboratory Director Stewart Prager heralds start of new era with NSTX-U and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    looks to future projects in "State of the Laboratory" address | Princeton Plasma Physics Lab Laboratory Director Stewart Prager heralds start of new era with NSTX-U and looks to future projects in "State of the Laboratory" address By Jeanne Jackson DeVoe October 13, 2015 Tweet Widget Google Plus One Share on Facebook PPPL Director Stewart Prager (Photo by Elle Starkman/PPPL Office of Communications) PPPL Director Stewart Prager The completion of the $94 million National

  18. Laboratory Director Stewart Prager heralds start of new era with NSTX-U and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    looks to future projects in "State of the Laboratory" address | Princeton Plasma Physics Lab Laboratory Director Stewart Prager heralds start of new era with NSTX-U and looks to future projects in "State of the Laboratory" address By Jeanne Jackson DeVoe October 28, 2015 Tweet Widget Google Plus One Share on Facebook PPPL Director Stewart Prager (Photo by Elle Starkman/PPPL Office of Communications) PPPL Director Stewart Prager The completion of the $94 million National

  19. "Stellar" progress on NSTX-U highlights strong year for PPPL, Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director Stewart Prager says | Princeton Plasma Physics Lab "Stellar" progress on NSTX-U highlights strong year for PPPL, Lab Director Stewart Prager says By Jeanne Jackson DeVoe May 5, 2014 Tweet Widget Google Plus One Share on Facebook Lab Director Stewart Prager gave a "tour" of PPPL's accomplishments during his annual State of the Lab address on April 29. (Photo by Russ DeSantis/PPPL Office of Communications ) Lab Director Stewart Prager gave a "tour" of

  20. Blob structure and motion in the edge and SOL of NSTX

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zweben, S. J.; Myra, J. R.; Davis, W. M.; D’Ippolito, D. A.; Gray, T. K.; Kaye, S. M.; LeBlanc, B. P.; Maqueda, R. J.; Russell, D. A.; Stotler, D. P.

    2016-01-28

    Here, the structure and motion of discrete plasma blobs (a.k.a. filaments) in the edge and scrape-off layer of NSTX is studied for representative Ohmic and H-mode discharges. Individual blobs were tracked in the 2D radial versus poloidal plane using data from the gas puff imaging diagnostic taken at 400 000 frames s-1. A database of blob amplitude, size, ellipticity, tilt, and velocity was obtained for ~45 000 individual blobs. Empirical relationships between various properties are described, e.g. blob speed versus amplitude and blob tilt versus ellipticity. The blob velocities are also compared with analytic models.

  1. Torus Network on a BG/Q System | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blue GeneQ Versus Blue GeneP BGQ Drivers Status Machine Overview Machine Partitions Torus Network Data Storage & File Systems Compiling & Linking Queueing & Running Jobs Data...

  2. High-resolution Tangential AXUV Arrays for Radiated Power Density Measurements on NSTX-U

    SciTech Connect (OSTI)

    Delgado-Aparicio, L; Bell, R E; Faust, I; Tritz, K; Diallo, A; Gerhardt, S P; Kozub, T A; LeBlanc, B P; Stratton, B C

    2014-07-01

    Precise measurements of the local radiated power density and total radiated power are a matter of the uttermost importance for understanding the onset of impurity-induced instabilities and the study of particle and heat transport. Accounting of power balance is also needed for the understanding the physics of various divertor con#12;gurations for present and future high-power fusion devices. Poloidal asymmetries in the impurity density can result from high Mach numbers and can impact the assessment of their flux-surface-average and hence vary the estimates of P[sub]rad (r, t) and (Z[sub]eff); the latter is used in the calculation of the neoclassical conductivity and the interpretation of non-inductive and inductive current fractions. To this end, the bolometric diagnostic in NSTX-U will be upgraded, enhancing the midplane coverage and radial resolution with two tangential views, and adding a new set of poloidally-viewing arrays to measure the 2D radiation distribution. These systems are designed to contribute to the near- and long-term highest priority research goals for NSTX-U which will integrate non-inductive operation at reduced collisionality, with high-pressure, long energy-confinement-times and a divertor solution with metal walls.

  3. A New Era Begins | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Era Begins Welcome to the first major addition to the U.S. fusion program of the 21st century. The U.S. Department of Energy's Princeton Plasma Physics Laboratory's (PPPL) new $94 million National Spherical Torus Experiment-Upgrade (NSTX-U) is the most powerful fusion facility of its kind on Earth and a device poised to bring the world closer to a bold new energy age. Publication File: PDF icon NSTX-U_presskit_print_NewEra

  4. W

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a new era in fusion research at the U.S. Department of Energy's Princeton Plasma Physics Laboratory. Today we unveil the National Spherical Torus Experiment- Upgrade (NSTX-U), the most powerful spherical tokamak in the world and the first major addition to the U.S. fusion program in the 21st century. The NSTX-U represents a $94 million, nearly three-year upgrade of the original National Spherical Torus Experiment that ran from 1999 to 2011 in the Laboratory, which Princeton University manages

  5. Towards identifying the mechanisms underlying field-aligned edge-loss of HHFW power on NSTX

    SciTech Connect (OSTI)

    Perkins, R. J.; Bell, R. E.; Bertelli, N.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; LeBlanc, B. P.; Kramer, G. J.; Maingi, R.; Phillips, C. K.; Podestà, M.; Roquemore, L.; Scotti, F.; Taylor, G.; Wilson, J. R.; Ahn, J-W.; Gray, T. K.; Green, D. L.; McLean, A.; and others

    2014-02-12

    Fast-wave heating will be a major heating scheme on ITER, as it can heat ions directly and is relatively unaffected by the large machine size unlike neutral beams. However, fast-wave interactions with the plasma edge can lead to deleterious effects such as, in the case of the high-harmonic fast-wave (HHFW) system on NSTX, large losses of fast-wave power in the scrape off layer (SOL) under certain conditions. In such scenarios, a large fraction of the lost HHFW power is deposited on the upper and lower divertors in bright spiral shapes. The responsible mechanism(s) has not yet been identified but may include fast-wave propagation in the scrape off layer, parametric decay instability, and RF currents driven by the antenna reactive fields. Understanding and mitigating these losses is important not only for improving the heating and current-drive on NSTX-Upgrade but also for understanding fast-wave propagation across the SOL in any fast-wave system. This talk summarizes experimental results demonstrating that the flow of lost HHFW power to the divertor regions largely follows the open SOL magnetic field lines. This lost power flux is relatively large close to both the antenna and the last closed flux surface with a reduced level in between, so the loss mechanism cannot be localized to the antenna. At the same time, significant losses also occur along field lines connected to the inboard edge of the bottom antenna plate. The power lost within the spirals is roughly estimated, showing that these field-aligned losses to the divertor are significant but may not account for the total HHFW loss. To elucidate the role of the onset layer for perpendicular fast-wave propagation with regards to fast-wave propagation in the SOL, a cylindrical cold-plasma model is being developed. This model, in addition to advanced RF codes such as TORIC and AORSA, is aimed at identifying the underlying mechanism(s) behind these SOL losses, to minimize their effects in NSTX-U, and to predict

  6. Observation of Non-Maxwellian Electron Distributions in th e NSTX Divertor

    SciTech Connect (OSTI)

    M.A. Jaworski, et. al.

    2013-03-07

    The scrape-off layer plasma at the tokamak region is characterized by open field lines and often contains large variations in plasma properties along these field-lines. Proper characterization of local plasma conditions is critical to assessing plasma-material interaction processes occuring at the target. Langmuir probes are frequently employed in tokamak divertors but are challenging to interpretation. A kinetic interpretation for Langmuir probes in NSTX has yielded non-Maxwellian electron distributions in the divertor characterized by cool bulk populations and energetic tail populations with temperatures of 2-4 times the bulk. Spectroscopic analysis and modeling confirms the bulk plasma temperature and density which can only be obtained with the kinetic interpretation

  7. Ahmed Diallo | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ahmed Diallo Staff Research Physicist Ahmed Diallo is leader of the pedestal structure and control topical science group of the National Spherical Torus Experiment-Upgrade (NSTX-U) and is a recipient of a DOE Early Career award. He is developing a fast burst laser system to investigate the dynamics of the pedestal as well as to control it. He has contributed to the upgrade of the Thomson scattering diagnostic system in preparation for the NSTX-U, and has participated in the operation of the NSTX

  8. Major Milestone: PPPL completes first quadrant of the heart of the National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spherical Torus Experiment Upgrade | Princeton Plasma Physics Lab Major Milestone: PPPL completes first quadrant of the heart of the National Spherical Torus Experiment Upgrade By John Greenwald March 18, 2013 Tweet Widget Google Plus One Share on Facebook Mission accomplished: The completed first section of the NSTX-U center stack capped months of demanding preparations and close teamwork. (Photo by Elle Starkman, PPPL Office of Communications) Mission accomplished: The completed first

  9. Construction completed, PPPL is set to resume world-class fusion research |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Construction completed, PPPL is set to resume world-class fusion research By John Greenwald September 25, 2015 Tweet Widget Google Plus One Share on Facebook Staffers who worked on the National Spherical Torus Experiment-Upgrade. (Photo by Elle Starkman/Office of Communications) Staffers who worked on the National Spherical Torus Experiment-Upgrade. Gallery: Technicians inspect the new center stack that forms the heart of the NSTX-U. (Photo by PPPL) Technicians

  10. Builders and Users | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Builders and Users Constructing the National Spherical Torus Experiment Upgrade took years of detailed planning and oversight. The team in charge brought decades of experience to the task, working together to make the $94 million upgrade a reality. Publication File: PDF icon NSTX-U_presskit_print_Builders-Users

  11. NSTX presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... particles away from boundaries For a 5 Tesla magnetic field, 100 million C plasma 1-2 ... particles away from boundaries For a 5 Tesla magnetic field, 100 million C plasma 1-2 ...

  12. Numerical simulation of torus breakdown to chaos in an atmospheric-pressure dielectric barrier discharge

    SciTech Connect (OSTI)

    Zhang, J.; Wang, Y. H.; Wang, D. Z. [Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-08-15

    Understanding the routes to chaos occurring in atmospheric-pressure dielectric barrier discharge systems by changing controlling parameters is very important to predict and control the dynamical behaviors. In this paper, a route of a quasiperiodic torus to chaos via the strange nonchaotic attractor is observed in an atmospheric-pressure dielectric barrier discharge driven by triangle-wave voltage. By increasing the driving frequency, the discharge system first bifurcates to a quasiperiodic torus from a stable single periodic state, and then torus and phase-locking periodic state appear and disappear alternately. In the meantime, the torus becomes increasingly wrinkling and stretching, and gradually approaches a fractal structure with the nonpositive largest Lyapunov exponent, i.e., a strange nonchaotic attractor. After that, the discharge system enters into chaotic state. If the driving frequency is further increased, another well known route of period-doubling bifurcation to chaos is also observed.

  13. Time-dependent analysis of visible helium line-ratios for electron temperature and density diagnostic using synthetic simulations on NSTX-U

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Muñoz Burgos, J. M.; Barbui, T.; Schmitz, O.; Stutman, D.; Tritz, K.

    2016-07-11

    Helium line-ratios for electron temperature (Te) and density (ne) plasma diagnostic in the Scrape-Off-Layer (SOL) and Edge regions of tokamaks are widely used. Due to their intensities and proximity of wavelengths, the singlet 667.8 and 728.1 nm, and triplet 706.5 nm visible lines have been typically preferred. Time-dependency of the triplet line (706.5 nm) has been previously analyzed in detail by including transient effects on line-ratios during gas-puff diagnostic applications. In this work, several line-ratio combinations within each of the two spin systems are analyzed with the purpose of eliminating transient effects to extend the application of this powerful diagnosticmore » to high temporal resolution characterization of plasmas. The analysis is done using synthetic emission modeling and diagnostic for low electron density NSTX SOL plasma conditions by several visible lines. Quasi-static equilibrium, and time-dependent models are employed to evaluate transient effects of the atomic population levels that may affect the derived electron temperatures and densities as the helium gas-puff penetrates the plasma. Ultimately, the analysis of a wider range of spectral lines will help to extend this powerful diagnostic to experiments where the wavelength range of the measured spectra may be constrained either by limitations of the spectrometer, or by other conflicting lines from different ions.« less

  14. An In-situ materials analysis particle probe (MAPP) diagnostic to study particle density control and hydrogenic fuel retention in NSTX

    SciTech Connect (OSTI)

    Allain, Jean-Paul

    2014-09-05

    A new materials analysis particle probe (MAPP) was designed, constructed and tested to develop understanding of particle control and hydrogenic fuel retention in lithium-based plasma-facing surfaces in NSTX. The novel feature of MAPP is an in-situ tool to probe the divertor NSTX floor during LLD and lithium-coating shots with subsequent transport to a post-exposure in-vacuo surface analysis chamber to measure D retention. In addition, the implications of a lithiated graphite-dominated plasma-surface environment in NSTX on LLD performance, operation and ultimately hydrogenic pumping and particle control capability are investigated in this proposal. MAPP will be an invaluable tool for erosion/redeposition simulation code validation.

  15. Low energy ion distribution measurements in Madison Symmetric Torus plasmas

    SciTech Connect (OSTI)

    Titus, J. B. Mezonlin, E. D.; Johnson, J. A.

    2014-06-15

    Charge-exchange neutrals contain information about the contents of a plasma and can be detected as they escape confinement. The Florida A and M University compact neutral particle analyzer (CNPA), used to measure the contents of neutral particle flux, has been reconfigured, calibrated, and installed on the Madison Symmetric Torus (MST) for high temperature deuterium plasmas. The energy range of the CNPA has been extended to cover 0.34–5.2 keV through an upgrade of the 25 detection channels. The CNPA has been used on all types of MST plasmas at a rate of 20 kHz throughout the entire discharge (∼70 ms). Plasma parameter scans show that the ion distribution is most dependent on the plasma current. Magnetic reconnection events throughout these scans produce stronger poloidal electric fields, stronger global magnetic modes, and larger changes in magnetic energy all of which heavily influence the non-Maxwellian part of the ion distribution (the fast ion tail)

  16. Ideal magnetohydrodynamic equilibrium in a non-symmetric topological torus

    SciTech Connect (OSTI)

    Weitzner, Harold

    2014-02-15

    An alternative representation of an ideal magnetohydrodynamic equilibrium is developed. The representation is a variation of one given by A. Salat, Phys. Plasmas 2, 1652 (1995). The system of equations is used to study the possibility of non-symmetric equilibria in a topological torus, here an approximate rectangular parallelopiped, with periodicity in two of the three rectangular coordinates. An expansion is carried out in the deviation of pressure surfaces from planes. Resonances are manifest in the process. Nonetheless, provided the magnetic shear is small, it is shown that it is possible to select the magnetic fields and flux surfaces in such a manner that no singularities appear on resonant surfaces. One boundary surface of the parallelopiped is not arbitrary but is dependent on the equilibrium in question. A comparison of the solution sets of axisymmetric and non-axisymmetric equilibria suggests that the latter have a wider class of possible boundary shapes but more restrictive rotational transform profiles. No proof of convergence of the series is given.

  17. Implementation of the 3D edge plasma code EMC3-EIRENE on NSTX

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lore, J. D.; Canik, J. M.; Feng, Y.; Ahn, J. -W.; Maingi, R.; Soukhanovskii, V.

    2012-05-09

    The 3D edge transport code EMC3-EIRENE has been applied for the first time to the NSTX spherical tokamak. A new disconnected double null grid has been developed to allow the simulation of plasma where the radial separation of the inner and outer separatrix is less than characteristic widths (e.g. heat flux width) at the midplane. Modelling results are presented for both an axisymmetric case and a case where 3D magnetic field is applied in an n = 3 configuration. In the vacuum approximation, the perturbed field consists of a wide region of destroyed flux surfaces and helical lobes which aremore » a mixture of long and short connection length field lines formed by the separatrix manifolds. This structure is reflected in coupled 3D plasma fluid (EMC3) and kinetic neutral particle (EIRENE) simulations. The helical lobes extending inside of the unperturbed separatrix are filled in by hot plasma from the core. The intersection of the lobes with the divertor results in a striated flux footprint pattern on the target plates. As a result, profiles of divertor heat and particle fluxes are compared with experimental data, and possible sources of discrepancy are discussed.« less

  18. Turbulent transport in the Madison Symmetric Torus reversed-field pinch

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transport in the Madison Symmetric Torus reversed-field pinch* T. D. Rempel,+ A. F. Almagri, S. Assadi, D. J. Den Hartog, S. A. Hokin, S. C. Prager, J. S. Sarff, W. Shen, K. L. Sidikman, C. W. Spragins, J. C. Sprott, M. R. Stoneking, and E. J. Zita University of Wisconsin, Madison, Wisconsin 53 706 (Received 22 November 1991; accepted 20 February 1992) Measurements of edge turbulence and the associated transport are ongoing in the Madison Symmetric Torus (MST) reversed-field pinch [Fusion

  19. FMEA on the superconducting torus for the Jefferson Lab 12 GeV accelerator upgrade

    SciTech Connect (OSTI)

    Ghoshal, Probir K.; Biallas, George H.; Fair, Ruben J.; Rajput-Ghoshal, Renuka; Schneider, William J.; Legg, Robert A.; Kashy, David H.; Hogan, John P.; Wiseman, Mark A.; Luongo, Cesar; Ballard, Joshua T.; Young, Glenn R.; Elouadrhiri, Latifa; Rode, Claus H.

    2015-01-16

    As part of the Jefferson Lab 12GeV accelerator upgrade project, Hall B requires two conduction cooled superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration and the second is an actively shielded solenoidal magnet system consisting of 5 coils. Both magnets are to be wound with Superconducting Super Collider-36 NbTi strand Rutherford cable soldered into a copper channel. This paper describes the various failure modes in torus magnet along with the failure modes that could be experienced by the torus and its interaction with the solenoid which is located in close proximity.

  20. Predictions of VRF on a Langmuir Probe under the RF Heating Spiral on the Divertor Floor on NSTX-U

    SciTech Connect (OSTI)

    Hosea, J C; Perkins, R J; Jaworski, M A; Kramer, G J; Ahn, J-W

    2014-07-01

    RF heating deposition spirals are observed on the divertor plates on NSTX as shown in for a NB plus RF heating case. It has been shown that the RF spiral is tracked quite well by the spiral mapping of the strike points on the divertor plate of magnetic field lines passing in front of the high harmonic fast wave (HHFW) antenna on NSTX. Indeed, both current instrumented tiles and Langmuir probes respond to the spiral when it is positioned over them. In particular, a positive increment in tile current (collection of electrons) is obtained when the spiral is over the tile. This current can be due to RF rectification and/or RF heating of the scrape off layer (SOL) plasma along the magnetic field lines passing in front of the the HHFW antenna. It is important to determine quantitatively the relative contributions of these processes. Here we explore the properties of the characteristics of probes on the lower divertor plate to determine the likelyhood that the primary cause of the RF heat deposition is RF rectification.

  1. Magnetohydrodynamic modes analysis and control of Fusion Advanced Studies Torus high-current scenarios

    SciTech Connect (OSTI)

    Villone, F.; Mastrostefano, S.; Calabrò, G.; Vlad, G.; Crisanti, F.; Fusco, V.; Marchiori, G.; Bolzonella, T.; Marrelli, L.; Martin, P.; Liu, Y. Q.

    2014-08-15

    One of the main FAST (Fusion Advanced Studies Torus) goals is to have a flexible experiment capable to test tools and scenarios for safe and reliable tokamak operation, in order to support ITER and help the final DEMO design. In particular, in this paper, we focus on operation close to a possible border of stability related to low-q operation. To this purpose, a new FAST scenario has then been designed at I{sub p} = 10 MA, B{sub T} = 8.5 T, q{sub 95} ≈ 2.3. Transport simulations, carried out by using the code JETTO and the first principle transport model GLF23, indicate that, under these conditions, FAST could achieve an equivalent Q ≈ 3.5. FAST will be equipped with a set of internal active coils for feedback control, which will produce magnetic perturbation with toroidal number n = 1 or n = 2. Magnetohydrodynamic (MHD) mode analysis and feedback control simulations performed with the codes MARS, MARS-F, CarMa (both assuming the presence of a perfect conductive wall and using the exact 3D resistive wall structure) show the possibility of the FAST conductive structures to stabilize n = 1 ideal modes. This leaves therefore room for active mitigation of the resistive mode (down to a characteristic time of 1 ms) for safety purposes, i.e., to avoid dangerous MHD-driven plasma disruption, when working close to the machine limits and magnetic and kinetic energy density not far from reactor values.

  2. Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiments - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  3. Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE Experiment September, 2002 SeptemMyungkee Sung (LSU/MiniBooNE) 4th International Workshop on the Identification of Dark Matter Cosmologically Interesting Region; Hot Dark Matter? LSND Signal at High ∆m 2 KARMEN II narrowed the signal region MiniBooNE will fully address this signal. Neutrino Osillation at High ∆m 2 LSND: Searching for ν µ →ν e ν µ - From µ + decay at rest with endpoint energy 53 MeV L = 30m, L/E ~ 1m/MeV, 167 tons of Mineral Oil Look for ν e Appearance: ν

  4. Understanding ion cyclotron harmonic fast wave heating losses in the scrape off layer of tokamak plasmas

    SciTech Connect (OSTI)

    Bertelli, N; Jaeger, E F; Hosea, J C; Phillips, C K; Berry, L; Bonoli, P T; Gerhardt, S P; Green, D; LeBlanc, B; Perkins, R J; Ryan, P M; Taylor, G; Valeo, E J; Wilso, J R; Wright, J C

    2014-07-01

    Fast waves at harmonics of the ion cyclotron frequency, which have been used successfully on National Spherical Torus Experiment (NSTX), will also play an important role in ITER and are a promising candidate for the Fusion Nuclear Science Facility (FNSF) designs based on spherical torus (ST). Experimental studies of high harmonic fast waves (HHFW) heating on the NSTX have demonstrated that substantial HHFW power loss occurs along the open field lines in the scrape-off layer (SOL), but the mechanism behind the loss is not yet understood. The full wave RF code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain, is applied to specific NSTX discharges in order to predict the effects and possible causes of this power loss. In the studies discussed here, a collisional damping parameter has been implemented in AORSA as a proxy to represent the real, and most likely nonlinear, damping processes. A prediction for the NSTX Upgrade (NSTX-U) experiment, that will begin operation next year, is also presented, indicating a favorable condition for the experiment due to a wider evanescent region in edge density.*Research supported by the U.S. DOE under Contract No. DE-AC02-09CH11466 with Princeton University.

  5. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News RSS Feed September 2, 2016 PPPL intern creates software for snapshot of plasma in NSTX-U By Jeanne Jackson DeVoe Max Wallace, a Community College intern from Laney College in Oakland, California, shows fellow intern Priya Jaglal a poster on his research during a student poster session at PPPL on Aug. 10. Wallace developed software to allow scientists to get a quick snapshot of experiments on the National Spherical Torus Experiment-Upgrade (NSTX-U). When most of today's college interns were

  6. Numerical study of the Columbia high-beta device: Torus-II

    SciTech Connect (OSTI)

    Izzo, R.

    1981-01-01

    The ionization, heating and subsequent long-time-scale behavior of the helium plasma in the Columbia fusion device, Torus-II, is studied. The purpose of this work is to perform numerical simulations while maintaining a high level of interaction with experimentalists. The device is operated as a toroidal z-pinch to prepare the gas for heating. This ionization of helium is studied using a zero-dimensional, two-fluid code. It is essentially an energy balance calculation that follows the development of the various charge states of the helium and any impurities (primarily silicon and oxygen) that are present. The code is an atomic physics model of Torus-II. In addition to ionization, we include three-body and radiative recombination processes.

  7. 3D Torus Routing Engine Module for OFA OpenSM v. 1.0

    Energy Science and Technology Software Center (OSTI)

    2009-11-12

    This OpenFabrics Alliance (OFA) OpenSM routing engine module provides credit-loop-free routing while supporting two quality of service (QoS) levels for an InfiniBand fabric with a 3D torus topology. In addition it is able to route around multiple failed fabric links or a single failed fabric switch without introducing credit loops, and without changing path Service Level (SL) values granted before the failure.This OFA OpenSM routing engine module improves the operational characteristics of a parallel computermore » built using an InfiniBand fabric with a 3D torus topology. By providing two QoS levels, it allows system administrators to prevent application interprocess communication and file system communication from impacting each other. By providing the capability to route traffic around failed fabric components, it enables repair of failed components without impacting jobs running on the computer system.« less

  8. FMEA on the superconducting torus for the Jefferson Lab 12 GeV accelerator upgrade

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ghoshal, Probir K.; Biallas, George H.; Fair, Ruben J.; Rajput-Ghoshal, Renuka; Schneider, William J.; Legg, Robert A.; Kashy, David H.; Hogan, John P.; Wiseman, Mark A.; Luongo, Cesar; et al

    2015-01-16

    As part of the Jefferson Lab 12GeV accelerator upgrade project, Hall B requires two conduction cooled superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration and the second is an actively shielded solenoidal magnet system consisting of 5 coils. Both magnets are to be wound with Superconducting Super Collider-36 NbTi strand Rutherford cable soldered into a copper channel. This paper describes the various failure modes in torus magnet along with the failure modes that could be experienced by the torus and its interaction with the solenoid which is located inmore » close proximity.« less

  9. Reduced model prediction of electron temperature profiles in...

    Office of Scientific and Technical Information (OSTI)

    FUSION TECHNOLOGY Confinement; H-mode Plasma Confinement; Spherical Torus; Spherical Tokamak; Stability, Microinstability; Tokamaks, NSTX; Transport Phenomena Word Cloud More...

  10. Summary of TFTR (Tokamak Fusion Test Reactor) diagnostics, including JET (Joint European Torus) and JT-60

    SciTech Connect (OSTI)

    Hill, K.W.; Young, K.M.; Johnson, L.C.

    1990-05-01

    The diagnostic instrumentation on TFTR (Tokamak Fusion Test Reactor) and the specific properties of each diagnostic, i.e., number of channels, time resolution, wavelength range, etc., are summarized in tables, grouped according to the plasma parameter measured. For comparison, the equivalent diagnostic capabilities of JET (Joint European Torus) and the Japanese large tokamak, JT-60, as of late 1987 are also listed in the tables. Extensive references are given to publications on each instrument.

  11. Tomographic analysis of neutron and gamma pulse shape distributions from liquid scintillation detectors at Joint European Torus

    SciTech Connect (OSTI)

    Giacomelli, L.; Department of Physics, Universit degli Studi di Milano-Bicocca, Milano ; Conroy, S.; Department of Physics and Astronomy, Uppsala University, Uppsala ; Gorini, G.; Horton, L.; Murari, A.; Popovichev, S.; Syme, D. B.

    2014-02-15

    The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world devoted to nuclear fusion experiments of magnetic confined Deuterium (D)/Deuterium-Tritium (DT) plasmas. Neutrons produced in these plasmas are measured using various types of neutron detectors and spectrometers. Two of these instruments on JET make use of organic liquid scintillator detectors. The neutron emission profile monitor implements 19 liquid scintillation counters to detect the 2.45 MeV neutron emission from D plasmas. A new compact neutron spectrometer is operational at JET since 2010 to measure the neutron energy spectra from both D and DT plasmas. Liquid scintillation detectors are sensitive to both neutron and gamma radiation but give light responses of different decay time such that pulse shape discrimination techniques can be applied to identify the neutron contribution of interest from the data. The most common technique consists of integrating the radiation pulse shapes within different ranges of their rising and/or trailing edges. In this article, a step forward in this type of analysis is presented. The method applies a tomographic analysis of the 3-dimensional neutron and gamma pulse shape and pulse height distribution data obtained from liquid scintillation detectors such that n/? discrimination can be improved to lower energies and additional information can be gained on neutron contributions to the gamma events and vice versa.

  12. A Star on Earth

    ScienceCinema (OSTI)

    Prager, Stewart; Zwicker, Andrew; Hammet, Greg; Tresemer, Kelsey; Diallo, Ahmed

    2014-06-06

    At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: create a star on Earth. The National Spherical Torus Experiment (NSTX) is a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which, under the right conditions, nuclear fusion will occur. Fusion is the energy source of the sun and all of the stars. Not just limited to theoretical work, the NSTX is enabling cutting-edge research to develop fusion as a future energy source.

  13. A Star on Earth

    SciTech Connect (OSTI)

    Prager, Stewart; Zwicker, Andrew; Hammet, Greg; Tresemer, Kelsey; Diallo, Ahmed

    2014-03-05

    At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: create a star on Earth. The National Spherical Torus Experiment (NSTX) is a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which, under the right conditions, nuclear fusion will occur. Fusion is the energy source of the sun and all of the stars. Not just limited to theoretical work, the NSTX is enabling cutting-edge research to develop fusion as a future energy source.

  14. Observations of Improved Stability and Confinement in a High-{beta} Self-Organized Spherical-Torus-Like Field-Reversed Configuration

    SciTech Connect (OSTI)

    Guo, H.Y.; Hoffman, A.L.; Steinhauer, L.C.; Miller, K.E.

    2005-10-21

    An extremely high-{beta} (over 85%) self-organized field-reversed configuration (FRC) with a spherical-torus- (ST-)like core is produced in the translation, confinement, and sustainment experiment by highly super-Alfvenic translation of a spheromaklike plasmoid. Substantial flux conversion from toroidal into poloidal occurs during the capture process, resulting in the ST-like core. This plasma state exhibits a remarkable stabilizing property for the ubiquitous n=2 centrifugally driven interchange modes present in {theta}-pinch formed FRCs. This is explained, for the first time, by a simple model taking into account magnetic shear and centrifugal effects. The FRC-ST configuration has up to 4 times improvement in flux confinement times over the scaling of conventional {theta}-pinch formed FRCs and, thus, a significant improvement in the resistivity and transport.

  15. Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.

    2015-10-15

    Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E x B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transportmore » that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs ~ 0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E x B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E x B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Furthermore, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport in

  16. TORUS AND ACTIVE GALACTIC NUCLEUS PROPERTIES OF NEARBY SEYFERT GALAXIES: RESULTS FROM FITTING INFRARED SPECTRAL ENERGY DISTRIBUTIONS AND SPECTROSCOPY

    SciTech Connect (OSTI)

    Alonso-Herrero, Almudena; Ramos Almeida, Cristina; Mason, Rachel; Asensio Ramos, Andres; Rodriguez Espinosa, Jose Miguel; Perez-Garcia, Ana M.; Roche, Patrick F.; Levenson, Nancy A.; Elitzur, Moshe; Packham, Christopher; Young, Stuart; Diaz-Santos, Tanio

    2011-08-01

    We used the CLUMPY torus models and a Bayesian approach to fit the infrared spectral energy distributions and ground-based high angular resolution mid-infrared spectroscopy of 13 nearby Seyfert galaxies. This allowed us to put tight constraints on torus model parameters such as the viewing angle i, the radial thickness of the torus Y, the angular size of the cloud distribution {sigma}{sub torus}, and the average number of clouds along radial equatorial rays N{sub 0}. We found that the viewing angle i is not the only parameter controlling the classification of a galaxy into type 1 or type 2. In principle, type 2s could be viewed at any viewing angle i as long as there is one cloud along the line of sight. A more relevant quantity for clumpy media is the probability for an active galactic nucleus (AGN) photon to escape unabsorbed. In our sample, type 1s have relatively high escape probabilities, P{sub esc} {approx} 12%-44%, while type 2s, as expected, tend to have very low escape probabilities. Our fits also confirmed that the tori of Seyfert galaxies are compact with torus model radii in the range 1-6 pc. The scaling of the models to the data also provided the AGN bolometric luminosities L{sub bol}(AGN), which were found to be in good agreement with estimates from the literature. When we combined our sample of Seyfert galaxies with a sample of PG quasars from the literature to span a range of L{sub bol}(AGN) {approx} 10{sup 43}-10{sup 47} erg s{sup -1}, we found plausible evidence of the receding torus. That is, there is a tendency for the torus geometrical covering factor to be lower (f{sub 2} {approx} 0.1-0.3) at high AGN luminosities than at low AGN luminosities (f{sub 2} {approx} 0.9-1 at {approx}10{sup 43}-10{sup 44} erg s{sup -1}). This is because at low AGN luminosities the tori appear to have wider angular sizes (larger {sigma}{sub torus}) and more clouds along radial equatorial rays. We cannot, however, rule out the possibility that this is due to

  17. News Archive | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archive Subscribe to Princeton Plasma Physics Laboratory News September 2, 2016 PPPL intern creates software for snapshot of plasma in NSTX-U By Jeanne Jackson DeVoe Max Wallace, a Community College intern from Laney College in Oakland, California, shows fellow intern Priya Jaglal a poster on his research during a student poster session at PPPL on Aug. 10. Wallace developed software to allow scientists to get a quick snapshot of experiments on the National Spherical Torus Experiment-Upgrade

  18. Experimental Fusion Research | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Fusion Research PPPL fusion research centers on the National Spherical Torus Experiment (NSTX), which is undergoing a $94 million upgrade that will make it the most powerful experimental fusion facility, or tokamak, of its type in the world when work is completed in 2014. Experiments will test the ability of the upgraded spherical facility to maintain a high-performance plasma under conditions of extreme heat and power. Results could strongly influence the design of future fusion

  19. Magnetic reconstruction of nonaxisymmetric quasi-single-helicity configurations in the Madison Symmetric Torus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reconstruction of nonaxisymmetric quasi-single-helicity configurations in the Madison Symmetric Torus This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2011 Plasma Phys. Control. Fusion 53 105006 (http://iopscience.iop.org/0741-3335/53/10/105006) Download details: IP Address: 128.104.166.218 The article was downloaded on 15/04/2013 at 17:18 Please note that terms and conditions apply. View the table of contents for this issue, or go to the journal

  20. Nonlinear coupling of tearing fluctuations in the Madison Symmetric Torus<atother>@f|</atother>

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coupling of tearing fluctuations in the Madison Symmetric Torus* J. S. Sarff,? S. Assadi,a) A. F. Almagri, M. Cekic, D. J. Den Hat-tog, G. Fiksel, S. A. Hokin, H. Ji, S. C. Prager, W. Shen, K. L. Sidikman,b) and M. R. Stoneking University of Wisconsin, Madison, Wisconsin 53 706 (Received 9 December 1992; accepted 21 December 1992) Three-wave, nonlinear, tearing mode coupling has been measured in the Madison Symmetric Torus (MST) reversed-field pinch (RFP) [Fusion Technol. 19, 131 ( 1991)] using

  1. TORUS: Theory of Reactions for Unstable iSotopes - Year 1 Continuation and Progress Report

    SciTech Connect (OSTI)

    Arbanas, G; Elster, C; Escher, J; Mukhamedzhanov, A; Nunes, F; Thompson, I J

    2011-02-24

    The TORUS collaboration derives its name from the research it focuses on, namely the Theory of Reactions for Unstable iSotopes. It is a Topical Collaboration in Nuclear Theory, and funded by the Nuclear Theory Division of the Office of Nuclear Physics in the Office of Science of the Department of Energy. The funding started on June 1, 2010, it will have been running for nine months by the date of submission of this Annual Continuation and Progress Report on March 1, 2011. The extent of funding was reduced from the original application, and now supports one postdoctoral researcher for the years 1 through 3. The collaboration brings together as Principal Investigators a large fraction of the nuclear reaction theorists currently active within the USA. The mission of the TORUS Topical Collaboration is to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct-reaction calculations, and, by using a new partial-fusion theory, to integrate descriptions of direct and compound-nucleus reactions. This multi-institution collaborative effort is directly relevant to three areas of interest: the properties of nuclei far from stability; microscopic studies of nuclear input parameters for astrophysics, and microscopic nuclear reaction theory.

  2. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Fusion Energy Sciences (FES) FES Home About Research Facilities User Facilities DIII-D National Fusion Facility (DIII-D) National Spherical Torus Experiment (NSTX) Alcator C-Mod ITER External link Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F:

  3. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Major next steps for fusion energy based on the spherical tokamak design Click on an image below to view the high resolution image. Then right click on the image and select "Save Image" or "Save Image As..." Test cell of the National Spherical Torus Experiment-Upgrade with tokamak in the center. Physicist Jonathan Menard. Center stack of the NSTX-U. Mega Ampere Spherical Tokamak. Photo courtesy of Culham Centre for Fusion Energy.

  4. Creating a Star on Earth | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Star on Earth Creating a Star on Earth March 5, 2014 - 11:45am Addthis In the video above, learn how scientists at the Princeton Plasma Physics Lab are creating a star on Earth in the National Spherical Torus Experiment (NSTX), a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas. | Video by Matty Greene, Energy Department. Ben Dotson Ben Dotson Former Project Coordinator for Digital Reform, Office of Public Affairs Matty Greene Matty Greene

  5. Cummins Corporate Energy Management | Department of Energy

    Energy Savers [EERE]

    Creating a Star on Earth Creating a Star on Earth March 5, 2014 - 11:45am Addthis In the video above, learn how scientists at the Princeton Plasma Physics Lab are creating a star on Earth in the National Spherical Torus Experiment (NSTX), a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas. | Video by Matty Greene, Energy Department. Ben Dotson Ben Dotson Former Project Coordinator for Digital Reform, Office of Public Affairs Matty Greene Matty

  6. DIII-D National Fusion Facility (DIII-D) | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DIII-D National Fusion Facility (DIII-D) Fusion Energy Sciences (FES) FES Home About Research Facilities User Facilities DIII-D National Fusion Facility (DIII-D) National Spherical Torus Experiment (NSTX) Alcator C-Mod ITER External link Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington,

  7. Electromagnetic Transport From Microtearing Mode Turbulence

    SciTech Connect (OSTI)

    Guttenfelder, W; Kaye, S M; Nevins, W M; Wang, E; Bell, R E; Hammett, G W; LeBlanc, B P; Mikkelsen, D R

    2011-03-23

    This Letter presents non-linear gyrokinetic simulations of microtearing mode turbulence. The simulations include collisional and electromagnetic effects and use experimental parameters from a high beta discharge in the National Spherical Torus Experiment (NSTX). The predicted electron thermal transport is comparable to that given by experimental analysis, and it is dominated by the electromagnetic contribution of electrons free streaming along the resulting stochastic magnetic field line trajectories. Experimental values of flow shear can significantly reduce the predicted transport.

  8. Quest Magazine Summer 2016 | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quest Magazine Summer 2016 It is my pleasure to welcome readers to the fourth annual edition of Quest, the Laboratory's research magazine. Research has begun full bore on the National Spherical Torus Experiment-Upgrade (NSTX-U), our flagship fusion facility, whose construction was completed in 2015 after nearly four years of building and a cost of $94 million. Image: Quest 2016 Publication File: PDF icon Quest Magazine Summer 2016 Publication Type: Quest

  9. Alcator C-Mod | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alcator C-Mod Fusion Energy Sciences (FES) FES Home About Research Facilities User Facilities DIII-D National Fusion Facility (DIII-D) National Spherical Torus Experiment (NSTX) Alcator C-Mod ITER External link Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941

  10. Fast-wave Power Flow Along SOL Field Lines In NSTX nd The Associated Power Deposition Profile Across The SOL In Front Of The Antenna

    SciTech Connect (OSTI)

    Perkins, Roy

    2013-06-21

    Fast-wave heating and current drive efficiencies can be reduced by a number of processes in the vicinity of the antenna and in the scrape off layer (SOL). On NSTX from around 25% to more than 60% of the high-harmonic fast-wave power can be lost to the SOL regions, and a large part of this lost power flows along SOL magnetic field lines and is deposited in bright spirals on the divertor floor and ceiling. We show that field-line mapping matches the location of heat deposition on the lower divertor, albeit with a portion of the heat outside of the predictions. The field-line mapping can then be used to partially reconstruct the profile of lost fast-wave power at the midplane in front of the antenna, and the losses peak close to the last closed flux surface (LCFS) as well as the antenna. This profile suggests a radial standing-wave pattern formed by fast-wave propagation in the SOL, and this hypothesis will be tested on NSTX-U. Advanced RF codes must reproduce these results so that such codes can be used to understand this edge loss and to minimize RF heat deposition and erosion in the divertor region on ITER.

  11. Reverberation measurements of the inner radius of the dust torus in 17 Seyfert galaxies

    SciTech Connect (OSTI)

    Koshida, Shintaro; Minezaki, Takeo; Yoshii, Yuzuru; Sakata, Yu; Sugawara, Shota; Kobayashi, Yukiyasu; Suganuma, Masahiro; Enya, Keigo; Tomita, Hiroyuki; Aoki, Tsutomu; Peterson, Bruce A. E-mail: minezaki@ioa.s.u-tokyo.ac.jp

    2014-06-20

    We present the results of a dust reverberation survey for 17 nearby Seyfert 1 galaxies, which provides the largest homogeneous data collection for the radius of the innermost dust torus. A delayed response of the K-band light curve after the V-band light curve was found for all targets, and 49 measurements of lag times between the flux variation of the dust emission in the K band and that of the optical continuum emission in the V band were obtained by the cross-correlation function analysis and also by an alternative method for estimating the maximum likelihood lag. The lag times strongly correlated with the optical luminosity in the luminosity range of M{sub V} = –16 to –22 mag, and the regression analysis was performed to obtain the correlation log Δt (days) = –2.11 – 0.2 M{sub V} assuming Δt∝L {sup 0.5}, which was theoretically expected. We discuss the possible origins of the intrinsic scatter of the dust lag-luminosity correlation, which was estimated to be approximately 0.13 dex, and we find that the difference of internal extinction and delayed response of changes in lag times to the flux variations could have partly contributed to intrinsic scatter. However, we could not detect any systematic change of the correlation with the subclass of the Seyfert type or the Eddington ratio. Finally, we compare the dust reverberation radius with the near-infrared interferometric radius of the dust torus and the reverberation radius of broad Balmer emission lines. The interferometric radius in the K band was found to be systematically larger than the dust reverberation radius in the same band by the about a factor of two, which could be interpreted by the difference between the flux-weighted radius and response-weighted radius of the innermost dust torus. The reverberation radius of the broad Balmer emission lines was found to be systematically smaller than the dust reverberation radius by about a factor of four to five, which strongly supports the unified

  12. Observational evidence of torus instability as trigger mechanism for coronal mass ejections: The 2011 August 4 filament eruption

    SciTech Connect (OSTI)

    Zuccarello, F. P.; Poedts, S.; Seaton, D. B.; Mierla, M.; Rachmeler, L. A.; Romano, P.; Zuccarello, F. E-mail: Stefaan.Poedts@wis.kuleuven.be E-mail: marilena@oma.be E-mail: Paolo.Romano@oact.inaf.it

    2014-04-20

    Solar filaments are magnetic structures often observed in the solar atmosphere and consist of plasma that is cooler and denser than their surroundings. They are visible for dayseven weekswhich suggests that they are often in equilibrium with their environment before disappearing or erupting. Several eruption models have been proposed that aim to reveal what mechanism causes (or triggers) these solar eruptions. Validating these models through observations represents a fundamental step in our understanding of solar eruptions. We present an analysis of the observation of a filament eruption that agrees with the torus instability model. This model predicts that a magnetic flux rope embedded in an ambient field undergoes an eruption when the axis of the flux rope reaches a critical height that depends on the topology of the ambient field. We use the two vantage points of the Solar Dynamics Observatory (SDO) and the Solar TErrestrial RElations Observatory to reconstruct the three-dimensional shape of the filament, to follow its morphological evolution, and to determine its height just before eruption. The magnetograms acquired by SDO/Helioseismic and Magnetic Imager are used to infer the topology of the ambient field and to derive the critical height for the onset of the torus instability. Our analysis shows that the torus instability is the trigger of the eruption. We also find that some pre-eruptive processes, such as magnetic reconnection during the observed flares and flux cancellation at the neutral line, facilitated the eruption by bringing the filament to a region where the magnetic field was more vulnerable to the torus instability.

  13. Resonant-like behaviour during edge-localised mode cycles in the Joint European Torus

    SciTech Connect (OSTI)

    Webster, A. J.; Morris, J.; Todd, T. N.; Coad, P.; Brezinsek, S.; Likonen, J.; Rubel, M.; Collaboration: JET-EFDA Contributors

    2015-08-15

    A unique sequence of 120 almost identical plasmas in the Joint European Torus (JET) recently provided two orders of magnitude more statistically equivalent data than ever previously available. The purpose was to study movement of eroded plasma-facing material from JET's new Beryllium wall, but it has allowed the statistical detection of otherwise unobservable phenomenon. This includes a sequence of resonant-like waiting times between edge-localised plasma instabilities (ELMs), instabilities that must be mitigated or avoided in large magnetically confined plasmas such as those planned for ITER. Here, we investigate the cause of this phenomenon, using the unprecedented quantity of data to produce a detailed picture of the plasma's behaviour. After combining the data, oscillations are clearly observable in the plasma's vertical position, in edge losses of ions, and in Beryllium II (527 nm) light emissions. The oscillations are unexpected, are not obvious in data from a single pulse alone, and are all clearly correlated with each other. They are likely to be caused by a small vertical oscillation that the plasma control system is not reacting to prevent, but a more complex explanation is possible. The clearly observable but unexpected link between small changes in the plasma's position and changes to edge-plasma transport and stability suggest that these characteristics cannot always be studied in isolation. It also suggests new opportunities for ELM mitigation and control that may exist.

  14. Simulation of non-resonant internal kink mode with toroidal rotation in the National Spherical Torus Experiment

    SciTech Connect (OSTI)

    Wang, Feng; Liu, J. Y. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Fu, G. Y.; Breslau, J. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Tritz, Kevin [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States)] [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2013-07-15

    Plasmas in spherical and conventional tokamaks, with weakly reversed shear q profile and minimum q above but close to unity, are susceptible to an non-resonant (m,n) = (1,1) internal kink mode. This mode can saturate and persist and can induce a (2,1) seed island for Neoclassical Tearing Mode. [Breslau et al. Nucl. Fusion 51, 063027 (2011)]. The mode can also lead to large energetic particle transport and significant broadening of beam-driven current. Motivated by these important effects, we have carried out extensive nonlinear simulations of the mode with finite toroidal rotation using parameters and profiles of an NTSX plasma with a weakly reversed shear profile. The numerical results show that, at the experimental level, plasma rotation has little effect on either equilibrium or linear stability. However, rotation can significantly influence the nonlinear dynamics of the (1,1) mode and the induced (2,1) magnetic island. The simulation results show that a rotating helical equilibrium is formed and maintained in the nonlinear phase at finite plasma rotation. In contrast, for non-rotating cases, the nonlinear evolution exhibits dynamic oscillations between a quasi-2D state and a helical state. Furthermore, the effects of rotation are found to greatly suppress the (2,1) magnetic island even at a low level.

  15. Elmo Bumpy Torus proof of principle, Phase II: Title 1 report. Volume V. Vacuum-pumping system. Preliminary design report

    SciTech Connect (OSTI)

    Not Available

    1982-02-26

    This report summarizes Title I Preliminary Design of the EBT-P Vacuum Pumping System. The Vacuum Pumping System has been designed by the McDonnell Douglas Astronautics Co. - St. Louis (MDAC). It includes the necessary vacuum pumps and vacuum valves to evacuate the torus, the Mirror Coil Dewars (MC Dewars), and the Gyrotron Magnet Dewars. The pumping ducts, manifolds, and microwave protection system are also included. A summary of the function of each subsystem and a description of its principle components is provided below. The analyses performed during the system design are also identified.

  16. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST) C. M. Jacobson, M. T. Borchardt, D. J. Den Hartog, A. F. Falkowski, L. A. Morton, and M. A. Thomas Citation: Review of Scientific Instruments 87, 11E511 (2016); doi: 10.1063/1.4960063 View online: http://dx.doi.org/10.1063/1.4960063 View Table of Contents: http://scitation.aip.org/content/aip/journal/rsi/87/11?ver=pdfcov Published by the AIP Publishing Articles you may be interested in A

  17. Embedding global barrier and collective in torus network with each node combining input from receivers according to class map for output to senders

    DOE Patents [OSTI]

    Chen, Dong; Coteus, Paul W; Eisley, Noel A; Gara, Alan; Heidelberger, Philip; Senger, Robert M; Salapura, Valentina; Steinmacher-Burow, Burkhard; Sugawara, Yutaka; Takken, Todd E

    2013-08-27

    Embodiments of the invention provide a method, system and computer program product for embedding a global barrier and global interrupt network in a parallel computer system organized as a torus network. The computer system includes a multitude of nodes. In one embodiment, the method comprises taking inputs from a set of receivers of the nodes, dividing the inputs from the receivers into a plurality of classes, combining the inputs of each of the classes to obtain a result, and sending said result to a set of senders of the nodes. Embodiments of the invention provide a method, system and computer program product for embedding a collective network in a parallel computer system organized as a torus network. In one embodiment, the method comprises adding to a torus network a central collective logic to route messages among at least a group of nodes in a tree structure.

  18. Electromagnetic and Mechanical Analysis of the Coil Structure for the CLAS12 Torus for 12 GeV Upgrade

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ghoshal, P. K.; Pastor, O.; Kashy, D.; Schneider, W.; Wiseman, M.; Zarecky, M.; Young, G.; Rode, C.; Elouadrhiri, L.; Burkert, V.

    2014-12-18

    The torus magnet for the CLAS12 spectrometer is a 3.6 T superconducting magnet being designed and built as part of the Jefferson Lab 12 GeV Upgrade. The magnet consists of six coil case assemblies mounted to a cold central hub. The coil case assembly consists of an aluminum case and cover enclosing an epoxy vacuum impregnated coil pack. The coil pack consists of a 117 turn double-pancake winding wrapped with 2 layers of 0.635 mm thick copper cooling sheets. The coil case assembly is cooled by supercritical helium at 4.6 K. This report details the structural analysis of the coilmore » case assembly and the assessment of the coil pack stresses. For the normal operation of the torus magnet, the coil case assembly was analyzed for cool down to 4.6 K and the Lorentz forces at normal operating current. In addition to the normal operating configuration, the coil case assembly was analyzed for Lorentz forces arising from coil misalignment and current imbalances. The allowable stress criteria for the magnet followed the approach of the ASME codes. Primary stresses were limited to the lesser of 2/3 times the yield strength or 1/3 times the ultimate tensile strength. Primary plus secondary stresses were limited to 3 times the primary stress allowable. The analysis was performed using ANSYS Maxwell to calculate the magneto-static loads and ANSYS Mechanical to calculate the stresses.« less

  19. Electromagnetic and Mechanical Analysis of the Coil Structure for the CLAS12 Torus for 12 GeV Upgrade

    SciTech Connect (OSTI)

    Ghoshal, P. K.; Pastor, O.; Kashy, D.; Schneider, W.; Wiseman, M.; Zarecky, M.; Young, G.; Rode, C.; Elouadrhiri, L.; Burkert, V.

    2014-12-18

    The torus magnet for the CLAS12 spectrometer is a 3.6 T superconducting magnet being designed and built as part of the Jefferson Lab 12 GeV Upgrade. The magnet consists of six coil case assemblies mounted to a cold central hub. The coil case assembly consists of an aluminum case and cover enclosing an epoxy vacuum impregnated coil pack. The coil pack consists of a 117 turn double-pancake winding wrapped with 2 layers of 0.635 mm thick copper cooling sheets. The coil case assembly is cooled by supercritical helium at 4.6 K. This report details the structural analysis of the coil case assembly and the assessment of the coil pack stresses. For the normal operation of the torus magnet, the coil case assembly was analyzed for cool down to 4.6 K and the Lorentz forces at normal operating current. In addition to the normal operating configuration, the coil case assembly was analyzed for Lorentz forces arising from coil misalignment and current imbalances. The allowable stress criteria for the magnet followed the approach of the ASME codes. Primary stresses were limited to the lesser of 2/3 times the yield strength or 1/3 times the ultimate tensile strength. Primary plus secondary stresses were limited to 3 times the primary stress allowable. The analysis was performed using ANSYS Maxwell to calculate the magneto-static loads and ANSYS Mechanical to calculate the stresses.

  20. Overview of torus magnet coil production at Fermilab for the Jefferson Lab 12-GeV Hall B upgrade

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Krave, S.; Velev, G.; Makarov, A.; Nobrega, F.; Kiemschies, O.; Robotham, B.; Elementi, L.; Elouadrhiri, Latifa; Luongo, Cesar; Kashy, David H.; et al

    2016-02-29

    Fermi National Accelerator Laboratory (Fermilab) fabricated the torus magnet coils for the 12 GeV Hall B upgrade at Jefferson Laboratory (JLab). The production consisted of 6 large superconducting coils for the magnet and 2 spare coils. The toroidal field coils are approximately 2 m x 4 m x 5 cm thick. Each of these coils consists of two layers, each of which has 117 turns of copper-stabilized superconducting cable which will be conduction cooled by helium gas. Due to the size of the coils and their unique geometry, Fermilab designed and fabricated specialized tooling and, together with JLab, developed uniquemore » manufacturing techniques for each stage of the coil construction. In conclusion, this paper describes the tooling and manufacturing techniques required to produce the six production coils and two spare coils needed by the project.« less

  1. Design and Manufacture of the Conduction Cooled Torus Coils for the Jefferson Lab 12GeV Upgrade

    SciTech Connect (OSTI)

    Wiseman, M; Elouadhiri, L; Ghoshal, P K; Kashy, D; Elementi, L; Gabrielli, G; Gardner, T J; Kiemschies, O; Krave, S; Makarov, A; Robotham, B; Szal, J; Velev, G

    2015-06-01

    The design of the 12-GeV torus required the construction of six superconducting coils with a unique geometry required for the experimental needs of Jefferson Laboratory Hall B. Each of these coils consists of 234 turns of copper-stabilized superconducting cable conduction cooled by 4.6 K helium gas. The finished coils are each roughly 2 × 4 × 0.05 m and supported in an aluminum coil case. Because of its geometry, new tooling and manufacturing methods had to be developed for each stage of construction. The tooling was designed and developed while producing a practice coil at Fermi National Laboratory. This paper describes the tooling and manufacturing techniques required to produce the six production coils and two spare coils required by the project. Project status and future plans are also presented.

  2. Design and Manufacture of the Conduction Cooled Torus Coils for The Jefferson Laboratory 12-GeV Upgrade

    SciTech Connect (OSTI)

    Wiseman, M.; Elementi, L.; Elouadhiri, L.; Gabrielli, G.; Gardner, T. J.; Ghoshal, P. K.; Kashy, D.; Kiemschies, O.; Krave, S.; Makarov, A.; Robotham, B.; Szal, J.; Velev, G.

    2015-01-01

    The design of the 12-GeV torus required the construction of six superconducting coils with a unique geometry required for the experimental needs of Jefferson Laboratory Hall B. Each of these coils consists of 234 turns of copper-stabilized superconducting cable conduction cooled by 4.6 K helium gas. The finished coils are each roughly 2 × 4 × 0.05 m and supported in an aluminum coil case. Because of its geometry, new tooling and manufacturing methods had to be developed for each stage of construction. The tooling was designed and developed while producing a practice coil at Fermi National Laboratory. This paper describes the tooling and manufacturing techniques required to produce the six production coils and two spare coils required by the project. Project status and future plans are also presented.

  3. PPPL to launch major upgrade of key fusion energy test facility | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab to launch major upgrade of key fusion energy test facility NSTX project will produce most powerful spherical torus in the world By John Greenwald January 9, 2012 Tweet Widget Google Plus One Share on Facebook NSTX-U cross section. NSTX-U cross section. Gallery: (Photo by Elle Starkman, PPPL Office of Communications) (Photo by Elle Starkman, PPPL Office of Communications) (Photo by Elle Starkman, PPPL Office of Communications) (Photo by Elle Starkman, PPPL Office of

  4. Radio Frequency Current Drive Considerations for Small Aspect Ratio Tori

    SciTech Connect (OSTI)

    Carter, M.D.

    1998-01-01

    Noninductive current drive is required during plasma initiation and for current sustainment in the National Spherical Torus Experiment (NSTX). In this paper, the physics of high harmonic fast waves (HHFW) and the design of an antenna system for NSTX are considered using numerical models. For high current discharges in NSTX, the static magnetic field component in the poloidal direction varies widely during the discharge and can become comparable to the toroidal component in NSTX. Therefore, they calculate the plasma loading for a broad range of antenna and plasma geometries in a three-dimensional model, so that the results can be used to influence the antenna design. Two-dimensional calculations of the wave propagation and absorption in the core plasma indicate that the theoretical current drive efficiency for HHFW can be high, and a general survey of parameters gives a good target for the antenna design. The current drive efficiency calculation is sensitive to the equilibrium model because finite beta effects can substantially alter the calculation of the trapped particle fraction. Traditional methods of toroidally phasing an antenna array as well as poloidal phasing are studied to optimize the current drive efficiency for a range of equilibria. Non-zero poloidal model excitation is also found to affect the antenna performance and flexibility. Performance expectations for a preliminary antenna design are given.

  5. Radio frequency current drive considerations for small aspect ratio tori

    SciTech Connect (OSTI)

    Carter, M.D.; Jaeger, E.F.; Strickler, D.J.; Ryan, P.M.; Swain, D.W.; Batchelor, D.B.

    1998-07-01

    Noninductive current drive is required during plasma initiation and for current sustainment in the National Spherical Torus Experiment (NSTX). In this paper, the physics of high harmonic fast waves (HHFW) and the design of an antenna system for NSTX are considered using numerical models. For high current discharges in NSTX, the static magnetic field component in the poloidal direction varies widely during the discharge and can become comparable to the toroidal component in NSTX. Therefore, they calculate the plasma loading for a broad range of antenna and plasma geometries in a three-dimensional model, so that the results can be used to influence the antenna design. Two-dimensional calculations of the wave propagation and absorption in the core plasma indicate that the theoretical current drive efficiency for HHFW can be high, and a general survey of parameters gives a good target for the antenna design. The current drive efficiency calculation is sensitive to the equilibrium model because finite beta effects can substantially alter the calculation of the trapped particle fraction. Traditional methods of toroidally phasing an antenna array as well as poloidal phasing are studied to optimize the current drive efficiency for a range of equilibria. Non-zero poloidal mode excitation is also found to affect the antenna performance and flexibility. Performance expectations for a preliminary antenna design are given.

  6. TORUS: Theory of Reactions for Unstable iSotopes.Topical Collaboration for Nuclear Theory Project. Period: June 1, 2010 - May 31, 2015

    SciTech Connect (OSTI)

    Arbanas, Goran; Elster, Charlotte; Escher, Jutta; Nunes, Filomena; Thompson, Ian

    2015-08-28

    The work of this collaboration during its existence is summarized. The mission of the TORUS Topical Collaboration was to develop new methods that advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct reaction calculations. This multi-institution collaborative effort was and remains directly relevant to three areas of interest: the properties of nuclei far from stability, microscopic studies of nuclear input parameters for astrophysics, and microscopic nuclear reaction theory. The TORUS project focused on understanding the details of (d,p) reactions for neutron transfer to heavier nuclei. The bulk of the work fell into three areas: coupled channel theory, modeling (d,p) reactions with a Faddeev-AGS approach, and capture reactions.

  7. W

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the first major addition to the U.S. fusion program of the 21st century. Today the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) unveils the new $94 million National Spherical Torus Experiment- Upgrade (NSTX-U), the most powerful fusion facility of its kind on Earth and a device poised to bring the world closer to a bold new energy age. This upgrade doubles the heating power and magnetic field strength of the original facility and enhances the worldwide quest for fusion

  8. Anomalous Electron Transport Due to Multiple High Frequency Beam Ion Driven Alfven Eigenmode

    SciTech Connect (OSTI)

    Gorelenkov, N. N.; Stutman, D.; Tritz, K.; Boozer, A.; Delgardo-Aparicio, L.; Fredrickson, E.; Kaye, S.; White, R.

    2010-07-13

    We report on the simulations of recently observed correlations of the core electron transport with the sub-thermal ion cyclotron frequency instabilities in low aspect ratio plasmas of the National Spherical Torus Experiment (NSTX). In order to model the electron transport of the guiding center code ORBIT is employed. A spectrum of test functions of multiple core localized Global shear Alfven Eigenmode (GAE) instabilities based on a previously developed theory and experimental observations is used to examine the electron transport properties. The simulations exhibit thermal electron transport induced by electron drift orbit stochasticity in the presence of multiple core localized GAE.

  9. Suppression of energetic particle driven instabilities with HHFW heating

    SciTech Connect (OSTI)

    Fredrickson, E. D.; Taylor, G.; Bertelli, N.; Darrow, D. S.; Gorelenkov, N.; Kramer, G.; Liu, D.; Crocker, N. A.; Kubota, S.; White, R.

    2015-01-01

    In plasmas in the National Spherical Torus Experiment (NSTX) [Ono et al., Nucl. Fusion 40 (2000) 557] heated with neutral beams, the beam ions typically excite Energetic Particle Modes (EPMs or fishbones), and Toroidal, Global or Compressional Alfvén Eigenmodes (TAE, GAE, CAE). These modes can redistribute the energetic beam ions, altering the beam driven current profile and the plasma heating profile, or they may affect electron thermal transport or cause losses of the beam ions. In this paper we present experimental results where these instabilities, driven by the super-thermal beam ions, are suppressed with the application of High Harmonic Fast Wave heating.

  10. Suppression of energetic particle driven instabilities with HHFW heating

    SciTech Connect (OSTI)

    Fredrickson, E. D.; Taylor, G.; Bertelli, N.; Darrow, D. S.; Gorelenkov, N.; Kramer, G.; Liu, D.; Crocker, N. A.; Kubota, S.; White, R.

    2015-01-01

    In plasmas in the National Spherical Torus Experiment (NSTX) [Ono et al., Nucl. Fusion 40 (2000) 557] heated with neutral beams, the beam ions typically excite Energetic Particle Modes (EPMs or fishbones), and Toroidal, Global or Compressional Alfvn Eigenmodes (TAE, GAE, CAE). These modes can redistribute the energetic beam ions, altering the beam driven current profile and the plasma heating profile, or they may affect electron thermal transport or cause losses of the beam ions. In this paper we present experimental results where these instabilities, driven by the super-thermal beam ions, are suppressed with the application of High Harmonic Fast Wave heating.

  11. Processes and properties of edge-localised instabilities in 2T 2MA plasmas in the Joint European Torus

    SciTech Connect (OSTI)

    Webster, A. J. Webster, S. J.

    2014-11-15

    During July 2012, 150 almost identical H-mode plasmas were consecutively created in the Joint European Torus, providing a combined total of approximately 8 minutes of steady-state plasma with 15?000 Edge Localised Modes (ELMs). In principle, each of those 15?000 ELMs are statistically equivalent. Here, the changes in edge density and plasma energy associated with those ELMs are explored, using the spikes in Beryllium II (527?nm) radiation as an indicator for the onset of an ELM. Clearly different timescales are observed during the ELM process. Edge temperature falls over a 2?ms timescale, edge density and pressure fall over a 5?ms timescale, and there is an additional 10?ms timescale that is consistent with a resistive relaxation of the plasma's edge. The statistical properties of the energy and density losses due to the ELMs are explored. For these plasmas the ELM energy (?E) is found to be approximately independent of the time between ELMs, despite the average ELM energy (??E?) and average ELM frequency (f) being consistent with the scaling of ??E??1/f. Instead, beyond the first 0.02 s of waiting time between ELMs, the energy losses due to individual ELMs are found to be statistically the same. Surprisingly no correlation is found between the energies of consecutive ELMs either. A weak link is found between the density drop and the ELM waiting time. Consequences of these results for ELM control and modelling are discussed.

  12. Phillips-Tikhonov regularization with a priori information for neutron emission tomographic reconstruction on Joint European Torus

    SciTech Connect (OSTI)

    Bielecki, J.; Scholz, M.; Drozdowicz, K.; Giacomelli, L.; Kiptily, V.; Kempenaars, M.; Conroy, S.; Craciunescu, T.; Collaboration: EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB

    2015-09-15

    A method of tomographic reconstruction of the neutron emissivity in the poloidal cross section of the Joint European Torus (JET, Culham, UK) tokamak was developed. Due to very limited data set (two projection angles, 19 lines of sight only) provided by the neutron emission profile monitor (KN3 neutron camera), the reconstruction is an ill-posed inverse problem. The aim of this work consists in making a contribution to the development of reliable plasma tomography reconstruction methods that could be routinely used at JET tokamak. The proposed method is based on Phillips-Tikhonov regularization and incorporates a priori knowledge of the shape of normalized neutron emissivity profile. For the purpose of the optimal selection of the regularization parameters, the shape of normalized neutron emissivity profile is approximated by the shape of normalized electron density profile measured by LIDAR or high resolution Thomson scattering JET diagnostics. In contrast with some previously developed methods of ill-posed plasma tomography reconstruction problem, the developed algorithms do not include any post-processing of the obtained solution and the physical constrains on the solution are imposed during the regularization process. The accuracy of the method is at first evaluated by several tests with synthetic data based on various plasma neutron emissivity models (phantoms). Then, the method is applied to the neutron emissivity reconstruction for JET D plasma discharge #85100. It is demonstrated that this method shows good performance and reliability and it can be routinely used for plasma neutron emissivity reconstruction on JET.

  13. Observation of dust torus with poloidal rotation in direct current glow discharge plasma

    SciTech Connect (OSTI)

    Kaur, Manjit Bose, Sayak; Chattopadhyay, P. K. Sharma, Devendra; Ghosh, J.; Saxena, Y. C.

    2015-03-15

    Observation of dust cloud rotation in parallel-plate DC glow discharge plasma is reported here. The experiments are carried out at high pressures (∼130 Pa) with a metallic ring placed on the lower electrode (cathode). The dust cloud rotates poloidally in the vertical plane near the cathode surface. This structure is continuous toroidally. Absence of magnetic field rules out the possibility of E × B induced ion flow as the cause of dust rotation. The dust rotational structures exist even with water cooled cathode. Therefore, temperature gradient driven mechanisms, such as thermophoretic force, thermal creep flow, and free convection cannot be causing the observed dust rotation. Langmuir probe measurement reveals the existence of a sharp density gradient near the location of the rotating dust cloud. The gradient in the density, giving rise to a gradient in the ion drag force, has been identified as the principal cause behind the rotation of dust particles.

  14. Full wave simulations of fast wave efficiency and power losses in the scrape-off layer of tokamak plasmas in mid/high harmonic and minority heating regimes

    SciTech Connect (OSTI)

    Bertelli, N.; Jaeger, E. F.; Hosea, J. C.; Phillips, C. K.; Berry, L.; Bonoli, P. T.; Gerhardt, S. P.; Green, D.; LeBlanc, B.; Perkins, R. J.; Qin, C. M.; Pinsker, R. I.; Prater, R.; Ryan, P. M.; Taylor, G.; Valeo, E. J.; Wilson, J. R.; Wright, J. C.; Zhang, X. J.

    2015-12-17

    Here, several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves (HHFW), have found strong interaction between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 2D and 3D AORSA results for the National Spherical Torus eXperiment (NSTX) have shown a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is removed from in front of the antenna by increasing the edge density. Here, full wave simulations have been extended for 'conventional' tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results in HHFW regime show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for C-Mod and EAST, which operate in the minority heating regime.

  15. Full wave simulations of fast wave efficiency and power losses in the scrape-off layer of tokamak plasmas in mid/high harmonic and minority heating regimes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bertelli, N.; Jaeger, E. F.; Hosea, J. C.; Phillips, C. K.; Berry, L.; Bonoli, P. T.; Gerhardt, S. P.; Green, D.; LeBlanc, B.; Perkins, R. J.; et al

    2015-12-17

    Here, several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves (HHFW), have found strong interaction between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 2D and 3D AORSAmore » results for the National Spherical Torus eXperiment (NSTX) have shown a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is removed from in front of the antenna by increasing the edge density. Here, full wave simulations have been extended for 'conventional' tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results in HHFW regime show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for C-Mod and EAST, which operate in the minority heating regime.« less

  16. Distinct turbulence sources and confinement features in the spherical tokamak plasma regime

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.

    2015-10-30

    New turbulence contributions to plasma transport and confinement in the spherical tokamak (ST) regime are identified through nonlinear gyrokinetic simulations. The drift wave Kelvin-Helmholtz (KH) mode characterized by intrinsic mode asymmetry is shown to drive significant ion thermal transport in strongly rotating national spherical torus experiment (NSTX) L-modes. The long wavelength, quasi-coherent dissipative trapped electron mode (TEM) is destabilized in NSTX H-modes despite the presence of strong E x B shear, providing a robust turbulence source dominant over collisionless TEM. Dissipative trapped electron mode (DTEM)-driven transport in the NSTX parametric regime is shown to increase with electron collision frequency, offeringmore » one possible source for the confinement scaling observed in experiments. There exists a turbulence-free regime in the collision-induced collisionless trapped electron mode to DTEM transition for ST plasmas. In conclusion, this predicts a natural access to a minimum transport state in the low collisionality regime that future advanced STs may cover.« less

  17. Integrated simulations of saturated neoclassical tearing modes in DIII-D, Joint European Torus, and ITER plasmas

    SciTech Connect (OSTI)

    Halpern, Federico D.; Bateman, Glenn; Kritz, Arnold H.

    2006-06-15

    A revised version of the ISLAND module [C. N. Nguyen et al., Phys. Plasmas 11, 3604 (2004)] is used in the BALDUR code [C. E. Singer et al., Comput. Phys. Commun. 49, 275 (1988)] to carry out integrated modeling simulations of DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)], Joint European Torus (JET) [P. H. Rebut et al., Nucl. Fusion 25, 1011 (1985)], and ITER [R. Aymar et al., Plasma Phys. Control. Fusion 44, 519 (2002)] tokamak discharges in order to investigate the adverse effects of multiple saturated magnetic islands driven by neoclassical tearing modes (NTMs). Simulations are carried out with a predictive model for the temperature and density pedestal at the edge of the high confinement mode (H-mode) plasma and with core transport described using the Multi-Mode model. The ISLAND module, which is used to compute magnetic island widths, includes the effects of an arbitrary aspect ratio and plasma cross sectional shape, the effect of the neoclassical bootstrap current, and the effect of the distortion in the shape of each magnetic island caused by the radial variation of the perturbed magnetic field. Radial transport is enhanced across the width of each magnetic island within the BALDUR integrated modeling simulations in order to produce a self-consistent local flattening of the plasma profiles. It is found that the main consequence of the NTM magnetic islands is a decrease in the central plasma temperature and total energy. For the DIII-D and JET discharges, it is found that inclusion of the NTMs typically results in a decrease in total energy of the order of 15%. In simulations of ITER, it is found that the saturated magnetic island widths normalized by the plasma minor radius, for the lowest order individual tearing modes, are approximately 24% for the 2/1 mode and 12% for the 3/2 mode. As a result, the ratio of ITER fusion power to heating power (fusion Q) is reduced from Q=10.6 in simulations with no NTM islands to Q=2.6 in simulations with fully saturated

  18. Resonance in fast-wave amplitude in the periphery of cylindrical plasmas and application to edge losses of wave heating power in tokamaks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Perkins, R. J.; Hosea, J. C.; Bertelli, N.; Taylor, G.; Wilson, J. R.

    2016-07-01

    Heating magnetically confined plasmas using waves in the ion-cyclotron range of frequencies typically requires coupling these waves over a steep density gradient. Furthermore, this process has produced an unexpected and deleterious phenomenon on the National Spherical Torus eXperiment (NSTX): a prompt loss of wave power along magnetic field lines in front of the antenna to the divertor. Understanding this loss may be key to achieving effective heating and expanding the operational space of NSTX-Upgrade. Here, we propose that a new type of mode, which conducts a significant fraction of the total wave power in the low-density peripheral plasma, is drivingmore » these losses. We demonstrate the existence of such modes, which are distinct from surface modes and coaxial modes, in a cylindrical cold-plasma model when a half wavelength structure fits into the region outside the core plasma. The latter condition generalizes the previous hypothesis regarding the occurence of the edge losses and may explain why full-wave simulations predict these losses in some cases but not others. If valid, this condition implies that outer gap control is a potential strategy for mitigating the losses in NSTX-Upgrade in addition to raising the magnetic field or influencing the edge density.« less

  19. SciDAC Center for Simulation of Wave-Plasma Interactions - Iterated Finite-Orbit Monte Carlo Simulations with Full-Wave Fields for Modeling Tokamak ICRF Wave Heating Experiments - Final Report

    SciTech Connect (OSTI)

    Choi, Myunghee; Chan, Vincent S.

    2014-02-28

    This final report describes the work performed under U.S. Department of Energy Cooperative Agreement DE-FC02-08ER54954 for the period April 1, 2011 through March 31, 2013. The goal of this project was to perform iterated finite-orbit Monte Carlo simulations with full-wall fields for modeling tokamak ICRF wave heating experiments. In year 1, the finite-orbit Monte-Carlo code ORBIT-RF and its iteration algorithms with the full-wave code AORSA were improved to enable systematical study of the factors responsible for the discrepancy in the simulated and the measured fast-ion FIDA signals in the DIII-D and NSTX ICRF fast-wave (FW) experiments. In year 2, ORBIT-RF was coupled to the TORIC full-wave code for a comparative study of ORBIT-RF/TORIC and ORBIT-RF/AORSA results in FW experiments.

  20. Effect of the scrape-off layer in AORSA full wave simulations of fast wave minority, mid/high harmonic, and helicon heating regimes

    SciTech Connect (OSTI)

    Bertelli, N. Gerhardt, S.; Hosea, J. C.; LeBlanc, B.; Perkins, R. J.; Phillips, C. K.; Taylor, G.; Valeo, E. J.; Wilson, J. R.; Jaeger, E. F.; Lau, C.; Blazevski, D.; Green, D. L.; Berry, L.; Ryan, P. M.; Bonoli, P. T.; Wright, J. C.; Pinsker, R. I.; Prater, R.; Qin, C. M.; and others

    2015-12-10

    Several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves, have found strong interactions between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 3D AORSA results for the National Spherical Torus eXperiment (NSTX), where a full antenna spectrum is reconstructed, are shown, confirming the same behavior found for a single toroidal mode results in Bertelli et al, Nucl. Fusion, 54 083004, 2014, namely, a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is moved away from in front of the antenna by increasing the edge density. Additionally, full wave simulations have been extended to “conventional” tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for Alcator C-Mod and EAST, which operate in the minority heating regime unlike NSTX/NSTX-U and DIII-D, which operate in the mid/high harmonic regime. A substantial discussion of some of the main aspects, such as (i) the pitch angle of the magnetic field; (ii) minority heating vs. mid/high harmonic regimes is presented showing the different behavior of the RF field in the SOL region for NSTX-U scenarios with different plasma current. Finally, the preliminary results of the impact of the SOL region on the evaluation of the helicon current drive efficiency in DIII-D is presented for the first time and briefly compared with the different regimes

  1. SUZAKU VIEW OF THE SWIFT/BAT ACTIVE GALACTIC NUCLEI. V. TORUS STRUCTURE OF TWO LUMINOUS RADIO-LOUD ACTIVE GALACTIC NUCLEI (3C 206 AND PKS 0707-35)

    SciTech Connect (OSTI)

    Tazaki, Fumie; Ueda, Yoshihiro; Terashima, Yuichi; Mushotzky, Richard F.; Tombesi, Francesco

    2013-07-20

    We present the results from broadband X-ray spectral analysis of 3C 206 and PKS 0707-35 with Suzaku and Swift/BAT, two of the most luminous unobscured and obscured radio-loud active galactic nuclei (AGNs) with hard X-ray luminosities of 10{sup 45.5} erg s{sup -1} and 10{sup 44.9} erg s{sup -1} (14-195 keV), respectively. Based on the radio core luminosity, we estimate that the X-ray spectrum of 3C 206 contains a significant ({approx}60% in the 14-195 keV band) contribution from the jet, while it is negligible in PKS 0707-35. We can successfully model the spectra with the jet component (for 3C 206), the transmitted emission, and two reflection components from the torus and the accretion disk. The reflection strengths from the torus are found to be R{sub torus}({identical_to} {Omega}/2{pi}) = 0.29 {+-} 0.18 and 0.41 {+-} 0.18 for 3C 206 and PKS 0707-35, respectively, which are smaller than those in typical Seyfert galaxies. Utilizing the torus model by Ikeda et al., we quantify the relation between the half-opening angle of a torus ({theta}{sub oa}) and the equivalent width of an iron-K line. The observed equivalent width of 3C 206, < 71 eV, constrains the column density in the equatorial plane to N{sub H}{sup eq} <10{sup 23} cm{sup -2}, or the half-opening angle to {theta}{sub oa} > 80 Degree-Sign if N{sub H}{sup eq} =10{sup 24} cm{sup -2} is assumed. That of PKS 0707-35, 72 {+-} 36 eV, is consistent with N{sub H}{sup eq} {approx}10{sup 23} cm{sup -2}. Our results suggest that the tori in luminous radio-loud AGNs are only poorly developed. The trend is similar to that seen in radio-quiet AGNs, implying that the torus structure is not different between AGNs with jets and without jets.

  2. New Benchmarks from Tokamak Experiments for Theoretical Calculations of the Dielectronic Satellite Spectra of Helium-like Ions

    SciTech Connect (OSTI)

    M. Bitter; M.F. Gu; L.A. Vainshtein; P. Beiersdorfer; G. Bertschinger; O. Marchuk; R. Bell; B. LeBlanc; K.W. Hill; D. Johnson; L. Roquemore

    2003-08-29

    Dielectronic satellite spectra of helium-like argon, recorded with a high-resolution X-ray crystal spectrometer at the National Spherical Torus Experiment, were found to be inconsistent with existing predictions resulting in unacceptable values for the power balance and suggesting the unlikely existence of non-Maxwellian electron energy distributions. These problems were resolved with calculations from a new atomic code. It is now possible to perform reliable electron temperature measurements and to eliminate the uncertainties associated with determinations of non-Maxwellian distributions.

  3. Modeling the effect of lithium-induced pedestal profiles on scrape-off-layer turbulence and the heat flux width

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Russell, David A.; D'Ippolito, Daniel A.; Myra, James R.; Canik, John M.; Gray, Travis K.; Zweben, Stewart J.

    2015-09-01

    The effect of lithium (Li) wall coatings on scrape-off-layer (SOL) turbulence in the National Spherical Torus Experiment (NSTX) is modeled with the Lodestar SOLT (“SOL Turbulence”) code. Specifically, the implications for the SOL heat flux width of experimentally observed, Li-induced changes in the pedestal profiles are considered. The SOLT code used in the modeling has been expanded recently to include ion temperature evolution and ion diamagnetic drift effects. This work focuses on two NSTX discharges occurring pre- and with-Li deposition. The simulation density and temperature profiles are constrained, inside the last closed flux surface only, to match those measured inmore » the two experiments, and the resulting drift-interchange-driven turbulence is explored. The effect of Li enters the simulation only through the pedestal profile constraint: Li modifies the experimental density and temperature profiles in the pedestal, and these profiles affect the simulated SOL turbulence. The power entering the SOL measured in the experiments is matched in the simulations by adjusting “free” dissipation parameters (e.g., diffusion coefficients) that are not measured directly in the experiments. With power-matching, (a) the heat flux SOL width is smaller, as observed experimentally by infra-red thermography, and (b) the simulated density fluctuation amplitudes are reduced with Li, as inferred for the experiments as well from reflectometry analysis. The instabilities and saturation mechanisms that underlie the SOLT model equilibria are also discussed.« less

  4. Modeling the effect of lithium-induced pedestal profiles on scrape-off-layer turbulence and the heat flux width

    SciTech Connect (OSTI)

    Russell, David A.; D'Ippolito, Daniel A.; Myra, James R.; Canik, John M.; Gray, Travis K.; Zweben, Stewart J.

    2015-09-01

    The effect of lithium (Li) wall coatings on scrape-off-layer (SOL) turbulence in the National Spherical Torus Experiment (NSTX) is modeled with the Lodestar SOLT (“SOL Turbulence”) code. Specifically, the implications for the SOL heat flux width of experimentally observed, Li-induced changes in the pedestal profiles are considered. The SOLT code used in the modeling has been expanded recently to include ion temperature evolution and ion diamagnetic drift effects. This work focuses on two NSTX discharges occurring pre- and with-Li deposition. The simulation density and temperature profiles are constrained, inside the last closed flux surface only, to match those measured in the two experiments, and the resulting drift-interchange-driven turbulence is explored. The effect of Li enters the simulation only through the pedestal profile constraint: Li modifies the experimental density and temperature profiles in the pedestal, and these profiles affect the simulated SOL turbulence. The power entering the SOL measured in the experiments is matched in the simulations by adjusting “free” dissipation parameters (e.g., diffusion coefficients) that are not measured directly in the experiments. With power-matching, (a) the heat flux SOL width is smaller, as observed experimentally by infra-red thermography, and (b) the simulated density fluctuation amplitudes are reduced with Li, as inferred for the experiments as well from reflectometry analysis. The instabilities and saturation mechanisms that underlie the SOLT model equilibria are also discussed.

  5. Design of solid state neutral particle analyzer array for National...

    Office of Scientific and Technical Information (OSTI)

    Torus Experiment-Upgrade Citation Details In-Document Search Title: Design of solid state neutral particle analyzer array for National Spherical Torus Experiment-Upgrade A ...

  6. Chaos in plasma simulation and experiment

    SciTech Connect (OSTI)

    Watts, C.; Newman, D.E.; Sprott, J.C.

    1993-09-01

    We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos. These tools include phase portraits and Poincard sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are -the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low,dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.

  7. Mechanisms of Stochastic Diffusion of Energetic Ions in Spherical Tori

    SciTech Connect (OSTI)

    Ya.I. Kolesnichenko; R.B. White; Yu.V. Yakovenko

    2001-01-18

    Stochastic diffusion of the energetic ions in spherical tori is considered. The following issues are addressed: (I) Goldston-White-Boozer diffusion in a rippled field; (ii) cyclotron-resonance-induced diffusion caused by the ripple; (iii) effects of non-conservation of the magnetic moment in an axisymmetric field. It is found that the stochastic diffusion in spherical tori with a weak magnetic field has a number of peculiarities in comparison with conventional tokamaks; in particular, it is characterized by an increased role of mechanisms associated with non-conservation of the particle magnetic moment. It is concluded that in current experiments on National Spherical Torus eXperiment (NSTX) the stochastic diffusion does not have a considerable influence on the confinement of energetic ions.

  8. Ignition Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ignition experiments Ignition Experiments The goal of many NIF experiments is to create a self-sustaining "burn" of fusion fuel (the hydrogen isotopes deuterium and tritium) that produces as much or more energy than the energy required to initiate the fusion reaction-an event called ignition. In moving closer to achieving ignition, NIF researchers are fulfilling the vision of early laser pioneers who conceived of using the x rays generated by a powerful, brief laser pulse to fuse

  9. Mixture Experiments

    SciTech Connect (OSTI)

    Piepel, Gregory F.

    2007-12-01

    A mixture experiment involves combining two or more components in various proportions or amounts and then measuring one or more responses for the resulting end products. Other factors that affect the response(s), such as process variables and/or the total amount of the mixture, may also be studied in the experiment. A mixture experiment design specifies the combinations of mixture components and other experimental factors (if any) to be studied and the response variable(s) to be measured. Mixture experiment data analyses are then used to achieve the desired goals, which may include (i) understanding the effects of components and other factors on the response(s), (ii) identifying components and other factors with significant and nonsignificant effects on the response(s), (iii) developing models for predicting the response(s) as functions of the mixture components and any other factors, and (iv) developing end-products with desired values and uncertainties of the response(s). Given a mixture experiment problem, a practitioner must consider the possible approaches for designing the experiment and analyzing the data, and then select the approach best suited to the problem. Eight possible approaches include 1) component proportions, 2) mathematically independent variables, 3) slack variable, 4) mixture amount, 5) component amounts, 6) mixture process variable, 7) mixture of mixtures, and 8) multi-factor mixture. The article provides an overview of the mixture experiment designs, models, and data analyses for these approaches.

  10. On The Anomalous Fast Ion Energy Diffusion in Toroidal Plasmas Due to Cavity Modes

    SciTech Connect (OSTI)

    N.N. Gorelenkov, N.J. Fisch and E. Fredrickson

    2010-03-09

    An enormous wave-particle diffusion coefficient along paths suitable for alpha channeling had been deduced in mode converted ion Bernstein wave experiments on Tokamak Fusion Test Reactor (TFTR) the only plausible explanation advanced for such a large diffusion coefficient was the excitation of internal cavity modes which induce particle diffusion along identical diffusion paths, but at much higher rates. Although such a mode was conjectured, it was never observed. However, recent detailed observations of high frequency compressional Alfven eigenmodes (CAEs) on the National Spherical torus Experiment (NSTX) indirectly support the existence of the related conjectured modes on TFTR. The eigenmodes responsible for the high frequency magnetic activity can be identified as CAEs through the polarization of the observed magnetic field oscillations in NSTX and through a comparison with the theoretically derived freuency dispersion relation. Here, we show how these recent observations of high frequency CAEs lend support to this explanation of the long-standing puzzle of anomalous fast ion energy diffusion on TFTR. The support of the conjecure that these internal modes could have caused the remarkable ion energy diffusion on TFTR carries significant and favorable implications for the possibilities in achieving the alpha channeling effect with small injected power in a tokamak reactor.