National Library of Energy BETA

Sample records for tons origin state

  1. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  2. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  3. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  4. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  5. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  6. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  7. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  8. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  9. Domestic Coal Distribution 2009 Q1 by Origin State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Q1 by Origin State: Alabama (1000 Short Tons) 1 58 Domestic Coal Distribution 2009 Q1 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity...

  10. Domestic Coal Distribution 2009 Q2 by Origin State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Q2 by Origin State: Alabama (1000 Short Tons) 1 58 Domestic Coal Distribution 2009 Q2 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity...

  11. Table 7.4 Coal Imports by Country of Origin, 2000-2011 (Short Tons)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Imports by Country of Origin, 2000-2011 (Short Tons) Year Australia New Zealand Canada Mexico Colombia Venezuela China India Indonesia Europe South Africa Other Total Norway Poland Russia Ukraine United Kingdom Other Total 2000 167,595 0 1,923,434 6,671 7,636,614 2,038,774 19,646 205 718,149 0 0 1,212 0 238 0 1,450 0 85 12,512,623 2001 315,870 24,178 2,571,415 8,325 11,176,191 3,335,258 109,877 1,169 882,455 15,933 514,166 219,077 0 75,704 12 824,892 440,408 97,261 19,787,299 2002 821,280 0

  12. Origin State Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama Alabama W W W W W W W W W W W Alabama Georgia W W W W W W W W W W W Alabama Illinois - - - - - W W...

  13. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    Origin State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal

  14. U.S. Domestic and Foreign Coal Distribution by State of Origin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (thousand short tons) Coal Exports Coal Origin State and Region Domestic Distribution By Coal Mines By Brokers & Traders* Total Exports Total Distribution Alabama 10,679.56...

  15. ORIGINAL UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION

    Energy Savers [EERE]

    ORIGINAL UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION III 1050 Arch Street Philadelphia, Pennsylvania 10103-2029 November 15, 2012 I 'D.J cri rn n n~ nrv I Kimberly D. Bose, Secretary Federal Energy Regulatory Commission 888 First Street NE, Room 1A Washington, DC 20426 ~s- ~l RE: EPA Region 3 Seeping Comments in Response to FERC's Netic&iklnfent ton= Prepare an Environmental Assessment (EA) for the Planned Cove Po@P " g Liquefaction Project; FERC Docket Ne. PF12-16-000

  16. EIA - Distribution of U.S. Coal by Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State Glossary Home > Coal> Distribution of U.S. Coal by Origin State Distribution of U.S. Coal by Origin State Release Date: January 2006 Next Release Date: 2006...

  17. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  18. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  19. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  20. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  1. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  2. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  3. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  4. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  5. Origin State Destination State STB EIA STB EIA Alabama

    Gasoline and Diesel Fuel Update (EIA)

    81.4% Illinois Alabama W W W W W W W W Illinois Florida W W W W W W W W Transportation cost per short ton (nominal) Shipments with transportation rates over total shipments...

  6. Domestic and Foreign Distribution of U.S. Coal by State of Origin...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 (Thousand Short Tons) " "State Region ","Domestic ","Foreign ","Total "," " "Alabama",18367,3744,22111," " "Alaska",957,546,1502," " "Arizona",13041,"-",13041," "...

  7. By Coal Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    California (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total...

  8. Year","Quarter","Destination State","Origin State","Consumer Type","Transportati

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State","Origin State","Consumer Type","Transportation Mode","Coal Volume (short tons)" 2012,3,"Alabama","Alabama","Coke Plant","Railroad",25445 2012,3,"Alabama","Alabama","Coke Plant","Truck",141202 2012,3,"Alabama","Alabama","Electric Power Sector","Railroad",1051202

  9. Year","Quarter","Origin State","Destination State","Consumer Type","Transportati

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State","Destination State","Consumer Type","Transportation Mode","Coal Volume (short tons)" 2012,3,"Alabama","Alabama","Electric Power Sector","Railroad",1051202 2012,3,"Alabama","Alabama","Coke Plant","Railroad",25445 2012,3,"Alabama","Alabama","Industrial Plants Excluding Coke","Railroad",10029

  10. U.S. Billion-Ton Update. Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect (OSTI)

    none,

    2011-08-01

    This report is an update to the 2005 Billion-Ton Study that addresses shotcomings and questions that arose from the original report..

  11. Domestic Distribution of U.S. Coal by Origin State, Consumer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State, Consumer, Destination and Method of Transportation Home > Coal > Annual Coal Distribution > Coal Origin Map > Domestic Distribution by Origin: Alaska Data For: 2002...

  12. E TON Solar Tech | Open Energy Information

    Open Energy Info (EERE)

    Solar Tech Jump to: navigation, search Name: E-TON Solar Tech Place: Tainan, Taiwan Zip: 709 Product: Taiwan-based manufacturer of PV cells. Coordinates: 22.99721, 120.180862...

  13. Domestic Distribution of U.S. Coal by Origin State,

    U.S. Energy Information Administration (EIA) Indexed Site

    of transportation. Also provided is a summary of foreign coal distribution by coal-exporting State. This Final 2008 Coal Distribution Report - Annual, supersedes the Preliminary...

  14. Bioenergy Impacts … Billion Dry Tons

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Oak Ridge National Laboratory published research that shows that U.S. resources could sustainably produce by 2030 at least one billion dry tons of non-food biomass resources, yielding up to 60 billion gallons of biofuels, as well as bio- based chemicals, products, and electricity. This could potentially reduce greenhouse gas emissions by up to 500 million tons per year, create 1.5 million new jobs, and keep about $200 billion extra in the U.S. economy each year. Research is showing that U.S.

  15. DETERMINING THE ORIGINS OF ELECTRONIC STATES IN SEMICONDUCTOR NANOSTRUCTURES

    SciTech Connect (OSTI)

    Goldman, Rachel

    2014-12-16

    With support from this program, we have generated key results in quantum dot (QD) formation, strain/electronic coupling, measurement and modeling of confined states, and examination of the influence of QDs on thermoelectric and photovoltaic properties of nanocomposite structures. This final report contains a description of our key findings followed by a list of personnel supported and publications generated.

  16. 11,202,720 Metric Tons of CO2 Injected as of October 14, 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    This carbon dioxide (CO2) has been injected in the United States as part of DOEs Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is equivalent to the...

  17. 11,970,363 Metric Tons of CO2 Injected as of February 23, 2016 | Department

    Energy Savers [EERE]

    of Energy 11,970,363 Metric Tons of CO2 Injected as of February 23, 2016 11,970,363 Metric Tons of CO2 Injected as of February 23, 2016 This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is equivalent to the annual greenhouse gas emissions from 210,526 passenger vehicles. The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program

  18. 11,202,720 Metric Tons of CO2 Injected as of October 14, 2015 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 11,202,720 Metric Tons of CO2 Injected as of October 14, 2015 11,202,720 Metric Tons of CO2 Injected as of October 14, 2015 This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is equivalent to the annual greenhouse gas emissions from 210,526 passenger vehicles. The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program

  19. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    SciTech Connect (OSTI)

    Sallis, S.; Williams, D. S.; Butler, K. T.; Walsh, A.; Quackenbush, N. F.; Junda, M.; Podraza, N. J.; Fischer, D. A.; Woicik, J. C.; White, B. E.; Piper, L. F. J.

    2014-06-09

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  20. Billion Ton Study-A Historical Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Billion Ton Study-A Historical Perspective Billion Ton Study-A Historical Perspective Breakout Session 1A: Biomass Feedstocks for the Bioeconomy Billion Ton Study-A Historical Perspective Bryce Stokes, Senior Advisor, CNJV PDF icon stokes_bioenergy_2015.pdf More Documents & Publications Biomass Econ 101: Measuring the Technological Improvements on Feedstocks Costs WEBINAR: A CHANGING MARKET FOR BIOFUELS AND BIOPRODUCTS U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts

  1. Department of Energy Releases New 'Billion-Ton' Study Highlighting

    Energy Savers [EERE]

    Opportunities for Growth in Bioenergy Resources | Department of Energy New 'Billion-Ton' Study Highlighting Opportunities for Growth in Bioenergy Resources Department of Energy Releases New 'Billion-Ton' Study Highlighting Opportunities for Growth in Bioenergy Resources August 10, 2011 - 3:41pm Addthis Washington, D.C. - The U.S. Department of Energy today released a report - 2011 U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry - detailing U.S. biomass

  2. Origin State Destination State

    Gasoline and Diesel Fuel Update (EIA)

    W W - - - Wyoming Iowa 12.31 12.03 W W W - No deliveries reported W Data Withheld Source: Form EIA-923 Power Plant Operations Report Real values derived using the GDP...

  3. Origin State Destination State

    Gasoline and Diesel Fuel Update (EIA)

    W 11.42 12.78 W 11.9 Wyoming Indiana W W - - - Wyoming Iowa 13.36 13.20 W W W - No deliveries reported W Data Withheld Source: Form EIA-923 Power Plant Operations Report...

  4. Origin State Destination State

    Gasoline and Diesel Fuel Update (EIA)

    Alabama Kentucky - W - - - Alabama New Jersey W - - - - Alabama Pennsylvania - W - - - Arizona Arizona W W W W W Colorado Alabama 34.52 30.35 27.67 -10.5 -8.8 Colorado Arizona...

  5. Origin State Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Alabama Illinois - - - - - W W W W - W Colorado Alabama - W W W W W W W W - W Colorado Arizona W W W W W W W W W W W Colorado Arkansas - - - - W W W W - - - Colorado California - -...

  6. Origin State Destination State

    Gasoline and Diesel Fuel Update (EIA)

    Alabama Kentucky - W - - - Alabama New Jersey W - - - - Alabama Pennsylvania - W - - - Arizona Arizona W W W W W Colorado Alabama 31.79 27.66 24.93 -11.5 -9.9 Colorado Arizona...

  7. Origin State Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Kansas W W W W W - - - - - - Colorado Kentucky W W W W W W W W W W W Colorado Massachusetts - - - W W - - - - - - Colorado Michigan - - - W - - - - - - - Colorado Minnesota W...

  8. Origin State Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9.80 3.32 -17.1 -66.1 Kentucky Maryland - W - - - Kentucky Minnesota W W - - - Kentucky North Carolina - - 34.18 - - Kentucky Pennsylvania - - W - - Kentucky South Carolina - -...

  9. Origin State Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8.93 2.99 -18.0 -66.5 Kentucky Maryland - W - - - Kentucky Minnesota W W - - - Kentucky North Carolina - - 30.79 - - Kentucky Pennsylvania - - W - - Kentucky South Carolina - -...

  10. ENERGY-DEPENDENT POWER SPECTRAL STATES AND ORIGIN OF APERIODIC VARIABILITY IN BLACK HOLE BINARIES

    SciTech Connect (OSTI)

    Yu Wenfei; Zhang Wenda, E-mail: wenfei@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2013-06-20

    We found that the black hole candidate MAXI J1659-152 showed distinct power spectra, i.e., power-law noise (PLN) versus band-limited noise (BLN) plus quasi-periodic oscillations (QPOs) below and above about 2 keV, respectively, in observations with Swift and the Rossi X-ray Timing Explorer during the 2010 outburst, indicating a high energy cutoff of the PLN and a low energy cutoff of the BLN and QPOs around 2 keV. The emergence of the PLN and the fading of the BLN and QPOs initially took place below 2 keV when the source entered the hard intermediate state and settled in the soft state three weeks later. The evolution was accompanied by the emergence of the disk spectral component and decreases in the amplitudes of variability in the soft and hard X-ray bands. Our results indicate that the PLN is associated with an optically thick disk in both hard and intermediate states, and the power spectral state is independent of the X-ray energy spectral state in a broadband view. We suggest that in the hard or intermediate state, the BLN and QPOs emerge from the innermost hot flow subjected to Comptonization, while the PLN originates from the optically thick disk farther out. The energy cutoffs of the PLN and the BLN or QPOs then follow the temperature of the seed photons from the inner edge of the optically thick disk, while the high frequency cutoff of the PLN follows the orbital frequency of the inner edge of the optically thick disk as well.

  11. Energy Department Sponsored Project Captures One Millionth Metric Ton of

    Office of Environmental Management (EM)

    CO2 | Department of Energy Sponsored Project Captures One Millionth Metric Ton of CO2 Energy Department Sponsored Project Captures One Millionth Metric Ton of CO2 June 27, 2014 - 11:09am Addthis An aerial view of Air Products’ steam methane reforming facility at Port Arthur, Texas. | Photo courtesy of Air Products and Chemicals Inc. An aerial view of Air Products' steam methane reforming facility at Port Arthur, Texas. | Photo courtesy of Air Products and Chemicals Inc. Allison Lantero

  12. Picture of the Week: The 100-Ton Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 The 100-Ton Test Before the historic Trinity test on July 16th, 1945, Los Alamos scientists conducted a host of other experiments designed to ensure that they would be ready to successfully measure the full force, efficiency, energy release, shock and radiological phenomena of the blast. July 9, 2015 Trinity 1945 x View extra-large image on Flickr » Before the historic Trinity test on July 16th, 1945, Los Alamos scientists conducted a host of other experiments designed to ensure that they

  13. Case studies of energy efficiency financing in the original five pilot states, 1993-1996

    SciTech Connect (OSTI)

    Farhar, B.C.; Collins, N.E.; Walsh, R.W.

    1997-05-01

    The purpose of this report is to document progress in state-level programs in energy efficiency financing programs that are linked with home energy rating systems. Case studies are presented of programs in five states using a federal pilot program to amortize the costs of home energy improvements. The case studies present background information, describe the states` program, list preliminary evaluation data and findings, and discuss problems and solution encountered in the programs. A comparison of experiences in pilot states will be used to provide guidelines for program implementers, federal agencies, and Congress. 5 refs.

  14. Domestic and Foreign Distribution of U.S. Coal by State of Origin...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 " "State Region ","Domestic ","Foreign ","Total "," " "Alabama ",14828,4508,19336," " "Alaska ",825,698,1524," " "Arizona ",13143,"-",13143," " "Arkansas ",13,"-",13," "...

  15. DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it...

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline DOE Will Dispose of 34 Metric Tons ... DOE Will Dispose of 34 Metric Tons of ...

  16. U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturers Save 1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments U.S. Manufacturers Save 1 Billion, 11 Million Tons of CO2 through Energy Efficiency...

  17. U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Manufacturers Save 1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments U.S. Manufacturers Save 1 Billion, 11 Million Tons of CO2 through Energy...

  18. DOE to Remove 200 Metric Tons of Highly Enriched Uranium from...

    Energy Savers [EERE]

    to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons ...

  19. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 620 1 7 * 105 * 3112 Grain and Oilseed Milling 318 15,464 * * 117 * 5 0 29 *

  20. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 620 1 7 * 105 * 3112 Grain and Oilseed Milling 318 15,464 * * 117 * 5 0 29 *

  1. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 3 0 * 2 * 0 * * 3112 Grain and Oilseed

  2. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 618 1 7 * 107

  3. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    4.1 Offsite-Produced Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,124 73,551 4 3

  4. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry | Department of Energy Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry An update to the 2005 report, "Biomass as a Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply" PDF icon billion_ton_update.pdf More Documents & Publications ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP Biomass Program

  5. Neutrino physics with multi-ton scale liquid xenon detectors

    SciTech Connect (OSTI)

    Baudis, L.; Ferella, A.; Kish, A.; Manalaysay, A.; Undagoitia, T. Marrodn; Schumann, M., E-mail: laura.baudis@physik.uzh.ch, E-mail: alfredo.ferella@lngs.infn.it, E-mail: alexkish@physik.uzh.ch, E-mail: aaronm@ucdavis.edu, E-mail: marrodan@mpi-hd.mpg.de, E-mail: marc.schumann@lhep.unibe.ch [Physik Institut, University of Zrich, Winterthurerstrasse 190, Zrich, CH-8057 (Switzerland)

    2014-01-01

    We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 230 keV, where the sensitivity to solar pp and {sup 7}Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ? 2 10{sup ?48} cm{sup 2} and WIMP masses around 50 GeV?c{sup ?2}, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ? 6 GeV?c{sup ?2} to cross sections above ? 4 10{sup ?45}cm{sup 2}. DARWIN could reach a competitive half-life sensitivity of 5.6 10{sup 26} y to the neutrinoless double beta decay of {sup 136}Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.

  6. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect (OSTI)

    Downing, Mark; Eaton, Laurence M; Graham, Robin Lambert; Langholtz, Matthew H; Perlack, Robert D; Turhollow Jr, Anthony F; Stokes, Bryce; Brandt, Craig C

    2011-08-01

    The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil prices topped $70 per barrel (bbl) and catastrophic hurricanes in the Gulf Coast shut down a significant fraction of U.S. refinery capacity. The following year, oil approached $80 per bbl due to supply concerns, as well as continued political tensions in the Middle East. The Energy Independence and Security Act of 2007 (EISA) was enacted in December of that year. By the end of December 2007, oil prices surpassed $100 per bbl for the first time, and by mid-summer 2008, prices approached $150 per bbl because of supply concerns, speculation, and weakness of the U.S. dollar. As fast as they skyrocketed, oil prices fell, and by the end of 2008, oil prices dropped below $50 per bbl, falling even more a month later due to the global economic recession. In 2009 and 2010, oil prices began to increase again as a result of a weak U.S. dollar and the rebounding of world economies.

  7. Table 4.8 Coal Demonstrated Reserve Base, January 1, 2011 (Billion Short Tons)

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Coal Demonstrated Reserve Base, January 1, 2011 (Billion Short Tons) Region and State Anthracite Bituminous Coal Subbituminous Coal Lignite Total Underground Surface Underground Surface Underground Surface Surface 1 Underground Surface Total Appalachian 4.0 3.3 68.2 21.9 0.0 0.0 1.1 72.1 26.3 98.4 Alabama .0 .0 .9 2.1 .0 .0 1.1 .9 3.1 4.0 Kentucky, Eastern .0 .0 .8 9.1 .0 .0 .0 .8 9.1 9.8 Ohio .0 .0 17.4 5.7 .0 .0 .0 17.4 5.7 23.1 Pennsylvania 3.8 3.3 18.9 .8 .0 .0 .0 22.7 4.2 26.9 Virginia .1

  8. Taking the One-Metric-Ton Challenge | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Taking the One-Metric-Ton ... Taking the One-Metric-Ton Challenge Posted: January 13, 2016 - 4:46pm NNSA Uranium Program Manager Tim Driscoll speaks with the One-Metric-Ton Challenge team in Building 9212. The team has undertaken an extensive dedicated maintenance effort to improve metal production equipment reliability and reduce unexpected down time, with an end goal of significantly increasing purified metal production by fiscal year 2017. Last year, NNSA Uranium Program Manager Tim Driscoll

  9. U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S.

  10. Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) |

    Office of Environmental Management (EM)

    Department of Energy Heat Pumps (5.4 >=< 20 Tons) Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) Vary equipment size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Project Type New Installation Replacement New Installation Condenser Type Air Source Water Source Air Source Existing Capacity * ton - Existing Cooling Efficiency * EER -

  11. Removal of 1,082-Ton Reactor Among Richland Operations Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from groundwater across the site ahead of schedule and pumped a record volume of water through treatment facilities to remove contamination, with more than 130 tons of...

  12. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama ...

  13. DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin

    Broader source: Energy.gov [DOE]

    Building on an initial injection project of 10,000 metric tons of carbon dioxide into a Michigan geologic formation, a U.S. Department of Energy team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change.

  14. Performance and results of the LBNE 35 ton membrane cryostat prototype

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Montanari, David; Adamowski, Mark; Hahn, Alan; Norris, Barry; Reichenbacher, Juergen; Rucinski, Russell; Stewart, Jim; Tope, Terry

    2015-07-15

    We report on the performance and commissioning of the first membrane cryostat to be used for scientific application. The Long Baseline Neutrino Experiment (LBNE) has designed and fabricated a membrane cryostat prototype in collaboration with Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI). LBNE has designed and fabricated the supporting cryogenic system infrastructure and successfully commissioned and operated the first membrane cryostat. Original goals of the prototype are: to demonstrate the membrane cryostat technology in terms of thermal performance, feasibility for liquid argon and leak tightness; to demonstrate that we can remove all the impurities from the vessel and achieve the puritymore » requirements in a membrane cryostat without evacuation; to demonstrate that we can achieve and maintain the purity requirements of the liquid argon using mol sieve and copper filters. The purity requirements of a large liquid argon detector such as LBNE are contaminants below 200 parts per trillion (ppt) oxygen equivalent. LBNE is planning the design and construction of a large liquid argon detector. This presentation will present requirements, design and construction of the LBNE 35 ton membrane cryostat prototype, and detail the commissioning and performance. The experience and results of this prototype are extremely important for the development of the LBNE detector.« less

  15. Performance and results of the LBNE 35 ton membrane cryostat prototype

    SciTech Connect (OSTI)

    Montanari, David; Adamowski, Mark; Hahn, Alan; Norris, Barry; Reichenbacher, Juergen; Rucinski, Russell; Stewart, Jim; Tope, Terry

    2015-07-15

    We report on the performance and commissioning of the first membrane cryostat to be used for scientific application. The Long Baseline Neutrino Experiment (LBNE) has designed and fabricated a membrane cryostat prototype in collaboration with Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI). LBNE has designed and fabricated the supporting cryogenic system infrastructure and successfully commissioned and operated the first membrane cryostat. Original goals of the prototype are: to demonstrate the membrane cryostat technology in terms of thermal performance, feasibility for liquid argon and leak tightness; to demonstrate that we can remove all the impurities from the vessel and achieve the purity requirements in a membrane cryostat without evacuation; to demonstrate that we can achieve and maintain the purity requirements of the liquid argon using mol sieve and copper filters. The purity requirements of a large liquid argon detector such as LBNE are contaminants below 200 parts per trillion (ppt) oxygen equivalent. LBNE is planning the design and construction of a large liquid argon detector. This presentation will present requirements, design and construction of the LBNE 35 ton membrane cryostat prototype, and detail the commissioning and performance. The experience and results of this prototype are extremely important for the development of the LBNE detector.

  16. Domestic Coal Distribution 2009 Q1 by Destination State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons) 1 64 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons)...

  17. Domestic Coal Distribution 2009 Q2 by Destination State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons) 1 61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons)...

  18. 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site June 18, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager (970) 257-2145 (Grand Junction, CO) - Today, the Department of Energy (DOE) announced that 6 million tons of uranium mill tailings have been shipped from Moab, Utah, under the

  19. Billion-Ton Update: Home-Grown Energy Resources Across the Nation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Billion-Ton Update: Home-Grown Energy Resources Across the Nation Billion-Ton Update: Home-Grown Energy Resources Across the Nation August 11, 2011 - 3:59pm Addthis Total potential biomass resources by county in the contiguous U.S. from the baseline scenario of the Update (Figure 6.4, page 159) | Map from Billion-Ton Update Total potential biomass resources by county in the contiguous U.S. from the baseline scenario of the Update (Figure 6.4, page 159) | Map from

  20. Moab Marks 6-Million-Ton Cleanup Milestone | Department of Energy

    Office of Environmental Management (EM)

    Moab Marks 6-Million-Ton Cleanup Milestone Moab Marks 6-Million-Ton Cleanup Milestone June 20, 2013 - 12:00pm Addthis At Tuesday's Grand County Council meeting in Utah, Moab Federal Project Director Donald Metzler, center, moves a piece from a plaque representing Moab’s uranium mill tailings pile to a plaque representing the disposal cell in recognition of the site achieving a milestone by shipping 6 million tons of the tailings. Grand County Council Chair Gene Ciarus is on the left and

  1. DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected

    Office of Environmental Management (EM)

    CO2 | Department of Energy Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2 DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2 November 5, 2009 - 12:00pm Addthis Washington, DC - A large-scale carbon dioxide (CO2) storage project in Mississippi has become the fifth worldwide to reach the important milestone of more than 1 million tons injected. As a result, it is helping to both further carbon capture and storage (CCS) as a mitigation strategy

  2. Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds

    Broader source: Energy.gov [DOE]

    The Moab Uranium Mill Tailings Remedial Action Project reached its primary American Recovery and Reinvestment Act milestone ahead of schedule on Wednesday with the disposal of 2 million tons of...

  3. Hanford Landfill Reaches 15 Million Tons Disposed- Waste Disposal Mark Shows Success Cleaning Up River Corridor

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996.

  4. U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Investments | Department of Energy Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments September 25, 2013 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Underscoring the Obama Administration's efforts to double energy productivity by 2030 and help businesses save money and energy, the Energy Department today recognized more than

  5. SO2907, A Putative TonB-dependent Receptor, Is Involved in Dissimilatory

    Office of Scientific and Technical Information (OSTI)

    Iron Reduction by Shewanella oneidensis Strain MR-1 (Journal Article) | SciTech Connect Journal Article: SO2907, A Putative TonB-dependent Receptor, Is Involved in Dissimilatory Iron Reduction by Shewanella oneidensis Strain MR-1 Citation Details In-Document Search Title: SO2907, A Putative TonB-dependent Receptor, Is Involved in Dissimilatory Iron Reduction by Shewanella oneidensis Strain MR-1 Shewanella oneidensis strain MR-1 utilizes soluble and insoluble ferric ions as terminal electron

  6. Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accomplishes Milestone While Doing it Safely | Department of Energy Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely February 27, 2012 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director, (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager, (970) 257-2145

  7. DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear

    Energy Savers [EERE]

    Weapons Stockpile | Department of Energy to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile November 7, 2005 - 12:38pm Addthis Will Be Redirected to Naval Reactors, Down-blended or Used for Space Programs WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's (DOE) National Nuclear Security Administration (NNSA) will

  8. Photo of the Week: Smashing Atoms with 80-ton Magnets | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy The cyclotron, invented by Ernest Lawrence in the 1930s, is a unique circular particle accelerator, which Lawrence himself referred to as a "proton merry-go-round." In reality, the cyclotron specialized in smashing atoms. Part of this atom-smashing process requires very large, very heavy magnets -- sometimes weighing up to 220 tons. In this photo, workers at the Federal Telegraph facility in Menlo Park, California, are smoothing two castings for 80-ton magnets for use in one

  9. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Supply for a Bioenergy and Bioproducts Industry U.S. BILLI N-TON UPDATE U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry A Study Sponsored by U.S. Department of Energy Energy Effciency and Renewable Energy Offce of the Biomass Program August 2011 Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6335 managed by UT-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 This report was prepared as an account of

  10. Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of

    Office of Environmental Management (EM)

    soil and debris disposed of from D, H Reactor Areas | Department of Energy Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of soil and debris disposed of from D, H Reactor Areas Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of soil and debris disposed of from D, H Reactor Areas January 11, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE (509) 376-5365, Cameron.Hardy@rl.doe.gov Dieter Bohrmann, Ecology (509) 372-7954,

  11. DOE Moab Project Safely Removes 7 Million Tons of Mill Tailings |

    Office of Environmental Management (EM)

    Department of Energy Moab Project Safely Removes 7 Million Tons of Mill Tailings DOE Moab Project Safely Removes 7 Million Tons of Mill Tailings July 30, 2014 - 12:00pm Addthis View of the Crescent Junction disposal cell, looking northwest. From center left to right, the photo shows final cover, interim cover, tailings, and excavated cell ready to be filled. View of the Crescent Junction disposal cell, looking northwest. From center left to right, the photo shows final cover, interim cover,

  12. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply, April 2005

    SciTech Connect (OSTI)

    2005-04-01

    The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the countrys present petroleum consumption the goal set by the Biomass R&D Technical Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

  13. Planning for the 400,000 tons/year AISI ironmaking demonstration plant

    SciTech Connect (OSTI)

    Aukrust, E. . AISI Direct Steelmaking Program)

    1993-01-01

    The American Iron and Steel Institute (AISI) has formulated a four-year program to design, construct, and operate a 400,000 net ton per year ironmaking demonstration plant. The plant will employ the coal-based ironmaking process developed under a 1989 cooperative agreement with DOE. AISI will manage the design and construction to be completed in the first two years and operate the plant for the second two years with a variety or ores, coals, and fluxes. Campaigns of increasing length are planned to optimize operations. After successful operation, the plant will be taken over by the host company. Results of studies to date indicate that, on a commercial scale, the AISI process will use 27% less energy and have variable operating costs $10 per ton lower and capital costs of $160 per annual ton, compared to the $250 per annual ton rebuild cost for the coke oven-blast furnace process it will replace. The process will enable the domestic steel industry to become more competitive by reducing its capital and operating cost. Furthermore, by eliminating the pollution problems associated with coke production and by completely enclosing the smelting reactions, this process represents a major step towards an environmentally friendly steel industry.

  14. Energy Department Project Captures and Stores One Million Metric Tons of Carbon

    Broader source: Energy.gov [DOE]

    As part of President Obama’s all-of-the-above energy strategy, the Department of Energy announced today that its Illinois Basin-Decatur Project successfully captured and stored one million metric tons of carbon dioxide (CO2) and injected it into a deep saline formation.

  15. Localization of metal-induced gap states at the metal-insulator interface: Origin of flux noise in SQUIDs and superconducting qubits

    SciTech Connect (OSTI)

    Choi, SangKook; Lee, Dung-Hai; Louie, Steven G.; Clarke, John

    2009-10-10

    The origin of magnetic flux noise in Superconducting Quantum Interference Devices with a power spectrum scaling as 1/f (f is frequency) has been a puzzle for over 20 years. This noise limits the decoherence time of superconducting qubits. A consensus has emerged that the noise arises from fluctuating spins of localized electrons with an areal density of 5 x 10(17)m(-2). We show that, in the presence of potential disorder at the metal-insulator interface, some of the metal-induced gap states become localized and produce local moments. A modest level of disorder yields the observed areal density.

  16. DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for

    National Nuclear Security Administration (NNSA)

    Civilian Reactors | National Nuclear Security Administration Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for Civilian Reactors | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations

  17. Y-12's rough roads smoothed over with 23,000 tons of recycled asphalt |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration rough roads smoothed over with 23,000 tons of recycled asphalt | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  18. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    United States Electricity Profile 2013 Table 1. 2013 Summary statistics (United States) Item Value Primary energy source Coal Net summer capacity (megawatts) 1,060,064 Electric utilities 616,799 IPP & CHP 443,264 Net generation (megawatthours) 4,065,964,067 Electric utilities 2,388,058,409 IPP & CHP 1,677,905,658 Emissions Sulfur Dioxide (short tons) 3,978,753 Nitrogen Oxide (short tons) 2,411,564 Carbon Dioxide (thousand metric tons) 2,172,355 Sulfur Dioxide (lbs/MWh) 2.0 Nitrogen Oxide

  19. How well will ton-scale dark matter direct detection experiments constrain minimal supersymmetry?

    SciTech Connect (OSTI)

    Akrami, Yashar; Savage, Christopher; Scott, Pat; Conrad, Jan; Edsj, Joakim E-mail: savage@fysik.su.se E-mail: conrad@fysik.su.se

    2011-04-01

    Weakly interacting massive particles (WIMPs) are amongst the most interesting dark matter (DM) candidates. Many DM candidates naturally arise in theories beyond the standard model (SM) of particle physics, like weak-scale supersymmetry (SUSY). Experiments aim to detect WIMPs by scattering, annihilation or direct production, and thereby determine the underlying theory to which they belong, along with its parameters. Here we examine the prospects for further constraining the Constrained Minimal Supersymmetric Standard Model (CMSSM) with future ton-scale direct detection experiments. We consider ton-scale extrapolations of three current experiments: CDMS, XENON and COUPP, with 1000 kg-years of raw exposure each. We assume energy resolutions, energy ranges and efficiencies similar to the current versions of the experiments, and include backgrounds at target levels. Our analysis is based on full likelihood constructions for the experiments. We also take into account present uncertainties on hadronic matrix elements for neutralino-quark couplings, and on halo model parameters. We generate synthetic data based on four benchmark points and scan over the CMSSM parameter space using nested sampling. We construct both Bayesian posterior PDFs and frequentist profile likelihoods for the model parameters, as well as the mass and various cross-sections of the lightest neutralino. Future ton-scale experiments will help substantially in constraining supersymmetry, especially when results of experiments primarily targeting spin-dependent nuclear scattering are combined with those directed more toward spin-independent interactions.

  20. Original Signatures on File

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Original Signatures on File

  1. Table 11.4 Nitrous Oxide Emissions, 1980-2009 (Thousand Metric Tons of Nitrous Oxide)

    U.S. Energy Information Administration (EIA) Indexed Site

    Nitrous Oxide Emissions, 1980-2009 (Thousand Metric Tons of Nitrous Oxide) Year Energy Sources Waste Management Agricultural Sources Industrial Processes 3 Total Mobile Combustion 1 Stationary Combustion 2 Total Waste Combustion Human Sewage in Wastewater Total Nitrogen Fertilization of Soils Crop Residue Burning Solid Waste of Domesticated Animals Total 1980 60 44 104 1 10 11 364 1 75 440 88 642 1981 63 44 106 1 10 11 364 2 74 440 84 641 1982 67 42 108 1 10 11 339 2 74 414 80 614 1983 71 43 114

  2. Occidental Chemical's Energy From Waste facility: 3,000,000 tons later

    SciTech Connect (OSTI)

    Blasins, G.F. )

    1988-01-01

    Occidental Chemical's Energy From Waste's cogeneration facility continues to be one of the most successful RDF plants in the U.S. The facility began operation in 1980 and was an operational success after a lengthy 2-1/2 year start-up and redesign, utilizing the air classification technology to produce RDF. In 1984, the plant was converted to a simplified shred and burn concept, significantly improving overall economics and viability of the operation. After processing 3.0 million tons the facility is a mature operation with a well developed experience base in long range operation and maintenance of the equipment utilized for processing and incinerating municipal solid waste.

  3. Table 2. 2011 State energy-related carbon dioxide emissions by...

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 State energy-related carbon dioxide emissions by fuel " ,"million metric tons of carbon dioxide",,,,,"shares" "State","Coal","Petroleum","Natural Gas ","Total",,"Coal","Petrol...

  4. Table 3. 2011 State energy-related carbon dioxide emissions by...

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 State energy-related carbon dioxide emissions by sector " "million metric tons of carbon dioxide" "State","Commercial","Electric Power","Residential","Industrial","Transportat...

  5. Table 1. State energy-related carbon dioxide emissions by year...

    U.S. Energy Information Administration (EIA) Indexed Site

    State energy-related carbon dioxide emissions by year (2000-2011)" "million metric tons of carbon dioxide" ,,,"Change" ,,,"2000 to 2011" "State",2000,2001,2002,...

  6. Cracked lifting lug welds on ten-ton UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Dorning, R.E.

    1991-12-31

    Ten-ton, Type 48X, UF{sub 6} cylinders are used at the Portsmouth Gaseous Diffusion Plant to withdraw enriched uranium hexafluoride from the cascade, transfer enriched uranium hexafluoride to customer cylinders, and feed enriched product to the cascade. To accomplish these activities, the cylinders are lifted by cranes and straddle carriers which engage the cylinder lifting lugs. In August of 1988, weld cracks on two lifting lugs were discovered during preparation to lift a cylinder. The cylinder was rejected and tagged out, and an investigating committee formed to determine the cause of cracking and recommend remedial actions. Further investigation revealed the problem may be general to this class of cylinder in this use cycle. This paper discusses the actions taken at the Portsmouth site to deal with the cracked lifting lug weld problem. The actions include inspection activities, interim corrective actions, metallurgical evaluation of cracked welds, weld repairs, and current monitoring/inspection program.

  7. Table 11.3 Methane Emissions, 1980-2009 (Million Metric Tons of Methane)

    U.S. Energy Information Administration (EIA) Indexed Site

    Methane Emissions, 1980-2009 (Million Metric Tons of Methane) Year Energy Sources Waste Management Agricultural Sources Industrial Processes 9 Total 5 Coal Mining Natural Gas Systems 1 Petroleum Systems 2 Mobile Com- bustion 3 Stationary Com- bustion 4 Total 5 Landfills Waste- water Treatment 6 Total 5 Enteric Fermen- tation 7 Animal Waste 8 Rice Cultivation Crop Residue Burning Total 5 1980 3.06 4.42 NA 0.28 0.45 8.20 10.52 0.52 11.04 5.47 2.87 0.48 0.04 8.86 0.17 28.27 1981 2.81 5.02 NA .27

  8. Table 7.2 Coal Production, 1949-2011 (Short Tons)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production, 1949-2011 (Short Tons) Year Rank Mining Method Location Total 1 Bituminous Coal 1 Subbituminous Coal Lignite Anthracite 1 Underground Surface 1 East of the Mississippi 1 West of the Mississippi 1 1949 437,868,000 [2] [2] 42,702,000 358,854,000 121,716,000 444,199,000 36,371,000 480,570,000 1950 516,311,000 [2] [2] 44,077,000 421,000,000 139,388,000 524,374,000 36,014,000 560,388,000 1951 533,665,000 [2] [2] 42,670,000 442,184,000 134,151,000 541,703,000 34,632,000 576,335,000

  9. Table 7.5 Coal Exports by Country of Destination, 1960-2011 (Thousand Short Tons)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Exports by Country of Destination, 1960-2011 (Thousand Short Tons) Year Canada Brazil Europe Japan Other 3 Total Belgium 1 Denmark France Germany 2 Italy Nether- lands Spain Turkey United Kingdom Other 3 Total 1960 12,843 1,067 1,116 130 794 4,566 4,899 2,837 331 NA – 2,440 17,113 5,617 1,341 37,981 1961 12,135 994 971 80 708 4,326 4,797 2,552 228 NA – 2,026 15,688 6,614 974 36,405 1962 12,302 1,327 1,289 38 851 5,056 5,978 3,320 766 NA 2 1,848 19,148 6,465 973 40,215 1963 14,557 1,161

  10. Table 7.7 Coal Mining Productivity, 1949-2011 (Short Tons per Employee Hour )

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Mining Productivity, 1949-2011 (Short Tons per Employee Hour 1) Year Mining Method Location Total 2 Underground Surface 2 East of the Mississippi West of the Mississippi Underground Surface 2 Total 2 Underground Surface 2 Total 2 1949 0.68 [3] 1.92 [3] NA NA NA NA NA NA 0.72 1950 .72 [3] 1.96 [3] NA NA NA NA NA NA .76 1951 .76 [3] 2.00 [3] NA NA NA NA NA NA .80 1952 .80 [3] 2.10 [3] NA NA NA NA NA NA .84 1953 .88 [3] 2.22 [3] NA NA NA NA NA NA .93 1954 1.00 [3] 2.48 [3] NA NA NA NA NA NA

  11. Table 7.8 Coke Overview, 1949-2011 (Thousand Short Tons)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke Overview, 1949-2011 (Thousand Short Tons) Year Production Trade Stock Change 2 Consumption 3 Imports Exports Net Imports 1 1949 63,637 279 548 -269 176 63,192 1950 72,718 438 398 40 -659 73,417 1951 79,331 162 1,027 -865 372 78,094 1952 68,254 313 792 -479 419 67,356 1953 78,837 157 520 -363 778 77,696 1954 59,662 116 388 -272 269 59,121 1955 75,302 126 531 -405 -1,248 76,145 1956 74,483 131 656 -525 634 73,324 1957 75,951 118 822 -704 814 74,433 1958 53,604 122 393 -271 675 52,658 1959

  12. Table 7.9 Coal Prices, 1949-2011 (Dollars per Short Ton)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Prices, 1949-2011 (Dollars per Short Ton) Year Bituminous Coal Subbituminous Coal Lignite 1 Anthracite Total Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 1949 4.90 [4] 33.80 [4,R] [4] [4] 2.37 16.35 [R] 8.90 61.38 [R] 5.24 36.14 [R] 1950 4.86 [4] 33.16 [4,R] [4] [4] 2.41 16.44 [R] 9.34 63.73 [R] 5.19 35.41 [R] 1951 4.94 [4] 31.44 [4,R] [4] [4] 2.44 15.53 [R] 9.94 63.26 [R] 5.29 33.67 [R] 1952 4.92 [4] 30.78 [4,R] [4] [4] 2.39 14.95 [R] 9.58 59.94 [R]

  13. Dynamic performance testing of prototype 3 ton air-cooled carrier absorption chiller

    SciTech Connect (OSTI)

    Borst, R.R.; Wood, B.D.

    1985-05-01

    The performance of a prototype 3 ton cooling capacity air-cooled lithium bromide/water absorption chiller was tested using an absorption chiller test facility which was modified to expand its testing capabilities to include air-cooled chillers in addition to water-cooled chillers. Temperatures of the three externally supplied fluid loops: hot water, chilled water, and cooling air, were varied in order to determine the effects this would have on the two principal measures of chiller performance: cooling capacity and thermal coefficient of performance (COP). A number of interrelated factors were identified as contributing to less than expected performance. For comparison, experimental correlations of other investigators for this and other similar absorption chillers are presented. These have been plotted as both contour and three-dimensional performance maps in order to more clearly show the functional dependence of the chiller performance on the fluid loop temperatures.

  14. High temperature experiments on a 4 tons UF6 container TENERIFE program

    SciTech Connect (OSTI)

    Casselman, C.; Duret, B.; Seiler, J.M.; Ringot, C.; Warniez, P.

    1991-12-31

    The paper presents an experimental program (called TENERIFE) whose aim is to investigate the behaviour of a cylinder containing UF{sub 6} when exposed to a high temperature fire for model validation. Taking into account the experiments performed in the past, the modelization needs further information in order to be able to predict the behaviour of a real size cylinder when engulfed in a 800{degrees}C fire, as specified in the regulation. The main unknowns are related to (1) the UF{sub 6} behaviour beyond the critical point, (2) the relationship between temperature field and internal pressure and (3) the equivalent conductivity of the solid UF{sub 6}. In order to investigate these phenomena in a representative way it is foreseen to perform experiments with a cylinder of real diameter, but reduced length, containing 4 tons of UF{sub 6}. This cylinder will be placed in an electrically heated furnace. A confinement vessel prevents any dispersion of UF{sub 6}. The heat flux delivered by the furnace will be calibrated by specific tests. The cylinder will be changed for each test.

  15. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply

    SciTech Connect (OSTI)

    Perlack, R.D.

    2005-12-15

    The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

  16. A Proposal for a Ton Scale Bubble Chamber for Dark Matter Detection

    SciTech Connect (OSTI)

    Collar, Juan; Dahl, C.Eric; Fustin, Drew; Robinson, Alan; Behnke, Ed; Behnke, Joshua; Breznau, William; Connor, Austin; Kuehnemund, Emily Grace; Levine, Ilan; Moan, Timothy; /Indiana U., South Bend /Fermilab

    2010-10-07

    The nature of non-baryonic dark matter is one of the most intriguing questions for particle physics at the start of the 21st century. There is ample evidence for its existence, but almost nothing is known of its properties. WIMPs are a very appealing candidate particle and several experimental campaigns are underway around the world to search for these particles via the nuclear recoils that they should induce. The COUPP series of bubble chambers has played a significant role in the WIMP search. Through a sequence of detectors of increasing size, a number of R&D issues have arisen and been solved, and the technology has now been advanced to the point where the construction of large chambers requires a modest research effort, some development, but mostly just engineering. It is within this context that we propose to build the next COUPP detector - COUPP-500, a ton scale device to be built over the next three years at Fermilab and then deployed deep underground at SNOLAB. The primary advantages of the COUPP approach over other technologies are: (1) The ability to reject electron and gamma backgrounds by arranging the chamber thermodynamics such that these particles do not even trigger the detector. (2) The ability to suppress neutron backgrounds by having the radioactively impure detection elements far from the active volume and by using the self-shielding of a large device and the high granularity to identify multiple bubbles. (3) The ability to build large chambers cheaply and with a choice of target fluids. (4) The ability to increase the size of the chambers without changing the size or complexity of the data acquisition. (5) Sensitivity to spin-dependent and spin-independent WIMP couplings. These key advantages should enable the goal of one background event in a ton-year of exposure to be achieved. The conceptual design of COUPP-500 is scaled from the preceding devices. In many cases all that is needed is a simple scaling up of components previously used. Calibration and R&D are still needed on some aspects of the system. We know we have the ability to distinguish alpha-induced events from nuclear recoils, but we do not yet know whether the combination of material purity and rejection are good enough to run for a year with no alpha background. We also need to have more detailed measurements of the detector threshold and a better understanding of its high gamma rejection. In addition, there are important checks to make on the longevity of the detector components in the hydraulic fluid and on the chemistry of the active fluid. The 2009 PASAG report explicitly supported the construction of the COUPP-500 device in all funding scenarios. The NSF has shown similar enthusiasm. It awarded one of its DUSEL S4 grants to assist in the engineering needed to build COUPP-500. The currently estimated cost of COUPP-500 is $8M, about half the $15M-$20M price tag expected by the PASAG report for a next generation dark matter search experiment. The COUPP-500 device will have a spin independent WIMP-nucleus cross-section sensitivity of 6 x 10{sup -47} cm{sup 2} after a background-free year of running. This device should then provide the benchmark against which all other WIMP searches are measured.

  17. ORIGINAL SIGNED BY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORIGINAL SIGNED BY 9/30/08 9/12/08 ORIGINAL SIGNED BY ORIGINAL SIGNED ORIGINAL SIGNED BY 9/12/08 ORIGINAL SIGNED BY 9/12/08 ORIGINAL SIGNED BY

  18. Table 23. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2013

    Gasoline and Diesel Fuel Update (EIA)

    Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2013 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2013 Table 23. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2013 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2013 Mine Production Range (thousand short tons) Coal-Producing State, Region 1 and Mine Type Above 1,000 Above 500 to 1,000

  19. ORIGINAL SIGNED BY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORIGINAL SIGNED BY 9/12/08 ORIGINAL SIGNED BY 9/12/08 ORIGINAL SIGNED BY

  20. Table 8. Carbon intensity of the economy by State (2000-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    Carbon intensity of the economy by State (2000-2011)" "metric tons energy-related carbon dioxide per million dollars of GDP" ,,,"Change" ,,,"2000 to 2011"...

  1. Nature and Origin of the Cuprate Pseudogap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an energy gap is already present at the Fermi surface in the normal, nonsuperconductive, state. This is known as a pseudogap, and its origin and relationship to superconductivity...

  2. Assessment of Reusing 14-ton, Thin-Wall, Depleted UF{sub 6} Cylinders as LLW Disposal Containers

    SciTech Connect (OSTI)

    O'Connor, D.G.

    2000-11-30

    Approximately 700,000 MT of DUF{sub 6} is stored, or will be produced under a current agreement with the USEC, at the Paducah site in Kentucky, Portsmouth site in Ohio, and ETTP site in Tennessee. On July 21, 1998, the 105th Congress approved Public Law 105-204 (Ref; 1), which directed that facilities be built at the Kentucky and Ohio sites to convert DUF{sub 6} to a stable form for disposition. On July 6, 1999, the Department of Energy (DOE) issued the ''Final Plan for the Conversion of Depleted Uranium Hexafluoride as Required by Public Law 105-204 (Ref. 2), in which DOE committed to develop a Depleted Uranium Hexafluoride Materials Use Roadmap''. On September 1, 2000, DOE issued the Draft Depleted Uranium Hexafluoride Materials Use Roadmap (Ref. 3) (Roadmap), which provides alternate paths for the long-term storage, beneficial use, and eventual disposition of each product form and material that will result from the DUF{sub 6} conversion activity. One of the paths being considered for DUF{sub 6} cylinders is to reuse the empty cylinders as containers to transport and dispose of LLW, including the converted DU. The Roadmap provides results of the many alternate uses and disposal paths for conversion products and the empty DUF{sub 6} storage cylinders. As a part of the Roadmap, evaluations were conducted of cost savings, technical maturity, barriers to implementation, and other impacts. Results of these evaluations indicate that using the DUF{sub 6} storage cylinders as LLW disposal containers could provide moderate cost savings due to the avoided cost of purchasing LLW packages and the avoided cost of disposing of the cylinders. No significant technical or institutional issues were identified that would make using cylinders as LLW packages less effective than other disposition paths. Over 58,000 cylinders have been used, or will be used, to store DUF{sub 6}. Over 51,000 of those cylinders are 14TTW cylinders with a nominal wall thickness of 5/16-m (0.79 cm). These- 14TTW cylinders, which have a nominal diameter of 48 inches and nominally contain 14 tons (12.7 MT) of DUF{sub 6}, were originally designed and fabricated for temporary storage of DUF{sub 6}. They were fabricated from pressure-vessel-grade steels according to the provisions of the ASME Boiler and Pressure Vessel Code (Ref. 4). Cylinders are stored in open yards at the three sites and, due to historical storage techniques, were subject to corrosion. Roughly 10,000 of the 14TTW cylinders are considered substandard (Ref. 5) due to corrosion and other structural anomalies caused by mishandling. This means that approximately 40,000 14TTW cylinders could be made available as containers for LLW disposal In order to demonstrate the use of 14TTW cylinders as LLW disposal containers, several qualifying tasks need to be performed. Two demonstrations are being considered using 14TTW cylinders--one demonstration using contaminated soil and one demonstration using U{sub 3}O{sub 8}. The objective of this report are to determine how much information is known that could be used to support the demonstrations, and how much additional work will need to be done in order to conduct the demonstrations. Information associated with the following four qualifying tasks are evaluated in this report. (1) Perform a review of structural assessments that have been conducted for 14TTW. (2) Develop a procedure for filling 14TTW cylinders with LLW that have been previously washed. (3) Evaluate the transportation requirements for shipping 14TTW cylinders containing LLW. (4) Evaluate the WAC that will be imposed by the NTS. Two assumptions are made to facilitate this evaluation of using DUF{sub 6} cylinders as LLW disposal containers. (1) Only 14TTW cylinders will be considered for use as LLW containers, and (2) The NTS will be the LLW disposal site.

  3. Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?

    SciTech Connect (OSTI)

    Zhou, Nan; Lin, Jiang; Zhou, Nan; Levine, Mark; Fridley, David

    2007-07-01

    China's 11th Five-Year Plan (FYP) sets an ambitious target for energy-efficiency improvement: energy intensity of the country's gross domestic product (GDP) should be reduced by 20% from 2005 to 2010 (NDRC, 2006). This is the first time that a quantitative and binding target has been set for energy efficiency, and signals a major shift in China's strategic thinking about its long-term economic and energy development. The 20% energy intensity target also translates into an annual reduction of over 1.5 billion tons of CO2 by 2010, making the Chinese effort one of most significant carbon mitigation effort in the world today. While it is still too early to tell whether China will achieve this target, this paper attempts to understand the trend in energy intensity in China and to explore a variety of options toward meeting the 20% target using a detailed end-use energy model.

  4. Original Impact Calculations

    Broader source: Energy.gov [DOE]

    Original Impact Calculations, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  5. Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at Ft. Bliss, Texas. Interim report

    SciTech Connect (OSTI)

    Alvarez, R.A.; Yost, D.M.

    1995-11-01

    A technology demonstration program of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles was conducted at FL Bliss, Texas to demonstrate the use of CNG as an alternative fuel. The demonstration program at FL Bliss was the first Army initiative with CNG-fueled vehicles under the legislated Alternative Motor Fuels Act. This Department of Energy (DOE)-supported fleet demonstration consisted of 48 General Services Administration (GSA)-owned, Army-leased 1992 dedicated CNG General Motors (GM) 3/4-ton pickup trucks and four 1993 gasoline-powered Chevrolet 3/4-ton pickup trucks.

  6. dynamic-origin-destination-matrix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamic Origin-Destination Matrix Estimation in TRANSIMS Using Direction-Guided Parallel Heuristic Search Algorithms Adel W. Sadek, Ph.D. Associate Professor University at Buffalo, The State University of New York 233 Ketter Hall Buffalo, NY 14260 Phone: (716) 645-4367 FAX: (716) 645-3733 E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. List of Authors ================ Adel W. Sadek, Ph.D. Shan Huang Liya Guo University at Buffalo, The State

  7. Original Signature on File

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Original Signature on File Page8 of 8 M. EMERGENCY PROCEDURES 1. The owneroperator must maintain an adequately trained onsite RCRA emergency coordinator to direct emergency...

  8. Origin State Destination State STB EIA STB EIA Alabama

    Gasoline and Diesel Fuel Update (EIA)

    Alabama Alabama W 13.59 W 63.63 21.4% 3,612 W 100.0% Alabama Georgia W 19.58 W 82.89 23.6% 538 W 99.9% Alabama Illinois W - - - - - - - Alabama Kentucky - W - W W W - W Alabama...

  9. THE COSMIC ORIGINS SPECTROGRAPH

    SciTech Connect (OSTI)

    Green, James C.; Michael Shull, J.; Snow, Theodore P.; Stocke, John [Department of Astrophysical and Planetary Sciences, University of Colorado, 391-UCB, Boulder, CO 80309 (United States); Froning, Cynthia S.; Osterman, Steve; Beland, Stephane; Burgh, Eric B.; Danforth, Charles; France, Kevin [Center for Astrophysics and Space Astronomy, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Ebbets, Dennis [Ball Aerospace and Technologies Corp., 1600 Commerce Street, Boulder, CO 80301 (United States); Heap, Sara H. [NASA Goddard Space Flight Center, Code 681, Greenbelt, MD 20771 (United States); Leitherer, Claus; Sembach, Kenneth [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Linsky, Jeffrey L. [JILA, University of Colorado and NIST, Boulder, CO 80309-0440 (United States); Savage, Blair D. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Siegmund, Oswald H. W. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Spencer, John; Alan Stern, S. [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Welsh, Barry [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720 (United States); and others

    2012-01-01

    The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in 2009 May, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F{sub {lambda}} Almost-Equal-To 1.0 Multiplication-Sign 10{sup -14} erg cm{sup -2} s{sup -1} A{sup -1}, COS can achieve comparable signal to noise (when compared to Space Telescope Imaging Spectrograph echelle modes) in 1%-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (2009 September-2011 June) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is nine times than sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of 2011 June. COS has measured, for the first time with high reliability, broad Ly{alpha} absorbers and Ne VIII in the intergalactic medium, and observed the He II reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

  10. file://C:\\Documents%20and%20Settings\\TTH\\Local%20Settings\\Tempo

    U.S. Energy Information Administration (EIA) Indexed Site

    Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2003 (Thousand Short Tons) ORIGIN: Alabama State of Destination by Method of...

  11. Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply

    SciTech Connect (OSTI)

    Perlack, Robert D.; Wright, Lynn L.; Turhollow, Anthony F.; Graham, Robin L.; Stokes, Bryce J.; Erbach, Donald C.

    2005-04-01

    The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30% or more of the country's present petroleum consumption.

  12. Human Genome: DOE Origins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Origins Resources with Additional Information Charles DeLisi Charles DeLisi The genesis of the Department of Energy (DOE) human genome project took place when "Charles DeLisi ... conceived of a concerted effort to sequence the human genome under the aegis of the ... DOE. ... In 1985, DeLisi took the reins of DOE's Office of Health and Environmental Research [OHER], the program that supported most Biology in the Department. The origins of DOE's biology program traced to the Manhattan

  13. The Origins of Mass

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-07

    The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

  14. The Origins of Mass

    SciTech Connect (OSTI)

    Lincoln, Don

    2014-07-30

    The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

  15. A nuclear criticality safety assessment of the loss of moderation control in 2 1/2 and 10-ton cylinders containing enriched UF{sub 6}

    SciTech Connect (OSTI)

    Newvahner, R.L.; Pryor, W.A.

    1991-12-31

    Moderation control for maintaining nuclear criticality safety in 2 {1/2}-ton, 10-ton, and 14-ton cylinders containing enriched uranium hexafluoride (UF{sub 6}) has been used safely within the nuclear industry for over thirty years, and is dependent on cylinder integrity and containment. This assessment evaluates the loss of moderation control by the breaching of containment and entry of water into the cylinders. The first objective of this study was to estimate the required amounts of water entering these large UF{sub 6} cylinders to react with, and to moderate the uranium compounds sufficiently to cause criticality. Hypothetical accident situations were modeled as a uranyl fluoride (UO{sub 2}F{sub 2}) slab above a UF{sub 6} hemicylinder, and a UO{sub 2}F{sub 2} sphere centered within a UF{sub 6} hemicylinder. These situations were investigated by computational analyses utilizing the KENO V.a Monte Carlo Computer Code. The results were used to estimate both the masses of water required for criticality, and the limiting masses of water that could be considered safe. The second objective of the assessment was to calculate the time available for emergency control actions before a criticality would occur, i.e., a {open_quotes}safetime{close_quotes}, for various sources of water and different size openings in a breached cylinder. In the situations considered, except the case for a fire hose, the safetime appears adequate for emergency control actions. The assessment shows that current practices for handling moderation controlled cylinders of low enriched UF{sub 6}, along with the continuation of established personnel training programs, ensure nuclear criticality safety for routine and emergency operations.

  16. Helium-Based Soundwave Chiller: Trillium: A Helium-Based Sonic Chiller- Tons of Freezing with 0 GWP Refrigerants

    SciTech Connect (OSTI)

    2010-09-01

    BEETIT Project: Penn State is designing a freezer that substitutes the use of sound waves and environmentally benign refrigerant for synthetic refrigerants found in conventional freezers. Called a thermoacoustic chiller, the technology is based on the fact that the pressure oscillations in a sound wave result in temperature changes. Areas of higher pressure raise temperatures and areas of low pressure decrease temperatures. By carefully arranging a series of heat exchangers in a sound field, the chiller is able to isolate the hot and cold regions of the sound waves. Penn State’s chiller uses helium gas to replace synthetic refrigerants. Because helium does not burn, explode or combine with other chemicals, it is an environmentally-friendly alternative to other polluting refrigerants. Penn State is working to apply this technology on a large scale.

  17. Table 11.1 Carbon Dioxide Emissions From Energy Consumption by Source, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    Carbon Dioxide Emissions From Energy Consumption by Source, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal 3 Natural Gas 4 Petroleum Total 2,9 Biomass 2 Aviation Gasoline Distillate Fuel Oil 5 Jet Fuel Kero- sene LPG 6 Lubri- cants Motor Gasoline 7 Petroleum Coke Residual Fuel Oil Other 8 Total Wood 10 Waste 11 Fuel Ethanol 12 Bio- diesel Total 1949 1,118 270 12 140 NA 42 13 7 329 8 244 25 820 2,207 145 NA NA NA 145 1950 1,152 313 14 168 NA 48 16 9 357 8 273 26 918 2,382 147 NA NA

  18. Table 11.2a Carbon Dioxide Emissions From Energy Consumption: Residential Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    a Carbon Dioxide Emissions From Energy Consumption: Residential Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Electricity 5 Total 2 Biomass 2 Distillate Fuel Oil 4 Kerosene Liquefied Petroleum Gases Total Wood 6 Total 6 1949 121 55 51 21 7 80 66 321 99 99 1950 120 66 61 25 9 95 69 350 94 94 1951 111 81 68 27 10 105 78 374 90 90 1952 103 89 70 27 10 108 85 385 84 84 1953 92 93 71 26 11 108 94 387 78 78 1954 82 104 79 27 12 118 99 404 75 75

  19. Table 11.2c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Coal Coke Net Imports Natural Gas 3 Petroleum Retail Elec- tricity 8 Total 2 Biomass 2 Distillate Fuel Oil 4 Kero- sene LPG 5 Lubri- cants Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Other 7 Total Wood 9 Waste 10 Fuel Ethanol 11 Total 1949 500 -1 166 41 18 3 3 16 8 95 25 209 120 995 44 NA NA 44 1950 531 (s) 184 51 20 4 3 18 8 110 26 239 140 1,095 50 NA NA 50

  20. Table 11.2d Carbon Dioxide Emissions From Energy Consumption: Transportation Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    d Carbon Dioxide Emissions From Energy Consumption: Transportation Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Elec- tricity 7 Total 2 Biomass 2 Aviation Gasoline Distillate Fuel Oil 4 Jet Fuel LPG 5 Lubricants Motor Gasoline 6 Residual Fuel Oil Total Fuel Ethanol 8 Biodiesel Total 1949 161 NA 12 30 NA (s) 4 306 91 443 6 611 NA NA NA 1950 146 7 14 35 NA (s) 5 332 95 481 6 640 NA NA NA 1951 129 11 18 42 NA (s) 6 360 102 529 7 675 NA NA NA

  1. THE A.EROSPACE CORPORATION Suite 4000, 955 L'Enfk Plaza, S. W,, Wash&-ton, D,C: 200.24~ZJ74, Telephone:'(

    Office of Legacy Management (LM)

    -t / . \; ', THE A.EROSPACE CORPORATION Suite 4000, 955 L'Enfk Plaza, S. W,, Wash&-ton, D,C: 200.24~ZJ74, Telephone:'( Mr: Edward DeLaney, NE-23 Division of Facility & Site Decommissioning Projects U.S; Department of Energy Germantown, Maryland 20545 Dear Mr. DeLaney: AUTHORITY REVIEW FOR MED OPERATIONS CONDUCTED AT AMES LABDRATORY :@*oi-l 12) 488-6000 1 I Enclosed please find Attachment 1, I a summary of the facts and issues relating to the authority for remedial action at Ames; of

  2. Table 16. Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method,

    Gasoline and Diesel Fuel Update (EIA)

    Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2013 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Table 16. Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2013 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Continuous 1 Conventional and Other 2 Longwall 3 Total

  3. Table 11.2b Carbon Dioxide Emissions From Energy Consumption: Commercial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    b Carbon Dioxide Emissions From Energy Consumption: Commercial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Electricity 7 Total 2 Biomass 2 Distillate Fuel Oil 4 Kerosene LPG 5 Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Total Wood 8 Waste 9 Fuel Ethanol 10 Total 1949 148 19 16 3 2 7 NA 28 55 58 280 2 NA NA 2 1950 147 21 19 3 2 7 NA 33 66 63 297 2 NA NA 2 1951 125 25 21 4 3 8 NA 34 70 69 289 2 NA NA 2 1952 112 28 22 4 3 8 NA 35 71 73

  4. Table 11.2e Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    e Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Geo- thermal Non- Biomass Waste 5 Total 2 Biomass 2 Distillate Fuel Oil 4 Petroleum Coke Residual Fuel Oil Total Wood 6 Waste 7 Total 1949 187 30 2 NA 30 33 NA NA 250 1 NA 1 1950 206 35 2 NA 35 37 NA NA 278 1 NA 1 1951 235 42 2 NA 29 31 NA NA 308 1 NA 1 1952 240 50 2 NA 31 33 NA NA 323 1 NA 1 1953 260 57 3 NA 38 40 NA NA 358 (s) NA (s)

  5. Scale-up of mild gasification to be a process development unit mildgas 24 ton/day PDU design report. Final report, November 1991--July 1996

    SciTech Connect (OSTI)

    1996-03-01

    From November 1991 to April 1996, Kerr McGee Coal Corporation (K-M Coal) led a project to develop the Institute of Gas Technology (IGT) Mild Gasification (MILDGAS) process for near-term commercialization. The specific objectives of the program were to: design, construct, and operate a 24-tons/day adiabatic process development unit (PDU) to obtain process performance data suitable for further design scale-up; obtain large batches of coal-derived co-products for industrial evaluation; prepare a detailed design of a demonstration unit; and develop technical and economic plans for commercialization of the MILDGAS process. The project team for the PDU development program consisted of: K-M Coal, IGT, Bechtel Corporation, Southern Illinois University at Carbondale (SIUC), General Motors (GM), Pellet Technology Corporation (PTC), LTV Steel, Armco Steel, Reilly Industries, and Auto Research.

  6. origins.indd

    Broader source: Energy.gov (indexed) [DOE]

    was written in conjunction with the 50th anni- versary commemoration of the Nevada Test Site. The history was released at the official celebration held in Las Vegas, Nevada, on December 18, 2000, fifty years after President Harry S. Truman formally designated the site as the location for conducting nuclear weapons tests within the continental United States. The history represents a unique partnership between a field office and two head- quarters offices of the U.S. Department of Energy. The

  7. Originally Released: August 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    August 2009 Revised: October 2009 Next MECS will be conducted in 2010 Table 3.5 Selected Byproducts in Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Waste Blast Pulping Liquor Oils/Tars NAICS Furnace/Coke Petroleum or Wood Chips, and Waste Code(a) Subsector and Industry Total Oven Gases Waste Gas Coke Black Liquor Bark Materials Total United States 311 Food 10 0 3 0 0 7 Q 3112 Grain and Oilseed Milling 7 0 1 0 0 6 *

  8. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    1.2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments NAICS Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 1,186 251 26 16 638 3 147 1 105 * 3112 Grain and Oilseed Milling 318 53 2 1 120

  9. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Trillion Btu. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal and Breeze Other(e) Total United States 311 Food 3 0 * 2 * 0 * * 3112 Grain and Oilseed Milling 3 0 * 2 * 0 0 * 311221 Wet Corn Milling * 0 0 0 0 0 0 * 31131 Sugar Manufacturing * 0 * 0 * 0 * 0 3114 Fruit and Vegetable

  10. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Trillion Btu. NAICS Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 1,186 251 26 16 635 3 147 1 107 3112 Grain and Oilseed Milling 317 53 2 1 118 * 114 0 30 311221 Wet Corn Milling 179 23 * * 52 * 95 0 9 31131 Sugar Manufacturing 82 3 9 1 18 * 31 1 20

  11. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Offsite-Produced Fuel Consumption, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Trillion Btu. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Total United States 311 Food 1,124 251 26 16 635 3 147 1 3112 Grain and Oilseed Milling 316 53 2 1 118 * 114 0 311221 Wet Corn Milling 179 23 * * 52 * 95 0 31131 Sugar Manufacturing 67 3 9 1 18 * 31 1 3114 Fruit

  12. U.S. Energy Information Administration | Annual Coal Distribution Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Annual Coal Distribution Report 2013 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 2013 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector

  13. U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013

    Gasoline and Diesel Fuel Update (EIA)

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 1st Quarter 2013 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  14. U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2014

    Gasoline and Diesel Fuel Update (EIA)

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2014 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 1st Quarter 2014 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  15. U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2013

    Gasoline and Diesel Fuel Update (EIA)

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2013 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 2nd Quarter 2013 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  16. U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2014

    Gasoline and Diesel Fuel Update (EIA)

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2014 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 2nd Quarter 2014 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  17. U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2013

    Gasoline and Diesel Fuel Update (EIA)

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2013 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 3rd Quarter 2013 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  18. U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2013

    Gasoline and Diesel Fuel Update (EIA)

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2013 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 4th Quarter 2013 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  19. U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  20. U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  1. U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 4th Quarter 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  2. file://J:\\mydocs\\Coal\\Distribution\\2003\\distable4.HTML

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State, Consumer, Destination and Method of Transportation, 2003 (Thousand Short Tons) DESTINATION: Alabama State of Origin by Method of Transportation Electricity...

  3. Annual Coal Distribution Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transportation, 2001 (Thousand Short Tons) DESTINATION: Alabama State of Origin by...

  4. Corrosion of aluminum clad spent nuclear fuel in the 70 ton cask during transfer from L area to H-canyon

    SciTech Connect (OSTI)

    Mickalonis, J. I.

    2015-08-01

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material with the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33% was found after 1 year in the cask with a maximum temperature of 263 °C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 °C. These losses are not expected to impact the overall confinement function of the aluminum cladding.

  5. Corrosion of aluminum clad spent nuclear fuel in the 70 ton cask during transfer from L area to H-canyon

    SciTech Connect (OSTI)

    Mickalonis, J. I.

    2015-08-31

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material with the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33 % was found after 1 year in the cask with a maximum temperature of 263 °C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 °C. These losses are not expected to impact the overall confinement function of the aluminum cladding.

  6. CORROSION OF ALUMINUM CLAD SPENT NUCLEAR FUEL IN THE 70 TON CASK DURING TRANSFER FROM L AREA TO H-CANYON

    SciTech Connect (OSTI)

    Mickalonis, J.

    2014-06-01

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material with the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33 % was found after 1 year in the cask with a maximum temperature of 260 {degrees}C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 {degrees}C. These losses are not expected to impact the overall confinement function of the aluminum cladding.

  7. Penser Original Contract - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Procurements Home Prime Contracts Current Solicitations Other Sources DOE RL Contracting Officers DOE RL Contracting Officer Representatives Penser Original Contract Email...

  8. CSC Original Contract - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Original Contract DOE-RL Contracts/Procurements RL Contracts & Procurements Home Prime Contracts Current Solicitations Other Sources DOE RL Contracting Officers DOE RL Contracting Officer Representatives CSC Original Contract Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size The following are links to Portable Document Format (PDF) format documents. You will need the Adobe Acrobat Reader in order to view the documents. The Adobe Acrobat Reader is available at no

  9. Origin Basin Destination State STB EIA STB EIA Northern Appalachian...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Delaware W 28.49 W 131.87 21.6% 59 W 100.0% Northern Appalachian Basin Florida W - - - - - - - Northern Appalachian Basin Indiana W 20.35 W 64.82 31.4% 1,715 W 75.9% Northern...

  10. Origin Basin Destination State STB EIA STB EIA Northern Appalachian...

    Gasoline and Diesel Fuel Update (EIA)

    Florida W 38.51 W 140.84 27.3% 134 W 100.0% Northern Appalachian Basin Georgia - W - W W W - W Northern Appalachian Basin Indiana W 16.14 W 63.35 25.5% 1,681 W 88.5% Northern...

  11. The Origin of Mass (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Origin of Mass Citation Details In-Document Search Title: The Origin of Mass Authors: Boyle, P ; Buchoff, M ; Christ, N ; Izubuchi, T ; Jung, C ; Luu, T ; Mawhinney, R ; Schroeder, C ; Soltz, R ; Vranas, P ; Wasem, J Publication Date: 2013-07-25 OSTI Identifier: 1114700 Report Number(s): LLNL-PROC-641527 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference Resource Relation: Conference: Presented at: Supercomputing 2013, Denver, CO, United States, Nov 17 - Nov 22, 2013 Research Org:

  12. Domestic and Foreign Distribution

    U.S. Energy Information Administration (EIA) Indexed Site

    of U.S. Coal by State of Origin, 2008 Final May 2010 Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2008 (Thousand Short Tons) State Region Domestic Foreign...

  13. Original Workshop Proposal and Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notes for Vis Requirements » Original Workshop Proposal and Description Original Workshop Proposal and Description Visualization Requirements for Computational Science and Engineering Applications Proposal for a DoE Workshop to Be Held 
at the Berkeley Marina Radisson Hotel,
Berkeley, California, June 5, 2002
(date and location are tenative) Workshop Co-organizers: Bernd Hamann 
University of California-Davis Lawrence Berkeley Nat'l Lab. E. Wes Bethel 
Lawrence Berkeley Nat'l Lab.

  14. U.S. Energy Information Administration | Annual Coal Distribution...

    Gasoline and Diesel Fuel Update (EIA)

    short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 6,085 670...

  15. U.S. Energy Information Administration | Annual Coal Distribution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total...

  16. The Origin of the Elements

    SciTech Connect (OSTI)

    Murphy, Edward

    2012-11-20

    The world around us is made of atoms. Did you ever wonder where these atoms came from? How was the gold in our jewelry, the carbon in our bodies, and the iron in our cars made? In this lecture, we will trace the origin of a gold atom from the Big Bang to the present day, and beyond. You will learn how the elements were forged in the nuclear furnaces inside stars, and how, when they die, these massive stars spread the elements into space. You will learn about the origin of the building blocks of matter in the Big Bang, and we will speculate on the future of the atoms around us today.

  17. The Origin of the Elements

    ScienceCinema (OSTI)

    Murphy, Edward

    2014-08-06

    The world around us is made of atoms. Did you ever wonder where these atoms came from? How was the gold in our jewelry, the carbon in our bodies, and the iron in our cars made? In this lecture, we will trace the origin of a gold atom from the Big Bang to the present day, and beyond. You will learn how the elements were forged in the nuclear furnaces inside stars, and how, when they die, these massive stars spread the elements into space. You will learn about the origin of the building blocks of matter in the Big Bang, and we will speculate on the future of the atoms around us today.

  18. Updated State Air Emissions Regulations (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    The Regional Greenhouse Gas Initiative (RGGI) is a program that includes 10 Northeast states that have agreed to curtail and reverse growth in their carbon dioxide (CO2) emissions. The RGGI program includes all electricity generating units with a capacity of at least 25 megawatts and requires an allowance for each ton of CO2 emitted. The first year of mandatory compliance was in 2009.

  19. origins.indd | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    origins.indd origins.indd PDF icon origins.indd More Documents & Publications Fehner and Gosling, Origins of the Nevada Test Site Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I NTS_History.indd

  20. Table 11.5a Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Total (All Sectors), 1989-2010 (Sum of Tables 11.5b and 11.5c; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Total (All Sectors), 1989-2010 (Sum of Tables 11.5b and 11.5c; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total 1989 1,573,566,415 218,383,703 145,398,976 363,247 5,590,014 1,943,302,355 14,468,564 1,059 984,406

  1. Table 11.5b Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Electric Power Sector, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Electric Power Sector, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total 1989 1,520,229,870 169,653,294 133,545,718 363,247 4,365,768 1,828,157,897 13,815,263 832 809,873 6,874

  2. Table 11.5c Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Commercial Sector 8<//td> 1989 2,319,630 1,542,083 637,423 [ –] 803,754 5,302,890 37,398 4

  3. The Origin of Cosmic Rays

    ScienceCinema (OSTI)

    Blasi, Pasquale [INAF/Arcetri-Italy and Fermilab, Italy

    2010-01-08

    Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the ?end? of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At ~1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform ?cosmic ray astronomy?, as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.

  4. U.S. Domestic

    Gasoline and Diesel Fuel Update (EIA)

    2 Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2012 (thousand short tons) Coal Exports Coal Origin State and Region Domestic Distribution By Coal Mines By...

  5. U.S. Domestic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Domestic and foreign distribution of U.S. coal by State of origin, 2011 (thousand short tons) Coal Exports Coal Origin State and Region Domestic Distribution By Coal Mines By...

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Electricity Profile 2013 Table 1. 2013 Summary statistics (Alaska) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 2,384 48 Electric utilities 2,205 39 IPP & CHP 179 50 Net generation (megawatthours) 6,496,822 49 Electric utilities 5,851,727 39 IPP & CHP 645,095 49 Emissions Sulfur dioxide (short tons) 4,202 43 Nitrogen oxide (short tons) 18,043 37 Carbon dioxide (thousand metric tons) 3,768 44 Sulfur dioxide (lbs/MWh) 1.3 29 Nitrogen oxide

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Electricity Profile 2013 Table 1. 2013 Summary statistics (Arizona) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 27,910 13 Electric utilities 20,668 12 IPP & CHP 7,242 16 Net generation (megawatthours) 113,325,986 12 Electric utilities 92,740,582 8 IPP & CHP 20,585,405 15 Emissions Sulfur dioxide (short tons) 23,716 31 Nitrogen oxide (short tons) 59,416 15 Carbon dioxide (thousand metric tons) 55,342 16 Sulfur dioxide (lbs/MWh) 0.4 42 Nitrogen

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    California Electricity Profile 2013 Table 1. 2013 Summary statistics (California) Item Value U.S. Rank Primary energy source Natural Gas Net summer capacity (megawatts) 73,772 2 Electric utilities 28,165 4 IPP & CHP 45,607 2 Net generation (megawatthours) 200,077,115 5 Electric utilities 78,407,643 14 IPP & CHP 121,669,472 4 Emissions Sulfur dioxide (short tons) 2,109 48 Nitrogen oxide (short tons) 96,842 5 Carbon dioxide (thousand metric tons) 57,323 13 Sulfur dioxide (lbs/MWh) 0.0 49

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado Electricity Profile 2013 Table 1. 2013 Summary statistics (Colorado) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 14,769 30 Electric utilities 10,238 28 IPP & CHP 4,531 20 Net generation (megawatthours) 52,937,436 28 Electric utilities 42,508,826 25 IPP & CHP 10,428,610 29 Emissions Sulfur dioxide (short tons) 40,012 27 Nitrogen oxide (short tons) 49,623 21 Carbon dioxide (thousand metric tons) 39,387 20 Sulfur dioxide (lbs/MWh) 1.5 27 Nitrogen

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Electricity Profile 2013 Table 1. 2013 Summary statistics (Connecticut) Item Value U.S. Rank Primary energy source Nuclear Net summer capacity (megawatts) 8,769 35 Electric utilities 152 46 IPP & CHP 8,617 13 Net generation (megawatthours) 35,610,789 38 Electric utilities 50,273 45 IPP & CHP 35,560,516 10 Emissions Sulfur dioxide (short tons) 3,512 45 Nitrogen oxide (short tons) 9,372 45 Carbon dioxide (thousand metric tons) 8,726 41 Sulfur dioxide (lbs/MWh) 0.2 47 Nitrogen

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Electricity Profile 2013 Table 1. 2013 Summary statistics (Delaware) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 3,246 46 Electric utilities 102 47 IPP & CHP 3,144 32 Net generation (megawatthours) 7,760,861 47 Electric utilities 25,986 47 IPP & CHP 7,734,875 34 Emissions Sulfur dioxide (short tons) 2,241 47 Nitrogen oxide (short tons) 2,585 48 Carbon dioxide (thousand metric tons) 4,722 43 Sulfur dioxide (lbs/MWh) 0.6 40 Nitrogen oxide

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia Electricity Profile 2013 Table 1. 2013 Summary statistics (District of Columbia) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 9 51 Electric utilities IPP & CHP 9 51 Net generation (megawatthours) 65,852 51 Electric utilities IPP & CHP 65,852 51 Emissions Sulfur dioxide (short tons) 0 51 Nitrogen oxide (short tons) 148 51 Carbon dioxide (thousand metric tons) 49 50 Sulfur dioxide (lbs/MWh) 0.0 51 Nitrogen oxide (lbs/MWh) 4.5 3

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida Electricity Profile 2013 Table 1. 2013 Summary statistics (Florida) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 58,781 3 Electric utilities 50,967 1 IPP & CHP 7,813 15 Net generation (megawatthours) 222,398,924 3 Electric utilities 202,527,297 1 IPP & CHP 19,871,627 18 Emissions Sulfur dioxide (short tons) 117,797 12 Nitrogen oxide (short tons) 88,345 6 Carbon dioxide (thousand metric tons) 108,431 3 Sulfur dioxide (lbs/MWh) 1.1 34

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia Electricity Profile 2013 Table 1. 2013 Summary statistics (Georgia) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 38,210 7 Electric utilities 28,875 2 IPP & CHP 9,335 10 Net generation (megawatthours) 120,953,734 10 Electric utilities 107,082,884 4 IPP & CHP 13,870,850 26 Emissions Sulfur dioxide (short tons) 123,735 10 Nitrogen oxide (short tons) 55,462 20 Carbon dioxide (thousand metric tons) 56,812 15 Sulfur dioxide (lbs/MWh) 2.0 20

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Electricity Profile 2013 Table 1. 2013 Summary statistics (Hawaii) Item Value U.S. Rank Primary energy source Petroleum Net summer capacity (megawatts) 2,757 47 Electric utilities 1,821 40 IPP & CHP 937 45 Net generation (megawatthours) 10,267,052 45 Electric utilities 5,748,256 40 IPP & CHP 4,518,796 40 Emissions Sulfur dioxide (short tons) 20,710 33 Nitrogen oxide (short tons) 25,416 31 Carbon dioxide (thousand metric tons) 7,428 42 Sulfur dioxide (lbs/MWh) 4.0 5 Nitrogen oxide

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho Electricity Profile 2013 Table 1. 2013 Summary statistics (Idaho) Item Value U.S. Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,924 42 Electric utilities 3,394 37 IPP & CHP 1,530 39 Net generation (megawatthours) 15,186,128 43 Electric utilities 9,600,216 36 IPP & CHP 5,585,912 39 Emissions Sulfur dioxide (short tons) 6,565 42 Nitrogen oxide (short tons) 7,627 46 Carbon dioxide (thousand metric tons) 1,942 49 Sulfur dioxide (lbs/MWh) 0.9 37 Nitrogen

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois Electricity Profile 2013 Table 1. 2013 Summary statistics (Illinois) Item Value U.S. Rank Primary energy source Nuclear Net summer capacity (megawatts) 44,950 4 Electric utilities 5,269 35 IPP & CHP 39,681 4 Net generation (megawatthours) 203,004,919 4 Electric utilities 11,571,734 35 IPP & CHP 191,433,185 3 Emissions Sulfur dioxide (short tons) 203,951 6 Nitrogen oxide (short tons) 63,358 11 Carbon dioxide (thousand metric tons) 97,812 6 Sulfur dioxide (lbs/MWh) 2.0 21 Nitrogen

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana Electricity Profile 2013 Table 1. 2013 Summary statistics (Indiana) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 27,196 14 Electric utilities 23,309 8 IPP & CHP 3,888 24 Net generation (megawatthours) 110,403,477 13 Electric utilities 96,047,678 7 IPP & CHP 14,355,799 23 Emissions Sulfur dioxide (short tons) 273,718 4 Nitrogen oxide (short tons) 121,681 3 Carbon dioxide (thousand metric tons) 98,895 5 Sulfur dioxide (lbs/MWh) 5.0 2 Nitrogen

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa Electricity Profile 2013 Table 1. 2013 Summary statistics (Iowa) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 15,929 25 Electric utilities 12,092 21 IPP & CHP 3,837 26 Net generation (megawatthours) 56,670,757 27 Electric utilities 41,932,708 26 IPP & CHP 14,738,048 22 Emissions Sulfur dioxide (short tons) 106,879 14 Nitrogen oxide (short tons) 44,657 25 Carbon dioxide (thousand metric tons) 39,175 21 Sulfur dioxide (lbs/MWh) 3.8 6 Nitrogen oxide

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas Electricity Profile 2013 Table 1. 2013 Summary statistics (Kansas) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 14,093 32 Electric utilities 11,593 24 IPP & CHP 2,501 35 Net generation (megawatthours) 48,472,581 32 Electric utilities 39,808,763 28 IPP & CHP 8,663,819 32 Emissions Sulfur dioxide (short tons) 30,027 30 Nitrogen oxide (short tons) 30,860 30 Carbon dioxide (thousand metric tons) 33,125 27 Sulfur dioxide (lbs/MWh) 1.2 30 Nitrogen

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Electricity Profile 2013 Table 1. 2013 Summary statistics (Kentucky) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 21,004 21 Electric utilities 19,599 16 IPP & CHP 1,405 40 Net generation (megawatthours) 89,741,021 18 Electric utilities 89,098,127 11 IPP & CHP 642,894 50 Emissions Sulfur dioxide (short tons) 190,782 7 Nitrogen oxide (short tons) 87,201 7 Carbon dioxide (thousand metric tons) 85,304 7 Sulfur dioxide (lbs/MWh) 4.3 4 Nitrogen oxide

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Electricity Profile 2013 Table 1. 2013 Summary statistics (Louisiana) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 26,228 15 Electric utilities 17,297 17 IPP & CHP 8,931 12 Net generation (megawatthours) 102,010,177 15 Electric utilities 56,226,016 17 IPP & CHP 45,784,161 8 Emissions Sulfur dioxide (short tons) 122,578 11 Nitrogen oxide (short tons) 82,286 9 Carbon dioxide (thousand metric tons) 58,274 12 Sulfur dioxide (lbs/MWh) 2.4 16

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine Electricity Profile 2013 Table 1. 2013 Summary statistics (Maine) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 4,499 43 Electric utilities 14 49 IPP & CHP 4,485 21 Net generation (megawatthours) 14,030,038 44 Electric utilities 597 49 IPP & CHP 14,029,441 25 Emissions Sulfur dioxide (short tons) 13,365 38 Nitrogen oxide (short tons) 9,607 44 Carbon dioxide (thousand metric tons) 3,675 45 Sulfur dioxide (lbs/MWh) 1.9 23 Nitrogen oxide

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Electricity Profile 2013 Table 1. 2013 Summary statistics (Maryland) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 12,339 33 Electric utilities 85 48 IPP & CHP 12,254 8 Net generation (megawatthours) 35,850,812 37 Electric utilities 30,205 46 IPP & CHP 35,820,607 9 Emissions Sulfur dioxide (short tons) 41,539 26 Nitrogen oxide (short tons) 21,995 34 Carbon dioxide (thousand metric tons) 18,950 34 Sulfur dioxide (lbs/MWh) 2.3 17 Nitrogen oxide

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts Electricity Profile 2013 Table 1. 2013 Summary statistics (Massachusetts) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 13,678 32 Electric utilities 969 42 IPP & CHP 12,709 7 Net generation (megawatthours) 32,885,021 40 Electric utilities 611,320 44 IPP & CHP 32,273,700 12 Emissions Sulfur dioxide (short tons) 12,339 40 Nitrogen oxide (short tons) 15,150 41 Carbon dioxide (thousand metric tons) 14,735 38 Sulfur dioxide (lbs/MWh) 0.8 38

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Electricity Profile 2013 Table 1. 2013 Summary statistics (Michigan) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,128 11 Electric utilities 22,148 9 IPP & CHP 7,981 14 Net generation (megawatthours) 105,417,801 14 Electric utilities 83,171,310 13 IPP & CHP 22,246,490 14 Emissions Sulfur dioxide (short tons) 237,091 5 Nitrogen oxide (short tons) 86,058 8 Carbon dioxide (thousand metric tons) 67,193 10 Sulfur dioxide (lbs/MWh) 4.5 3 Nitrogen oxide

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Electricity Profile 2013 Table 1. 2013 Summary statistics (Minnesota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 15,758 26 Electric utilities 11,901 22 IPP & CHP 3,858 25 Net generation (megawatthours) 51,296,988 31 Electric utilities 41,155,904 27 IPP & CHP 10,141,084 30 Emissions Sulfur dioxide (short tons) 35,625 28 Nitrogen oxide (short tons) 36,972 28 Carbon dioxide (thousand metric tons) 29,255 29 Sulfur dioxide (lbs/MWh) 1.4 28 Nitrogen

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Electricity Profile 2013 Table 1. 2013 Summary statistics (Mississippi) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 15,561 28 Electric utilities 12,842 20 IPP & CHP 2,719 35 Net generation (megawatthours) 52,810,264 29 Electric utilities 45,413,403 23 IPP & CHP 7,396,861 35 Emissions Sulfur dioxide (short tons) 87,718 17 Nitrogen oxide (short tons) 24,490 32 Carbon dioxide (thousand metric tons) 22,633 33 Sulfur dioxide (lbs/MWh) 3.3 9

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri Electricity Profile 2013 Table 1. 2013 Summary statistics (Missouri) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,801 19 Electric utilities 20,562 15 IPP & CHP 1,239 42 Net generation (megawatthours) 91,626,593 17 Electric utilities 89,217,205 10 IPP & CHP 2,409,387 46 Emissions Sulfur dioxide (short tons) 157,488 8 Nitrogen oxide (short tons) 78,033 10 Carbon dioxide (thousand metric tons) 78,344 8 Sulfur dioxide (lbs/MWh) 3.4 8 Nitrogen oxide

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Electricity Profile 2013 Table 1. 2013 Summary statistics (Montana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,329 41 Electric utilities 2,568 38 IPP & CHP 3,761 27 Net generation (megawatthours) 27,687,326 41 Electric utilities 7,361,898 38 IPP & CHP 20,325,428 16 Emissions Sulfur dioxide (short tons) 16,865 36 Nitrogen oxide (short tons) 21,789 35 Carbon dioxide (thousand metric tons) 16,951 35 Sulfur dioxide (lbs/MWh) 1.2 31 Nitrogen oxide

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska Electricity Profile 2013 Table 1. 2013 Summary statistics (Nebraska) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,449 36 Electric utilities 7,911 30 IPP & CHP 538 49 Net generation (megawatthours) 37,104,628 34 Electric utilities 35,170,167 30 IPP & CHP 1,934,461 48 Emissions Sulfur dioxide (short tons) 66,884 22 Nitrogen oxide (short tons) 31,505 29 Carbon dioxide (thousand metric tons) 28,043 32 Sulfur dioxide (lbs/MWh) 3.6 7 Nitrogen oxide

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada Electricity Profile 2013 Table 1. 2013 Summary statistics (Nevada) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 10,652 34 Electric utilities 7,915 29 IPP & CHP 2,737 34 Net generation (megawatthours) 36,443,874 35 Electric utilities 27,888,008 34 IPP & CHP 8,555,866 33 Emissions Sulfur dioxide (short tons) 7,436 41 Nitrogen oxide (short tons) 16,438 39 Carbon dioxide (thousand metric tons) 15,690 37 Sulfur dioxide (lbs/MWh) 0.4 43 Nitrogen

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire Electricity Profile 2013 Table 1. 2013 Summary statistics (New Hampshire) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 4,413 44 Electric utilities 1,121 41 IPP & CHP 3,292 30 Net generation (megawatthours) 19,778,520 42 Electric utilities 2,266,903 41 IPP & CHP 17,511,617 20 Emissions Sulfur dioxide (short tons) 3,733 44 Nitrogen oxide (short tons) 5,057 47 Carbon dioxide (thousand metric tons) 3,447 46 Sulfur dioxide (lbs/MWh) 0.4 45 Nitrogen

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey Electricity Profile 2013 Table 1. 2013 Summary statistics (New Jersey) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 18,997 22 Electric utilities 544 43 IPP & CHP 18,452 6 Net generation (megawatthours) 64,750,942 24 Electric utilities -122,674 50 IPP & CHP 64,873,616 6 Emissions Sulfur dioxide (short tons) 3,196 46 Nitrogen oxide (short tons) 15,299 40 Carbon dioxide (thousand metric tons) 15,789 36 Sulfur dioxide (lbs/MWh) 0.1 48 Nitrogen oxide

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico Electricity Profile 2013 Table 1. 2013 Summary statistics (New Mexico) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 7,938 38 Electric utilities 5,912 33 IPP & CHP 2,026 36 Net generation (megawatthours) 35,870,965 36 Electric utilities 29,833,095 33 IPP & CHP 6,037,870 37 Emissions Sulfur dioxide (short tons) 17,735 34 Nitrogen oxide (short tons) 59,055 16 Carbon dioxide (thousand metric tons) 28,535 31 Sulfur dioxide (lbs/MWh) 1.0 36 Nitrogen

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    York Electricity Profile 2013 Table 1. 2013 Summary statistics (New York) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 39,918 6 Electric utilities 10,736 26 IPP & CHP 29,182 5 Net generation (megawatthours) 136,116,830 8 Electric utilities 33,860,490 31 IPP & CHP 102,256,340 5 Emissions Sulfur dioxide (short tons) 30,947 29 Nitrogen oxide (short tons) 44,824 24 Carbon dioxide (thousand metric tons) 33,456 26 Sulfur dioxide (lbs/MWh) 0.5 41 Nitrogen

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    North Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (North Carolina) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,048 12 Electric utilities 26,706 6 IPP & CHP 3,342 29 Net generation (megawatthours) 125,936,293 9 Electric utilities 116,317,050 2 IPP & CHP 9,619,243 31 Emissions Sulfur dioxide (short tons) 71,293 20 Nitrogen oxide (short tons) 62,397 12 Carbon dioxide (thousand metric tons) 56,940 14 Sulfur dioxide (lbs/MWh) 1.1 32

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (North Dakota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,566 40 Electric utilities 5,292 34 IPP & CHP 1,274 41 Net generation (megawatthours) 35,021,673 39 Electric utilities 31,044,374 32 IPP & CHP 3,977,299 42 Emissions Sulfur dioxide (short tons) 56,854 23 Nitrogen oxide (short tons) 48,454 22 Carbon dioxide (thousand metric tons) 30,274 28 Sulfur dioxide (lbs/MWh) 3.2 11 Nitrogen oxide

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon Electricity Profile 2013 Table 1. 2013 Summary statistics (Oregon) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 15,662 27 Electric utilities 10,973 25 IPP & CHP 4,689 19 Net generation (megawatthours) 59,895,515 26 Electric utilities 43,254,167 24 IPP & CHP 16,641,348 21 Emissions Sulfur dioxide (short tons) 17,511 35 Nitrogen oxide (short tons) 13,803 42 Carbon dioxide (thousand metric tons) 9,500 40 Sulfur dioxide (lbs/MWh) 0.6 39 Nitrogen

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania Electricity Profile 2013 Table 1. 2013 Summary statistics (Pennsylvania) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 43,040 5 Electric utilities 455 44 IPP & CHP 42,584 3 Net generation (megawatthours) 226,785,630 2 Electric utilities 1,105,740 42 IPP & CHP 225,679,890 2 Emissions Sulfur dioxide (short tons) 276,851 3 Nitrogen oxide (short tons) 151,148 2 Carbon dioxide (thousand metric tons) 108,729 2 Sulfur dioxide (lbs/MWh) 2.4 15 Nitrogen

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island Electricity Profile 2013 Table 1. 2013 Summary statistics (Rhode Island) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 1,809 49 Electric utilities 8 50 IPP & CHP 1,802 38 Net generation (megawatthours) 6,246,807 50 Electric utilities 10,659 48 IPP & CHP 6,236,148 36 Emissions Sulfur dioxide (short tons) 1,271 49 Nitrogen oxide (short tons) 1,161 49 Carbon dioxide (thousand metric tons) 2,838 48 Sulfur dioxide (lbs/MWh) 0.4 44 Nitrogen

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (South Carolina) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 23,017 18 Electric utilities 21,039 10 IPP & CHP 1,978 37 Net generation (megawatthours) 95,249,894 16 Electric utilities 91,795,732 9 IPP & CHP 3,454,162 44 Emissions Sulfur dioxide (short tons) 47,671 25 Nitrogen oxide (short tons) 19,035 36 Carbon dioxide (thousand metric tons) 28,809 30 Sulfur dioxide (lbs/MWh) 1.0 35

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    South Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (South Dakota) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,109 45 Electric utilities 3,480 36 IPP & CHP 629 48 Net generation (megawatthours) 10,108,887 46 Electric utilities 8,030,545 37 IPP & CHP 2,078,342 47 Emissions Sulfur dioxide (short tons) 15,347 37 Nitrogen oxide (short tons) 11,430 43 Carbon dioxide (thousand metric tons) 3,228 47 Sulfur dioxide (lbs/MWh) 3.0 12

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee Electricity Profile 2013 Table 1. 2013 Summary statistics (Tennessee) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,326 20 Electric utilities 20,635 13 IPP & CHP 690 47 Net generation (megawatthours) 79,651,619 19 Electric utilities 75,988,871 15 IPP & CHP 3,662,748 43 Emissions Sulfur dioxide (short tons) 86,204 18 Nitrogen oxide (short tons) 23,189 33 Carbon dioxide (thousand metric tons) 38,118 22 Sulfur dioxide (lbs/MWh) 2.2 19 Nitrogen oxide

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas Electricity Profile 2013 Table 1. 2013 Summary statistics (Texas) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 109,584 1 Electric utilities 28,705 3 IPP & CHP 80,879 1 Net generation (megawatthours) 433,380,166 1 Electric utilities 96,131,888 6 IPP & CHP 337,248,278 1 Emissions Sulfur Dioxide (short tons) 383,728 1 Nitrogen Oxide short tons) 228,695 1 Carbon Dioxide (thousand metric tons) 257,465 1 Sulfur Dioxide (lbs/MWh) 1.8 25 Nitrogen Oxide

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah Electricity Profile 2013 Table 1. 2013 Summary statistics (Utah) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 7,698 39 Electric utilities 6,669 32 IPP & CHP 1,029 44 Net generation (megawatthours) 42,516,751 33 Electric utilities 39,526,881 29 IPP & CHP 2,989,870 45 Emissions Sulfur Dioxide (short tons) 23,670 32 Nitrogen Oxide (short tons) 62,296 13 Carbon Dioxide (thousand metric tons) 35,699 24 Sulfur Dioxide (lbs/MWh) 1.1 33 Nitrogen Oxide (lbs/MWh)

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont Electricity Profile 2013 Table 1. 2013 Summary statistics (Vermont) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 1,255 50 Electric utilities 329 45 IPP & CHP 925 46 Net generation (megawatthours) 6,884,910 48 Electric utilities 872,238 43 IPP & CHP 6,012,672 38 Emissions Sulfur Dioxide (short tons) 71 50 Nitrogen Oxide (short tons) 792 50 Carbon Dioxide (thousand metric tons) 15 51 Sulfur Dioxide (lbs/MWh) 0.0 50 Nitrogen Oxide (lbs/MWh) 0.2 51

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia Electricity Profile 2013 Table 1. 2013 Summary statistics (Virginia) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 24,828 16 Electric utilities 20,601 14 IPP & CHP 4,227 22 Net generation (megawatthours) 76,896,565 20 Electric utilities 63,724,860 16 IPP & CHP 13,171,706 28 Emissions Sulfur Dioxide (short tons) 68,077 21 Nitrogen Oxide (short tons) 39,706 27 Carbon Dioxide (thousand metric tons) 34,686 25 Sulfur Dioxide (lbs/MWh) 1.8 26 Nitrogen

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington Electricity Profile 2013 Table 1. 2013 Summary statistics (Washington) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 30,656 10 Electric utilities 27,070 5 IPP & CHP 3,586 28 Net generation (megawatthours) 114,172,916 11 Electric utilities 100,013,661 5 IPP & CHP 14,159,255 24 Emissions Sulfur Dioxide (short tons) 13,259 39 Nitrogen Oxide (short tons) 17,975 38 Carbon Dioxide (thousand metric tons) 12,543 39 Sulfur Dioxide (lbs/MWh) 0.2 46

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia Electricity Profile 2013 Table 1. 2013 Summary statistics (West Virginia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,282 24 Electric utilities 10,625 27 IPP & CHP 5,657 18 Net generation (megawatthours) 75,863,067 21 Electric utilities 46,351,104 22 IPP & CHP 29,511,963 13 Emissions Sulfur Dioxide (short tons) 93,888 15 Nitrogen Oxide (short tons) 60,229 14 Carbon Dioxide (thousand metric tons) 68,862 9 Sulfur Dioxide (lbs/MWh) 2.5 14

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin Electricity Profile 2013 Table 1. 2013 Summary statistics (Wisconsin) Item Value Rank Primary Energy Source Coal Net summer capacity (megawatts) 17,342 23 Electric utilities 13,358 19 IPP & CHP 3,984 23 Net generation (megawatthours) 65,962,792 23 Electric utilities 47,027,455 20 IPP & CHP 18,935,337 19 Emissions Sulfur Dioxide (short tons) 108,306 13 Nitrogen Oxide (short tons) 44,114 26 Carbon Dioxide (thousand metric tons) 47,686 18 Sulfur Dioxide (lbs/MWh) 3.3 10 Nitrogen

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Electricity Profile 2013 Table 1. 2013 Summary statistics (Wyoming) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,381 37 Electric utilities 7,279 31 IPP & CHP 1,102 43 Net generation (megawatthours) 52,483,065 30 Electric utilities 48,089,178 19 IPP & CHP 4,393,887 41 Emissions Sulfur Dioxide (short tons) 49,587 24 Nitrogen Oxide (short tons) 55,615 19 Carbon Dioxide (thousand metric tons) 50,687 17 Sulfur Dioxide (lbs/MWh) 1.9 24 Nitrogen Oxide

  13. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Idaho Electricity Profile 2013 Table 1. 2013 Summary statistics (Idaho) Item Value U.S. Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,924 42 Electric utilities 3,394 37 IPP & CHP 1,530 39 Net generation (megawatthours) 15,186,128 43 Electric utilities 9,600,216 36 IPP & CHP 5,585,912 39 Emissions Sulfur dioxide (short tons) 6,565 42 Nitrogen oxide (short tons) 7,627 46 Carbon dioxide (thousand metric tons) 1,942 49 Sulfur dioxide (lbs/MWh) 0.9 37 Nitrogen

  14. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oregon Electricity Profile 2013 Table 1. 2013 Summary statistics (Oregon) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 15,662 27 Electric utilities 10,973 25 IPP & CHP 4,689 19 Net generation (megawatthours) 59,895,515 26 Electric utilities 43,254,167 24 IPP & CHP 16,641,348 21 Emissions Sulfur dioxide (short tons) 17,511 35 Nitrogen oxide (short tons) 13,803 42 Carbon dioxide (thousand metric tons) 9,500 40 Sulfur dioxide (lbs/MWh) 0.6 39 Nitrogen

  15. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    South Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (South Dakota) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,109 45 Electric utilities 3,480 36 IPP & CHP 629 48 Net generation (megawatthours) 10,108,887 46 Electric utilities 8,030,545 37 IPP & CHP 2,078,342 47 Emissions Sulfur dioxide (short tons) 15,347 37 Nitrogen oxide (short tons) 11,430 43 Carbon dioxide (thousand metric tons) 3,228 47 Sulfur dioxide (lbs/MWh) 3.0 12

  16. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Washington Electricity Profile 2013 Table 1. 2013 Summary statistics (Washington) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 30,656 10 Electric utilities 27,070 5 IPP & CHP 3,586 28 Net generation (megawatthours) 114,172,916 11 Electric utilities 100,013,661 5 IPP & CHP 14,159,255 24 Emissions Sulfur Dioxide (short tons) 13,259 39 Nitrogen Oxide (short tons) 17,975 38 Carbon Dioxide (thousand metric tons) 12,543 39 Sulfur Dioxide (lbs/MWh) 0.2 46

  17. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wyoming Electricity Profile 2013 Table 1. 2013 Summary statistics (Wyoming) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,381 37 Electric utilities 7,279 31 IPP & CHP 1,102 43 Net generation (megawatthours) 52,483,065 30 Electric utilities 48,089,178 19 IPP & CHP 4,393,887 41 Emissions Sulfur Dioxide (short tons) 49,587 24 Nitrogen Oxide (short tons) 55,615 19 Carbon Dioxide (thousand metric tons) 50,687 17 Sulfur Dioxide (lbs/MWh) 1.9 24 Nitrogen Oxide

  18. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Alabama Table 1. 2013 Summary statistics (Alabama) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 32,353 9 Electric utilities 23,419 7 IPP & CHP 8,934 11 Net generation (megawatthours) 150,572,924 6 Electric utilities 115,027,021 3 IPP & CHP 35,545,903 11 Emissions Sulfur dioxide (short tons) 144,568 9 Nitrogen oxide (short tons) 56,885 18 Carbon dioxide (thousand metric tons) 66,986 11 Sulfur dioxide (lbs/MWh) 1.9 22 Nitrogen oxide (lbs/MWh) 0.8 39

  19. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Arkansas Electricity Profile 2013 Table 1. 2013 Summary statistics (Arkansas) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 14,786 29 Electric utilities 11,559 23 IPP & CHP 3,227 31 Net generation (megawatthours) 60,322,492 25 Electric utilities 46,547,772 21 IPP & CHP 13,774,720 27 Emissions Sulfur dioxide (short tons) 88,811 16 Nitrogen oxide (short tons) 45,896 23 Carbon dioxide (thousand metric tons) 37,346 23 Sulfur dioxide (lbs/MWh) 2.9 13 Nitrogen

  20. Nature and Origin of the Cuprate Pseudogap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature and Origin of the Cuprate Pseudogap Nature and Origin of the Cuprate Pseudogap Print Wednesday, 30 May 2007 00:00 The workings of high-temperature superconductive (HTSC)...

  1. Penser Original Contract (EM0003383) - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Procurements Home Prime Contracts Current Solicitations Other Sources DOE RL Contracting Officers DOE RL Contracting Officer Representatives Penser Original Contract...

  2. On the origin of porphyritic chondrules

    SciTech Connect (OSTI)

    Blander, M.; Unger, L.; Pelton, A.; Ericksson, G.

    1994-05-01

    A computer program for the complex equilibria in a cooling nebular gas was used to explore a possible origin of porphyritic chondrules, the major class of chondrules in chondritic meteorites. It uses a method of accurately calculating the thermodynamic properties of molten multicomponent aluminosilicates, which deduces the silicate condensates vs temperature and pressure of a nebular gas. This program is coupled with a chemical equilibrium algorithm for systems with at least 1000 chemical species; it has a data base of over 5000 solid, liquid, and gaseous species. Results are metastable subcooled liquid aluminoscilicates with compositions resembling types IA and II porphyritic chondrules at two different temperatures at any pressure between 10{sup {minus}2} and 1 (or possibly 10{sup {minus}3} to 5) atm. The different types of chondrules (types I, II, III) could have been produced from the same gas and do not need a different gas for each apparent oxidation state; thus, the difficulty of current models for making porphyritic chondrules by reheating different solids to just below their liquidus temperatures in different locations is not necessary. Initiation of a stage of crystallization just below liquidus is part of the natural crystallization (recalescence) process from metastable subcooled liquidus and does not require an improbably heating mechanism. 2 tabs.

  3. U.S. Energy Information Administration | Annual Coal Distribution Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Annual Coal Distribution Report 2013 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 2013 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric

  4. U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013

    Gasoline and Diesel Fuel Update (EIA)

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 1st Quarter 2013 Destination: Alabama (thousand short tons) Coal Origin State

  5. U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2014

    Gasoline and Diesel Fuel Update (EIA)

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2014 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 1st Quarter 2014 Destination: Alabama (thousand short tons) Coal Origin State

  6. U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2013

    Gasoline and Diesel Fuel Update (EIA)

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2013 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 2nd Quarter 2013 Destination: Alabama (thousand short tons) Coal Origin State

  7. U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2014

    Gasoline and Diesel Fuel Update (EIA)

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2014 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 2nd Quarter 2014 Destination: Alabama (thousand short tons) Coal Origin State

  8. U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2013

    Gasoline and Diesel Fuel Update (EIA)

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2013 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 3rd Quarter 2013 Destination: Alabama (thousand short tons) Coal Origin State

  9. U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2013

    Gasoline and Diesel Fuel Update (EIA)

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2013 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 4th Quarter 2013 Destination: Alabama (thousand short tons) Coal Origin State

  10. U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2012 Destination: Alabama (thousand short tons) Coal Origin State

  11. U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2012 Destination: Alabama (thousand short tons) Coal Origin State

  12. U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 4th Quarter 2012 Destination: Alabama (thousand short tons) Coal Origin State

  13. Nature and Origin of the Cuprate Pseudogap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature and Origin of the Cuprate Pseudogap Nature and Origin of the Cuprate Pseudogap Print Wednesday, 30 May 2007 00:00 The workings of high-temperature superconductive (HTSC) materials are a mystery wrapped in an enigma. However, a team of researchers from the ALS, Brookhaven National Laboratory, and Cornell University has taken a major step in understanding part of this mystery-the nature and origin of the pseudogap. Using angle-resolved photoemission spectroscopy (ARPES) and scanning

  14. Nature and Origin of the Cuprate Pseudogap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature and Origin of the Cuprate Pseudogap Print The workings of high-temperature superconductive (HTSC) materials are a mystery wrapped in an enigma. However, a team of...

  15. Under U.S.-Russia Partnership, Final Shipment of Fuel Converted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from more than 500 metric tons of weapons-origin highly enriched uranium (HEU) downblended ... Russia and the United States are in the process of extending the Russian-origin Research ...

  16. Representable states on quasilocal quasi *-algebras

    SciTech Connect (OSTI)

    Bagarello, F.; Trapani, C.; Triolo, S.

    2011-01-15

    Continuing a previous analysis originally motivated by physics, we consider representable states on quasilocal quasi *-algebras, starting with examining the possibility for a compatible family of local states to give rise to a global state. Some properties of local modifications of representable states and some aspects of their asymptotic behavior are also considered.

  17. Saving Energy and Money with Appliance and Equipment Standards in the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 products, representing about 90% of home energy use, 60% of commercial building energy use, and approximately 30% of industrial energy use. Standards implemented since 1987 saved American consumers $58 billion on their utility bills in 2014 alone, and have helped the United States avoid emissions of 2.3 billion tons of carbon dioxide (CO 2) , which is equivalent to the annual CO 2 emissions from nearly 500 million automobiles. Since 2009, the Obama Administration has issued 31 new or updated

  18. Saving Energy and Money with Appliance and Equipment Standards in the United States

    Energy Savers [EERE]

    60 products, representing about 90% of home energy use, 60% of commercial building energy use, and 30% of industrial energy use. Standards implemented since 1987 saved American consumers $63 billion on their utility bills in 2015 alone, and have helped the United States avoid emissions of 2.6 billion tons of carbon dioxide (CO 2) , which is equivalent to the annual CO 2 emissions from nearly 543 million automobiles. Since 2009, the Obama Administration has issued 40 new or updated appliance

  19. Saving Energy and Money with Appliance and Equipment Standards in the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 products, representing about 90% of home energy use, 60% of commercial building energy use, and approximately 30% of industrial energy use. Standards implemented since 1987 saved American consumers $63 billion on their utility bills in 2015 alone, and have helped the United States avoid emissions of 2.6 billion tons of carbon dioxide (CO 2) , which is equivalent to the annual CO 2 emissions from nearly 543 million automobiles. Since 2009, the Obama Administration has issued 34 new or updated

  20. OriginOil Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Place: Los Angeles, California Zip: 90016 Product: California-based OTC-quoted algae-to-oil technology developer. References: OriginOil Inc1 This article is a stub. You...

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio Electricity Profile 2013 Table 1. 2013 Summary statistics (Ohio) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 32,482 8 Electric utilities 20,779 11 IPP & CHP 11,703 9 Net generation (megawatthours) 137,284,189 7 Electric utilities 88,763,825 12 IPP & CHP 48,520,364 7 Emissions Sulfur dioxide (short tons) 346,873 2 Nitrogen oxide (short tons) 102,526 4 Carbon dioxide (thousand metrictons) 102,466 4 Sulfur dioxide (lbs/MWh) 5.1 1 Nitrogen oxide (lbs/MWh)

  2. Nature and Origin of the Cuprate Pseudogap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature and Origin of the Cuprate Pseudogap Print The workings of high-temperature superconductive (HTSC) materials are a mystery wrapped in an enigma. However, a team of researchers from the ALS, Brookhaven National Laboratory, and Cornell University has taken a major step in understanding part of this mystery-the nature and origin of the pseudogap. Using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM), they have determined the electronic structure of

  3. Nature and Origin of the Cuprate Pseudogap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature and Origin of the Cuprate Pseudogap Print The workings of high-temperature superconductive (HTSC) materials are a mystery wrapped in an enigma. However, a team of researchers from the ALS, Brookhaven National Laboratory, and Cornell University has taken a major step in understanding part of this mystery-the nature and origin of the pseudogap. Using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM), they have determined the electronic structure of

  4. Nature and Origin of the Cuprate Pseudogap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature and Origin of the Cuprate Pseudogap Print The workings of high-temperature superconductive (HTSC) materials are a mystery wrapped in an enigma. However, a team of researchers from the ALS, Brookhaven National Laboratory, and Cornell University has taken a major step in understanding part of this mystery-the nature and origin of the pseudogap. Using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM), they have determined the electronic structure of

  5. Nature and Origin of the Cuprate Pseudogap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature and Origin of the Cuprate Pseudogap Print The workings of high-temperature superconductive (HTSC) materials are a mystery wrapped in an enigma. However, a team of researchers from the ALS, Brookhaven National Laboratory, and Cornell University has taken a major step in understanding part of this mystery-the nature and origin of the pseudogap. Using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM), they have determined the electronic structure of

  6. Nature and Origin of the Cuprate Pseudogap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature and Origin of the Cuprate Pseudogap Print The workings of high-temperature superconductive (HTSC) materials are a mystery wrapped in an enigma. However, a team of researchers from the ALS, Brookhaven National Laboratory, and Cornell University has taken a major step in understanding part of this mystery-the nature and origin of the pseudogap. Using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM), they have determined the electronic structure of

  7. Original","Revised","Data

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Original","Revised","Data" "Data Type","Product","End Use","PADD","State","Data 2003","Data 2003","Different" "Sales","No. 1 Distillate","Residential","U.S. TOTAL",,110032,110032 "Sales","No. 1 Distillate","Residential","PADD 1",,4232,4232 "Sales","No. 1

  8. U.S. Energy Information Administration | State Energy Data 2013: Consumption

    Gasoline and Diesel Fuel Update (EIA)

    3 Coal Consumption Physical units Coal in the United States is mostly consumed by the electric power sector. Data are collected by the U.S. Energy Information Administration (EIA) on Form EIA-923, "Power Plant Operations Report," and predecessor forms. "ZZ" in the variable name is used to represent the two-letter state code: CLEIPZZ = coal consumed by the electric power sector in each state, in thousand short tons. CLEIPUS = ΣCLEIPZZ Seven data series are used to estimate

  9. U.S. Energy Information Administration | State Energy Data 2013: Consumption

    Gasoline and Diesel Fuel Update (EIA)

    1 Data presented in the State Energy Data System (SEDS) are expressed predominately in units that historically have been used in the United States, such as British thermal units, barrels, cubic feet, and short tons. However, because U.S. commerce involves other nations, most of which use metric units of measure, the U.S. Government is committed to the transition to the metric system, as stated in the Metric Conversion Act of 1975 (Public Law 94-168), amended by the Omnibus Trade and

  10. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect (OSTI)

    Zaltash, Abdolreza; Petrov, Andrei Y; Linkous, Randall Lee; Vineyard, Edward Allan

    2007-01-01

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

  11. An Experimental Investigation of the Origin of Increased NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel An Experimental Investigation of the Origin of Increased NOx Emissions ...

  12. Toward Understanding the Microscopic Origin of Nuclear Clustering...

    Office of Scientific and Technical Information (OSTI)

    Toward Understanding the Microscopic Origin of Nuclear Clustering Citation Details In-Document Search Title: Toward Understanding the Microscopic Origin of Nuclear Clustering Open...

  13. Origins of optical absorption characteristics of Cu2+ complexes...

    Office of Scientific and Technical Information (OSTI)

    Origins of optical absorption characteristics of Cu2+ complexes in solutions Citation Details In-Document Search Title: Origins of optical absorption characteristics of Cu2+ ...

  14. Recipient: Colorado State University

    Office of Scientific and Technical Information (OSTI)

    of work under Grant DE-FG02-96ER14647 Recipient: Colorado State University Office of Sponsored Programs Fort Collins, CO 80523 Grant Period: Sept. 1, 1996 - May 31, 2015 Principal Investigator: Stephen R. Lundeen This project originated with the desire to apply the dense CW Rb Rydberg target, developed by the PI under previous NSF support, to the study of collisions between highly-charged ions (HCI) and Rydberg atoms. The feasibility of such studies was demonstrated in initial unfunded studies

  15. . United States Government

    Office of Legacy Management (LM)

    ,:n5.5.8 ,849, EfG pw, . United States Government DATE: AUG 2 i994 y#J;; EM-421 (W. A. Williams, 427-1719) sUBJECT: -Elimination of the Robbins & Myers Site, Springfield, Ohio 11179 I The File TO: I have reviewed the attached elimination recommendation and the original historical records for the Myers & Robbins facility in Springfield, Ohio. I have determined that there is little likelihood of radioactive contamination at these sites. The only record of activity at this site by

  16. A discussion on the origin of quantum probabilities

    SciTech Connect (OSTI)

    Holik, Federico; Departamento de Matemtica - Ciclo Bsico Comn, Universidad de Buenos Aires - Pabelln III, Ciudad Universitaria, Buenos Aires ; Senz, Manuel; Plastino, Angel

    2014-01-15

    We study the origin of quantum probabilities as arising from non-Boolean propositional-operational structures. We apply the method developed by Cox to non distributive lattices and develop an alternative formulation of non-Kolmogorovian probability measures for quantum mechanics. By generalizing the method presented in previous works, we outline a general framework for the deduction of probabilities in general propositional structures represented by lattices (including the non-distributive case). -- Highlights: Several recent works use a derivation similar to that of R.T. Cox to obtain quantum probabilities. We apply Coxs method to the lattice of subspaces of the Hilbert space. We obtain a derivation of quantum probabilities which includes mixed states. The method presented in this work is susceptible to generalization. It includes quantum mechanics and classical mechanics as particular cases.

  17. Copy of Bound Original For Scanning

    Office of Legacy Management (LM)

    Copy of Bound Original For Scanning Document # 1\1\ i g -b DOE/El/-0005/6 Formerly Utilized IVIEWAEC Site! Remedial Action Progrhn, F@diilogical Survey of the Seaway Industrial Par Tonawanda, New Yor May 197 Final Repel Prepared f U.S. Department of Enerc Assistant Secretary for Environme Division of Environmental Control Technolo Washington, D.C. 205, uric Contract No. W-7405-ENG- - - - Available from: ' : -. National Technical Information Service (NTIS) U.S. Department of Comnerce 5285 Port

  18. Microscopic origin of volume modulus inflation

    SciTech Connect (OSTI)

    Cicoli, Michele; Muia, Francesco; Pedro, Francisco Gil

    2015-12-21

    High-scale string inflationary models are in well-known tension with low-energy supersymmetry. A promising solution involves models where the inflaton is the volume of the extra dimensions so that the gravitino mass relaxes from large values during inflation to smaller values today. We describe a possible microscopic origin of the scalar potential of volume modulus inflation by exploiting non-perturbative effects, string loop and higher derivative perturbative corrections to the supergravity effective action together with contributions from anti-branes and charged hidden matter fields. We also analyse the relation between the size of the flux superpotential and the position of the late-time minimum and the inflection point around which inflation takes place. We perform a detailed study of the inflationary dynamics for a single modulus and a two moduli case where we also analyse the sensitivity of the cosmological observables on the choice of initial conditions.

  19. State Overview

    Office of Environmental Management (EM)

    Natural Gas: 1,710 Bcf (7% total U.S.) Crude Oil: 49,300 Mbarrels (2% total U.S.) Ethanol: 2,900 Mbarrels (1% total U.S.) COLORADO STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  20. State Overview

    Office of Environmental Management (EM)

    U.S.) Natural Gas: 220 Bcf (1% total U.S.) Crude Oil: 9,500 Mbarrels (<1% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) ALABAMA STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  1. State Overview

    Office of Environmental Management (EM)

    U.S.) Natural Gas: 350 Bcf (1% total U.S.) Crude Oil: 192,400 Mbarrels (8% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) ALASKA STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  2. State Overview

    Office of Environmental Management (EM)

    U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 3,000 Mbarrels (<1% total U.S.) Ethanol: 43,400 Mbarrels (14% total U.S.) NEBRASKA STATE FACTS NATURAL HAZARDS OVERVIEW...

  3. State Overview

    Office of Environmental Management (EM)

    Natural Gas: 2,960 Bcf (12% total U.S.) Crude Oil: 70,700 Mbarrels (3% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) LOUISIANA STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  4. State Overview

    Office of Environmental Management (EM)

    total U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 1,700 Mbarrels (1% total U.S.) GEORGIA STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  5. State Overview

    Office of Environmental Management (EM)

    total U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) MAINE STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  6. State Overview

    Office of Environmental Management (EM)

    Natural Gas: 180 Bcf (1% total U.S.) Crude Oil: 242,500 Mbarrels (10% total U.S.) Ethanol: 8,700 Mbarrels (3% total U.S.) NORTH DAKOTA STATE FACTS NATURAL HAZARDS OVERVIEW...

  7. State Overview

    Office of Environmental Management (EM)

    U.S.) Natural Gas: 130 Bcf (1% total U.S.) Crude Oil: 7,400 Mbarrels (<1% total U.S.) Ethanol: 6,200 Mbarrels (2% total U.S.) MICHIGAN STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  8. State Overview

    Office of Environmental Management (EM)

    U.S.) Natural Gas: 70 Bcf (<1% total U.S.) Crude Oil: 26,500 Mbarrels (1% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) MONTANA STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  9. State Overview

    Office of Environmental Management (EM)

    U.S.) Natural Gas: 110 Bcf (<1% total U.S.) Crude Oil: 3,200 Mbarrels (<1% total U.S.) Ethanol: 800 Mbarrels (<1% total U.S.) KENTUCKY STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  10. State Overview

    Office of Environmental Management (EM)

    total U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) NORTH CAROLINA STATE FACTS NATURAL HAZARDS OVERVIEW...

  11. State Overview

    Office of Environmental Management (EM)

    total U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) RHODE ISLAND STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  12. State Overview

    Office of Environmental Management (EM)

    U.S.) Natural Gas: 20 Bcf (<1% total U.S.) Crude Oil: 2,100 Mbarrels (<1% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) FLORIDA STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  13. State Overview

    Office of Environmental Management (EM)

    total U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) HAWAII STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  14. State Overview

    Office of Environmental Management (EM)

    U.S.) Natural Gas: 250 Bcf (1% total U.S.) Crude Oil: 197,200 Mbarrels (8% total U.S.) Ethanol: 4,200 Mbarrels (1% total U.S.) CALIFORNIA STATE FACTS NATURAL HAZARDS OVERVIEW...

  15. State Overview

    Office of Environmental Management (EM)

    U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 200 Mbarrels (<1% total U.S.) Ethanol: 5,900 Mbarrels (2% total U.S.) MISSOURI STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  16. State Overview

    Office of Environmental Management (EM)

    total U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 1,200 Mbarrels (<1% total U.S.) IDAHO STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  17. State Overview

    Office of Environmental Management (EM)

    total U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) NEW JERSEY STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  18. State Overview

    Office of Environmental Management (EM)

    total U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 82,600 Mbarrels (26% total U.S.) IOWA STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  19. State Overview

    Office of Environmental Management (EM)

    total U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) DELAWARE STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  20. State Overview

    Office of Environmental Management (EM)

    total U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) MARYLAND STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  1. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil: 85,200 Mbarrels (4% total U.S.) Ethanol: 600 Mbarrels (<1% total U.S.) NEW MEXICO STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards...

  2. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 2,400 Mbarrels (<1% total U.S.) Ethanol: 22,400 Mbarrels (7% total U.S.) INDIANA STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  3. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 0 Mbarrels (0% total U.S.) Ethanol: 11,700 Mbarrels (4% total U.S.) WISCONSIN STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  4. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 400 Mbarrels (<1% total U.S.) Ethanol: 5,200 Mbarrels (2% total U.S.) TENNESSEE STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  5. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 400 Mbarrels (<1% total U.S.) Ethanol: 3,800 Mbarrels (1% total U.S.) NEW YORK STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  6. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 100 Mbarrels (<1% total U.S.) Ethanol: 1,000 Mbarrels (<1% total U.S.) ARIZONA STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  7. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) SOUTH CAROLINA STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  8. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil: 89,300 Mbarrels (4% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) OKLAHOMA STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  9. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 4,900 Mbarrels (<1% total U.S.) Ethanol: 10,400 Mbarrels (3% total U.S.) OHIO STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  10. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil: 30,300 Mbarrels (1% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) UTAH STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  11. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) VIRGINIA STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  12. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) MASSACHUSETTS STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  13. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) WASHINGTON STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  14. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    24,200 Mbarrels (1% total U.S.) Ethanol: 1,000 Mbarrels (<1% total U.S.) MISSISSIPPI STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  15. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 8,900 Mbarrels (<1% total U.S.) Ethanol: 30,300 Mbarrels (10% total U.S.) ILLINOIS STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  16. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) CONNECTICUT STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  17. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) NEW HAMPSHIRE STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  18. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 2,600 Mbarrels (<1% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) WEST VIRGINIA STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  19. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil: 6,500 Mbarrels (<1% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) ARKANSAS STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  20. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 0 Mbarrels (0% total U.S.) Ethanol: 25,200 Mbarrels (8% total U.S.) MINNESOTA STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  1. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 725,800 Mbarrels (31% total U.S.) Ethanol: 8,100 Mbarrels (3% total U.S.) TEXAS STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  2. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil: 400 Mbarrels (<1% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) NEVADA STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  3. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4,300 Mbarrels (<1% total U.S.) Ethanol: 2,500 Mbarrels (1% total U.S.) PENNSYLVANIA STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  4. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 900 Mbarrels (<1% total U.S.) OREGON STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  5. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 57,800 Mbarrels (2% total U.S.) Ethanol: 300 Mbarrels (<1% total U.S.) WYOMING STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  6. United States

    Office of Legacy Management (LM)

    Office of Research and EPA 600/R-941209 Environmental Protection Development January 1993 Agency Washington, DC 20460 Offsite Environmental 57,,7 Monitoring Report Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1992 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT ENVIRONMENTAL MONITORING SYSTEMS LABORATORY-LAS VEGAS P.O. BOX 93478 LAS VEGAS. NEVADA 891 93-3478 702/798-2100 Dear Reader: Since 1954, the U.S. Environmental Protection

  7. Largest Producer of Steel Products in the United States Achieves Significant Energy Savings at its Minntac Plant; Industrial Technologies Program (ITP) Save Energy Now (SEN) Case Study (Brochure)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Located at Mt. Iron on the Mesabi Iron Range in northern Minnesota, the U. S. Steel Minntac plant produces approxi- mately 14.5 million tons of taconite pellets annually. Largest Producer of Steel Products in the United States Achieves Significant Energy Savings at its Minntac Plant U. S. Steel's Taconite Pellet Manufacturing Facility Improves Process Heating Efficiency and Rejuvenates Energy Savings Strategy Following Save Energy Now Assessment Industrial Technologies Program Case Study

  8. OpenEI:No original research | Open Energy Information

    Open Energy Info (EERE)

    No original research Jump to: navigation, search OpenEI is a platform for bringing together the world's energy information. It is not a platform for original research. This means...

  9. United States

    Office of Legacy Management (LM)

    ongrees;ional Record United States of America __._ -.. I. :- PROCEEDINGS AND DEBATES OF THE 9tth CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washmcqton. Cl C 20402 OFFICIAL BUSINESS Penalty Ior pwate use. $300 Congressmal Record (USPS 087-390) Postage and Fees Pad U S Governme3n:jPnntmg OfIce SECOND CLASS NEWSPAPER H.4578 ' June 28, 1983 -: I H.J. Res. 273: Mr. BOLAND, Mr. WA-. Mr. OBERSTAFC, M' r. BEDELL, Mr. BONER of Tennessee, Mr. OWENS. Mr.

  10. United States

    Office of Legacy Management (LM)

    onp5fGonal Ruord United States of America . I. .' - PROCEEDINGS AND DEBATES OF THE 9t?lh CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Wash!ogtm. 0.C 20402 OFFICIAL BUSINESS Penalty for pwate use. sco Congressmal Record (USPS 087-390) Postage and Fees Pad I.) s ~lJ"er"ment Prlntlng OffIce 375 SECOND CLASS NEWSPAPER -...~-- -~- -- --- H 45' 78 ' cCJ~GRESSIONAL RECORD - HOUSE June 28, 1983 H.J. Res. 213: Mr. BOLAND, Mr. WAXM.UG Mr. OBERSTAR.

  11. United States

    Office of Legacy Management (LM)

    onSres;eional atecord United States of America :- PROCEEDINGS AND DEBATES OF THE 981h CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washwtn. D C 20402 OFFICIAL BUSINESS Penalty for plvate use. $300 Congressmnal Record (USPS 087-390) Postage and Fees Pad U S Government Prtnttng Offlce 375 SECOND CLASS NEWSPAPER H 45' 78 * C.QvGRESSIONAL RECORD - HOUSE .-. June 28, 1983 H.J. Res. 273: Mr. BOLAND. Mr. Whxrdhr?. Mr. OBERsThx. Mi. BEDELL, Mr. BONER of

  12. United States

    Office of Legacy Management (LM)

    WASHINGTON, TUESDAY, JUNE 28, 1983 @nngmeional Ruord United States of America .__ -- . . ,- PROCEEDINGS AND DEBATES OF THE 9@ CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washmgton, D C 20402 OFFICIAL BUSINESS Penalty Ior pwate use. $xX Congresstonal Record (USPS 087-390) Postage and Fees Pad U S Government Prlnhng 0ffv.X 375 SECOND CLASS NEWSPAPER H.4578 ' C.QNGRESSIONAL RECORD - HOUSE June 28, 1983 H.J. Res. 273: Mr. BOUND. Mr. W~.XMAN. Mr.

  13. Understanding the origins of human cancer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alexandrov, L. B.

    2015-12-04

    All cancers originate from a single cell that starts to behave abnormally, to divide uncontrollably, and, eventually, to invade adjacent tissues (1). The aberrant behavior of this single cell is due to somatic mutations—changes in the genomic DNA produced by the activity of different mutational processes (1). These various mutational processes include exposure to exogenous or endogenous mutagens, abnormal DNA editing, the incomplete fidelity of DNA polymerases, and failure of DNA repair mechanisms (2). Early studies that sequenced TP53, the most commonly mutated gene in human cancer, provided evidence that mutational processes leave distinct imprints of somatic mutations on themore » genome of a cancer cell (3). For example, C:G>A:T transversions predominate in smoking-associated lung cancer, whereas C:G>T:A transitions occurring mainly at dipyrimidines and CC:GG>TT:AA double-nucleotide substitutions are common in ultraviolet light–associated skin cancers. Moreover, these patterns of mutations matched the ones induced experimentally by tobacco mutagens and ultraviolet light, respectively, the major, known, exogenous carcinogenic influences in these cancer types, and demonstrated that examining patterns of mutations in cancer genomes can yield information about the mutational processes that cause human cancer (4).« less

  14. Tectonic origin of Crowley's Ridge, northeastern Arkansas

    SciTech Connect (OSTI)

    VanArsdale, R.B. (Univ. of Arkansas, Fayetteville, AR (United States). Geology Dept.); Williams, R.A.; Shedlock, K.M.; King, K.W.; Odum, J.K. (Geological survey, Denver, CO (United States). Denver Federal Center); Schweig, E.S. III; Kanter, L.R. (Memphis State Univ., TN (United States))

    1992-01-01

    Crowley's Ridge is a 320 km long topographic ridge that extends from Thebes, Illinois to Helena, Arkansas. The ridge has been interpreted as an erosional remnant formed during Quaternary incision of the ancestral Mississippi and Ohio rivers; however, the Reelfoot Rift COCORP line identified a down-to-the-west fault bounding the western margin of Crowley's Ridge south of Jonesboro, Arkansas. Subsequent Mini-Sosie seismic reflection profiles confirmed the COCORP data and identified additional faults beneath other margins of the ridge. In each case the faults lie beneath the base of the ridge scarp. The Mini-Sosie data did not resolve the uppermost 150 m and so it was not possible to determine if the faults displace the near-surface Claiborne Group (middle Eocene). A shotgun source seismic reflection survey was subsequently conducted to image the uppermost 250 m across the faulted margins. The shotgun survey across the western margin of the ridge south of Jonesboro reveals displaced reflectors as shallow as 30 m depth. Claiborne Group strata are displaced approximately 6 m and it appears that some of the topographic relief of Crowley's Ridge at this location is due to post middle Eocene fault displacement. Based on the reflection data, the authors suggest that Crowley's Ridge is tectonic in origin.

  15. Portland State University Shattuck Hall

    High Performance Buildings Database

    Portland, OR Portland State's Shattuck hall was originally constructed as an elementary school in 1915. In 2007 the university undertook extensive renovations of the building to bring it up to current seismic requirements. In addition to structural improvements, the design team was able to upgraded the building's aging mechanical and electrical systems, upgrade plumbing, and restore the large light wells that bring daylight into the U-shaped building. The resulting building houses Portland State's Architecture department, where students are able to learn from the exposed building systems.

  16. Notices State

    National Nuclear Security Administration (NNSA)

    30908 Federal Register / Vol. 73, No. 104 / Thursday, May 29, 2008 / Notices State Parents of dependents and inde- pendents with dependents other than a spouse Dependents and independ- ents without de- pendents other than a spouse Under $15,000 (%) $15,000 & up (%) All (%) Michigan ................................................................................................................................. 5 4 3 Minnesota

  17. Saving Energy and Money with Appliance and Equipment Standards in the United States

    Broader source: Energy.gov (indexed) [DOE]

    60 billion on their utility bills in 2014 alone, and have helped the United States avoid emissions of 2.3 billion tons of carbon dioxide (CO 2) , which is equivalent to the annual CO 2 emissions from nearly 500 million automobiles. Since 2009, the Obama Administration has issued 31 new or updated appliance standards across more than 40 products, which will increase annual savings by more than 75% over the next decade, and is projected to save consumers a total of nearly $522 billion dollars off

  18. Assessment of municipal solid waste for energy production in the western United States

    SciTech Connect (OSTI)

    Goodman, B.J.; Texeira, R.H.

    1990-08-01

    Municipal solid waste (MSW) represents both a significant problem and an abundant resource for the production of energy. The residential, institutional, and industrial sectors of this country generate about 250 million tons of MSW each year. In this report, the authors have compiled data on the status of MSW in the 13-state western region, including economic and environmental issues. The report is designed to assist the members of the Western Regional Biomass Energy Program Ad Hoc Resource Committee in determining the potential for using MSW to produce energy in the region. 51 refs., 7 figs., 18 tabs.

  19. Domestic and Foreign Distribution of U.S. Coal by State of Origin...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Mississippi ",3739,"-",3739 "Missouri ",345,"-",345 "Montana ",36181,541,36721 "New Mexico ",27138,"-",27138 "North Dakota ",31077,"-",31077 "Ohio ",21770,176,21945 "Oklahoma...

  20. Domestic and Foreign Distribution of U.S. Coal by State of Origin...

    U.S. Energy Information Administration (EIA) Indexed Site

    ",2906,"-",2906," " "Missouri ",203,"-",203," " "Montana ",37050,180,37230," " "New Mexico ",27555,"-",27555," " "North Dakota ",31011,"-",31011," " "Ohio ",20919,68,20987,"...

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Electricity Profile 2013 Table 1. 2013 Summary statistics (Oklahoma) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 23,300 17 Electric utilities 16,951 18 IPP & CHP 6,349 17 Net generation (megawatthours) 73,673,680 22 Electric utilities 53,348,841 18 IPP & CHP 20,324,839 17 Emissions Sulfur dioxide 80,418 19 Nitrogen oxide 57,024 17 Carbon dioxide (thousand metric tons) 46,268 19 Sulfur dioxide (lbs/MWh) 2.2 18 Nitrogen oxide (lbs/MWh) 1.5 19

  2. United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    States Department of Agriculture Forest Service Southern Research Station General Technical Report SRS-68 Bats of the Savannah River Site and Vicinity Michael A. Menzel, Jennifer M. Menzel, John C. Kilgo, W. Mark Ford, Timothy C. Carter, and John W. Edwards Authors: Michael A. Menzel, 1 Jennifer M. Menzel, 2 John C. Kilgo, 3 W. Mark Ford, 2 Timothy C. Carter, 4 and John W. Edwards 5 1 Graduate Research Assistant, Division of Forestry, Wildlife and Fisheries, West Virginia University, Morgantown,

  3. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CBR-1-H Availability: This rate schedule shall be available to Big Rivers Electric Corporation and includes the City of Henderson, Kentucky (hereinafter called the Customer). Applicability: This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all

  4. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CTV-1-H Availability: This rate schedule shall be available to the Tennessee Valley Authority (hereinafter called TVA). Applicability: This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the

  5. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CTVI-1-A Availability: This rate schedule shall be available to customers (hereinafter called the Customer) who are or were formerly in the Tennessee Valley Authority (hereinafter called TVA) service area. Applicability: This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and

  6. The original of this document contains information which is subject to withholdi

    Energy Savers [EERE]

    *The original of this document contains information which is subject to withholding from disclosure under 5 U.S. C. § 552. Such material has been deleted from this copy and replaced with XXXXXX's. United States Department of Energy Office of Hearings and Appeals In the Matter of: Personnel Security Hearing ) ) Filing Date: January 20, 2015 ) ) Case No.: PSH-14-0109 __________________________________________) Issued : May 11, 2015 __________________________ Administrative Judge Decision

  7. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Overview Population: 0.84 million (<1% total U.S.) Housing Units: 0.37 million (<1% total U.S.) Business Establishments: 0.03 million (<1% total U.S.) Annual Energy Consumption Electric Power: 11.7 TWh (<1% total U.S.) Coal: 2,000 MSTN (<1% total U.S.) Natural Gas: 63 Bcf (<1% total U.S.) Motor Gasoline: 9,800 Mbarrels (<1% total U.S.) Distillate Fuel: 8,300 Mbarrels (1% total U.S.) Annual Energy Production Electric Power Generation: 12 TWh (<1% total U.S.) Coal:

  8. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    E-T Global Energy, LLC OE Docket No. EA-381 Order Authorizing Electricity Exports to Mexico Order No. EA-381 June 10, 2011 I. BACKGROUND E-T Global Energy, LLC Order No. EA-381 Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department ofEnergy Organization Act (42 U.S.C. 7151(b), 7172(f)) and require authorization under section 202(e) ofthe Federal Power Act (FPA) (16 U.S.C.824a(e))

  9. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tenaslta Power Services Co. OE Docket No. EA-243-A Order Authorizing Electricity Exports to Canada Order No. EA-243-A March 1,2007 Tenaska Power Services Co. Order No. EA-243-A I. BACKGROUND Exports of elcctricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30 I(b) and 402(f) of the Departrncnt of' Energy Organizatio~l Act (42 U, S.C. 7 15 1 (b), 7 1 72Cf)) and rcquirc authorization under section 202(e) of the Federal Power Act

  10. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TexMex Energy, LLC OE Docket No. EA-294-A Order Authorizing Electricity Exports to Mexico Order No. EA-294-A February 22, 2007 TexMex Energy, LLC Order No. EA-294-A I. BACKGROUND Exports of electricity from the United States to a foreign count~y are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 15 1 (b), 71 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16

  11. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BP Energy Company OE Docket No. EA- 3 14 Order Authorizing Electricity Exports to Mexico Order No. EA-3 14 February 22,2007 BP Energy Company Order No. EA-314 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(Q of the Department of Energy Organization Act (42 U.S.C. 7 15 l(b), 7172(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.S24a(e)) .

  12. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CSW Power Marketing OE Docket No. EA-3 1 8 Order Authorizing Electricity Exports to Mexico Order No. EA-3 18 February 22,2007 CSW Power Marketing Order No. EA-318 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30l(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 1 5 1 (b), 7 1 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16

  13. States Government

    Office of Legacy Management (LM)

    ,.' &I ,J?5.8 = , sr; i&L:E%, 7-e;, iB 1 L Unitbd ' States Government ma.morandum DATE: $I$! 24 ml1 Department of Energy y;;;z EM-421 .- Elimination of the Landis Machine Company site SVWECT: The File TO: I have reviewed the attached site summary and elimination recommendation for the Landis Machine Company site in Waynesboro, Pennsylvania. I have determined that there is little likelihood of radioactive contamination at this site. Based' on the above, the Landis Machine Company site is

  14. Origins of the Human Genome Project

    DOE R&D Accomplishments [OSTI]

    Cook-Deegan, Robert (Affiliation: Institute of Medicine, National Academy of Sciences)

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the United States and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  15. United States: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWhyear 6 2008 NREL Coal Reserves 260,551.00 Million Short Tons 1 2008 EIA Natural Gas Reserves 6,928,000,000,000 Cubic Meters (cu m) 6 2010 CIA World Factbook Oil...

  16. Space Dust Analysis Could Provide Clues to Solar System Origins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space Dust Analysis Could Provide Clues to Solar System Origins Space Dust Analysis Could Provide Clues to Solar System Origins Print Thursday, 18 September 2014 12:34 New studies of space dust captured by NASA's Stardust Interstellar Dust Collector have shown that interstellar particles may be much more complex in structure and composition than previously thought. -The tiny particles could give scientists chemical clues about the origins of our solar system. Amateur Enthusiasts Key to Research

  17. EA-1919: Recycle of Scrap Metals Originating from Radiological Areas |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy EA-1919: Recycle of Scrap Metals Originating from Radiological Areas EA-1919: Recycle of Scrap Metals Originating from Radiological Areas Summary This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in

  18. The Institutional Origins of the Department of Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Operational Management » History » DOE History Timeline » The Institutional Origins of the Department of Energy The Institutional Origins of the Department of Energy PDF icon Origins-of-the-Department-of-Energy.pdf More Documents & Publications National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) CX-007131: Categorical Exclusion Determination Response to several FOIA requests - Renewable Energy. Aviation Management Green Leases Executive Secretariat Energy

  19. Space Dust Analysis Could Provide Clues to Solar System Origins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space Dust Analysis Could Provide Clues to Solar System Origins Print New studies of space dust captured by NASA's Stardust Interstellar Dust Collector have shown that interstellar...

  20. Possible Bose-condensate Behavior in a Quantum Phase Originating...

    Office of Scientific and Technical Information (OSTI)

    Possible Bose-condensate Behavior in a Quantum Phase Originating in a Collective ... Citation Details In-Document Search Title: Possible Bose-condensate Behavior in a Quantum ...

  1. Los Alamos researchers uncover new origins of radiation-tolerant...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new origins of radiation-tolerant materials A new report this week in the journal Nature Communications provides new insight into what, exactly, makes some complex materials...

  2. Origins of weak lensing systematics, and requirements on future...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Origins of weak lensing systematics, and requirements on future instrumentation (or knowledge of instrumentation) Citation Details In-Document Search Title:...

  3. Pair breaking versus symmetry breaking: Origin of the Raman modes...

    Office of Scientific and Technical Information (OSTI)

    Pair breaking versus symmetry breaking: Origin of the Raman modes in superconducting cuprates Citation Details In-Document Search Title: Pair breaking versus symmetry breaking:...

  4. The Institutional Origins of the Department of Energy | Department...

    Energy Savers [EERE]

    PDF icon Origins-of-the-Department-of-Energy.pdf More Documents & Publications National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) CX-007131: Categorical Exclusion...

  5. State Appliance Standards (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    State appliance standards have existed for decades, starting with Californias enforcement of minimum efficiency requirements for refrigerators and several other products in 1979. In 1987, recognizing that different efficiency standards for the same products in different states could create problems for manufacturers, Congress enacted the National Appliance Energy Conservation Act (NAECA), which initially covered 12 products. The Energy Policy Act of 1992 (EPACT92), EPACT2005, and EISA2007 added additional residential and commercial products to the 12 products originally specified under NAECA.

  6. D-dimensional Smorodinsky-Winternitz potential: Coherent state approach

    SciTech Connect (OSTI)

    Uenal, Nuri

    2013-10-15

    In this study, we construct the coherent states for a particle in the D-dimensional maximally superintegrable Smorodinsky-Winternitz potential. We, first, map the system into 2D harmonic oscillators, second, construct the coherent states of them by evaluating the transition amplitudes. Third, in the Cartesian and the hyperspherical coordinates, we find the coherent states and the stationary states of the original sytem by reduction.

  7. Space Dust Analysis Could Provide Clues to Solar System Origins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space Dust Analysis Could Provide Clues to Solar System Origins Print New studies of space dust captured by NASA's Stardust Interstellar Dust Collector have shown that interstellar particles may be much more complex in structure and composition than previously thought. -The tiny particles could give scientists chemical clues about the origins of our solar system. Amateur Enthusiasts Key to Research Progress The space dust that was captured by NASA's Stardust Interstellar Dust Collector landed in

  8. Space Dust Analysis Could Provide Clues to Solar System Origins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space Dust Analysis Could Provide Clues to Solar System Origins Print New studies of space dust captured by NASA's Stardust Interstellar Dust Collector have shown that interstellar particles may be much more complex in structure and composition than previously thought. -The tiny particles could give scientists chemical clues about the origins of our solar system. Amateur Enthusiasts Key to Research Progress The space dust that was captured by NASA's Stardust Interstellar Dust Collector landed in

  9. Space Dust Analysis Could Provide Clues to Solar System Origins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space Dust Analysis Could Provide Clues to Solar System Origins Print New studies of space dust captured by NASA's Stardust Interstellar Dust Collector have shown that interstellar particles may be much more complex in structure and composition than previously thought. -The tiny particles could give scientists chemical clues about the origins of our solar system. Amateur Enthusiasts Key to Research Progress The space dust that was captured by NASA's Stardust Interstellar Dust Collector landed in

  10. Space Dust Analysis Could Provide Clues to Solar System Origins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space Dust Analysis Could Provide Clues to Solar System Origins Print New studies of space dust captured by NASA's Stardust Interstellar Dust Collector have shown that interstellar particles may be much more complex in structure and composition than previously thought. -The tiny particles could give scientists chemical clues about the origins of our solar system. Amateur Enthusiasts Key to Research Progress The space dust that was captured by NASA's Stardust Interstellar Dust Collector landed in

  11. Space Dust Analysis Could Provide Clues to Solar System Origins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space Dust Analysis Could Provide Clues to Solar System Origins Print New studies of space dust captured by NASA's Stardust Interstellar Dust Collector have shown that interstellar particles may be much more complex in structure and composition than previously thought. -The tiny particles could give scientists chemical clues about the origins of our solar system. Amateur Enthusiasts Key to Research Progress The space dust that was captured by NASA's Stardust Interstellar Dust Collector landed in

  12. Space Dust Analysis Could Provide Clues to Solar System Origins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space Dust Analysis Could Provide Clues to Solar System Origins Print New studies of space dust captured by NASA's Stardust Interstellar Dust Collector have shown that interstellar particles may be much more complex in structure and composition than previously thought. -The tiny particles could give scientists chemical clues about the origins of our solar system. Amateur Enthusiasts Key to Research Progress The space dust that was captured by NASA's Stardust Interstellar Dust Collector landed in

  13. Origins | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Origins Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion Links International Activities Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » International Activities Origins

  14. COLLOQUIUM: Chance, Necessity, and the Origins of Life | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab December 2, 2015, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Chance, Necessity, and the Origins of Life Professor Robert Hazen Carnegie Institute of Washington & George Mason University Earth's 4.5 billion year history is a complex tale of deterministic physical and chemical processes, as well as 'frozen accidents'. Most models of life's origins also invoke chance and necessity. Recent research adds two important insights to this discussion. First, chance versus

  15. The origins of growth stresses in amorphous semiconductor thin films.

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: The origins of growth stresses in amorphous semiconductor thin films. Citation Details In-Document Search Title: The origins of growth stresses in amorphous semiconductor thin films. No abstract prepared. Authors: Kotula, Paul Gabriel ; Srolovitz, David J. [1] ; Floro, Jerrold Anthony ; Seel, Steven Craig + Show Author Affiliations (Princeton University, Princeton, NJ) Publication Date: 2003-03-01 OSTI Identifier: 917484 Report Number(s):

  16. HADRON AND PHOTON PRODUCTION OF J PARTICLES AND THE ORIGIN OF J PARTICLES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COO.306?, 3'^ 7 HADRON AND PHOTON PRODUCTION OF J PARTICLES AND THE ORIGIN OF J PARTICLES Samuel C.C.Ting Department of Physics and Laboratory for Nuclear Science Massachusetts Institute of Technology RECEIVED BY TIC MlG 5 1975 A Rapporteur's Summary at the International Conference on High Energy Physics btil Palermo, Sicily. June, 1975 'W^'i'Lll DISTRIBUTION OFTHIS DOCUJvlLMi uMUMltrsP DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States

  17. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 Table 8. Carbon intensity of the economy by state (2000-2013) metric tons of energy-related carbon dioxide per million chained 2009 dollars of GDP Change (2000-2013) State 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 percent Absolute Alabama 947.5 881.6 889.4 873.7 839.2 825.8 827.1 833.3 791.5 704.6 759.5 734.5 691.6 661.8 -30.2% -285.7 Alaska 1,220.0 1,145.3 1,118.1 1,127.8 1,158.5 1,161.3 1,038.3 949.7 847.3 758.4 793.2 770.3 735.6 730.8 -40.1% -489.2 Arizona 424.8

  18. Department of Energy Releases New 'Billion-Ton' Study Highlighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in biomass-derived energy sources can be produced in a sustainable manner through the use of widely-accepted conservation practices, such as no-till farming and crop rotation. ...

  19. 14,700 tons of silver at Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    calutron magnets was because of a shortage of copper during the war. As you will recall, Gen. Groves sent Col. Nichols to arrange for the purchase of as much uranium ore as could...

  20. Energy Department Employee Recognized for Eliminating One Million Tons of

    Broader source: Energy.gov (indexed) [DOE]

    Greenhouse Gas Emissions | Department of Energy The Energy Department is pleased to announce that Dr. Josh Silverman, Director of the Office of Sustainability Support, has been selected as a finalist for the Samuel J. Heyman Service to America Medal from the Partnership for Public Service. Silverman was selected for his dedication to reducing the Department's greenhouse gas emissions. Silverman is being recognized for identifying gaps in air pollution controls at Department facilities where

  1. Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal...

    Broader source: Energy.gov (indexed) [DOE]

    from reaching the groundwater and the Columbia River. ERDF receives contaminated soil, demolition debris, and solid waste from cleanup operations across the...

  2. KCP relocates 18-ton machine | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    relocations. It took nearly three days to disassemble the machine and prepare it for transport. The machine was partially disassembled, removing auxiliary pieces from the main...

  3. Disposal Facility Reaches 15-Million-Ton Milestone

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. EMs Environmental Restoration Disposal Facility (ERDF) a massive landfill for low-level radioactive and hazardous waste at the Hanford site has achieved a major cleanup milestone.

  4. State and Regional Control of Geological Carbon Sequestration

    SciTech Connect (OSTI)

    Reitze, Arnold; Durrant, Marie

    2011-03-31

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­‐year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. Carbon capture and geologic sequestration offer one method to reduce carbon emissions from coal and other hydrocarbon energy production. While the federal government is providing increased funding for carbon capture and sequestration, recent congressional legislative efforts to create a framework for regulating carbon emissions have failed. However, regional and state bodies have taken significant actions both to regulate carbon and facilitate its capture and sequestration. This article explores how regional bodies and state government are addressing the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. Several regional bodies have formed regulations and model laws that affect carbon capture and storage, and three bodies comprising twenty-­‐three states—the Regional Greenhouse Gas Initiative, the Midwest Regional Greenhouse Gas Reduction Accord, and the Western Climate initiative—have cap-­‐and-­‐trade programs in various stages of development. State property, land use and environmental laws affect the development and implementation of carbon capture and sequestration projects, and unless federal standards are imposed, state laws on torts and renewable portfolio requirements will directly affect the liability and viability of these projects. This paper examines current state laws and legislative efforts addressing carbon capture and sequestration.

  5. State Energy Program awards $5 million to states for State Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Energy Program awards 5 million to states for State Energy Planning and Innovative Energy Practices State Energy Program awards 5 million to states for State Energy...

  6. Origin of the smaller conductances of Rh, Pb, and Co atomic junctions in hydrogen environment

    SciTech Connect (OSTI)

    Li, Xue; Chen, Mingyan; Ye, Xiang; Xie, Yi-qun; Ke, San-huang

    2015-02-14

    We study theoretically the structural and electronic origins of the smaller conductances (one conductance quantum, G{sub 0}, and smaller) of Rh, Pb, and Co metal atomic junctions (MAJs) in a hydrogen environment, as were measured in recent experiments. For the Rh MAJs, the 1G{sub 0} conductance is attributed to a stable contact bridged by a single hydrogen molecule whose antibonding state provides a single transport channel. For the Pb and Co MAJs the 1G{sub 0} conductance is, however, ascribed to a linear atomic chain adsorbing two dissociated H atoms, which largely reduces the density of states at the Fermi energy with respect to the pure ones. On the other hand, the small conductances of 0.3G{sub 0} (Rh) and 0.2G{sub 0} (Co) are due to H-decorated atomic chains connected to electrodes by a H atom.

  7. Two (2) 175 Ton (350 Tons total) Chiller Geothermal Heat Pumps for recently commissioned LEED Platinum Building

    Broader source: Energy.gov [DOE]

    This project will operate; collect data; and market the energy savings and capital costs of a recently commissioned chiller geothermal heat pump project to promote the wide-spread adoption of this mature technology.

  8. Estimated Carbon Dioxide Emissions in 2008: United States

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-04-01

    Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary resource consumption, electricity generation, and energy consumption within each economic sector. Flow charts of state-level energy usage and explanations of the calculations and assumptions utilized can be found at: http://flowcharts.llnl.gov. This information is translated into carbon dioxide emissions using ratios of carbon dioxide emissions to energy use calculated from national carbon dioxide emissions and national energy use quantities for each particular sector. These statistics are reported annually in the U.S. EIA's Annual Energy Review. Data for 2008 (US. EIA, 2010) was updated in August of 2010. This is the first presentation of a comprehensive state-level package of flow charts depicting carbon dioxide emissions for the United States.

  9. Origins of optical absorption characteristics of Cu2+ complexes in

    Office of Scientific and Technical Information (OSTI)

    solutions (Journal Article) | SciTech Connect Origins of optical absorption characteristics of Cu2+ complexes in solutions Citation Details In-Document Search Title: Origins of optical absorption characteristics of Cu2+ complexes in solutions Authors: Qiu, S R ; Wood, B C ; Ehrmann, P R ; Demos, S G ; Miller, P E ; Schaffers, K I ; Suratwala, T I Publication Date: 2015-02-27 OSTI Identifier: 1234585 Report Number(s): LLNL-JRNL-668007 DOE Contract Number: AC52-07NA27344 Resource Type: Journal

  10. U.S. Domestic

    Gasoline and Diesel Fuel Update (EIA)

    Domestic and Foreign Coal Distribution by State of Origin ____________________________________________________________________________________________________ U.S. Energy Information Administration | Annual Coal Distribution Report 2013 Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2013 (thousand short tons) Coal Exports Coal Origin State and Region Domestic Distribution By Coal Mines By Brokers & Traders* Total Exports Total Distribution Alabama 6,941.4 10,843.3 247.3

  11. EA-1919: Recycle of Scrap Metals Originating from Radiological Areas

    Broader source: Energy.gov [DOE]

    This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in the scope of this Programmatic EA.)

  12. Report to the United States Congress clean coal technology export markets and financing mechanisms

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This report responds to a Congressional Conference Report that requests that $625,000 in funding provided will be used by the Department to identify potential markets for clean coal technologies in developing countries and countries with economies in transition from nonmarket economies and to identify existing, or new, financial mechanisms or financial support to be provided by the Federal government that will enhance the ability of US industry to participate in these markets. The Energy Information Administration (EIA) expects world coal consumption to increase by 30 percent between 1990 and 2010, from 5.1 to 6.5 billion short tons. Five regions stand out as major foreign markets for the export of US clean coal technologies: China; The Pacific Rim (other than China); South Asia (primarily India); Transitional Economies (Central Europe and the Newly Independent States); and Other Markets (the Americas and Southern Africa). Nearly two-thirds of the expected worldwide growth in coal utilization will occur in China, one quarter in the United States. EIA forecasts nearly a billion tons per year of additional coal consumption in China between 1990 and 2010, a virtual doubling of that country`s coal consumption. A 30-percent increase in coal consumption is projected in other developing countries over that same period. This increase in coal consumption will be accompanied by an increase in demand for technologies for burning coal cost-effectively, efficiently and cleanly. In the Pacific Rim and South Asia, rapid economic growth coupled with substantial indigenous coal supplies combine to create a large potential market for CCTS. In Central Europe and the Newly Independent States, the challenge will be to correct the damage of decades of environmental neglect without adding to already-considerable economic disruption. Though the situation varies, all these countries share the basic need to use indigenous low-quality coal cleanly and efficiently.

  13. Origins of enhanced thermoelectric power factor in topologically...

    Office of Scientific and Technical Information (OSTI)

    for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA State...

  14. HISTORY OF THE ORIGIN OF THE CHEMICAL ELEMENTS AND THEIR DISCOVERIES...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference: HISTORY OF THE ORIGIN OF THE CHEMICAL ELEMENTS AND THEIR DISCOVERIES. Citation Details In-Document Search Title: HISTORY OF THE ORIGIN OF THE CHEMICAL ELEMENTS AND...

  15. Investigating Radiation Shielding Properties of Different Mineral Origin Heavyweight Concretes

    SciTech Connect (OSTI)

    Basyigit, Celalettin; Uysal, Volkan; Kilincarslan, Semsettin; Akkas, Ayse; Mavi, Betuel; Guenoglu, Kadir; Akkurt, Iskender

    2011-12-26

    The radiation although has hazardous effects for human health, developing technologies bring lots of usage fields to radiation like in medicine and nuclear power station buildings. In this case protecting from undesirable radiation is a necessity for human health. Heavyweight concrete is one of the most important materials used in where radiation should be shielded, like those areas. In this study, used heavyweight aggregates of different mineral origin (Limonite, Siderite), in order to prepare different series in concrete mixtures and investigated radiation shielding properties. The experimental results on measuring the radiation shielding, the heavyweight concrete prepared with heavyweight aggregates of different mineral origin show that, are useful radiation absorbents when they used in concrete mixtures.

  16. Origin of coherent structures in a discrete chaotic medium

    SciTech Connect (OSTI)

    Rabinovich, M.I.; Torres, J.J.; Varona, P.; Huerta, R.; Varona, P.; Huerta, R.; Weidman, P.

    1999-08-01

    Using as an example a large lattice of locally interacting Hindmarsh-Rose chaotic neurons, we disclose the origin of ordered structures in a discrete nonequilibrium medium with fast and slow chaotic oscillations. The origin of the ordering mechanism is related to the appearance of a periodic average dynamics in the group of chaotic neurons whose individual slow activity is significantly synchronized by the group mean field. Introducing the concept of a {open_quotes}coarse grain{close_quotes} as a cluster of neuron elements with periodic averaged behavior allows consideration of the dynamics of a medium composed of these clusters. A study of this medium reveals spatially ordered patterns in the periodic and slow dynamics of the coarse grains that are controlled by the average intensity of the fast chaotic pulsation. {copyright} {ital 1999} {ital The American Physical Society}

  17. Origin and dynamics of vortex rings in drop splashing

    SciTech Connect (OSTI)

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.

  18. Origin and dynamics of vortex rings in drop splashing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row ofmore » vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.« less

  19. Protocol Additional to the Agreement between the United States of America and the International Atomic Energy Agency for the Application of Safeguards in the United States of America

    National Nuclear Security Administration (NNSA)

    Information Circular INFCIRC/288/Add.1 Date: 9 March 2009 General Distribution Original: English Protocol Additional to the Agreement between the United States of America and the International Atomic Energy Agency for the Application of Safeguards in the United States of America 1. The text of the Protocol Additional to the Agreement between the United States of America and the International Atomic Energy Agency for the Application of Safeguards in the United States of America 1 is reproduced in

  20. State Energy Program Helps States Plan and Implement Energy Efficiency...

    Energy Savers [EERE]

    Helps States Plan and Implement Energy Efficiency State Energy Program Helps States Plan and Implement Energy Efficiency The U.S. Department of Energy (DOE) State Energy Program...

  1. State Energy Risk Assessment Initiative - State Energy Risk Profiles...

    Energy Savers [EERE]

    Mission Energy Infrastructure Modeling and Analysis State Energy Risk Assessment Initiative - State Energy Risk Profiles State Energy Risk Assessment Initiative - State...

  2. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shao, Yuchuan; Xiao, Zhengguo; Bi, Cheng; Yuan, Yongbo; Huang, Jinsong

    2014-12-15

    The large photocurrent hysteresis observed in many organometal trihalide perovskite solar cells has become a major hindrance impairing the ultimate performance and stability of these devices, while its origin was unknown. Here we demonstrate the trap states on the surface and grain boundaries of the perovskite materials to be the origin of photocurrent hysteresis and that the fullerene layers deposited on perovskites can effectively passivate these charge trap states and eliminate the notorious photocurrent hysteresis. Fullerenes deposited on the top of the perovskites reduce the trap density by two orders of magnitude and double the power conversion efficiency of CH3NH3PbI3more » solar cells. As a result, the elucidation of the origin of photocurrent hysteresis and its elimination by trap passivation in perovskite solar cells provides important directions for future enhancements to device efficiency.« less

  3. Port Radium Canada's Original Radium/Uranium Mine, The Complete Story of Canada's Historic Radium/Uranium Mine, 1932 to 2012 - 13159

    SciTech Connect (OSTI)

    Chambers, Doug; Wiatzka, Gerd; Brown, Steve

    2013-07-01

    This paper provides the life story of Canada's original radium/uranium mine. In addition to the history of operations, it discusses the unique and successful approach used to identify the key issues and concerns associated with the former radium, uranium and silver mining property and the activities undertaken to define the remedial actions and subsequent remedial plan. The Port Radium Mine site, situated approximately 275 km north of Yellowknife on the east shore of Great Bear Lake, Northwest Territories, was discovered in 1930 and underground mining began in 1932. The mine operated almost continuously from 1932 to 1982, initially for recovery of radium, then uranium and finally, for recovery of silver. Tailings production totaled an estimated 900,000 tons and 800,000 tons from uranium and silver processing operations respectively. In the early days of mining, Port Radium miners were exposed to radon and associated decay product levels (in Working Level Months of exposure - WLM) hundreds of times greater than modern standards. The experience of the Port Radium miners provides important contribution to understanding the risks from radon. While the uranium mine was originally decommissioned in the early 1960's, to the standards of the day, the community of Deline (formerly Fort Franklin) had concerns about residual contamination at the mine site and the potential effects arising from use of traditional lands. The Deline people were also concerned about the possible risks to Deline Dene arising from their work as ore carriers. In the late 1990's, the community of Deline brought these concerns to national attention and consequently, the Government of Canada and the community of Deline agreed to move forward in a collaborative manner to address these concerns. The approach agreed to was to establish the Canada-Deline Uranium Table (CDUT) to provide a joint process by which the people of Deline could have their concerns expressed and addressed. A great deal of work was done through the CDUT, including efforts to assess site environment and safety issues in the context of modern reclamation standards. In addition to the environmental and remediation studies, an assessment of historic exposures of Deline ore carriers to radiation and a follow-up epidemiological feasibility study were performed. SENES Consultants Limited (SENES) carried out the dose reconstruction for the Port Radium miners in the 1990's, was the environmental consultant to the CDUT from 2000 to 2005, developed the Remedial Action Plan (RAP), engineering plans and specifications for decommissioning the Port Radium mine and vicinity sites in 2005/6, supervised the remedial works in 2007 and carried out the long term post closure monitoring from 2008 to 2012. Our firsthand experience from working cooperatively with the CDUT provides insights into effective decommissioning of historic contaminated sites. (authors)

  4. File:08-CO-c - State Transmission Process.pdf | Open Energy Informatio...

    Open Energy Info (EERE)

    modified from its original state, some details may not fully reflect the modified file. Image title Lucidchart Author None Short title 08-CO-c - Certificate of Public Convenience...

  5. The original of this document contains information which is subject...

    Broader source: Energy.gov (indexed) [DOE]

    1991, from a country that is not on the Sensitive List, to the United States to escape poverty. Exhibit 4 at 14. The Individual and her spouse have, over the past eight years,...

  6. Scientists use world's fastest supercomputer to model origins...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at galaxy-scale mass concentrations above and beyond quantities seen in state-of-the-art sky surveys. October 26, 2009 Los Alamos National Laboratory sits on top of a once-remote...

  7. The states and deregulation: The case of surface mining

    SciTech Connect (OSTI)

    Scicchitano, M.J.; Hedge, D.; Metz, P.

    1989-01-01

    The Surface Mining Control and Reclamation Act of 1977 (SMCRA), passed to correct the abuses of surface mining, assigned key implementation roles to the states. While the federal government originally enforced SMCRA states could operate the program themselves. Once states decided to run their own program the federal government would oversee them to insure they properly enforce the Act. This research examines the enforcement behavior of states in the 1980s. The results indicate that early in the Reagan administration eastern states enforced the SMCRA less stringently than other states. Eastern states increased their level of enforcement later in the 1980s in response to pressures for increased federal oversight from Congress, interest groups and others.

  8. THE INSTITUTIONAL ORIGINS OF THE DEPARTMENT OF ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INSTITUTIONAL ORIGINS OF THE DEPARTMENT OF ENERGY ManhattanEngineerDistrict (1942-1946) Ex ExecutiveOfficeof thePresident EnergyPolicyOffice(1973) Federal * .,.-, Office (1973-1974) AtomicEnergyCommission (1947 -1975) Federal Energy Administration (1974) -1977) Energy Research and DevelopmentAdministration3 (1975 - 1977) INCLUDES 1sPECIALEnergy Office ( t7J) tklr ... Energy Office(lt13) 2 Trea y-EnergyOffice ._ 011 Import Ad I 1 ,..,_All_ fMruC**n**'" 01or11 Oooa ... ,._.,. Oil and Gas 3

  9. Quark-Gluon Plasma Model and Origin of Magic Numbers

    SciTech Connect (OSTI)

    Ghahramany, N.; Ghanaatian, M.; Hooshmand, M.

    2008-04-21

    Using Boltzman distribution in a quark-gluon plasma sample it is possible to obtain all existing magic numbers and their extensions without applying the spin and spin-orbit couplings. In this model it is assumed that in a quark-gluon thermodynamic plasma, quarks have no interactions and they are trying to form nucleons. Considering a lattice for a central quark and the surrounding quarks, using a statistical approach to find the maximum number of microstates, the origin of magic numbers is explained and a new magic number is obtained.

  10. NGL MIDSTREAM OVERVIEW Macgill James | Manager, NGL Market Origination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NGL MIDSTREAM OVERVIEW Macgill James | Manager, NGL Market Origination June 16, 2015 2 CAUTIONARY STATEMENT FOR THE PURPOSES OF THE "SAFE HARBOR" PROVISIONS OF THE PRIVATE SECURITIES LITIGATION REFORM ACT OF 1995 This presentation contains certain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended, which are intended to be covered by the safe harbors created thereby.

  11. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware 26.24 - W...

  12. Basin Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware 28.49 - W...

  13. State Energy Strategic Plans

    Broader source: Energy.gov [DOE]

    Most state energy offices across the country are required to have current and long-term strategic energy management plans in place. These strategic plans help to ensure that state agencies are...

  14. AASG STATE GDR

    Energy Science and Technology Software Center (OSTI)

    003198MLTPL00 AASG State Geothermal Data Repository for the National Geothermal Data System. http://repository.stategeothermaldata.org/repository/

  15. FY 2005 State Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Preliminary Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The

  16. Origin State>> CA CA ID ID ID IL KY MD MO NM NM NY NY OH SC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MO NM NM NY NY OH SC TN TN TN, WA, CA TN TN TN TN Total Shipments by Route Lawrence Livermore National Laboratory General Atomics Batelle Energy Alliance Idaho National Laboratory Advanced Mixed Waste Treatment Project Argonne National Laboratory Paducah Gaseous Diffusion Plant Aberdeen Proving Grounds National Security Technologies Sandia National Laboratory Los Alamos National Laboratory Brookhaven National Laboratory CH2M Hill B&W West Valley, LLC Portsmouth Gaseous Diffusion Plant

  17. Origin State>> CA CA ID ID ID IL KY MD NM NM NV NY NY OH TN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NM NM NV NY NY OH TN TN TN, WA, CA TN TN TN TN TX Total Shipments by Route Lawrence Livermore National Laboratory General Atomics Advanced Mixed Waste Treatment Project Batelle Energy Alliance Idaho National Laboratory Argonne National Laboratory Paducah Gaseous Diffusion Plant Aberdeen Proving Ground Los Alamos National Laboratory Sandia National Laboratory National Security Technologies Brookhaven National Laboratory West Valley Environmental Services Portsmouth Gaseous Diffusion Plant

  18. Origin State>> CA CA ID ID IL KY NJ NM NY NY NV OH OH OH SC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mix Wastew Treatment Project Argonne National Laboratory Paducah Gaseous Diffusion Plant Princeton Plasma Physics Laboratory Sandia National Laboratory Brookhaven National Laboratory West Valley Demonstration Project National Security Technologies, Inc. Mound Closure Project Portsmouth Gaseous Diffusion Plant Fernald Closure Project Savannah River Site BWXT Y-12 Plant Duratek Nuclear Fuels UT-Battelle Bechtel Jacobs Permafix M&EC EnergX (Foster Wheeler) Pantex Plant SOUTHERN I-15, CA-127,

  19. Origin State>> CA CA ID ID IL KY NJ NM NY NY NV OH OH OH SC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixed Waste Treatment Project Argonne National Laboratory Paducah Gaseous Diffusion Plant Princeton Plasma Physics Laboratory Sandia National Laboratory Brookhaven National Laboratory West Valley Demonstration Project National Security Technologies, Inc. Mound Closure Project Portsmouth Gaseous Diffusion Plant Fernald Closure Project Savannah River Site BWXT Y-12 Plant Duratek Nuclear Fuels UT-Battelle Bechtel Jacobs Permafix M&EC EnergX (formerly Foster Wheeler) Pantex Plant SOUTHERN I-15,

  20. Origin State>> CA CA ID ID IL KY NJ NM NY NY NV OH OH SC TN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SC TN TN TN TN TN TN TN TX Total Shipments by Route Lawrence Livermore National Laboratory Boeing/Rocketdyne Idaho National Labaratoy Advanced Mixed Waste Treatment Project Argonne National Laboratory Paducah Gaseous Diffusion Plant Princeton Plasma Physics Laboratory Sandia National Laboratory Brookhaven National Laboratory West Valley Demonstration Project National Security Technologies, Inc. Portsmouth Gaseous Diffusion Plant Fernald Closure Project Savannah River Site BWXT Y-12 Plant Duratek

  1. Origin State>> CA ID ID ID IL KY MD NM NM NY NY OH SC TN TN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MD NM NM NY NY OH SC TN TN TN, WA, CA TN TN TN TN TX Total Shipments by Route Lawrence Livermore National Laboratory Advanced Mixed Waste Treatment Project Batelle Energy Alliance Idaho National Laboratory Argonne National Laboratory Paducah Gaseous Diffusion Plant Aberdeen Proving Ground Los Alamos National Laboratory Sandia National Laboratory Brookhaven National Laboratory West Valley Environmental Services Portsmouth Gaseous Diffusion Plant Savannah River Site Duratek/Energy Solutions Babcox

  2. Origin State>> CA ID ID ID IL KY NV NY NY OH TN TN TN, WA, CA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NV NY NY OH TN TN TN, WA, CA TN TN TN TN TX Total Shipments by Route Lawrence Livermore National Laboratory Advanced Mixed Waste Treatment Project Batelle Energy Alliance Idaho National Laboratory Argonne National Laboratory Paducah Gaseous Diffusion Plant National Security Technologies Brookhaven National Laboratory West Valley Environmental Services Portsmouth Gaseous Diffusion Plant Duratek/Energy Solutions Babcox & Wilcox Technical Services Y-12 Plant Materials & Energy Corporation

  3. Origin State>> CA ID ID ID IL MD NM NM NV NY NY OH SC TN TN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NV NY NY OH SC TN TN TN, WA, CA TN TN TN Total Shipments by Route Lawrence Livermore National Laboratory Batelle Energy Alliance Idaho National Laboratory Advanced Mixed Waste Treatment Project Argonne National Laboratory Aberdeen Proving Ground Sandia National Laboratory Los Alamos National Laboratory National Security Technologies Brookhaven National Laboratory West Valley Environmental Services Portsmouth Gaseous Diffusion Plant Savannah River Site Duratek/Energy Solutions Babcox & Wilcox

  4. Origin State>> CA ID ID ID IL MD NM NM NY OH TN TN TN, WA, CA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NY OH TN TN TN, WA, CA TN TN TN TX Total Shipments by Route Lawrence Livermore National Laboratory Batelle Energy Alliance Idaho National Laboratory Advanced Mixed Waste Treatment Project Argonne National Laboratory Aberdeen Proving Ground Sandia National Laboratory Los Alamos National Laboratory Brookhaven National Laboratory Portsmouth Gaseous Diffusion Plant Duratek/Energy Solutions Babcox & Wilcox Technical Services Y-12 Plant Materials & Energy Corporation (M&EC) Perma-Fix

  5. Origin State>> CA ID ID ID IL NM NM OH TN TN TN, WA, CA TN TN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NM NM OH TN TN TN, WA, CA TN TN TN TN TX Total Shipments by Route Lawrence Livermore National Laboratory Batelle Energy Alliance Idaho National Laboratory Advanced Mixed Waste Treatment Project Argonne National Laboratory Sandia National Laboratory Los Alamos National Laboratory Portsmouth Gaseous Diffusion Plant Duratek/Energy Solutions Babcox & Wilcox Technical Services Y-12 Plant Materials & Energy Corporation (M&EC) Perma-Fix Nuclear Fuels Services Wastren Advantage, Inc.

  6. Origin State>> CA ID ID IL IL KY NM NM NV NY OH TN TN TN, WA,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IL IL KY NM NM NV NY OH TN TN TN, WA, CA TN TN TN TN Total Shipments by Route Lawrence Livermore National Laboratory Batelle Energy Alliance Idaho National Laboratory Energx Argonne National Laboratory Argonne National Laboratory Paducah Gaseous Diffusion Plant Sandia National Laboratory Los Alamos National Laboratory National Security Technologies West Valley Environmental Services Portsmouth Gaseous Diffusion Plant Duratek/Energy Solutions Babcox & Wilcox Technical Services Y-12 Plant

  7. Origin of superstructures in (double) perovskite thin films

    SciTech Connect (OSTI)

    Shabadi, V. Major, M.; Komissinskiy, P.; Vafaee, M.; Radetinac, A.; Baghaie Yazdi, M.; Donner, W.; Alff, L.

    2014-09-21

    We have investigated the origin of superstructure peaks as observed by X-ray diffraction of multiferroic Bi(Fe{sub 0.5}Cr{sub 0.5})O{sub 3} thin films grown by pulsed laser deposition on single crystal SrTiO{sub 3} substrates. The photon energy dependence of the contrast between the atomic scattering factors of Fe and Cr is used to rule out a chemically ordered double perovskite Bi{sub 2}FeCrO{sub 6} (BFCO). Structural calculations suggest that the experimentally observed superstructure occurs due to unequal cation displacements along the pseudo-cubic [111] direction that mimic the unit cell of the chemically ordered compound. This result helps to clarify discrepancies in the correlations of structural and magnetic order reported for Bi{sub 2}FeCrO{sub 6}. The observation of a superstructure in itself is not a sufficient proof of chemical order in double perovskites.

  8. State Technologies Advancement Collaborative

    SciTech Connect (OSTI)

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

  9. Origin of the Diverse Behavior of Oxygen Vacancies in ABO3 Perovskites: A Symmetry Based Analysis

    SciTech Connect (OSTI)

    Yin, W. J.; Wei, S. H.; Al-Jassim, M. M.; Yan, Y. F.

    2012-05-15

    Using band symmetry analysis and density functional theory calculations, we reveal the origin of why oxygen vacancy (V{sub O}) energy levels are shallow in some ABO{sub 3} perovskites, such as SrTiO{sub 3}, but are deep in some others, such as LaAlO{sub 3}. We show that this diverse behavior can be explained by the symmetry of the perovskite structure and the location (A or B site) of the metal atoms with low d orbital energies, such as Ti and La atoms. When the conduction band minimum (CBM) is an antibonding {Gamma}12 state, which is usually associated with the metal atom with low d orbital energies at the A site (e.g., LaAlO{sub 3}), then the V{sub O} energy levels are deep inside the gap. Otherwise, if the CBM is the nonbonding {Gamma}25{prime} state, which is usually associated with metal atoms with low d orbital energies at the B site (e.g., SrTiO{sub 3}), then the V{sub O} energy levels are shallow and often above the CBM. The V{sub O} energy level is also deep for some uncommon ABO{sub 3} perovskite materials that possess a low s orbital, or large-size cations, and an antibonding {Gamma}{sub 1} state CBM, such as ZnTiO{sub 3}. Our results, therefore, provide guidelines for designing ABO{sub 3} perovskite materials with desired functional behaviors.

  10. DOE Releasing $20 Million to State of New Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releasing $20 Million to State of New Mexico CARLSBAD, N.M., August 21, 2000 - The U.S. Department of Energy (DOE) today announced that it is releasing $20 million in impact assistance funding to the state of New Mexico. The funds were originally earmarked for state highway improvements along routes leading to DOE's Waste Isolation Pilot Plant (WIPP). DOE placed the $20 million in a trust fund after the New Mexico Environment Department (NMED) included a provision for closure and post-closure

  11. Nevada State Air Regulations and State Implementation Plan Webpage...

    Open Energy Info (EERE)

    in Nevada and its state implementation plan. Author State of Nevada Division of Environmental Protection Published State of Nevada, Date Not Provided DOI Not Provided...

  12. State Opportunities for Action: Update of States' CHP Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Action: Update of States' CHP Activities (ACEEE), October 2003 State Opportunities for Action: Update of States' CHP Activities (ACEEE), October 2003 This 2003 ...

  13. State and Local Code Implementation: State Energy Officials ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Energy Officials - 2014 BTO Peer Review State and Local Code Implementation: State Energy Officials - 2014 BTO Peer Review Presenter: Chris Wagner, National Association of...

  14. State Energy Strategic Planning

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Technical Assistance Program (TAP) presentation at a TAP webinar held on April 3, 2013 and dealing with state energy strategic planning.

  15. Solid State Lighting Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid State Lighting Reliability 2015Building Technologies Office Peer Review Lynn Davis, ... life testing methodologies that help lighting manufacturers and key stakeholders and ...

  16. Solid State Lighting Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid State Lighting Reliability 2014 Building Technologies Office Peer Review Lynn Davis, ... DOE : 370 K methodologies to help lighting manufacturers and key stakeholders ...

  17. United States Government

    Office of Legacy Management (LM)

    OR Ohio State University, Columbus, OH (*) Stauffer Tenescal Co., Richmond, CA Tocco Induction Heating Division, Clevelaad, OH Utica Drop Forge & Tool Co., Utica, NV Titanium...

  18. The structural origin of the hard-sphere glass transition in...

    Office of Scientific and Technical Information (OSTI)

    The structural origin of the hard-sphere glass transition in granular packing Prev Next Title: The structural origin of the hard-sphere glass transition in granular packing ...

  19. Signaling completion of a message transfer from an origin compute node to a target compute node

    DOE Patents [OSTI]

    Blocksome, Michael A. (Rochester, MN); Parker, Jeffrey J. (Rochester, MN)

    2011-05-24

    Signaling completion of a message transfer from an origin node to a target node includes: sending, by an origin DMA engine, an RTS message, the RTS message specifying an application message for transfer to the target node from the origin node; receiving, by the origin DMA engine, a remote get message containing a data descriptor for the message and a completion notification descriptor, the completion notification descriptor specifying a local direct put transfer operation for transferring data locally on the origin node; inserting, by the origin DMA engine in an injection FIFO buffer, the data descriptor followed by the completion notification descriptor; transferring, by the origin DMA engine to the target node, the message in dependence upon the data descriptor; and notifying, by the origin DMA engine, the application that transfer of the message is complete in dependence upon the completion notification descriptor.

  20. Signaling completion of a message transfer from an origin compute node to a target compute node

    DOE Patents [OSTI]

    Blocksome, Michael A. (Rochester, MN)

    2011-02-15

    Signaling completion of a message transfer from an origin node to a target node includes: sending, by an origin DMA engine, an RTS message, the RTS message specifying an application message for transfer to the target node from the origin node; receiving, by the origin DMA engine, a remote get message containing a data descriptor for the message and a completion notification descriptor, the completion notification descriptor specifying a local memory FIFO data transfer operation for transferring data locally on the origin node; inserting, by the origin DMA engine in an injection FIFO buffer, the data descriptor followed by the completion notification descriptor; transferring, by the origin DMA engine to the target node, the message in dependence upon the data descriptor; and notifying, by the origin DMA engine, the application that transfer of the message is complete in dependence upon the completion notification descriptor.

  1. Origin of the narrow, single peak in the fission-fragment mass...

    Office of Scientific and Technical Information (OSTI)

    Origin of the narrow, single peak in the fission-fragment mass distribution for 258Fm Citation Details In-Document Search Title: Origin of the narrow, single peak in the...

  2. Origin of the 871-keV gamma ray and the ``oxide'' attribute ...

    Office of Scientific and Technical Information (OSTI)

    Origin of the 871-keV gamma ray and the oxide'' attribute Citation Details In-Document Search Title: Origin of the 871-keV gamma ray and the oxide'' attribute You are...

  3. State Energy Price System: 1982 update

    SciTech Connect (OSTI)

    Imhoff, K.L.; Fang, J.M.

    1984-10-01

    The State Energy Price System (STEPS) contains estimates of energy prices for ten major fuels (electricity, natural gas, metallurgical coal, steam coal, distillate, motor gasoline, diesel, kerosene/jet fuel, residual fuel, and liquefied petroleum gas), by major end-use sectors (residential, commercial, industrial, transportation, and electric utility), and by state through 1982. Both physical unit prices and prices per million Btu are included in STEPS. Major changes in STEPS data base for 1981 and 1982 are described. The most significant changes in procedures for the updates occur in the residential sector distillate series and the residential sector kerosene series. All physical unit and Btu prices are shown with three significant digits instead of with four significant digits as shown in the original documentation. Details of these and other changes are contained in this report, along with the updated data files. 31 references, 65 tables.

  4. Fehner and Gosling, Origins of the Nevada Test Site | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Origins of the Nevada Test Site Fehner and Gosling, Origins of the Nevada Test Site Terrence R. Fehner and F.G. Gosling. Origins of the Nevada Test Site. DOE/MA-0518. Washington, D.C.: Department of Energy, 2000. 95 pp. PDF icon DOENevadaTestSite.pdf More Documents & Publications origins.indd Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I NTS_History.indd

  5. Appalachian State | Open Energy Information

    Open Energy Info (EERE)

    Appalachian State Jump to: navigation, search Name Appalachian State Facility Appalachian State Sector Wind energy Facility Type Small Scale Wind Facility Status In Service...

  6. Energy Standards for State Agencies

    Broader source: Energy.gov [DOE]

    State departments and agencies are encouraged to employ the latest energy-conservation practices in the design, construction, renovation, operation and maintenance of state facilities. All state ...

  7. Grid State Estimation Tool

    Energy Science and Technology Software Center (OSTI)

    2014-10-09

    This software code is designed to track generator state variables in real time using the Ensemble Kalman Filter method with the aid of PMU measurements. This code can also be used to calibrate dynamic model parameters by augmenting parameters in the state variable vector.

  8. Solid State Division

    SciTech Connect (OSTI)

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  9. GAUSSIAN RANDOM FIELD: PHYSICAL ORIGIN OF SERSIC PROFILES

    SciTech Connect (OSTI)

    Cen, Renyue

    2014-08-01

    While the Sersic profile family provides adequate fits for the surface brightness profiles of observed galaxies, its physical origin is unknown. We show that if the cosmological density field is seeded by random Gaussian fluctuations, as in the standard cold dark matter model, galaxies with steep central profiles have simultaneously extended envelopes of shallow profiles in the outskirts, whereas galaxies with shallow central profiles are accompanied by steep density profiles in the outskirts. These properties are in accord with those of the Sersic profile family. Moreover, galaxies with steep central profiles form their central regions in smaller denser subunits that possibly merge subsequently, which naturally leads to the formation of bulges. In contrast, galaxies with shallow central profiles form their central regions in a coherent fashion without significant substructure, a necessary condition for disk galaxy formation. Thus, the scenario is self-consistent with respect to the correlation between observed galaxy morphology and the Sersic index. We further predict that clusters of galaxies should display a similar trend, which should be verifiable observationally.

  10. The magnetized universe: its origin and dissipation through acceleration

    SciTech Connect (OSTI)

    Colgate, Stirling; Li, Hui; Kronberg, Philip

    2010-09-02

    Problems of a magnetic universe and some, possible solutions: The greater the total energy of an astrophysical phenomena, the more restricted are the possible explanations. Magnetic energy is the most challenging because its origin is still considered problematic. We suggest that it is evident that the universe is magnetized because of radio lobes, extra galactic cosmic rays, an observed Faraday rotation measure, and the polarized emission of extra galactic radio structures. The implied energies are so large that only the formation of supermassive black holes, (SMBHs) at the center of every galaxy are remotely energetic enough to supply this immense energy, {approx} (1/10)10{sup 8} M{sub {circle_dot}}c{sup 2}. (Only a galaxy cluster of 1000 galaxies has comparable energy, but is inversely rare.) Yet this energy appears to be largely transformed into accelerated relativistic particles, both electrons and ions. Only a large-scale coherent dynamo within the accretion disk forming the massive black hole makes a reasonable starting point. The subsequent winding of this dynamo derived flux by conducting, angular-momentum-dominated accreting matter produces the immense, coherent magnetic fluxes. We imbed this explanation in a list of similar phenomena at smaller scale and look for physical consistency among the various phenomena, especially the conversion of force-free magnetic energy into acceleration.

  11. Origin of anomalous Xe-H in nanodiamond stardust

    SciTech Connect (OSTI)

    Kratz, K. L.; Farouqi, K.; Hallmann, O.; Pfeiffer, B.; Ott, U.

    2014-05-09

    Still today, the nucleosynthesis origin of Xe-H in presolar nanodiamonds is far from understood. Historically possible explanations were proposed by a secondary neutron-burst process occurring in the He- or C/O-shells of a type-II supernova (SN-II), which are, however, not fully convincing in terms of modern nucleosynthesis conditions. Therefore, we have investigated Xe isotopic abundance features that may be diagnostic for different versions of a classical, primary r-process in high-entropy-wind (HEW) ejecta of core-collapse SN-II. We report here on parameter tests for non-standard r-process variants, by varying electron abundances (Y{sub e}), ranges of entropies (S) and expansion velocities (V{sub exp}) with their correlated neutron-freezeout times (?(freeze)) and temperatures (T{sub 9}(freeze)). From this study, we conclude that a best fi to the measured Xe-H abundance ratios {sup i}Xe/{sup 136}Xe can be obtained with the high-S main component of a cold r-process variant.

  12. S U M M A R I E S U.S. Energy Information Administration | State Energy Data 2013: Consumption

    Gasoline and Diesel Fuel Update (EIA)

    4 Table C2. Energy Consumption Estimates for Major Energy Sources in Physical Units, 2013 State Coal Natural Gas a Petroleum Nuclear Electric Power Hydro- electric Power f Fuel Ethanol g Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Million Short Tons Billion Cubic Feet Million Barrels Billion Kilowatthours Million Barrels Alabama ............. 27.2 618.0 25.2 2.3 3.0 61.4 1.1 6.7 99.8 40.8 12.9 6.3 Alaska ................. 1.0 332.6 12.7 18.9 0.3 6.5 0.1

  13. State of the States 2009: Renewable Energy Development and the...

    Open Energy Info (EERE)

    manual, Lessons learnedbest practices Website: www.nrel.govapplyingtechnologiesstatelocalactivitieswebinar2009 State of the States 2009: Renewable Energy Development and...

  14. The Origin of the Universe and the Arrow of Time

    ScienceCinema (OSTI)

    Carroll, Sean

    2010-01-08

    Over a century ago, Boltzmann and others provided a microscopic understanding for the tendency of entropy to increase. But this understanding relies ultimately on an empirical fact about cosmology: the early universe had very low entropy. Why was it like that? Cosmologist aspire to provide a dynamical explanation for the observed state of the universe, but have had very little to say about the dramatic asymmetry between early times and late times. I will argue that the search for a natural explanation for the observed breakdown of time-reversal symmetry in cosmology leads us directly to interesting conclusions about inflation, quantum gravity, and the multiverse.

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2013" "(short tons produced per employee hour)" ,"Mine Production Range (thousand short tons)" "Coal-Produc...

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by...

  17. THE ORIGIN OF COMPLEX ORGANIC MOLECULES IN PRESTELLAR CORES

    SciTech Connect (OSTI)

    Vastel, C.; Ceccarelli, C.; Lefloch, B.; Bachiller, R.

    2014-11-01

    Complex organic molecules (COMs) have been detected in a variety of environments including cold prestellar cores. Given the low temperatures of these objects, these detections challenge existing models. We report here new observations toward the prestellar core L1544. They are based on an unbiased spectral survey of the 3mm band at the IRAM 30m telescope as part of the Large Program ASAI. The observations allow us to provide a full census of the oxygen-bearing COMs in this source. We detected tricarbon monoxide, methanol, acetaldehyde, formic acid, ketene, and propyne with abundances varying from 5 10{sup 11} to 6 10{sup 9}. The non-LTE analysis of the methanol lines shows that they are likely emitted at the border of the core at a radius of ?8000 AU, where T ? 10K and n {sub H{sub 2}} ?2 10{sup 4}cm{sup 3}. Previous works have shown that water vapor is enhanced in the same region because of the photodesorption of water ices. We propose that a non-thermal desorption mechanism is also responsible for the observed emission of methanol and COMs from the same layer. The desorbed oxygen and a small amount of desorbed methanol and ethene are enough to reproduce the abundances of tricarbon monoxide, methanol, acetaldehyde, and ketene measured in L1544. These new findings open the possibility that COMs in prestellar cores originate in a similar outer layer rather than in the dense inner cores, as previously assumed, and that their formation is driven by the non-thermally desorbed species.

  18. The origin of the most iron-poor star

    SciTech Connect (OSTI)

    Marassi, S.; Schneider, R.; Limongi, M. [INAF/Osservatorio Astronomico di Roma, Via di Frascati 33, I-00040 Monteporzio (Italy); Chiaki, G.; Yoshida, N. [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Omukai, K. [Astronomical Institute, Tohoku University, Sendai 980-8578 (Japan); Nozawa, T. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Chieffi, A., E-mail: stefania.marassi@oa-roma.inaf.it [INAF/IASF, Via Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2014-10-20

    We investigate the origin of carbon-enhanced metal-poor (CEMP) stars starting from the recently discovered [Fe/H] < -7.1 star SMSS J031300. We show that the elemental abundances observed on the surface of SMSS J031300 can be well fit by the yields of faint, metal-free, supernovae (SNe). Using properly calibrated faint SN explosion models, we study, for the first time, the formation of dust grains in such carbon-rich, iron-poor SN ejecta. Calculations are performed assuming both unmixed and uniformly mixed ejecta and taking into account the partial destruction by the SN reverse shock. We find that, due to the paucity of refractory elements beside carbon, amorphous carbon is the only grain species to form, with carbon condensation efficiencies that range between (0.15 and 0.84), resulting in dust yields in the range (0.025-2.25) M {sub ?}. We follow the collapse and fragmentation of a star-forming cloud enriched by the products of these faint SN explosions and we explore the role played by fine structure line cooling and dust cooling. We show that even if grain growth during the collapse has a minor effect of the dust-to-gas ratio, due to C depletion into CO molecules at an early stage of the collapse, the formation of CEMP low-mass stars, such as SMSS J031300, could be triggered by dust cooling and fragmentation. A comparison between model predictions and observations of a sample of C-normal and C-rich metal-poor stars supports the idea that a single common pathway may be responsible for the formation of the first low-mass stars.

  19. Chemodynamical deuterium fractionation in the early solar nebula: The origin of water on earth and in asteroids and comets

    SciTech Connect (OSTI)

    Albertsson, T.; Semenov, D.; Henning, Th.

    2014-03-20

    Formation and evolution of water in the solar system and the origin of water on Earth constitute one of the most interesting questions in astronomy. The prevailing hypothesis for the origin of water on Earth is by delivery through water-rich small solar system bodies. In this paper, the isotopic and chemical evolution of water during the early history of the solar nebula, before the onset of planetesimal formation, is studied. A gas-grain chemical model that includes multiply deuterated species and nuclear spin-states is combined with a steady-state solar nebula model. To calculate initial abundances, we simulated 1 Myr of evolution of a cold and dark TMC-1-like prestellar core. Two time-dependent chemical models of the solar nebula are calculated over 1 Myr: (1) a laminar model and (2) a model with two-dimensional (2D) turbulent mixing. We find that the radial outward increase of the H{sub 2}O D/H ratio is shallower in the chemodynamical nebular model than in the laminar model. This is related to more efficient defractionation of HDO via rapid gas-phase processes because the 2D mixing model allows the water ice to be transported either inward and thermally evaporated or upward and photodesorbed. The laminar model shows the Earth water D/H ratio at r ? 2.5 AU, whereas for the 2D chemodynamical model this zone is larger, r ? 9 AU. Similarly, the water D/H ratios representative of the Oort-family comets, ?2.5-10 10{sup 4}, are achieved within ?2-6 AU and ?2-20 AU in the laminar and the 2D model, respectively. We find that with regards to the water isotopic composition and the origin of the comets, the mixing model seems to be favored over the laminar model.

  20. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    Destination State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal

  1. United States Government

    Office of Environmental Management (EM)

    States Government Department of Energy memorandum Carlsbad Field Office Carlsbad, New Mexico 88221 DATE: REPLY TO ATTN OF: SUBJECT: JAN 1 7 2014 CBFO:OESH:GTB:MN:14-1404:UFC...

  2. NetState

    Energy Science and Technology Software Center (OSTI)

    2005-09-01

    NetState is a distributed network monitoring system. It uses passive sensors to develop status information on a target network. Two major features provided by NetState are version and port tracking. Version tracking maintains information about software and operating systems versions. Port tracking identifies information about active TOP and UDP ports. Multiple NetState sniffers can be deployed, one at each entry point of the target network. The sniffers monitor network traffic, then send the information tomore » the NetState server. The information is stored in centralized database which can then be accessed via standard SQL database queries or this web-based GUI, for further analysis and display.« less

  3. State Biomass Contacts

    Broader source: Energy.gov [DOE]

    Most state governments have designated contacts for biomass conversion programs. The following contacts used by the Bioenergy Technologies Office may also be good contacts for you to find out about...

  4. United States Government

    Office of Environmental Management (EM)

    cr--ceut w.:3 i-Kun: TO:202 586 1660 P.002006 DOE F 1325. EFG (07.PO) United States Government Department of Energy memorandum DATE: September 24, 2004 Audit Report Number:...

  5. United States Nuclear Tests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Two nuclear weapons that the United States exploded over Japan ending World War II are not listed. These detonations were not "tests" in the sense that they were conducted to prove ...

  6. STATE OF WASHINGTON August

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STATE OF WASHINGTON August 29, 2012 The Honorable Stephen Chu, Secretary United States Department of Energy 1000 Independence Avenue Washington, DC 20585 Dear Secretary Chu: As you know, we reached a significant agreement on the parameters for Hanford cleanup in a Consent Decree signed in federal court in October 2010. In November 2011,just 13 months later, DOE informed us that a number of unspecified Consent Decree requirements were at risk. Nearly six more months passed before DOE provided the

  7. Solid state switch

    DOE Patents [OSTI]

    Merritt, Bernard T. (Livermore, CA); Dreifuerst, Gary R. (Livermore, CA)

    1994-01-01

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

  8. State Nuclear Profiles 2010

    Gasoline and Diesel Fuel Update (EIA)

    State Nuclear Profiles 2010 April 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as

  9. FY 2006 State Table

    Energy Savers [EERE]

    State Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 State Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or

  10. FY 2008 State Table

    Energy Savers [EERE]

    State Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer State Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments

  11. FY 2009 State Table

    Energy Savers [EERE]

    State Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request State Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE

  12. FY 2011 State Table

    Energy Savers [EERE]

    State Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0054 March 2010 Office of Chief Financial Officer State Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated

  13. FY 2012 State Table

    Energy Savers [EERE]

    6 Department of Energy FY 2012 Congressional Budget Request State Tables P li i Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0066 Department of Energy FY 2012 Congressional Budget Request State Tables P li i Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They displayed. The figures include both the discretionary and

  14. FY 2013 State Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Department of Energy FY 2013 Congressional Budget Request State Tables P li i Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0079 Department of Energy FY 2013 Congressional Budget Request State Tables P li i Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They displayed. The figures include both the discretionary and

  15. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Table 1. State energy-related carbon dioxide emissions by year (2000-2013) million metric tons carbon dioxide Change (2000-2013) State 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 percent Absolute Alabama 142.1 133.5 138.3 139.1 141.3 142.9 145.1 146.5 138.9 119.4 131.8 128.9 122.2 119.8 -15.7% -22.3 Alaska 44.3 43.4 43.5 43.6 46.7 48.0 45.7 43.9 39.3 37.7 38.5 38.4 37.8 36.1 -18.5% -8.2 Arizona 86.0 88.3 87.6 89.4 96.2 96.3 99.2 100.9 101.2 92.2 93.9 91.9 89.9 93.8

  16. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Table 2. 2013 state energy-related carbon dioxide emissions by fuel million metric tons of carbon dioxide Shares State Coal Petroleum Natural Gas Total Coal Petroleum Natural Gas Alabama 53.3 33.2 33.4 119.8 44.5% 27.7% 27.8% Alaska 1.4 17.1 17.7 36.1 3.9% 47.2% 48.9% Arizona 43.0 32.8 18.1 93.8 45.8% 34.9% 19.3% Arkansas 30.9 21.6 15.3 67.8 45.5% 31.9% 22.5% California 3.6 217.7 131.8 353.1 1.0% 61.7% 37.3% Colorado 34.3 30.6 25.6 90.5 37.9% 33.8% 28.2% Connecticut 0.7 20.8 12.7 34.3 2.1%

  17. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Table 3. 2013 state energy-related carbon dioxide emissions by sector million metric tons carbon dioxide State Commercial Electric Power Residential Industrial Transportation Total Alabama 1.8 64.2 2.2 21.3 30.3 119.8 Alaska 2.4 2.6 1.6 17.5 12.0 36.1 Arizona 2.4 54.7 2.4 4.5 29.8 93.8 Arkansas 2.8 35.5 2.2 9.3 18.0 67.8 California 16.0 45.7 27.7 72.9 190.8 353.1 Colorado 3.7 38.6 8.2 13.9 26.3 90.5 Connecticut 3.6 6.8 7.2 2.3 14.4 34.3 Delaware 0.8 4.1 0.9 3.7 3.9 13.4 District of Columbia

  18. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Table 5. Per capita energy-related carbon dioxide emissions by state (2000-2013) metric tons carbon dioxide per person Change (2000-2013) State 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 percent Absolute Alabama 31.9 29.9 30.9 30.9 31.2 31.3 31.3 31.4 29.4 25.1 27.5 26.9 25.4 24.8 -22.4% -7.1 Alaska 70.6 68.4 67.8 67.3 70.9 72.0 67.7 64.6 57.2 53.9 53.9 53.1 51.8 49.0 -30.6% -21.6 Arizona 16.7 16.7 16.2 16.2 17.0 16.5 16.5 16.4 16.1 14.5 14.6 14.2 13.7 14.1 -15.2%

  19. United States Industrial Electric Motor Systems Market Opportunities Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    O R E W O R D I United States Industrial Electric Motor Systems Market Opportunities Assessment December 2002 This document was originally published by the U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) in Decem- ber 1998. As of fiscal year 2000, DOE's Motor Challenge Program was inte- grated into BestPractices, a broad initiative within EERE. EERE's BestPractices introduces industrial end users to emerging technolo- gies and cost-saving opportunities

  20. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the

  1. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the

  2. Solid state switch

    DOE Patents [OSTI]

    Merritt, B.T.; Dreifuerst, G.R.

    1994-07-19

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

  3. United States Environmental Monitoring

    Office of Legacy Management (LM)

    EPA 60014-91/030 Environmental Protection Systems Laboratory DOE/DP00539-063 Agency P.O. Box 93478 Las Vegas NV 891 93-3478 Research and Development Offsite Environmental Monitoring Report: 1 - 3 5 Radiation Monitorina Around * / (- P 7 1 United States ~ u c l g a r Test Areas Calendar Year 1990 This page intentionally left blank EPN60014-90 DOWDP Offsite Environmental Monitoring Report: Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1990 Contributors: D.J. Chaloud,

  4. United States Government

    Office of Legacy Management (LM)

    f&E F 1325.8 J ;rgy!w, United States Government m e m o randum 7-L 0 cI - 2, Department of Energy I~27 DATE: !-jEC -2 3 1293 REPLY TO ATTN OF: EM-421 (W. A. W illiams, 903-8149) SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program TO: The F ile I have reviewed the attached site summaries and elimination recommendations for the following sites: f' l M itts & Merrel Co., Saginaw, M ichigan l North Carolina State University, Raleigh, North Carolina l

  5. Ited States Government

    Office of Legacy Management (LM)

    Ited States Government .'/:-tepartment of Ener. y V R P-Department of Enerqy DATE: . APR 3 0 1934 ILY TO - ArN OF: NE-24 IJECT: Radiological Survey for Maywood Vicinity Properties on Grove Avenue and Park Way I to. E. L. Keller, Director Technical Services Division Oak Ridge Operations Office I | In response to your memorandum to DeLaney/Whitman dated 3/21/84, we are in agreement with your consideration of 8 of the 15 properties for remedial I action for the reasons stated. Although the

  6. EIA-Voluntary Reporting of Greenhouse Gases Program - Original 1605(b)

    Gasoline and Diesel Fuel Update (EIA)

    Program Program Calculation Tools Voluntary Reporting of Greenhouse Gases Program Original 1605(b) Program Calculation Tools The workbooks below were developed to assist participants in the original Voluntary Reporting of Greenhouse Gases Program to estimate the carbon sequestered by urban forestry activities and to estimate emissions reductions from recycling, source reduction, or composting activities, respectively. The original Voluntary Reporting of Greenhouse Gases Program was based on

  7. The structural origin of the hard-sphere glass transition in granular

    Office of Scientific and Technical Information (OSTI)

    packing (Journal Article) | DOE PAGES DOE PAGES Search Results Accepted Manuscript: The structural origin of the hard-sphere glass transition in granular packing Title: The structural origin of the hard-sphere glass transition in granular packing Glass transition is accompanied by a rapid growth of the structural relaxation time and a concomitant decrease of configurational entropy. It remains unclear whether the transition has a thermodynamic origin, and whether the dynamic arrest is

  8. Application of Environmental Isotopes to the Evaluation of the Origin of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contamination in a Desert Arroyo: Many Devils Wash, Shiprock, New Mexico | Department of Energy Application of Environmental Isotopes to the Evaluation of the Origin of Contamination in a Desert Arroyo: Many Devils Wash, Shiprock, New Mexico Application of Environmental Isotopes to the Evaluation of the Origin of Contamination in a Desert Arroyo: Many Devils Wash, Shiprock, New Mexico Application of Environmental Isotopes to the Evaluation of the Origin of Contamination in a Desert Arroyo:

  9. EIA-Voluntary Reporting of Greenhouse Gases Program - Original 1605(b)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Original 1605(b) Program Voluntary Reporting of Greenhouse Gases Program Original 1605(b) Program Section 1605(b) of the Energy Policy Act of 1992 established the Voluntary Reporting of Greenhouse Gases Program. The Program operated under the original 1994 guidelines through the 2005 data year (for reports containing data through 2005). Reports containing data through 2007 and beyond submitted beginning in 2008 will be conducted under the revised General and Technical Guidelines

  10. State Energy Program Helps States Plan and Implement Energy Efficiency |

    Energy Savers [EERE]

    Department of Energy Helps States Plan and Implement Energy Efficiency State Energy Program Helps States Plan and Implement Energy Efficiency The U.S. Department of Energy (DOE) State Energy Program (SEP) provides grants and technical assistance to states and U.S. territories to promote energy conservation and reduce the growth of energy demand in ways that are consistent with national energy goals. PDF icon 48100_weather_sep_fsr3.pdf More Documents & Publications State Energy Program

  11. Recovery Act State Summaries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Summaries Recovery Act State Summaries Alabama Recovery Act State Memo Alaska Recovery Act State Memo American Samoa Recovery Act State Memo Arizona Recovery Act State Memo Arkansas Recovery Act State Memo California Recovery Act State Memo Colorado Recovery Act State Memo Connecticut Recovery Act State Memo Delaware Recovery Act State Memo District of Columbia Recovery Act State Memo Florida Recovery Act State Memo Georgia Recovery Act State Memo Guam Recovery Act State Memo

  12. State Clean Energy Policies Analysis (SCEPA): State Policy and...

    Open Energy Info (EERE)

    Analysis (SCEPA): State Policy and the Pursuit of Renewable Energy Manufacturing Jump to: navigation, search Tool Summary LAUNCH TOOL Name: State Clean Energy Policies Analysis...

  13. State Energy Risk Assessment Initiative - State and Regional...

    Broader source: Energy.gov (indexed) [DOE]

    OE is leading a State Energy Risk Assessment Initiative to help States better understand risks to their energy infrastructure so they can be better prepared to make informed...

  14. NREL: State and Local Governments - State Solar Technical Assistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What suite of solar PV policies and finance or incentive programs could be implemented in your state to maximize economic development opportunities? If your state agency implements ...

  15. Vehicle Technologies Office Merit Review 2015: Origins of the DC-Resistance Increase in HCMRTM Cathodes

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkley National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about origins...

  16. Performance evaluation of the SGI Origin2000: A memory-centric characterization of LANL ASCI applications

    SciTech Connect (OSTI)

    Wasserman, H.; Lubeck, O.M.; Luo, Y.; Bassetti, F.

    1997-11-01

    In this paper the authors compare single processor performance of the SGI Origin and PowerChallenge and utilize a previously reported performance model for hierarchical memory systems to explain the results. Both the Origin and PowerChallenge use the same microprocessor (MIPS R10000) but have significant differences in their memory subsystems. Their memory model includes the effect of overlap between CPU and memory operations and allows them to infer the individual contributions of all three improvements in the Origin`s memory architecture and relate the effectiveness of each improvement to application characteristics.

  17. NNSA Removes U.S.-Origin HEU from Jamaica, Makes the Caribbean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Removes U.S.-Origin HEU from Jamaica, Makes the Caribbean HEU Free | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  18. Evidence for a glassy state in strongly driven carbon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, C. R. D.; Gericke, D. O.; Cammarata, M.; Cho, B. I.; Döppner, T.; Engelhorn, K.; Förster, E.; Fortmann, C.; Fritz, D.; Galtier, E.; et al

    2014-06-09

    Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen closemore » to their original positions in the fluid.« less

  19. Bluegrass State Getting Greener

    Broader source: Energy.gov [DOE]

    To help reduce Kentuckys energy appetite, the state set a goal of 25-percent energy reduction by 2025 and is using Recovery Act funding from the U.S. Department of Energy to improve the energy-efficiency of its buildings.

  20. State authorization manual. Volume 1

    SciTech Connect (OSTI)

    Brugler-Jones, S.

    1990-10-01

    The State Authorization Manual (SAM) (Vol. I) provides guidance for States applying for program revisions to their authorized RCRA State program. The SAM is an updated version of the 1988 State Consolidated RCRA Authorization Manual (SCRAM). It focuses on program revision applications rather than initial applications since most States have received initial authorization for the RCRA program. The SCRAM should continue to be used to assist States not yet authorized under the RCRA program.