National Library of Energy BETA

Sample records for tons short tons

  1. Table 4.8 Coal Demonstrated Reserve Base, January 1, 2011 (Billion Short Tons)

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Coal Demonstrated Reserve Base, January 1, 2011 (Billion Short Tons) Region and State Anthracite Bituminous Coal Subbituminous Coal Lignite Total Underground Surface Underground Surface Underground Surface Surface 1 Underground Surface Total Appalachian 4.0 3.3 68.2 21.9 0.0 0.0 1.1 72.1 26.3 98.4 Alabama .0 .0 .9 2.1 .0 .0 1.1 .9 3.1 4.0 Kentucky, Eastern .0 .0 .8 9.1 .0 .0 .0 .8 9.1 9.8 Ohio .0 .0 17.4 5.7 .0 .0 .0 17.4 5.7 23.1 Pennsylvania 3.8 3.3 18.9 .8 .0 .0 .0 22.7 4.2 26.9 Virginia .1

  2. Table 7.2 Coal Production, 1949-2011 (Short Tons)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production, 1949-2011 (Short Tons) Year Rank Mining Method Location Total 1 Bituminous Coal 1 Subbituminous Coal Lignite Anthracite 1 Underground Surface 1 East of the Mississippi 1 West of the Mississippi 1 1949 437,868,000 [2] [2] 42,702,000 358,854,000 121,716,000 444,199,000 36,371,000 480,570,000 1950 516,311,000 [2] [2] 44,077,000 421,000,000 139,388,000 524,374,000 36,014,000 560,388,000 1951 533,665,000 [2] [2] 42,670,000 442,184,000 134,151,000 541,703,000 34,632,000 576,335,000

  3. Table 7.4 Coal Imports by Country of Origin, 2000-2011 (Short Tons)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Imports by Country of Origin, 2000-2011 (Short Tons) Year Australia New Zealand Canada Mexico Colombia Venezuela China India Indonesia Europe South Africa Other Total Norway Poland Russia Ukraine United Kingdom Other Total 2000 167,595 0 1,923,434 6,671 7,636,614 2,038,774 19,646 205 718,149 0 0 1,212 0 238 0 1,450 0 85 12,512,623 2001 315,870 24,178 2,571,415 8,325 11,176,191 3,335,258 109,877 1,169 882,455 15,933 514,166 219,077 0 75,704 12 824,892 440,408 97,261 19,787,299 2002 821,280 0

  4. Table 7.5 Coal Exports by Country of Destination, 1960-2011 (Thousand Short Tons)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Exports by Country of Destination, 1960-2011 (Thousand Short Tons) Year Canada Brazil Europe Japan Other 3 Total Belgium 1 Denmark France Germany 2 Italy Nether- lands Spain Turkey United Kingdom Other 3 Total 1960 12,843 1,067 1,116 130 794 4,566 4,899 2,837 331 NA – 2,440 17,113 5,617 1,341 37,981 1961 12,135 994 971 80 708 4,326 4,797 2,552 228 NA – 2,026 15,688 6,614 974 36,405 1962 12,302 1,327 1,289 38 851 5,056 5,978 3,320 766 NA 2 1,848 19,148 6,465 973 40,215 1963 14,557 1,161

  5. Table 7.7 Coal Mining Productivity, 1949-2011 (Short Tons per Employee Hour )

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Mining Productivity, 1949-2011 (Short Tons per Employee Hour 1) Year Mining Method Location Total 2 Underground Surface 2 East of the Mississippi West of the Mississippi Underground Surface 2 Total 2 Underground Surface 2 Total 2 1949 0.68 [3] 1.92 [3] NA NA NA NA NA NA 0.72 1950 .72 [3] 1.96 [3] NA NA NA NA NA NA .76 1951 .76 [3] 2.00 [3] NA NA NA NA NA NA .80 1952 .80 [3] 2.10 [3] NA NA NA NA NA NA .84 1953 .88 [3] 2.22 [3] NA NA NA NA NA NA .93 1954 1.00 [3] 2.48 [3] NA NA NA NA NA NA

  6. Table 7.8 Coke Overview, 1949-2011 (Thousand Short Tons)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke Overview, 1949-2011 (Thousand Short Tons) Year Production Trade Stock Change 2 Consumption 3 Imports Exports Net Imports 1 1949 63,637 279 548 -269 176 63,192 1950 72,718 438 398 40 -659 73,417 1951 79,331 162 1,027 -865 372 78,094 1952 68,254 313 792 -479 419 67,356 1953 78,837 157 520 -363 778 77,696 1954 59,662 116 388 -272 269 59,121 1955 75,302 126 531 -405 -1,248 76,145 1956 74,483 131 656 -525 634 73,324 1957 75,951 118 822 -704 814 74,433 1958 53,604 122 393 -271 675 52,658 1959

  7. Table 7.9 Coal Prices, 1949-2011 (Dollars per Short Ton)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Prices, 1949-2011 (Dollars per Short Ton) Year Bituminous Coal Subbituminous Coal Lignite 1 Anthracite Total Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 1949 4.90 [4] 33.80 [4,R] [4] [4] 2.37 16.35 [R] 8.90 61.38 [R] 5.24 36.14 [R] 1950 4.86 [4] 33.16 [4,R] [4] [4] 2.41 16.44 [R] 9.34 63.73 [R] 5.19 35.41 [R] 1951 4.94 [4] 31.44 [4,R] [4] [4] 2.44 15.53 [R] 9.94 63.26 [R] 5.29 33.67 [R] 1952 4.92 [4] 30.78 [4,R] [4] [4] 2.39 14.95 [R] 9.58 59.94 [R]

  8. E TON Solar Tech | Open Energy Information

    Open Energy Info (EERE)

    Solar Tech Jump to: navigation, search Name: E-TON Solar Tech Place: Tainan, Taiwan Zip: 709 Product: Taiwan-based manufacturer of PV cells. Coordinates: 22.99721, 120.180862...

  9. Bioenergy Impacts … Billion Dry Tons

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Oak Ridge National Laboratory published research that shows that U.S. resources could sustainably produce by 2030 at least one billion dry tons of non-food biomass resources, yielding up to 60 billion gallons of biofuels, as well as bio- based chemicals, products, and electricity. This could potentially reduce greenhouse gas emissions by up to 500 million tons per year, create 1.5 million new jobs, and keep about $200 billion extra in the U.S. economy each year. Research is showing that U.S.

  10. Billion Ton Study-A Historical Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Billion Ton Study-A Historical Perspective Billion Ton Study-A Historical Perspective Breakout Session 1A: Biomass Feedstocks for the Bioeconomy Billion Ton Study-A Historical Perspective Bryce Stokes, Senior Advisor, CNJV PDF icon stokes_bioenergy_2015.pdf More Documents & Publications Biomass Econ 101: Measuring the Technological Improvements on Feedstocks Costs WEBINAR: A CHANGING MARKET FOR BIOFUELS AND BIOPRODUCTS U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts

  11. Department of Energy Releases New 'Billion-Ton' Study Highlighting

    Energy Savers [EERE]

    Opportunities for Growth in Bioenergy Resources | Department of Energy New 'Billion-Ton' Study Highlighting Opportunities for Growth in Bioenergy Resources Department of Energy Releases New 'Billion-Ton' Study Highlighting Opportunities for Growth in Bioenergy Resources August 10, 2011 - 3:41pm Addthis Washington, D.C. - The U.S. Department of Energy today released a report - 2011 U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry - detailing U.S. biomass

  12. Energy Department Sponsored Project Captures One Millionth Metric Ton of

    Office of Environmental Management (EM)

    CO2 | Department of Energy Sponsored Project Captures One Millionth Metric Ton of CO2 Energy Department Sponsored Project Captures One Millionth Metric Ton of CO2 June 27, 2014 - 11:09am Addthis An aerial view of Air Products’ steam methane reforming facility at Port Arthur, Texas. | Photo courtesy of Air Products and Chemicals Inc. An aerial view of Air Products' steam methane reforming facility at Port Arthur, Texas. | Photo courtesy of Air Products and Chemicals Inc. Allison Lantero

  13. Picture of the Week: The 100-Ton Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 The 100-Ton Test Before the historic Trinity test on July 16th, 1945, Los Alamos scientists conducted a host of other experiments designed to ensure that they would be ready to successfully measure the full force, efficiency, energy release, shock and radiological phenomena of the blast. July 9, 2015 Trinity 1945 x View extra-large image on Flickr » Before the historic Trinity test on July 16th, 1945, Los Alamos scientists conducted a host of other experiments designed to ensure that they

  14. DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it...

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline DOE Will Dispose of 34 Metric Tons ... DOE Will Dispose of 34 Metric Tons of ...

  15. U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturers Save 1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments U.S. Manufacturers Save 1 Billion, 11 Million Tons of CO2 through Energy Efficiency...

  16. U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Manufacturers Save 1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments U.S. Manufacturers Save 1 Billion, 11 Million Tons of CO2 through Energy...

  17. DOE to Remove 200 Metric Tons of Highly Enriched Uranium from...

    Energy Savers [EERE]

    to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons ...

  18. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry | Department of Energy Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry An update to the 2005 report, "Biomass as a Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply" PDF icon billion_ton_update.pdf More Documents & Publications ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP Biomass Program

  19. Neutrino physics with multi-ton scale liquid xenon detectors

    SciTech Connect (OSTI)

    Baudis, L.; Ferella, A.; Kish, A.; Manalaysay, A.; Undagoitia, T. Marrodn; Schumann, M., E-mail: laura.baudis@physik.uzh.ch, E-mail: alfredo.ferella@lngs.infn.it, E-mail: alexkish@physik.uzh.ch, E-mail: aaronm@ucdavis.edu, E-mail: marrodan@mpi-hd.mpg.de, E-mail: marc.schumann@lhep.unibe.ch [Physik Institut, University of Zrich, Winterthurerstrasse 190, Zrich, CH-8057 (Switzerland)

    2014-01-01

    We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 230 keV, where the sensitivity to solar pp and {sup 7}Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ? 2 10{sup ?48} cm{sup 2} and WIMP masses around 50 GeV?c{sup ?2}, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ? 6 GeV?c{sup ?2} to cross sections above ? 4 10{sup ?45}cm{sup 2}. DARWIN could reach a competitive half-life sensitivity of 5.6 10{sup 26} y to the neutrinoless double beta decay of {sup 136}Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.

  20. Taking the One-Metric-Ton Challenge | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Taking the One-Metric-Ton ... Taking the One-Metric-Ton Challenge Posted: January 13, 2016 - 4:46pm NNSA Uranium Program Manager Tim Driscoll speaks with the One-Metric-Ton Challenge team in Building 9212. The team has undertaken an extensive dedicated maintenance effort to improve metal production equipment reliability and reduce unexpected down time, with an end goal of significantly increasing purified metal production by fiscal year 2017. Last year, NNSA Uranium Program Manager Tim Driscoll

  1. U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S.

  2. Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) |

    Office of Environmental Management (EM)

    Department of Energy Heat Pumps (5.4 >=< 20 Tons) Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) Vary equipment size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Project Type New Installation Replacement New Installation Condenser Type Air Source Water Source Air Source Existing Capacity * ton - Existing Cooling Efficiency * EER -

  3. Removal of 1,082-Ton Reactor Among Richland Operations Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from groundwater across the site ahead of schedule and pumped a record volume of water through treatment facilities to remove contamination, with more than 130 tons of...

  4. U.S. Billion-Ton Update. Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect (OSTI)

    none,

    2011-08-01

    This report is an update to the 2005 Billion-Ton Study that addresses shotcomings and questions that arose from the original report..

  5. DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin

    Broader source: Energy.gov [DOE]

    Building on an initial injection project of 10,000 metric tons of carbon dioxide into a Michigan geologic formation, a U.S. Department of Energy team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change.

  6. 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site June 18, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager (970) 257-2145 (Grand Junction, CO) - Today, the Department of Energy (DOE) announced that 6 million tons of uranium mill tailings have been shipped from Moab, Utah, under the

  7. Billion-Ton Update: Home-Grown Energy Resources Across the Nation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Billion-Ton Update: Home-Grown Energy Resources Across the Nation Billion-Ton Update: Home-Grown Energy Resources Across the Nation August 11, 2011 - 3:59pm Addthis Total potential biomass resources by county in the contiguous U.S. from the baseline scenario of the Update (Figure 6.4, page 159) | Map from Billion-Ton Update Total potential biomass resources by county in the contiguous U.S. from the baseline scenario of the Update (Figure 6.4, page 159) | Map from

  8. 11,970,363 Metric Tons of CO2 Injected as of February 23, 2016 | Department

    Energy Savers [EERE]

    of Energy 11,970,363 Metric Tons of CO2 Injected as of February 23, 2016 11,970,363 Metric Tons of CO2 Injected as of February 23, 2016 This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is equivalent to the annual greenhouse gas emissions from 210,526 passenger vehicles. The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program

  9. Moab Marks 6-Million-Ton Cleanup Milestone | Department of Energy

    Office of Environmental Management (EM)

    Moab Marks 6-Million-Ton Cleanup Milestone Moab Marks 6-Million-Ton Cleanup Milestone June 20, 2013 - 12:00pm Addthis At Tuesday's Grand County Council meeting in Utah, Moab Federal Project Director Donald Metzler, center, moves a piece from a plaque representing Moab’s uranium mill tailings pile to a plaque representing the disposal cell in recognition of the site achieving a milestone by shipping 6 million tons of the tailings. Grand County Council Chair Gene Ciarus is on the left and

  10. DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected

    Office of Environmental Management (EM)

    CO2 | Department of Energy Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2 DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2 November 5, 2009 - 12:00pm Addthis Washington, DC - A large-scale carbon dioxide (CO2) storage project in Mississippi has become the fifth worldwide to reach the important milestone of more than 1 million tons injected. As a result, it is helping to both further carbon capture and storage (CCS) as a mitigation strategy

  11. 11,202,720 Metric Tons of CO2 Injected as of October 14, 2015 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 11,202,720 Metric Tons of CO2 Injected as of October 14, 2015 11,202,720 Metric Tons of CO2 Injected as of October 14, 2015 This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is equivalent to the annual greenhouse gas emissions from 210,526 passenger vehicles. The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program

  12. Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds

    Broader source: Energy.gov [DOE]

    The Moab Uranium Mill Tailings Remedial Action Project reached its primary American Recovery and Reinvestment Act milestone ahead of schedule on Wednesday with the disposal of 2 million tons of...

  13. 11,202,720 Metric Tons of CO2 Injected as of October 14, 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    This carbon dioxide (CO2) has been injected in the United States as part of DOEs Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is equivalent to the...

  14. Hanford Landfill Reaches 15 Million Tons Disposed- Waste Disposal Mark Shows Success Cleaning Up River Corridor

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996.

  15. U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Investments | Department of Energy Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments September 25, 2013 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Underscoring the Obama Administration's efforts to double energy productivity by 2030 and help businesses save money and energy, the Energy Department today recognized more than

  16. SO2907, A Putative TonB-dependent Receptor, Is Involved in Dissimilatory

    Office of Scientific and Technical Information (OSTI)

    Iron Reduction by Shewanella oneidensis Strain MR-1 (Journal Article) | SciTech Connect Journal Article: SO2907, A Putative TonB-dependent Receptor, Is Involved in Dissimilatory Iron Reduction by Shewanella oneidensis Strain MR-1 Citation Details In-Document Search Title: SO2907, A Putative TonB-dependent Receptor, Is Involved in Dissimilatory Iron Reduction by Shewanella oneidensis Strain MR-1 Shewanella oneidensis strain MR-1 utilizes soluble and insoluble ferric ions as terminal electron

  17. Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accomplishes Milestone While Doing it Safely | Department of Energy Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely February 27, 2012 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director, (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager, (970) 257-2145

  18. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect (OSTI)

    Downing, Mark; Eaton, Laurence M; Graham, Robin Lambert; Langholtz, Matthew H; Perlack, Robert D; Turhollow Jr, Anthony F; Stokes, Bryce; Brandt, Craig C

    2011-08-01

    The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil prices topped $70 per barrel (bbl) and catastrophic hurricanes in the Gulf Coast shut down a significant fraction of U.S. refinery capacity. The following year, oil approached $80 per bbl due to supply concerns, as well as continued political tensions in the Middle East. The Energy Independence and Security Act of 2007 (EISA) was enacted in December of that year. By the end of December 2007, oil prices surpassed $100 per bbl for the first time, and by mid-summer 2008, prices approached $150 per bbl because of supply concerns, speculation, and weakness of the U.S. dollar. As fast as they skyrocketed, oil prices fell, and by the end of 2008, oil prices dropped below $50 per bbl, falling even more a month later due to the global economic recession. In 2009 and 2010, oil prices began to increase again as a result of a weak U.S. dollar and the rebounding of world economies.

  19. DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear

    Energy Savers [EERE]

    Weapons Stockpile | Department of Energy to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile November 7, 2005 - 12:38pm Addthis Will Be Redirected to Naval Reactors, Down-blended or Used for Space Programs WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's (DOE) National Nuclear Security Administration (NNSA) will

  20. Photo of the Week: Smashing Atoms with 80-ton Magnets | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy The cyclotron, invented by Ernest Lawrence in the 1930s, is a unique circular particle accelerator, which Lawrence himself referred to as a "proton merry-go-round." In reality, the cyclotron specialized in smashing atoms. Part of this atom-smashing process requires very large, very heavy magnets -- sometimes weighing up to 220 tons. In this photo, workers at the Federal Telegraph facility in Menlo Park, California, are smoothing two castings for 80-ton magnets for use in one

  1. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Supply for a Bioenergy and Bioproducts Industry U.S. BILLI N-TON UPDATE U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry A Study Sponsored by U.S. Department of Energy Energy Effciency and Renewable Energy Offce of the Biomass Program August 2011 Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6335 managed by UT-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 This report was prepared as an account of

  2. Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of

    Office of Environmental Management (EM)

    soil and debris disposed of from D, H Reactor Areas | Department of Energy Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of soil and debris disposed of from D, H Reactor Areas Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of soil and debris disposed of from D, H Reactor Areas January 11, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE (509) 376-5365, Cameron.Hardy@rl.doe.gov Dieter Bohrmann, Ecology (509) 372-7954,

  3. DOE Moab Project Safely Removes 7 Million Tons of Mill Tailings |

    Office of Environmental Management (EM)

    Department of Energy Moab Project Safely Removes 7 Million Tons of Mill Tailings DOE Moab Project Safely Removes 7 Million Tons of Mill Tailings July 30, 2014 - 12:00pm Addthis View of the Crescent Junction disposal cell, looking northwest. From center left to right, the photo shows final cover, interim cover, tailings, and excavated cell ready to be filled. View of the Crescent Junction disposal cell, looking northwest. From center left to right, the photo shows final cover, interim cover,

  4. Planning for the 400,000 tons/year AISI ironmaking demonstration plant

    SciTech Connect (OSTI)

    Aukrust, E. . AISI Direct Steelmaking Program)

    1993-01-01

    The American Iron and Steel Institute (AISI) has formulated a four-year program to design, construct, and operate a 400,000 net ton per year ironmaking demonstration plant. The plant will employ the coal-based ironmaking process developed under a 1989 cooperative agreement with DOE. AISI will manage the design and construction to be completed in the first two years and operate the plant for the second two years with a variety or ores, coals, and fluxes. Campaigns of increasing length are planned to optimize operations. After successful operation, the plant will be taken over by the host company. Results of studies to date indicate that, on a commercial scale, the AISI process will use 27% less energy and have variable operating costs $10 per ton lower and capital costs of $160 per annual ton, compared to the $250 per annual ton rebuild cost for the coke oven-blast furnace process it will replace. The process will enable the domestic steel industry to become more competitive by reducing its capital and operating cost. Furthermore, by eliminating the pollution problems associated with coke production and by completely enclosing the smelting reactions, this process represents a major step towards an environmentally friendly steel industry.

  5. Energy Department Project Captures and Stores One Million Metric Tons of Carbon

    Broader source: Energy.gov [DOE]

    As part of President Obama’s all-of-the-above energy strategy, the Department of Energy announced today that its Illinois Basin-Decatur Project successfully captured and stored one million metric tons of carbon dioxide (CO2) and injected it into a deep saline formation.

  6. DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for

    National Nuclear Security Administration (NNSA)

    Civilian Reactors | National Nuclear Security Administration Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for Civilian Reactors | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations

  7. Y-12's rough roads smoothed over with 23,000 tons of recycled asphalt |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration rough roads smoothed over with 23,000 tons of recycled asphalt | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  8. How well will ton-scale dark matter direct detection experiments constrain minimal supersymmetry?

    SciTech Connect (OSTI)

    Akrami, Yashar; Savage, Christopher; Scott, Pat; Conrad, Jan; Edsj, Joakim E-mail: savage@fysik.su.se E-mail: conrad@fysik.su.se

    2011-04-01

    Weakly interacting massive particles (WIMPs) are amongst the most interesting dark matter (DM) candidates. Many DM candidates naturally arise in theories beyond the standard model (SM) of particle physics, like weak-scale supersymmetry (SUSY). Experiments aim to detect WIMPs by scattering, annihilation or direct production, and thereby determine the underlying theory to which they belong, along with its parameters. Here we examine the prospects for further constraining the Constrained Minimal Supersymmetric Standard Model (CMSSM) with future ton-scale direct detection experiments. We consider ton-scale extrapolations of three current experiments: CDMS, XENON and COUPP, with 1000 kg-years of raw exposure each. We assume energy resolutions, energy ranges and efficiencies similar to the current versions of the experiments, and include backgrounds at target levels. Our analysis is based on full likelihood constructions for the experiments. We also take into account present uncertainties on hadronic matrix elements for neutralino-quark couplings, and on halo model parameters. We generate synthetic data based on four benchmark points and scan over the CMSSM parameter space using nested sampling. We construct both Bayesian posterior PDFs and frequentist profile likelihoods for the model parameters, as well as the mass and various cross-sections of the lightest neutralino. Future ton-scale experiments will help substantially in constraining supersymmetry, especially when results of experiments primarily targeting spin-dependent nuclear scattering are combined with those directed more toward spin-independent interactions.

  9. Table 11.4 Nitrous Oxide Emissions, 1980-2009 (Thousand Metric Tons of Nitrous Oxide)

    U.S. Energy Information Administration (EIA) Indexed Site

    Nitrous Oxide Emissions, 1980-2009 (Thousand Metric Tons of Nitrous Oxide) Year Energy Sources Waste Management Agricultural Sources Industrial Processes 3 Total Mobile Combustion 1 Stationary Combustion 2 Total Waste Combustion Human Sewage in Wastewater Total Nitrogen Fertilization of Soils Crop Residue Burning Solid Waste of Domesticated Animals Total 1980 60 44 104 1 10 11 364 1 75 440 88 642 1981 63 44 106 1 10 11 364 2 74 440 84 641 1982 67 42 108 1 10 11 339 2 74 414 80 614 1983 71 43 114

  10. Occidental Chemical's Energy From Waste facility: 3,000,000 tons later

    SciTech Connect (OSTI)

    Blasins, G.F. )

    1988-01-01

    Occidental Chemical's Energy From Waste's cogeneration facility continues to be one of the most successful RDF plants in the U.S. The facility began operation in 1980 and was an operational success after a lengthy 2-1/2 year start-up and redesign, utilizing the air classification technology to produce RDF. In 1984, the plant was converted to a simplified shred and burn concept, significantly improving overall economics and viability of the operation. After processing 3.0 million tons the facility is a mature operation with a well developed experience base in long range operation and maintenance of the equipment utilized for processing and incinerating municipal solid waste.

  11. Cracked lifting lug welds on ten-ton UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Dorning, R.E.

    1991-12-31

    Ten-ton, Type 48X, UF{sub 6} cylinders are used at the Portsmouth Gaseous Diffusion Plant to withdraw enriched uranium hexafluoride from the cascade, transfer enriched uranium hexafluoride to customer cylinders, and feed enriched product to the cascade. To accomplish these activities, the cylinders are lifted by cranes and straddle carriers which engage the cylinder lifting lugs. In August of 1988, weld cracks on two lifting lugs were discovered during preparation to lift a cylinder. The cylinder was rejected and tagged out, and an investigating committee formed to determine the cause of cracking and recommend remedial actions. Further investigation revealed the problem may be general to this class of cylinder in this use cycle. This paper discusses the actions taken at the Portsmouth site to deal with the cracked lifting lug weld problem. The actions include inspection activities, interim corrective actions, metallurgical evaluation of cracked welds, weld repairs, and current monitoring/inspection program.

  12. Table 11.3 Methane Emissions, 1980-2009 (Million Metric Tons of Methane)

    U.S. Energy Information Administration (EIA) Indexed Site

    Methane Emissions, 1980-2009 (Million Metric Tons of Methane) Year Energy Sources Waste Management Agricultural Sources Industrial Processes 9 Total 5 Coal Mining Natural Gas Systems 1 Petroleum Systems 2 Mobile Com- bustion 3 Stationary Com- bustion 4 Total 5 Landfills Waste- water Treatment 6 Total 5 Enteric Fermen- tation 7 Animal Waste 8 Rice Cultivation Crop Residue Burning Total 5 1980 3.06 4.42 NA 0.28 0.45 8.20 10.52 0.52 11.04 5.47 2.87 0.48 0.04 8.86 0.17 28.27 1981 2.81 5.02 NA .27

  13. Dynamic performance testing of prototype 3 ton air-cooled carrier absorption chiller

    SciTech Connect (OSTI)

    Borst, R.R.; Wood, B.D.

    1985-05-01

    The performance of a prototype 3 ton cooling capacity air-cooled lithium bromide/water absorption chiller was tested using an absorption chiller test facility which was modified to expand its testing capabilities to include air-cooled chillers in addition to water-cooled chillers. Temperatures of the three externally supplied fluid loops: hot water, chilled water, and cooling air, were varied in order to determine the effects this would have on the two principal measures of chiller performance: cooling capacity and thermal coefficient of performance (COP). A number of interrelated factors were identified as contributing to less than expected performance. For comparison, experimental correlations of other investigators for this and other similar absorption chillers are presented. These have been plotted as both contour and three-dimensional performance maps in order to more clearly show the functional dependence of the chiller performance on the fluid loop temperatures.

  14. Performance and results of the LBNE 35 ton membrane cryostat prototype

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Montanari, David; Adamowski, Mark; Hahn, Alan; Norris, Barry; Reichenbacher, Juergen; Rucinski, Russell; Stewart, Jim; Tope, Terry

    2015-07-15

    We report on the performance and commissioning of the first membrane cryostat to be used for scientific application. The Long Baseline Neutrino Experiment (LBNE) has designed and fabricated a membrane cryostat prototype in collaboration with Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI). LBNE has designed and fabricated the supporting cryogenic system infrastructure and successfully commissioned and operated the first membrane cryostat. Original goals of the prototype are: to demonstrate the membrane cryostat technology in terms of thermal performance, feasibility for liquid argon and leak tightness; to demonstrate that we can remove all the impurities from the vessel and achieve the puritymore » requirements in a membrane cryostat without evacuation; to demonstrate that we can achieve and maintain the purity requirements of the liquid argon using mol sieve and copper filters. The purity requirements of a large liquid argon detector such as LBNE are contaminants below 200 parts per trillion (ppt) oxygen equivalent. LBNE is planning the design and construction of a large liquid argon detector. This presentation will present requirements, design and construction of the LBNE 35 ton membrane cryostat prototype, and detail the commissioning and performance. The experience and results of this prototype are extremely important for the development of the LBNE detector.« less

  15. Performance and results of the LBNE 35 ton membrane cryostat prototype

    SciTech Connect (OSTI)

    Montanari, David; Adamowski, Mark; Hahn, Alan; Norris, Barry; Reichenbacher, Juergen; Rucinski, Russell; Stewart, Jim; Tope, Terry

    2015-07-15

    We report on the performance and commissioning of the first membrane cryostat to be used for scientific application. The Long Baseline Neutrino Experiment (LBNE) has designed and fabricated a membrane cryostat prototype in collaboration with Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI). LBNE has designed and fabricated the supporting cryogenic system infrastructure and successfully commissioned and operated the first membrane cryostat. Original goals of the prototype are: to demonstrate the membrane cryostat technology in terms of thermal performance, feasibility for liquid argon and leak tightness; to demonstrate that we can remove all the impurities from the vessel and achieve the purity requirements in a membrane cryostat without evacuation; to demonstrate that we can achieve and maintain the purity requirements of the liquid argon using mol sieve and copper filters. The purity requirements of a large liquid argon detector such as LBNE are contaminants below 200 parts per trillion (ppt) oxygen equivalent. LBNE is planning the design and construction of a large liquid argon detector. This presentation will present requirements, design and construction of the LBNE 35 ton membrane cryostat prototype, and detail the commissioning and performance. The experience and results of this prototype are extremely important for the development of the LBNE detector.

  16. High temperature experiments on a 4 tons UF6 container TENERIFE program

    SciTech Connect (OSTI)

    Casselman, C.; Duret, B.; Seiler, J.M.; Ringot, C.; Warniez, P.

    1991-12-31

    The paper presents an experimental program (called TENERIFE) whose aim is to investigate the behaviour of a cylinder containing UF{sub 6} when exposed to a high temperature fire for model validation. Taking into account the experiments performed in the past, the modelization needs further information in order to be able to predict the behaviour of a real size cylinder when engulfed in a 800{degrees}C fire, as specified in the regulation. The main unknowns are related to (1) the UF{sub 6} behaviour beyond the critical point, (2) the relationship between temperature field and internal pressure and (3) the equivalent conductivity of the solid UF{sub 6}. In order to investigate these phenomena in a representative way it is foreseen to perform experiments with a cylinder of real diameter, but reduced length, containing 4 tons of UF{sub 6}. This cylinder will be placed in an electrically heated furnace. A confinement vessel prevents any dispersion of UF{sub 6}. The heat flux delivered by the furnace will be calibrated by specific tests. The cylinder will be changed for each test.

  17. A Proposal for a Ton Scale Bubble Chamber for Dark Matter Detection

    SciTech Connect (OSTI)

    Collar, Juan; Dahl, C.Eric; Fustin, Drew; Robinson, Alan; Behnke, Ed; Behnke, Joshua; Breznau, William; Connor, Austin; Kuehnemund, Emily Grace; Levine, Ilan; Moan, Timothy; /Indiana U., South Bend /Fermilab

    2010-10-07

    The nature of non-baryonic dark matter is one of the most intriguing questions for particle physics at the start of the 21st century. There is ample evidence for its existence, but almost nothing is known of its properties. WIMPs are a very appealing candidate particle and several experimental campaigns are underway around the world to search for these particles via the nuclear recoils that they should induce. The COUPP series of bubble chambers has played a significant role in the WIMP search. Through a sequence of detectors of increasing size, a number of R&D issues have arisen and been solved, and the technology has now been advanced to the point where the construction of large chambers requires a modest research effort, some development, but mostly just engineering. It is within this context that we propose to build the next COUPP detector - COUPP-500, a ton scale device to be built over the next three years at Fermilab and then deployed deep underground at SNOLAB. The primary advantages of the COUPP approach over other technologies are: (1) The ability to reject electron and gamma backgrounds by arranging the chamber thermodynamics such that these particles do not even trigger the detector. (2) The ability to suppress neutron backgrounds by having the radioactively impure detection elements far from the active volume and by using the self-shielding of a large device and the high granularity to identify multiple bubbles. (3) The ability to build large chambers cheaply and with a choice of target fluids. (4) The ability to increase the size of the chambers without changing the size or complexity of the data acquisition. (5) Sensitivity to spin-dependent and spin-independent WIMP couplings. These key advantages should enable the goal of one background event in a ton-year of exposure to be achieved. The conceptual design of COUPP-500 is scaled from the preceding devices. In many cases all that is needed is a simple scaling up of components previously used. Calibration and R&D are still needed on some aspects of the system. We know we have the ability to distinguish alpha-induced events from nuclear recoils, but we do not yet know whether the combination of material purity and rejection are good enough to run for a year with no alpha background. We also need to have more detailed measurements of the detector threshold and a better understanding of its high gamma rejection. In addition, there are important checks to make on the longevity of the detector components in the hydraulic fluid and on the chemistry of the active fluid. The 2009 PASAG report explicitly supported the construction of the COUPP-500 device in all funding scenarios. The NSF has shown similar enthusiasm. It awarded one of its DUSEL S4 grants to assist in the engineering needed to build COUPP-500. The currently estimated cost of COUPP-500 is $8M, about half the $15M-$20M price tag expected by the PASAG report for a next generation dark matter search experiment. The COUPP-500 device will have a spin independent WIMP-nucleus cross-section sensitivity of 6 x 10{sup -47} cm{sup 2} after a background-free year of running. This device should then provide the benchmark against which all other WIMP searches are measured.

  18. Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?

    SciTech Connect (OSTI)

    Zhou, Nan; Lin, Jiang; Zhou, Nan; Levine, Mark; Fridley, David

    2007-07-01

    China's 11th Five-Year Plan (FYP) sets an ambitious target for energy-efficiency improvement: energy intensity of the country's gross domestic product (GDP) should be reduced by 20% from 2005 to 2010 (NDRC, 2006). This is the first time that a quantitative and binding target has been set for energy efficiency, and signals a major shift in China's strategic thinking about its long-term economic and energy development. The 20% energy intensity target also translates into an annual reduction of over 1.5 billion tons of CO2 by 2010, making the Chinese effort one of most significant carbon mitigation effort in the world today. While it is still too early to tell whether China will achieve this target, this paper attempts to understand the trend in energy intensity in China and to explore a variety of options toward meeting the 20% target using a detailed end-use energy model.

  19. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply

    SciTech Connect (OSTI)

    Perlack, R.D.

    2005-12-15

    The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

  20. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply, April 2005

    SciTech Connect (OSTI)

    2005-04-01

    The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the countrys present petroleum consumption the goal set by the Biomass R&D Technical Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

  1. Assessment of Reusing 14-ton, Thin-Wall, Depleted UF{sub 6} Cylinders as LLW Disposal Containers

    SciTech Connect (OSTI)

    O'Connor, D.G.

    2000-11-30

    Approximately 700,000 MT of DUF{sub 6} is stored, or will be produced under a current agreement with the USEC, at the Paducah site in Kentucky, Portsmouth site in Ohio, and ETTP site in Tennessee. On July 21, 1998, the 105th Congress approved Public Law 105-204 (Ref; 1), which directed that facilities be built at the Kentucky and Ohio sites to convert DUF{sub 6} to a stable form for disposition. On July 6, 1999, the Department of Energy (DOE) issued the ''Final Plan for the Conversion of Depleted Uranium Hexafluoride as Required by Public Law 105-204 (Ref. 2), in which DOE committed to develop a Depleted Uranium Hexafluoride Materials Use Roadmap''. On September 1, 2000, DOE issued the Draft Depleted Uranium Hexafluoride Materials Use Roadmap (Ref. 3) (Roadmap), which provides alternate paths for the long-term storage, beneficial use, and eventual disposition of each product form and material that will result from the DUF{sub 6} conversion activity. One of the paths being considered for DUF{sub 6} cylinders is to reuse the empty cylinders as containers to transport and dispose of LLW, including the converted DU. The Roadmap provides results of the many alternate uses and disposal paths for conversion products and the empty DUF{sub 6} storage cylinders. As a part of the Roadmap, evaluations were conducted of cost savings, technical maturity, barriers to implementation, and other impacts. Results of these evaluations indicate that using the DUF{sub 6} storage cylinders as LLW disposal containers could provide moderate cost savings due to the avoided cost of purchasing LLW packages and the avoided cost of disposing of the cylinders. No significant technical or institutional issues were identified that would make using cylinders as LLW packages less effective than other disposition paths. Over 58,000 cylinders have been used, or will be used, to store DUF{sub 6}. Over 51,000 of those cylinders are 14TTW cylinders with a nominal wall thickness of 5/16-m (0.79 cm). These- 14TTW cylinders, which have a nominal diameter of 48 inches and nominally contain 14 tons (12.7 MT) of DUF{sub 6}, were originally designed and fabricated for temporary storage of DUF{sub 6}. They were fabricated from pressure-vessel-grade steels according to the provisions of the ASME Boiler and Pressure Vessel Code (Ref. 4). Cylinders are stored in open yards at the three sites and, due to historical storage techniques, were subject to corrosion. Roughly 10,000 of the 14TTW cylinders are considered substandard (Ref. 5) due to corrosion and other structural anomalies caused by mishandling. This means that approximately 40,000 14TTW cylinders could be made available as containers for LLW disposal In order to demonstrate the use of 14TTW cylinders as LLW disposal containers, several qualifying tasks need to be performed. Two demonstrations are being considered using 14TTW cylinders--one demonstration using contaminated soil and one demonstration using U{sub 3}O{sub 8}. The objective of this report are to determine how much information is known that could be used to support the demonstrations, and how much additional work will need to be done in order to conduct the demonstrations. Information associated with the following four qualifying tasks are evaluated in this report. (1) Perform a review of structural assessments that have been conducted for 14TTW. (2) Develop a procedure for filling 14TTW cylinders with LLW that have been previously washed. (3) Evaluate the transportation requirements for shipping 14TTW cylinders containing LLW. (4) Evaluate the WAC that will be imposed by the NTS. Two assumptions are made to facilitate this evaluation of using DUF{sub 6} cylinders as LLW disposal containers. (1) Only 14TTW cylinders will be considered for use as LLW containers, and (2) The NTS will be the LLW disposal site.

  2. A nuclear criticality safety assessment of the loss of moderation control in 2 1/2 and 10-ton cylinders containing enriched UF{sub 6}

    SciTech Connect (OSTI)

    Newvahner, R.L.; Pryor, W.A.

    1991-12-31

    Moderation control for maintaining nuclear criticality safety in 2 {1/2}-ton, 10-ton, and 14-ton cylinders containing enriched uranium hexafluoride (UF{sub 6}) has been used safely within the nuclear industry for over thirty years, and is dependent on cylinder integrity and containment. This assessment evaluates the loss of moderation control by the breaching of containment and entry of water into the cylinders. The first objective of this study was to estimate the required amounts of water entering these large UF{sub 6} cylinders to react with, and to moderate the uranium compounds sufficiently to cause criticality. Hypothetical accident situations were modeled as a uranyl fluoride (UO{sub 2}F{sub 2}) slab above a UF{sub 6} hemicylinder, and a UO{sub 2}F{sub 2} sphere centered within a UF{sub 6} hemicylinder. These situations were investigated by computational analyses utilizing the KENO V.a Monte Carlo Computer Code. The results were used to estimate both the masses of water required for criticality, and the limiting masses of water that could be considered safe. The second objective of the assessment was to calculate the time available for emergency control actions before a criticality would occur, i.e., a {open_quotes}safetime{close_quotes}, for various sources of water and different size openings in a breached cylinder. In the situations considered, except the case for a fire hose, the safetime appears adequate for emergency control actions. The assessment shows that current practices for handling moderation controlled cylinders of low enriched UF{sub 6}, along with the continuation of established personnel training programs, ensure nuclear criticality safety for routine and emergency operations.

  3. Table 11.1 Carbon Dioxide Emissions From Energy Consumption by Source, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    Carbon Dioxide Emissions From Energy Consumption by Source, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal 3 Natural Gas 4 Petroleum Total 2,9 Biomass 2 Aviation Gasoline Distillate Fuel Oil 5 Jet Fuel Kero- sene LPG 6 Lubri- cants Motor Gasoline 7 Petroleum Coke Residual Fuel Oil Other 8 Total Wood 10 Waste 11 Fuel Ethanol 12 Bio- diesel Total 1949 1,118 270 12 140 NA 42 13 7 329 8 244 25 820 2,207 145 NA NA NA 145 1950 1,152 313 14 168 NA 48 16 9 357 8 273 26 918 2,382 147 NA NA

  4. Table 11.2a Carbon Dioxide Emissions From Energy Consumption: Residential Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    a Carbon Dioxide Emissions From Energy Consumption: Residential Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Electricity 5 Total 2 Biomass 2 Distillate Fuel Oil 4 Kerosene Liquefied Petroleum Gases Total Wood 6 Total 6 1949 121 55 51 21 7 80 66 321 99 99 1950 120 66 61 25 9 95 69 350 94 94 1951 111 81 68 27 10 105 78 374 90 90 1952 103 89 70 27 10 108 85 385 84 84 1953 92 93 71 26 11 108 94 387 78 78 1954 82 104 79 27 12 118 99 404 75 75

  5. Table 11.2c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Coal Coke Net Imports Natural Gas 3 Petroleum Retail Elec- tricity 8 Total 2 Biomass 2 Distillate Fuel Oil 4 Kero- sene LPG 5 Lubri- cants Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Other 7 Total Wood 9 Waste 10 Fuel Ethanol 11 Total 1949 500 -1 166 41 18 3 3 16 8 95 25 209 120 995 44 NA NA 44 1950 531 (s) 184 51 20 4 3 18 8 110 26 239 140 1,095 50 NA NA 50

  6. Table 11.2d Carbon Dioxide Emissions From Energy Consumption: Transportation Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    d Carbon Dioxide Emissions From Energy Consumption: Transportation Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Elec- tricity 7 Total 2 Biomass 2 Aviation Gasoline Distillate Fuel Oil 4 Jet Fuel LPG 5 Lubricants Motor Gasoline 6 Residual Fuel Oil Total Fuel Ethanol 8 Biodiesel Total 1949 161 NA 12 30 NA (s) 4 306 91 443 6 611 NA NA NA 1950 146 7 14 35 NA (s) 5 332 95 481 6 640 NA NA NA 1951 129 11 18 42 NA (s) 6 360 102 529 7 675 NA NA NA

  7. THE A.EROSPACE CORPORATION Suite 4000, 955 L'Enfk Plaza, S. W,, Wash&-ton, D,C: 200.24~ZJ74, Telephone:'(

    Office of Legacy Management (LM)

    -t / . \; ', THE A.EROSPACE CORPORATION Suite 4000, 955 L'Enfk Plaza, S. W,, Wash&-ton, D,C: 200.24~ZJ74, Telephone:'( Mr: Edward DeLaney, NE-23 Division of Facility & Site Decommissioning Projects U.S; Department of Energy Germantown, Maryland 20545 Dear Mr. DeLaney: AUTHORITY REVIEW FOR MED OPERATIONS CONDUCTED AT AMES LABDRATORY :@*oi-l 12) 488-6000 1 I Enclosed please find Attachment 1, I a summary of the facts and issues relating to the authority for remedial action at Ames; of

  8. Table 11.2b Carbon Dioxide Emissions From Energy Consumption: Commercial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    b Carbon Dioxide Emissions From Energy Consumption: Commercial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Electricity 7 Total 2 Biomass 2 Distillate Fuel Oil 4 Kerosene LPG 5 Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Total Wood 8 Waste 9 Fuel Ethanol 10 Total 1949 148 19 16 3 2 7 NA 28 55 58 280 2 NA NA 2 1950 147 21 19 3 2 7 NA 33 66 63 297 2 NA NA 2 1951 125 25 21 4 3 8 NA 34 70 69 289 2 NA NA 2 1952 112 28 22 4 3 8 NA 35 71 73

  9. Table 11.2e Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    e Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Geo- thermal Non- Biomass Waste 5 Total 2 Biomass 2 Distillate Fuel Oil 4 Petroleum Coke Residual Fuel Oil Total Wood 6 Waste 7 Total 1949 187 30 2 NA 30 33 NA NA 250 1 NA 1 1950 206 35 2 NA 35 37 NA NA 278 1 NA 1 1951 235 42 2 NA 29 31 NA NA 308 1 NA 1 1952 240 50 2 NA 31 33 NA NA 323 1 NA 1 1953 260 57 3 NA 38 40 NA NA 358 (s) NA (s)

  10. Scale-up of mild gasification to be a process development unit mildgas 24 ton/day PDU design report. Final report, November 1991--July 1996

    SciTech Connect (OSTI)

    1996-03-01

    From November 1991 to April 1996, Kerr McGee Coal Corporation (K-M Coal) led a project to develop the Institute of Gas Technology (IGT) Mild Gasification (MILDGAS) process for near-term commercialization. The specific objectives of the program were to: design, construct, and operate a 24-tons/day adiabatic process development unit (PDU) to obtain process performance data suitable for further design scale-up; obtain large batches of coal-derived co-products for industrial evaluation; prepare a detailed design of a demonstration unit; and develop technical and economic plans for commercialization of the MILDGAS process. The project team for the PDU development program consisted of: K-M Coal, IGT, Bechtel Corporation, Southern Illinois University at Carbondale (SIUC), General Motors (GM), Pellet Technology Corporation (PTC), LTV Steel, Armco Steel, Reilly Industries, and Auto Research.

  11. Corrosion of aluminum clad spent nuclear fuel in the 70 ton cask during transfer from L area to H-canyon

    SciTech Connect (OSTI)

    Mickalonis, J. I.

    2015-08-01

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material with the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33% was found after 1 year in the cask with a maximum temperature of 263 °C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 °C. These losses are not expected to impact the overall confinement function of the aluminum cladding.

  12. Corrosion of aluminum clad spent nuclear fuel in the 70 ton cask during transfer from L area to H-canyon

    SciTech Connect (OSTI)

    Mickalonis, J. I.

    2015-08-31

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material with the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33 % was found after 1 year in the cask with a maximum temperature of 263 °C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 °C. These losses are not expected to impact the overall confinement function of the aluminum cladding.

  13. CORROSION OF ALUMINUM CLAD SPENT NUCLEAR FUEL IN THE 70 TON CASK DURING TRANSFER FROM L AREA TO H-CANYON

    SciTech Connect (OSTI)

    Mickalonis, J.

    2014-06-01

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material with the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33 % was found after 1 year in the cask with a maximum temperature of 260 {degrees}C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 {degrees}C. These losses are not expected to impact the overall confinement function of the aluminum cladding.

  14. Table 11.5a Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Total (All Sectors), 1989-2010 (Sum of Tables 11.5b and 11.5c; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Total (All Sectors), 1989-2010 (Sum of Tables 11.5b and 11.5c; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total 1989 1,573,566,415 218,383,703 145,398,976 363,247 5,590,014 1,943,302,355 14,468,564 1,059 984,406

  15. Table 11.5b Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Electric Power Sector, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Electric Power Sector, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total 1989 1,520,229,870 169,653,294 133,545,718 363,247 4,365,768 1,828,157,897 13,815,263 832 809,873 6,874

  16. Table 11.5c Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Commercial Sector 8<//td> 1989 2,319,630 1,542,083 637,423 [ –] 803,754 5,302,890 37,398 4

  17. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect (OSTI)

    Zaltash, Abdolreza; Petrov, Andrei Y; Linkous, Randall Lee; Vineyard, Edward Allan

    2007-01-01

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

  18. Department of Energy Releases New 'Billion-Ton' Study Highlighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in biomass-derived energy sources can be produced in a sustainable manner through the use of widely-accepted conservation practices, such as no-till farming and crop rotation. ...

  19. 14,700 tons of silver at Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    calutron magnets was because of a shortage of copper during the war. As you will recall, Gen. Groves sent Col. Nichols to arrange for the purchase of as much uranium ore as could...

  20. Energy Department Employee Recognized for Eliminating One Million Tons of

    Broader source: Energy.gov (indexed) [DOE]

    Greenhouse Gas Emissions | Department of Energy The Energy Department is pleased to announce that Dr. Josh Silverman, Director of the Office of Sustainability Support, has been selected as a finalist for the Samuel J. Heyman Service to America Medal from the Partnership for Public Service. Silverman was selected for his dedication to reducing the Department's greenhouse gas emissions. Silverman is being recognized for identifying gaps in air pollution controls at Department facilities where

  1. Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal...

    Broader source: Energy.gov (indexed) [DOE]

    from reaching the groundwater and the Columbia River. ERDF receives contaminated soil, demolition debris, and solid waste from cleanup operations across the...

  2. KCP relocates 18-ton machine | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    relocations. It took nearly three days to disassemble the machine and prepare it for transport. The machine was partially disassembled, removing auxiliary pieces from the main...

  3. Disposal Facility Reaches 15-Million-Ton Milestone

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. EMs Environmental Restoration Disposal Facility (ERDF) a massive landfill for low-level radioactive and hazardous waste at the Hanford site has achieved a major cleanup milestone.

  4. Two (2) 175 Ton (350 Tons total) Chiller Geothermal Heat Pumps for recently commissioned LEED Platinum Building

    Broader source: Energy.gov [DOE]

    This project will operate; collect data; and market the energy savings and capital costs of a recently commissioned chiller geothermal heat pump project to promote the wide-spread adoption of this mature technology.

  5. Lubricants Market to Record 44,165.11 Kilo Tons Volume by 2020...

    Open Energy Info (EERE)

    over 50% of the global market share. Automotive oils sector is further segmented into hydraulic oil, engine oil, and gear oil. Improving GDP in developing nations such as India and...

  6. 1,153-ton Waste Vault Removed from 300 Area - Vault held waste...

    Broader source: Energy.gov (indexed) [DOE]

    Richland Operations Office announced the removal of a massive concrete vault that once held two 15,000-gallon stainless steel tanks used to collect highly contaminated waste...

  7. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproduct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP Biomass Program Peer Review Sustainability Platform WEBINAR: A CHANGING MARKET FOR ...

  8. Y-12's rough roads smoothed over with 23,000 tons of recycled...

    National Nuclear Security Administration (NNSA)

    Related News Y-12 employee engineering success for group that serves people with disabilities in East Tennessee Pantex and Y-12 teams receive NNSA Defense Programs awards Y-12...

  9. A ton-scale bolometric detector for the search for neutrinoless double beta decay

    SciTech Connect (OSTI)

    Pedretti, M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States)

    2009-12-16

    After an introduction on neutrinoless double beta decay physics, a description of CUORE and CUORICINO experiments, detectors and results are reported. The actual efforts and next steps of the CUORE Project, required to probe the inverted hierarchy region of the neutrino effective Majorana mass, are also described.

  10. Long-term Decline of Aggregate Fuel Use per Cargo-ton-mile of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Nozzle (DISSAN) Electric Turbo Compounding Technology Update Microstructural Contol of the Porous Si3N4 Ceramics Consisted of 3-Dimensionally Intermingled Rod-like Grains...

  11. 10,422,136 Metric Tons of CO2 Injected as of August 21, 2015...

    Broader source: Energy.gov (indexed) [DOE]

    The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program and the Major Demonstration Program are detailed below. Regional Carbon...

  12. 10,651,176 Metric Tons of CO2 Injected as of September 16, 2015...

    Broader source: Energy.gov (indexed) [DOE]

    Products has successfully retrofitted its two Port Arthur SMRs with a vacuum swing adsorption system to separate the CO2 from the process gas stream, followed by compression and...

  13. SO2907, A Putative TonB-dependent Receptor, Is Involved in Dissimilato...

    Office of Scientific and Technical Information (OSTI)

    Iron binding assays using isothermal titration calorimetry and fluorescence tryptophan ... RESPIRATION; STRAINS; TITRATION; TRYPTOPHAN; VALENCE Word Cloud More Like This Full ...

  14. DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at the Cranfield site in Southwestern Mississippi. It is led by the Southeast Regional Carbon Sequestration Partnership (SECARB), one of seven members of the Regional Carbon...

  15. An ounce of prevention, a ton of cure | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    24, 2015 - 3:11pm Aaron Spoon of Power Operations performs maintenance on 13.8 kV transformers 145 and 145A. Photo by Scott Fraker Y-12 recently saved time, taxpayer dollars,...

  16. Removal of 1,082-Ton Reactor Among Richland Operations Office’s 2014 Accomplishments

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – Workers with EM’s Richland Operations Office and its contractors made progress this year in several areas of Hanford site cleanup that helped protect employees, the public, environment, and Columbia River.

  17. Year STB EIA STB EIA

    Gasoline and Diesel Fuel Update (EIA)

    Release Date: November 16, 2012 Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments...

  18. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2013" "(short tons produced per employee hour)" ,"Mine Production Range (thousand short tons)" "Coal-Produc...

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Average Sales Price of Coal by Mine Production Range and Mine Type, 2013" "(dollars per short ton)" "Mine Production Range (thousand short tons)","Underground","Surface","Total"...

  1. Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply

    SciTech Connect (OSTI)

    Perlack, Robert D.; Wright, Lynn L.; Turhollow, Anthony F.; Graham, Robin L.; Stokes, Bryce J.; Erbach, Donald C.

    2005-04-01

    The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30% or more of the country's present petroleum consumption.

  2. Effect of CNG start-gasoline run on emissions from a 3/4 ton pick-up truck

    SciTech Connect (OSTI)

    Springer, K.J.; Smith, L.R.; Dickinson, A.G.

    1994-10-01

    This paper describes experiments to determine the effect on exhaust emissions of starting on compressed natural gas (CNG) and then switching to gasoline once the catalyst reaches operating temperature. Carbon monoxide, oxides of nitrogen, and detailed exhaust hydrocarbon speciation data were obtained for dedicated CNG, then unleaded gasoline, and finally CNG start-gasoline run using the Federal Test Procedure at 24{degree}C and at -7{degree}C. The result was a reduction in emissions from the gasoline baseline, especially at -7{degree}C. It was estimated that CNG start - gasoline run resulted in a 71 percent reduction in potential ozone formation per mile. 3 refs., 6 figs., 11 tabs.

  3. Effect of CNG start - gasoline run on emissions from a 3/4 ton pick-up truck

    SciTech Connect (OSTI)

    Springer, K.J.; Smith, L.R.; Dickinson, A.G.

    1994-10-01

    This paper describes experiments to determine the effect on exhaust emissions of starting on compressed natural gas (CNG) and then switching to gasoline once the catalyst reaches operating temperature. Carbon monoxide, oxides of nitrogen, and detailed exhaust hydrocarbon speciation data were obtained for dedicated CNG, then unleaded gasoline, and finally CNG start - gasoline run using the Federal Test Procedure at 24{degree}C and at -7{degree}C. The results was a reductiopn in emissions from the gasoline baseline, especially at -7{degree}C. It was estimated that CNG start - gasoline run resulted in a 71 percent reduction in potential ozone formation per mile. 3 refs., 6 figs., 11 tabs.

  4. Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks

    SciTech Connect (OSTI)

    Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

    2008-12-31

    The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

  5. Preliminary design report: Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    SciTech Connect (OSTI)

    None

    1990-02-01

    The purpose of this document is to provide information on burnup credit as applied to the preliminary design of the BR-100 shipping cask. There is a brief description of the preliminary basket design and the features used to maintain a critically safe system. Following the basket description is a discussion of various criticality analyses used to evaluate burnup credit. The results from these analyses are then reviewed in the perspective of fuel burnups expected to be shipped to either the final repository or a Monitored Retrievable Storage (MRS) facility. The hurdles to employing burnup credit in the certification of any cask are then outlines and reviewed. the last section gives conclusions reached as to burnup credit for the BR-100 cask, based on our analyses and experience. All information in this study refers to the cask configured to transport PWR fuel. Boiling Water Reactor (BWR) fuel satisfies the criticality requirements so that burnup credit is not needed. All calculations generated in the preparation of this report were based upon the preliminary design which will be optimized during the final design. 8 refs., 19 figs., 16 tabs.

  6. Helium-Based Soundwave Chiller: Trillium: A Helium-Based Sonic Chiller- Tons of Freezing with 0 GWP Refrigerants

    SciTech Connect (OSTI)

    2010-09-01

    BEETIT Project: Penn State is designing a freezer that substitutes the use of sound waves and environmentally benign refrigerant for synthetic refrigerants found in conventional freezers. Called a thermoacoustic chiller, the technology is based on the fact that the pressure oscillations in a sound wave result in temperature changes. Areas of higher pressure raise temperatures and areas of low pressure decrease temperatures. By carefully arranging a series of heat exchangers in a sound field, the chiller is able to isolate the hot and cold regions of the sound waves. Penn State’s chiller uses helium gas to replace synthetic refrigerants. Because helium does not burn, explode or combine with other chemicals, it is an environmentally-friendly alternative to other polluting refrigerants. Penn State is working to apply this technology on a large scale.

  7. Final Technical Report for DUSEL Research and Development on Sub-Kelvin Germanium Detectors for Ton Scale Dark Matter Search

    SciTech Connect (OSTI)

    Prof. Blas Cabrera

    2012-09-10

    We have supported one graduate student and a small percentage of fabrication staff on $135k per year for three years plus one no cost extension year on this DUSEL R&D grant. ? There were three themes within our research program: (1) how to improve the radial sensitivity for single sided phonon readout with four equal area sensors of which three form a central circle and fourth a surrounding ring; (2) how to instrument double sided phonon readouts which will give us better surface event rejection and increased fiducial volume for future CDMS style detectors; and (3) can we manufacture much larger Ge detectors using six inch diameter material which is not suitable for standard gamma ray spectroscopy.

  8. Hybrid 240 Ton Off Highway Haul Truck: Quarterly Technical Status Report 19, DOE/AL68080-TSR19

    SciTech Connect (OSTI)

    Tim Richter

    2007-06-30

    This nineteenth quarterly status report for the Hybrid Off Highway Vehicle (OHV) project, DOE Award DE-FC04-02AL68080 presents the project status at the end of June 2007, and covers activities in the nineteenth project quarter, April 2007 June 2007.

  9. Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    Coal Coal Supply EIA estimates that U.S. coal production for February 2016 was 54 million short tons (MMst), a 4 MMst (7%) decrease from the previous month and 18 MMst less than in February 2015. Forecast coal production is expected to decrease by 111 MMst (12%) in 2016, which would be the largest annual percentage decline since 1958. In 2016, forecast Appalachian and Western region production declines by 9% and 17%, respectively, and Interior region production falls by 4%. Total coal production

  10. table7.1_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Prices of Purchased Energy Sources, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Bituminous and Coal Subbituminous Coal Petroleum NAICS TOTAL Acetylene Breeze Total Anthracite Coal Lignite Coke Coke Code(a) Subsector and Industry (million Btu) (cu ft) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (gallons) Total United States RSE Column Factors: 1.1 2.1 0.6 1 0.6

  11. 1,153-ton Waste Vault Removed from 300 Area- Vault held waste tanks with contamination from Hanford’s former laboratory facilities

    Broader source: Energy.gov [DOE]

    Today, the Department of Energy’s (DOE’s) Richland Operations Office announced the removal of a massive concrete vault that once held two 15,000-gallon stainless steel tanks used to collect highly contaminated waste from Hanford’s 300 Area laboratories as part of the River Corridor Closure project.

  12. Long-term Decline of Aggregate Fuel Use per Cargo-ton-mile of Commercial Trucking; A Key Enabler of Expanded U.S. Trade and Economic Growth

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  13. The Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada, was the site for a 12-kiloton-ton nuclear test

    Office of Legacy Management (LM)

    NV/13609-53 Development of a Groundwater Management Model for the Project Shoal Area prepared by Gregg Lamorey, Scott Bassett, Rina Schumer, Douglas P. Boyle, Greg Pohll, and Jenny Chapman submitted to Nevada Site Office National Nuclear Security Administration U.S. Department of Energy Las Vegas, Nevada September 2006 Publication No. 45223 Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily

  14. Annual Energy Outlook 2015 - Appendix G

    Gasoline and Diesel Fuel Update (EIA)

    G-1 U.S. Energy Information Administration | Annual Energy Outlook 2015 Table G1. Heat contents Fuel Units Approximate heat content Coal 1 Production .................................................. million Btu per short ton 20.169 Consumption .............................................. million Btu per short ton 19.664 Coke plants ............................................. million Btu per short ton 28.710 Industrial .................................................. million Btu per short

  15. Domestic Coal Distribution 2009 Q1 by Origin State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Q1 by Origin State: Alabama (1000 Short Tons) 1 58 Domestic Coal Distribution 2009 Q1 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity...

  16. Domestic Coal Distribution 2009 Q1 by Destination State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons) 1 64 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons)...

  17. Domestic Coal Distribution 2009 Q2 by Origin State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Q2 by Origin State: Alabama (1000 Short Tons) 1 58 Domestic Coal Distribution 2009 Q2 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity...

  18. Domestic Coal Distribution 2009 Q2 by Destination State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons) 1 61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons)...

  19. Annual Energy Review, 1996

    Gasoline and Diesel Fuel Update (EIA)

    4. Coal Flow, 1996 (Million Short Tons) Includes 24.0 million short tons consumed by independent power producers. Notes : Data are preliminary. Totals may not equal sum of...

  20. Coal production, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    Coal production in the United States in 1991 declined to a total of 996 million short tons, ending the 6-year upward trend in coal production that began in 1985. The 1991 figure is 33 million short tons below the record level of 1.029 billion short tons produced in 1990 (Table 1). Tables 2 through 33 in this report include data from mining operations that produced, prepared, and processed 10,000 or more short tons during the year. These mines yielded 993 million short tons, or 99.7 percent of the total coal production in 1991, and their summary statistics are discussed below. The majority of US coal (587 million short tons) was produced by surface mining (Table 2). Over half of all US surface mine production occurred in the Western Region, though the 60 surface mines in this area accounted for only 5 percent of the total US surface mines. The high share of production was due to the very large surface mines in Wyoming, Texas and Montana. Nearly three quarters of underground production was in the Appalachian Region, which accounted for 92 percent of underground mines. Continuous mining methods produced the most coal among those underground operations that responded. Of the 406 million short tons, 59 percent (239 million short tons) was produced by continuous mining methods, followed by longwall (29 percent, or 119 million short tons), and conventional methods (11 percent, or 46 million short tons).

  1. Quarterly coal report, April--June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-26

    In the second quarter of 1993, the United States produced 235 million short tons of coal. This brought the total for the first half of 1993 to 477 million short tons, a decrease of 4 percent (21 million short tons) from the amount produced during the first half of 1992. The decrease was due to a 26-million-short-ton decline in production east of the Mississippi River, which was partially offset by a 5-million-short-ton increase in coal production west of the Mississippi River. Compared with the first 6 months of 1992, all States east of the Mississippi River had lower coal production levels, led by West Virginia and Illinois, which produced 9 million short tons and 7 million short tons less coal, respectively. The principal reasons for the drop in coal output for the first 6 months of 1993 compared to a year earlier were: a decrease in demand for US coal in foreign markets, particularly the steam coal markets; a draw-down of electric utility coal stocks to meet the increase in demand for coal-fired electricity generation; and a lower producer/distributor stock build-up. Distribution of US coal in the first half of 1993 was 15 million short tons lower than in the first half of 1992, with 13 million short tons less distributed to overseas markets and 2 million short tons less distributed to domestic markets.

  2. Short run effects of a price on carbon dioxide emissions from U.S. electric generators

    SciTech Connect (OSTI)

    Adam Newcomer; Seth A. Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan [Carnegie Mellon University, Pittsburgh, PA (United States). Carnegie Mellon Electricity Industry Center

    2008-05-01

    The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO{sub 2} emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO{sub 2} emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO{sub 2} emissions would lead to a 10% reduction in CO{sub 2} emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO{sub 2} emissions that has been shown in earlier work to stimulate investment in new generation technology also provides significant CO{sub 2} reductions before new technology is deployed at large scale. 39 refs., 4 figs., 2 tabs.

  3. Quarterly coal report, January--March 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-20

    The United States produced 242 million short tons of coal in the first quarter of 1993, a decrease of 6 percent (14 million short tons) from the amount produced during the first quarter of 1992. The decrease was due to a decline in production east of the Mississippi River. All major coal-producing States in this region had lower coal production levels led by West Virginia, which produced 5 million short tons less coal. The principal reasons for the overall drop in coal output compared to a year earlier were: A decrease in demand for US coal in foreign markets; a slower rate of producer/distributor stock build-up; and a drawn-down of electric utility coal stocks. Distribution of US coal in the first quarter of 1993 was 10 million short tons lower than in the first quarter of 1992, with 5 million short tons less distributed to both electric utilities and overseas markets. The average price of coal delivered to electric utilities during the first quarter of 1993 was $28.65 per short ton, the lowest value since the first quarter of 1980. Coal consumption in the first quarter of 1993 was 230 million short tons, 4 percent higher than in the first quarter of 1992, due primarily to a 5-percent increase in consumption at electric utility plants. Total consumer stocks, at 153 million short tons, and electric utility stocks, at 144 million short tons, were at their lowest quarterly level since the end of 1989. US. coal exports totaled 19 million short tons, 6 million short tons less than in the first quarter of 1992, and the lowest quarterly level since 1988. The decline was primarily due to a 1-million-short-ton drop in exports to each of the following destinations: Italy, France, Belgium and Luxembourg, and Canada.

  4. Table 23. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2013

    Gasoline and Diesel Fuel Update (EIA)

    Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2013 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2013 Table 23. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2013 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2013 Mine Production Range (thousand short tons) Coal-Producing State, Region 1 and Mine Type Above 1,000 Above 500 to 1,000

  5. Cutting-Edge Savannah River Site Project Avoids Millions in Costs, Removes Chemical Solvents from Underground: Project avoided costs totaling more than $15 million, removed tons of chemical solvents from beneath the Savannah River Site

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – Workers recently completed a multiyear project that removed more than 33,000 gallons of non-radioactive chemical solvents from beneath a portion of the Savannah River Site (SRS), preventing those pollutants from entering the local water table and helping the site avoid costs of more than $15 million.

  6. Word Pro - S7.lwp

    Gasoline and Diesel Fuel Update (EIA)

    2 (Million Short Tons) Notes: * Values are derived from source data prior to rounding for publication. * Totals may not equal sum of components due to independent rounding....

  7. Word Pro - S7

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3 (Million Short Tons) Notes: * Production categories are estimated; all data are preliminary. * Values are derived from source data prior to rounding for publication. * Totals may...

  8. Annual Energy Review - July 2006

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5 (Million Short Tons) Energy Information Administration Annual Energy Review 2005 203 Notes: * Production categories are estimated; other data are preliminary. * Values are...

  9. Annual Energy Review 2011 - Released September 2012

    Gasoline and Diesel Fuel Update (EIA)

    1 (Million Short Tons) U.S. Energy Information Administration Annual Energy Review 2011 197 Notes: * Production categories are estimated; all data are preliminary. * Values are...

  10. Energy Information Administration quarterly coal report, October--December 1992

    SciTech Connect (OSTI)

    Not Available

    1993-05-21

    The United States produced just over 1 billion short tons of coal in 1992, 0.4 percent more than in 1991. Most of the 4-million-short-ton increase in coal production occurred west of the Mississippi River, where a record level of 408 million short tons of coal was produced. The amount of coal received by domestic consumers in 1992 totaled 887 million short tons. This was 7 million short tons more than in 1991, primarily due to increased coal demand from electric utilities. The average price of delivered coal to each sector declined by about 2 percent. Coal consumption in 1992 was 893 million short tons, only 1 percent higher than in 1991, due primarily to a 1-percent increase in consumption at electric utility plants. Consumer coal stocks at the end of 1992 were 163 million short tons, a decrease of 3 percent from the level at the end of 1991, and the lowest year-end level since 1989. US coal exports fell 6 percent from the 1991 level to 103 million short tons in 1992. Less coal was exported to markets in Europe, Asia, and South America, but coal exports to Canada increased 4 million short tons.

  11. U.S. Energy Information Administration | Annual Coal Distribution...

    Gasoline and Diesel Fuel Update (EIA)

    short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 6,085 670...

  12. Gambia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWhyear NA 2008 NREL Coal Reserves Unavailable Million Short Tons NA 2008 EIA Natural Gas Reserves Unavailable Cubic Meters (cu m) NA 2010 CIA World Factbook Oil Reserves...

  13. Appendix G: Conversion factors

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4 Table G1. Heat contents Fuel Units Approximate heat content Coal 1 Production ... million Btu per short ton 20.142 Consumption...

  14. U.S. Energy Information Administration | Annual Coal Distribution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total...

  15. U.S. Energy Information Administration | Annual Coal Distribution...

    Gasoline and Diesel Fuel Update (EIA)

    short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total...

  16. Democratic Republic of Congo: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    MWhyear NA 2008 NREL Coal Reserves Unavailable Million Short Tons NA 2008 EIA Natural Gas Reserves Unavailable Cubic Meters (cu m) NA 2010 CIA World Factbook Oil Reserves...

  17. By Coal Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    California (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total...

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production and Number of Mines by State and Coal Rank, 2013" "(thousand short tons)" ,"Bituminous",,"Subbituminous",,"Lignite",,"Anthracite",,"Total" "Coal-Producing","Number ...

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Recoverable Coal Reserves and Average Recovery Percentage at Producing Mines by State, 2013 and 2012" "(million short tons)" ,2013,,2012 "Coal-Producing","Recoverable Coal","Average ...

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Coal Production by State and Mining Method, 2013" "(thousand short tons)" "Coal-Producing State and Region1","Continuous2","Conventional and","Longwall4","Total" ...

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2013" "(million short tons)" ,"Continuous1",,"Conventional ...

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production by Coalbed Thickness and Mine Type, 2013" "(thousand short tons)" "Coal Thickness (inches)","Underground","Surface","Total" "Under 7","-",1448,1448 "7 - Under ...

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production by State, Mine Type, and Union Status, 2013" "(thousand short tons)" ,"Union",,"Nonunion",,"Total" "Coal-Producing","Underground","Surface","Underground","Surface",...

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve Base by Mining Method, 2013" "(million short tons)" ,"Underground - Minable Coal",,,"Surf...

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity utilization is the ratio of total production to annual productive capacity. Excludes refuse recovery and mines producing less than 25,000 short tons, which are not ...

  6. U.S. Energy Information Administration | Quarterly Coal Report...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and State (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Census Division and State June 30, 2014 March 31, 2014 June...

  7. U.S. Domestic and Foreign Coal Distribution by State of Origin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (thousand short tons) Coal Exports Coal Origin State and Region Domestic Distribution By Coal Mines By Brokers & Traders* Total Exports Total Distribution Alabama 10,679.56...

  8. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  9. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  10. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  11. EIA - Distribution of U.S. Coal by Destination

    U.S. Energy Information Administration (EIA) Indexed Site

    of U.S Coal by Destination Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transportation, 2004 (Thousand Short Tons)...

  12. file://J:\\mydocs\\Coal\\Distribution\\2003\\distable4.HTML

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State, Consumer, Destination and Method of Transportation, 2003 (Thousand Short Tons) DESTINATION: Alabama State of Origin by Method of Transportation Electricity...

  13. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  14. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  15. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  16. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  17. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  18. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  19. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  20. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  1. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  2. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  3. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  4. file://C:\\Documents%20and%20Settings\\TTH\\Local%20Settings\\Tempo

    U.S. Energy Information Administration (EIA) Indexed Site

    Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2003 (Thousand Short Tons) ORIGIN: Alabama State of Destination by Method of...

  5. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  6. Annual Coal Distribution Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transportation, 2001 (Thousand Short Tons) DESTINATION: Alabama State of Origin by...

  7. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  8. file://C:\\Documents%20and%20Settings\\ICR\\My%20Documents\\Coal...

    U.S. Energy Information Administration (EIA) Indexed Site

    Distribution by Destination: Alaska Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transportation, 2002 (Thousand Short Tons) State...

  9. Coal Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Markets Release date: February 8, 2016 | Next release date: February 16, 2016 | Archive Coal Markets Weekly production Dollars per short ton Dollars per mmbtu Average weekly...

  10. Annual Energy Review 2003 - September 2004

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3 (Million Short Tons) Energy Information Administration Annual Energy Review 2003 199 Notes: * Production categories are estimated; other data are preliminary. * Totals may not...

  11. Annual Energy Review 2004 - August 2005

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4 (Million Short Tons) Energy Information Administration Annual Energy Review 2004 203 Notes: * Production categories are estimated; other data are preliminary. * Totals may not...

  12. Domestic and Foreign Distribution of U.S. Coal by State of Origin...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 (Thousand Short Tons) " "State Region ","Domestic ","Foreign ","Total "," " "Alabama",18367,3744,22111," " "Alaska",957,546,1502," " "Arizona",13041,"-",13041," "...

  13. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    Figure 3. Electric power sector consumption of coal by census region, 2010 (million short tons and percent change from 2009) U.S. total: 975.6 million short tons (4.5%) Figure 3. Electric Power Sector Consumption of Coal by Census Region, 2010 Source: U.S. Energy Information Administration, Form EIA-

  14. U

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Coal Supply and Demand: 2010 Year in Review by William Watson, Nicholas Paduano, Tejasvi Raghuveer and Sundar Thapa U.S. Energy Information Administration Overview Coal production in the United States in 2010 increased to a level of 1,085.3 million short tons according to preliminary data from the U.S. Energy Information Administration (EIA), an increase of 1.0 percent, or 10.4 million short tons above the 2009 level of 1,074.9 million short tons (Table 1). In 2010 U.S. coal consumption

  15. U.S. Coal Supply and Demand: 2010 Year in Review - Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    Administration U.S. Coal Supply and Demand: 2010 Year in Review Release Date: June 1, 2011 | Next Release Date: Periodically | full report Introduction Coal production in the United States in 2010 increased to a level of 1,085.3 million short tons according to preliminary data from the U.S. Energy Information Administration (EIA), an increase of 1.0 percent, or 10.4 million short tons above the 2009 level of 1,074.9 million short tons (Table 1). In 2010 U.S. coal consumption increased in all

  16. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Average Sales Price of Coal by Mine Production Range and Mine Type, 2013 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2013 Table 32. Average Sales Price of Coal by Mine Production Range and Mine Type, 2013 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2013 Mine Production Range (thousand short tons) Underground Surface Total Over 1,000 54.99 19.57 30.97 Over 500 to 1,000 80.60 55.73 70.06 Over 200 to 500 83.51 67.52

  17. Word Pro - A

    Gasoline and Diesel Fuel Update (EIA)

    Data presented in the Monthly Energy Review and in other U.S. Energy Information Administration publications are expressed predominately in units that historically have been used in the United States, such as British thermal units, barrels, cubic feet, and short tons. The metric conversion factors presented in Table B1 can be used to calculate the metric-unit equivalents of values expressed in U.S. Customary units. For example, 500 short tons are the equivalent of 453.6 metric tons (500 short

  18. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    8 Coke Overview Production and Consumption, 1949-2011 Overview, 2011 Trade 212 U.S. Energy Information Administration / Annual Energy Review 2011 Source: Table 7.8. 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 20 40 60 80 Million Short Tons Consumption Production 15.4 1.4 1.0 15.8 Production Imports Exports Consumption 0 5 10 15 20 Million Short Tons 1950 1960 1970 1980 1990 2000 2010 0 2 4 6 8 Million Short Tons Imports Exports

  19. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 Coal Prices Total, 1949-2011 By Type, 1949-2011 By Type, 2011 214 U.S. Energy Information Administration / Annual Energy Review 2011 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 20 40 60 80 Real (2005) Dollars¹ per Short Ton 1950 1960 1970 1980 1990 2000 2010 0 30 60 90 120 Real (2005) Dollars¹ per Short Ton 70.99 57.64 19.38 15.80 36.91 Anthracite Bituminous Lignite Subbituminous Total 0 10 20 30 40 50 60 70 80 Nominal Dollars² per Short Ton Bituminous Coal Anthracite

  20. Table 7.1 Average Prices of Purchased Energy Sources, 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Prices of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Coal NAICS TOTAL Acetylene Breeze Total Anthracite Code(a) Subsector and Industry (million Btu) (cu ft) (short tons) (short tons) (short tons) Total United States 311 Food 9.12 0.26 0.00 53.43 90.85 3112 Grain and Oilseed Milling 6.30 0.29 0.00 51.34 50.47 311221 Wet Corn Milling 4.87 0.48 0.00 47.74 50.47 31131 Sugar

  1. Table 17. Recoverable Coal Reserves and Average Recovery Percentage at Producing U.S. Mines by Mine Production Range and Mine Type,

    Gasoline and Diesel Fuel Update (EIA)

    Recoverable Coal Reserves and Average Recovery Percentage at Producing U.S. Mines by Mine Production Range and Mine Type, 2013 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Table 17. Recoverable Coal Reserves and Average Recovery Percentage at Producing U.S. Mines by Mine Production Range and Mine Type, 2013 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Underground Surface Total Mine Production Range (thousand short

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Electricity Profile 2013 Table 1. 2013 Summary statistics (Alaska) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 2,384 48 Electric utilities 2,205 39 IPP & CHP 179 50 Net generation (megawatthours) 6,496,822 49 Electric utilities 5,851,727 39 IPP & CHP 645,095 49 Emissions Sulfur dioxide (short tons) 4,202 43 Nitrogen oxide (short tons) 18,043 37 Carbon dioxide (thousand metric tons) 3,768 44 Sulfur dioxide (lbs/MWh) 1.3 29 Nitrogen oxide

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Electricity Profile 2013 Table 1. 2013 Summary statistics (Arizona) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 27,910 13 Electric utilities 20,668 12 IPP & CHP 7,242 16 Net generation (megawatthours) 113,325,986 12 Electric utilities 92,740,582 8 IPP & CHP 20,585,405 15 Emissions Sulfur dioxide (short tons) 23,716 31 Nitrogen oxide (short tons) 59,416 15 Carbon dioxide (thousand metric tons) 55,342 16 Sulfur dioxide (lbs/MWh) 0.4 42 Nitrogen

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    California Electricity Profile 2013 Table 1. 2013 Summary statistics (California) Item Value U.S. Rank Primary energy source Natural Gas Net summer capacity (megawatts) 73,772 2 Electric utilities 28,165 4 IPP & CHP 45,607 2 Net generation (megawatthours) 200,077,115 5 Electric utilities 78,407,643 14 IPP & CHP 121,669,472 4 Emissions Sulfur dioxide (short tons) 2,109 48 Nitrogen oxide (short tons) 96,842 5 Carbon dioxide (thousand metric tons) 57,323 13 Sulfur dioxide (lbs/MWh) 0.0 49

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado Electricity Profile 2013 Table 1. 2013 Summary statistics (Colorado) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 14,769 30 Electric utilities 10,238 28 IPP & CHP 4,531 20 Net generation (megawatthours) 52,937,436 28 Electric utilities 42,508,826 25 IPP & CHP 10,428,610 29 Emissions Sulfur dioxide (short tons) 40,012 27 Nitrogen oxide (short tons) 49,623 21 Carbon dioxide (thousand metric tons) 39,387 20 Sulfur dioxide (lbs/MWh) 1.5 27 Nitrogen

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Electricity Profile 2013 Table 1. 2013 Summary statistics (Connecticut) Item Value U.S. Rank Primary energy source Nuclear Net summer capacity (megawatts) 8,769 35 Electric utilities 152 46 IPP & CHP 8,617 13 Net generation (megawatthours) 35,610,789 38 Electric utilities 50,273 45 IPP & CHP 35,560,516 10 Emissions Sulfur dioxide (short tons) 3,512 45 Nitrogen oxide (short tons) 9,372 45 Carbon dioxide (thousand metric tons) 8,726 41 Sulfur dioxide (lbs/MWh) 0.2 47 Nitrogen

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Electricity Profile 2013 Table 1. 2013 Summary statistics (Delaware) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 3,246 46 Electric utilities 102 47 IPP & CHP 3,144 32 Net generation (megawatthours) 7,760,861 47 Electric utilities 25,986 47 IPP & CHP 7,734,875 34 Emissions Sulfur dioxide (short tons) 2,241 47 Nitrogen oxide (short tons) 2,585 48 Carbon dioxide (thousand metric tons) 4,722 43 Sulfur dioxide (lbs/MWh) 0.6 40 Nitrogen oxide

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia Electricity Profile 2013 Table 1. 2013 Summary statistics (District of Columbia) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 9 51 Electric utilities IPP & CHP 9 51 Net generation (megawatthours) 65,852 51 Electric utilities IPP & CHP 65,852 51 Emissions Sulfur dioxide (short tons) 0 51 Nitrogen oxide (short tons) 148 51 Carbon dioxide (thousand metric tons) 49 50 Sulfur dioxide (lbs/MWh) 0.0 51 Nitrogen oxide (lbs/MWh) 4.5 3

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida Electricity Profile 2013 Table 1. 2013 Summary statistics (Florida) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 58,781 3 Electric utilities 50,967 1 IPP & CHP 7,813 15 Net generation (megawatthours) 222,398,924 3 Electric utilities 202,527,297 1 IPP & CHP 19,871,627 18 Emissions Sulfur dioxide (short tons) 117,797 12 Nitrogen oxide (short tons) 88,345 6 Carbon dioxide (thousand metric tons) 108,431 3 Sulfur dioxide (lbs/MWh) 1.1 34

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia Electricity Profile 2013 Table 1. 2013 Summary statistics (Georgia) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 38,210 7 Electric utilities 28,875 2 IPP & CHP 9,335 10 Net generation (megawatthours) 120,953,734 10 Electric utilities 107,082,884 4 IPP & CHP 13,870,850 26 Emissions Sulfur dioxide (short tons) 123,735 10 Nitrogen oxide (short tons) 55,462 20 Carbon dioxide (thousand metric tons) 56,812 15 Sulfur dioxide (lbs/MWh) 2.0 20

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Electricity Profile 2013 Table 1. 2013 Summary statistics (Hawaii) Item Value U.S. Rank Primary energy source Petroleum Net summer capacity (megawatts) 2,757 47 Electric utilities 1,821 40 IPP & CHP 937 45 Net generation (megawatthours) 10,267,052 45 Electric utilities 5,748,256 40 IPP & CHP 4,518,796 40 Emissions Sulfur dioxide (short tons) 20,710 33 Nitrogen oxide (short tons) 25,416 31 Carbon dioxide (thousand metric tons) 7,428 42 Sulfur dioxide (lbs/MWh) 4.0 5 Nitrogen oxide

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho Electricity Profile 2013 Table 1. 2013 Summary statistics (Idaho) Item Value U.S. Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,924 42 Electric utilities 3,394 37 IPP & CHP 1,530 39 Net generation (megawatthours) 15,186,128 43 Electric utilities 9,600,216 36 IPP & CHP 5,585,912 39 Emissions Sulfur dioxide (short tons) 6,565 42 Nitrogen oxide (short tons) 7,627 46 Carbon dioxide (thousand metric tons) 1,942 49 Sulfur dioxide (lbs/MWh) 0.9 37 Nitrogen

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois Electricity Profile 2013 Table 1. 2013 Summary statistics (Illinois) Item Value U.S. Rank Primary energy source Nuclear Net summer capacity (megawatts) 44,950 4 Electric utilities 5,269 35 IPP & CHP 39,681 4 Net generation (megawatthours) 203,004,919 4 Electric utilities 11,571,734 35 IPP & CHP 191,433,185 3 Emissions Sulfur dioxide (short tons) 203,951 6 Nitrogen oxide (short tons) 63,358 11 Carbon dioxide (thousand metric tons) 97,812 6 Sulfur dioxide (lbs/MWh) 2.0 21 Nitrogen

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana Electricity Profile 2013 Table 1. 2013 Summary statistics (Indiana) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 27,196 14 Electric utilities 23,309 8 IPP & CHP 3,888 24 Net generation (megawatthours) 110,403,477 13 Electric utilities 96,047,678 7 IPP & CHP 14,355,799 23 Emissions Sulfur dioxide (short tons) 273,718 4 Nitrogen oxide (short tons) 121,681 3 Carbon dioxide (thousand metric tons) 98,895 5 Sulfur dioxide (lbs/MWh) 5.0 2 Nitrogen

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa Electricity Profile 2013 Table 1. 2013 Summary statistics (Iowa) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 15,929 25 Electric utilities 12,092 21 IPP & CHP 3,837 26 Net generation (megawatthours) 56,670,757 27 Electric utilities 41,932,708 26 IPP & CHP 14,738,048 22 Emissions Sulfur dioxide (short tons) 106,879 14 Nitrogen oxide (short tons) 44,657 25 Carbon dioxide (thousand metric tons) 39,175 21 Sulfur dioxide (lbs/MWh) 3.8 6 Nitrogen oxide

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas Electricity Profile 2013 Table 1. 2013 Summary statistics (Kansas) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 14,093 32 Electric utilities 11,593 24 IPP & CHP 2,501 35 Net generation (megawatthours) 48,472,581 32 Electric utilities 39,808,763 28 IPP & CHP 8,663,819 32 Emissions Sulfur dioxide (short tons) 30,027 30 Nitrogen oxide (short tons) 30,860 30 Carbon dioxide (thousand metric tons) 33,125 27 Sulfur dioxide (lbs/MWh) 1.2 30 Nitrogen

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Electricity Profile 2013 Table 1. 2013 Summary statistics (Kentucky) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 21,004 21 Electric utilities 19,599 16 IPP & CHP 1,405 40 Net generation (megawatthours) 89,741,021 18 Electric utilities 89,098,127 11 IPP & CHP 642,894 50 Emissions Sulfur dioxide (short tons) 190,782 7 Nitrogen oxide (short tons) 87,201 7 Carbon dioxide (thousand metric tons) 85,304 7 Sulfur dioxide (lbs/MWh) 4.3 4 Nitrogen oxide

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Electricity Profile 2013 Table 1. 2013 Summary statistics (Louisiana) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 26,228 15 Electric utilities 17,297 17 IPP & CHP 8,931 12 Net generation (megawatthours) 102,010,177 15 Electric utilities 56,226,016 17 IPP & CHP 45,784,161 8 Emissions Sulfur dioxide (short tons) 122,578 11 Nitrogen oxide (short tons) 82,286 9 Carbon dioxide (thousand metric tons) 58,274 12 Sulfur dioxide (lbs/MWh) 2.4 16

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine Electricity Profile 2013 Table 1. 2013 Summary statistics (Maine) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 4,499 43 Electric utilities 14 49 IPP & CHP 4,485 21 Net generation (megawatthours) 14,030,038 44 Electric utilities 597 49 IPP & CHP 14,029,441 25 Emissions Sulfur dioxide (short tons) 13,365 38 Nitrogen oxide (short tons) 9,607 44 Carbon dioxide (thousand metric tons) 3,675 45 Sulfur dioxide (lbs/MWh) 1.9 23 Nitrogen oxide

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Electricity Profile 2013 Table 1. 2013 Summary statistics (Maryland) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 12,339 33 Electric utilities 85 48 IPP & CHP 12,254 8 Net generation (megawatthours) 35,850,812 37 Electric utilities 30,205 46 IPP & CHP 35,820,607 9 Emissions Sulfur dioxide (short tons) 41,539 26 Nitrogen oxide (short tons) 21,995 34 Carbon dioxide (thousand metric tons) 18,950 34 Sulfur dioxide (lbs/MWh) 2.3 17 Nitrogen oxide

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts Electricity Profile 2013 Table 1. 2013 Summary statistics (Massachusetts) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 13,678 32 Electric utilities 969 42 IPP & CHP 12,709 7 Net generation (megawatthours) 32,885,021 40 Electric utilities 611,320 44 IPP & CHP 32,273,700 12 Emissions Sulfur dioxide (short tons) 12,339 40 Nitrogen oxide (short tons) 15,150 41 Carbon dioxide (thousand metric tons) 14,735 38 Sulfur dioxide (lbs/MWh) 0.8 38

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Electricity Profile 2013 Table 1. 2013 Summary statistics (Michigan) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,128 11 Electric utilities 22,148 9 IPP & CHP 7,981 14 Net generation (megawatthours) 105,417,801 14 Electric utilities 83,171,310 13 IPP & CHP 22,246,490 14 Emissions Sulfur dioxide (short tons) 237,091 5 Nitrogen oxide (short tons) 86,058 8 Carbon dioxide (thousand metric tons) 67,193 10 Sulfur dioxide (lbs/MWh) 4.5 3 Nitrogen oxide

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Electricity Profile 2013 Table 1. 2013 Summary statistics (Minnesota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 15,758 26 Electric utilities 11,901 22 IPP & CHP 3,858 25 Net generation (megawatthours) 51,296,988 31 Electric utilities 41,155,904 27 IPP & CHP 10,141,084 30 Emissions Sulfur dioxide (short tons) 35,625 28 Nitrogen oxide (short tons) 36,972 28 Carbon dioxide (thousand metric tons) 29,255 29 Sulfur dioxide (lbs/MWh) 1.4 28 Nitrogen

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Electricity Profile 2013 Table 1. 2013 Summary statistics (Mississippi) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 15,561 28 Electric utilities 12,842 20 IPP & CHP 2,719 35 Net generation (megawatthours) 52,810,264 29 Electric utilities 45,413,403 23 IPP & CHP 7,396,861 35 Emissions Sulfur dioxide (short tons) 87,718 17 Nitrogen oxide (short tons) 24,490 32 Carbon dioxide (thousand metric tons) 22,633 33 Sulfur dioxide (lbs/MWh) 3.3 9

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri Electricity Profile 2013 Table 1. 2013 Summary statistics (Missouri) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,801 19 Electric utilities 20,562 15 IPP & CHP 1,239 42 Net generation (megawatthours) 91,626,593 17 Electric utilities 89,217,205 10 IPP & CHP 2,409,387 46 Emissions Sulfur dioxide (short tons) 157,488 8 Nitrogen oxide (short tons) 78,033 10 Carbon dioxide (thousand metric tons) 78,344 8 Sulfur dioxide (lbs/MWh) 3.4 8 Nitrogen oxide

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Electricity Profile 2013 Table 1. 2013 Summary statistics (Montana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,329 41 Electric utilities 2,568 38 IPP & CHP 3,761 27 Net generation (megawatthours) 27,687,326 41 Electric utilities 7,361,898 38 IPP & CHP 20,325,428 16 Emissions Sulfur dioxide (short tons) 16,865 36 Nitrogen oxide (short tons) 21,789 35 Carbon dioxide (thousand metric tons) 16,951 35 Sulfur dioxide (lbs/MWh) 1.2 31 Nitrogen oxide

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska Electricity Profile 2013 Table 1. 2013 Summary statistics (Nebraska) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,449 36 Electric utilities 7,911 30 IPP & CHP 538 49 Net generation (megawatthours) 37,104,628 34 Electric utilities 35,170,167 30 IPP & CHP 1,934,461 48 Emissions Sulfur dioxide (short tons) 66,884 22 Nitrogen oxide (short tons) 31,505 29 Carbon dioxide (thousand metric tons) 28,043 32 Sulfur dioxide (lbs/MWh) 3.6 7 Nitrogen oxide

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada Electricity Profile 2013 Table 1. 2013 Summary statistics (Nevada) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 10,652 34 Electric utilities 7,915 29 IPP & CHP 2,737 34 Net generation (megawatthours) 36,443,874 35 Electric utilities 27,888,008 34 IPP & CHP 8,555,866 33 Emissions Sulfur dioxide (short tons) 7,436 41 Nitrogen oxide (short tons) 16,438 39 Carbon dioxide (thousand metric tons) 15,690 37 Sulfur dioxide (lbs/MWh) 0.4 43 Nitrogen

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire Electricity Profile 2013 Table 1. 2013 Summary statistics (New Hampshire) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 4,413 44 Electric utilities 1,121 41 IPP & CHP 3,292 30 Net generation (megawatthours) 19,778,520 42 Electric utilities 2,266,903 41 IPP & CHP 17,511,617 20 Emissions Sulfur dioxide (short tons) 3,733 44 Nitrogen oxide (short tons) 5,057 47 Carbon dioxide (thousand metric tons) 3,447 46 Sulfur dioxide (lbs/MWh) 0.4 45 Nitrogen

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey Electricity Profile 2013 Table 1. 2013 Summary statistics (New Jersey) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 18,997 22 Electric utilities 544 43 IPP & CHP 18,452 6 Net generation (megawatthours) 64,750,942 24 Electric utilities -122,674 50 IPP & CHP 64,873,616 6 Emissions Sulfur dioxide (short tons) 3,196 46 Nitrogen oxide (short tons) 15,299 40 Carbon dioxide (thousand metric tons) 15,789 36 Sulfur dioxide (lbs/MWh) 0.1 48 Nitrogen oxide

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico Electricity Profile 2013 Table 1. 2013 Summary statistics (New Mexico) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 7,938 38 Electric utilities 5,912 33 IPP & CHP 2,026 36 Net generation (megawatthours) 35,870,965 36 Electric utilities 29,833,095 33 IPP & CHP 6,037,870 37 Emissions Sulfur dioxide (short tons) 17,735 34 Nitrogen oxide (short tons) 59,055 16 Carbon dioxide (thousand metric tons) 28,535 31 Sulfur dioxide (lbs/MWh) 1.0 36 Nitrogen

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    York Electricity Profile 2013 Table 1. 2013 Summary statistics (New York) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 39,918 6 Electric utilities 10,736 26 IPP & CHP 29,182 5 Net generation (megawatthours) 136,116,830 8 Electric utilities 33,860,490 31 IPP & CHP 102,256,340 5 Emissions Sulfur dioxide (short tons) 30,947 29 Nitrogen oxide (short tons) 44,824 24 Carbon dioxide (thousand metric tons) 33,456 26 Sulfur dioxide (lbs/MWh) 0.5 41 Nitrogen

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    North Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (North Carolina) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,048 12 Electric utilities 26,706 6 IPP & CHP 3,342 29 Net generation (megawatthours) 125,936,293 9 Electric utilities 116,317,050 2 IPP & CHP 9,619,243 31 Emissions Sulfur dioxide (short tons) 71,293 20 Nitrogen oxide (short tons) 62,397 12 Carbon dioxide (thousand metric tons) 56,940 14 Sulfur dioxide (lbs/MWh) 1.1 32

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (North Dakota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,566 40 Electric utilities 5,292 34 IPP & CHP 1,274 41 Net generation (megawatthours) 35,021,673 39 Electric utilities 31,044,374 32 IPP & CHP 3,977,299 42 Emissions Sulfur dioxide (short tons) 56,854 23 Nitrogen oxide (short tons) 48,454 22 Carbon dioxide (thousand metric tons) 30,274 28 Sulfur dioxide (lbs/MWh) 3.2 11 Nitrogen oxide

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon Electricity Profile 2013 Table 1. 2013 Summary statistics (Oregon) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 15,662 27 Electric utilities 10,973 25 IPP & CHP 4,689 19 Net generation (megawatthours) 59,895,515 26 Electric utilities 43,254,167 24 IPP & CHP 16,641,348 21 Emissions Sulfur dioxide (short tons) 17,511 35 Nitrogen oxide (short tons) 13,803 42 Carbon dioxide (thousand metric tons) 9,500 40 Sulfur dioxide (lbs/MWh) 0.6 39 Nitrogen

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania Electricity Profile 2013 Table 1. 2013 Summary statistics (Pennsylvania) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 43,040 5 Electric utilities 455 44 IPP & CHP 42,584 3 Net generation (megawatthours) 226,785,630 2 Electric utilities 1,105,740 42 IPP & CHP 225,679,890 2 Emissions Sulfur dioxide (short tons) 276,851 3 Nitrogen oxide (short tons) 151,148 2 Carbon dioxide (thousand metric tons) 108,729 2 Sulfur dioxide (lbs/MWh) 2.4 15 Nitrogen

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island Electricity Profile 2013 Table 1. 2013 Summary statistics (Rhode Island) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 1,809 49 Electric utilities 8 50 IPP & CHP 1,802 38 Net generation (megawatthours) 6,246,807 50 Electric utilities 10,659 48 IPP & CHP 6,236,148 36 Emissions Sulfur dioxide (short tons) 1,271 49 Nitrogen oxide (short tons) 1,161 49 Carbon dioxide (thousand metric tons) 2,838 48 Sulfur dioxide (lbs/MWh) 0.4 44 Nitrogen

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (South Carolina) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 23,017 18 Electric utilities 21,039 10 IPP & CHP 1,978 37 Net generation (megawatthours) 95,249,894 16 Electric utilities 91,795,732 9 IPP & CHP 3,454,162 44 Emissions Sulfur dioxide (short tons) 47,671 25 Nitrogen oxide (short tons) 19,035 36 Carbon dioxide (thousand metric tons) 28,809 30 Sulfur dioxide (lbs/MWh) 1.0 35

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    South Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (South Dakota) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,109 45 Electric utilities 3,480 36 IPP & CHP 629 48 Net generation (megawatthours) 10,108,887 46 Electric utilities 8,030,545 37 IPP & CHP 2,078,342 47 Emissions Sulfur dioxide (short tons) 15,347 37 Nitrogen oxide (short tons) 11,430 43 Carbon dioxide (thousand metric tons) 3,228 47 Sulfur dioxide (lbs/MWh) 3.0 12

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee Electricity Profile 2013 Table 1. 2013 Summary statistics (Tennessee) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,326 20 Electric utilities 20,635 13 IPP & CHP 690 47 Net generation (megawatthours) 79,651,619 19 Electric utilities 75,988,871 15 IPP & CHP 3,662,748 43 Emissions Sulfur dioxide (short tons) 86,204 18 Nitrogen oxide (short tons) 23,189 33 Carbon dioxide (thousand metric tons) 38,118 22 Sulfur dioxide (lbs/MWh) 2.2 19 Nitrogen oxide

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas Electricity Profile 2013 Table 1. 2013 Summary statistics (Texas) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 109,584 1 Electric utilities 28,705 3 IPP & CHP 80,879 1 Net generation (megawatthours) 433,380,166 1 Electric utilities 96,131,888 6 IPP & CHP 337,248,278 1 Emissions Sulfur Dioxide (short tons) 383,728 1 Nitrogen Oxide short tons) 228,695 1 Carbon Dioxide (thousand metric tons) 257,465 1 Sulfur Dioxide (lbs/MWh) 1.8 25 Nitrogen Oxide

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah Electricity Profile 2013 Table 1. 2013 Summary statistics (Utah) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 7,698 39 Electric utilities 6,669 32 IPP & CHP 1,029 44 Net generation (megawatthours) 42,516,751 33 Electric utilities 39,526,881 29 IPP & CHP 2,989,870 45 Emissions Sulfur Dioxide (short tons) 23,670 32 Nitrogen Oxide (short tons) 62,296 13 Carbon Dioxide (thousand metric tons) 35,699 24 Sulfur Dioxide (lbs/MWh) 1.1 33 Nitrogen Oxide (lbs/MWh)

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont Electricity Profile 2013 Table 1. 2013 Summary statistics (Vermont) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 1,255 50 Electric utilities 329 45 IPP & CHP 925 46 Net generation (megawatthours) 6,884,910 48 Electric utilities 872,238 43 IPP & CHP 6,012,672 38 Emissions Sulfur Dioxide (short tons) 71 50 Nitrogen Oxide (short tons) 792 50 Carbon Dioxide (thousand metric tons) 15 51 Sulfur Dioxide (lbs/MWh) 0.0 50 Nitrogen Oxide (lbs/MWh) 0.2 51

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia Electricity Profile 2013 Table 1. 2013 Summary statistics (Virginia) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 24,828 16 Electric utilities 20,601 14 IPP & CHP 4,227 22 Net generation (megawatthours) 76,896,565 20 Electric utilities 63,724,860 16 IPP & CHP 13,171,706 28 Emissions Sulfur Dioxide (short tons) 68,077 21 Nitrogen Oxide (short tons) 39,706 27 Carbon Dioxide (thousand metric tons) 34,686 25 Sulfur Dioxide (lbs/MWh) 1.8 26 Nitrogen

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington Electricity Profile 2013 Table 1. 2013 Summary statistics (Washington) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 30,656 10 Electric utilities 27,070 5 IPP & CHP 3,586 28 Net generation (megawatthours) 114,172,916 11 Electric utilities 100,013,661 5 IPP & CHP 14,159,255 24 Emissions Sulfur Dioxide (short tons) 13,259 39 Nitrogen Oxide (short tons) 17,975 38 Carbon Dioxide (thousand metric tons) 12,543 39 Sulfur Dioxide (lbs/MWh) 0.2 46

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia Electricity Profile 2013 Table 1. 2013 Summary statistics (West Virginia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,282 24 Electric utilities 10,625 27 IPP & CHP 5,657 18 Net generation (megawatthours) 75,863,067 21 Electric utilities 46,351,104 22 IPP & CHP 29,511,963 13 Emissions Sulfur Dioxide (short tons) 93,888 15 Nitrogen Oxide (short tons) 60,229 14 Carbon Dioxide (thousand metric tons) 68,862 9 Sulfur Dioxide (lbs/MWh) 2.5 14

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin Electricity Profile 2013 Table 1. 2013 Summary statistics (Wisconsin) Item Value Rank Primary Energy Source Coal Net summer capacity (megawatts) 17,342 23 Electric utilities 13,358 19 IPP & CHP 3,984 23 Net generation (megawatthours) 65,962,792 23 Electric utilities 47,027,455 20 IPP & CHP 18,935,337 19 Emissions Sulfur Dioxide (short tons) 108,306 13 Nitrogen Oxide (short tons) 44,114 26 Carbon Dioxide (thousand metric tons) 47,686 18 Sulfur Dioxide (lbs/MWh) 3.3 10 Nitrogen

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Electricity Profile 2013 Table 1. 2013 Summary statistics (Wyoming) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,381 37 Electric utilities 7,279 31 IPP & CHP 1,102 43 Net generation (megawatthours) 52,483,065 30 Electric utilities 48,089,178 19 IPP & CHP 4,393,887 41 Emissions Sulfur Dioxide (short tons) 49,587 24 Nitrogen Oxide (short tons) 55,615 19 Carbon Dioxide (thousand metric tons) 50,687 17 Sulfur Dioxide (lbs/MWh) 1.9 24 Nitrogen Oxide

  9. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Idaho Electricity Profile 2013 Table 1. 2013 Summary statistics (Idaho) Item Value U.S. Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,924 42 Electric utilities 3,394 37 IPP & CHP 1,530 39 Net generation (megawatthours) 15,186,128 43 Electric utilities 9,600,216 36 IPP & CHP 5,585,912 39 Emissions Sulfur dioxide (short tons) 6,565 42 Nitrogen oxide (short tons) 7,627 46 Carbon dioxide (thousand metric tons) 1,942 49 Sulfur dioxide (lbs/MWh) 0.9 37 Nitrogen

  10. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oregon Electricity Profile 2013 Table 1. 2013 Summary statistics (Oregon) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 15,662 27 Electric utilities 10,973 25 IPP & CHP 4,689 19 Net generation (megawatthours) 59,895,515 26 Electric utilities 43,254,167 24 IPP & CHP 16,641,348 21 Emissions Sulfur dioxide (short tons) 17,511 35 Nitrogen oxide (short tons) 13,803 42 Carbon dioxide (thousand metric tons) 9,500 40 Sulfur dioxide (lbs/MWh) 0.6 39 Nitrogen

  11. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    South Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (South Dakota) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,109 45 Electric utilities 3,480 36 IPP & CHP 629 48 Net generation (megawatthours) 10,108,887 46 Electric utilities 8,030,545 37 IPP & CHP 2,078,342 47 Emissions Sulfur dioxide (short tons) 15,347 37 Nitrogen oxide (short tons) 11,430 43 Carbon dioxide (thousand metric tons) 3,228 47 Sulfur dioxide (lbs/MWh) 3.0 12

  12. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    United States Electricity Profile 2013 Table 1. 2013 Summary statistics (United States) Item Value Primary energy source Coal Net summer capacity (megawatts) 1,060,064 Electric utilities 616,799 IPP & CHP 443,264 Net generation (megawatthours) 4,065,964,067 Electric utilities 2,388,058,409 IPP & CHP 1,677,905,658 Emissions Sulfur Dioxide (short tons) 3,978,753 Nitrogen Oxide (short tons) 2,411,564 Carbon Dioxide (thousand metric tons) 2,172,355 Sulfur Dioxide (lbs/MWh) 2.0 Nitrogen Oxide

  13. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Washington Electricity Profile 2013 Table 1. 2013 Summary statistics (Washington) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 30,656 10 Electric utilities 27,070 5 IPP & CHP 3,586 28 Net generation (megawatthours) 114,172,916 11 Electric utilities 100,013,661 5 IPP & CHP 14,159,255 24 Emissions Sulfur Dioxide (short tons) 13,259 39 Nitrogen Oxide (short tons) 17,975 38 Carbon Dioxide (thousand metric tons) 12,543 39 Sulfur Dioxide (lbs/MWh) 0.2 46

  14. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wyoming Electricity Profile 2013 Table 1. 2013 Summary statistics (Wyoming) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,381 37 Electric utilities 7,279 31 IPP & CHP 1,102 43 Net generation (megawatthours) 52,483,065 30 Electric utilities 48,089,178 19 IPP & CHP 4,393,887 41 Emissions Sulfur Dioxide (short tons) 49,587 24 Nitrogen Oxide (short tons) 55,615 19 Carbon Dioxide (thousand metric tons) 50,687 17 Sulfur Dioxide (lbs/MWh) 1.9 24 Nitrogen Oxide

  15. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Alabama Table 1. 2013 Summary statistics (Alabama) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 32,353 9 Electric utilities 23,419 7 IPP & CHP 8,934 11 Net generation (megawatthours) 150,572,924 6 Electric utilities 115,027,021 3 IPP & CHP 35,545,903 11 Emissions Sulfur dioxide (short tons) 144,568 9 Nitrogen oxide (short tons) 56,885 18 Carbon dioxide (thousand metric tons) 66,986 11 Sulfur dioxide (lbs/MWh) 1.9 22 Nitrogen oxide (lbs/MWh) 0.8 39

  16. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Arkansas Electricity Profile 2013 Table 1. 2013 Summary statistics (Arkansas) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 14,786 29 Electric utilities 11,559 23 IPP & CHP 3,227 31 Net generation (megawatthours) 60,322,492 25 Electric utilities 46,547,772 21 IPP & CHP 13,774,720 27 Emissions Sulfur dioxide (short tons) 88,811 16 Nitrogen oxide (short tons) 45,896 23 Carbon dioxide (thousand metric tons) 37,346 23 Sulfur dioxide (lbs/MWh) 2.9 13 Nitrogen

  17. Origin State Destination State STB EIA STB EIA Alabama

    Gasoline and Diesel Fuel Update (EIA)

    81.4% Illinois Alabama W W W W W W W W Illinois Florida W W W W W W W W Transportation cost per short ton (nominal) Shipments with transportation rates over total shipments...

  18. United States: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWhyear 6 2008 NREL Coal Reserves 260,551.00 Million Short Tons 1 2008 EIA Natural Gas Reserves 6,928,000,000,000 Cubic Meters (cu m) 6 2010 CIA World Factbook Oil...

  19. Benin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWhyear 100 2008 NREL Coal Reserves Unavailable Million Short Tons NA 2008 EIA Natural Gas Reserves 1,133,000,000 Cubic Meters (cu m) 97 2010 CIA World Factbook Oil Reserves...

  20. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    6. Coal consumption by sector, 2000-2010 (million short tons) Figure 6. Coal Consumption by Sector, 2000-2009 Source: U.S. Energy Information Administration, Quarterly Coal Report, October-December, DOE/EIA-0121

  1. U.S. Energy Information Administration | Annual Coal Distribution Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Annual Coal Distribution Report 2013 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 2013 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric

  2. U.S. Energy Information Administration | Annual Coal Distribution Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Annual Coal Distribution Report 2013 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 2013 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector

  3. U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013

    Gasoline and Diesel Fuel Update (EIA)

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 1st Quarter 2013 Destination: Alabama (thousand short tons) Coal Origin State

  4. U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013

    Gasoline and Diesel Fuel Update (EIA)

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 1st Quarter 2013 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  5. U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2014

    Gasoline and Diesel Fuel Update (EIA)

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2014 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 1st Quarter 2014 Destination: Alabama (thousand short tons) Coal Origin State

  6. U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2014

    Gasoline and Diesel Fuel Update (EIA)

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2014 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 1st Quarter 2014 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  7. U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2013

    Gasoline and Diesel Fuel Update (EIA)

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2013 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 2nd Quarter 2013 Destination: Alabama (thousand short tons) Coal Origin State

  8. U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2013

    Gasoline and Diesel Fuel Update (EIA)

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2013 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 2nd Quarter 2013 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  9. U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2014

    Gasoline and Diesel Fuel Update (EIA)

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2014 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 2nd Quarter 2014 Destination: Alabama (thousand short tons) Coal Origin State

  10. U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2014

    Gasoline and Diesel Fuel Update (EIA)

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2014 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 2nd Quarter 2014 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  11. U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2013

    Gasoline and Diesel Fuel Update (EIA)

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2013 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 3rd Quarter 2013 Destination: Alabama (thousand short tons) Coal Origin State

  12. U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2013

    Gasoline and Diesel Fuel Update (EIA)

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2013 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 3rd Quarter 2013 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  13. U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2013

    Gasoline and Diesel Fuel Update (EIA)

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2013 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 4th Quarter 2013 Destination: Alabama (thousand short tons) Coal Origin State

  14. U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2013

    Gasoline and Diesel Fuel Update (EIA)

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2013 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 4th Quarter 2013 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  15. Gasoline and Diesel Fuel Update (EIA)

    markets archive Dollars per short ton Dollars per mmbtu NYMEX coal futures Data for: 2004- Historical data . Note: No data available for Western PRB and Eastern CSX prior to 6/30/09.

  16. Ghana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWhyear 73 2008 NREL Coal Reserves Unavailable Million Short Tons NA 2008 EIA Natural Gas Reserves 22,650,000,000 Cubic Meters (cu m) 76 2010 CIA World Factbook Oil Reserves...

  17. Vietnam: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWhyear 66 2008 NREL Coal Reserves 165.35 Million Short Tons 53 2008 EIA Natural Gas Reserves 680,000,000,000 Cubic Meters (cu m) 31 2010 CIA World Factbook Oil Reserves...

  18. Senegal: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWhyear 76 2008 NREL Coal Reserves Unavailable Million Short Tons NA 2008 EIA Natural Gas Reserves Unavailable Cubic Meters (cu m) NA 2010 CIA World Factbook Oil Reserves 0...

  19. Guinea-Bissau: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    0 Area(km) Class 3-7 Wind at 50m 116 1990 NREL Solar Potential 93,662,158 MWhyear 132 2008 NREL Coal Reserves Unavailable Million Short Tons NA 2008 EIA Natural Gas...

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Productivity by State and Mine Type, 2013 and 2012" ,"Number of Mining ... per Employee Hour" ,,,..."(short tons)4" "Coal-Producing State, Region1",2013,2012,"Perce...

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Disposition by State, 2013" "(thousand short tons)" "Coal-Producing State","Open Market Sales1","Captive Sales Transactions2","Exports3","Total" "Alabama",6990,"-",10843,178...

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Coal Mining Productivity by State, Mine Type, and Union Status, 2013" "(short tons produced per employee hour)" ,"Union",,"Nonunion" "Coal-Producing State and Region1","Underground"...

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Major U.S. Coal Producers, 2013" "Rank","Controlling Company Name","Production (thousand short tons)","Percent of Total Production" 1,"Peabody Energy Corp",183275,18.6 2,"Arch Coal ...

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Underground Coal Mining Productivity by State and Mining Method, 2013" "(short tons produced per employee hour)" "Coal-Producing State, Region1 and Mine Type","Continuous2","Con...

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production and Number of Mines by State and Mine Type, 2013 and 2012" "(thousand short tons)" ,2013,,2012,,"Percent Change" "Coal-Producing","Number of Mines","Production","Nu...

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Average Sales Price of U.S. Coal by State and Disposition, 2013" "(dollars per short ton)" "Coal-Producing State","Open Market1","Captive2","Total3" "Alabama",83.43,"-",88.2 ...

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Average Sales Price of Coal by State and Mine Type, 2013 and 2012" "(dollars per short ton)" ,2013,,,2012,,,"Percent Change" "Coal-Producing","Underground","Surface","Total","Un...

  8. Kazakhstan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWhyear 14 2008 NREL Coal Reserves 37,037.66 Million Short Tons 8 2008 EIA Natural Gas Reserves 2,407,000,000,000 Cubic Meters (cu m) 15 2010 CIA World Factbook Oil Reserves...

  9. South Africa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWhyear 23 2008 NREL Coal Reserves 33,241.30 Million Short Tons 9 2008 EIA Natural Gas Reserves 27,160,000 Cubic Meters (cu m) 102 2010 CIA World Factbook Oil Reserves...

  10. Chile: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWhyear 43 2008 NREL Coal Reserves 170.86 Million Short Tons 52 2008 EIA Natural Gas Reserves 97,970,000,000 Cubic Meters (cu m) 53 2010 CIA World Factbook Oil Reserves...

  11. Denmark: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWhyear 143 2008 NREL Coal Reserves Unavailable Million Short Tons NA 2008 EIA Natural Gas Reserves 61,300,000,000 Cubic Meters (cu m) 62 2010 CIA World Factbook Oil Reserves...

  12. Netherlands: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWhyear 151 2008 NREL Coal Reserves Unavailable Million Short Tons NA 2008 EIA Natural Gas Reserves 1,416,000,000,000 Cubic Meters (cu m) 24 2010 CIA World Factbook Oil Reserves...

  13. Nigeria: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWhyear 35 2008 NREL Coal Reserves 209.44 Million Short Tons 49 2008 EIA Natural Gas Reserves 5,246,000,000,000 Cubic Meters (cu m) 8 2010 CIA World Factbook Oil Reserves...

  14. Turkey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWhyear 39 2008 NREL Coal Reserves 2,582.72 Million Short Tons 20 2008 EIA Natural Gas Reserves 6,088,000,000 Cubic Meters (cu m) NA 2010 CIA World Factbook Oil Reserves...

  15. India: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWhyear 8 2008 NREL Coal Reserves 66,800.07 Million Short Tons 5 2008 EIA Natural Gas Reserves 1,075,000,000,000 Cubic Meters (cu m) 26 2010 CIA World Factbook Oil Reserves...

  16. Indonesia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWhyear 18 2008 NREL Coal Reserves 6,094.68 Million Short Tons 14 2008 EIA Natural Gas Reserves 3,001,000,000,000 Cubic Meters (cu m) 14 2010 CIA World Factbook Oil Reserves...

  17. Japan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWhyear 67 2008 NREL Coal Reserves 385.81 Million Short Tons 38 2008 EIA Natural Gas Reserves 20,900,000,000 Cubic Meters (cu m) 77 2010 CIA World Factbook Oil Reserves...

  18. Poland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWhyear 82 2008 NREL Coal Reserves 6,293.10 Million Short Tons 13 2008 EIA Natural Gas Reserves 164,800,000,000 Cubic Meters (cu m) 48 2010 CIA World Factbook Oil Reserves...

  19. U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2012 Destination: Alabama (thousand short tons) Coal Origin State

  20. U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  1. U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2012 Destination: Alabama (thousand short tons) Coal Origin State

  2. U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  3. U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 4th Quarter 2012 Destination: Alabama (thousand short tons) Coal Origin State

  4. U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 4th Quarter 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  5. U.S. Domestic

    Gasoline and Diesel Fuel Update (EIA)

    2 Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2012 (thousand short tons) Coal Exports Coal Origin State and Region Domestic Distribution By Coal Mines By...

  6. U.S. Energy Information Administration (EIA)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2. U.S. Coal Production by Coal-Producing Region and State, 2006 - 2010 (Million Short Tons) Coal-Producing Region and State 2006 2007 2008 2009 2010 Percent Change 2009 - 2010...

  7. U.S. Domestic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Domestic and foreign distribution of U.S. coal by State of origin, 2011 (thousand short tons) Coal Exports Coal Origin State and Region Domestic Distribution By Coal Mines By...

  8. Our Hidden Past: Precious Metals | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4:24 min. Y-12's calutrons required electrical conductor material, but during the war, copper was in short supply. The U.S. Treasury loaned Y-12 14,700 tons of silver, valued at...

  9. Annual Energy Review 2000

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    97 Diagram 4. Coal Flow, 2000 (Million Short Tons) Notes : Data are preliminary. Totals may not equal sum of components due to independent rounding. Sources: Tables 7.1, 7.2, and...

  10. Annual Energy Review 1997

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    87 Diagram 4. Coal Flow, 1997 (Million Short Tons) Notes : Data are preliminary. Totals may not equal sum of components due to independent rounding. Sources: Tables 7.1, 7.2, and...

  11. Annual Energy Review 1999

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    89 Diagram 4. Coal Flow, 1999 (Million Short Tons) Notes : Data are preliminary. Totals may not equal sum of components due to independent rounding. Sources: Tables 7.1, 7.2, and...

  12. Energy Information Administration/Annual Energy Review

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    99 Diagram 4. Coal Flow, 2001 (Million Short Tons) Notes : Data are preliminary. Totals may not equal sum of components due to independent rounding. Sources: Tables 7.1, 7.2, and...

  13. Annual Energy Review 1998

    Gasoline and Diesel Fuel Update (EIA)

    87 Diagram 4. Coal Flow, 1998 (Million Short Tons) Notes Data are preliminary. Totals may not e ual sum of components due to independent rounding. Sources Tables 7.1, 7.2, and 7.3....

  14. Domestic and Foreign Distribution

    U.S. Energy Information Administration (EIA) Indexed Site

    of U.S. Coal by State of Origin, 2008 Final May 2010 Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2008 (Thousand Short Tons) State Region Domestic Foreign...

  15. Table 15. Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve Base by Mining

    Gasoline and Diesel Fuel Update (EIA)

    Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve Base by Mining Method, 2013 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Table 15. Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve Base by Mining Method, 2013 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Underground - Minable Coal Surface - Minable Coal Total

  16. Table 16. Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method,

    Gasoline and Diesel Fuel Update (EIA)

    Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2013 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Table 16. Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2013 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Continuous 1 Conventional and Other 2 Longwall 3 Total

  17. Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Year to Date NAICS Code April - June 2014 January - March 2014

  18. Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 NAICS Code June 30, 2014 March 31, 2014 June 30, 2013 Percent Change (June

  19. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    Figure 1. Coal production by coal-producing region, 2010 (million short tons and percent change from 2009) U.S. total: 1,085.3 million short tons (-1.0%) Figure 1. Coal Production by Coal-Producing Region, 2010 Source: U.S. Energy Information Administration, Quarterly Coal Report, October-December 2010, DOE/EIA-0121(2010/Q4) (Washington, DC, April 2011). Regional totals do not include refuse recovery.

  20. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Productive Capacity and Capacity Utilization of Underground Coal Mines by State and Mining Method, 2013 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Table 13. Productive Capacity and Capacity Utilization of Underground Coal Mines by State and Mining Method, 2013 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Continuous 1 Conventional and Other 2 Longwall 3 Total Coal-Producing State Productive Capacity Capacity

  1. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Recoverable Coal Reserves and Average Recovery Percentage at Producing Mines by State, 2013 and 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Table 14. Recoverable Coal Reserves and Average Recovery Percentage at Producing Mines by State, 2013 and 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2013 2013 2012 Coal-Producing State Recoverable Coal Reserves Average Recovery Percentage Recoverable Coal Reserves

  2. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Coal Consumption by End Use Sector, Census Division, and State, 2013 and 2012 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Table 26. U.S. Coal Consumption by End Use Sector, Census Division, and State, 2013 and 2012 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2013 2013 2012 Total Census Division and State Electric Power 1 Other Industrial Coke Commercial and Institutional Electric Power 1 Other Industrial Coke

  3. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Year-End Coal Stocks by Sector, Census Division, and State, 2013 and 2012 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Table 27. Year-End Coal Stocks by Sector, Census Division, and State, 2013 and 2012 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2013 2013 2012 Total Census Division and State Electric Power 1 Other Industrial Coke Commercial and Institutional Producer and Distributor Electric Power 1 Other Industrial

  4. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Average Price of Coal Delivered to End Use Sector by Census Division and State, 2013 and 2012 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2013 Table 34. Average Price of Coal Delivered to End Use Sector by Census Division and State, 2013 and 2012 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2013 2013 2012 Annual Percent Change Census Division and State Electric Power 1 Other Industrial Coke Commercial and

  5. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Coal Production and Number of Mines by State and Coal Rank, 2013 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Table 6. Coal Production and Number of Mines by State and Coal Rank, 2013 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Bituminous Subbituminous Lignite Anthracite Total Coal-Producing State and Region 1 Number of Mines Production Number of Mines Production Number of Mines Production Number of Mines

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity and Average Price of U.S. Coal Imports by Origin, 2009 - 2015" "(short tons and dollars per short ton)" "Year and Quarter","Australia","Canada","Colombia","Indonesia","China","Venezuela","Other","Total" ,,,,,,,"Countries" 2009,151738,1287626,17787441,2084271,9364,1297214,20861,22638515 2010,380404,1766896,14583950,1904040,52869,581700,82828,19352687

  7. Short-Pulse Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Short-Pulse Lasers NIF Petawatt Laser Is on Track to Completion The National Ignition Facility's Advanced Radiographic Capability (ARC), a petawatt-class laser with peak power exceeding a quadrillion (1015) watts, is moving rapidly along the path to completion and commissioning. ARC is designed to produce brighter, more penetrating, higher-energy x rays than can be obtained with conventional radiographic techniques. When complete, ARC will be the world's highest-energy short-pulse laser, capable

  8. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    1. Stocks of Coal, Petroleum Liquids, and Petroleum Coke: Electric Power Sector, 2004 - 2014 Electric Power Sector Electric Utilities Independent Power Producers Period Coal (Thousand Tons) Petroluem Liquids (Thousand Barrels) Petroleum Coke (Thousand Tons) Coal (Thousand Tons) Petroluem Liquids (Thousand Barrels) Petroleum Coke (Thousand Tons) Coal (Thousand Tons) Petroluem Liquids (Thousand Barrels) Petroleum Coke (Thousand Tons) End of Year Stocks 2004 106,669 46,750 937 84,917 29,144 627

  9. Clark Public Utilities - Commercial Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    See program website Heat Pumps: Up to 250ton Outdoor Ductless Heat Pump: 250ton Web-Enabled Programmable Thermostats: Contact CPU for details Compressed Air Audit: Free...

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by...

  11. Lake City Utilities - Commercial & Industrial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    165HP Low-Flow Spray Valve: 50% of installed cost Cooling Equipment: Rebates are structured with a base rebate (ton) and an additional efficiency bonus rebate (ton)...

  12. Short wavelength laser

    DOE Patents [OSTI]

    Hagelstein, P.L.

    1984-06-25

    A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

  13. Short-wavelength,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -1...Countdown pressure cooker Short-wavelength, high-powered UV LEDs Hitting a bullet with a bullet A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 5, NO. 4 WINTER * 2004 S A N D I A T E C H N O L O G Y Sandia Technology (ISSN: 1547-5190) is a quarterly journal published by Sandia National Laboratories. Sandia is a multiprogram engineering and science laboratory operated by Sandia Corporation, a Lockheed Martin company, for the Department of Energy. With main facilities in Albuquerque,

  14. Minimize Boiler Short Cycling Losses

    Broader source: Energy.gov [DOE]

    This tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  15. Table 38. Coal Stocks at Coke Plants by Census Division

    Gasoline and Diesel Fuel Update (EIA)

    Coal Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 38. Coal Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Census Division June 30, 2014 March 31, 2014 June 30, 2013 Percent Change (June 30) 2014 versus 2013 Middle Atlantic 547 544 857 -36.2 East North Central 1,130 963 1,313 -13.9 South Atlantic

  16. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    Production Figure DataU.S. coal production increased slightly in 2010 by 1.0 percent to a level of 1,085.3 million short tons (Figure 1 and (Table 1), 10.4 million short tons more than the 2009 production total. Exclusive of refuse production, the Interior and Western Regions had increases in their production levels in 2010 of 7.4 percent and 1.1 percent respectively, while the Appalachian Region had a decrease of 2.1 percent (Figure 2 and (Table 2). The increase in Interior production was

  17. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Coal Production and Number of Mines by State and Mine Type, 2013 and 2012 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Table 1. Coal Production and Number of Mines by State and Mine Type, 2013 and 2012 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2013 2013 2012 Percent Change Coal-Producing State and Region 1 Number of Mines Production Number of Mines Production Number of Mines Production Alabama 39 18,620 46 19,321

  18. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Productive Capacity of Coal Mines by State, 2013 and 2012 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Table 11. Productive Capacity of Coal Mines by State, 2013 and 2012 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2013 2013 2012 Percent Change Coal-Producing State Underground Surface Total Underground Surface Total Underground Surface Total Alabama 15,121 7,633 22,754 14,594 7,967 22,561 3.6 -4.2 0.9 Alaska - 3,000

  19. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Underground Coal Mining Productivity by State and Mining Method, 2013 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2013 Table 22. Underground Coal Mining Productivity by State and Mining Method, 2013 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2013 Coal-Producing State, Region 1 and Mine Type Continuous 2 Conventional and Other 3 Longwall 4 Total Alabama 0.83 - 1.91 1.85 Arkansas 0.47 -

  20. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Coal Mining Productivity by State, Mine Type, and Union Status, 2013 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2013 Table 24. Coal Mining Productivity by State, Mine Type, and Union Status, 2013 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2013 Union Nonunion Coal-Producing State and Region 1 Underground Surface Underground Surface Alabama 1.92 2.11 0.84 2.04 Alaska - 5.70 - - Arizona

  1. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Underground Coal Production by State and Mining Method, 2013 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Table 3. Underground Coal Production by State and Mining Method, 2013 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Coal-Producing State and Region 1 Continuous 2 Conventional and Other 3 Longwall 4 Total Alabama 325 - 13,190 13,515 Arkansas 55 - - 55 Colorado 735 - 18,681 19,416 Illinois 18,543 - 27,903

  2. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Average Sales Price of Coal by State and Coal Rank, 2013 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2013 Table 31. Average Sales Price of Coal by State and Coal Rank, 2013 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2013 Coal-Producing State Bituminous Subbituminous Lignite Anthracite Total Alabama 88.20 - - - 88.20 Alaska - w - - w Arizona w - - - w Arkansas w - - - w Colorado w w - - 37.58 Illinois 47.82 - - -

  3. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Average Sales Price of U.S. Coal by State and Disposition, 2013 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2013 Table 33. Average Sales Price of U.S. Coal by State and Disposition, 2013 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2013 Coal-Producing State Open Market 1 Captive 2 Total 3 Alabama 83.43 - 88.20 Alaska w - w Arizona w - w Arkansas w - w Colorado 36.82 43.98 37.58 Illinois w w 47.82 Indiana 49.30 51.70

  4. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Coal Production by Coalbed Thickness and Mine Type, 2013 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Table 4. Coal Production by Coalbed Thickness and Mine Type, 2013 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Coal Thickness (inches) Underground Surface Total Under 7 - 1,448 1,448 7 - Under 13 - 2,499 2,499 13 - Under 19 334 5,820 6,155 19 - Under 25 336 13,046 13,383 25 - Under 31 2,978 12,449 15,426 31 -

  5. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Coal Production by State, Mine Type, and Union Status, 2013 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Table 7. Coal Production by State, Mine Type, and Union Status, 2013 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Union Nonunion Total Coal-Producing State and Region 1 Underground Surface Underground Surface Underground Surface Alabama 13,190 704 325 4,390 13,515 5,093 Alaska - 1,632 - - - 1,632 Arizona -

  6. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Coal Disposition by State, 2013 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Table 8. Coal Disposition by State, 2013 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Coal-Producing State Open Market Sales 1 Captive Sales / Transactions 2 Exports 3 Total Alabama 6,990 - 10,843 17,833 Alaska 988 - 635 1,623 Arizona 7,903 - - 7,903 Arkansas 6 - 37 43 Colorado 8,843 10,854 3,826 23,524 Illinois 34,267 6,312 12,186

  7. U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Coal Consumption by End-Use Sector, 2008 - 2014 (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 32. U.S. Coal Consumption by End-Use Sector, 2008 - 2014 (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Other Industrial Commercial and Institutional Year and Quarter Electric Power Sector 1 Coke Plants CHP 2 Non- CHP 3 Total CHP 4 Non- CHP 5 Total Total 2008 January - March

  8. U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Coal Stocks, 2008 - 2014 (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 37. U.S. Coal Stocks, 2008 - 2014 (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Coal Consumers Last Day of Quarter Electric Power Sector 1 Coke Plants Other Industrial 2 Commercial and Institutional Users Total Coal Producers and Distributors Total 2008 March 31 146,497 1,462 4,818 448 153,225 34,876

  9. U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014

    Gasoline and Diesel Fuel Update (EIA)

    Coal Stocks at Other Industrial Plants by Census Division and State (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 39. Coal Stocks at Other Industrial Plants by Census Division and State (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Census Division and State June 30, 2014 March 31, 2014 June 30, 2013 Percent Change (June 30) 2014 versus 2013 New England 8 8 13 -34.3 Maine 2 2

  10. U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014

    Gasoline and Diesel Fuel Update (EIA)

    Coke and Breeze Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 41. Coke and Breeze Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Census Division June 30, 2014 March 31, 2014 June 30, 2013 Percent Change (June 30) 2014 versus 2013 Middle Atlantic 215 126 54 296.0 East North Central 627 635 724

  11. Word Pro - S7

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 7.3c Consumption of Selected Combustible Fuels for Electricity Generation: Commercial and Industrial Sectors (Subset of Table 7.3a) Commercial Sector a Industrial Sector b Coal c Petroleum d Natural Gas e Biomass Coal c Petroleum d Natural Gas e Other Gases g Biomass Other i Waste f Wood h Waste f Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1990 Total .................... 417 953 28 15 10,740

  12. Word Pro - S7

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 7.4a Consumption of Combustible Fuels for Electricity Generation and Useful Thermal Output: Total (All Sectors) (Sum of Tables 7.4b and 7.4c) Coal a Petroleum Natural Gas f Other Gases g Biomass Other j Distillate Fuel Oil b Residual Fuel Oil c Other Liquids d Petroleum Coke e Total e Wood h Waste i Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1950 Total .................... 91,871 5,423 69,998 NA NA 75,421 629 NA 5 NA NA 1955

  13. Word Pro - S7

    Gasoline and Diesel Fuel Update (EIA)

    19 Table 7.4c Consumption of Selected Combustible Fuels for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors (Subset of Table 7.4a) Commercial Sector a Industrial Sector b Coal c Petroleum d Natural Gas e Biomass Coal c Petroleum d Natural Gas e Other Gases g Biomass Other i Waste f Wood h Waste f Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1990 Total

  14. Word Pro - S7

    Gasoline and Diesel Fuel Update (EIA)

    Stocks of Coal and Petroleum: Electric Power Sector Coal, 1949-2014 Total Petroleum, 1949-2014 Coal, Monthly Total Petroleum, Monthly 120 U.S. Energy Information Administration / Monthly Energy Review February 2016 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 50 100 150 Million Barrels J F M A M J J A S O N D 0 50 100 150 200 Million Short Tons 2013 2014 2015 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 50 100 150 200 Million Short Tons J F M A M J J

  15. Word Pro - S7

    Gasoline and Diesel Fuel Update (EIA)

    21 Table 7.5 Stocks of Coal and Petroleum: Electric Power Sector Coal a Petroleum Distillate Fuel Oil b Residual Fuel Oil c Other Liquids d Petroleum Coke e Total e,f Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels 1950 Year ............................. 31,842 NA NA NA NA 10,201 1955 Year ............................. 41,391 NA NA NA NA 13,671 1960 Year ............................. 51,735 NA NA NA NA 19,572 1965 Year ............................. 54,525 NA NA NA NA

  16. Word Pro - S7

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 7.3a Consumption of Combustible Fuels for Electricity Generation: Total (All Sectors) (Sum of Tables 7.3b and 7.3c) Coal a Petroleum Natural Gas f Other Gases g Biomass Other j Distillate Fuel Oil b Residual Fuel Oil c Other Liquids d Petroleum Coke e Total e Wood h Waste i Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1950 Total .................... 91,871 5,423 69,998 NA NA 75,421 629 NA 5 NA NA 1955 Total ....................

  17. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    8 Coal Demonstrated Reserve Base, January 1, 2011 By Key State By Region West and East of the Mississippi By Mining Method By Rank 102 U.S. Energy Information Administration / Annual Energy Review 2011 Source: Table 4.8. 119 104 61 32 29 27 23 16 12 12 9 Montana Illinois Wyo- West Ken- Penn- Ohio Colo- Texas New Indiana 0 20 40 60 80 100 120 140 Billion Short Tons 230 156 98 Western Interior Appalachian 0 50 100 150 200 250 300 350 Billion Short Tons ming Virginia tucky sylvania rado Mexico 257

  18. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Coal Imports by Country of Origin Total, 2000-2011 By Country, 2011 By Selected Country, 2000-2011 204 U.S. Energy Information Administration / Annual Energy Review 2011 Note: Sum of components may not equal 100 percent due to independent rounding. Source: Table 7.4. 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 0 10 20 30 40 Million Short Tons Indonesia 10% Canada 9% Total 13.1 million short tons Canada 13% Colombia 73% Venezuela 6% Other 2% Indonesia 7% Colombia 2000 2001 2002

  19. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Coal Exports by Country of Destination Total and Europe, 1960-2011 By Selected Country, 2011 By Selected Country, 1960-2011 206 U.S. Energy Information Administration / Annual Energy Review 2011 Source: Table 7.5. 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 25 50 75 100 125 Million Short Tons lands 10.8 8.7 6.9 6.9 6.8 5.6 4.8 Nether- Brazil United Japan Canada Italy Germany 0 2 4 6 8 10 12 Million Short Tons Kingdom Total Europe 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

  20. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Coal Production, 1949-2011 Total By Rank By Mining Method By Location 200 U.S. Energy Information Administration / Annual Energy Review 2011 Anthracite Lignite¹ Subbituminous Coal¹ ¹ Subbituminous coal and lignite are included in bituminous coal prior to 1969. Source: Table 7.2. 1950 1960 1970 1980 1990 2000 2010 0 300 600 900 1,200 1,500 Million Short Tons Bituminous Coal¹ 1950 1960 1970 1980 1990 2000 2010 0 200 400 600 800 Million Short Tons 1950 1960 1970 1980 1990 2000 2010 0 300 600

  1. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    0 U.S. Energy Information Administration / Annual Energy Review 2011 Table 8.5c Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector by Plant Type, Selected Years, 1989-2011 (Breakout of Table 8.5b) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Million Cubic Feet Trillion Btu

  2. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 8.6a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Million Cubic Feet Trillion Btu Trillion Btu Trillion Btu 1989 16,510 1,410 16,357

  3. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    4 U.S. Energy Information Administration / Annual Energy Review 2011 Table 8.6b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Million Cubic Feet

  4. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    45 Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, Selected Years, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Million Cubic Feet Trillion Btu Trillion Btu Trillion Btu

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio Electricity Profile 2013 Table 1. 2013 Summary statistics (Ohio) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 32,482 8 Electric utilities 20,779 11 IPP & CHP 11,703 9 Net generation (megawatthours) 137,284,189 7 Electric utilities 88,763,825 12 IPP & CHP 48,520,364 7 Emissions Sulfur dioxide (short tons) 346,873 2 Nitrogen oxide (short tons) 102,526 4 Carbon dioxide (thousand metrictons) 102,466 4 Sulfur dioxide (lbs/MWh) 5.1 1 Nitrogen oxide (lbs/MWh)

  6. Table 8.5c Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.5b)

    U.S. Energy Information Administration (EIA) Indexed Site

    5c Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.5b) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu Electricity-Only Plants 11<//td> 1989 767,378,330 25,574,094 241,960,194 3,460 517,385 270,124,673

  7. Table 8.6a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 16,509,639 1,410,151 16,356,550 353,000 247,409 19,356,746

  8. Table 8.6b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 638,798 119,640 1,471,031 762 – 1,591,433 81,669,945 2,804 24,182 5,687

  9. Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu Commercial Sector 11<//td> 1989 711,212 202,091 600,653 – –

  10. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Average Sales Price of Coal by State and Mine Type, 2013 and 2012 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2013 Table 28. Average Sales Price of Coal by State and Mine Type, 2013 and 2012 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2013 2013 2012 Percent Change Coal-Producing State Underground Surface Total Underground Surface Total Underground Surface Total Alabama 88.19 88.24 88.20 107.73 104.51 106.57 -18.1

  11. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Average Sales Price of Coal by State and Underground Mining Method, 2013 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2013 Table 29. Average Sales Price of Coal by State and Underground Mining Method, 2013 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2013 Coal-Producing State Continuous 1 Conventional and Other 2 Longwall 3 Total Alabama w - w 88.19 Arkansas w - - w Colorado w - w 36.62 Illinois 45.53 - 49.73 48.08

  12. Fuel Tables.indd

    Gasoline and Diesel Fuel Update (EIA)

    7: Coal Consumption Estimates and Imports and Exports of Coal Coke, 2013 State Coal Coal Coke Residential a Commercial Industrial Electric Power Total Residential a Commercial Industrial Electric Power Total Imports Exports Imports Exports Thousand Short Tons Trillion Btu Thousand Short Tons Trillion Btu Alabama - 0 2,834 24,400 27,235 - 0.0 76.4 488.6 565.1 - - - - Alaska - 585 1 400 986 - 8.9 (s) 5.9 14.8 - - - - Arizona - 0 181 23,298 23,479 - 0.0 4.3 450.5 454.9 - - - - Arkansas - 0 215

  13. Table 2.1 Nonfuel (Feedstock) Use of Combustible Energy, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Nonfuel (Feedstock) Use of Combustible Energy, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 10 * * 4 Q 0 0 2 3112 Grain and

  14. Table 3.1 Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99

  15. Table 4.1 Offsite-Produced Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,113 75,673 2 4

  16. Table 7.6 Quantity of Purchased Energy Sources, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Quantity of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Electricity Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,108 75,652 2 4

  17. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 620 1 7 * 105 * 3112 Grain and Oilseed Milling 318 15,464 * * 117 * 5 0 29 *

  18. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 620 1 7 * 105 * 3112 Grain and Oilseed Milling 318 15,464 * * 117 * 5 0 29 *

  19. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 3 0 * 2 * 0 * * 3112 Grain and Oilseed

  20. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 618 1 7 * 107

  1. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    4.1 Offsite-Produced Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,124 73,551 4 3

  2. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",4499,43 "Electric utilities",14,49 "IPP & CHP",4485,21 "Net generation (megawatthours)",14030038,44 "Electric utilities",597,49 "IPP & CHP",14029441,25 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",13365,38 "Nitrogen oxide (short

  3. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",7938,38 "Electric utilities",5912,33 "IPP & CHP",2026,36 "Net generation (megawatthours)",35870965,36 "Electric utilities",29833095,33 "IPP & CHP",6037870,37 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",17735,34 "Nitrogen oxide (short

  4. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",6566,40 "Electric utilities",5292,34 "IPP & CHP",1274,41 "Net generation (megawatthours)",35021673,39 "Electric utilities",31044374,32 "IPP & CHP",3977299,42 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",56854,23 "Nitrogen oxide (short

  5. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",32482,8 "Electric utilities",20779,11 "IPP & CHP",11703,9 "Net generation (megawatthours)",137284189,7 "Electric utilities",88763825,12 "IPP & CHP",48520364,7 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",346873,2 "Nitrogen oxide (short

  6. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",7698,39 "Electric utilities",6669,32 "IPP & CHP",1029,44 "Net generation (megawatthours)",42516751,33 "Electric utilities",39526881,29 "IPP & CHP",2989870,45 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",23670,32 "Nitrogen oxide (short

  7. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",1255,50 "Electric utilities",329,45 "IPP & CHP",925,46 "Net generation (megawatthours)",6884910,48 "Electric utilities",872238,43 "IPP & CHP",6012672,38 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",71,50 "Nitrogen oxide (short

  8. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Item","Value" "Primary energy source","Coal" "Net summer capacity (megawatts)",1060064 "Electric utilities",616799 "IPP & CHP",443264 "Net generation (megawatthours)",4065964067 "Electric utilities",2388058409 "IPP & CHP",1677905658 "Emissions (thousand metric tons)", "Sulfur dioxide (short tons)",3978753 "Nitrogen oxide (short

  9. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",9,51 "Electric utilities",, "IPP & CHP",9,51 "Net generation (megawatthours)",65852,51 "Electric utilities",, "IPP & CHP",65852,51 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",0,51 "Nitrogen oxide (short

  10. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",12339,33 "Electric utilities",85,48 "IPP & CHP",12254,8 "Net generation (megawatthours)",35850812,37 "Electric utilities",30205,46 "IPP & CHP",35820607,9 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",41539,26 "Nitrogen oxide (short

  11. table2.1_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Nonfuel (Feedstock) Use of Combustible Energy, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) Gas(c) NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States RSE Column Factors: 1.4 0.4 1.6 1.2 1.2 1.1

  12. table4.1_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Offsite-Produced Fuel Consumption, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze RSE NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) (million (million Other(f) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Factors Total United States RSE Column

  13. table7.6_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Quantity of Purchased Energy Sources, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze RSE NAICS Total Electricity Fuel Oil Fuel Oil(b) Gas(c) NGL(d) (million (million Other(e) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Factors Total United States RSE Column

  14. Coal Markets

    Gasoline and Diesel Fuel Update (EIA)

    Coal Markets Release date: March 14, 2016 | Next release date: March 21, 2016 | Archive Coal Markets Weekly production Dollars per short ton Dollars per mmbtu Average weekly coal commodity spot prices dollars per short ton Week ending Week ago change Central Appalachia 12,500 Btu, 1.2 SO2 Northern Appalachia 13,000 Btu, < 3.0 SO2 Illinois Basin 11,800 Btu, 5.0 SO2 Powder River Basin 8,800 Btu, 0.8 SO2 Uinta Basin 11,700 Btu, 0.8 SO2 Source: With permission, SNL Energy Note: Coal prices shown

  15. W-7405-ENG-18 3-l-43

    Office of Legacy Management (LM)

    W-7405-ENG-18 3-l-43 The U. S. Government contracted to buy 42 short tons of orange sodium uranate, 83% U308 and 64 short tons of sodium uranate at about 82.5% U308, both at $l.SS/lb. The material was to be shipped to the Baker E: Williams Warehouse, New York, one day after receipt of notice. cLp;~$;Y~ ' ,-;;if.' : ..,,.,' .:;;::' .:-c3 CR c~.!::::,::.3 ' " C,I' I .-' -. -.-- - ---- W-7405-ENG-24 12-8-42 By /,~;-{;:~;;l;; y ;.- __ o~4.if.-. Under this contiact, &y&Q _____.

  16. Gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices decrease (short version) The U.S. average retail price for regular gasoline fell to 3.67 a gallon on Monday. That's down 3-tenths of a penny from a week ago, based...

  17. Gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell to 3.63 a gallon on Monday. That's down 2.9 cents from a week ago, based on the weekly price survey by the...

  18. Gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices decrease (short version) The U.S. average retail price for regular gasoline fell to 3.68 a gallon on Monday. That's down 2.9 cents from a week ago, based on the...

  19. Gasoline prices increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline prices increase (short version) The U.S. average retail price for regular gasoline rose to 3.69 a gallon on Monday. That's up 1.2 cents from a week ago, based on the...

  20. Gasoline prices decrease (Short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Short version) The U.S. average retail price for regular gasoline fell to 3.65 a gallon on Monday. That's down 2.8 cents from a week ago, based on the weekly price survey by the...

  1. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    (83/3Q) Short-Term Energy Outlook iuarterly Projections August 1983 Energy Information Administration Washington, D.C. 20585 t rt jrt- .ort- iort- iort- iort- nort- lort- '.ort- ort- Tt- .-m .erm -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term Term .-Term -Term xrm Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy -OJ.UUK Outlook Outlook Outlook Outlook Outlook Outlook

  2. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    and Summer Fuels Outlook April 2015 1 April 2015 Short-Term Energy and Summer Fuels Outlook (STEO) Highlights * On April 2, Iran and the five permanent members of the United Nations Security Council plus Germany (P5+1) reached a framework agreement that could result in the lifting of oil- related sanctions against Iran. Lifting sanctions could substantially change the STEO forecast for oil supply, demand, and prices by allowing a significantly increased volume of Iranian barrels to enter the

  3. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    (STEO) Highlights  This edition of the Short-Term Energy Outlook is the first to include forecasts for 2016.  December was the sixth consecutive month in which monthly average Brent prices decreased, falling $17/barrel (bbl) from November to a monthly average of $62/bbl, the lowest since May 2009. The December price decline reflects continued growth in U.S. tight oil production, strong global supply, and weakening outlooks for the global economy and oil demand growth.  EIA forecasts

  4. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    4 1 October 2014 Short-Term Energy and Winter Fuels Outlook (STEO) Highlights  EIA projects average U.S. household expenditures for natural gas, heating oil, electricity, and propane will decrease this winter heating season (October 1 through March 31) compared with last winter, which was 11% colder than the previous 10-year average nationally. Projected average household expenditures for propane and heating oil are 27% and 15% lower, respectively, because of lower heating demand and prices.

  5. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    5 1 October 2015 Short-Term Energy and Winter Fuels Outlook (STEO) Highlights  EIA projects average U.S. household expenditures for natural gas, heating oil, and propane during the upcoming winter heating season (October 1 through March 31) will be 10%, 25%, and 18% lower, respectively, than last winter, because of lower fuel prices and lower heating demand. Forecast lower heating demand and relatively unchanged prices contribute to electricity expenditures that are 3% lower than last winter

  6. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    Outlook September 2015 1 September 2015 Short-Term Energy Outlook (STEO) Highlights * North Sea Brent crude oil prices averaged $47/barrel (b) in August, a $10/b decrease from July. This third consecutive monthly decrease in prices likely reflects concerns about lower economic growth in emerging markets, expectations of higher oil exports from Iran, and continuing growth in global inventories. Crude oil price volatility increased significantly, with Brent prices showing daily changes of more

  7. SHORT NARRATIVE ABOUT PROMISING PRACTICES

    National Nuclear Security Administration (NNSA)

    ATTACHMENT 2 SHORT NARRATIVE ABOUT PROMISING PRACTICES Briefly identify a policy, practice or procedure where your agency has been successful in the implementation of actions outlined in its Diversity and Inclusion Strategic Plan. Responses should be limited to the space provided below. Please note that the box below is limited to 4000 Characters. The National Nuclear Security Administration's (NNSA) Office of Human Capital Management participated on a limited basis with the Department of

  8. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",32353,9 "Electric utilities",23419,7 "IPP & CHP",8934,11 "Net generation (megawatthours)",150572924,6 "Electric utilities",115027021,3 "IPP & CHP",35545903,11 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",144568,9 "Nitrogen oxide

  9. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",14786,29 "Electric utilities",11559,23 "IPP & CHP",3227,31 "Net generation (megawatthours)",60322492,25 "Electric utilities",46547772,21 "IPP & CHP",13774720,27 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",88811,16 "Nitrogen oxide

  10. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",58781,3 "Electric utilities",50967,1 "IPP & CHP",7813,15 "Net generation (megawatthours)",222398924,3 "Electric utilities",202527297,1 "IPP & CHP",19871627,18 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",117797,12 "Nitrogen

  11. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",38210,7 "Electric utilities",28875,2 "IPP & CHP",9335,10 "Net generation (megawatthours)",120953734,10 "Electric utilities",107082884,4 "IPP & CHP",13870850,26 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",123735,10 "Nitrogen

  12. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Item","Value","Rank" "Primary energy source","Petroleum", "Net summer capacity (megawatts)",2757,47 "Electric utilities",1821,40 "IPP & CHP",937,45 "Net generation (megawatthours)",10267052,45 "Electric utilities",5748256,40 "IPP & CHP",4518796,40 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",20710,33 "Nitrogen oxide

  13. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Item","Value","Rank" "Primary energy source","Hydroelectric", "Net summer capacity (megawatts)",4924,42 "Electric utilities",3394,37 "IPP & CHP",1530,39 "Net generation (megawatthours)",15186128,43 "Electric utilities",9600216,36 "IPP & CHP",5585912,39 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",6565,42 "Nitrogen oxide

  14. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",44950,4 "Electric utilities",5269,35 "IPP & CHP",39681,4 "Net generation (megawatthours)",203004919,4 "Electric utilities",11571734,35 "IPP & CHP",191433185,3 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",203951,6 "Nitrogen oxide

  15. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",27196,14 "Electric utilities",23309,8 "IPP & CHP",3888,24 "Net generation (megawatthours)",110403477,13 "Electric utilities",96047678,7 "IPP & CHP",14355799,23 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",273718,4 "Nitrogen oxide

  16. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",15929,25 "Electric utilities",12092,21 "IPP & CHP",3837,26 "Net generation (megawatthours)",56670757,27 "Electric utilities",41932708,26 "IPP & CHP",14738048,22 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",106879,14 "Nitrogen oxide

  17. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",14244,31 "Electric utilities",11485,24 "IPP & CHP",2759,33 "Net generation (megawatthours)",48472581,32 "Electric utilities",39808763,28 "IPP & CHP",8663819,32 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",30027,30 "Nitrogen oxide

  18. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",21004,21 "Electric utilities",19599,16 "IPP & CHP",1405,40 "Net generation (megawatthours)",89741021,18 "Electric utilities",89098127,11 "IPP & CHP",642894,50 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",190782,7 "Nitrogen oxide

  19. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",26228,15 "Electric utilities",17297,17 "IPP & CHP",8931,12 "Net generation (megawatthours)",102010177,15 "Electric utilities",56226016,17 "IPP & CHP",45784161,8 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",122578,11

  20. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Item","Value","Rank" "Primary energy source","Natural Gas", "Net summer capacity (megawatts)",13678,32 "Electric utilities",969,42 "IPP & CHP",12709,7 "Net generation (megawatthours)",32885021,40 "Electric utilities",611320,44 "IPP & CHP",32273700,12 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",12339,40 "Nitrogen

  1. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",30128,11 "Electric utilities",22148,9 "IPP & CHP",7981,14 "Net generation (megawatthours)",105417801,14 "Electric utilities",83171310,13 "IPP & CHP",22246490,14 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",237091,5 "Nitrogen oxide

  2. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",15561,28 "Electric utilities",12842,20 "IPP & CHP",2719,35 "Net generation (megawatthours)",52810264,29 "Electric utilities",45413403,23 "IPP & CHP",7396861,35 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",87718,17

  3. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",21801,19 "Electric utilities",20562,15 "IPP & CHP",1239,42 "Net generation (megawatthours)",91626593,17 "Electric utilities",89217205,10 "IPP & CHP",2409387,46 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",157488,8 "Nitrogen oxide

  4. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",6329,41 "Electric utilities",2568,38 "IPP & CHP",3761,27 "Net generation (megawatthours)",27687326,41 "Electric utilities",7361898,38 "IPP & CHP",20325428,16 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",16865,36 "Nitrogen oxide

  5. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",8449,36 "Electric utilities",7911,30 "IPP & CHP",538,49 "Net generation (megawatthours)",37104628,34 "Electric utilities",35170167,30 "IPP & CHP",1934461,48 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",66884,22 "Nitrogen oxide

  6. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",10652,34 "Electric utilities",7915,29 "IPP & CHP",2737,34 "Net generation (megawatthours)",36443874,35 "Electric utilities",27888008,34 "IPP & CHP",8555866,33 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",7436,41 "Nitrogen oxide

  7. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",4413,44 "Electric utilities",1121,41 "IPP & CHP",3292,30 "Net generation (megawatthours)",19778520,42 "Electric utilities",2266903,41 "IPP & CHP",17511617,20 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",3733,44 "Nitrogen oxide

  8. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",18997,22 "Electric utilities",544,43 "IPP & CHP",18452,6 "Net generation (megawatthours)",64750942,24 "Electric utilities",-122674,50 "IPP & CHP",64873616,6 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",3196,46 "Nitrogen oxide

  9. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Item","Value","Rank" "Primary energy source","Natural Gas", "Net summer capacity (megawatts)",39918,6 "Electric utilities",10736,26 "IPP & CHP",29182,5 "Net generation (megawatthours)",136116830,8 "Electric utilities",33860490,31 "IPP & CHP",102256340,5 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",30947,29 "Nitrogen oxide

  10. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",30048,12 "Electric utilities",26706,6 "IPP & CHP",3342,29 "Net generation (megawatthours)",125936293,9 "Electric utilities",116317050,2 "IPP & CHP",9619243,31 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",71293,20 "Nitrogen oxide

  11. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Item","Value","Rank" "Primary energy source","Natural Gas", "Net summer capacity (megawatts)",23300,17 "Electric utilities",16951,18 "IPP & CHP",6349,17 "Net generation (megawatthours)",73673680,22 "Electric utilities",53348841,18 "IPP & CHP",20324839,17 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",80418,19 "Nitrogen

  12. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Item","Value","Rank" "Primary energy source","Hydroelectric", "Net summer capacity (megawatts)",15662,27 "Electric utilities",10973,25 "IPP & CHP",4689,19 "Net generation (megawatthours)",59895515,26 "Electric utilities",43254167,24 "IPP & CHP",16641348,21 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",17511,35 "Nitrogen

  13. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",43040,5 "Electric utilities",455,44 "IPP & CHP",42584,3 "Net generation (megawatthours)",226785630,2 "Electric utilities",1105740,42 "IPP & CHP",225679890,2 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",276851,3 "Nitrogen oxide

  14. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",1809,49 "Electric utilities",8,50 "IPP & CHP",1802,38 "Net generation (megawatthours)",6246807,50 "Electric utilities",10659,48 "IPP & CHP",6236148,36 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",1271,49 "Nitrogen oxide

  15. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",23017,18 "Electric utilities",21039,10 "IPP & CHP",1978,37 "Net generation (megawatthours)",95249894,16 "Electric utilities",91795732,9 "IPP & CHP",3454162,44 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",47671,25 "Nitrogen oxide

  16. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Item","Value","Rank" "Primary energy source","Hydroelectric", "Net summer capacity (megawatts)",4109,45 "Electric utilities",3480,36 "IPP & CHP",629,48 "Net generation (megawatthours)",10108887,46 "Electric utilities",8030545,37 "IPP & CHP",2078342,47 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",15347,37 "Nitrogen oxide

  17. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",21326,20 "Electric utilities",20635,13 "IPP & CHP",690,47 "Net generation (megawatthours)",79651619,19 "Electric utilities",75988871,15 "IPP & CHP",3662748,43 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",86204,18 "Nitrogen oxide

  18. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",109584,1 "Electric utilities",28705,3 "IPP & CHP",80879,1 "Net generation (megawatthours)",433380166,1 "Electric utilities",96131888,6 "IPP & CHP",337248278,1 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",383728,1 "Nitrogen oxide

  19. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",24828,16 "Electric utilities",20601,14 "IPP & CHP",4227,22 "Net generation (megawatthours)",76896565,20 "Electric utilities",63724860,16 "IPP & CHP",13171706,28 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",68077,21 "Nitrogen

  20. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Item","Value","Rank" "Primary energy source","Hydroelectric", "Net summer capacity (megawatts)",30656,10 "Electric utilities",27070,5 "IPP & CHP",3586,28 "Net generation (megawatthours)",114172916,11 "Electric utilities",100013661,5 "IPP & CHP",14159255,24 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",13259,39

  1. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",16282,24 "Electric utilities",10625,27 "IPP & CHP",5657,18 "Net generation (megawatthours)",75863067,21 "Electric utilities",46351104,22 "IPP & CHP",29511963,13 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",93888,15 "Nitrogen

  2. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",17342,23 "Electric utilities",13358,19 "IPP & CHP",3984,23 "Net generation (megawatthours)",65962792,23 "Electric utilities",47027455,20 "IPP & CHP",18935337,19 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",108306,13 "Nitrogen oxide

  3. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",8381,37 "Electric utilities",7279,31 "IPP & CHP",1102,43 "Net generation (megawatthours)",52483065,30 "Electric utilities",48089178,19 "IPP & CHP",4393887,41 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",49587,24 "Nitrogen oxide

  4. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",2384,48 "Electric utilities",2205,39 "IPP & CHP",179,50 "Net generation (megawatthours)",6496822,49 "Electric utilities",5851727,39 "IPP & CHP",645095,49 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",4202,43 "Nitrogen oxide

  5. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",27910,13 "Electric utilities",20668,12 "IPP & CHP",7242,16 "Net generation (megawatthours)",113325986,12 "Electric utilities",92740582,8 "IPP & CHP",20585405,15 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",23716,31 "Nitrogen oxide

  6. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",73772,2 "Electric utilities",28165,4 "IPP & CHP",45607,2 "Net generation (megawatthours)",200077115,5 "Electric utilities",78407643,14 "IPP & CHP",121669472,4 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",2109,48 "Nitrogen

  7. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",14769,30 "Electric utilities",10238,28 "IPP & CHP",4531,20 "Net generation (megawatthours)",52937436,28 "Electric utilities",42508826,25 "IPP & CHP",10428610,29 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",40012,27 "Nitrogen oxide

  8. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",8769,35 "Electric utilities",152,46 "IPP & CHP",8617,13 "Net generation (megawatthours)",35610789,38 "Electric utilities",50273,45 "IPP & CHP",35560516,10 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",3512,45 "Nitrogen oxide

  9. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",3246,46 "Electric utilities",102,47 "IPP & CHP",3144,32 "Net generation (megawatthours)",7760861,47 "Electric utilities",25986,47 "IPP & CHP",7734875,34 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",2241,47 "Nitrogen oxide

  10. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",15758,26 "Electric utilities",11901,22 "IPP & CHP",3858,25 "Net generation (megawatthours)",51296988,31 "Electric utilities",41155904,27 "IPP & CHP",10141084,30 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",35625,28 "Nitrogen oxide

  11. Frequently Asked Questions (FAQs) - U.S. Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    (EIA) Coal Does EIA have county-level energy production data? Does EIA have projections for energy production, consumption, and prices for individual states? Does EIA publish coking coal prices? From what country does the United States import the most coal? How do I convert between short tons and metric tons? How large are U.S. coal reserves? How many and what kind of power plants are there in the United States? How much coal, natural gas, or petroleum is used to generate a kilowatthour of

  12. DRAFT

    National Nuclear Security Administration (NNSA)

    Tons (short) Acres 0.0040469 Square kilometers Square miles 2.59 Square kilometers Square feet 0.092903 Square meters Tons/acre 0.5999 Kilograms/sq. meter Parts/million 1 a Milligrams/liter Parts/billion 1 a Micrograms/liter Parts/trillion 1 a Micrograms/cu. meter Pounds/cu. ft. 0.016018 Grams/cu. centimeter Pounds/cu. ft. 16,025.6 Grams/cu. meter Inches 2.54 Centimeters Feet 0.3048 Meters Inches 25,400 Micrometers Inches 25.40 Millimeters Miles 1.6093 Kilometers Degrees F - 32 0.55556 Degrees C

  13. Buildings Energy Data Book: 1.5 Generic Fuel Quad and Comparison

    Buildings Energy Data Book [EERE]

    3 Carbon Emission Comparisons One million metric tons of carbon dioxide-equivalent emissions equals: - the combustion of 530 thousand short tons of coal - the coal input to 1 coal plant (200-MW) in about 1 year - the combustion of 18 billion cubic feet of natural gas - the combustion of 119 million gallons of gasoline = the combustion of gasoline for 7 hours in the U.S. = 323 thousand new cars, each driven 12,400 miles = 282 thousand new light-duty vehicles, each driven 12,200 miles = 274

  14. Microsoft Word - KCP Final EA Draft 042913 CLEAN for Concurrence-R2.docx

    National Nuclear Security Administration (NNSA)

    Tons (short) Acres 0.0040469 Square kilometers Square miles 2.59 Square kilometers Square feet 0.092903 Square meters Tons/acre 0.5999 Kilograms/sq. meter Parts/million 1 a Milligrams/liter Parts/billion 1 a Micrograms/liter Parts/trillion 1 a Micrograms/cu. meter Pounds/cu. ft. 0.016018 Grams/cu. centimeter Pounds/cu. ft. 16,025.6 Grams/cu. meter Inches 2.54 Centimeters Feet 0.3048 Meters Inches 25,400 Micrometers Inches 25.40 Millimeters Miles 1.6093 Kilometers Degrees F - 32 0.55556 Degrees C

  15. EIS-0069: Solvent Refined Coal-II Demonstration Project, Fort Martin, Monongalia County, West Virginia

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to assess the potential environmental, economic and social impacts associated with the construction and short-term operation of a 6,000-tons-per-stream-day-capacity facility that will demonstrate the technical operability, economic viability, and environmental acceptability of the solvent refined coal process at Fort Martin, West Virginia.

  16. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    7. Delivered coal prices, 2000-2010 (nominal dollars per short ton) Figure 7. Delivered Coal Prices, 2000-2010 Sources: U.S. Energy Information Administration, Quarterly Coal Report, October-December, DOE/EIA-0121, various issues, and Electric Power Monthly, March, DOE/EIA-0226

  17. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    8. U.S. coal export and imports, 2000-2010 (million short tons) Figure 8. U.S. Coal Export and Imports, 2000-2009 Sources: U.S. Department of Commerce, Bureau of the Census, "Monthly Report EM 545" and "Monthly Report IM 145."

  18. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    9. Year-end coal stocks, 2000-2010 (million short tons) Figure 9. Year-End Coal Stocks, 2000-2010 * All other consumers category includes coke plants, other industrial, and commercial & institutional sectors. Sources: U.S. Energy Information Administration, Quarterly Coal Report, October-December, DOE/EIA-0121, various issues.

  19. file://J:\\mydocs\\Coal\\Distribution\\2003\\distable1.HTML

    U.S. Energy Information Administration (EIA) Indexed Site

    10,811 550,716 East of Miss. River 451,675 28,976 480,651 West of Miss. River 589,561 10,818 600,379 U.S. Total 1,041,236 39,794 1,081,030 * Quantity is less than 500 short tons or...

  20. Table A57. Capability to Switch from Coal to Alternative Energy Sources by

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Capability to Switch from Coal to Alternative Energy Sources by" " Industry Group, Selected Industries, and Selected Characteristics, 1991 " " (Estimates in Thousand Short Tons)" " "," "," ", " "," "," Coal",,," Alternative Types of Energy(b)" " ","

  1. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    3 1 Short-Term Energy Outlook April 2003 Overview World Oil Markets. Crude oil prices fell sharply at the onset of war in Iraq, but the initial declines probably overshot levels that we consider to be generally consistent with fundamental factors in the world oil market. Thus, while near-term price averages are likely to be below our previous projections, the baseline outlook for crude oil prices (while generally lower) is not drastically different and includes an average for spot West Texas

  2. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    1 December 2014 Short-Term Energy Outlook (STEO) Highlights  North Sea Brent crude oil spot prices fell by more than 15% in November, declining from $85/barrel (bbl) on November 3 to $72/bbl on November 28. Monthly average Brent crude oil prices have declined 29% from their 2014 high of $112/bbl in June to an average of $79/bbl in November, the lowest monthly average since September 2010. The November price decline reflects continued growth in U.S. tight oil production along with weakening

  3. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    June 2014 1 June 2014 Short-Term Energy Outlook (STEO) Highlights  North Sea Brent crude oil spot prices increased from a monthly average of $108/barrel (bbl) in April to $110/bbl in May. This was the 11 th consecutive month in which the average Brent crude oil spot price fell within a relatively narrow range of $107/bbl to $112/bbl. The discount of West Texas Intermediate (WTI) crude oil to Brent crude oil, which averaged more than $13/bbl from November through January, fell below $4/bbl in

  4. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    March 2015 Short-Term Energy Outlook (STEO) Highlights  North Sea Brent crude oil prices averaged $58/barrel (bbl) in February, an increase of $10/bbl from the January average, and the first monthly average price increase since June 2014. The price increase reflects news of falling U.S. crude oil rig counts and announced reductions in capital expenditures by major oil companies, along with lower-than-expected Iraqi crude oil exports.  EIA forecasts that Brent crude oil prices will average

  5. Ultra-short pulse generator

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1993-01-01

    An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shockwave diode, which increases and sharpens the pulse even more.

  6. Ultra-short pulse generator

    DOE Patents [OSTI]

    McEwan, T.E.

    1993-12-28

    An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shock wave diode, which increases and sharpens the pulse even more. 5 figures.

  7. Short-Term Energy Outlook January 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    4 1 January 2014 Short-Term Energy Outlook (STEO) Highlights This edition of the Short-Term Energy Outlook is the first to include forecasts for 2015. After falling to the...

  8. Shapeable short circuit resistant capacitor

    DOE Patents [OSTI]

    Taylor, Ralph S.; Myers, John D.; Baney, William J.

    2015-10-06

    A ceramic short circuit resistant capacitor that is bendable and/or shapeable to provide a multiple layer capacitor that is extremely compact and amenable to desirable geometries. The capacitor that exhibits a benign failure mode in which a multitude of discrete failure events result in a gradual loss of capacitance. Each event is a localized event in which localized heating causes an adjacent portion of one or both of the electrodes to vaporize, physically cleaning away electrode material from the failure site. A first metal electrode, a second metal electrode, and a ceramic dielectric layer between the electrodes are thin enough to be formed in a serpentine-arrangement with gaps between the first electrode and the second electrode that allow venting of vaporized electrode material in the event of a benign failure.

  9. Drop short control of electrode gap

    DOE Patents [OSTI]

    Fisher, Robert W. (Albuquerque, NM); Maroone, James P. (Albuquerque, NM); Tipping, Donald W. (Albuquerque, NM); Zanner, Frank J. (Sandia Park, NM)

    1986-01-01

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  10. Energy Information Administration - Energy Efficiency-Table 5b...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    b Page Last Modified: June 2010 Table 5b. Consumption of Energy for All Purposes (First Use) per Ton of Steel, 1998, 2002, and 2006 (Million Btu per ton) MECS Survey Years Iron and...

  11. Minnkota Power Cooperative (17 Utilities) - PowerSavers Residential...

    Broader source: Energy.gov (indexed) [DOE]

    Pump: 400 Furnace with ECM blower: 150 Mini-SplitDuctless Air-Source Heat Pump: 500 Ground-Source Heat Pump: 200ton - 400ton; varies by type Summary Minnesota...

  12. U.S. Uranium Reserves Estimates

    Gasoline and Diesel Fuel Update (EIA)

    1. U.S. Forward-Cost Uranium Reserves by State, Year-End 2008 State 50lb 100lb Ore (million tons) Gradea (%) U3O8 (million lbs) Ore (million tons) Gradea (%) U3O8 (million lbs)...

  13. Waste Hoist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Primary Hoist: 45-ton Rope-Guide Friction Hoist Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides. With a 45-ton...

  14. Sandia National Laboratories: Z Pulsed Power Facility: How Does...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lines. Connected to the vacuum side of the electrode rings of the interface are five nesting stainless-steel cones (total weight about 10 tons (9 metric tons)) that are...

  15. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shows the volume taken up by one metric ton of carbon dioxide. In 2013, the United States emitted the equivalent of 6.7 billion metric tons. By tracking how much greenhouse...

  16. EIS-0283-S2: Final Supplemental Environmental Impact Statement...

    Broader source: Energy.gov (indexed) [DOE]

    Statement This Final SEIS evaluates the potential environmental impacts of alternatives for disposition of 13.1 metric tons (14.4 tons) of surplus plutonium for which a disposition...

  17. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    1. U.S. average estimated coal transportation rates between mines and power plants Revenue Per Ton Mile (nominal dollars) Revenue Per Ton Mile (real 1999 dollars)1 2001 0.0139...

  18. Nov Dec NNSA NEWS 2010.pmd

    National Nuclear Security Administration (NNSA)

    contained more than 10 metric tons of highly enriched uranium (HEU) and three metric tons of weapon-grade plutonium in Kazakhstan - enough material to make 775 nuclear weapons. ...

  19. EIS-0283-S2: EPA Notice of Availability of the Final Supplemental

    Broader source: Energy.gov (indexed) [DOE]

    Environmental Impact Statement | Department of Energy Disposition Supplemental Environmental Impact Statement EPA announced the availability of a final supplemental EIS that evaluates the potential environmental impacts of alternatives for disposition of 13.1 metric tons (14.4 tons) of surplus plutonium for which a disposition path is not assigned, including 7.1 metric tons (7.8 tons) of plutonium from pits that were declared excess to national defense needs after publication of the 2007

  20. Department of Energy Offers Conditional Commitment for a Loan Guarantee to Support World's Largest Wind Project

    Broader source: Energy.gov [DOE]

    Recovery Act-Supported Loan Will Create Jobs and Avoid Over 1.2 Million Tons of Carbon Pollution Annually

  1. Energy Department Awards $66.7 Million for Large-Scale Carbon Sequestration Project

    Broader source: Energy.gov [DOE]

    Regional Partner to Demonstrate Safe and Permanent Storage of One Million Tons of CO2 at Illinois Site

  2. EIS-0283-S2: Draft Supplemental Environmental Impact Statement | Department

    Office of Environmental Management (EM)

    of Energy Draft Supplemental Environmental Impact Statement EIS-0283-S2: Draft Supplemental Environmental Impact Statement Surplus Plutonium Disposition This Draft SEIS evaluates the potential environmental impacts of alternatives for disposition of 13.1 metric tons (14.4 tons) of surplus plutonium for which DOE has not made a disposition decision, including 7.1 metric tons (7.8 tons) of plutonium from pits that were declared excess to national defense needs after publication of the 2007

  3. Scientists teach short course on fuel cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists teach short course on fuel cells Scientists teach short course on fuel cells Los Alamos scientists gave presentations covering Hydrogen and Lab Safety, the Laboratory's Membrane-and-Electrode Process, Fuel Cell Materials Characterization, Modeling, Durability and Testing. October 8, 2015 Scientists teach short course on fuel cells Materials Synthesis and Integrated Devices (MPA-11) scientists, Rangachary Mukundan (seated) and Tommy Rockward (left), during a demonstration in their fuel

  4. Minimize Boiler Short Cycling Losses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minimize Boiler Short Cycling Losses Minimize Boiler Short Cycling Losses This tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial...

  5. Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    100 ton Stanat rolling mill 75 Ton Wabash Platten Press Rotary Die Swaging Machines 1.25" to 0.014" Loma Hydraulic Wire Drawing Benches Innovare Hydrostatic Extrusion Press 6" Reeves rolling mill 300 ton Baldwin press

  6. DOE/EIA-0202(88/3Q) Energy Information Administration Short-Term

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3Q) Energy Information Administration Short-Term Energy Outlook Quarterly Projections July 1988 Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy . oi Lor L- . ; Short-Term : Short-Term : Short-Term : Short-Term : Short-Term : Short-Term ; Short-Term . Short-Term : Short-Term : Short-Term . Short-Term : Short-Term : Short-Term ; Short-Term : Short-Term . Short-Term : Short-Term : Short-Term : Short-Term : Short-Term . Short-Term :

  7. Property:ShortName | Open Energy Information

    Open Energy Info (EERE)

    the property "ShortName" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 2008-04...

  8. Gasoline prices inch down slightly (short version)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    short version) The U.S. average retail price for regular gasoline fell slightly to 3.54 a gallon on Monday. That's down 6-tenths of a penny from a week ago, based on the weekly...

  9. Gasoline prices inch down (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell to 3.68 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price survey by the...

  10. Gasoline prices inch down (Short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline rose slightly to 3.66 a gallon on Monday. That's up nine tenths of a penny from a week ago, based on the weekly...

  11. Gasoline prices fall slightly (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell slightly to 3.49 a gallon on Monday. That's down 4-tenths of a penny from a week ago, based on the weekly...

  12. Are shorted pipeline casings a problem

    SciTech Connect (OSTI)

    Gibson, W.F. )

    1994-11-01

    The pipeline industry has many road and railroad crossings with casings which have been in service for more than 50 years without exhibiting any major problems, regardless of whether the casing is shorted to or isolated from the carrier pipe. The use of smart pigging and continual visual inspection when retrieving a cased pipeline segment have shown that whether shorted or isolated, casings have no significant bearing on the presence or absence of corrosion on the carrier pipe.

  13. Means for limiting and ameliorating electrode shorting

    SciTech Connect (OSTI)

    Konynenburg, R.A. van; Farmer, J.C.

    1999-11-09

    A fuse and filter arrangement is described for limiting and ameliorating electrode shorting in capacitive deionization water purification systems utilizing carbon aerogel, for example. This arrangement limits and ameliorates the effects of conducting particles or debonded carbon aerogel in shorting the electrodes of a system such as a capacitive deionization water purification system. This is important because of the small interelectrode spacing and the finite possibility of debonding or fragmentation of carbon aerogel in a large system. The fuse and filter arrangement electrically protect the entire system from shutting down if a single pair of electrodes is shorted and mechanically prevents a conducting particle from migrating through the electrode stack, shorting a series of electrode pairs in sequence. It also limits the amount of energy released in a shorting event. The arrangement consists of a set of circuit breakers or fuses with one fuse or breaker in the power line connected to one electrode of each electrode pair and a set of screens of filters in the water flow channels between each set of electrode pairs.

  14. Means for limiting and ameliorating electrode shorting

    DOE Patents [OSTI]

    Van Konynenburg, Richard A. (Livermore, CA); Farmer, Joseph C. (Tracy, CA)

    1999-01-01

    A fuse and filter arrangement for limiting and ameliorating electrode shorting in capacitive deionization water purification systems utilizing carbon aerogel, for example. This arrangement limits and ameliorates the effects of conducting particles or debonded carbon aerogel in shorting the electrodes of a system such as a capacitive deionization water purification system. This is important because of the small interelectrode spacing and the finite possibility of debonding or fragmentation of carbon aerogel in a large system. The fuse and filter arrangement electrically protect the entire system from shutting down if a single pair of electrodes is shorted and mechanically prevents a conducting particle from migrating through the electrode stack, shorting a series of electrode pairs in sequence. It also limits the amount of energy released in a shorting event. The arrangement consists of a set of circuit breakers or fuses with one fuse or breaker in the power line connected to one electrode of each electrode pair and a set of screens of filters in the water flow channels between each set of electrode pairs.

  15. Illinois coal reserve assessment and database development. Final report

    SciTech Connect (OSTI)

    Treworgy, C.G.; Prussen, E.I.; Justice, M.A.; Chenoweth, C.A.

    1997-11-01

    The new demonstrated reserve base estimate of coal of Illinois is 105 billion short tons. This estimate is an increase from the 78 billion tons in the Energy Information Administration`s demonstrated reserve base of coal, as of January 1, 1994. The new estimate arises from revised resource calculations based on recent mapping in a number of countries, as well as significant adjustments for depletion due to past mining. The new estimate for identified resources is 199 billion tons, a revision of the previous estimate of 181 billion tons. The new estimates incorporate the available analyses of sulfur, heat content, and rank group appropriate for characterizing the remaining coal resources in Illinois. Coal-quality data were examined in conjunction with coal resource mapping. Analyses of samples from exploration drill holes, channel samples from mines and outcrops, and geologic trends were compiled and mapped to allocate coal resource quantities to ranges of sulfur, heat content, and rank group. The new allocations place almost 1% of the demonstrated reserve base of Illinois in the two lowest sulfur categories, in contrast to none in the previous allocation used by the Energy Information Administration (EIA). The new allocations also place 89% of the demonstrated reserve base in the highest sulfur category, in contrast to the previous allocation of 69% in the highest category.

  16. Catalysts for synthesizing various short chain hydrocarbons

    DOE Patents [OSTI]

    Colmenares, Carlos (Alamo, CA)

    1991-01-01

    Method and apparatus (10), including novel photocatalysts, are disclosed for the synthesis of various short chain hydrocarbons. Light-transparent SiO.sub.2 aerogels doped with photochemically active uranyl ions (18) are fluidized in a fluidized-bed reactor (12) having a transparent window (16), by hydrogen and CO, C.sub.2 H.sub.4 or C.sub.2 H.sub.6 gas mixtures (20), and exposed to radiation (34) from a light source (32) external to the reactor (12), to produce the short chain hydrocarbons (36).

  17. Numerical Modelling of Geothermal Systems a Short Introduction...

    Open Energy Info (EERE)

    Modelling of Geothermal Systems a Short Introduction Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Numerical Modelling of Geothermal Systems a Short...

  18. Electricity storage for short term power system service (Smart...

    Open Energy Info (EERE)

    storage for short term power system service (Smart Grid Project) Jump to: navigation, search Project Name Electricity storage for short term power system service Country Denmark...

  19. Dechirper Wakefields for Short Bunches (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Dechirper Wakefields for Short Bunches Citation Details In-Document Search Title: Dechirper Wakefields for Short Bunches Authors: Bane, Karl ; Stupakov, Gennady ;...

  20. Dechirper Wakefields for Short Bunches (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Dechirper Wakefields for Short Bunches Citation Details In-Document Search Title: Dechirper Wakefields for Short Bunches You are accessing a document from the...

  1. Electricity and short wavelength radiation generator

    DOE Patents [OSTI]

    George, E.V.

    1985-08-26

    Methods and associated apparati for use of collisions of high energy atoms and ions of He, Ne, or Ar with themselves or with high energy neutrons to produce short wavelength radiation (lambda approx. = 840-1300 A) that may be utilized to produce cathode-anode currents or photovoltaic currents.

  2. Gasoline prices show sharp increase (short version)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    short version) The U.S. average retail price for regular gasoline saw its sharpest increase this year at $3.54 a gallon on Monday. That's up 18.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  3. Gasoline prices up this week (short version)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    short version) The U.S. average retail price for regular gasoline rose to $3.61 a gallon on Monday. That's up 7.3 cents from a week ago and up 25.4 cents from two weeks ago, based on the weekly price survey by the U.S. Energy Information Administration.

  4. Gasoline prices up this week (short version)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    short version) The U.S. average retail price for regular gasoline rose to $3.75 a gallon on Monday. That's up almost 14 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  5. Gasoline prices up this week (short version)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    short version) The U.S. average retail price for regular gasoline rose to $3.78 a gallon on Monday. That's up 3.7 cents from a week ago and up almost 43 cents from 4 weeks ago, based on the weekly price survey by the U.S. Energy Information Administration.

  6. Gasoline price shows small increase (Short version)

    Gasoline and Diesel Fuel Update (EIA)

    shows small increase (Short version) The U.S. average retail price for regular gasoline rose to $3.32 a gallon on Monday. That's up 1.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  7. Gasoline price shows small increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    Short version) The U.S. average retail price for regular gasoline showed little movement from last week. Prices rose 4/10 of a cent to $3.30 a gallon on Monday, based on the weekly price survey by the U.S. Energy Information Administration.

  8. Gasoline price up this week (short version)

    Gasoline and Diesel Fuel Update (EIA)

    short version) The U.S. average retail price for regular gasoline rose to $3.36 a gallon on Monday. That's up 4.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  9. Gasoline prices continue to decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    (short version) The U.S. average retail price for regular gasoline fell to $3.65 a gallon on Monday. That's down 3 1/2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington.

  10. Gasoline prices continue to decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    Gasoline prices continue to decrease (short version) The U.S. average retail price for regular gasoline fell to $3.29 a gallon on Monday. That's down 3-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  11. Gasoline prices continue to decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    short version) The U.S. average retail price for regular gasoline fell to $3.50 a gallon on Monday. That's down 8.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  12. Gasoline prices continue to fall (short version)

    Gasoline and Diesel Fuel Update (EIA)

    (short version) The U.S. average retail price for regular gasoline fell to $3.54 a gallon on Monday. That's down 6.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  13. Gasoline prices continue to fall (short version)

    Gasoline and Diesel Fuel Update (EIA)

    (short version) The U.S. average retail price for regular gasoline decreased for the second week in a row to $3.71 a gallon on Monday. That's down 4.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington.

  14. Gasoline prices continue to fall (short version)

    Gasoline and Diesel Fuel Update (EIA)

    short version) The U.S. average retail price for regular gasoline fell to $3.70 a gallon on Monday. That's down 1.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington.

  15. Gasoline prices continue to fall (short version)

    Gasoline and Diesel Fuel Update (EIA)

    short version) The U.S. average retail price for regular gasoline fell to $3.61 a gallon on Monday. That's down 3.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington.

  16. Gasoline prices continue to fall (short version)

    Gasoline and Diesel Fuel Update (EIA)

    short version) The U.S. average retail price for regular gasoline fell to $3.52 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  17. Gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.44 a gallon on Monday. That's up 6.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  18. Gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.48 a gallon on Monday. That's up 3 ½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  19. Gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.51 a gallon on Monday. That's up 3.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  20. Gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.55 a gallon on Monday. That's up 3½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.