Sample records for topaz power group

  1. AIAA 94-4688 Topaz II Nuclear Powered

    E-Print Network [OSTI]

    Y Y AIAA 94-4688 Topaz II Nuclear Powered SAR Satellite M. Feuerstein and Dr. 9. Agrawal Naval Astronautics 370 L'EnfantPromenade, S.W., Washington, D.C. 20024 #12;AIAA-94-4688 TOPAZ 11NUCLEAR POWERED SAR at the Naval Postgraduate School. Thc design team integrated a Topaz I1 nuclear power system with an EOS

  2. A preliminary investigation of the Topaz II reactor as a lunar surface power supply

    SciTech Connect (OSTI)

    Polansky, G.F. [Sandia National Labs., Albuquerque, NM (United States); Houts, M.G. [Los Alamos National Lab., NM (United States)

    1995-12-31T23:59:59.000Z

    Reactor power supplies offer many attractive characteristics for lunar surface applications. The Topaz II reactor resulted from an extensive development program in the former Soviet Union. Flight quality reactor units remain from this program and are currently under evaluation in the United States. This paper examines the potential for applying the Topaz II, originally developed to provide spacecraft power, as a lunar surface power supply.

  3. Output power characteristics and performance of TOPAZ II Thermionic Fuel Element No. 24

    SciTech Connect (OSTI)

    Luchau, D.W.; Bruns, D.R. [Team Specialty Services, Inc., TOPAZ International Program, 901 University Blvd., SE, Albuquerque, New Mexico 87106 (United States); Izhvanov, O.; Androsov, V. [JV INERTEK, Scientific Industrial Association ``Luch``, 24 Zheleznodorozhnaya, Podolsk, (Russia) 142100

    1996-03-01T23:59:59.000Z

    A final report on the output power characteristics and capabilities of single cell TOPAZ II Thermionic Fuel Element (TFE) No. 24 is presented. Thermal power tests were conducted for over 3000 hours to investigate converter performance under normal and adverse operating conditions. Experiments conducted include low power testing, high power testing, air introduction to the interelectrode gap, collector temperature optimization, thermal modeling, and output power characteristic measurements. During testing, no unexpected degradation in converter performance was observed. The TFE has been removed from the test stand and returned to Scientific Industrial Association {open_quote}{open_quote}LUCH{close_quote}{close_quote} for materials analysis and report. This research was conducted at the Thermionic System Evaluation Test (TSET) Facility at the New Mexico Engineering Research Institute (NMERI) as a part of the Topaz International Program (TIP) by the Air Force Phillips Laboratory (PL). {copyright} {ital 1996 American Institute of Physics.}

  4. Independent Safety Assessment of the TOPAZ-II space nuclear reactor power system (Revised)

    SciTech Connect (OSTI)

    NONE

    1993-09-01T23:59:59.000Z

    The Independent Safety Assessment described in this study report was performed to assess the safety of the design and launch plans anticipated by the U.S. Department of Defense (DOD) in 1993 for a Russian-built, U.S.-modified, TOPAZ-II space nuclear reactor power system. Its conclusions, and the bases for them, were intended to provide guidance for the U.S. Department of Energy (DOE) management in the event that the DOD requested authorization under section 91b. of the Atomic Energy Act of 1954, as amended, for possession and use (including ground testing and launch) of a nuclear-fueled, modified TOPAZ-II. The scientists and engineers who were engaged to perform this assessment are nationally-known nuclear safety experts in various disciplines. They met with participants in the TOPAZ-II program during the spring and summer of 1993 and produced a report based on their analysis of the proposed TOPAZ-II mission. Their conclusions were confined to the potential impact on public safety and did not include budgetary, reliability, or risk-benefit analyses.

  5. Topaz Power Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePty LtdOpenHabitatandWind Farm

  6. Real-time dynamic simulator for the Topaz II reactor power system

    SciTech Connect (OSTI)

    Kwok, K.S.

    1994-10-01T23:59:59.000Z

    A dynamic simulator of the TOPAZ II reactor system has been developed for the Nuclear Electric Propulsion Space Test Program. The simulator is a self-contained IBM-PC compatible based system that executes at a speed faster than real-time. The simulator combines first-principle modeling and empirical correlations in its algorithm to attain the modeling accuracy and computational through-put that are required for real-time execution. The overall execution time of the simulator for each time step is 15 ms when no data is written to the disk, and 18 ms when nine double precision data points are written to the disk once in every time step. The simulation program has been tested and it is able to handle a step decrease of $8 worth of reactivity. It also provides simulation of fuel, emitter, collector, stainless steel, and ZrH moderator failures. Presented in this paper are the models used in the calculations, a sample simulation session, and a discussion of the performance and limitations of the simulator. The simulator has been found to provide realistic real-time dynamic response of the TOPAZ II reactor system under both normal and causality conditions.

  7. Topaz II preliminary safety assessment

    SciTech Connect (OSTI)

    Marshall, A.C. (Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)); Standley, V. (Air Force Phillips Laboratory, Albuquerque, New Mexico 87110 (United States)); Voss, S.S. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)); Haskin, E. (Department of Chemical and Nuclear Engineering Department, Institute for Nuclear Power Studies, University of New Mexico, Albuquerque, New Mexico 87110 (United States))

    1993-01-10T23:59:59.000Z

    The Strategic Defense Initiative Organization (SDIO) decided to investigate the possibility of launching a Russian Topaz II space nuclear power system. A preliminary safety assessment was conducted to determine whether or not a space mission could be conducted safely and within budget constraints. As part of this assessment, a safety policy and safety functional requirements were developed to guide both the safety assessment and future Topaz II activities. A review of the Russian flight safety program was conducted and documented. Our preliminary safety assessment included a top level event tree, neutronic analysis of normal and accident configurations, an evaluation of temperature coefficients of reactivity, a reentry and disposal analysis, and analysis of postulated launch abort impact accidents, and an analysis of postulated propellant fire and explosion accidents. Based on the assessment, it appears that it will be possible to safely launch the Topaz II system in the U.S. with some possible system modifications. The principal system modifications will probably include design changes to preclude water flooded criticality and to assure intact reentry.

  8. Topaz II preliminary safety assessment

    SciTech Connect (OSTI)

    Marshall, A.C. (Sandia National Labs., Albuquerque, NM (United States)); Standley, V. (Air Force Phillips Laboratory, Albuquerque, NM (United States)); Voss, S.S. (Los Alamos National Lab., NM (United States)); Haskin, E. (New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering)

    1992-01-01T23:59:59.000Z

    The Strategic Defense Initiative Organization (SDIO) decided to investigate the possibility of launching a Russian Topaz 11 space nuclear power system. A preliminary safety assessment was conducted to determine whether or not a space mission could be conducted safely and within budget constraints. As part of this assessment, a safety policy and safety functional requirements were developed to guide both the safely assessment and future Topaz II activities. A review of the Russian flight safety program was conducted and documented. Our preliminary safety assessment included a top level event tree, neutronic analysis of normal and accident configurations, an evaluation of temperature coefficients of reactivity, a reentry and disposal analysis, and analysis of postulated launch abort impact accidents, and an analysis of postulated propellant fire and explosion accidents. Based on the assessment, it appears that it will be possible to safely launch the Topaz II system in the US with some possible system modifications. The principal system modifications will probably include design changes to preclude water flooded criticality and to assure intact reentry.

  9. Interagency Advanced Power Group, Joint Electrical and Nuclear Working Group, meeting minutes, November 16--17, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    Reports on soldier power R&D review, N-MCT power electronic building blocks, silicon carbide power semiconductor work, and ground based radar were made to the Power Conditioning Panel. An introduction to high temperature electronics needs, research and development was made to the High Temperature Electronics Subcommittee. The Pulse Power Panel received reports on the navy ETC gun, and army pulse power. The Superconductivity Panel received reports on high-tc superconducting wires, superconducting magnetic energy storage, and superconducting applications. The Nuclear Working Group received presentations on the Topaz nuclear power program, and space nuclear work in the Department of Energy.

  10. Risk perspectives for TOPAZ II flight mission

    SciTech Connect (OSTI)

    Payne, A.C. Jr. [Sandia National Labs., Albuquerque, NM (United States); Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering

    1993-11-01T23:59:59.000Z

    The purpose of this paper is to present a preliminary estimate of the nuclear-related public health risk presented by launching and operating the Russian TOPAZ II space reactor as part of the Nuclear Electric Propulsion Space Test Program (NEPSTP). This risk is then compared to the risks from the operation of commercial nuclear power reactors and previously planned and/or launched space nuclear power missions. For the current mission profile, the initial estimate of the risk posed by launching and operating TOPAZ II is significantly less (at least two orders of magnitude) than that estimated for prior space nuclear missions. Even allowing for the large uncertainties in this estimate, it does not appear that the NEPSTP mission will present a significant health risk to the public.

  11. Selection of stirling engine parameter and modes of joint operation with the Topaz II

    SciTech Connect (OSTI)

    Kirillov, E.Y.; Ogloblin, B.G.; Shalaev, A.I. [Central Design Bureau of Machine Building, Krasnogvardeyskaya Square 3, St. Petersburg, (Russia) 195272

    1996-03-01T23:59:59.000Z

    In addition to a high-temperature thermionic conversion cycle, application of a low-temperature machine cycle, such as the Stirling engine, is being considered. To select the optimum mode for joint operation of the Topaz II system and Stirling engine, output electric parameters are obtained as a function of thermal power released in the TFE fuel cores. The hydraulic diagram used for joint operation of the Topaz II and the Stirling engine is considered. Requirements to hydraulic characteristics of the Stirling engine heat exchanges are formulated. Scope of necessary modifications to mount the Stirling Engine on the Topaz II is estimated. {copyright} {ital 1996 American Institute of Physics.}

  12. Topaz-II reactor control unit development

    SciTech Connect (OSTI)

    Wyant, F.J.; Jensen, D.; Logothetis, J.

    1994-12-31T23:59:59.000Z

    The development for a new digital reactor control unit for the Topaz-II reactor is described. The unit is expected to provide the means for automated control during a possible Topaz flight experiment. The breadboard design and development is discussed.

  13. Power Systems Group Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Information ASD Groups ESHQA Operations Argonne Home > Advanced Photon Source > Power Systems Group This page is currently under construction. Old PS Group Site (visible...

  14. Recent developments in Topaz-II reactor safety assessments

    SciTech Connect (OSTI)

    Marshall, A.C. (Sandia National Laboratories, Albuquerque, NM (United States))

    1993-01-01T23:59:59.000Z

    In December 1991, the Strategic Defense Initiative Organization (SDIO) decided to investigate the possibility of a US launch of a Russian Topaz-II space nuclear power system. The primary mission goal would be to demonstrate and evaluate nuclear electric propulsion technology to establish a capability for future civilian and military missions. A preliminary nuclear safety analysis was initiated to determine whether or not a space mission could be conducted safely and within budget constraints. This paper describes preliminary safety analysis results and the nuclear safety program now being established for the NEP space test (NEPST).

  15. Recent developments in Topaz II reactor safety assessments

    SciTech Connect (OSTI)

    Marshall, A.C.

    1993-07-01T23:59:59.000Z

    In December 1991, the Strategic Defense Initiative Organization (SDIO) decided to investigate the possibility of a US launch of a Russian Topaz II space nuclear power system. The primary mission goal would be to demonstrate and evaluate Nuclear Electric Propulsion technology to establish a capability for future civilian and military missions. A preliminary nuclear safety assessment, involving selected safety analyses, was initiated to determine whether or not a space mission could be conducted safely and within budget constraints. This paper describes the preliminary safety assessment results and the nuclear safety program now being established for the Nuclear Electric Propulsion Space Test Program (NEPSTP).

  16. Preliminary nuclear safety assessment of the NEPST (Topaz II) space reactor program

    SciTech Connect (OSTI)

    Marshall, A.C.

    1993-01-01T23:59:59.000Z

    The United States (US) Strategic Defense Initiative Organization (SDIO) decided to investigate the possibility of launching a Russian Topaz II space nuclear power system. A preliminary nuclear safety assessment was conducted to determine whether or not a space mission could be conducted safely and within budget constraints. As part of this assessment, a safety policy and safety functional requirements were developed to guide both the safety assessment and future Topaz II activities. A review of the Russian flight safety program was conducted and documented. Our preliminary nuclear safety assessment included a number of deterministic analyses, such as; neutronic analysis of normal and accident configurations, an evaluation of temperature coefficients of reactivity, a reentry and disposal analysis, an analysis of postulated launch abort impact accidents, and an analysis of postulated propellant fire and explosion accidents. Based on the assessment to date, it appears that it will be possible to safely launch the Topaz II system in the US with a modification to preclude water flooded criticality. A full scale safety program is now underway.

  17. EIS-0458: First Solar Topaz Solar Farm Project in San Luis Obispo...

    Office of Environmental Management (EM)

    8: First Solar Topaz Solar Farm Project in San Luis Obispo County, CA EIS-0458: First Solar Topaz Solar Farm Project in San Luis Obispo County, CA Documents Available for Download...

  18. Reentry aerodynamic disruption analysis of thermionic reactor-thermo-converter TOPAZ-2

    SciTech Connect (OSTI)

    Grinberg, E.I.; Nikolaev, V.S. (Scientific Production Association Krasnaya Zvezda'', Moscow 115230 (Russian Federation)); Usov, V.A. (RRC Kurchatov Institute'', Moscow 123182 (Russian Federation)); Gafarov, A.A. (Research Institute of Thermal Processes, Moscow (Russian Federation))

    1993-01-15T23:59:59.000Z

    This paper presents preliminary results of analysis for the TOPAZ-2 thermionic converter-reactor aerodynamic disruption during reentry.

  19. TOPAZ3D. 3-D Finite Element Heat Transfer

    SciTech Connect (OSTI)

    Shapiro, A.B. [Lawrence Livermore National Lab., CA (United States)

    1992-02-24T23:59:59.000Z

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

  20. TOPAZ2D heat transfer code users manual and thermal property data base

    SciTech Connect (OSTI)

    Shapiro, A.B.; Edwards, A.L.

    1990-05-01T23:59:59.000Z

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.

  1. Magnetek Power Electronics Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to:Macquarie Energy LLC JumpMadkiniMagnetek Power

  2. OPG Power Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwest RuralNujiraSolar ThermalOPG Power

  3. Distribution Power Flow in IRW Group Meeting

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    in and power out (sum of 3 phases) Power losses Power in & out A, Current in & out A, Power loss A Power in & out B, Current in & out B, Power loss B Power in & out C, Current in & out C, Power loss C Status

  4. Startup control of the TOPAZ-II space nuclear reactor. Master`s thesis

    SciTech Connect (OSTI)

    Astrin, C.D.

    1996-09-01T23:59:59.000Z

    The Russian designed and manufactured TOPAZ-II Thermionic Nuclear Space Reactor has been supplied to the Ballistic Missile Defense Organization for study as part of the TOPAZ International Program. A Preliminary Nuclear Safety Assessment investigated the readiness to use the TOPAZ-II in support of a Nuclear Electric Propulsion Space Test Mission (NEPSTP). Among the anticipated system modifications required for launching the TOPAZ-II system within safety goals is for a U.S. designed Automatic Control System. The requirements and desired features of such a control system are developed based upon U.S. safety standards. System theory and design are presented in order to establish the basis for development of a hybrid control model from available simulations. The model is verified and then used in exploration of various control schemes and casualty analysis providing groundwork for future Automatic Control System design.

  5. A market-power based model of business groups

    E-Print Network [OSTI]

    Feenstra, Robert C; Huang, D S; Hamilton, G G

    2003-01-01T23:59:59.000Z

    complicated. In our model, business groups not only sellof Indian groups. 3. A Model of Business Groups We willa market-power based model of business groups. This We

  6. Topaz Solar Farm Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePty LtdOpenHabitatandWind FarmSolar Farm

  7. Working Group Report on - Space Nuclear Power Systems and Nuclear...

    Energy Savers [EERE]

    Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even...

  8. SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS Piero Baraldi Chevalier EDF R&D ­ Simulation and information Technologies for Power generation system Department 6, Quai Monitoring, Empirical Modeling, Power Plants, Safety Critical Nuclear Instrumentation, Autoassociative models

  9. Effective atomic numbers of blue topaz at different gamma-rays energies obtained from Compton scattering technique

    SciTech Connect (OSTI)

    Tuschareon, S., E-mail: tuscharoen@hotmail.com; Limkitjaroenporn, P., E-mail: tuscharoen@hotmail.com; Kaewkhao, J., E-mail: tuscharoen@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000, Thailand and Science Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000 (Thailand)

    2014-03-24T23:59:59.000Z

    Topaz occurs in a wide range of colors, including yellow, orange, brown, pink-to-violet and blue. All of these color differences are due to color centers. In order to improve the color of natural colorless topaz, the most commonly used is irradiated with x- or gamma-rays, indicated that attenuation parameters is important to enhancements by irradiation. In this work, the mass attenuation coefficients of blue topaz were measured at the different energy of ?-rays using the Compton scattering technique. The results show that, the experimental values of mass attenuation coefficient are in good agreement with the theoretical values. The mass attenuation coefficients increase with the decrease in gamma rays energies. This may be attributed to the higher photon interaction probability of blue topaz at lower energy. This result is a first report of mass attenuation coefficient of blue topaz at different gamma rays energies.

  10. The power graph of a group Peter J. Cameron

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    ; graphs are much looser. For example, there are only five different groups with eight elementsThe power graph of a group Peter J. Cameron Queen Mary, University of London LTCC Open Day, 8 January 2010 Groups and graphs A group is an algebraic structure: a set with a bi- nary operation

  11. Moltech Power Systems Group MPS Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen PolymersModular Energy DevicesMola(EC-LEDS)

  12. A Model of Absolute Autonomy and Power: Toward Group Effects

    E-Print Network [OSTI]

    Hexmoor, Henry

    575 2420 fax:479 575 5339 Abstract. We present a model of absolute autonomy and power in agent systems present a model that approximates absolute autonomy and power in agent systems. This absolute sense1 A Model of Absolute Autonomy and Power: Toward Group Effects HENRY HEXMOOR Computer Science

  13. Water/sand flooded and immersed critical experiment and analysis performed in support of the TOPAZ-II Safety Program

    SciTech Connect (OSTI)

    Glushkov, E.S.; Ponomarev-Stepnoi, N.N.; Bubelev, V.G.; Garin, V.P.; Gomin, E.A.; Kompanietz, G.V.; Krutoy, A.M.; Lobynstev, V.A.; Maiorov, L.V.; Polyakov, D.N. [RRC Kurchatov Institute, Moscow (Russian Federation)] [and others

    1994-11-01T23:59:59.000Z

    Presented is a brief description of the Narciss-M2 critical assemblies, which simulate accidental water/wet-sand immersion of the TOPAZ-II reactor as well as water-flooding of core cavities. Experimental results obtained from these critical assemblies, including experiments with several fuel elements removed from the core, are shown. These configurations with several extracted fuel elements simulate a proposed fuel-out anticriticality-device modification to the TOPAZ-II reactor. Preliminary computational analysis of these experiments using the Monte Carlo neutron-transport method is outlined. Nuclear criticality safety of the TOPAZ-II reactor with an incorporated anticriticality unit is demonstrated.

  14. Victory Power Machine Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt ManagementVera IrrigationVestas WindVictory Power Machine

  15. Pilot Power Group Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergy International LimitedPhoenixPhotovoltechMauna

  16. Prime power subgroups in certain periodic groups

    E-Print Network [OSTI]

    Armendariz, Efraim Pacillas

    1962-01-01T23:59:59.000Z

    s ?3 Thus x2 a tm~~ where t l Tp so that x2 ~ m) t a m) x -l l l -1 Tm~ . But Tm~ & 5" sc that x & Tm&, for some m&, Then 2 -l (Tmi)(Tmg) Tmim& s 5, so that xix2 c 8, Thus 5 is a sub group of 9 and. 92N&T. Since T is normal in 9, then T is normal...) is finite. Hence S, the corn? piete olass of conjugate subgx cups of S in 0, ls finite. Xf D? R Sg, whexe S E 8, then D is normal in 0 and I GxDj is 0 fin1te, since each Sg has finite index in 0. Therefoze 9/D DggRD/ fg D) has ordex $0:Dg = s. gaoh gi...

  17. EIS-0458: Proposed Loan Guarantee to Support Construction and Startup of the Topaz Solar Farm, San Luis Obispo County, CA

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts from DOE’s proposal to issue a federal loan guarantee to Royal Bank of Scotland to provide funding to Topaz Solar Farms, LLC, to construct and start up the Topaz Solar Farm, a nominal 550-megawatt photovoltaic solar energy generating facility. The facility would be located in unincorporated eastern San Luis Obispo County, California, approximately one mile north of the community of California Valley, California, and six miles northwest of the Carrizo Plain National Monument.

  18. Water/sand flooded and immersed critical experiment and analysis performed in support of the TOPAZ-II safety program

    SciTech Connect (OSTI)

    Glushkov, E.S.; Ponomarev-Stepnoi, N.N.; Bubelev, V.G.; Garin, V.P.; Gomin, E.A.; Kompanietz, G.V.; Krutov, A.M.; Lobynstev, V.A.; Maiorov, L.V.; Polyakov, D.N.; Chunyaev, E.I. [RRC Kurchatov Institute, Moscow 123182 (Russian Federation); Marshall, A.C. [International Nuclear Safety, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Sapir, J.L.; Pelowitz, D.B. [Reactor Design and Analysis Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1995-01-20T23:59:59.000Z

    Presented is a brief description of the Narciss-M2 critical assemblies, which simulate accidental water/wet-sand immersion of the TOPAZ-II reactor as well as water-flooding of core cavities. Experimental results obtained from these critical assemblies, including experiments with several fuel elements removed from the core, are shown. These configurations with several extracted fuel elements simulate a proposed fuel-out anticriticality-device modification to the TOPAZ-II reactor. Preliminary computational analysis of these experiments using the Monte Carlo neutron-transport method is outlined. Nuclear criticality safety of the TOPAZ-II reactor with an incorporated anticriticality unit is demonstrated. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  19. TOPAZ: a computer code for modeling heat transfer and fluid flow in arbitrary networks of pipes, flow branches, and vessels

    SciTech Connect (OSTI)

    Winters, W.S.

    1984-01-01T23:59:59.000Z

    An overview of the computer code TOPAZ (Transient-One-Dimensional Pipe Flow Analyzer) is presented. TOPAZ models the flow of compressible and incompressible fluids through complex and arbitrary arrangements of pipes, valves, flow branches and vessels. Heat transfer to and from the fluid containment structures (i.e. vessel and pipe walls) can also be modeled. This document includes discussions of the fluid flow equations and containment heat conduction equations. The modeling philosophy, numerical integration technique, code architecture, and methods for generating the computational mesh are also discussed.

  20. Characteristics and control response of the TOPAZ II Reactor System Real-time Dynamic Simulator

    SciTech Connect (OSTI)

    Kwok, K.S.

    1993-11-12T23:59:59.000Z

    A dynamic simulator of the TOPAZ II reactor system has been developed for the Nuclear Electric Propulsion Space Test Program. The simulator combines first-principle modeling and empirical correlations in its algorithm to attain the modeling accuracy and computational through-put that are required for real-time execution. The overall execution time of the simulator for each time step is 15 ms when no data is written to the disk, and 18 ms when nine double precision data points are written to the disk once in every time step. The simulation program has been tested and it is able to handle a step decrease of $8 worth of reactivity. It also provides simulations of fuel, emitter, collector, stainless steel, and ZrH moderator failures. Presented in this paper are the models used in the calculations, a sample simulation session, and a discussion of the performance and limitations of the simulator. The simulator has been found to provide realistic real-time dynamic response of the TOPAZ II reactor system under both normal and casualty conditions.

  1. Edinburgh University aka Wave Power Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh University aka Wave Power Group Jump to:

  2. Artificial Neural Networks In Electric Power Industry Technical Report of the ISIS Group

    E-Print Network [OSTI]

    Antsaklis, Panos

    Artificial Neural Networks In Electric Power Industry Technical Report of the ISIS Group Systems R. E. Bourguet, P. J. Antsaklis, "Artificial Neural Networks in Electric Power Industry. Bourguet, P. J. Antsaklis, "Artificial Neural Networks in Electric Power Industry," Technical Report

  3. The power graph of a finite group, II Peter J. Cameron

    E-Print Network [OSTI]

    Cameron, Peter

    The power graph of a finite group, II Peter J. Cameron School of Mathematical Sciences Queen Mary, University of London Mile End Road London E1 4NS, U.K. Abstract The directed power graph of a group G is the digraph with vertex set G, having an arc from y to x whenever x is a power of y; the undirected power

  4. Reentry safety for the Topaz II Space Reactor: Issues and analyses

    SciTech Connect (OSTI)

    Connell, L.W.; Trost, L.C.

    1994-03-01T23:59:59.000Z

    This report documents the reentry safety analyses conducted for the TOPAZ II Nuclear Electric Propulsion Space Test Program (NEPSTP). Scoping calculations were performed on the reentry aerothermal breakup and ground footprint of reactor core debris. The calculations were used to assess the risks associated with radiologically cold reentry accidents and to determine if constraints should be placed on the core configuration for such accidents. Three risk factors were considered: inadvertent criticality upon reentry impact, atmospheric dispersal of U-235 fuel, and the Special Nuclear Material Safeguards risks. Results indicate that the risks associated with cold reentry are very low regardless of the core configuration. Core configuration constraints were therefore not established for radiologically cold reentry accidents.

  5. advanced power group: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  6. Microsoft PowerPoint - DEC1387487090408 OECM Working Group April...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Team MA-50 DOEOECM 1 OECM PARS II Working Group: OA Module April 9, 2009 Created by: EESDekker PARS II Team Agenda * Obtain Consensus On Data Elements That Appear On...

  7. Hunan Huaihua Power Group Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformationHorizonEnergyHubeiHumus Group|

  8. An evaluation of the United Kingdom Clean Coal Power Generation Group`s air-blown gasification cycle

    SciTech Connect (OSTI)

    Wheeldon, J.M.; Brown, R.A. [Electric Power Research Inst., Palo Alto, CA (United States); McKinsey, R.R. [Bechtel Group, Inc., San Francisco, CA (United States); Dawes, S.G. [British Coal Corp., Cheltenham (United Kingdom)

    1996-12-31T23:59:59.000Z

    The Electric Power Research Institute (EPRI) is conducting an engineering and economic study of various pressurized fluidized-bed combustor (PFBC) designs. Studies have been completed on bubbling and circulating PFBC technologies and on an advanced PFBC power plant technology, in which the feed coal is partially gasified and the residual char burned in a PFBC. The United Kingdom Clean Coal Power Generation Group`s (CCPGG) air-blown gasification cycle (ABGC), known formerly as the British Coal Topping Cycle, also partially gasifies the feed coal, but uses a circulating atmospheric fluidized-bed combustor (AFBC) to burn the residual char. Although not a PFBC plant, the study was completed to effect a comparison with the advanced PFBC cycle.

  9. EA-383 Pilot Power Group Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-WideBPAPowerEEauthorizongCargill PowerE-T

  10. Microsoft PowerPoint - MTL DO Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt MicrosoftDOE'sR.G.

  11. International Power Group Ltd IPWG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformation source History View NewInternational

  12. The food poisoning power of Bacillus cereus Group strains varies according to1 phylogenetic affiliation (groups I-VII), not to species affiliation2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 The food poisoning power of Bacillus cereus Group strains varies according to1 phylogenetic 16 17 For: Journal of Clinical Microbiology18 19 Running title: Food poisoning power and B. cereus phylogeny20 21 Keywords: food poisoning power, cytotoxicity, Toxins, Bacillus cereus Group, phylogenetic22

  13. Electrical Engineering Group Digital, analog, power, ASIC, FPGA, and embedded systems design

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Electrical Engineering Group Digital, analog, power, ASIC, FPGA, and embedded systems design The Electrical Engineering (EE) Group at LASP has a broad range of technical expertise in the design, development, and test of space flight electrical systems. Engineers work closely with mission science, systems

  14. 1 Energy Markets and Policy Group Energy Analysis Department The Impact of Wind Power Projects

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 Energy Markets and Policy Group · Energy Analysis Department The Impact of Wind Power Projects) This analysis was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind & Hydropower Technologies Program #12;2 Energy Markets and Policy Group · Energy Analysis

  15. 2005 Nature Publishing Group Mammal-like muscles power swimming in a

    E-Print Network [OSTI]

    DeWitt, Thomas J.

    dorsal fin, where the RM is most abundant, showed that all sharks had a core temperature about 18­20 8C© 2005 Nature Publishing Group Mammal-like muscles power swimming in a cold-water shark Diego, within the fishes the tunas and lamnid sharks deviate from the ectothermic strategy, maintaining elevated

  16. Top Management Group Pay Disparities and Subsequent Firm Performance: The Effect of Powerful CEOs

    E-Print Network [OSTI]

    McClelland, Patrick Lyn

    2008-05-21T23:59:59.000Z

    and to move the current debate beyond tournament theoretic explanations by showing that pay disparities within top management groups arise as a function of the distribution of power within them. This study is based on a sample of 604 publicly-traded firms...

  17. Assessment of possible consequences of a hypothetical reactivity accident associated with a {open_quotes}Topaz-2{close_quotes} spacecraft reactor entering water

    SciTech Connect (OSTI)

    Glushkov, E.S.; Ermoshin, M.Yu.; Ponomarev-Stepnoi; Skorlygin, V.V.

    1994-12-01T23:59:59.000Z

    An accident analysis for a Russian Topaz-2 nuclear reactor is summarized. The accident scenario involves emergency return from orbit, severe damage to reactor structural elements, and subsequent falling of the reactor core into the ocean. The thermionic converter reactor, used in spacecraft, has a large neutron leakage which decreases when water enters the inner core cavity. Preliminary results of numerical modeling, summarized in the article, show that the possible consequences of the hypothetical accidental submersion are limited. 8 refs., 2 figs., 2 tabs.

  18. Issues in the flight qualification of a space power reactor

    SciTech Connect (OSTI)

    Polansky, G.F. [Phillips Lab., Albuquerque, NM (United States); Schmidt, G.L. [New Mexico Engineering Research Inst., Albuquerque, NM (United States); Voss, S.S. [Los Alamos National Lab., NM (United States); Reynolds, E.L. [Applied Physics Lab., Laurel, MD (United States)

    1994-10-01T23:59:59.000Z

    This paper presents an overview of the Nuclear Electric Propulsion Space Test Program (NEPSTP). The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between US and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year.

  19. Sharply tunable group velocity in alkali vapors using a single low-power control field

    E-Print Network [OSTI]

    Pardeep Kumar; Shubhrangshu Dasgupta

    2014-06-20T23:59:59.000Z

    We show how a single linearly polarized control field can produce a sharply tunable group velocity of a weak probe field at resonance in a four-level atomic configuration of alkali vapors. The dispersion can be switched from normal to anomalous along with vanishing absorption, just by changing intensity of the resonant control field. In addition, by allowing different intensities of the different polarization components of the control field, the anomalous dispersion can be switched back to the normal. This thereby creates a "valley of anomaly" in group index variation and offers two sets of control field intensities, for which the system behaves like a vacuum. The explicit analytical expressions for the probe coherence are provided along with all physical explanations. We demonstrate our results in $J = 1/2 \\leftrightarrow J = 1/2$ transition for D_1 lines in alkali atoms, in which one can obtain a group index as large as $3.2\\times10^{8}$ and as negative as $-1.5\\times10^{5}$ using a control field with power as low as 0.017 mW/cm$^2$ and 9.56 mW/cm$^2$ .

  20. Do Trading and Power Operations Mix? The Case of Constellation Energy Group 2008

    E-Print Network [OSTI]

    Parsons, John E.

    2008-01-01T23:59:59.000Z

    Constellation Energy has been a leading performer in the merchant power business since 2001. In addition to its legacy utility, Baltimore Gas and Electric, Constellation is a merchant generator and a wholesale power marketer ...

  1. GROUPE D'ANALYSE ET DE THORIE CONOMIQUE LYON -ST TIENNE Market Power and Collusion on Interconnection

    E-Print Network [OSTI]

    Boyer, Edmond

    GROUPE D'ANALYSE ET DE THÉORIE ÉCONOMIQUE LYON - ST ÉTIENNE WP 1411 Market Power and Collusion'Analyse et de Théorie Économique Lyon-St Étienne 93, chemin des Mouilles 69130 Ecully ­ France Tel. +33 (0 competitors such as competition (Laffont and Tirole (2002)), collusion (Debbichi and Hichri (2013b), Parker

  2. Annihilators for the class group of a cyclic field of prime power degree II

    E-Print Network [OSTI]

    Kuèera, Radan

    and Radan Kucera Abstract We prove, for a field K which is cyclic of odd prime power degree over]. To explain the significance of our main result (for more details and for references, see [GK2]) we use a bit

  3. Power of Alternative Fit Indices for Multiple Group Longitudinal Tests of Measurement Invariance

    E-Print Network [OSTI]

    Short, Stephen David

    2014-05-31T23:59:59.000Z

    a Monte Carlo simulation to examine the power of change in alternative fit indices to detect two types of measurement invariance, weak and strong, across a variety of manipulated study conditions including sample size, sample size ratio, lack...

  4. Justifying power : ruling group dominance and regime justification in multi-ethnic states

    E-Print Network [OSTI]

    Berman, Deborah Rachel

    2011-01-01T23:59:59.000Z

    The current but inconsistent upheaval in the Middle East suggests variations in what will topple regimes, and thus in how regimes have laid the groundwork to remain in power. This thesis examines variation in a social ...

  5. ENERGY ISSUES WORKING GROUP ON LONG-TERM VISIONS FOR FUSION POWER

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    FOR ELECTRICAL ENERGY PRODUCTION IN THE NEXT CENTURY AND FUSION'S POTENTIAL FOR PENETRATING THIS ENERGY MARKET. 1, global warming, etc. The question then arose as to whether or not the community should account for Fusion Power considered the following four questions: 1. What is the projected market for electrical

  6. September 6-7, 2007/ARR Power Management Technical Working Group

    E-Print Network [OSTI]

    Raffray, A. René

    conversion ­ nuclear performance of in-vessel and ancillary equipment Members · Mark Tillack (R&D plan leader/or electric rate payers. · Lack of test facilities that can reproduce prototypical fusion power plant a high degree of confidence in the operation and survival of nuclear components in future fusion devices

  7. March 3-4, 2008/ARR Power Management Technical Working Group

    E-Print Network [OSTI]

    Raffray, A. René

    and Power Conversion") 2. Key science challenges (theory + experiments) - Material thermomechanics at high Flux Handling T R L TRL Function Generic Definition Issue-Specific Definition 1 Basic principles conditions and all interfacing subsystems . #12;March 3-4, 2008/ARR 4 T R L TRL Function Generic Definition

  8. Working Group Report on - Space Nuclear Power Systems and Nuclear Waste

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley NickellApril 16, 2008Ms.12.1AJanuaryEnergyTechnology

  9. Problems in developing bimodal space power and propulsion system fuel element

    SciTech Connect (OSTI)

    Nikolaev, Yu. V.; Gontar, A. S.; Zaznoba, V. A.; Parshin, N. Ya.; Ponomarev-Stepnoi, N. N.; Usov, V. A. [Research Institute of SIA 'Lutch' Podolsk, Moscow Region, 142100 (Russian Federation); RRC 'Kurchatov Institute' Moscow, 123182 (Russian Federation)

    1997-01-10T23:59:59.000Z

    The paper discusses design of a space nuclear power and propulsion system fuel element (PPFE) developed on the basis of an enhanced single-cell thermionic fuel element (TFE) of the 'TOPAZ-2' thermionic converter-reactor (TCR), and presents the PPFE performance for propulsion and power modes of operation. The choice of UC-TaC fuel composition is substantiated. Data on hydrogen effect on the PPFE output voltage are presented, design solutions are considered that allow to restrict hydrogen supply to an interelectrode gap (IEG). Long-term geometric stability of an emitter assembly is supported by calculated data.

  10. HEATING THE HOT ATMOSPHERES OF GALAXY GROUPS AND CLUSTERS WITH CAVITIES: THE RELATIONSHIP BETWEEN JET POWER AND LOW-FREQUENCY RADIO EMISSION

    SciTech Connect (OSTI)

    O'Sullivan, E.; Raychaudhury, S.; Ponman, T. J. [School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Giacintucci, S.; David, L. P.; Gitti, M.; Vrtilek, J. M., E-mail: ejos@star.sr.bham.ac.uk [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2011-07-01T23:59:59.000Z

    We present scaling relations between jet power and radio power measured using the Giant Metrewave Radio Telescope (GMRT), Chandra, and XMM-Newton, for a sample of nine galaxy groups combined with the BIrzan et al. sample of clusters. Cavity power is used as a proxy for mechanical jet power. Radio power is measured at 235 MHz and 1.4 GHz, and the integrated 10 MHz-10 GHz radio luminosity is estimated from the GMRT 610-235 MHz spectral index. The use of consistently analyzed, high-resolution low-frequency radio data from a single observatory makes the radio powers for the groups more reliable than those used by previous studies, and the combined sample covers 6-7 decades in radio power and 5 decades in cavity power. We find a relation of the form P{sub jet}{proportional_to} L{approx}0.7{sub radio} for integrated radio luminosity, with a total scatter of {sigma}{sub Lrad} = 0.63 and an intrinsic scatter of {sigma}{sub i,Lrad} = 0.59. A similar relation is found for 235 MHz power, but a slightly flatter relation with greater scatter is found for 1.4 GHz power, suggesting that low-frequency or broadband radio measurements are superior jet power indicators. We find our low-frequency relations to be in good agreement with previous observational results. Comparison with jet models shows reasonable agreement, which may be improved if radio sources have a significant low-energy electron population. We consider possible factors that could bias our results or render them more uncertain, and find that correcting for such factors in those groups we are able to study in detail leads to a flattening of the P{sub jet}:L{sub radio} relation.

  11. Backup power working group best practices handbook for maintenance and operation of engine generators, Volume 1. Revision 1

    SciTech Connect (OSTI)

    Gross, R.; Padgett, A.B.; Burrows, K.P.; Fairchild, P.N.; Lam, T.; Janes, J.

    1997-06-01T23:59:59.000Z

    This handbook is divided into the four chapters. Chapter one covers the design, procurement, storage, handling and testing of diesel fuel oil to be used in DOE backup power supplies. Chapter two discusses the selection of automatic transfer switches to be used in DOE backup power supplies. Chapter three is about low voltage open frame air circuit breaker operation, testing, and maintenance for DOE backup power supplies. And chapter four covers installation, design, and maintenance of engine cooling water and jacket water systems.

  12. Nuclear space power safety and facility guidelines study

    SciTech Connect (OSTI)

    Mehlman, W.F.

    1995-09-11T23:59:59.000Z

    This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an {open_quotes}Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missions{close_quotes}. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system.

  13. DOE Backup Power Working Group Best Practices Handbook for Maintenance and Operation of Engine Generators, Volume II

    SciTech Connect (OSTI)

    Gross, R.E.

    1998-10-30T23:59:59.000Z

    The lubricating oil system provides a means to introduce a lubricant in the form of a film to reduce friction and wear between surfaces that bear against each other as they move.1 The oil film which is established also cools the parts by carrying generated heat away from hot surfaces, cleans and carries dirt or metal wear particles to the filter media, and helps seal the piston to the cylinder during combustion. Most systems are pressure lubricated and distribute oil under pressure to bearings, gears, and power assemblies. Lubricating oil usually reaches main, connecting rod, and camshaft bearings through drilled passages in the cylinder block and crankshaft or through piping and common manifolds.Many parts rely on oil for cooling, so if the lube oil system fails to perform its function the engine will overheat. Metal to metal surfaces not separated by a thin film of oil rapidly build up frictional heat. As the metals reach their melting point, they tend to weld together in spots or streaks. Lube oil system failures can cause significant damage to an engine in a short period of time. Proper maintenance and operation of the lubricating oil system is essential if your engine is to accomplish its mission.

  14. SPACE-R nuclear power system TFE mock-up SC-320 demonstration test

    SciTech Connect (OSTI)

    Nikolaev, Y.V.; Eremin, S.A.; Kolesov, V.S.; Lapochkin, N.V.; Izhvanov, O.L.; Semin, R.N.; Androsov, V.N.; Agafonov, V.N. [Research Institute of SIA ``LUCH``, Podolsk (Russian Federation); Koester, J.K. [Space Power Incorporated, 621 River Oaks Parkway, San-Jose, California 95134 (United States)

    1996-03-01T23:59:59.000Z

    As a result of its 1993{endash}94 work, NII NPO {open_quote}{open_quote}LUCH{close_quote}{close_quote} developed a thermionic fuel element (TFE) SC-320 intended for use as part of a nuclear thermionic reactor-converter known as SPACE-R designed in the US and rated at 40 kW of output electric power. This paper presents the results of the demonstration electric power tests of the SC-320 TFE mock-up conducted in the US at the TSET testing facility located at the University of New Mexico. The data obtained are compared to the calculated characteristics as well as the output parameters of the Topaz-2 NPS TFEs. {copyright} {ital 1996 American Institute of Physics.}

  15. Combustion Group Group members

    E-Print Network [OSTI]

    Wang, Wei

    Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy 2014 #12;Combustion Group Combustion Physics and Modeling Pollutants, Emissions, and Soot Formation Thermoacoustics and Combustion Dynamics Research focus § Examine mechanisms responsible for flame stabilization

  16. Combustion Group Group members

    E-Print Network [OSTI]

    Wang, Wei

    Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy § New combustion and energy-conversion concepts #12;Introduction Combustion research thrusts Combustion Dynamics and Flame-Stabilization Research objectives § Obtain fundamental understanding of combustion

  17. Group Analysis Jean Daunizeau

    E-Print Network [OSTI]

    Daunizeau, Jean

    ) is measurement error True response magnitude is fixed 111 Xy Fixed effect #12;Random effects-sphericity modelling Examples Power and efficiency: summary Overview #12;Group analysis: fixed versus random effects Two RFX methods: Holmes & Friston (HF) approach non-sphericity modelling Examples Power

  18. TKN Telecommunication Networks Group

    E-Print Network [OSTI]

    Wichmann, Felix

    consumption. Quite some effort has already been undertaken to address this issue, striving for low-energy trends in the power consumption, the NICs and APs are classified according to the following aspects Group Power consumption of WLAN network elements Salvatore Chiaravalloti, Filip Idzikowski, Lukasz

  19. I read with interest the report entitled, "Carbon Dioxide Footprint of the Northwest Power System." Unfortunately your analysis does not take into consideration renewable power production using a Solena Group gasification process

    E-Print Network [OSTI]

    . In these tanks, we will sequester the carbon by growing algae that we would harvest and use as a biomass feedstock for the renewable power plant. This service would cost $50 per ton of carbon sequestered. Do you

  20. Power Factor Reactive Power

    E-Print Network [OSTI]

    motor power: 117.7 V x 5.1 A = 600 W? = 0.6 kW? NOT the power measured by meter #12;Page 9 PSERC: displacement power factor: angle between voltage and current = 0 degrees pf = cos(0 degrees) = 1.0 true powerPage 1 PSERC Power Factor and Reactive Power Ward Jewell Wichita State University Power Systems

  1. Power Purchase Agreements Update

    Broader source: Energy.gov [DOE]

    Presentation covers an update on power purchase agreements and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  2. Alabama Power- UESC Activities

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses Alabama Power and its utility energy service contract (UESC) projects and activities.

  3. Combined Heat & Power

    Broader source: Energy.gov (indexed) [DOE]

    & Power (CHP) Michael Ellis Director AGL Energy Services Federal Utility Partnership Working Group May 7 - 8, 2014 Virginia Beach, VA "CHP is the most efficient way of generating...

  4. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTRIBUTORS Developed by Rob Carmichael, Cadeo Group, Mark Bielecki and Amy Meyer, Navigant Consulting and Kristin Salvador, Artisan. Developed for the Bonneville Power...

  5. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08T23:59:59.000Z

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  6. Group X

    SciTech Connect (OSTI)

    Fields, Susannah

    2007-08-16T23:59:59.000Z

    This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

  7. TOPAZ-Protocol Development Instructions for Researchers Page 1 Topaz Electronic Protocol Development

    E-Print Network [OSTI]

    Oliver, Douglas L.

    ...............................................................................................................................2 Saving will help you and/or give you an example. Save often. This program is webbased and if you lose your connection to the web, you will regret not saving. But do not click the save button twice in a row. Most

  8. The Power of Non-Uniform Wireless Power

    E-Print Network [OSTI]

    The Power of Non-Uniform Wireless Power ETH Zurich ­ Distributed Computing Group Magnus M-To-Interference-Plus-Noise Ratio (SINR) Formula Minimum signal- to-interference ratio Power level of sender u Path-loss exponent Noise Distance between two nodes Received signal power from sender Received signal power from all other

  9. for Pulsed Power & erElectronics|Texas

    E-Print Network [OSTI]

    Gelfond, Michael

    for Pulsed Power and Power Electronics The Center for Pulsed Power and Power Electronics started as a Plasma research group at Texas Tech University in 1966. The initial work was concerned with har- monic ion

  10. POWER CENTRALIZED SEMIGROUPS PRIMOZ MORAVEC

    E-Print Network [OSTI]

    POWER CENTRALIZED SEMIGROUPS PRIMOZ MORAVEC Abstract. A semigroup is said to be power centralized if for every pair of elements x and y there exists a power of x commuting with y. The structure of power centralized groups and semigroups is investigated. In particular, we characterize 0-simple power centralized

  11. Power Dancers Audition Packet

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Power Dancers Dance Team Audition Packet September 8-10, 2014 #12;Power Dancers Dance Team Dear service to their school with the support of the faculty, administration, and other groups on campus, but they also provide a source of great school spirit to UT Dallas. Power Dancers provides a real opportunity

  12. Power Dancers Audition Packet

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Power Dancers Dance Team Audition Packet September 9-11, 2013 #12;Power Dancers Dance Team Dear service to their school with the support of the faculty, administration, and other groups on campus, but they also provide a source of great school spirit to UT Dallas. Power Dancers provides a real opportunity

  13. Power Dancers Audition Packet

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Power Dancers Dance Team Audition Packet September 10 & 12, 2012 #12;Power Dancers Dance Team Dear service to their school with the support of the faculty, administration, and other groups on campus, but they also provide a source of great school spirit to UT Dallas. Power Dancers provides a real opportunity

  14. Power Plant Power Plant

    E-Print Network [OSTI]

    Tingley, Joseph V.

    Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

  15. Alta Power Group LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to:Almo, Idaho: Energy ResourcesAlta III

  16. Shenyang Power Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandong LusaShelby, Ohio: EnergyShenneng

  17. Green Power Group Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska:EthanolHabits JumpMachine Place:

  18. Elemental Power Group LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:EdinburghEldoradoElectronVault JumpLabs, Place: New

  19. TGI Solar Power Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By FaultSunpodsSweetwater 4aSyntheticTAUTEST UTILITYTGI

  20. Fermilab | Employee Advisory Group | Focus Group Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013Focus Group Report A random sampling of

  1. China Solar Photovoltaic Group CNPV aka Dongying Photovoltaic...

    Open Energy Info (EERE)

    China Solar Photovoltaic Group CNPV aka Dongying Photovoltaic Power Co Ltd or China Solar PV Jump to: navigation, search Name: China Solar Photovoltaic Group (CNPV, aka Dongying...

  2. Automata groups

    E-Print Network [OSTI]

    Muntyan, Yevgen

    2010-01-16T23:59:59.000Z

    automata over the alphabet of 2 letters and 2-state automata over the 3-letter alphabet. We continue the classification work started by the research group at Texas A&M University ([BGK+07a, BGK+07b]) and further reduce the number of pairwise nonisomorphic...

  3. Crowd-powered systems

    E-Print Network [OSTI]

    Bernstein, Michael Scott

    2012-01-01T23:59:59.000Z

    Crowd-powered systems combine computation with human intelligence, drawn from large groups of people connecting and coordinating online. These hybrid systems enable applications and experiences that neither crowds nor ...

  4. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    SciTech Connect (OSTI)

    Narumanchi, S.; Bennion, K.; DeVoto, D.; Moreno, G.; Rugh, J.; Waye, S.

    2015-01-01T23:59:59.000Z

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  5. aged nuclear power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMPONENTS Physics Websites Summary: SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS Piero Baraldi Monitoring, Empirical Modeling, Power Plants, Safety...

  6. Microsystems and Nanotechnology Group

    E-Print Network [OSTI]

    Pulfrey, David L.

    Microsystems and Nanotechnology Group Microsystems and Nanotechnology Group 1 Microsystems and Nanotechnology Research Group The University of British Columbia Microsystems and Nanotechnology Research Group The University of British Columbia Annual Report ­ 2007 Microsystems and Nanotechnology Research Group 1 About

  7. Microsystems and Nanotechnology Group

    E-Print Network [OSTI]

    Pulfrey, David L.

    Microsystems and Nanotechnology Group Microsystems and Nanotechnology Group 1 Microsystems and Nanotechnology Research Group The University of British Columbia Microsystems and Nanotechnology Research Group The University of British Columbia Annual Report ­ 2008 Microsystems and Nanotechnology Research Group 1 About

  8. Federal Utility Partnership Working Group Seminar Agenda

    Office of Environmental Management (EM)

    Federal Utility Partnership Working Group Seminar November 5-6, 2014 Cape Canaveral, FL Hosted by: Florida Power & Light Monday, November 3 9:00 am - 4:30 pm Advanced UESC...

  9. Man: The Jewel of Jewels or The Topaz of Ethiopia

    E-Print Network [OSTI]

    Hughes, Marvis

    1994-01-01T23:59:59.000Z

    sweeps over the land. "And Ethiopia sholl stretch oUl hersmiles &. dour pacon? Egypt-Ethiopia-Sheba-Somalia-Nubia: No

  10. Topaz Investments Pvt Ltd TIPL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to:TiogaTongdaoTool HomeTop

  11. Poyry Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation toPower andPoyry Group Jump to: navigation,

  12. Properties of Group Five and Group Seven transactinium elements

    E-Print Network [OSTI]

    Wilk, Philip A.

    2001-01-01T23:59:59.000Z

    of Group Five and Group Seven Transactinium Elementsof Group Five and Group Seven Transactinium Elements byof Group Five and Group Seven Transactinium Elements by

  13. Power Fluctuations and Political Economy

    E-Print Network [OSTI]

    Acemoglu, Daron

    We study (constrained) Pareto efficient allocations in a dynamic production economy where the group that holds political power decides the allocation of resources. For high discount factors, the economy converges to a ...

  14. atlas pulsed power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Electronics The Center for Pulsed Power and Power Electronics started as a Plasma research group at Texas Tech University in 1966. The initial work was concerned with har-...

  15. advanced power electronic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Electronics The Center for Pulsed Power and Power Electronics started as a Plasma research group at Texas Tech University in 1966. The initial work was concerned with har-...

  16. advanced power electronics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Electronics The Center for Pulsed Power and Power Electronics started as a Plasma research group at Texas Tech University in 1966. The initial work was concerned with har-...

  17. GROUP THERAPY Syracuse University

    E-Print Network [OSTI]

    McConnell, Terry

    your individual needs. In a group, up to eight students meet with one or two group therapists. MostGROUP THERAPY Syracuse University Counseling Center 200 Walnut Place Phone: 315-443-4715 Fax: 315-443-4276 counselingcenter.syr.edu WHAT STUDENTS SAY ABOUT GROUP THERAPY I was really anxious about joining a group

  18. Specific Group Hardware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group Hardware Specific Group Hardware ALICE palicevo1 The Virtual Organization (VO) server. Serves as gatekeeper for ALICE jobs. It's duties include getting assignments from...

  19. Nuclear Power

    E-Print Network [OSTI]

    Vilhena and Bardo E.J. Bodmann Carbon-#1;? in Terrestrial and Aquatic Environment of Ignalina Nuclear Power Plant: Sources of Production, Releases and Dose Estimates #3;?? Jonas Mazeika Impact of radionuclide discharges from Temel?n Nuclear Power... (chapter 5), ? Instrumentation and control (chapter 6), ? Diagnostics (chapter 7), ? Safety evaluation methods (chapters 6, 8, 9 and 10), ? Environment and nuclear power plants (chapters 11 - 15), ? Human factors (chapter 16), ? Software development...

  20. Power LCAT

    ScienceCinema (OSTI)

    Drennen, Thomas

    2014-06-27T23:59:59.000Z

    POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

  1. Power LCAT

    SciTech Connect (OSTI)

    Drennen, Thomas

    2012-08-15T23:59:59.000Z

    POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

  2. QEP WORKING GROUP CHARGES Assessment Working Group

    E-Print Network [OSTI]

    Liu, Paul

    and a framework that details timelines, leadership, resource allocation, and an assessment plan that is clearlyQEP WORKING GROUP CHARGES Assessment Working Group The topic of the QEP should fit should be supported by a thorough understanding of the institutional context and by assessment data

  3. Selmer groups as flat cohomology groups

    E-Print Network [OSTI]

    ?esnavi?ius, K?stutis

    2014-01-01T23:59:59.000Z

    Given a prime number p, Bloch and Kato showed how the p Selmer group of an abelian variety A over a number field K is determined by the p-adic Tate module. In general, the pm1-Selmer group Selpmn A need not be determined ...

  4. 1. Tsubono Group 1 1 Tsubono Group

    E-Print Network [OSTI]

    Ejiri, Shinji

    optical fiber ­ Test of the law of gravitation at extremely small distance references [1] Y. Aso, M. Ando1. Tsubono Group 1 1 Tsubono Group Research Subjects: Experimental Relativity, Gravitational Wave Physics, Laser Inter- ferometer Member: Kimio TSUBONO and Masaki ANDO The detection of gravitational waves

  5. www.eprg.group.cam.ac.uk EPRGWORKINGPAPER

    E-Print Network [OSTI]

    Aickelin, Uwe

    www.eprg.group.cam.ac.uk EPRGWORKINGPAPER Abstract Reforming Small Power Systems under Political Nepal and Tooraj Jamasb This paper assesses the electricity sector reforms across small power systems make power sector reform in Nepal and similar small systems a more complex process. As international

  6. Power system

    DOE Patents [OSTI]

    Hickam, Christopher Dale (Glasford, IL)

    2008-03-18T23:59:59.000Z

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  7. David Turner! User Services Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OFSupplementalC. L. MartinGraduatesUser Services Group

  8. Klebl Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New EnergyKenosistecKilara PowerKiotoKlasing

  9. Sova Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop, IncSouthwestern Electric PowerSova Group Jump

  10. Citizenre Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDataset CountryChoosEV JumpCircleCitizenre Group

  11. Strathclyde powerS ahead

    E-Print Network [OSTI]

    Mottram, Nigel

    Strathclyde powerS ahead the future of renewable energy SHARING AND ENHANCING RESEARCH Discover the vision of Principal Professor Jim McDonald THE FUTURE OF ENERGY Strathclyde pioneers renewableEdicinE Snapshot the reSearcher Following a decade of environmental research in her native egypt, nabila saleem

  12. TEC Working Group Topic Groups Archives Communications Meeting...

    Office of Environmental Management (EM)

    TEC Working Group Topic Groups Archives Communications Conference Call Summaries TEC Meeting Summaries - January 1997 TEC Working Group Topic Groups Tribal Conference Call...

  13. Long Term by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running Jobs by Group Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 13:59:48...

  14. Mechanical Engineering & Thermal Group

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has · STOP (Structural, Thermal, and Optical Performance) analyses of optical systems Thermal engineers lead evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced

  15. Power combiner

    DOE Patents [OSTI]

    Arnold, Mobius; Ives, Robert Lawrence

    2006-09-05T23:59:59.000Z

    A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.

  16. Interagency Sustainability Working Group

    Broader source: Energy.gov [DOE]

    The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the federal government.

  17. Hydrogen Analysis Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

  18. Grouped exposed metal heaters

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, MY); Watkins, Ronnie Wade (Cypress, TX)

    2010-11-09T23:59:59.000Z

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  19. Grouped exposed metal heaters

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, ML); Watkins, Ronnie Wade (Cypress, TX)

    2012-07-31T23:59:59.000Z

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  20. Cleco Power- Power Miser New Home Program

    Broader source: Energy.gov [DOE]

    Louisiana's Cleco Power offers energy efficiency incentives to eligible customers. Cleco Power offers a rate discount for residential customers building homes that meet the Power Miser Program...

  1. State power plant productivity programs

    SciTech Connect (OSTI)

    Not Available

    1981-02-01T23:59:59.000Z

    The findings of a working group formed to review the status of efforts by utilities and utility regulators to increase the availability and reliability of generating units are presented. Representatives from nine state regulatory agencies, NRRI, and DOE, participated on the Working Group. The Federal government has been working cooperatively with utilities, utility organizations, and with regulators to encourage and facilitate improvements in power plant productivity. Cooperative projects undertaken with regulatory and energy commissions in California, Illinois, New York, Ohio, Texas, North Carolina and Mighigan are described. Following initiation of these cooperative projects, DOE funded a survey to determine which states were explicitly addressing power plant productivity through the regulatory process. The Working Group was formed following completion of this survey. The Working Group emphasized the need for those power plant productivity improvements which are cost effective. The cost effectiveness of proposed availability improvement projects should be determined within the context of opportunities for operating and capital improvements available to an entire utility. The Working Group also identified the need for: allowing for plant designs that have a higher construction cost, but are also more reliable; allowing for recovery and reducing recovery lags for productivity-related capital expenditures; identifying and reducing disincentives in the regulatory process; ascertaining that utilities have sufficient money available to undertake timely maintenance; and support of EPRI and NERC to develop a relevant and accurate national data base. The DOE views these as extremely important aspects of any regulatory program to improve power plant productivity.

  2. GROUP 1 GROUP 2 GROUP 3 GROUP 4 GROUP 5 GROUP 6 ANDERSON, JENNIFER AYENI, MARY ABATE BESSOMO, ANNA BARRETT, CIAN ADAMS, NICOLE BARTON, MICHAEL

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    GROUP 1 GROUP 2 GROUP 3 GROUP 4 GROUP 5 GROUP 6 ANDERSON, JENNIFER AYENI, MARY ABATE BESSOMO, ANNA ANDERSON FITZSIMONS, DENISEBINCHY, SUSAN CARLEY, JESSE CONWAY, AILBHE BROOKE, HENRY CONLAN, DEIRDRE, CAOIMHE HESKIN, CLODAGH MC GOVERN, MARIE-CLAIREMURRAY, AINE GROGAN, CLARE GERARD, ALLISON MC QUAID, RACHEL

  3. Fermilab Steering Group Report

    SciTech Connect (OSTI)

    Beier, Eugene; /Pennsylvania U.; Butler, Joel; /Fermilab; Dawson, Sally; /Brookhaven; Edwards, Helen; /Fermilab; Himel, Thomas; /SLAC; Holmes, Stephen; /Fermilab; Kim, Young-Kee; /Fermilab /Chicago U.; Lankford, Andrew; /UC, Irvine; McGinnis, David; /Fermilab; Nagaitsev, Sergei; /Fermilab; Raubenheimer, Tor; /SLAC /Fermilab

    2007-01-01T23:59:59.000Z

    The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design Effort's technically driven timeline, Fermilab would continue neutrino science with the NOVA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac. Project X's intense proton beams would open a path to discovery in neutrino science and in precision physics with charged leptons and quarks. World-leading experiments would allow physicists to address key questions of the Quantum Universe: How did the universe come to be? Are there undiscovered principles of nature: new symmetries, new physical laws? Do all the particles and forces become one? What happened to the antimatter? Building Project X's ILC-like linac would offer substantial support for ILC development by accelerating the industrialization of ILC components in the U.S. and creating an engineering opportunity for ILC cost reductions. It offers an early and tangible application for ILC R&D in superconducting technology, attracting participation from accelerator scientists worldwide and driving forward the technology for still higher-energy accelerators of the future, such as a muon collider. To prepare for a future decision, the Fermilab Steering Group recommends that the laboratory seek R&D support for Project X, in order to produce an overall design of Project X and to spur the R&D and industrialization of ILC linac components needed for Project X. Advice from the High Energy Physics Advisory Panel will guide any future decision to upgrade the Fermilab accelerator complex, taking into account developments affecting the ILC schedule and the continuing evaluation of scientific priorities for U.S. particle physics. Fermilab should also work toward increased resources for longer-term future accelerators such as a muon collider, aiming at higher energies than the ILC would provide.

  4. WATER POWER SOLAR POWER WIND POWER

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment(GATE)ActionSolar Water Heat Water

  5. Control of Distributed Energy Resources for Reactive Power Support

    E-Print Network [OSTI]

    Liberzon, Daniel

    power support for voltage control in electric power systems. Rather than controlling each power support, which is critical in electric power systems for voltage stability and control [6]. Thus groups, that belong to a chain of command structure much like the Incident Command System (ICS) used

  6. Water Cooling of High Power Light Emitting Diode Henrik Srensen

    E-Print Network [OSTI]

    Berning, Torsten

    Water Cooling of High Power Light Emitting Diode Henrik Sørensen Department of Energy Technology and product lifetime. The high power Light Emitting Diodes (LED) belongs to the group of electronics

  7. SPPR Group Proposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    members will execute in August 2011. Facilities Use Charge agreements are drafted: In review stage by customer group; Proposal specifies annual update of charge amount...

  8. Hydrogen Technologies Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  9. Power Factor Compensation (PFC) Power Factor Compensation

    E-Print Network [OSTI]

    Knobloch,Jürgen

    Power Factor Compensation (PFC) Power Factor Compensation The power factor (PF) is defined as the ratio between the active power and the apparent power of a system. If the current and voltage are periodic with period , and [ ), then the active power is defined by ( ) ( ) (their inner product

  10. Star Power

    ScienceCinema (OSTI)

    None

    2014-11-18T23:59:59.000Z

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  11. Star Power

    SciTech Connect (OSTI)

    None

    2014-10-17T23:59:59.000Z

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  12. Oscillating fluid power generator

    DOE Patents [OSTI]

    Morris, David C

    2014-02-25T23:59:59.000Z

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  13. Microsoft PowerPoint - Highlights of the Industry Working Group...

    National Nuclear Security Administration (NNSA)

    identification format - Further concerns about both the upfront and maintenance costs Identified path forward and future engagement to include: - Creation of Industry...

  14. Microsoft PowerPoint - Group B - Consumer Acceptance Report Out...

    Broader source: Energy.gov (indexed) [DOE]

    innovative amortization) * Innovative Sales Models * Green dealerships * Other * Rental car (regional EV experience, required electric miles) * Rental APU trailer (AAA) *...

  15. International Working Group Meeting Focuses on Nuclear Power Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15AmongPartnership for a

  16. International Working Group Meeting Focuses on Nuclear Power Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15AmongPartnership for aDevelopment and Needs

  17. Severn Tidal Power Group STpg | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: EnergySeoulSettlers

  18. Yantai Dongyuan Wind Power Group Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifang SwisselectronicXian JieliYanbu, Saudi Arabia:Yantai

  19. Sichuan Dingneng Power Development Group Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandongShirke Biofuels JumpSi Pro

  20. EA-383 Pilot Power Group Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197EFindingEA-257-CEA-296-B22441 AquilonEA-37579EA-381

  1. Changzhou Jiangnan Electrical Power Equipment Group Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: ChinaInformation Changzhou Jiangnan Electrical

  2. China Longyuan Power Group Corporation Limited | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place: SpainGuajirugroSolar company

  3. Bioten Power and Energy Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyons BiomassBiofuels)BiomassThermalBioten

  4. Sichuan Provincial Hydro Power Investment Operation Group Co ltd | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandongShirkeSichuan Miyi Shixia HydropowerLtd |

  5. Anhui Kangyuan Electric Power Group Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan2809328°,Anfu Guanshan

  6. Bowman Power Group Ltd BPG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotinsBoston College Jump to:BoulderBovina,Bowman

  7. Power, status, and learning in organizations

    E-Print Network [OSTI]

    Bunderson, J. Stuart

    This paper reviews the scholarly literature on the effects of social hierarchy—differences in power and status among organizational actors—on collective learning in organizations and groups. We begin with the observation ...

  8. NREL: Concentrating Solar Power Research - NREL Forges Foundation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Forges Foundation for Advanced Concentrating Solar Power Receivers September 16, 2014 As part of DOE's SunShot effort, NREL's Thermal Systems Group is performing research and...

  9. Combined Heat and Power with Your Local Utility

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers combined heat and power (CHP) and its uses, configurations, considerations, and more.

  10. Wind Powering America: FY09 Activities Summary (Book)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01T23:59:59.000Z

    The Wind Powering America FY09 Activities Summary reflects the accomplishments of state Wind Working Groups, WPA programs at the National Renewable Energy Laboratory, and partner organizations.

  11. Wind Powering America FY08 Activities Summary (Book)

    SciTech Connect (OSTI)

    Not Available

    2009-02-01T23:59:59.000Z

    The Wind Powering America FY08 Activities Summary reflects the accomplishments of state Wind Working Groups, WPA programs at the National Renewable Energy Laboratory, and partner organizations.

  12. Dutch Company Powers Streetlights With Living Plants; Will Your...

    Open Energy Info (EERE)

    Dutch Company Powers Streetlights With Living Plants; Will Your Cell Phone Be Next? Home > Groups > OpenEI Community Central Dc's picture Submitted by Dc(266) Contributor 16...

  13. Naval Construction Battalion Center Gulfport- Mississippi Power Partnership Success Story

    Broader source: Energy.gov [DOE]

    Presentation covers the Naval Construction Battalion Center Gulfport - Mississippi Power Partnership success story given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting...

  14. Wave Power: Destroyer of Rocks; Creator of Clean Energy

    Broader source: Energy.gov [DOE]

    Presentation covers the topic of wave power at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  15. Combined Heat and Power, Waste Heat, and District Energy

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers combined heat and power (CHP) technologies and their applications.

  16. Breakout Group Instructions

    Broader source: Energy.gov (indexed) [DOE]

    Taker Consumer Acceptance BLACK Stanley Steamer Shawna McQueenAmanda McAlpin Batteries BLUE Rolls Royce Anand RaghunathanDaniel McKay Power Electronics and Motors YELLOW Pierce...

  17. Power superconducting power transmission cable

    DOE Patents [OSTI]

    Ashworth, Stephen P. (Cambridge, GB)

    2003-01-01T23:59:59.000Z

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  18. Power Right. Power Smart. Efficient Computer Power Supplies and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AC power that you get from your electric company into the DC power consumed by most electronics, including your computer. We expect our power supplies to be safe, reliable, and...

  19. Silicon Valley Power and Oklahoma Municipal Power Authority Win...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind...

  20. Tidal power

    SciTech Connect (OSTI)

    Hammons, T.J. (Glasgow Univ., Scotland (United Kingdom))

    1993-03-01T23:59:59.000Z

    The paper reviews the physics of tidal power considering gravitational effects of moon and sun; semidiurnal, diurnal, and mixed tides; and major periodic components that affect the tidal range. Shelving, funneling, reflection, and resonance phenomena that have a significant effect on tidal range are also discussed. The paper then examines tidal energy resource for principal developments estimated from parametric modeling in Europe and worldwide. Basic parameters that govern the design of tidal power schemes in terms of mean tidal range and surface area of the enclosed basin are identified. While energy extracted is proportional to the tidal amplitude squared, requisite sluicing are is proportional to the square root of the tidal amplitude. Sites with large tidal amplitudes are therefore best suited for tidal power developments, whereas sites with low tidal amplitudes have sluicing that may be prohibitive. It is shown that 48% of the European tidal resource is in the United Kingdom, 42% in France and 8% in Ireland, other countries having negligible potential. Worldwide tidal resource is identified. Tidal barrage design and construction using caissons is examined, as are alternative operating modes (single-action generation, outflow generation, flood generation, two-way generation, twin basin generation, pumping, etc), development trends and possibilities, generation cost at the barrage boundary, sensitivity to discount rates, general economics, and markets. Environmental effects, and institutional constraints to the development of tidal barrage schemes are also discussed.

  1. atlas pulsed-power systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Electronics The Center for Pulsed Power and Power Electronics started as a Plasma research group at Texas Tech University in 1966. The initial work was concerned with har-...

  2. Accidental Activists: How Victim Groups Hold the Government Accountable in Japan and South Korea

    E-Print Network [OSTI]

    Arrington, Celeste Louise

    2010-01-01T23:59:59.000Z

    power, was not addressed until 2007. The Inhyeokdang (People’power, or legitimacy. It was essential, therefore, that they expand the group of peoplepower are publicly held responsible for their decisions. ” 1 I focused on the efforts of people,

  3. Working group report: Neutrino physics

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    Working group report: Neutrino physics Acknowledgements TheWorking group report: Neutrino physics Coordinators: SANDHYAthe report of the neutrino physics working group at WHEPP-X.

  4. www.eprg.group.cam.ac.uk EPRGWORKINGPAPERNON-TECHNICALSUMMARY

    E-Print Network [OSTI]

    Aickelin, Uwe

    www.eprg.group.cam.ac.uk EPRGWORKINGPAPERNON-TECHNICALSUMMARY Reforming Small Power Systems under Rabindra Nepal and Tooraj Jamasb The pioneering electricity sector reforms in developing Latin American of `successful and comprehensive electricity reforms' in many less-developed countries like Nepal. Nepal's power

  5. UTILITY PLANNING ISSUES Northwest Power and Conservation Council August 9, 2011

    E-Print Network [OSTI]

    to jointly purchase NEMS ­ John Saven No one else needs much power either Only 1 other I-937 utility in groupUTILITY PLANNING ISSUES Northwest Power and Conservation Council August 9, 2011 #12;Inland Overview - Power Don't need a lot of additional power 3 MW by 2016; 8 by 2020 Formed group of 20 smaller utilities

  6. Wind power and Wind power and

    E-Print Network [OSTI]

    Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

  7. Generation-IV Roadmap Report of the Fuel Cycle Crosscut Group...

    Broader source: Energy.gov (indexed) [DOE]

    Charter of the Generation IV Roadmap Fuel Cycle Crosscut Group (FCCG) is to (1) examine the fuel cycle implications for alternative nuclear power scenarios in terms of Generation...

  8. Summary Report of the Energy Issues Working Group

    E-Print Network [OSTI]

    Information Agency Annual Energy Outlook 1999. #12;Fusion Power Plant Attractiveness, Technical RiskSummary Report of the Energy Issues Working Group Organizer: Farrokh Najmabadi Covenors: Jeffrey Sauthoff 1999 Fusion Summer Study July 12-23, 1999, Snowmass, CO Energy Working Group Web Site: http

  9. Power Recovery

    E-Print Network [OSTI]

    Murray, F.

    , will be the use of the ASTM Theoretical Steam Rate Tables. In addition, the author's experience regarding the minimum size for power recovery units that are economic in a Culf Coast plant will be presented. INTROD\\Jr.'rION When surveying an operation... will be discussed in detail. Each term in the equation will be considered in English units. Secondly, the use of Mollier diagrams to estimate the enthalphy change between the initial and final conditions will be considered. The last method, specific to steam...

  10. Yakama Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12 recognized for ...BER/NERSCYakama Power May

  11. Fusion Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding Opportunity fromFusion Links Fusion

  12. An overview of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite

    SciTech Connect (OSTI)

    Voss, S.S. [Los Alamos National Lab., NM (United States); Reynolds, E.L. [Applied Physics Laboratory, Laurel, MD (United States)

    1994-06-01T23:59:59.000Z

    Early in 1992 the idea of purchasing a Russian designed and fabricated space reactor power system and integrating it with a US designed satellite went from fiction to reality with the purchase of the first two Topaz II reactors by the Strategic Defense Initiative Organization (now the Ballistic Missile Defense Organization (BMDO). The New Mexico Alliance was formed to establish a ground test facility in which to perform nonnuclear systems testing of the Topaz II, and to evaluate the Topaz 11 system for flight testing with respect to safety, performance, and operability. In conjunction, SDIO requested that the Applied Physics Laboratory in Laurel, MD propose a mission and design a satellite in which the Topaz II could be used as the power source. The outcome of these two activities was the design of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite which combines a modified Russian Topaz II power system with a US designed satellite to achieve a specified mission. Due to funding reduction within the SDIO, the Topaz II flight program was postponed indefinitely at the end of Fiscal Year 1993. The purpose of this paper is to present an overview of the NEPSTP mission and the satellite design at the time the flight program ended.

  13. Power management system

    DOE Patents [OSTI]

    Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Akasam, Sivaprasad (Peoria, IL); Hoff, Brian D. (East Peoria, IL)

    2007-10-02T23:59:59.000Z

    A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

  14. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

  15. ELECTROCHEMICAL POWER FOR TRANSPORTATION

    E-Print Network [OSTI]

    Cairns, Elton J.

    2012-01-01T23:59:59.000Z

    electric power generating plant, and the distributionrequired on the power-generating plant and not on the vehi-in either power-generating plants or combustion engines,

  16. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Courses Instructors NERC Continuing Education Power Operations Training Center You'll find the "Power" of learning at Southwestern's Power Operations Training Center (POTC). POTC's...

  17. Group 3: Humidity, Temperature, and Voltage

    Broader source: Energy.gov [DOE]

    This PowerPoint presentation, focused on humidity, temperature and voltage testing, was originally presented by John Wohlgemuth at the NREL 2013 PV Module Reliability Workshop on Feb. 26-27, 2013 in Denver, CO. It summarizes the activities of a working group chartered to develop accelerated stress tests that can be used as comparative predictors of module life versus stresses associated with humidity, temperature and voltage.

  18. POWER PURCHASE AGREEMENT DELMARVA POWER & LIGHT COMPANY

    E-Print Network [OSTI]

    Firestone, Jeremy

    POWER PURCHASE AGREEMENT between DELMARVA POWER & LIGHT COMPANY ("Buyer") and BLUEWATER WIND 3.5 Energy Forecasts, Scheduling and Balancing.......................................... 39 3

  19. Modified definition of group velocity and electromagnetic energy conservation equation

    E-Print Network [OSTI]

    Changbiao Wang

    2015-01-19T23:59:59.000Z

    The classical definition of group velocity has two flaws: (a) the group velocity can be greater than the phase velocity in a non-dispersive, lossless, non-conducting, anisotropic uniform medium; (b) the definition is not consistent with the principle of relativity for a plane wave in a moving isotropic uniform medium. To remove the flaws, a modified definition is proposed. A criterion is set up to identify the justification of group velocity definition. A "superluminal power flow" is constructed to show that the electromagnetic energy conservation equation cannot uniquely define the power flow if the principle of Fermat is not taken into account.

  20. Strangulation in Galaxy Groups

    E-Print Network [OSTI]

    Kawata, Daisuke

    2007-01-01T23:59:59.000Z

    We use a cosmological chemodynamical simulation to study how the group environment impacts the star formation properties of disk galaxies. The simulated group has a total mass of M~8x10^12 Msun and a total X-ray luminosity of L_X~10^41 erg s^-1. Our simulation suggests that ram pressure is not sufficient in this group to remove the cold disk gas from a V_rot~150 km s^-1 galaxy. However, the majority of the hot gas in the galaxy is stripped over a timescale of approximately 1 Gyr. Since the cooling of the hot gas component provides a source for new cold gas, the stripping of the hot component effectively cuts off the supply of cold gas. This in turn leads to a quenching of star formation. The galaxy maintains the disk component after the cold gas is consumed leading to a galaxy with S0 properties. Our self-consistent simulation suggests that this strangulation mechanism works even in low mass groups, providing an explanation for the lower star formation rates in group galaxies relative to galaxies in the field...

  1. Strangulation in Galaxy Groups

    E-Print Network [OSTI]

    Daisuke Kawata; John S. Mulchaey

    2007-11-20T23:59:59.000Z

    We use a cosmological chemodynamical simulation to study how the group environment impacts the star formation properties of disk galaxies. The simulated group has a total mass of M~8x10^12 Msun and a total X-ray luminosity of L_X~10^41 erg s^-1. Our simulation suggests that ram pressure is not sufficient in this group to remove the cold disk gas from a V_rot~150 km s^-1 galaxy. However, the majority of the hot gas in the galaxy is stripped over a timescale of approximately 1 Gyr. Since the cooling of the hot gas component provides a source for new cold gas, the stripping of the hot component effectively cuts off the supply of cold gas. This in turn leads to a quenching of star formation. The galaxy maintains the disk component after the cold gas is consumed, which may lead to a galaxy similar to an S0. Our self-consistent simulation suggests that this strangulation mechanism works even in low mass groups, providing an explanation for the lower star formation rates in group galaxies relative to galaxies in the field.

  2. Finite group symmetry breaking

    E-Print Network [OSTI]

    G. Gaeta

    2005-10-02T23:59:59.000Z

    Finite group symmetry is commonplace in Physics, in particular through crystallographic groups occurring in condensed matter physics -- but also through the inversions (C,P,T and their combinations) occurring in high energy physics and field theory. The breaking of finite groups symmetry has thus been thoroughly studied, and general approaches exist to investigate it. In Landau theory, the state of a system is described by a finite dimensional variable (the {\\it order parameter}), and physical states correspond to minima of a potential, invariant under a group. In this article we describe the basics of symmetry breaking analysis for systems described by a symmetric polynomial; in particular we discuss generic symmetry breakings, i.e. those determined by the symmetry properties themselves and independent on the details of the polynomial describing a concrete system. We also discuss how the plethora of invariant polynomials can be to some extent reduced by means of changes of coordinates, i.e. how one can reduce to consider certain types of polynomials with no loss of generality. Finally, we will give some indications on extension of this theory, i.e. on how one deals with symmetry breakings for more general groups and/or more general physical systems.

  3. TKN Telecommunication Networks Group

    E-Print Network [OSTI]

    Wichmann, Felix

    Lightpaths 10 3.3 Differences to related work 10 4 Scenarios 11 4.1 Networks and traffic 11 4.2 Power and CapEx components 15 5.3 Costs of energy savings 16 6 Conclusion 19 References 20 #12;2 List of Acronyms CapEx

  4. Pre-orbital criticality safety for the NEPSTP mission

    SciTech Connect (OSTI)

    Sapir, J.; Pelowitz, D.; Streetman, J.R. [Los Alamos National Lab., NM (United States); Glushkov, Y.S.; Ponomarev-Stepnoi, N.N.; Kompanietz, G.V.; Lobynstev, V.A. [Kurchatov Inst., Moscow (Russian Federation)

    1993-11-01T23:59:59.000Z

    In December 1991, the Strategic Defense Initiative Organization (SDIO) proposed investigating whether launching a Russian Topaz-II space nuclear power system could be done safely and within budget constraints. Functional safety requirements developed for the US Topaz mission mandated that the reactor remain subcritical when immersed in water. Topaz-II is an epithermal, enriched-uranium-fueled, NaK- (liquid metal alloy with 22% sodium and 78% potassium) cooled, and zirconium hydride-moderated reactor. A radial beryllium reflector containing 12 rotatable control drums surrounds the core. The authors prepared a computer model of the Topaz reactor that explicitly represented all major reactor components. Initial analyses indicated that in several water-immersion scenarios, the reactor would not remain subcritical. After additional calculations, modifications were proposed that would assure subcriticality under such conditions. This paper describes the analyses and the proposed modifications.

  5. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28T23:59:59.000Z

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  6. Power oscillator

    DOE Patents [OSTI]

    Gitsevich, Aleksandr (Montgomery Village, MD)

    2001-01-01T23:59:59.000Z

    An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  7. Bell, group and tangle

    SciTech Connect (OSTI)

    Solomon, A. I., E-mail: a.i.solomon@open.ac.u [Open University, Department of Physics (United Kingdom)

    2010-03-15T23:59:59.000Z

    The 'Bell' of the title refers to bipartite Bell states, and their extensions to, for example, tripartite systems. The 'Group' of the title is the Braid Group in its various representations; while 'Tangle' refers to the property of entanglement which is present in both of these scenarios. The objective of this note is to explore the relation between Quantum Entanglement and Topological Links, and to show that the use of the language of entanglement in both cases is more than one of linguistic analogy.

  8. High-Average Power Facilities

    SciTech Connect (OSTI)

    Dowell, David H.; /SLAC; Power, John G.; /Argonne

    2012-09-05T23:59:59.000Z

    There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

  9. Power Full | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation to ReducePoseidonPowderPower DepartmentPower

  10. Principle Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power RentalAreas-|LogPrinciple Power Inc

  11. Magnetism Theory Group / POSTECH Magnetism Theory Group / POSTECH

    E-Print Network [OSTI]

    Min, Byung Il

    Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH J.H . Park et al. #12;'s of FeinCsm e tal The chargeandorbitalordering geom etryin YB a C o 2 O 5 S. K. Kwon etal .Magnetism Theory

  12. GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE Stabilitcroissanceetperformanceconomique

    E-Print Network [OSTI]

    Boyer, Edmond

    GROUPED'ANALYSEETDETHÉORIEÉCONOMIQUELYONSTÉTIENNE WP1026 économique, stabilité, canal d'investissement. Classification JEL : B22, E32, O42 1 Dr. Zied Ftiti. Université de Lyon, Université Lyon 2, F - 69007, Lyon, France. CNRS, GATE Lyon-St Etienne, UMR n° 5824

  13. GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE Sectorbasedexplanationofverticalintegrationin

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    GROUPED'ANALYSEETDETHÉORIEÉCONOMIQUELYONSTÉTIENNE WP1136, France CNRS, GATE Lyon-St Etienne, UMR n° 5824, 69130, Ecully, France Université de Saint-Etienne, Jean. Reif, G. Solard, 2009 ; B. Mura, 2010). A network relates to a network of downstream firms using

  14. GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE Dynamicmodelsofresidentialsgrgation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    GROUPED'ANALYSEETDETHÉORIEÉCONOMIQUELYONSTÉTIENNE WP1017 #12;DYNAMIC MODELS OF RESIDENTIAL SEGREGATION: AN ANALYTICAL SOLUTION S´ebastian GRAUWINa,b,c , Florence GOFFETTE-NAGOTa,d, , Pablo JENSENa,b,c,e aUniversit´e de Lyon, Lyon, F-69007, France bInstitut rh

  15. Mayo Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNewMassachusettsMayo Power Jump to: navigation,

  16. Fine-Grained Power Management Using Process-level Profiling

    E-Print Network [OSTI]

    Shi, Weisong

    . To evaluate energy efficiency, the Green Grid group proposed the definition of power usage effectiveness (PUE between performance and energy consumption, fine-grained methods, such as process- level power management-aware decisions based on these information. In addition, we introduce a power-aware system module called Energy

  17. Ultra Low Power Electronics for Medicine Rahul Sarpeshkar

    E-Print Network [OSTI]

    Sarpeshkar, Rahul

    Ultra Low Power Electronics for Medicine Rahul Sarpeshkar Analog VLSI and Biological Systems Group on an implanted 100mAh rechargeable battery. Another example includes an ultra low power portable pulse oximeter monitoring. Medical applications in the future are likely to benefit greatly from ultra low power electronics

  18. KKG Group Paraffin Removal

    SciTech Connect (OSTI)

    Schulte, Ralph

    2001-12-01T23:59:59.000Z

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed a test of a paraffin removal system developed by the KKG Group utilizing the technology of two Russian scientists, Gennady Katzyn and Boris Koggi. The system consisting of chemical ''sticks'' that generate heat in-situ to melt the paraffin deposits in oilfield tubing. The melted paraffin is then brought to the surface utilizing the naturally flowing energy of the well.

  19. JLab Users Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation PeerNOON 2004

  20. Helms Research Group - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment ofHeat TransferStartupHe!

  1. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in computing 1HANFORDHASH

  2. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in computing 1HANFORDHASH18,

  3. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in computing

  4. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in computingApril 27, 2010

  5. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in computingApril 27,

  6. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in computingApril 27,June

  7. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in computingApril

  8. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in computingAprilAugust 24,

  9. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in computingAprilAugust

  10. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in computingAprilAugust9,

  11. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in computingAprilAugust9,6,

  12. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in computingAprilAugust9,6,0

  13. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in

  14. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 2011 The meeting was

  15. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 2011 The meeting

  16. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 2011 The meetingApril

  17. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 2011 The

  18. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 2011 TheJune 21, 2011

  19. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 2011 TheJune 21,

  20. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 2011 TheJune 21,4,

  1. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 2011 TheJune 21,4,8,

  2. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 2011 TheJune 21,4,8,1

  3. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 2011 TheJune

  4. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 2011 TheJune1, 2012

  5. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 2011 TheJune1, 201220,

  6. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 2011 TheJune1,

  7. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 2011 TheJune1,May 15,

  8. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 2011 TheJune1,May

  9. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 2011 TheJune1,May17,

  10. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 2011 TheJune1,May17,1,

  11. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 2011

  12. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 201127, 2012 The

  13. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 201127, 2012 The8,

  14. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 201127, 2012

  15. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 201127, 20126, 2013

  16. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 201127, 20126, 20139,

  17. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 201127, 20126,

  18. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 201127, 20126,21, 2013

  19. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 201127, 20126,21,

  20. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 201127, 20126,21,23,

  1. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 201127, 20126,21,23,0,

  2. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 201127,

  3. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 201127,19, 2013 The

  4. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 201127,19, 2013 The7,

  5. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 201127,19, 2013

  6. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 201127,19, 20135, 2014

  7. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 201127,19, 20135,

  8. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed-MTBEJobs in15, 201127,19, 20135,5,

  9. Detector Support Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential Application to ARM Measurements Detectionsearch

  10. Electric power annual 1995. Volume I

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts, and the general public with data that may be used in understanding U.S. electricity markets. The Electric Power Annual is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy. In the private sector, the majority of the users of the Electric Power Annual are researchers and analysts and, ultimately, individuals with policy- and decisionmaking responsibilities in electric utility companies. Financial and investment institutions, economic development organizations interested in new power plant construction, special interest groups, lobbyists, electric power associations, and the news media will find data in the Electric Power Annual useful. In the public sector, users include analysts, researchers, statisticians, and other professionals with regulatory, policy, and program responsibilities for Federal, State, and local governments. The Congress and other legislative bodies may also be interested in general trends related to electricity at State and national levels. Much of the data in these reports can be used in analytic studies to evaluate new legislation. Public service commissions and other special government groups share an interest in State-level statistics. These groups can also compare the statistics for their States with those of other jurisdictions.

  11. Research Groups - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch Finds VitaminResearch Groups

  12. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartmentNeutrino-Induced1ALS Communications Group Print

  13. # Energy Measuremenfs Group

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertown Arsenal -Center05Sites »ri

  14. Environmental/Interest Groups

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.Enaineer;/:4,4 (; ...)369s ..T

  15. Specific Group Hardware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund3Biology|SolarSpeakers BureauSpecialSpecific Group

  16. Digital Technology Group Computer Laboratory

    E-Print Network [OSTI]

    Cambridge, University of

    Digital Technology Group 1/20 Computer Laboratory Digital Technology Group Computer Laboratory William R Carson Building on the presentation by Francisco Monteiro Matlab #12;Digital Technology Group 2/20 Computer Laboratory Digital Technology Group Computer Laboratory The product: MATLAB® - The Language

  17. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  18. LIFE Power Plant Fusion Power Associates

    E-Print Network [OSTI]

    LIFE Power Plant Fusion Power Associates December 14, 2011 Mike Dunne LLNL #12;NIf-1111-23714.ppt LIFE power plant 2 #12;LIFE delivery timescale NIf-1111-23714.ppt 3 #12;Timely delivery is enabled dpa) § Removes ion threat and mitigates x-ray threat ­ allows simple steel piping § No need

  19. Winter 2015 Positive Parenting Group

    E-Print Network [OSTI]

    Winter 2015 Positive Parenting Group This is an eight-week parent group series starting Monday, January 12, 2015 Future parent group sessions to be held: January 26 (no group 19th ) February 2, 9 and 23 (no group 16th ) and March 2, 9 and 16 6:00 p.m. to 8:00 p.m. Room 145 of the Clinical Services

  20. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    are many solar photovoltaic power plants internationally andUSA, Blythe, CA Solar electric power plant, Blythe USA, SanTX Blue Wing solar electric power plant USA, Jacksonville,

  1. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    of the electrical power output to the solar power input), aSolar Energy Calculator using Google Maps 23 Table 1.24: PV System Power Production Average Daily Irradiance (kWh/m2) Instillation Efficiency Labeled Efficiency Output

  2. HTS Wire Development Group: Achievements, technology transfer, and plans

    SciTech Connect (OSTI)

    Riley, G.N. Jr. [American Superconductor Corp., Westborough, MA (United States)

    1994-07-29T23:59:59.000Z

    The objective of the HTS wire development group is to develop high performance HTS wire for use in electric power systems. The HTS wire development group personnel is listed. The HTS wire development group achievements are outlined. These achievements include: focusing on the development of high performance and cost effective HTS wire; HTS wires were fabricated in laboratory scale and production scale lengths; ACS has fabricated the only conductor in the world to meet or surpass the DOE FY94 goals for electric power applications development; these wire fabrication successes at ASC are a direct result of the long-term collaboration between ASC and the other HTS Wire Development Group members; and plans are in place for a successful FY95 program.

  3. Working Group Report: Sensors

    SciTech Connect (OSTI)

    Artuso, M.; et al.,

    2013-10-18T23:59:59.000Z

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  4. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 30, 2013, Santa Clara, CA 2 Outline * Introduction Power Electronics in Electric Drive Vehicles Automotive Power Electronics Module Operation Automotive...

  5. Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov (indexed) [DOE]

    CONCENTRATING SOLAR POWER PROGRAM REVIEW 2013 Concentrated Solar Thermoelectric Power Principal Investigator: Prof. Gang Chen Massachusetts Institute of Technology Cambridge, MA...

  6. TVA- Green Power Providers

    Broader source: Energy.gov [DOE]

    Tennessee Valley Authority (TVA) and participating power distributors of TVA power offer a performance-based incentive program to homeowners and businesses for the installation of renewable...

  7. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, N.; Ingersoll, D.

    1995-01-03T23:59:59.000Z

    Electrolytes are disclosed for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids. 7 figures.

  8. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, Narayan (Albuquerque, NM); Ingersoll, David (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    Electrolytes for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids.

  9. Annual Coded Wire Program Missing Production Groups, 1996 Annual Report.

    SciTech Connect (OSTI)

    Pastor, S.M. [Fish and Wildlife Service, Vancouver, WA (United States). Columbia River Fisheries Program Office

    1997-07-01T23:59:59.000Z

    In 1989 the Bonneville Power Administration (BPA) began funding the evaluation of production groups of juvenile anadromous fish not being coded-wire tagged for other programs. These groups were the ``Missing Production Groups``. Production fish released by the US Fish and Wildlife Service (USFWS) without representative coded-wire tags during the 1980`s are indicated as blank spaces on the survival graphs in this report. The objectives of the ``Missing Production Groups`` program are: to estimate the total survival of each production group, to estimate the contribution of each production group to various fisheries, and to prepare an annual report for all USFWS hatcheries in the Columbia River basin. Coded-wire tag recovery information will be used to evaluate the relative success of individual brood stocks. This information can also be used by salmon harvest managers to develop plans to allow the harvest of excess hatchery fish while protecting threatened, endangered, or other stocks of concern.

  10. Fermilab | Employee Advisory Group | Questions & Answers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013Focus Group Report A random sampling

  11. Fermilab | Employee Advisory Group | Value Statement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013Focus Group Report A random samplingValue

  12. Helen He! NERSC User Services Group!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment ofHeat TransferStartupHe! NERSC UserGroup!

  13. Krass Capital Group AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea Parts and FastenersKowloon Power LtdKrass

  14. Flex power perspectives of indirect power system control through...

    Open Energy Info (EERE)

    power perspectives of indirect power system control through dynamic power price (Smart Grid Project) Jump to: navigation, search Project Name Flex power perspectives of indirect...

  15. New Horizons Mission Powered by Space Radioisotope Power Systems...

    Energy Savers [EERE]

    New Horizons Mission Powered by Space Radioisotope Power Systems New Horizons Mission Powered by Space Radioisotope Power Systems January 30, 2008 - 6:47pm Addthis Artist's concept...

  16. Mechanical Working Group meeting minutes

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    This documents contains the minutes and viewgraphs from the October 27--28, 1992 meeting on the subject of power generation and delivery systems for military applications. Attendees represented the US Air Force and NASA. The thermal management panel reported on the capillary pump loop test facility, thermal control systems and compressors, and the oxygen heat pipe flight experiment. The aerospace power panel reported on the integrated power unit for the more electric airplane, the solar dynamic power system, the modular high temperature gas cooled reactor-gas-turbine program, the multi-megawatt CBC power system, and analytical modeling for heat pipe performance. The terrestrial power panel reported on a free piston stirling engine power generation system, fuel cell vehicles, and the advanced gas turbine project.

  17. Power Paper Limited | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation to ReducePoseidonPowderPowerPowerPower Paper

  18. Power Solartech Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation to ReducePoseidonPowderPowerPowerPower

  19. Security of Power Packet Dispatching Using Differential Chaos Shift Keying

    E-Print Network [OSTI]

    Yanzi Zhou; Ryo Takahashi; Takashi Hikihara

    2015-02-19T23:59:59.000Z

    This paper investigates and confirms one advantageous function of a power packet dispatching system, which has been proposed by authors' group with being apart from the conventional power distribution system. Here is focused on the function to establish the security of power packet dispatching for prohibiting not only information but also power of power packet from being stolen by attackers. For the purpose of protecting power packets, we introduce a simple encryption of power packets before sending them. Encryption scheme based on chaotic signal is one possibility for this purpose. This paper adopts the Differential Chaos Shift Keying (DCSK) scheme for the encryption, those are partial power packet encryption and whole power packet encryption.

  20. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 2001 prepared by: Data Management Group Joint Program..............................................................................2 Text Based Data Retrieval System `drs' ..........................................................2 Internet Browser Data Retrieval System (iDRS)..............................................3 Complex Data

  1. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 1999 prepared by: Data Management Group Joint Program................................................................. 1 INFORMATION PROCESSING ............................................. 2 Text Based Data Retrieval System `drs' ........................ 2 Internet Browser Data Retrieval System (iDRS) ............ 3

  2. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    iv Data Management Group Annual Report 2003 City of Hamilton City of Toronto GO Transit Regional of York Toronto Transit Commission The Data Management Group is a research program located ........................................................................................................ 3 Text-based Data Retrieval System `drs

  3. Weighter Long Term by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weighted Running Jobs by Group Weighted Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 14:00:02...

  4. INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP

    E-Print Network [OSTI]

    space exploration infrastructure standards facilitating interoperability through an international with relevant existing international working groups/ organisations. · Preparation and Organization of a WS1 INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP WORKPLAN Update following 3rd ISECG Meeting

  5. Power Series Introduction

    E-Print Network [OSTI]

    Vickers, James

    Power Series 16.4 Introduction In this section we consider power series. These are examples of infinite series where each term contains a variable, x, raised to a positive integer power. We use the ratio test to obtain the radius of convergence R, of the power series and state the important result

  6. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  7. ASD Groups | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASD Groups Accelerator Operations and Physics Applies integrated expertise in accelerator physics, operations techniques, safety systems, software development, and numerical...

  8. Power Attack Resistant Cryptosystem Design: A Dynamic Voltage and Frequency Switching Approach

    E-Print Network [OSTI]

    Boyer, Edmond

    studied by several groups. Power attacks, which infer program behavior from observing power supply current (DPA), which identifies cryptographic keys by monitoring processor power supply current, is a very real analysis [7], power analysis [1], electromagnetic analysis [8] and fault induction [9]. Here, we are most

  9. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 2000 prepared by: Data Management Group Joint Program the operation of the EMME/2 simu- lation package on the Data Management Group's computer system. During the year computing resource at the DMG. A major challenge in 2000 was to maintain this service while operating out

  10. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 2004 City of Hamilton City of Toronto GO Transit Regional of York Toronto Transit Commission The Data Management Group is a research program located of the funding partners: Ministry of Transportation, Ontario #12;SUMMARY The Data Management Group (DMG

  11. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 1997 #12;Data Management Group Annual Report 1997 A co-operative project that is jointly funded by members of the Toronto Area Transportation Planning Data Collection: (416) 978-3941 #12;Data Management Group 1997 Annual Report Table of Contents 1 INTRODUCTION

  12. Water Resources Working Group Report

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Water Resources Working Group Report This report provided content for the Wisconsin Initiative in February 2011. #12;Water Resources Working Group Wisconsin Initiative on Climate Change Impacts October 2010 #12;Water Resources Working Group Members ­ WICCI Tim Asplund (Co-Chair) - Wisconsin Department

  13. Power and Energy also called Power Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power Rental Market Size HomeSources Incalso

  14. Pelamis Wave Power Ocean Power Delivery Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis)Pearl River Valley ElPelamis Wave Power

  15. Dispersed power and renewables

    SciTech Connect (OSTI)

    O`Sullivan, J.B.

    1995-12-31T23:59:59.000Z

    Distributed power generation and renewable energy sources are discussed: The following topics are discussed: distributed resources, distributed generation, commercialization requirements, biomass power, location of existing biomass feedstocks, biomass business plan components, North Carolina BGCC partnership, New York biomass co-firing project, alfalfa for power and feed, Hawaii Pioneer Mill LOI project, next steps for biomass, wind power activity, photovoltaic modules and arrays, lead-acid batteries, superconducting magnetic energy storage, fuel cells, and electric power industry trends.

  16. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  17. Alternative Geothermal Power Production Scenarios

    SciTech Connect (OSTI)

    Sullivan, John

    2014-03-14T23:59:59.000Z

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  18. Correlation properties of loose groups

    SciTech Connect (OSTI)

    Maia, M.A.G.; Da Costa, L.N. (Observatorio Nacional do Brasil, Rio de Janeiro (Brazil))

    1990-02-01T23:59:59.000Z

    The two-point spatial correlation function for loose groups of galaxies is computed, using the recently compiled catalog of groups in the southern hemisphere. It is found that the correlation function for groups has a similar slope to that of galaxies but with a smaller amplitude, confirming an earlier result obtained from a similar analysis of the CfA group catalog. This implies that groups of galaxies are more randomly distributed than galaxies, which may be consistent with the predictions of Kashlinsky (1987) for a gravitational clustering scenario for the formation of large-scale structures. 21 refs.

  19. PRB Coal Users' Group grapples with supply chain challenges

    SciTech Connect (OSTI)

    Pettier, R.

    2007-06-15T23:59:59.000Z

    An account is given of issues addressed at the Powder River Basin Coal Users' Group annual meeting, held in conjunction with the Electric Power 2007 conference. Transportation, buying equipment for switching plants burn PRB coal, finding and fighting fires in a coal silo, and coal handling were amongst the topics discussed. 1 fig., 4 photos.

  20. www.eprg.group.cam.ac.uk EPRGWORKINGPAPER

    E-Print Network [OSTI]

    Aickelin, Uwe

    wind power, long-term contracts, balancing costs JEL Classification Q42, L14, L94 Contact dmgn. The estimated extra trading and balancing costs of a CfD for on-shore wind might be £70 million/yr by 2020www.eprg.group.cam.ac.uk EPRGWORKINGPAPER Abstract Contracting for wind generation EPRG Working

  1. GREEN ENERGY AND ELECTRIC VEHICLES. BMW GROUP TECHNOLOGYOFFICE USA.

    E-Print Network [OSTI]

    California at Davis, University of

    can still guarantee where my power's coming from." "The perfect model is buy an electric car, putGREEN ENERGY AND ELECTRIC VEHICLES. BMW GROUP TECHNOLOGYOFFICE USA. LT-Z-Z, OCTOBER 2012 #12;GREEN E, LT-Z-Z,OCT 2012 Page 2 BACKGROUND. Markets for green energy and electric vehicles can accelerate

  2. Work and Energy Simulation Name_______________________ Lab Worksheet Group member names__________________________________

    E-Print Network [OSTI]

    Winokur, Michael

    Work and Energy Simulation Name_______________________ Lab Worksheet Group member names://phet.colorado.edu, in a browser and click on the Go to the simulations button. Open Work, Energy, and Power on the left. This lab uses three of the simulations on this page, Masses and Springs, Energy Skate Park, and The Ramp. I

  3. Powering Health | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation toPower and ElectricityPowerex

  4. Primus Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power RentalAreas-|Log JumpNew York,Primus

  5. People Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis)PearlPennsylvaniaPeople Power Jump to:

  6. Kingsun Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New EnergyKenosistecKilara Power

  7. Nuclear Power in France Beyond the Myth

    E-Print Network [OSTI]

    Laughlin, Robert B.

    .fissilematerials.org). In 2006-2007 he was part of a consultant consortium that assessed nuclear decommissioning and wasteNuclear Power in France Beyond the Myth By Mycle Schneider International Consultant on Energy and Nuclear Policy Commissioned by the Greens-EFA Group in the European Parliament V5 #12;Note: The present

  8. Design of control for efficiency of AUV power systems

    E-Print Network [OSTI]

    Ware, Laura M. (Laura Marie)

    2012-01-01T23:59:59.000Z

    The MIT Rapid Development Group designed and built an internal combustion hybrid recharging system for the REMUS 600 Autonomous Underwater Vehicle (AUV) in collaboration with the MIT Lincoln Laboratory. This power system ...

  9. Global Installed Capacity of Coal Fired Power Generation to Reach...

    Open Energy Info (EERE)

    Global Installed Capacity of Coal Fired Power Generation to Reach 2,057.6 GW by 2019 Home > Groups > Increase Natural Gas Energy Efficiency John55364's picture Submitted by...

  10. Microsoft PowerPoint - 6_CINDY_VESTERGAARD_NMMSS May 2014 Prez...

    National Nuclear Security Administration (NNSA)

    Nuclear Corporation China Nuclear Energy Industry Corporation China General Nuclear Power Group CGNPC Nuclear Fuel Co., Ltd National Development & Reform Commission National...

  11. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    Power, Exergy, U.S. Wind Force, Wind Capital Group,Developer enXco Navitas US Wind Force Atlantic Renewable

  12. Combined Heat and Power for Federal Facilities and the DOE CHP...

    Office of Environmental Management (EM)

    and Power for Federal Facilities and the DOE CHP Technical Assistance Partnerships Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR May 7 - 8, 2014 Virginia Beach, VA...

  13. Active Power Control from Wind Power (Presentation)

    SciTech Connect (OSTI)

    Ela, E.; Brooks, D.

    2011-04-01T23:59:59.000Z

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  14. High power fast ramping power supplies

    SciTech Connect (OSTI)

    Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

    2009-05-04T23:59:59.000Z

    Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

  15. TEC Working Group Topic Groups Rail Conference Call Summaries...

    Office of Environmental Management (EM)

    September 11, 1998 Meeting June 22, 1998 Meeting May 27, 1998 Meeting November 3, 1997 Meeting September 18, 1997 Meeting More Documents & Publications TEC Working Group...

  16. On The Harmonic Oscillator Group

    E-Print Network [OSTI]

    Raquel M. Lopez; Sergei K. Suslov; Jose M. Vega-Guzman

    2011-12-04T23:59:59.000Z

    We discuss the maximum kinematical invariance group of the quantum harmonic oscillator from a view point of the Ermakov-type system. A six parameter family of the square integrable oscillator wave functions, which seems cannot be obtained by the standard separation of variables, is presented as an example. The invariance group of generalized driven harmonic oscillator is shown to be isomorphic to the corresponding Schroedinger group of the free particle.

  17. Safarevic's Theorem on Solvable Groups as Galois Groups

    E-Print Network [OSTI]

    extension Kjk with Galois group G(Kjk) ¸ = G. Ÿ SafareviŸc proved this result in 1954. The intricate proof ) are embedable into G. Then there exists a Galois extension Kjk with Galois group isomorphic to G, which

  18. Neil 65 Group Picture Neil 65 Group Picture

    E-Print Network [OSTI]

    Mohar, Bojan

    Neil 65 Group Picture Neil 65 Group Picture December 14, 2003 Row 1: Tom Dowling, Nolan Mc-Marie Belcastro, Chris Stephens, Rajneesh Hegde Row 2: Paul Wollan, Bruce Richter, Mike Plummer, Xiaoya Zha, Dan Bannai, Mike Albertson, Joan Hutchinson, Matt Devos, Tom Zaslovsky, Mark Ellingham, Sandra Kingan, James

  19. Presentation SCA Group 1 SCA Group 2007-03-15

    E-Print Network [OSTI]

    -03-15 Every day, millions of people use our products We are here to develop and improve everyday lives. People SCA Group 2007-03-15 SCA is a global consumer goods and paper company We offer personal care products #12;4 SCA Group 2007-03-15 Personal Care Tissue Packaging Forest Products Business areas Operations

  20. Small sample size power for some tests of constant hazard function 

    E-Print Network [OSTI]

    Fercho, Wayne Ward

    1970-01-01T23:59:59.000Z

    A. 6 Power at 8 = 2. 0. A. 7 Power at 8 = 2. 5. 50 51 Figure A. l Power. Curves for n 10, 8 = . 05 52 A. 2 Pow r Curves for n 10, 0= . 01 53 A. 3 Power Curves for. n A. 4 Power Curves for n 15, u= . 05 15, 5 . 01. 54 55 A. 5 Power Curves...], and are a result of Bartlett's test for homogeneity of variances. One of Epstein's tests deals with ungrouped failure times, while the other uses grouped failure times. The third test is the F Max test of Hartley [1950], which is also a grouped failure...

  1. UGP Power Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wildlife and power generation on the Missouri River. Seven dams and powerplants have the installed capacity of 2,610 MW. That hydroelectric power is delivered across about 7,919...

  2. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16T23:59:59.000Z

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  3. Power production and ADS

    SciTech Connect (OSTI)

    Raja, Rajendran; /Fermilab

    2010-03-01T23:59:59.000Z

    We describe the power production process in Accelerator Driven Sub-critical systems employing Thorium-232 and Uranium-238 as fuel and examine the demands on the power of the accelerator required.

  4. Power Factor Improvement

    E-Print Network [OSTI]

    Viljoen, T. A.

    1979-01-01T23:59:59.000Z

    Power factor control is a necessary ingredient in any successful Energy Management Program. Many companies are operating with power factors of 70% or less and are being penalized through the electrical utility bill. This paper starts by describing...

  5. PowerPoint Presentation

    Broader source: Energy.gov (indexed) [DOE]

    Research Center Blvd. Fayetteville, AR 72701 Phone: (479)-443-5759 Email: marcelo@apei.net Website: www.apei.net High Temperature and High Power Density SiC Power Electronic...

  6. Idaho Power- Net Metering

    Broader source: Energy.gov [DOE]

    Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

  7. PowerPoint Presentation

    Broader source: Energy.gov (indexed) [DOE]

    Research Center Blvd. Fayetteville, AR 72701 Phone: (479)-443-5759 Email: mschupb@apei.net Website: www.apei.net High Power Density Silicon Carbide Power Electronic Converters...

  8. Space Solar Power Program

    SciTech Connect (OSTI)

    Arif, H.; Barbosa, H.; Bardet, C.; Baroud, M.; Behar, A.; Berrier, K.; Berthe, P.; Bertrand, R.; Bibyk, I.; Bisson, J.; Bloch, L.; Bobadilla, G.; Bourque, D.; Bush, L.; Carandang, R.; Chiku, T.; Crosby, N.; De Seixas, M.; De Vries, J.; Doll, S.; Dufour, F.; Eckart, P.; Fahey, M.; Fenot, F.; Foeckersperger, S.; Fontaine, J.E.; Fowler, R.; Frey, H.; Fujio, H.; Gasa, J.M.; Gleave, J.; Godoe, J.; Green, I.; Haeberli, R.; Hanada, T.; Ha

    1992-08-01T23:59:59.000Z

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  9. Green Power Purchase Plan

    Broader source: Energy.gov [DOE]

    Class I renewable energy resources include solar, wind, new sustainable biomass, landfill gas, fuel cells (using renewable or non-renewable fuels), ocean thermal power, wave or tidal power, low...

  10. Body powered thermoelectric systems

    E-Print Network [OSTI]

    Settaluri, Krishna Tej

    2012-01-01T23:59:59.000Z

    Great interest exists for and progress has be made in the effective utilization of the human body as a possible power supply in hopes of powering such applications as sensors and continuously monitoring medical devices ...

  11. Economic Impact Assessment: Laser and Fiberoptic Power and

    E-Print Network [OSTI]

    00-3 Planning Report Economic Impact Assessment: NIST-EEEL Laser and Fiberoptic Power Office Strategic Planning and Economic Analysis Group August 2000 U.S Department of Commerce Technology Administration #12;FINAL REPORT ECONOMIC IMPACT ASSESSMENT: NIST-EEEL LASER AND FIBEROPTIC POWER AND ENERGY

  12. Buyer Power and Price Discrimination: The Case of

    E-Print Network [OSTI]

    Feigon, Brooke

    1 Buyer Power and Price Discrimination: The Case of the UK Care Homes Market Ruth Hancock: UK Local Authorities purchase care home places on behalf of a large group of people following small providers. This may give local authorities buyer power. We show the consequences of substantial

  13. Wojciech.Wiechowski@wtwps.com POWER SYSTEM TECHNICAL PERFORMANCE ISSUES

    E-Print Network [OSTI]

    Bak, Claus Leth

    Wojciech.Wiechowski@wtwps.com POWER SYSTEM TECHNICAL PERFORMANCE ISSUES RELATED TO THE APPLICATION of work of Cigre Working Group C4.502 "Power system technical performance issues related underground transmission project are identified. Cable line modeling and model verification techniques

  14. QER- Comment of American Public Power Association 6

    Broader source: Energy.gov [DOE]

    To whom it may concern: Please find attached comments jointly filed by the American Public Power Association, Large Public Power Council, and Transmission Access Policy Study Group, in relation to the issues discussed at the October 6, 2014, QER Public Stakeholder Meeting on Finance (Transmission, Storage and Distribution).

  15. Infrared Thermography (IRT) Working Group

    Broader source: Energy.gov (indexed) [DOE]

    Infrared Thermography (IRT) Working Group Sco McWilliams U.S. Photovoltaic Manufacturing Consor;um (PVMC) Infrared Thermography Infrared Thermography (IRT) has been demonstrated...

  16. Lorentz Group in Ray Optics

    E-Print Network [OSTI]

    S. Baskal; E. Georgieva; Y. S. Kim; M. E. Noz

    2004-01-18T23:59:59.000Z

    It has been almost one hundred years since Einstein formulated his special theory of relativity in 1905. He showed that the basic space-time symmetry is dictated by the Lorentz group. It is shown that this group of Lorentz transformations is not only applicable to special relativity, but also constitutes the scientific language for optical sciences. It is noted that coherent and squeezed states of light are representations of the Lorentz group. The Lorentz group is also the basic underlying language for classical ray optics, including polarization optics, interferometers, the Poincare\\'e sphere, one-lens optics, multi-lens optics, laser cavities, as well multilayer optics.

  17. Physics Division: Subatomic Physics Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subatomic Physics Physics home Subatomic Physics Site Home About Us Groups Applied Modern Physics, P-21 Neutron Science and Technology, P-23 Plasma Physics, P-24 Subatomic...

  18. Soldier power. Battery charging.

    E-Print Network [OSTI]

    Hong, Deog Ki

    hours runtime at full load 50 W #12; (%) (kW) 300 1-5 Siemens-Power 30 (hr) 10,000 Siemens 300 Acumentrics 80 (mW/cm2) 600 400 Siemens-Power 85 (hr) 70,000 3,000 Siemens-Power 15 () 500 25 Siemens-Power 60 >2013 - , Bloom, MHI, Rolls Royce 6 #12; SOFCSOFC * (LSCF ) ( Ag

  19. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  20. Power Prepayment Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics Power Electronics PowerPower

  1. Power/Privilege Definitions

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Major; People's Institute for Survival and Beyond, New Orleans 2. Power is the ability to define reality and to convince other people that it is their definition. ~ Dr. Wade Nobles 3. Power is the capacity to act. 4 different cultures. [JL] RACISM Racism is race prejudice plus power [See Racist]. People's Institute calls

  2. EXTERIOR POWERS KEITH CONRAD

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    form on a manifold is related to exterior powers of the dual space of the tangent space of a manifoldEXTERIOR POWERS KEITH CONRAD 1. Introduction Let R be a commutative ring. Unless indicated the alternating multilinear functions on Mk: the exterior power k(M). It is a certain quotient module of Mk

  3. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01T23:59:59.000Z

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  4. Green Power Inverter Prvningsrapport

    E-Print Network [OSTI]

    Green Power Inverter Prøvningsrapport SolenergiCentret Søren Poulsen Ivan Katic Oktober 2004 #12;Green Power Inverter målerapport.doc SolenergiCentret - 04-03-2005 2 Forord Nærværende rapport indeholder Teknologisk Instituts bidrag til målinger i forbindelse med PSO projektet "Green Power Inverter

  5. April 24, 2012, HSS Focus Group Training Working Group (TWG) Meeting - Agenda

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplication of SyntheticPowerManagementOpportunityUse23Group Charter

  6. Social Power as an Exchangeable Resource for Distributed Multi-Agent Systems Department of Computer Engineering and

    E-Print Network [OSTI]

    Hexmoor, Henry

    Social Power as an Exchangeable Resource for Distributed Multi-Agent Systems Don Hayes Department that is exchanged within an agent group instead of a static power structure or one based on dynamic rank. Every time an agent commands another agent, the power structure within the agent group is redistributed. Providing

  7. Karnataka Power Corporation Limited and National Thermal Power...

    Open Energy Info (EERE)

    Limited and National Thermal Power Corporation JV Jump to: navigation, search Name: Karnataka Power Corporation Limited and National Thermal Power Corporation JV Place: India...

  8. How Power is Lost: Illusions of Alliance Among the Powerful

    E-Print Network [OSTI]

    Brion, Sebastien

    2010-01-01T23:59:59.000Z

    while most accounts of power loss focus on ethical breachesPower Loss .1. Proposed Model of Power Loss Figure 2. Social Monitoring

  9. High Power Laser Innovation Sparks Geothermal Power Potential...

    Office of Environmental Management (EM)

    power source among renewables, is poised to emerge also as a flexible power source, balancing intermittent wind and solar power production and reducing variability in energy...

  10. Using government purchasing power to reduce equipment standby power

    E-Print Network [OSTI]

    Harris, Jeffrey; Meier, Alan; Bartholomew, Emily; Thomas, Alison; Glickman, Joan; Ware, Michelle

    2003-01-01T23:59:59.000Z

    or external power supply, other specifications, and purchasethe consumer to purchase extra power strips and extensionan internal standby power function, shall purchase Although

  11. Energy Storage & Power Electronics 2008 Peer Review - Power Electronic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics (PE) Systems Presentations Energy Storage & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems Presentations The 2008 Peer Review Meeting for the...

  12. Federal Utility Partnership Working Group

    Broader source: Energy.gov [DOE]

    The Federal Utility Partnership Working Group (FUPWG) establishes partnerships and facilitates communications among Federal agencies, utilities, and energy service companies. The group develops strategies to implement cost-effective energy efficiency and water conservation projects through utility incentive programs at Federal sites.

  13. Research documentation per participating group

    E-Print Network [OSTI]

    Franssen, Michael

    Research documentation per participating group #12;2. RESEARCH DOCUMENTATION OF THE GROUP SYSTEM Management Hybrid trucks StDy Steen, R. v.d. (PhD 3) FEM Tyre Modelling StDy 5.4 Mechanical Design Bedem, Ir

  14. ADEPT: Efficient Power Conversion

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    ADEPT Project: In today’s increasingly electrified world, power conversion—the process of converting electricity between different currents, voltage levels, and frequencies—forms a vital link between the electronic devices we use every day and the sources of power required to run them. The 14 projects that make up ARPA-E’s ADEPT Project, short for “Agile Delivery of Electrical Power Technology,” are paving the way for more energy efficient power conversion and advancing the basic building blocks of power conversion: circuits, transistors, inductors, transformers, and capacitors.

  15. Multimegawatt space power reactors

    SciTech Connect (OSTI)

    Dearien, J.A.; Whitbeck, J.F.

    1989-01-01T23:59:59.000Z

    In response to the need of the Strategic Defense Initiative (SDI) and long range space exploration and extra-terrestrial basing by the National Air and Space Administration (NASA), concepts for nuclear power systems in the multi-megawatt levels are being designed and evaluated. The requirements for these power systems are being driven primarily by the need to minimize weight and maximize safety and reliability. This paper will discuss the present requirements for space based advanced power systems, technological issues associated with the development of these advanced nuclear power systems, and some of the concepts proposed for generating large amounts of power in space. 31 figs.

  16. Multimode power processor

    DOE Patents [OSTI]

    O'Sullivan, George A. (Pottersville, NJ); O'Sullivan, Joseph A. (St. Louis, MO)

    1999-01-01T23:59:59.000Z

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources.

  17. Multimode power processor

    DOE Patents [OSTI]

    O'Sullivan, G.A.; O'Sullivan, J.A.

    1999-07-27T23:59:59.000Z

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources. 31 figs.

  18. Power Quality Aspects in a Wind Power Plant: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.; Chacon, J.; Romanowitz, H.

    2006-01-01T23:59:59.000Z

    Although many operational aspects affect wind power plant operation, this paper focuses on power quality. Because a wind power plant is connected to the grid, it is very important to understand the sources of disturbances that affect the power quality.

  19. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

  20. Dynamic Reactive Power Control of Isolated Power Systems

    E-Print Network [OSTI]

    Falahi, Milad

    2012-10-03T23:59:59.000Z

    This dissertation presents dynamic reactive power control of isolated power systems. Isolated systems include MicroGrids in islanded mode, shipboard power systems operating offshore, or any other power system operating in islanded mode intentionally...

  1. EXC-12-0014 - In the Matter of Topaz Lighting Corporation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune- BatteryVehicles | EVof Energy3

  2. EIS-0458: First Solar Topaz Solar Farm Project in San Luis Obispo County,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartment ofStatementStatementRecordStatement and NoticeCA |

  3. Marseglia Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNew Hampshire:Marin EnergyChoiceMarseglia Group

  4. Groups

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods | OpenInformationMagnetics

  5. PASSIVE CONTROL OF FLUID POWERED HUMAN POWER AMPLIFIERS

    E-Print Network [OSTI]

    Li, Perry Y.

    PASSIVE CONTROL OF FLUID POWERED HUMAN POWER AMPLIFIERS Perry Y. Li and Venkat Durbha Center is proposed for the control of fluid powered human power amplifiers. Human power amplifiers are mechanical as a torque/force source. The control objective is to amplify the power that the human exerts on the machine

  6. Do high redshift quasars have powerful jets?

    E-Print Network [OSTI]

    Fabian, A. C.; Walker, S. A.; Celotti, A.; Ghisellini, G.; Mocz, P.; Blundell, K. M.; McMahon, R. G.

    2014-06-04T23:59:59.000Z

    for the injection spectrum and surrounding gas profile (set [A] in Mocz et al (2011): the in- jection spectrum is given by a power-law index 2.14 and Lorentz factors ranging between 1 to 106; the surrounding density profile has a powerlaw index of 1.5). We assume... the galaxy hosts of quasars at z > 3 are com- pact (Szomoru et al 2013), and their group and cluster gas have more energy than is explainable by gravitational infall alone (Wu et al 2000; McCarthy et al 2012). Powerful jets are a considerable source of energy...

  7. Power Generation Technologies | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation to ReducePoseidonPowderPowerPower Generation

  8. PowerBeam Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power Rental Market Size HomeSourcesPowerBeam

  9. PowerGenix | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power Rental Market SizePowerGenix Jump to:

  10. PowerIt Solutions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power Rental Market SizePowerGenix

  11. Principle Power Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power RentalAreas-|LogPrinciple Power Inc Jump

  12. Proe Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,PowerInformationOpenProe Power Systems

  13. Liberty Power Corp. (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKoreaLaorLeopoldEnergyLiberty PowerLiberty Power

  14. Idaho Power Co (Oregon) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New EnergyIT Power LimitedIdaTech UK JumpIdaho Power

  15. India Wind Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New EnergyIT PowerImagineWind Power Ltd Jump to:

  16. Alternative Energy Technologies Solar Power

    E-Print Network [OSTI]

    Scott, Christopher

    #12;Alternative Energy Technologies Solar Power Photovoltaics Concentrating Solar Power (CSP) Power;Concentrating Solar Power (CSP) Reflector material is Aluminum or Silver Tube material ..... Several possible ............... Mexico, Canada, Peru Alumina ............Guinea, Brazil, Australia, Jamaica Manganese ....... S. Africa

  17. Midwest Hydro Users Group Meeting

    Broader source: Energy.gov [DOE]

    The Midwest Hydro Users Group will be holding their annual Fall meeting on November 12th and 13th in Wausau, Wisconsin.  An Owners-only meeting on the afternoon of the 12th followed by a full...

  18. Entangling Power of Permutations

    E-Print Network [OSTI]

    Lieven Clarisse; Sibasish Ghosh; Simone Severini; Anthony Sudbery

    2005-04-11T23:59:59.000Z

    The notion of entangling power of unitary matrices was introduced by Zanardi, Zalka and Faoro [PRA, 62, 030301]. We study the entangling power of permutations, given in terms of a combinatorial formula. We show that the permutation matrices with zero entangling power are, up to local unitaries, the identity and the swap. We construct the permutations with the minimum nonzero entangling power for every dimension. With the use of orthogonal latin squares, we construct the permutations with the maximum entangling power for every dimension. Moreover, we show that the value obtained is maximum over all unitaries of the same dimension, with possible exception for 36. Our result enables us to construct generic examples of 4-qudits maximally entangled states for all dimensions except for 2 and 6. We numerically classify, according to their entangling power, the permutation matrices of dimension 4 and 9, and we give some estimates for higher dimensions.

  19. Galois Groups of Schubert Problems

    E-Print Network [OSTI]

    Martin Del Campo Sanchez, Abraham

    2012-10-19T23:59:59.000Z

    GALOIS GROUPS OF SCHUBERT PROBLEMS A Dissertation by ABRAHAM MARTIN DEL CAMPO SANCHEZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY... August 2012 Major Subject: Mathematics GALOIS GROUPS OF SCHUBERT PROBLEMS A Dissertation by ABRAHAM MARTIN DEL CAMPO SANCHEZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

  20. Interleaved power converter

    DOE Patents [OSTI]

    Zhu, Lizhi (Canton, MI)

    2007-11-13T23:59:59.000Z

    A power converter architecture interleaves full bridge converters to alleviate thermal management problems in high current applications, and may, for example, double the output power capability while reducing parts count and costs. For example, one phase of a three phase inverter is shared between two transformers, which provide power to a rectifier such as a current doubler rectifier to provide two full bridge DC/DC converters with three rather than four high voltage inverter legs.

  1. Electric power annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-08T23:59:59.000Z

    This report presents a summary of electric power industry statistics at national, regional, and state levels: generating capability and additions, net generation, fossil-fuel statistics, retail sales and revenue, finanical statistics, environmental statistics, power transactions, demand side management, nonutility power producers. Purpose is to provide industry decisionmakers, government policymakers, analysts, and the public with historical data that may be used in understanding US electricity markets.

  2. Power System load management

    SciTech Connect (OSTI)

    Rudenko, Yu.N.; Semenov, V.A.; Sovalov, S.A.; Syutkin, B.D.

    1984-01-01T23:59:59.000Z

    The variation in demand nonuniformity is analyzed for the Unified Electric Power System of the USSR and certain interconnected power systems; the conditions for handling such nonuniformity with utilization of generating equipment having differing flexibility capabilities are also considered. On this basis approaches and techniques for acting on user loads, load management, in order to assure a balance between generated and consumed power are considered.

  3. Open Cluster Open Cluster Open Cluster A group of several thousand stars

    E-Print Network [OSTI]

    Bechtold, Jill

    Open Cluster Open Cluster Open Cluster A group of several thousand stars which formed within the same nebula. The Pleides, or Seven Sisters, are the most visible stars in this cluster in the Milky Way. Mass:10-10,000 SM StarPower Points: 11 A group of several thousand stars which formed within the same

  4. The Astrophysical Journal, ???, ???, 2009 January Testing Formation Mechanisms and Ages of Fossil Groups of

    E-Print Network [OSTI]

    Dupke, Renato A.

    , 05508-090, São Paulo. Brazil Abstract Fossil groups are X-ray bright galaxy systems that present the central galaxy injecting energy and changing the chemistry of the IGM in fossil groups. We test here. The results indicate that strong SN II-powered galactic winds resulting from galaxy merging would be trapped

  5. Efficient, high power battery module; d. c. transformers and multi-terminal d. c. power networks utilizing same

    SciTech Connect (OSTI)

    Heitz, R.G.

    1981-06-16T23:59:59.000Z

    Multiterminal, high voltage dc power networks is disclosed in which the sub-terminals are electrically isolated from each other comprise dc transformers, as the terminals. Each transformer comprises a large number of efficient, high energy batteries, connected as two separate groups: one group made up of paralleled long strings of series connected batteries and the other group made up of paralleled short strings of one or more batteries each. Each transformer also comprises automatic monitoring, control and switching means for periodically exchanging charged and discharged strings between the two groups, one of which-the ''primary''-is connected across the supply lines from the power source(s) for the network and the other of which-the ''secondary''-is connected across the service lines providing power to users thereof.

  6. Western Area Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29-30, 2011 2 Agenda * Overview of Western Area Power Administration * Post-1989 Loveland Area Projects (LAP) Marketing Plan * Energy Planning and Management Program * Development...

  7. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Characterization (SciChar) Workshop Characterization Capabilities Battery Questions Neutron Advantages * Scattering Power unrelated to Z - Many low Z elements have high cross...

  8. 2025 Power Marketing Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the LAP FES contracts and has developed a plan for marketing and allocating LAP hydroelectric power after the current FES contracts expire. We call this plan our 2025...

  9. Power Supply Negotiations

    Office of Environmental Management (EM)

    Southeastern Federal Power Alliance Incremental Decay in Energy March 11, 2014 2 Incremental Decay in Energy Hydropower customers observations from our review of the Buford...

  10. Green Power Offer (Maine)

    Broader source: Energy.gov [DOE]

    This chapter establishes requirements, standards and procedures and a competitive bidding process to implement the green power offer program. The program is designed to make renewable energy...

  11. Municipal Electric Power (Minnesota)

    Broader source: Energy.gov [DOE]

    This section describes energy procurement for local utilities operating in Minnesota and provides a means for Minnesota cities to construct and operate hydroelectric power plants. The statute gives...

  12. Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  13. Enabling Wind Power Nationwide

    Office of Environmental Management (EM)

    including natural gas, and competing renewable power resources such as solar photovoltaics. Figure 4-3. Wind turbine hub height trends in Germany from 2007 to 2014 Source:...

  14. Critical pulse power components

    SciTech Connect (OSTI)

    Sarjeant, W.J.; Rohwein, G.J.

    1981-01-01T23:59:59.000Z

    Critical components for pulsed power conditioning systems will be reviewed. Particular emphasis will be placed on those components requiring significant development efforts. Capacitors, for example, are one of the weakest elements in high-power pulsed systems, especially when operation at high-repetition frequencies for extended periods of time are necessary. Switches are by far the weakest active components of pulse power systems. In particular, opening switches are essentially nonexistent for most applications. Insulaton in all systems and components requires development and improvement. Efforts under way in technology base development of pulse power components will be discussed.

  15. PowerPoint Presentation

    Office of Environmental Management (EM)

    Systems Program 1 DOE Energy Storage & Power Electronics Research Programs October 8, 2009 Marcelo Schupbach, Ph.D. Chief Technology Officer APEI, Inc. 535 Research Center Blvd....

  16. Energy 101: Hydroelectric Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    Learn how hydroelectric power, or hydropower, captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

  17. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    POTC Home Courses Instructors NERC Continuing Education Power Operations Training Center Instructors All instructors at Southwestern's POTC are NERC-approved continuing education...

  18. European Space Power Conference

    SciTech Connect (OSTI)

    Bents, D.J.; Kohout, L.L.; Mckissock, B.I.; Rodriguez, C.D.; Withrow, C.A.; Colozza, A.; Hanlon, J.C.; Schmitz, P.C.

    1991-01-01T23:59:59.000Z

    To support the Space Exploration Initiative (SEI), a study was performed to investigate power system alternatives for the rover vehicles and servicers that were subsequently generated for each of these rovers and servicers, candidate power sources incorporating various power generation and energy storage technologies were identified. The technologies were those believed most appropriate to the SEI missions, and included solar, electrochemical, and isotope systems. The candidates were characterized with respect to system mass, deployed area, and volume. For each of the missions a preliminary selection was made. Results of this study depict the available power sources in light of mission requirements as they are currently defined.

  19. Green Power Purchasing

    Broader source: Energy.gov [DOE]

    Eligible resources include tidal and wave power, fuel cells using renewable fuels, hydropower facilities less than 60 megawatts (MW), solar thermal-electric systems, photovoltaics (PV), wind,...

  20. Application Power Signature Analysis

    SciTech Connect (OSTI)

    Hsu, Chung-Hsing [ORNL] [ORNL; Combs, Jacob [Sonoma State University] [Sonoma State University; Nazor, Jolie [Sonoma State University] [Sonoma State University; Santiago, Fabian [Sonoma State University] [Sonoma State University; Thysell, Rachelle [Sonoma State University] [Sonoma State University; Rivoire, Suzanne [Sonoma State University] [Sonoma State University; Poole, Stephen W [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The high-performance computing (HPC) community has been greatly concerned about energy efficiency. To address this concern, it is essential to understand and characterize the electrical loads of HPC applications. In this work, we study whether HPC applications can be distinguished by their power-consumption patterns using quantitative measures in an automatic manner. Using a collection of 88 power traces from 4 different systems, we find that basic statistical measures do a surprisingly good job of summarizing applications' distinctive power behavior. Moreover, this study opens up a new area of research in power-aware HPC that has a multitude of potential applications.

  1. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in SAM Photovoltaics Concentrating PV Solar Water Heating Geothermal Dish-Stirling Linear Fresnel Power Tower Parabolic Trough Small Wind Utility-scale Wind Biomass...

  2. Concentrated Thermoelectric Power

    Broader source: Energy.gov (indexed) [DOE]

    electricity. Representing about 15% of the total system cost, power blocks include the steam turbine, generator, and associated equipment such as condensers and water treatment...

  3. MMA LA Power LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation,LushuiLyme,MDL JumpMJMJCLA Power

  4. Magnolia Electric Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to:Macquarie Energy LLCMagnolia BioPower LLC

  5. Metlakatla Power & Light | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an GroupInformation Meier(Redirected fromMetlakatla Power

  6. MLS Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower CoLongxing Wind PowerMCF Advisors LLCMHKMLS

  7. MTorres Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower CoLongxing Wind PowerMCF AdvisorsMTorres

  8. TEC Working Group Topic Groups Routing | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the PassingRouting TEC Working Group Topic Groups Routing

  9. TEC Working Group Topic Groups Section 180(c) Meeting Summaries |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the PassingRouting TEC Working Group Topic Groups

  10. Hanergy Holdings Group Company Ltd formerly Farsighted Group aka Huarui

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy Information Hanergy Holdings Group Company Ltd

  11. Prospects for Grid-Computing in Future Power Networks Prof. Malcolm Irving1

    E-Print Network [OSTI]

    Taylor, Gary

    Prospects for Grid-Computing in Future Power Networks Prof. Malcolm Irving1 , Dr. Gareth Taylor1 , Dr. Peter Hobson2 28 October 2003 1 Brunel Institute of Power Systems 2 SIRE Group Department to alert the power system community to the concept of Grid-computing and to initiate a discussion of its

  12. Distributed Learning Strategies for Collaborative Agents in Adaptive Decen-tralized Power Systems

    E-Print Network [OSTI]

    Wedde, Horst F.

    is obsolete, due to the wide dispersion and high unpredictability of wind and solar based power facilities nego- tiate available energy quantities and needs on behalf of consumers and producer groups. We through wind craft, solar power, or through block heat & power plants (BHPPs) driven by seed oil. Even

  13. Power, Media & Montesquieu. New forms of public power and the balance of power

    E-Print Network [OSTI]

    van den Brink, Jeroen

    SUMMARY Power, Media & Montesquieu. New forms of public power and the balance of power are organized it is crucial to restrain the power that the state exerts on its citizens. The state has three functions, commonly known as powers: the legislative, executive and judicial powers. This three

  14. Survivable pulse power space radiator

    DOE Patents [OSTI]

    Mims, J.; Buden, D.; Williams, K.

    1988-03-11T23:59:59.000Z

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometerorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length. 5 figs.

  15. NUCLEAR POWER in CALIFORNIA

    E-Print Network [OSTI]

    NUCLEAR POWER in CALIFORNIA: 2007 STATUS REPORT CALIFORNIA ENERGY COMMISSION October 2007 CEC-100, California Contract No. 700-05-002 Prepared For: California Energy Commission Barbara Byron, Senior Nuclear public workshops on nuclear power. The Integrated Energy Policy Report Committee, led by Commissioners

  16. Purchasing Renewable Power

    Broader source: Energy.gov [DOE]

    Federal agencies can purchase renewable power or renewable energy certificates (RECs) from a utility or other organization to meet Federal renewable energy requirements. Renewable power and RECs are good choices for facilities where on-site projects may be difficult or capital budgets are limited.

  17. Fusion Power Deployment

    SciTech Connect (OSTI)

    J.A. Schmidt; J.M. Ogden

    2002-02-06T23:59:59.000Z

    Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment.

  18. Electrically powered hand tool

    DOE Patents [OSTI]

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16T23:59:59.000Z

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  19. The Icelandic Power Situation

    E-Print Network [OSTI]

    Karlsson, Brynjar

    energy attracts power intensive industry to Iceland Households use only 5% 90% of district heating ensured · Feasible to sell excess energy · Takes advantage of the flexiblity of hydropower · Energy with low cost geothermal energy 80% 5% 15% Households Other users Power intensive industries #12;Future

  20. Power module assembly

    DOE Patents [OSTI]

    Campbell, Jeremy B. (Torrance, CA); Newson, Steve (Redondo Beach, CA)

    2011-11-15T23:59:59.000Z

    A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

  1. CFCC working group meeting: Proceedings

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    This report is a compilation of the vugraphs presented at this meeting. Presentations covered are: CFCC Working Group; Overview of study on applications for advanced ceramics in industries for the future; Design codes and data bases: The CFCC program and its involvement in ASTM, ISO, ASME, and military handbook 17 activities; CFCC Working Group meeting (McDermott Technology); CFCC Working Group meeting (Textron); CFCC program for DMO materials; Developments in PIP-derived CFCCs; Toughened Silcomp (SiC-Si) composites for gas turbine engine applications; CFCC program for CVI materials; Self-lubricating CFCCs for diesel engine applications; Overview of the CFCC program`s supporting technologies task; Life prediction methodologies for CFCC components; Environmental testing of CFCCs in combustion gas environments; High-temperature particle filtration ORNL/DCC CRADA; HSCT CMC combustor; and Case study -- CFCC shroud for industrial gas turbines.

  2. Amorphous silicon cell array powered solar tracking apparatus

    DOE Patents [OSTI]

    Hanak, Joseph J. (Lawrenceville, NJ)

    1985-01-01T23:59:59.000Z

    An array of an even number of amorphous silicon solar cells are serially connected between first and second terminals of opposite polarity. The terminals are connected to one input terminal of a DC motor whose other input terminal is connected to the mid-cell of the serial array. Vane elements are adjacent the end cells to selectively shadow one or the other of the end cells when the array is oriented from a desired attitude relative to the sun. The shadowing of one cell of a group of cells on one side of the mid-cell reduces the power of that group substantially so that full power from the group of cells on the other side of the mid-cell drives the motor to reorient the array to the desired attitude. The cell groups each have a full power output at the power rating of the motor. When the array is at the desired attitude the power output of the two groups of cells balances due to their opposite polarity so that the motor remains unpowered.

  3. Pohlen Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergy InternationalInformationPlacerPlexus SolPohlen Group

  4. Paro group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis) JumpPalcan sPaquinPark andParo group

  5. Jinglong Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New Energy Co Ltd Jump to:Jinglong Group Jump to:

  6. Kedco Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New Energy CoKERAFOLKarlsruheKauaiKedco Group Jump

  7. Humus Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformationHorizonEnergyHubeiHumus Group Jump to:

  8. SMITH AND BARGHNONCONSCIOUS EFFECTS OF POWER NONCONSCIOUS EFFECTS OF POWER

    E-Print Network [OSTI]

    Bargh, John A.

    SMITH AND BARGHNONCONSCIOUS EFFECTS OF POWER NONCONSCIOUS EFFECTS OF POWER ON BASIC APPROACH to the approach/inhibition theory of power (Keltner, Gruenfeld, & Anderson, 2003), having power should be associated with the approach system, and lacking power with the avoidance system. However

  9. Northwest Power and Conservation Council Fifth Northwest Power Plan

    E-Print Network [OSTI]

    Northwest Power and Conservation Council Fifth Northwest Power Plan Statement of Basis and Purpose for the Fifth Power Plan and Response to Comments on the Draft Fifth Power Plan February 2005 #12;I. Background.........................................................................................................................................3 B. Developing the Fifth Power Plan

  10. Trees and Power Lines: Minimizing Conflicts between Electric Power

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Trees and Power Lines: Minimizing Conflicts between Electric Power Infrastructure and the Urban: Minimizing Conflicts between Electric Power Infrastructure and the Urban Forest ISSUE BRIEF | March 2012 1: Minimizing Conflicts between Electric Power Infrastructure and the Urban Forest 1 Trees and overhead power

  11. Distributed Power Delivery for Energy Efficient and Low Power Systems

    E-Print Network [OSTI]

    Friedman, Eby G.

    Distributed Power Delivery for Energy Efficient and Low Power Systems Selc¸uk K¨ose Department throughout a power distribution system. Due to the parasitic impedances of the power distribution networks current to the load circuits [3]. The complexity of the high performance power delivery systems has

  12. PowerPoint Presentation

    Broader source: Energy.gov (indexed) [DOE]

    inspection rates for WIPP vs other heavy trucksload info. on TREX Keep product user in mind Action Items: Second Session Revive topic group? Primer on overall RAD transportation...

  13. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CANDU Owners' Group Japan Research Institute of Science and Technology Westinghouse DOENNSA Nonproliferatio n R&D NA-22 DOENNSA Naval Reactors DOENNSA Nuclear Criticality Safety...

  14. PowerPoint Presentation

    Office of Environmental Management (EM)

    Ground Water Issues Presentation for DOE Tritium Focus Group May 5-6, 2015 Steven M. Garry, CHP US Nuclear Regulatory Commission NRRDRAARCB Tritium Leaks * Approximately 70% of...

  15. TEP Power Partners Project [Tucson Electric Power

    SciTech Connect (OSTI)

    None

    2013-11-19T23:59:59.000Z

    The Arizona Governor’s Office of Energy Policy, in partnership with Tucson Electric Power (TEP), Tendril, and Next Phase Energy (NPE), formed the TEP Power Partners pilot project to demonstrate how residential customers could access their energy usage data and third party applications using data obtained from an Automatic Meter Reading (AMR) network. The project applied for and was awarded a Smart Grid Data Access grant through the U.S. Department of Energy. The project participants’ goal for Phase I is to actively engage 1,700 residential customers to demonstrate sustained participation, reduction in energy usage (kWh) and cost ($), and measure related aspects of customer satisfaction. This Demonstration report presents a summary of the findings, effectiveness, and customer satisfaction with the 15-month TEP Power Partners pilot project. The objective of the program is to provide residential customers with energy consumption data from AMR metering and empower these participants to better manage their electricity use. The pilot recruitment goals included migrating 700 existing customers from the completed Power Partners Demand Response Load Control Project (DRLC), and enrolling 1,000 new participants. Upon conclusion of the project on November 19, 2013: ? 1,390 Home Area Networks (HANs) were registered. ? 797 new participants installed a HAN. ? Survey respondents’ are satisfied with the program and found value with a variety of specific program components. ? Survey respondents report feeling greater control over their energy usage and report taking energy savings actions in their homes after participating in the program. ? On average, 43 % of the participants returned to the web portal monthly and 15% returned weekly. ? An impact evaluation was completed by Opinion Dynamics and found average participant savings for the treatment period1 to be 2.3% of their household use during this period.2 In total, the program saved 163 MWh in the treatment period of 2013.

  16. Electric power annual 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-06T23:59:59.000Z

    The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

  17. CEMENT RELATED RESEARCH HYDROGEOCHEMISTRY GROUP

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    CEMENT RELATED RESEARCH HYDROGEOCHEMISTRY GROUP Josep M. Soler Jordi Cama Carles Ayora Ana Trapote.soler@idaea.csic.es #12;NOMECLATURE cement + water = hardened cement paste cement + water + sand = mortar cement + waterC) clinker + gypsum portland cement PORTLAND CEMENT #12;GTS-HPF Core Infiltration Experiment Experimental

  18. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    of Civil Engineering, Uni- versity of Toronto Data Management Groups Web Site http Susanna Choy, B.A.Sc. (Industrial Engineering), M.Eng. (Civil Engineering) Uni- versity of Toronto, P.Eng. Reuben Briggs, B.A.Sc. (Civil Engineering), M.A.Sc. (Civil Engineering) Univer- sity of Toronto, P

  19. Systems Biology Group Decision Making

    E-Print Network [OSTI]

    entities (e.g., molecular, cellular, organism, ecological) #12;OHIO STATE T . H . E UNIVERSITY Systems/analysis of perception, attention, choice, learning, optimality,... #12;OHIO STATE T . H . E UNIVERSITY Group decision making, evolution and ecology Current work: Modeling/analysis of coordinated motion, foraging, choice

  20. FEATURE ARTICLES Group Decision Making

    E-Print Network [OSTI]

    with respect to human groups, which ha\\'e developed a variety of voting pro- cedures to single out one option'iorami commuiiiai- tion. Kevin M. Passino is a professor of electrical and computer aigineering at Tlie Ohio State of observational, experimental and mathematical-model- ing studies. This work has revealed a set of behavioral

  1. Group Motion Editing Taesoo Kwon

    E-Print Network [OSTI]

    Takahashi, Shigeo

    : I.3.7 [Three-Dimensional Graphics and Realism]: Animation--Virtual reality Keywords: Group Motion Editing, Crowd Simulation, Human Motion, Character Animation 1 Introduction Crowd scenes appear frequently in crowd animation make it possible to synthesize convincing animations of virtual crowds by simulating

  2. Policy Groups Winfried E. Kuhnhauser

    E-Print Network [OSTI]

    Kühnhauser, Winfried

    1 Policy Groups Winfried E. Kuhnhauser GMD National Research Center For Information Technology D: Systems that support a multitude of independent security domains in which an individual security policy domains consti- tutes a major problem. While security policies are capable of controlling the applications

  3. Task Group 9 Update (Presentation)

    SciTech Connect (OSTI)

    Bosco, N.

    2014-04-01T23:59:59.000Z

    This presentation is a brief update of IEC TC82 QA Task Force, Group 9. Presented is an outline of the recently submitted New Work Item Proposal (NWIP) for a Comparative Thermal Cycling Test for CPV Modules to Differentiate Thermal Fatigue Durability.

  4. Computational power of correlations

    E-Print Network [OSTI]

    Janet Anders; Dan E. Browne

    2009-02-05T23:59:59.000Z

    We study the intrinsic computational power of correlations exploited in measurement-based quantum computation. By defining a general framework the meaning of the computational power of correlations is made precise. This leads to a notion of resource states for measurement-based \\textit{classical} computation. Surprisingly, the Greenberger-Horne-Zeilinger and Clauser-Horne-Shimony-Holt problems emerge as optimal examples. Our work exposes an intriguing relationship between the violation of local realistic models and the computational power of entangled resource states.

  5. Foucault's Ethics of Power

    E-Print Network [OSTI]

    Wolf, Kirk

    ­ cally remarks , there is no 'headquarters that presides over the rationality" of power (HSl 125). Rather, strategies of power are nonsubjective insofar as they arc anonymous and operate indepen­ dent ly of the part icular people who wil l ingly or unwi...Foucault's Ethics of Power Kirk Wolf Delia College 1. I n t r o d u c t i o n Since Foucaull 's death in 19K4, his interpreters have generally located his importance in his genealogical critiques and in his phi­ losophy ofpower. On the one hand...

  6. Nuclear power attitude trends

    SciTech Connect (OSTI)

    Nealey, S.M.

    1981-11-01T23:59:59.000Z

    The increasing vulnerability of nuclear power to political pressures fueled by public concerns, particularly about nuclear plant safety and radioactive waste disposal, has become obvious. Since Eisenhower's Atoms-for-Peace program, utility and government plans have centered on expansion of nuclear power generating capability. While supporters have outnumbered opponents of nuclear power expansion for many years, in the wake of the Three Mile Island (TMI) accident the margin of support has narrowed. The purpose of this paper is to report and put in perspective these long-term attitude trends.

  7. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60Power Purchase Agreements PowerPowerCentsDC

  8. Power control system and method

    DOE Patents [OSTI]

    Steigerwald, Robert Louis; Anderson, Todd Alan

    2006-11-07T23:59:59.000Z

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  9. Power control system and method

    DOE Patents [OSTI]

    Steigerwald, Robert Louis (Burnt Hills, NY) [Burnt Hills, NY; Anderson, Todd Alan (Niskayuna, NY) [Niskayuna, NY

    2008-02-19T23:59:59.000Z

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  10. September 8, 2011, HSS/Union Focus Group Work Group Telecom - Work Group Charter

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/Union Work Group Telecom

  11. September 8, 2011, HSS/Union Focus Group Work Group Telecom - Work Group Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/Union Work Group Telecom7-29-11

  12. September 8, 2011, HSS/Union Focus Group Work Group Telecom - Work Group matrix

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/Union Work Group Telecom7-29-11Rev

  13. Efficient Power System State Estimation

    E-Print Network [OSTI]

    Lavaei, Javad

    monitoring of power systems. 2. Background Power systems have four main components: transmission, sub-transmissionEfficient Power System State Estimation Zafirah Baksh Expected BS, Department of Electrical Engineering May 2013 ELEN E4511 Power Systems Analysis Professor Javad Lavaeiyanesi #12;1. Introduction Power

  14. High Power, Linear CMOS Power Amplifier for WLAN Applications /

    E-Print Network [OSTI]

    Afsahi, Ali

    2013-01-01T23:59:59.000Z

    Tracking OFDM Power Amplier,” IEEE Journal of Solid-StateGSM/GPRS CMOS Power Ampli?er,” IEEE Journal of Solid-StateEnded Switching Power Ampli?es,” IEEE Journal of Solid-State

  15. ccsd00001636, GEOMETRIC PRESENTATIONS FOR THOMPSON'S GROUPS

    E-Print Network [OSTI]

    ccsd­00001636, version 3 ­ 4 Feb 2005 GEOMETRIC PRESENTATIONS FOR THOMPSON'S GROUPS PATRICK DEHORNOY Abstract. Starting from the observation that Thompson's groups F and V are the geometry groups]. In the case of associativity [6], the geometry group turns out to be Thompson's group F , not a surprise

  16. Transportation and Stationary Power

    E-Print Network [OSTI]

    ) is small. Previous feedback from industry has indicated that existing transportation fuel providers (oil for multiple fuel cell applications, including material handling equipment, backup power, and light- or heavy

  17. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of Tennessee October 22, 2010 Outline * The -ray instruments at ATLAS * The people * The physics * The future 2 Huge progress in 25 years in resolving power of -ray...

  18. DSW Power Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Hoover Powerplant produce about 2,074 MW--enough electricity for nearly 8 million people. Western markets this power to public utilities in Arizona, California and Nevada...

  19. Power System Operator

    Broader source: Energy.gov [DOE]

    At Southeastern, you can make a direct impact by helping us deliver low-cost hydroelectric power to over one hundred electric cooperatives and municipal utilities, and over eight million end-use...

  20. CRSP Power Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    expenses of the project each year, and receive all of the energy it produces. Salt Lake City AreaIntegrated Projects: Power from the Colorado River Storage Project plants was...

  1. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cable & conductor into 2,000 ft coiled tubing World first high power laser hardware (optics package & fiber connector) tested to >5,000 psi Achieving target requires "world...

  2. ELECTROCHEMICAL POWER FOR TRANSPORTATION

    E-Print Network [OSTI]

    Cairns, Elton J.

    2012-01-01T23:59:59.000Z

    Symposium on Power Systems for Electric Vehicles, Columbiaelectric vehicle must be considered as a total system which includes the primary energy source, electric powerpower for urban driving (32 W/kg), (130, Flow schematic for an electric vehicle battery system.

  3. in Idaho's Power County

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Located in Power County on the Fort Hall Reservation, the land is bisected by Bannock Creek, a perennial stream which flows from the east side of the Deep Creek Mountains and...

  4. Renewable Power Procurement Policy

    Broader source: Energy.gov [DOE]

    New York Governor George Pataki signed Executive Order No. 111 to promote "Green and Clean" State Buildings and Vehicles on June 10, 2001. The renewable-power procurement component of this order...

  5. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  6. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2007-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  7. Pig Poop Power

    E-Print Network [OSTI]

    Hacker, Randi; Tsutsui, William

    2007-04-11T23:59:59.000Z

    Broadcast Transcript: What could be more fitting in the Year of the Pig than to turn to the pig for power? And that's what is happening here in South Korea. In an effort to develop environmentally friendly, renewable energy ...

  8. Bonneville Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management BC Hydro and Power Authority 691 1 Southpoint Drive, El5 Burnaby, B.C., Canada V3N 4 x 8 Dear Ms. Kurschner: This letter Agreement (09NTSSA) between our...

  9. Bonneville Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vintage Rate (as made available by BPA) o All Non-Federal Resources (elect to not purchase power at Tier 2 rates) o Combination of BPA Tier 2 and Non-Federal Resources *...

  10. Mesofluidic magnetohydrodynamic power generation

    E-Print Network [OSTI]

    Fucetola, Jay J

    2012-01-01T23:59:59.000Z

    Much of the previous research into magnetohydrodynamics has involved large-scale systems. This thesis explores the miniaturization and use of devices to convert the power dissipated within an expanding gas flow into ...

  11. GMP Solar Power

    Broader source: Energy.gov [DOE]

    Green Mountain Power, an investor-owned electric utility operating in Vermont, offers a credit to customers with net-metered photovoltaic (PV) systems. In addition to the benefits of net metering,...

  12. Glucose-powered neuroelectronics

    E-Print Network [OSTI]

    Rapoport, Benjamin Isaac

    2011-01-01T23:59:59.000Z

    A holy grail of bioelectronics is to engineer biologically implantable systems that can be embedded without disturbing their local environments, while harvesting from their surroundings all of the power they require. As ...

  13. Power Quality Implications

    E-Print Network [OSTI]

    Hilson, D.

    Electric utilities in the United States spend in excess of one billion dollars annually to maintain or improve the quality of electric power supplied to their customers. Yet, an increasing and alarming number of complaints are being voiced...

  14. Structural power flow measurement

    SciTech Connect (OSTI)

    Falter, K.J.; Keltie, R.F.

    1988-12-01T23:59:59.000Z

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  15. Bonneville Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    http:www.bpa.gov PR 02 14 BONNEVILLE POWER ADMINISTRATION FOR IMMEDIATE RELEASE Thursday, Jan. 23, 2014 CONTACT: Kevin Wingert, 503-230-4140971-207-8390 or 503-230-5131 BPA...

  16. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * No cold or centrifugation steps * Power draw is minimal RNA Prep Module: Digital Microfluidics (DMF) with Macro-to-Micro Fluidic Interface Jebrail MJ et al., Anal Chem 86:3856...

  17. Linear Motor Powered Transportation

    E-Print Network [OSTI]

    Thornton, Richard D.

    This special issue on linear-motor powered transportation covers both supporting technologies and innovative transport systems in various parts of the World, as this technology moves from the lab to commercial operations. ...

  18. Power Plant Dams (Kansas)

    Broader source: Energy.gov [DOE]

    This act states the provisions for erection and maintenance of dams. When any person, corporation or city may be desirous of erecting and maintaining a milldam or dam for generating power across...

  19. Green Power Purchasing

    Broader source: Energy.gov [DOE]

    In 2003, Maine's governor established a goal for the state government to buy at least 50% of its electricity from "reasonably priced" renewable-power sources, paid for by energy conservation...

  20. Bonneville Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Resource Management, BC Hydro and Power Authority 6911 Southpoint Drive, Tower 15 Burnaby, BC V3N 4X8 Dear Ms. Kurshner: This letter agreement (Agreement) between...