National Library of Energy BETA

Sample records for tons origin alabama

  1. Domestic Coal Distribution 2009 Q1 by Origin State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Q1 by Origin State: Alabama (1000 Short Tons) 1 58 Domestic Coal Distribution 2009 Q1 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity...

  2. Domestic Coal Distribution 2009 Q2 by Origin State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Q2 by Origin State: Alabama (1000 Short Tons) 1 58 Domestic Coal Distribution 2009 Q2 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity...

  3. Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama

  4. Origin State Destination State STB EIA STB EIA Alabama

    Gasoline and Diesel Fuel Update (EIA)

    81.4% Illinois Alabama W W W W W W W W Illinois Florida W W W W W W W W Transportation cost per short ton (nominal) Shipments with transportation rates over total shipments...

  5. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  6. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  7. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  8. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  9. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  10. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  11. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  12. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  13. Origin State Destination State STB EIA STB EIA Alabama

    Gasoline and Diesel Fuel Update (EIA)

    Alabama Alabama W 13.59 W 63.63 21.4% 3,612 W 100.0% Alabama Georgia W 19.58 W 82.89 23.6% 538 W 99.9% Alabama Illinois W - - - - - - - Alabama Kentucky - W - W W W - W Alabama...

  14. U.S. Domestic and Foreign Coal Distribution by State of Origin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (thousand short tons) Coal Exports Coal Origin State and Region Domestic Distribution By Coal Mines By Brokers & Traders* Total Exports Total Distribution Alabama 10,679.56...

  15. Alabama - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Alabama

  16. Alabama - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Alabama

  17. Alabama - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Alabama

  18. Table 7.4 Coal Imports by Country of Origin, 2000-2011 (Short Tons)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Imports by Country of Origin, 2000-2011 (Short Tons) Year Australia New Zealand Canada Mexico Colombia Venezuela China India Indonesia Europe South Africa Other Total Norway Poland Russia Ukraine United Kingdom Other Total 2000 167,595 0 1,923,434 6,671 7,636,614 2,038,774 19,646 205 718,149 0 0 1,212 0 238 0 1,450 0 85 12,512,623 2001 315,870 24,178 2,571,415 8,325 11,176,191 3,335,258 109,877 1,169 882,455 15,933 514,166 219,077 0 75,704 12 824,892 440,408 97,261 19,787,299 2002 821,280 0

  19. Domestic Coal Distribution 2009 Q1 by Destination State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons) 1 64 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons)...

  20. Domestic Coal Distribution 2009 Q2 by Destination State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons) 1 61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons)...

  1. Calhoun County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Glencoe, Alabama Hobson City, Alabama Jacksonville, Alabama Ohatchee, Alabama Oxford, Alabama Piedmont, Alabama Saks, Alabama Southside, Alabama Weaver, Alabama West...

  2. Shelby County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Calera, Alabama Chelsea, Alabama Columbiana, Alabama Harpersville, Alabama Helena, Alabama Hoover, Alabama Indian Springs Village, Alabama Lake Purdy, Alabama Leeds,...

  3. Etowah County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Gadsden, Alabama Glencoe, Alabama Hokes Bluff, Alabama Mountainboro, Alabama Rainbow City, Alabama Reece City, Alabama Ridgeville, Alabama Sardis City, Alabama Southside,...

  4. Baldwin County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bay Minette, Alabama Daphne, Alabama Elberta, Alabama Fairhope, Alabama Foley, Alabama Gulf Shores, Alabama Loxley, Alabama Magnolia Springs, Alabama Orange Beach, Alabama Point...

  5. Alabama Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for 83% of total exported coal. The three reactors at the Browns Ferry Nuclear Plant in Limestone County, Alabama ... Average Period Petroleum-Fired * 0.3 % May-16 find more ...

  6. Managing Storm Aftermath in Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Storm Aftermath in Alabama Managing Storm Aftermath in Alabama June 18, 2010 - 3:19pm Addthis Montgomery's horizontal grinder has normal handling capacity of 108 tons per hour. | Photo Courtesy of Lynda Wool Montgomery's horizontal grinder has normal handling capacity of 108 tons per hour. | Photo Courtesy of Lynda Wool Lindsay Gsell Warm, humid climate and proximity to the Gulf of Mexico produce turbulent weather patterns that regularly bring tornadoes and hurricanes to Montgomery,

  7. Madison County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Huntsville, Alabama Madison, Alabama Meridianville, Alabama Moores Mill, Alabama New Hope, Alabama New Market, Alabama Owens Cross Roads, Alabama Redstone Arsenal, Alabama...

  8. Cullman County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cullman, Alabama Dodge City, Alabama Fairview, Alabama Garden City, Alabama Good Hope, Alabama Hanceville, Alabama Holly Pond, Alabama South Vinemont, Alabama West Point,...

  9. Jefferson County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Polymet Alloys Inc WBRC Places in Jefferson County, Alabama Adamsville, Alabama Argo, Alabama Bessemer, Alabama Birmingham, Alabama Brighton, Alabama Brookside, Alabama...

  10. Limestone County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ardmore, Alabama Athens, Alabama Decatur, Alabama Elkmont, Alabama Huntsville, Alabama Lester, Alabama Madison, Alabama Mooresville, Alabama Retrieved from "http:en.openei.orgw...

  11. Covington County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Horn Hill, Alabama Libertyville, Alabama Lockhart, Alabama Onycha, Alabama Opp, Alabama Red Level, Alabama River Falls, Alabama Sanford, Alabama Retrieved from "http:...

  12. Lamar County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Lamar County, Alabama Beaverton, Alabama Detroit, Alabama Kennedy, Alabama Millport, Alabama Sulligent, Alabama Vernon, Alabama...

  13. Barbour County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Barbour County, Alabama Bakerhill, Alabama Blue Springs, Alabama Clayton, Alabama Clio, Alabama Eufaula, Alabama Louisville, Alabama Retrieved from "http:en.openei.orgw...

  14. Blount County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nectar, Alabama Oneonta, Alabama Rosa, Alabama Smoke Rise, Alabama Snead, Alabama Susan Moore, Alabama Retrieved from "http:en.openei.orgwindex.php?titleBlountCounty,Alabama...

  15. Monroe County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Pine Pulp Biomass Facility Places in Monroe County, Alabama Beatrice, Alabama Excel, Alabama Frisco City, Alabama Monroeville, Alabama Vredenburgh, Alabama Retrieved from...

  16. Houston County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Solar Hot Water and Power LLC Places in Houston County, Alabama Ashford, Alabama Avon, Alabama Columbia, Alabama Cottonwood, Alabama Cowarts, Alabama Dothan, Alabama Gordon,...

  17. Fayette County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Alabama Belk, Alabama Berry, Alabama Fayette, Alabama Glen Allen, Alabama Gu-Win, Alabama Winfield, Alabama Retrieved from "http:en.openei.orgw...

  18. Geneva County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Geneva, Alabama Hartford, Alabama Malvern, Alabama Samson, Alabama Slocomb, Alabama Taylor, Alabama Retrieved from "http:en.openei.orgwindex.php?titleGenevaCounty,Alabama...

  19. Alabama Power Co (Alabama) EIA Revenue and Sales - February 2009...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for February...

  20. Alabama Power Co (Alabama) EIA Revenue and Sales - September...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - September 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for September...

  1. Alabama Power Co (Alabama) EIA Revenue and Sales - October 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for October...

  2. Alabama Power Co (Alabama) EIA Revenue and Sales - November 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for November...

  3. Alabama Power Co (Alabama) EIA Revenue and Sales - January 2009...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for January...

  4. Alabama Power Co (Alabama) EIA Revenue and Sales - January 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for January...

  5. Alabama Power Co (Alabama) EIA Revenue and Sales - December 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for December...

  6. Talladega County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Talladega County, Alabama Bon Air, Alabama Childersburg, Alabama Lincoln, Alabama Mignon, Alabama Munford, Alabama...

  7. Clarke County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Clarke County, Alabama Coffeeville, Alabama Fulton, Alabama Grove Hill, Alabama Jackson, Alabama Thomasville, Alabama Retrieved from "http:en.openei.orgw...

  8. Choctaw County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Choctaw County, Alabama Butler, Alabama Gilbertown, Alabama Lisman, Alabama Needham, Alabama Pennington, Alabama...

  9. St. Clair County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in St. Clair County, Alabama Argo, Alabama Ashville, Alabama Leeds, Alabama Margaret, Alabama Moody, Alabama Odenville,...

  10. Franklin County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype A. Places in Franklin County, Alabama Hodges, Alabama Phil Campbell, Alabama Red Bay, Alabama Russellville, Alabama Vina, Alabama Retrieved from "http:en.openei.org...

  11. Wilcox County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in Wilcox County, Alabama Camden, Alabama Oak Hill, Alabama Pine Apple, Alabama Pine Hill, Alabama Yellow Bluff, Alabama Retrieved from "http:...

  12. Bibb County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype A. Places in Bibb County, Alabama Brent, Alabama Centreville, Alabama Vance, Alabama West Blocton, Alabama Woodstock, Alabama...

  13. Lowndes County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Gordonville, Alabama Hayneville, Alabama Lowndesboro, Alabama Mosses, Alabama White Hall, Alabama Retrieved from "http:en.openei.orgwindex.php?titleLowndesCounty,Alabama...

  14. Sumter County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype A. Places in Sumter County, Alabama Cuba, Alabama Emelle, Alabama Epes, Alabama Gainesville, Alabama Geiger, Alabama Livingston,...

  15. Winston County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arley, Alabama Double Springs, Alabama Haleyville, Alabama Lynn, Alabama Natural Bridge, Alabama Nauvoo, Alabama Retrieved from "http:en.openei.orgwindex.php?titleWinsto...

  16. Lauderdale County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Lauderdale County, Alabama Anderson, Alabama Florence, Alabama Killen, Alabama Lexington, Alabama Rogersville, Alabama...

  17. Pickens County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Gordo, Alabama McMullen, Alabama Memphis, Alabama Pickensville, Alabama Reform, Alabama Retrieved from "http:en.openei.orgwindex.php?titlePickensCounty,Alabam...

  18. Colbert County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Colbert County, Alabama Cherokee, Alabama Leighton, Alabama Littleville, Alabama Muscle Shoals, Alabama Sheffield, Alabama Tuscumbia,...

  19. EECBG Success Story: Managing Storm Aftermath in Alabama | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Montgomery's horizontal grinder has normal handling capacity of 108 tons per hour. | Photo Courtesy of Lynda Wool Montgomery's horizontal grinder has normal handling capacity of 108 tons per hour. | Photo Courtesy of Lynda Wool Thanks to a $2.5 million Energy Efficiency Conservation Block Grant (EECBG), Montgomery, Alabama will revamp its landfill sorting efforts and retrofit its historical city. Learn more. Addthis Related Articles EECBG Success Story: Shining Energy-Saving LEDs on

  20. Alabama Power Co (Alabama) EIA Revenue and Sales - May 2008 ...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for May 2008....

  1. Alabama Power Co (Alabama) EIA Revenue and Sales - April 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for April 2008....

  2. Alabama Power Co (Alabama) EIA Revenue and Sales - August 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for August 2008....

  3. Alabama Power Co (Alabama) EIA Revenue and Sales - March 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for March 2008....

  4. Alabama Power Co (Alabama) EIA Revenue and Sales - March 2009...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - March 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for March 2009....

  5. Alabama Power Co (Alabama) EIA Revenue and Sales - June 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for June 2008....

  6. Alabama Power Co (Alabama) EIA Revenue and Sales - July 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for July 2008....

  7. Alabama Offshore Natural Gas Processed in Alabama (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Processed in Alabama (Million Cubic Feet) Alabama Offshore Natural Gas Processed in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  8. Alabama Power Co (Alabama) EIA Revenue and Sales - February 2008...

    Open Energy Info (EERE)

    Power Co (Alabama) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for February 2008....

  9. Alabama Power- UESC Activities

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses Alabama Power and its utility energy service contract (UESC) projects and activities.

  10. Domestic and Foreign Distribution of U.S. Coal by State of Origin...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 (Thousand Short Tons) " "State Region ","Domestic ","Foreign ","Total "," " "Alabama",18367,3744,22111," " "Alaska",957,546,1502," " "Arizona",13041,"-",13041," "...

  11. Alabama -- SEP Data Dashboard | Department of Energy

    Energy Savers [EERE]

    Data Dashboard Alabama -- SEP Data Dashboard The data dashboard for Alabama -- SEP, a partner in the Better Buildings Neighborhood Program. Alabama -- SEP Data Dashboard (300.54 ...

  12. Alabama/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Program No Alabama Gas Corporation - Residential Natural Gas Rebate Program (Alabama) Utility Rebate Program Yes Alabama Power - Residential Heat Pump and Weatherization Loan...

  13. 305 Building 2 ton bridge crane and monorail assembly analysis

    SciTech Connect (OSTI)

    Axup, M.D.

    1995-12-01

    The analyses in the appendix of this document evaluate the integrity of the existing bridge crane structure, as depicted on drawing H-3-34292, for a bridge crane and monorail assembly with a load rating of 2 tons. This bridge crane and monorail assembly is a modification of a 1 1/2 ton rated manipulator bridge crane which originally existed in the 305 building.

  14. Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act Funds | Department of Energy Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds The Moab Uranium Mill Tailings Remedial Action Project reached its primary American Recovery and Reinvestment Act milestone ahead of schedule on Wednesday with the disposal of 2 million tons of uranium mill tailings. The project had originally planned to ship 2 million tons of tailings with

  15. U.S. Billion-Ton Update. Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect (OSTI)

    none,

    2011-08-01

    This report is an update to the 2005 Billion-Ton Study that addresses shotcomings and questions that arose from the original report..

  16. Birmingham, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Recovery Act Smart Grid Projects in Birmingham, Alabama Southern Company Services, Inc. Smart Grid Project Registered Energy Companies in Birmingham, Alabama Polymet Alloys Inc...

  17. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal

  18. Alabama Offshore-Alabama Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,978 3,721 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 7/29/2016 Next Release Date: 8/31/2016 Referring Pages: NGPL Production,

  19. Alabama Onshore-Alabama Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Alabama Onshore Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,132 3,323 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 7/29/2016 Next Release Date: 8/31/2016 Referring Pages: NGPL Production,

  20. Alabama Onshore Natural Gas Processed in Alabama (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Processed in Alabama (Million Cubic Feet) Alabama Onshore Natural Gas Processed in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 100,491 33,921 35,487 31,116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed

  1. Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet)

    Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,978 3,721 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL

  2. Alabama -- SEP Summary of Reported Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of Reported Data Alabama -- SEP Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Alabama -- SEP. PDF icon Alabama Summary ...

  3. Alabama Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the High School Coach page. Alabama Region High School Regional Alabama Alabama High School Regional Science...

  4. Alabama Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    for your school's state, county, city, or district. For more information, please visit the Middle School Coach page. Alabama Regions Middle School Regional Alabama Alabama...

  5. South Alabama Electric Cooperative- Residential Energy Efficiency Loan Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    South Alabama Electric Cooperative (SAEC) is a part owner of Alabama Electric Cooperative which has a generation facility in Andalusia, Alabama. The Energy Resources Conservation Loan (ERC) helps...

  6. Two (2) 175 Ton (350 Tons total) Chiller Geothermal Heat Pumps for recently

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    commissioned LEED Platinum Building | Department of Energy Two (2) 175 Ton (350 Tons total) Chiller Geothermal Heat Pumps for recently commissioned LEED Platinum Building Two (2) 175 Ton (350 Tons total) Chiller Geothermal Heat Pumps for recently commissioned LEED Platinum Building This project will operate; collect data; and market the energy savings and capital costs of a recently commissioned chiller geothermal heat pump project to promote the wide-spread adoption of this mature

  7. North Alabama Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    Place: Alabama Phone Number: (256) 437-2281 or 800-572-2900 Website: www.naecoop.com Facebook: https:www.facebook.compagesNorth-Alabama-Electric-Cooperative159082070791105...

  8. Headland, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Headland is a city in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  9. Haleburg, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Haleburg is a town in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  10. Dothan, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Dothan is a city in Dale County and Henry County and Houston County, Alabama. It falls under Alabama's 2nd congressional...

  11. Abbeville, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Abbeville is a city in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  12. Newville, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Newville is a town in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  13. Avon, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Avon is a town in Houston County, Alabama. It falls under Alabama's 2nd congressional...

  14. E TON Solar Tech | Open Energy Information

    Open Energy Info (EERE)

    Solar Tech Jump to: navigation, search Name: E-TON Solar Tech Place: Tainan, Taiwan Zip: 709 Product: Taiwan-based manufacturer of PV cells. Coordinates: 22.99721, 120.180862...

  15. Bioenergy Impacts … Billion Dry Tons

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Oak Ridge National Laboratory published research that shows that U.S. resources could sustainably produce by 2030 at least one billion dry tons of non-food biomass resources, yielding up to 60 billion gallons of biofuels, as well as bio- based chemicals, products, and electricity. This could potentially reduce greenhouse gas emissions by up to 500 million tons per year, create 1.5 million new jobs, and keep about $200 billion extra in the U.S. economy each year. Research is showing that U.S.

  16. ,"Alabama Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  17. ,"Alabama Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  18. Alabama/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Alabama Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  19. Energy Incentive Programs, Alabama | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    What load managementdemand response options are available to me? Alabama Power, a subsidiary of the Southern Company, offers a set of real time pricing programs. Under this ...

  20. Clean Cities: Alabama Clean Fuels coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the United States. Bentley actively strives to lead efforts to build an alternative fuel industry in Alabama and leverages public-private partnerships to accomplish this goal....

  1. Alabama Residential Energy Code Field Study

    Broader source: Energy.gov [DOE]

    Lead Performer: Institute for Market Transformation – Washington, DCPartners: Alabama Center for Excellence in Clean Energy Technology, Calhoun Community College – Decatur, ALDOE Total Funding: ...

  2. South Alabama Electric Cooperative - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility Residential Savings Category Geothermal Heat Pumps Heat Pumps Building Insulation Windows Doors Program Info Sector Name Utility Administrator South Alabama...

  3. Taylor, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    dataset (All States, all geography) US Census Bureau Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleTaylor,Alabama&oldid25085...

  4. SEP Success Story: Local Program Helps Alabama Manufacturers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, ...

  5. City of Huntsville, Alabama (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Huntsville, Alabama (Utility Company) (Redirected from Huntsville Utilities) Jump to: navigation, search Name: Huntsville City of Place: Alabama Phone Number: 1-866-478-8845 or...

  6. ,"Alabama (with State Offshore) Shale Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic ... Contents","Data 1: Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic ...

  7. ,"Alabama--State Offshore Natural Gas Marketed Production (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alabama--State Offshore Natural Gas Marketed Production ... to Contents","Data 1: Alabama--State Offshore Natural Gas Marketed Production (MMcf)" ...

  8. ,"Federal Offshore--Alabama Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Alabama Natural Gas Gross Withdrawals ... AM" "Back to Contents","Data 1: Federal Offshore--Alabama Natural Gas Gross Withdrawals ...

  9. ,"Federal Offshore--Louisiana and Alabama Natural Gas Liquids...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas ... AM" "Back to Contents","Data 1: Federal Offshore--Louisiana and Alabama Natural Gas ...

  10. ,"Alabama (with State Offshore) Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Plant Liquids, Expected ... Contents","Data 1: Alabama (with State Offshore) Natural Gas Plant Liquids, Expected ...

  11. ,"Alabama (with State Offshore) Natural Gas Liquids Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, ... Contents","Data 1: Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, ...

  12. ,"Federal Offshore--Alabama Natural Gas Marketed Production ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Alabama Natural Gas Marketed Production ... AM" "Back to Contents","Data 1: Federal Offshore--Alabama Natural Gas Marketed Production ...

  13. ,"Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alabama--State Offshore Natural Gas Gross Withdrawals ... to Contents","Data 1: Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf)" ...

  14. Alabama Oil and Gas Board | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Board Jump to: navigation, search Logo: Alabama Oil and Gas Board Name: Alabama Oil and Gas Board Abbreviation: OGB Address: 420 Hackberry Lane Place: Tuscaloosa,...

  15. City of Bessemer Utilities, Alabama | Open Energy Information

    Open Energy Info (EERE)

    Bessemer Utilities, Alabama Jump to: navigation, search Name: City of Bessemer Utilities Place: Alabama Phone Number: (205) 481-4333 Website: www.bessemerutilities.com Outage...

  16. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama ... as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana & Alabama Natural Gas Reserves ...

  17. Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet ... as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated ...

  18. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama ... AM" "Back to Contents","Data 1: Gulf of Mexico Federal Offshore - Louisiana and Alabama ...

  19. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama ... AM" "Back to Contents","Data 1: Gulf of Mexico Federal Offshore - Louisiana and Alabama ...

  20. Gulf of Mexico Federal Offshore - Louisiana and AlabamaAssociated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, ... as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated-Dissolved ...

  1. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama ... AM" "Back to Contents","Data 1: Gulf of Mexico Federal Offshore - Louisiana and Alabama ...

  2. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama ... AM" "Back to Contents","Data 1: Gulf of Mexico Federal Offshore - Louisiana and Alabama ...

  3. Alabama Natural Gas Plant Liquids Production (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Liquids Production (Million Cubic Feet) Alabama Natural Gas Plant Liquids Production ... NGPL Production, Gaseous Equivalent Alabama Natural Gas Plant Processing NGPL Production, ...

  4. Table 4.8 Coal Demonstrated Reserve Base, January 1, 2011 (Billion Short Tons)

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Coal Demonstrated Reserve Base, January 1, 2011 (Billion Short Tons) Region and State Anthracite Bituminous Coal Subbituminous Coal Lignite Total Underground Surface Underground Surface Underground Surface Surface 1 Underground Surface Total Appalachian 4.0 3.3 68.2 21.9 0.0 0.0 1.1 72.1 26.3 98.4 Alabama .0 .0 .9 2.1 .0 .0 1.1 .9 3.1 4.0 Kentucky, Eastern .0 .0 .8 9.1 .0 .0 .0 .8 9.1 9.8 Ohio .0 .0 17.4 5.7 .0 .0 .0 17.4 5.7 23.1 Pennsylvania 3.8 3.3 18.9 .8 .0 .0 .0 22.7 4.2 26.9 Virginia .1

  5. Alabama SEP Final Technical Report

    SciTech Connect (OSTI)

    Grimes, Elizabeth M.

    2014-06-30

    Executive Summary In the fall of 2010, the Alabama Department of Economic and Community Affairs (ADECA) launched the Multi-State Model for Catalyzing the National Home Energy Retrofit Market Project (Multi-State Project). This residential energy efficiency pilot program was a collaborative effort among the states of Alabama, Massachusetts, Virginia, and Washington, and was funded by competitive State Energy Program (SEP) awards through the U.S. Department of Energy (DOE). The objective of this project was to catalyze the home energy efficiency retrofit market in select areas within the state of Alabama. To achieve this goal, the project addressed a variety of marketplace elements that did not exist, or were underdeveloped, at the outset of the effort. These included establishing minimum standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency and addressing real or perceived financial barriers to investments in whole-home energy efficiency, among others. The anticipated effect of the activities would be increased market demand for retrofits, improved audit to retrofit conversion rates and growth in overall community understanding of energy efficiency. The four-state collaborative was created with the intent of accelerating market transformation by allowing each state to learn from their peers, each of whom possessed different starting points, resources, and strategies for achieving the overall objective. The four partner states engaged the National Association of State Energy Officials (NASEO) to oversee a project steering committee and to manage the project evaluation for all four states. The steering committee, comprised of key program partners, met on a regular basis to provide overall project coordination, guidance, and progress assessment. While there were variances in program design among the states, there were several common elements: use of the Energy Performance Score (EPS) platform; an

  6. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Browns Ferry Unit 1, Unit 2, Unit 3","3,309","24,771",65.3,"Tennessee Valley Authority" "Joseph M Farley Unit 1, Unit 2","1,734","13,170",34.7,"Alabama Power

  7. Final Technical Report. Upgrades to Alabama Power Company Hydroelectric Developments

    SciTech Connect (OSTI)

    Crew, James F.; Johnson, Herbie N.

    2015-03-31

    From 2010 to 2014, Alabama Power Company (“Alabama Power”) performed upgrades on four units at three of the hydropower developments it operates in east-central Alabama under licenses issued by the Federal Energy Regulatory Commission (“FERC”). These three hydropower developments are located on the Coosa River in Coosa, Chilton, and Elmore counties in east-central Alabama.

  8. Solar LED Light Pilot Project Illuminates the Way in Alabama

    Office of Energy Efficiency and Renewable Energy (EERE)

    The community of Boaz, Alabama, saves money by retrofitting streetlights with new lighting technology.

  9. Origin State Destination State

    Gasoline and Diesel Fuel Update (EIA)

    Alabama Kentucky - W - - - Alabama New Jersey W - - - - Alabama Pennsylvania - W - - - Arizona Arizona W W W W W Colorado Alabama 34.52 30.35 27.67 -10.5 -8.8 Colorado Arizona...

  10. Origin State Destination State

    Gasoline and Diesel Fuel Update (EIA)

    Alabama Kentucky - W - - - Alabama New Jersey W - - - - Alabama Pennsylvania - W - - - Arizona Arizona W W W W W Colorado Alabama 31.79 27.66 24.93 -11.5 -9.9 Colorado Arizona...

  11. The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    This reports presents the operating results for Run 252 at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. This run operated in the Close-Coupled Integrated Two-Stage Liquefaction mode (CC-ITSL) using Illinois No. 6 bituminous coal. The primary run objective was demonstration of unit and system operability in the CC-ITSL mode with catalytic-catalytic reactors and with ash recycle. Run 252 began on 26 November 1986 and continued through 3 February 1987. During this period 214.4 MF tons of Illinois No. 6 coal were fed in 1250 hours of operation. 3 refs., 29 figs., 18 tabs.

  12. Alternative Fuels Data Center: Alabama Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Alabama Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Alabama Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Alabama Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Alabama Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Alabama

  13. Billion Ton Study-A Historical Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Billion Ton Study-A Historical Perspective Billion Ton Study-A Historical Perspective Breakout Session 1A: Biomass Feedstocks for the Bioeconomy Billion Ton Study-A Historical Perspective Bryce Stokes, Senior Advisor, CNJV stokes_bioenergy_2015.pdf (1.37 MB) More Documents & Publications Biomass Econ 101: Measuring the Technological Improvements on Feedstocks Costs WEBINAR: A CHANGING MARKET FOR BIOFUELS AND BIOPRODUCTS 2016 Billion-Ton Report Factsheets

  14. 2016 Billion-Ton Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Billion-Ton Report 2016 Billion-Ton Report Alison Goss Eng, of the U.S. Department of Energy Bioenergy Technologies Office, Tim Theiss, Laboratory Relationship Manager of the Bioenergy Technologies Program at Oak Ridge National Laboratory, and Tim Rials, Director of the Tennessee Forest Products Center, provide background and their insights into the production and contents of the soon-to-be-released 2016 Billion-Ton Report. The 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving

  15. Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,806 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  16. AlabamaSAVES Revolving Loan Program

    Broader source: Energy.gov [DOE]

    NOTE: Starting July 1, 2016, the AlabamaSAVES program will transition into a participating loan program. The program will continue to receive applications for the current program until March 31,...

  17. ,"Alabama Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"06292016 10:51:21 AM" "Back to Contents","Data 1: Alabama Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AL2","N9011AL2","N9012AL2","NGME...

  18. ,"Alabama Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas ...

  19. ALABAMA GETS WISE ABOUT SELLING UPGRADES

    Broader source: Energy.gov [DOE]

    With goal of sharing knowledge about each state’s efforts, the Alabama Department of Economic and Community Affairs (ADECA) teamed up with the National Association of State Energy Offices (NASEO)...

  20. Department of Energy Releases New 'Billion-Ton' Study Highlighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Growth in Bioenergy Resources | Department of Energy New 'Billion-Ton' Study Highlighting Opportunities for Growth in Bioenergy Resources Department of Energy Releases New 'Billion-Ton' Study Highlighting Opportunities for Growth in Bioenergy Resources August 10, 2011 - 3:41pm Addthis Washington, D.C. - The U.S. Department of Energy today released a report - 2011 U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry - detailing U.S. biomass

  1. Moab Project Disposes 2 Million Tons of Uranium Mill Tailings...

    Office of Environmental Management (EM)

    The Moab Uranium Mill Tailings Remedial Action Project reached its primary American ... of schedule on Wednesday with the disposal of 2 million tons of uranium mill tailings. ...

  2. Department of Energy Releases New 'Billion-Ton' Study Highlighting...

    Office of Environmental Management (EM)

    Opportunities for Growth in Bioenergy Resources Department of Energy Releases New 'Billion-Ton' Study Highlighting Opportunities for Growth in Bioenergy Resources August 10, 2011 - ...

  3. DOE Announces Webinars on Building a Billion Ton Bioeconomy and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building a Billion Ton Bioeconomy and an Opportunity in ... from adopting the latest energy efficiency and renewable energy ... Tribal Energy Financing Models, and More DOE Announces ...

  4. SEP Success Story: Local Program Helps Alabama Manufacturers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZF North America used Alabama E3 funding to create a recycling program that saves more ... ZF North America used Alabama E3 funding to create a recycling program that saves more ...

  5. ,"Alabama Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:19 AM" "Back to Contents","Data 1: Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AL3" "Date","Alabama...

  6. City of Tuskegee, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Tuskegee, Alabama (Utility Company) Jump to: navigation, search Name: City of Tuskegee Place: Alabama Phone Number: (334) 720-0799 or (334) 720-0700 Website: www.yourubt.com...

  7. City of Huntsville, Alabama (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Huntsville, Alabama (Utility Company) Jump to: navigation, search Name: Huntsville City of Place: Alabama Phone Number: 1-866-478-8845 or 256-535-1200 Website: www.hsvutil.org...

  8. ,"Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Plant ... AM" "Back to Contents","Data 1: Federal Offshore--Louisiana and Alabama Natural Gas Plant ...

  9. City of Muscle Shoals, Alabama (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Shoals, Alabama (Utility Company) Jump to: navigation, search Name: City of Muscle Shoals Place: Alabama Phone Number: (256) 386-9293 Website: www.mseb.net Outage Hotline: (256)...

  10. Gulf Of Mexico Natural Gas Processed in Alabama (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Alabama (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  11. U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 1st Quarter 2013 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  12. U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  13. Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Savings for Years to Come Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come to someone by E-mail Share Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come on Facebook Tweet about Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come on Twitter Bookmark Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come on Google

  14. Energy Upgrades to Alabama Trauma Center Help Improve Patient Care

    Broader source: Energy.gov [DOE]

    In Alabama, a Recovery Act grant is helping a hospital save energy while providing better care to its patients.

  15. Alabama -- SEP Summary of Reported Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of Reported Data Alabama -- SEP Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Alabama -- SEP. Alabama Summary of Reported Data (2.13 MB) More Documents & Publications Virginia -- SEP Summary of Reported Data NYSERDA Summary of Reported Data Michigan -- SEP Summary of Reported Data

  16. Alabama Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Shale Proved Reserves (Billion Cubic Feet) Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 2 0 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Alabama Shale Gas Proved Reserves,

  17. 2016 Billion-Ton Report Factsheets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Factsheets 2016 Billion-Ton Report Factsheets 2016 Billion-Ton Report Factsheets 2016_billion_ton_report_preview_factsheet.pdf (1.13 MB) summary_and_comparison_factsheet_bt16.pdf (299.96 KB) forest_resources_factsheet_bt16.pdf (217.66 KB) agricultural_residues_facsheet_bt16.pdf (745.74 KB) municipal_solid_waste_factsheet_bt16.pdf (341.29 KB) algae_research_factsheet_bt16.pdf (364.99 KB) to_the_biorefinery_factsheet_bt16.pdf (325.45 KB) More Documents & Publications A Summary of the

  18. file://C:\\Documents%20and%20Settings\\TTH\\Local%20Settings\\Tempo

    U.S. Energy Information Administration (EIA) Indexed Site

    Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2003 (Thousand Short Tons) ORIGIN: Alabama State of Destination by Method of...

  19. Picture of the Week: The 100-Ton Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 The 100-Ton Test Before the historic Trinity test on July 16th, 1945, Los Alamos scientists conducted a host of other experiments designed to ensure that they would be ready to...

  20. Operational and maintenance manual, 100 ton hydraulic trailer

    SciTech Connect (OSTI)

    Koons, B.M.

    1995-03-03

    The 100 ton hydraulic trailer is used to remove the mitigation pump from Tank 241SY101. This manual explains how to inspect, operate, and maintain the trailer in a state of readiness.

  1. Energy Secretary Bodman Tours Alabama Red Cross Facility and Attends

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Day of Prayer and Remembrance Service with Governor Riley | Department of Energy Tours Alabama Red Cross Facility and Attends National Day of Prayer and Remembrance Service with Governor Riley Energy Secretary Bodman Tours Alabama Red Cross Facility and Attends National Day of Prayer and Remembrance Service with Governor Riley September 16, 2005 - 10:24am Addthis MONTGOMERY, AL - Today, Secretary of Energy Samuel W. Bodman traveled to Montgomery, Alabama, to commemorate a National

  2. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increase Profits | Department of Energy Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8, 2014 - 11:30am Addthis ZF North America used Alabama E3 funding to create a recycling program that saves more than $100,000 a year in trash pickup and landfill fees. Pictured here are workers in the Tuscaloosa location, which provides Mercedes with complete axle systems. |

  3. SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduce Waste and Increase Profits | Department of Energy Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8, 2014 - 10:06am Addthis ZF North America used Alabama E3 funding to create a recycling program that saves more than $100,000 a year in trash pickup and landfill fees. Pictured here are workers in the Tuscaloosa location, which provides

  4. Alabama Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 32,417 100.0 Total Net Summer Renewable Capacity 3,855 11.9 Geothermal - - Hydro Conventional 3,272 10.1 Solar - - Wind - - Wood/Wood Waste 583 1.8 MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 152,151 100.0 Total

  5. Central Alabama Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Central Alabama Electric Cooperative, a Touchstone Electric Cooperative, offers the Touchstone Energy Home Program. Touchstone Energy Homes with a dual-fuel or geothermal heat pump qualify for...

  6. Alabama (with State Offshore) Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels) Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0...

  7. Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing...

    Office of Environmental Management (EM)

    Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 ...

  8. Perry County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Perry County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.598888, -87.3016132 Show Map Loading map... "minzoom":false,"mappings...

  9. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated Natural Gas Proved Reserves, Wet After Lease...

  10. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014...

  11. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  12. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301981"...

  13. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed Methane Proved Reserves, Reserves Changes, and...

  14. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Electricfil Corporation, located in Elkmont, Alabama, used E3 funding to implement energy-efficient lighting upgrades, start a recycling program for waste within the facility and ...

  15. Alabama Pine Pulp Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleAlabamaPinePulpBiomassFacility&oldid397129" Feedback Contact needs updating Image needs updating...

  16. Washington County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Washington County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.3422346, -88.2461183 Show Map Loading map......

  17. Walker County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Walker County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8563605, -87.3016132 Show Map Loading map... "minzoom":false,"mappin...

  18. Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

  19. Alabama Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  20. Chambers County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chambers County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9028048, -85.354965 Show Map Loading map... "minzoom":false,"mappi...

  1. Alabama Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alabama are ...

  2. Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Oil ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  3. Federal Offshore--Alabama Natural Gas Withdrawals from Gas Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  4. Alabama--State Offshore Natural Gas Withdrawals from Gas Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals from Gas Wells (Million Cubic Feet) Alabama--State Offshore Natural Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  5. Federal Offshore--Alabama Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  6. Alabama--State Offshore Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Alabama--State Offshore Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  7. Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade ...

  8. Clay County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.279527, -85.8486236 Show Map Loading map... "minzoom":false,"mappingservice":"googl...

  9. Alabama Family Staying Nice and Cozy This Fall

    Broader source: Energy.gov [DOE]

    Recovery Act money to weatherize homes has resulted in much lower energy bills for Alabama families, including Mary, whose bill is about $300 cheaper now.

  10. ,"Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  11. Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane Proved Reserves ... Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana ...

  12. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Gulf of Mexico Federal ... as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease ...

  13. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels)...

  14. ,"Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves (Billion Cubic ...

  15. Alabama Natural Gas Plant Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Plant Fuel Consumption (Million ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  16. Alabama Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alabama Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  17. Origin State Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama Alabama W W W W W W W W W W W Alabama Georgia W W W W W W W W W W W Alabama Illinois - - - - - W W...

  18. Sneak Peek to the 2016 Billion-Ton Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resource Analysis * Potential economic availability of biomass feedstocks under speci- fed market scenarios, including currently used resources * Cost of production, harvesting, and transportation; potential yield range, and economic supply for 30 candidate feedstocks (>1 billion dry tons/year) Resource Commercialization * Advanced feedstock supply system simulation, expansion of feedstock production over time in response to simulated markets. Volume 2 Environmental Sustainability Analysis

  19. Reservoir characterization of the Smackover Formation in southwest Alabama

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.; Tew, B.H.

    1993-02-01

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- and improved-recovery methods from the Smackover of Alabama.

  20. Alabama Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",32417,100 "Total Net Summer Renewable Capacity",3855,11.9 " Geothermal","-","-" " Hydro Conventional",3272,10.1 "

  1. U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 1st Quarter 2013 Destination: Alabama (thousand short tons) Coal Origin State

  2. U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2013 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 2nd Quarter 2013 Destination: Alabama (thousand short tons) Coal Origin State

  3. U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2014 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 2nd Quarter 2014 Destination: Alabama (thousand short tons) Coal Origin State

  4. U.S. Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 1st Quarter 2013 Destination: Alabama (thousand short tons) Coal Origin State

  5. U.S. Energy Information Administration | Annual Coal Distribution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total...

  6. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  7. file://J:\\mydocs\\Coal\\Distribution\\2003\\distable4.HTML

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State, Consumer, Destination and Method of Transportation, 2003 (Thousand Short Tons) DESTINATION: Alabama State of Origin by Method of Transportation Electricity...

  8. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  9. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  10. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  11. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  12. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  13. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  14. Annual Coal Distribution Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transportation, 2001 (Thousand Short Tons) DESTINATION: Alabama State of Origin by...

  15. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  16. U.S. Energy Information Administration | Annual Coal Distribution...

    Gasoline and Diesel Fuel Update (EIA)

    short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 6,085 670...

  17. THERMAL MODELING ANALYSIS OF SRS 70 TON CASK

    SciTech Connect (OSTI)

    Lee, S.; Jordan, J.; Hensel, S.

    2011-03-08

    The primary objective of this work was to perform the thermal calculations to evaluate the Material Test Reactor (MTR) fuel assembly temperatures inside the SRS 70-Ton Cask loaded with various bundle powers. MTR fuel consists of HFBR, MURR, MIT, and NIST. The MURR fuel was used to develop a bounding case since it is the fuel with the highest heat load. The results will be provided for technical input for the SRS 70 Ton Cask Onsite Safety Assessment. The calculation results show that for the SRS 70 ton dry cask with 2750 watts total heat source with a maximum bundle heat of 670 watts and 9 bundles of MURR bounding fuel, the highest fuel assembly temperatures are below about 263 C. Maximum top surface temperature of the plastic cover is about 112 C, much lower than its melting temperature 260 C. For 12 bundles of MURR bounding fuel with 2750 watts total heat and a maximum fuel bundle of 482 watts, the highest fuel assembly temperatures are bounded by the 9 bundle case. The component temperatures of the cask were calculated by a three-dimensional computational fluid dynamics approach. The modeling calculations were performed by considering daily-averaged solar heat flux.

  18. Alabama Institute for Deaf and Blind Biodiesel Project Green

    SciTech Connect (OSTI)

    Edmiston, Jessica L

    2012-09-28

    Through extensive collaboration, Alabama Institute for Deaf and Blind (AIDB) is Alabama's first educational entity to initiate a biodiesel public education, student training and production program, Project Green. With state and national replication potential, Project Green benefits local businesses and city infrastructures within a 120-mile radius; provides alternative education to Alabama school systems and to schools for the deaf and blind in Appalachian States; trains students with sensory and/or multiple disabilities in the acquisition and production of biodiesel; and educates the external public on alternative fuels benefits.

  19. Origin State Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Alabama Illinois - - - - - W W W W - W Colorado Alabama - W W W W W W W W - W Colorado Arizona W W W W W W W W W W W Colorado Arkansas - - - - W W W W - - - Colorado California - -...

  20. Alabama Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 9 8 9 9 9 9 9 9 9 9 9 9 2011 16 15 16 16 16 16 16 16 16 16 16 16 2012 16 15 16 16 16 16 16 16 16 16 16 16 2013 16 15 16 16 16 16 16 16 16 16 16 16 2014 19 17 19 18 19 18 19 19 18 19 18 19 2015 18 17 18 18 18 18 19 19 18 19 18 19 2016 21 19 21 20 36 34

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

  1. City of Evergreen, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Evergreen Place: Alabama Phone Number: 251-578-1574 Website: www.evergreenal.orgindex.php Outage Hotline: 251-578-1574 References: EIA Form EIA-861 Final Data File for 2010 -...

  2. Alabama Dry Natural Gas Expected Future Production (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  3. ,"Alabama Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:39 AM" "Back to Contents","Data 1: Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  4. Alabama Natural Gas Input Supplemental Fuels (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Alabama Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  5. Jackson County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson County is a county in Alabama. Its FIPS County Code is 071. It is classified as...

  6. Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  7. Butler County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Butler County is a county in Alabama. Its FIPS County Code is 013. It is classified as ASHRAE...

  8. Henry County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Henry County is a county in Alabama. Its FIPS County Code is 067. It is classified as ASHRAE...

  9. Alabama (with State Offshore) Shale Production (Billion Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Alabama (with State Offshore) Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 - No Data...

  10. Marion County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Marion County is a county in Alabama. Its FIPS County Code is 093. It is classified as ASHRAE...

  11. Lee County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Lee County is a county in Alabama. Its FIPS County Code is 081. It is classified as ASHRAE...

  12. Two Alabama Elementary Schools Get Cool with New HVAC Units

    Broader source: Energy.gov [DOE]

    Addison Elementary School and Double Springs Elementary School in northwestern Alabama were warm. Some classrooms just didn’t cool fast enough. The buildings, which were built almost 20 years ago, were in need of new HVAC units.

  13. Montgomery County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Montgomery County is a county in Alabama. Its FIPS County Code is 101. It is classified as...

  14. Pike County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Pike County is a county in Alabama. Its FIPS County Code is 109. It is classified as ASHRAE...

  15. Alabama--State Offshore Natural Gas Dry Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    State Offshore Natural Gas Dry Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  16. Federal Offshore--Alabama Natural Gas Marketed Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  17. Alabama--State Offshore Natural Gas Marketed Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  18. Alabama Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",21804,21784,22372,22540,23519 " Coal",11557,11544,11506,11486,11441 " Petroleum",43,43,43,43,43 " Natural ...

  19. Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  20. Alabama Natural Gas Percentage Total Industrial Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Deliveries (Percent) Alabama Natural Gas Percentage Total Industrial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  1. Alabama Natural Gas LNG Storage Withdrawals (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Withdrawals (Million Cubic Feet) Alabama Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

  2. Alabama Natural Gas LNG Storage Additions (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Additions (Million Cubic Feet) Alabama Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's ...

  3. Alabama Natural Gas Lease and Plant Fuel Consumption (Million...

    Gasoline and Diesel Fuel Update (EIA)

    and Plant Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  4. Alabama Power- Residential Heat Pump and Weatherization Loan Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Alabama Power offers low-interest loans to residential customers to purchase and install new heat pumps and a variety of weatherization measures. The loans require no money down and can be used to...

  5. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama ...

  6. Alabama - Seds - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma

  7. DOE to Remove 200 Metric Tons of Highly Enriched Uranium from...

    Energy Savers [EERE]

    200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile ...

  8. U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Manufacturers Save 1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments U.S. Manufacturers Save 1 Billion, 11 Million Tons of CO2 through Energy...

  9. In Milestone, Energy Department Projects Safely and Permanently Store 10 Million Metric Tons of Carbon Dioxide

    Broader source: Energy.gov [DOE]

    Carbon Capture and Storage projects supported by the Department reached a milestone of 10 million tons of carbon dioxide.

  10. Alabama Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Widespread Renewables Deployment Bryan Hannegan Vice President, Environment & Generation EIA 2009 Energy Conference April 7, 2009 2 © 2009 Electric Power Research Institute, Inc. All rights reserved. Renewables in Various Stages of Maturity 3 © 2009 Electric Power Research Institute, Inc. All rights reserved. 30 40 50 60 70 80 90 100 110 120 0 10 20 30 40 50 Levelized Cost of Electricity, $/MWh Cost of CO 2 , $/Metric Ton IGCC NGCC ($8/MMBtu) PC Wind (32.5% Capacity Factor) Nuclear Biomass

  11. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect (OSTI)

    Downing, Mark; Eaton, Laurence M; Graham, Robin Lambert; Langholtz, Matthew H; Perlack, Robert D; Turhollow Jr, Anthony F; Stokes, Bryce; Brandt, Craig C

    2011-08-01

    The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were

  12. Research and Services at the Alabama A&M University Research...

    Office of Environmental Management (EM)

    Research and Services at the Alabama A&M University Research Institute Research and Services at the Alabama A&M University Research Institute An overview of services and research...

  13. Alabama Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Alabama Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 57,208 1970's 0 0 0 0 0 0 25,517 31,610 32,806 1980's 38,572 41,914 38,810 42,181 45,662 48,382 49,341 52,511 55,939 1990's 58,136 76,739 126,910 132,222 136,195 118,688 112,868 114,411 107,334 309,492 2000's 372,136 285,953 290,164 237,377 263,426 255,157 287,278 257,443 253,028 248,232 2010's 242,444 230,546 87,269 89,258 80,590 -

  14. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry | Department of Energy Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry An update to the 2005 report, "Biomass as a Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply" For the most recent report, view the 2016 Billion-Ton Report. billion_ton_update.pdf (6.41 MB) More Documents & Publications 2016

  15. Acceptance test report for the Westinghouse 100 ton hydraulic trailer

    SciTech Connect (OSTI)

    Barrett, R.A.

    1995-03-06

    The SY-101 Equipment Removal System 100 Ton Hydraulic Trailer was designed and built by KAMP Systems, Inc. Performance of the Acceptance Test Procedure at KAMP`s facility in Ontario, California (termed Phase 1 in this report) was interrupted by discrepancies noted with the main hydraulic cylinder. The main cylinder was removed and sent to REMCO for repair while the trailer was sent to Lampson`s facility in Pasco, Washington. The Acceptance Test Procedure was modified and performance resumed at Lampson (termed Phase 2 in this report) after receipt of the repaired cylinder. At the successful conclusion of Phase 2 testing the trailer was accepted as meeting all the performance criteria specified.

  16. Neutrino physics with multi-ton scale liquid xenon detectors

    SciTech Connect (OSTI)

    Baudis, L.; Ferella, A.; Kish, A.; Manalaysay, A.; Undagoitia, T. Marrodn; Schumann, M., E-mail: laura.baudis@physik.uzh.ch, E-mail: alfredo.ferella@lngs.infn.it, E-mail: alexkish@physik.uzh.ch, E-mail: aaronm@ucdavis.edu, E-mail: marrodan@mpi-hd.mpg.de, E-mail: marc.schumann@lhep.unibe.ch [Physik Institut, University of Zrich, Winterthurerstrasse 190, Zrich, CH-8057 (Switzerland)

    2014-01-01

    We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 230 keV, where the sensitivity to solar pp and {sup 7}Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ? 2 10{sup ?48} cm{sup 2} and WIMP masses around 50 GeV?c{sup ?2}, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ? 6 GeV?c{sup ?2} to cross sections above ? 4 10{sup ?45}cm{sup 2}. DARWIN could reach a competitive half-life sensitivity of 5.6 10{sup 26} y to the neutrinoless double beta decay of {sup 136}Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.

  17. Transportation system benefits of early deployment of a 75-ton multipurpose canister system

    SciTech Connect (OSTI)

    Wankerl, M.W.; Schmid, S.P.

    1995-12-31

    In 1993 the US Civilian Radioactive Waste Management System (CRWMS) began developing two multipurpose canister (MPC) systems to provide a standardized method for interim storage and transportation of spent nuclear fuel (SNF) at commercial nuclear power plants. One is a 75-ton concept with an estimated payload of about 6 metric tons (t) of SNF, and the other is a 125-ton concept with an estimated payload of nearly 11 t of SNF. These payloads are two to three times the payloads of the largest currently certified US rail transport casks, the IF-300. Although is it recognized that a fully developed 125-ton MPC system is likely to provide a greater cost benefit, and radiation exposure benefit than the lower-capacity 75-ton MPC, the authors of this paper suggest that development and deployment of the 75-ton MPC prior to developing and deploying a 125-ton MPC is a desirable strategy. Reasons that support this are discussed in this paper.

  18. Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet) Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 2 0 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Alabama Shale Gas Proved Reserves,

  19. Alabama Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 237 3 0 264 0 431 253 379 21 0 2010's 148 383 21 183 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Alabama Dry Natural Gas

  20. Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 140 1 6 246 29 419 188 302 10 2 2010's 263 573 11 357 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Alabama Dry Natural Gas Proved Reserves Dry

  1. Heavy liquid beneficiation developed for Alabama tar sands

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    The tar sand deposits in the State of Alabama contain about 1.8 billion barrels of measured and more than 4 billion barrels of speculative in-place bitumen. A comprehensive research program is in progress for the separation of bitumen from these deposits. In general, Alabama tar sands are oil wetted, low grade and highly viscous in nature. In view of these facts, a beneficiation strategy has been developed to recover bitumen enriched concentrate which can be used as a feed material for further processing. Heavy liquid separation tests and results are discussed. A 77% zinc bromide solution, specific gravity of 2.4, was used for the tests. 2 figures.

  2. Integrated Distribution Management System for Alabama Principal Investigator

    SciTech Connect (OSTI)

    Schatz, Joe

    2013-03-31

    Southern Company Services, under contract with the Department of Energy, along with Alabama Power, Alstom Grid (formerly AREVA T&D) and others moved the work product developed in the first phase of the Integrated Distribution Management System (IDMS) from “Proof of Concept” to true deployment through the activity described in this Final Report. This Project – Integrated Distribution Management Systems in Alabama – advanced earlier developed proof of concept activities into actual implementation and furthermore completed additional requirements to fully realize the benefits of an IDMS. These tasks include development and implementation of a Distribution System based Model that enables data access and enterprise application integration.

  3. Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 125,180 106,903 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production Alabama Onshore

  4. SEP Success Story: Alabama Institute for Deaf and Blind to Launch Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy Alabama Institute for Deaf and Blind to Launch Lighting Project SEP Success Story: Alabama Institute for Deaf and Blind to Launch Lighting Project August 20, 2010 - 9:44am Addthis The Alabama Institute for Deaf and Blind is replacing almost 2,900 lights in 19 buildings across its campuses.| Photo courtesy of Alabama Institute for Deaf and Blind The Alabama Institute for Deaf and Blind is replacing almost 2,900 lights in 19 buildings across its campuses.| Photo

  5. AmeriFlux US-Ton Tonzi Ranch

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Baldocchi, Dennis [University of California, Berkeley

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ton Tonzi Ranch. Site Description - Located in the lower foothills of the Sierra Nevada Mountains, the Tonzi Ranch site is classified as an oak savanna woodland on privately owned land. Managed by local rancher, Russell Tonzi, brush has been periodically removed for cattle grazing. The overstory is dominated by blue oak trees (40% of total vegetation) with intermittent grey pine trees (3 trees/ha). Understory species include a variety of grasses and herbs, including purple false brome, smooth cat's ear, and rose clover. These two distinctive layers operate in and out from one another. Growing season of the understory is confined to the wet season only, typically from October to early May. In contrast, the deciduous blue oak trees are dormant during the rainy winter months and reach maximum LAI in April. The blue oak ecosystem rings the Great Central Valley of California, inhabiting the lower reaches of the Sierra Nevada foothills.

  6. DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for

    National Nuclear Security Administration (NNSA)

    Civilian Reactors | National Nuclear Security Administration | (NNSA) Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for Civilian Reactors DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for Civi Washington, DC Secretary Abraham announced that DOE will dispose of 34 metric tons of surplus weapons grade plutonium by turning the material into mixed oxide fuel (MOX) for use in nuclear reactors. The decision follows an exhaustive Administration review

  7. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioeconomy | Department of Energy Report: Advancing Domestic Resources for a Thriving Bioeconomy 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume I Download the full interactive report to view visualizations of potential energy crop production, agricultural residues, forestry production and other scenarios on the BioenergyKDF. 2016_billion_ton_report.pdf (29.08 MB) More

  8. A Summary of the Results of the 2016 Billion-Ton Report: Advancing Domestic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources for a Thriving Bioeconomy, Vol. 1 | Department of Energy A Summary of the Results of the 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Vol. 1 A Summary of the Results of the 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Vol. 1 bt16_webinar_20160721.pdf (3.32 MB) More Documents & Publications Biomass Econ 101: Measuring the Technological Improvements on Feedstocks Costs 2016 Billion-Ton Report Factsheets

  9. Removal of 1,082-Ton Reactor Among Richland Operations Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from groundwater across the site ahead of schedule and pumped a record volume of water through treatment facilities to remove contamination, with more than 130 tons of...

  10. DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2

    Broader source: Energy.gov [DOE]

    A large-scale carbon dioxide storage project in Mississippi has become the fifth worldwide to reach the important milestone of more than 1 million tons injected.

  11. EECBG Success Story: Alabama Justice Center Expands its Solar Capabilities

    Broader source: Energy.gov [DOE]

    At the T.K. Davis Justice Center in Opelika, Alabama, the county is making an effort to reduce costs and help the environment by installing renewable energy projects, including solar panels on the center’s roof and on poles around the property, thanks to funding from an Energy Efficiency and Conservation Block Grant (EECBG). Learn more.

  12. DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin

    Broader source: Energy.gov [DOE]

    Building on an initial injection project of 10,000 metric tons of carbon dioxide into a Michigan geologic formation, a U.S. Department of Energy team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change.

  13. Performance and results of the LBNE 35 ton membrane cryostat prototype

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Montanari, David; Adamowski, Mark; Hahn, Alan; Norris, Barry; Reichenbacher, Juergen; Rucinski, Russell; Stewart, Jim; Tope, Terry

    2015-07-15

    We report on the performance and commissioning of the first membrane cryostat to be used for scientific application. The Long Baseline Neutrino Experiment (LBNE) has designed and fabricated a membrane cryostat prototype in collaboration with Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI). LBNE has designed and fabricated the supporting cryogenic system infrastructure and successfully commissioned and operated the first membrane cryostat. Original goals of the prototype are: to demonstrate the membrane cryostat technology in terms of thermal performance, feasibility for liquid argon and leak tightness; to demonstrate that we can remove all the impurities from the vessel and achieve the puritymore » requirements in a membrane cryostat without evacuation; to demonstrate that we can achieve and maintain the purity requirements of the liquid argon using mol sieve and copper filters. The purity requirements of a large liquid argon detector such as LBNE are contaminants below 200 parts per trillion (ppt) oxygen equivalent. LBNE is planning the design and construction of a large liquid argon detector. This presentation will present requirements, design and construction of the LBNE 35 ton membrane cryostat prototype, and detail the commissioning and performance. The experience and results of this prototype are extremely important for the development of the LBNE detector.« less

  14. Performance and results of the LBNE 35 ton membrane cryostat prototype

    SciTech Connect (OSTI)

    Montanari, David; Adamowski, Mark; Hahn, Alan; Norris, Barry; Reichenbacher, Juergen; Rucinski, Russell; Stewart, Jim; Tope, Terry

    2015-07-15

    We report on the performance and commissioning of the first membrane cryostat to be used for scientific application. The Long Baseline Neutrino Experiment (LBNE) has designed and fabricated a membrane cryostat prototype in collaboration with Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI). LBNE has designed and fabricated the supporting cryogenic system infrastructure and successfully commissioned and operated the first membrane cryostat. Original goals of the prototype are: to demonstrate the membrane cryostat technology in terms of thermal performance, feasibility for liquid argon and leak tightness; to demonstrate that we can remove all the impurities from the vessel and achieve the purity requirements in a membrane cryostat without evacuation; to demonstrate that we can achieve and maintain the purity requirements of the liquid argon using mol sieve and copper filters. The purity requirements of a large liquid argon detector such as LBNE are contaminants below 200 parts per trillion (ppt) oxygen equivalent. LBNE is planning the design and construction of a large liquid argon detector. This presentation will present requirements, design and construction of the LBNE 35 ton membrane cryostat prototype, and detail the commissioning and performance. The experience and results of this prototype are extremely important for the development of the LBNE detector.

  15. Criticality safety review of 2 1/2 -, 10-, and 14-ton UF sub 6 cylinders

    SciTech Connect (OSTI)

    Broadhead, B.L.

    1991-01-01

    The US regulations governing the packaging and transportation of UF{sub 6} cylinders are contained in the publication 10CFR71. Under the current 10CFR71 regulations, packages are classified according to Fissile Class I, II, or III and a corresponding transport index (TI). UF{sub 6} cylinders designed to contain 2{1/2}-tons of UF{sub 6} are classified as Fissile Class II packages with a TI of 5 for the purpose of transportation. The 10-ton UF{sub 6} cylinders are classified as Fissile Class I with no TI assigned for transportation. The 14-ton cylinders are not certified for transport with enrichments greater than 1 wt % since they have no approved overpack. This work reviews the suitability of 2{1/2}-ton UF{sub 6} packages for reclassification as Fissile Class I with a maximum {sup 235}U enrichment of 5 wt %. Additionally, the 10- and 14-ton cylinders are reviewed to address a change in maximum {sup 235}U enrichment from 4.5 to 5 wt %. Based on this evaluation, the 2{1/2}-ton UF{sub 6} cylinders meet the 10CFR71 criteria for Fissile Class I packages, and no TI is needed for criticality safety purposes. Similarly, the 10- and 14-ton UF{sub 6} packages appear suitable for a maximum enrichment rating change to 5 wt % {sup 235}U. 6 refs., 4 figs., 1 tab.

  16. SEP Success Story: Alabama Institute for Deaf and Blind to Launch...

    Broader source: Energy.gov (indexed) [DOE]

    SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits SEP Success Story: Launching Green Entrepreneurship in New Hampshire The ...

  17. Billion-Ton Update: Home-Grown Energy Resources Across the Nation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Billion-Ton Update: Home-Grown Energy Resources Across the Nation Billion-Ton Update: Home-Grown Energy Resources Across the Nation August 11, 2011 - 3:59pm Addthis Total potential biomass resources by county in the contiguous U.S. from the baseline scenario of the Update (Figure 6.4, page 159) | Map from Billion-Ton Update Total potential biomass resources by county in the contiguous U.S. from the baseline scenario of the Update (Figure 6.4, page 159) | Map from

  18. 11,202,720 Metric Tons of CO2 Injected as of October 14, 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is ...

  19. DOE Moab Project Safely Removes 7 Million Tons of Mill Tailings

    Broader source: Energy.gov [DOE]

    (Grand Junction, CO) ― The U.S. Department of Energy (DOE) has safely moved another million tons of uranium mill tailings from the Moab site in Utah under the Uranium Mill Tailings Remedial Action Project.

  20. 11,202,720 Metric Tons of CO2 Injected as of October 14, 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    This carbon dioxide (CO2) has been injected in the United States as part of DOEs Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is equivalent to the...

  1. Long-term Decline of Aggregate Fuel Use per Cargo-ton-mile of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-term Decline of Aggregate Fuel Use per Cargo-ton-mile of Commercial Trucking; A Key Enabler of Expanded U.S. Trade and Economic Growth Poster presentation at the 2007 Diesel ...

  2. Hanford Landfill Reaches 15 Million Tons Disposed- Waste Disposal Mark Shows Success Cleaning Up River Corridor

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996.

  3. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproduct...

    Energy Savers [EERE]

    and Bioproducts Industry An update to the 2005 report, "Biomass as a Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply" ...

  4. 12,877,644 Metric Tons of CO2 Injected as of July 1, 2016

    Broader source: Energy.gov [DOE]

    This carbon dioxide (CO2) has been injected in the United States as part of DOE’s Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is equivalent to the...

  5. NNSA Eliminates 100 Metric Tons Of Weapons-Grade Nuclear Material |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Nuclear Security Administration | (NNSA) Eliminates 100 Metric Tons Of Weapons-Grade Nuclear Material August 25, 2008 WASHINGTON, D.C. -Today the Department of Energy's National Nuclear Security Administration (NNSA) announced that it successfully eliminated 100 metric tons of U.S. highly enriched uranium (HEU), enough for thousands of nuclear weapons. For the last decade, the U.S. HEU disposition program has eliminated surplus HEU from the nuclear weapons program by downblending

  6. Two 175 ton geothermal chiller heat pumps for leed platinum building

    Office of Scientific and Technical Information (OSTI)

    technology demonstration project. Operation data, data collection and marketing (Technical Report) | SciTech Connect Two 175 ton geothermal chiller heat pumps for leed platinum building technology demonstration project. Operation data, data collection and marketing Citation Details In-Document Search Title: Two 175 ton geothermal chiller heat pumps for leed platinum building technology demonstration project. Operation data, data collection and marketing The activities funded by this grant

  7. DOE Announces Webinars on Building a Billion Ton Bioeconomy and an

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity in Innovative Sensors | Department of Energy Building a Billion Ton Bioeconomy and an Opportunity in Innovative Sensors DOE Announces Webinars on Building a Billion Ton Bioeconomy and an Opportunity in Innovative Sensors May 5, 2016 - 9:06am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is

  8. Future Bioeconomy Supported by More Than One Billion Tons of Biomass

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential | Department of Energy Future Bioeconomy Supported by More Than One Billion Tons of Biomass Potential Future Bioeconomy Supported by More Than One Billion Tons of Biomass Potential July 12, 2016 - 2:15pm Addthis Within 25 years, the United States could produce enough biomass to support a bioeconomy, including renewable aquatic and terrestrial biomass resources that could be used for energy and to develop products for economic, environmental, social, and national security benefits.

  9. Reservoir characterization of the Smackover Formation in southwest Alabama. Final report

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.; Tew, B.H.

    1993-02-01

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- and improved-recovery methods from the Smackover of Alabama.

  10. Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 4 2 2000's 2 4 1 2 2 2 0 0 0 0 2010's 0 1 2 2 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  11. Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 182 1980's 193 167 158 166 152 143 139 132 130 130 1990's 122 110 118 103 91 72 67 59 50 50 2000's 46 32 29 27 21 30 15 21 14 16 2010's 18 19 18 14 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  12. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 23 25 1990's 25 23 30 46 56 44 38 30 28 27 2000's 29 26 31 32 32 29 18 20 19 29 2010's 38 48 100 46 141 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (Million Cubic Feet) Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 185 30 66 -580 459 -459 132 -46 164 -422 1990's 456 -19 239 215 448 -164 -303 425 32 -219 2000's -285 -136 298 -47 19 114 -7 -209 -73 178 2010's -21 -75 -22 63 -206 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  14. Alabama Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",7252,4136,6136,12535,8704 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",3865,3784,3324,3035,2365 "MSW Biogenic/Landfill

  15. Alabama Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",97827,101561,97376,87580,102762 " Coal",78109,77994,74605,55609,63050 " Petroleum",180,157,204,219,200 " Natural Gas",19407,23232,22363,31617,39235 " Other Gases",131,178,204,135,277 "Nuclear",31911,34325,38993,39716,37941 "Renewables",11136,7937,9493,15585,11081 "Pumped

  16. Alabama Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7 -12 -27 1980's 30 42 1990's 197 605 159 -644 27 -45 -44 -31 5 -17 2000's -56 36 72 -36 34 -27 -11 12 -71 46 2010's 32 -49 112 -274 502 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  17. Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 24 42 46 1980's 64 85 1990's 104 146 256 281 391 360 373 376 394 376 2000's 359 345 365 350 327 300 287 274 257 254 2010's 223 218 214 175 176 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  18. Alabama Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 50 42 44 1980's 64 12 1990's 1,014 229 35 378 80 118 177 34 19 1 2000's 175 169 289 315 131 85 146 123 59 20 2010's 28 3 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  19. Alabama Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 45 41 1980's 116 89 1990's 938 207 191 159 2,128 286 97 54 313 140 2000's 69 218 155 122 155 60 208 35 732 328 2010's 173 157 254 75 41 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  20. Alabama Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 18 35 129 1980's 69 119 1990's 759 773 545 44 2,101 481 502 348 309 215 2000's 74 78 130 588 162 135 234 163 283 99 2010's 206 455 99 67 140 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  1. Recent two-stage coal liquefaction results from Wilsonville, Alabama

    SciTech Connect (OSTI)

    Rao, A.K.; Udani, L.H.; Nalitham, R.V.

    1985-01-01

    This paper presents results from two recent runs conducted at the Advanced Coal Liquefaction R and D facility of Wilsonville, Alabama. The first run was an extended demonstration of sub-bituminous coal liquefaction using an integrated two-stage liquefaction (ITSL) process. The second run employed a bituminous coal in a reconfigured two-stage process (RITLS) wherein the undeashed products from the first stage were hydrotreated prior to separation of coal ash. Good operability and satisfactory yield structure were demonstrated in both the runs.

  2. Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) Proved Reserves (Million Barrels) Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 182 1980's 193 167 158 166 152 143 139 132 130 130 1990's 122 110 118 103 91 72 67 59 50 50 2000's 46 32 29 27 21 30 15 21 14 16 2010's 18 19 18 14 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  3. Alabama Institute for Deaf and Blind to Launch Lighting Project

    Broader source: Energy.gov [DOE]

    For over a century, students at the Alabama Institute for Deaf and Blind (AIDB) have proudly displayed the school colors—blue and red—in the hallways, classrooms and dorm rooms. But this school year, they’re “Going Green.” The 152-year-old institute is replacing almost 2,900 lights in 19 buildings across its Talladega, Ala., campuses with energy-efficient fixtures, an upgrade expected to save the institute over $20,000 a year on utility bills.

  4. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State","Origin State","Consumer Type","Transportation Mode","Coal Volume (short tons)" 2014,1,"Alabama","Alabama","Coke Plant","Railroad",88670 2014,1,"Alabama","Alabama","Coke Plant","Truck",86031 2014,1,"Alabama","Alabama","Electric Power Sector","Railroad",212909

  5. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State","Destination State","Consumer Type","Transportation Mode","Coal Volume (short tons)" 2014,1,"Alabama","Alabama","Electric Power Sector","Railroad",212909 2014,1,"Alabama","Alabama","Coke Plant","Railroad",88670 2014,1,"Alabama","Alabama","Industrial Plants Excluding Coke","Railroad",1675

  6. Support EM LA Airport Landfill Cover Project by providing 40000 tons of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    soil | Department of Energy Support EM LA Airport Landfill Cover Project by providing 40000 tons of soil Support EM LA Airport Landfill Cover Project by providing 40000 tons of soil DE-DT0010454-Task-Order-4 Airport Landfill Construction Activities The purpose of this task order (TO) is to support the EM-LA Field Office in replacing the cover at the Los Alamos County Airport Landfill. The new cover design is an evapotranspiration (ET) cover. Contractor: TSAY Corporation DOE Contracting

  7. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Supply for a Bioenergy and Bioproducts Industry U.S. BILLI N-TON UPDATE U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry A Study Sponsored by U.S. Department of Energy Energy Effciency and Renewable Energy Offce of the Biomass Program August 2011 Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6335 managed by UT-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 This report was prepared as an account of

  8. Y-12's rough roads smoothed over with 23,000 tons of recycled asphalt |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) 's rough roads smoothed over with 23,000 tons of recycled asphalt Tuesday, December 29, 2015 - 12:00am NNSA Blog Some 23,000 tons of asphalt removed during this summer's UPF site work have been put to use throughout the site. Potholes and gravel roads are now "paved" with the recycled asphalt that has been ground into a material called base course. Unlike gravel, the material tends to rebind into a solid form as it is packed down,

  9. REGIONAL FEEDSTOCK PARTNERSHIP SUMMARY REPORT Enabling the Billion-Ton Vision

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FEEDSTOCK PARTNERSHIP SUMMARY REPORT Enabling the Billion-Ton Vision July 2016 Regional Feedstock Partnership Report | i Regional Feedstock Partnership Summary Report: Enabling the Billion-Ton Vision A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office July 2016 Prepared by Managed by Battelle Energy Alliance, LLC for the U.S. Department of Energy Under Contract DE-AC07-015D14517 This report was prepared as an account of

  10. DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weapons Stockpile | Department of Energy to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile November 7, 2005 - 12:38pm Addthis Will Be Redirected to Naval Reactors, Down-blended or Used for Space Programs WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's (DOE) National Nuclear Security Administration (NNSA) will

  11. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Alabama (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7,442 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Gulf of Mexico-Alabama

  12. Energy Department Project Captures and Stores One Million Metric Tons of Carbon

    Broader source: Energy.gov [DOE]

    As part of President Obama’s all-of-the-above energy strategy, the Department of Energy announced today that its Illinois Basin-Decatur Project successfully captured and stored one million metric tons of carbon dioxide (CO2) and injected it into a deep saline formation.

  13. 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site

    Broader source: Energy.gov [DOE]

    (Grand Junction, CO) ― Today, the Department of Energy (DOE) announced that 6 million tons of uranium mill tailings have been shipped from Moab, Utah, under the Uranium Mill Tailings Remedial Action Project to an engineered disposal cell near Crescent Junction, Utah.

  14. Planning for the 400,000 tons/year AISI ironmaking demonstration plant

    SciTech Connect (OSTI)

    Aukrust, E. . AISI Direct Steelmaking Program)

    1993-01-01

    The American Iron and Steel Institute (AISI) has formulated a four-year program to design, construct, and operate a 400,000 net ton per year ironmaking demonstration plant. The plant will employ the coal-based ironmaking process developed under a 1989 cooperative agreement with DOE. AISI will manage the design and construction to be completed in the first two years and operate the plant for the second two years with a variety or ores, coals, and fluxes. Campaigns of increasing length are planned to optimize operations. After successful operation, the plant will be taken over by the host company. Results of studies to date indicate that, on a commercial scale, the AISI process will use 27% less energy and have variable operating costs $10 per ton lower and capital costs of $160 per annual ton, compared to the $250 per annual ton rebuild cost for the coke oven-blast furnace process it will replace. The process will enable the domestic steel industry to become more competitive by reducing its capital and operating cost. Furthermore, by eliminating the pollution problems associated with coke production and by completely enclosing the smelting reactions, this process represents a major step towards an environmentally friendly steel industry.

  15. Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals Total Offshore (Million Cubic Feet) Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 9 13 1990's 19,861 32,603 191,605 218,023 349,380 356,598 361,068 409,091 392,320 376,435 2000's 361,289 200,862 202,002 194,339 165,630 152,902 145,762 134,451 125,502 109,214 2010's 101,487 84,270 87,398 75,660 70,827 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  16. Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 499 497 233 233 260 302 338 556 1,148 1,075 886 485 1996 431 364 202 356 493 971 1,164 1,553 1,891 2,008 1,879 1,119 1997 588 404 429 559 830 923 966 1,253 1,515 1,766 1,523 1,523 1998 773 585 337 582 727 1,350 1,341 1,540 1,139 1,752 1,753 1,615 1999 802 688 376 513 983 1,193 1,428 1,509 1,911 1,834 1,968 1,779 2000

  17. Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 693 1980's 682 683 1990's 4,184 5,460 5,870 5,212 4,898 4,930 5,100 5,013 4,643 4,365 2000's 4,269 3,958 3,922 4,345 4,159 4,006 3,963 4,036 3,379 2,948 2010's 2,724 2,570 2,304 1,670 2,121 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 680 1980's 659 658 1990's 4,159 5,437 5,840 5,166 4,842 4,886 5,062 4,983 4,615 4,338 2000's 4,241 3,931 3,891 4,313 4,127 3,977 3,945 4,016 3,360 2,919 2010's 2,686 2,522 2,204 1,624 1,980

  19. Alabama--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Alabama--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 222,009 228,298 229,483 223,527 221,233 220,674 212,470 207,863 2000's 200,255 191,119 184,500 176,571 173,106 164,304 160,381 155,167 152,051 146,751 2010's 139,215 134,305 128,312 120,666 110,226 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  20. Alabama--onshore Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Alabama--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 169,220 176,208 174,537 173,399 180,277 185,574 182,641 179,227 2000's 171,917 165,622 162,613 162,524 159,924 153,179 149,415 144,579 140,401 134,757 2010's 128,194 116,932 128,312 120,666 110,226 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  1. Alabama Natural Gas % of Total Electric Utility Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Utility Deliveries (Percent) Alabama Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.17 0.13 0.23 0.23 0.29 0.60 0.53 2000's 0.81 1.29 1.98 1.68 2.14 1.79 2.34 2.57 2.46 3.30 2010's 3.81 4.53 4.40 4.08 4.23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016

  2. Alabama Natural Gas % of Total Residential Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Deliveries (Percent) Alabama Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.04 1.03 1.02 1.08 0.97 1.03 0.90 2000's 0.95 1.03 0.95 0.92 0.90 0.87 0.87 0.75 0.77 0.75 2010's 0.88 0.78 0.66 0.72 0.77 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages:

  3. Alabama Natural Gas % of Total Vehicle Fuel Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Deliveries (Percent) Alabama Natural Gas % of Total Vehicle Fuel Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.44 0.20 0.15 0.08 0.71 0.57 0.57 2000's 0.57 0.52 0.52 0.52 0.52 0.67 0.47 0.36 0.32 0.29 2010's 0.37 0.64 0.64 0.63 0.63 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring

  4. Alabama Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,600 4,154 4,227 4,139 5,314 5,021 4,277 1990's 6,171 4,907 8,391 8,912 9,381 10,468 10,492 7,020 7,650 9,954 2000's 10,410 9,593 9,521 11,470 11,809 11,291 12,045 11,345 11,136 10,460 2010's 10,163 10,367 12,389 12,456 10,055 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  5. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,806 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  6. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  7. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,418 - = No Data Reported; -- = Not Applicable; NA = Not

  8. Alabama Natural Gas Percentage Total Commercial Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Deliveries (Percent) Alabama Natural Gas Percentage Total Commercial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.90 0.88 0.87 0.92 1.01 0.86 0.91 2000's 0.80 0.87 0.80 0.80 0.85 0.84 0.86 0.78 0.80 0.78 2010's 0.87 0.80 0.74 0.77 0.79 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring

  9. Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 20,689 19,948 22,109 2000's 22,626 19,978 21,760 18,917 15,911 14,982 14,879 15,690 16,413 18,849 2010's 22,124 23,091 25,349 22,166 18,688 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  10. Alabama (with State Offshore) Natural Gas Liquids Lease Condensate,

    Gasoline and Diesel Fuel Update (EIA)

    7,096 32,205 39,999 28,445 41,961 63,718 1969-2014 Alabama 1,676 946 754 562 822 1,664 1980-2014 Alaska 0 0 0 0 0 0 1969-2014 Arkansas 27 42 47 57 52 56 1980-2014 California 41 56 73 31 95 83 1980-2014 Connecticut 713 651 655 743 558 1,032 1980-2014 Delaware 121 73 64 117 63 157 1980-2014 Georgia 3,182 2,693 3,306 2,097 1,385 7,130 1980-2014 Idaho 528 142 146 211 13 64 1981-2014 Illinois 465 398 657 750 40 61 1980-2014 Indiana 691 1,983 609 0 925 2,193 1980-2014 Iowa 1,652 1,458 1,858 1,408

  11. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Alabama

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-29

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Alabama.

  12. M.; /Bern U.; Auty, D.J.; /Alabama U.; Barbeau, P.S.; /Stanford...

    Office of Scientific and Technical Information (OSTI)

    Neutrinoless Double-Beta Decay in 136Xe with EXO-200 Auger, M.; Bern U.; Auty, D.J.; Alabama U.; Barbeau, P.S.; Stanford U., Phys. Dept.; Beauchamp, E.; Laurentian U.;...

  13. Alabama Project Testing Potential for Combining CO2 Storage with Enhanced Methane Recovery

    Broader source: Energy.gov [DOE]

    Field testing the potential for combining geologic carbon dioxide storage with enhanced methane recovery is underway at a site in Alabama by a U.S. Department of Energy team of regional partners.

  14. Alabama High School Regional Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Alabama High School Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Alabama High School Regional Science Bowl

  15. Alabama Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Alabama Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Alabama Regional Middle School

  16. Microsoft Word - DOE-ID-13-048 Alabama EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 SECTION A. Project Title: Using Ionic Liquids for the Development of Renewable Biopolymer-Based Adsorbents for the Extraction of Uranium from Seawater and Testing Under Marine Conditions - University of Alabama SECTION B. Project Description The University of Alabama proposes to study the fundamental engineering parameters for a renewable high-performance adsorbent for the extraction of uranium from seawater based on a proven ionic liquid-chitin platform. Objectives include: 1) Understand how

  17. Original Signatures on File

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Original Signatures on File

  18. Texas CO2 Capture Demonstration Project Hits Three Million Metric Ton Milestone

    Broader source: Energy.gov [DOE]

    On June 30, Allentown, PA-based Air Products and Chemicals, Inc. successfully captured and transported, via pipeline, its 3 millionth metric ton of carbon dioxide (CO2) to be used for enhanced oil recovery. This achievement highlights the ongoing success of a carbon capture and storage (CCS) project sponsored by the U.S. Department of Energy (DOE) and managed by the National Energy Technology Laboratory (NETL).

  19. How well will ton-scale dark matter direct detection experiments constrain minimal supersymmetry?

    SciTech Connect (OSTI)

    Akrami, Yashar; Savage, Christopher; Scott, Pat; Conrad, Jan; Edsj, Joakim E-mail: savage@fysik.su.se E-mail: conrad@fysik.su.se

    2011-04-01

    Weakly interacting massive particles (WIMPs) are amongst the most interesting dark matter (DM) candidates. Many DM candidates naturally arise in theories beyond the standard model (SM) of particle physics, like weak-scale supersymmetry (SUSY). Experiments aim to detect WIMPs by scattering, annihilation or direct production, and thereby determine the underlying theory to which they belong, along with its parameters. Here we examine the prospects for further constraining the Constrained Minimal Supersymmetric Standard Model (CMSSM) with future ton-scale direct detection experiments. We consider ton-scale extrapolations of three current experiments: CDMS, XENON and COUPP, with 1000 kg-years of raw exposure each. We assume energy resolutions, energy ranges and efficiencies similar to the current versions of the experiments, and include backgrounds at target levels. Our analysis is based on full likelihood constructions for the experiments. We also take into account present uncertainties on hadronic matrix elements for neutralino-quark couplings, and on halo model parameters. We generate synthetic data based on four benchmark points and scan over the CMSSM parameter space using nested sampling. We construct both Bayesian posterior PDFs and frequentist profile likelihoods for the model parameters, as well as the mass and various cross-sections of the lightest neutralino. Future ton-scale experiments will help substantially in constraining supersymmetry, especially when results of experiments primarily targeting spin-dependent nuclear scattering are combined with those directed more toward spin-independent interactions.

  20. Alabama Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (Million Cubic Feet) Alabama Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 1,379 1,377 1,113 1,113 1,140 1,182 1,218 1,436 2,028 1,955 1,766 1,365 1996 1,311 1,014 852 1,006 1,373 2,042 2,247 2,641 3,081 3,198 3,069 2,309 1997 1,778 1,594 1,619 1,749 2,020 2,113 2,156 2,443 2,705 2,956 2,713 2,713 1998 1,963 1,775 1,527 1,772 1,917 2,540 2,531 2,730 2,329 2,942 2,943 2,805 1999 1,992 1,878 1,566

  1. Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.13 0.13 1970's 0.14 0.15 0.35 0.38 0.74 0.87 0.99 1.47 1.50 2.04 1980's 3.19 4.77 3.44 4.28 3.73 3.71 2.89 2.97 2.65 2.72 1990's 2.75 2.33 2.29 2.46 2.17 1.82 2.62 2.67 2.21 2.32 2000's 3.99 4.23 3.48 5.93 6.66 9.28 7.57 7.44 9.65 4.32 2010's 4.46 - = No Data Reported; -- = Not Applicable;

  2. Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.20 0.20 1970's 0.20 0.22 0.23 0.26 0.29 0.32 0.47 0.72 1.10 1.32 1980's 1.84 2.59 3.00 3.10 3.15 3.12 3.11 2.37 2.30 2.60 1990's 2.17 3.02 2.24 2.34 2.13 1.93 2.63 2.95 2.55 2.21 2000's 3.13 4.90 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  3. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

  4. Criticality Safety Review of 2 1/2-, 10-, and 14-Ton UF(Sub 6) Cylinders

    SciTech Connect (OSTI)

    Broadhead, B.L.

    1991-01-01

    Currently, UF{sub 6} cylinders designed to contain 2 1/2 tons of UF{sub 6} are classified as Fissile Class II packages with a transport index (TI) of 5 for the purpose of transportation. The 10-ton UF{sub 6} cylinders are classified as Fissile Class I with no TI assigned for transportation. The 14-ton cylinders, although not certified for transport with enrichments greater than 1 wt % because they have no approved overpack, can be used in on-site operations for enrichments greater than 1 wt %. The maximum 235U enrichments for these cylinders are 5.0 wt % for the 2 1/2-ton cylinder and 4.5 wt % for the 10- and 14-ton cylinders. This work reviews the suitability for reclassification of the 2 1/2-ton UF{sub 6} packages as Fissile Class I with a maximum {sup 235}U enrichment of 5 wt %. Additionally, the 10- and 14-ton cylinders are reviewed to address a change in maximum {sup 235}U enrichment from 4.5 to 5 wt %. Based on this evaluation, the 2 1/2-ton UF{sub 6} cylinders meet the 10 CFR.71 criteria for Fissile Class I packages, and no TI is needed for criticality safety purposes; however, a TI may be required based on radiation from the packages. Similarly, the 10- and 14-ton UF{sub 6} packages appear acceptable for a maximum enrichment rating change to 5 wt % {sup 235}U.

  5. 12,893,780 Metric Tons of CO2 Injected as of July 19, 2016 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 12,893,780 Metric Tons of CO2 Injected as of July 19, 2016 12,893,780 Metric Tons of CO2 Injected as of July 19, 2016 This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is equivalent to the annual greenhouse gas emissions from 210,526 passenger vehicles. The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program and the

  6. Occidental Chemical's Energy From Waste facility: 3,000,000 tons later

    SciTech Connect (OSTI)

    Blasins, G.F. )

    1988-01-01

    Occidental Chemical's Energy From Waste's cogeneration facility continues to be one of the most successful RDF plants in the U.S. The facility began operation in 1980 and was an operational success after a lengthy 2-1/2 year start-up and redesign, utilizing the air classification technology to produce RDF. In 1984, the plant was converted to a simplified shred and burn concept, significantly improving overall economics and viability of the operation. After processing 3.0 million tons the facility is a mature operation with a well developed experience base in long range operation and maintenance of the equipment utilized for processing and incinerating municipal solid waste.

  7. Table 11.4 Nitrous Oxide Emissions, 1980-2009 (Thousand Metric Tons of Nitrous Oxide)

    U.S. Energy Information Administration (EIA) Indexed Site

    Nitrous Oxide Emissions, 1980-2009 (Thousand Metric Tons of Nitrous Oxide) Year Energy Sources Waste Management Agricultural Sources Industrial Processes 3 Total Mobile Combustion 1 Stationary Combustion 2 Total Waste Combustion Human Sewage in Wastewater Total Nitrogen Fertilization of Soils Crop Residue Burning Solid Waste of Domesticated Animals Total 1980 60 44 104 1 10 11 364 1 75 440 88 642 1981 63 44 106 1 10 11 364 2 74 440 84 641 1982 67 42 108 1 10 11 339 2 74 414 80 614 1983 71 43 114

  8. An ounce of prevention, a ton of cure | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An ounce of prevention, a ... An ounce of prevention, a ton of cure Posted: June 24, 2015 - 3:11pm Aaron Spoon of Power Operations performs maintenance on 13.8 kV transformers 145 and 145A. Photo by Scott Fraker Y-12 recently saved time, taxpayer dollars, effort and potential injuries by taking a 72-hour planned simultaneous outage of power, steam and air systems. The weekend outage allowed a small army of Y-12 infrastructure, facilities and utilities workers to make repairs and perform

  9. Assessment of the geothermal/geopressure potential of the Gulf Coastal Plan of Alabama. Final report

    SciTech Connect (OSTI)

    Wilson, G.V.; Wang, G.C.; Mancini, E.A.; Benson, D.J.

    1980-01-01

    Geothermal and geopressure as well as geologic and geophysical data were studied to evaluate the potential for future development of geothermal resources underlying the Alabama Coastal Plain. Wire-line log data compiled and interpreted from more than 1300 oil and gas test wells included maximum recorded temperatures, mud weights, rock resistivities as related to geopressure, formation tops, fault locations, and depths to basement rock. The Alabama Coastal Plain area is underlain by a conduction dominated, deep sedimentary basin where geothermal gradients are low to moderate (1.0 to 1.8/sup 0/F/100 feet). In some areas of southwest Alabama, abnormally high temperatures are found in association with geopressured zones within the Haynesville Formation of Jurassic age; however, rocks of poor reservoir quality dominate this formation, with the exception of a 200-square-mile area centered in southernmost Clarke County where a porous and permeable sand unit is encased within massive salt deposits of the lower Haynesville. The results of a petrograhic study of the Smackover Formation, which underlies the Haynesville, indicate that this carbonate rock unit has sufficient porosity in some areas to be considered a potential geothermal reservoir. Future development of geothermal resources in south Alabama will be restricted to low or moderate temperature, non-electric applications, which constitute a significant potential energy source for applications in space heating and cooling and certain agricultural and industrial processes.

  10. Table 11.3 Methane Emissions, 1980-2009 (Million Metric Tons of Methane)

    U.S. Energy Information Administration (EIA) Indexed Site

    Methane Emissions, 1980-2009 (Million Metric Tons of Methane) Year Energy Sources Waste Management Agricultural Sources Industrial Processes 9 Total 5 Coal Mining Natural Gas Systems 1 Petroleum Systems 2 Mobile Com- bustion 3 Stationary Com- bustion 4 Total 5 Landfills Waste- water Treatment 6 Total 5 Enteric Fermen- tation 7 Animal Waste 8 Rice Cultivation Crop Residue Burning Total 5 1980 3.06 4.42 NA 0.28 0.45 8.20 10.52 0.52 11.04 5.47 2.87 0.48 0.04 8.86 0.17 28.27 1981 2.81 5.02 NA .27

  11. Table 7.2 Coal Production, 1949-2011 (Short Tons)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production, 1949-2011 (Short Tons) Year Rank Mining Method Location Total 1 Bituminous Coal 1 Subbituminous Coal Lignite Anthracite 1 Underground Surface 1 East of the Mississippi 1 West of the Mississippi 1 1949 437,868,000 [2] [2] 42,702,000 358,854,000 121,716,000 444,199,000 36,371,000 480,570,000 1950 516,311,000 [2] [2] 44,077,000 421,000,000 139,388,000 524,374,000 36,014,000 560,388,000 1951 533,665,000 [2] [2] 42,670,000 442,184,000 134,151,000 541,703,000 34,632,000 576,335,000

  12. Table 7.5 Coal Exports by Country of Destination, 1960-2011 (Thousand Short Tons)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Exports by Country of Destination, 1960-2011 (Thousand Short Tons) Year Canada Brazil Europe Japan Other 3 Total Belgium 1 Denmark France Germany 2 Italy Nether- lands Spain Turkey United Kingdom Other 3 Total 1960 12,843 1,067 1,116 130 794 4,566 4,899 2,837 331 NA – 2,440 17,113 5,617 1,341 37,981 1961 12,135 994 971 80 708 4,326 4,797 2,552 228 NA – 2,026 15,688 6,614 974 36,405 1962 12,302 1,327 1,289 38 851 5,056 5,978 3,320 766 NA 2 1,848 19,148 6,465 973 40,215 1963 14,557 1,161

  13. Table 7.7 Coal Mining Productivity, 1949-2011 (Short Tons per Employee Hour )

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Mining Productivity, 1949-2011 (Short Tons per Employee Hour 1) Year Mining Method Location Total 2 Underground Surface 2 East of the Mississippi West of the Mississippi Underground Surface 2 Total 2 Underground Surface 2 Total 2 1949 0.68 [3] 1.92 [3] NA NA NA NA NA NA 0.72 1950 .72 [3] 1.96 [3] NA NA NA NA NA NA .76 1951 .76 [3] 2.00 [3] NA NA NA NA NA NA .80 1952 .80 [3] 2.10 [3] NA NA NA NA NA NA .84 1953 .88 [3] 2.22 [3] NA NA NA NA NA NA .93 1954 1.00 [3] 2.48 [3] NA NA NA NA NA NA

  14. Table 7.9 Coal Prices, 1949-2011 (Dollars per Short Ton)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Prices, 1949-2011 (Dollars per Short Ton) Year Bituminous Coal Subbituminous Coal Lignite 1 Anthracite Total Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 1949 4.90 [4] 33.80 [4,R] [4] [4] 2.37 16.35 [R] 8.90 61.38 [R] 5.24 36.14 [R] 1950 4.86 [4] 33.16 [4,R] [4] [4] 2.41 16.44 [R] 9.34 63.73 [R] 5.19 35.41 [R] 1951 4.94 [4] 31.44 [4,R] [4] [4] 2.44 15.53 [R] 9.94 63.26 [R] 5.29 33.67 [R] 1952 4.92 [4] 30.78 [4,R] [4] [4] 2.39 14.95 [R] 9.58 59.94 [R]

  15. Dynamic performance testing of prototype 3 ton air-cooled carrier absorption chiller

    SciTech Connect (OSTI)

    Borst, R.R.; Wood, B.D.

    1985-05-01

    The performance of a prototype 3 ton cooling capacity air-cooled lithium bromide/water absorption chiller was tested using an absorption chiller test facility which was modified to expand its testing capabilities to include air-cooled chillers in addition to water-cooled chillers. Temperatures of the three externally supplied fluid loops: hot water, chilled water, and cooling air, were varied in order to determine the effects this would have on the two principal measures of chiller performance: cooling capacity and thermal coefficient of performance (COP). A number of interrelated factors were identified as contributing to less than expected performance. For comparison, experimental correlations of other investigators for this and other similar absorption chillers are presented. These have been plotted as both contour and three-dimensional performance maps in order to more clearly show the functional dependence of the chiller performance on the fluid loop temperatures.

  16. Cracked lifting lug welds on ten-ton UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Dorning, R.E.

    1991-12-31

    Ten-ton, Type 48X, UF{sub 6} cylinders are used at the Portsmouth Gaseous Diffusion Plant to withdraw enriched uranium hexafluoride from the cascade, transfer enriched uranium hexafluoride to customer cylinders, and feed enriched product to the cascade. To accomplish these activities, the cylinders are lifted by cranes and straddle carriers which engage the cylinder lifting lugs. In August of 1988, weld cracks on two lifting lugs were discovered during preparation to lift a cylinder. The cylinder was rejected and tagged out, and an investigating committee formed to determine the cause of cracking and recommend remedial actions. Further investigation revealed the problem may be general to this class of cylinder in this use cycle. This paper discusses the actions taken at the Portsmouth site to deal with the cracked lifting lug weld problem. The actions include inspection activities, interim corrective actions, metallurgical evaluation of cracked welds, weld repairs, and current monitoring/inspection program.

  17. Evaluation of enhanced recovery operations in Smackover fields of southwest Alabama. Draft topical report on Subtasks 5 and 6

    SciTech Connect (OSTI)

    Hall, D.R.

    1992-06-01

    This report contains detailed geologic and engineering information on enhanced-recovery techniques used in unitized Smackover fields in Alabama. The report also makes recommendations on the applicability of these enhanced-recovery techniques to fields that are not now undergoing enhanced recovery. Eleven Smackover fields in Alabama have been unitized. Three fields were unitized specifically to allow the drilling of a strategically placed well to recover uncontacted oil. Two fields in Alabama are undergoing waterflood projects. Five fields are undergoing gas-injection programs to increase the ultimate recovery of hydrocarbons. Silas and Choctaw Ridge fields were unitized but no enhanced-recovery operations have been implemented.

  18. 1000–ton testing machine for cyclic fatigue tests of materials at liquid nitrogen temperatures

    SciTech Connect (OSTI)

    Khitruk, A. A.; Klimchenko, Yu. A.; Kovalchuk, O. A.; Marushin, E. L.; Mednikov, A. A.; Nasluzov, S. N.; Privalova, E. K.; Rodin, I. Yu.; Stepanov, D. B.; Sukhanova, M. V.

    2014-01-29

    One of the main tasks of superconductive magnets R and D is to determine the mechanical and fatigue properties of structural materials and the critical design elements in the cryogenic temperature range. This paper describes a new facility built based on the industrial 1000-ton (10 MN) testing machine Schenk PC10.0S. Special equipment was developed to provide the mechanical and cyclic tensile fatigue tests of large-scale samples at the liquid nitrogen temperature and in a given load range. The main feature of the developed testing machine is the cryostat, in which the device converting a standard compression force of the testing machine to the tensile force affected at the test object is placed. The control system provides the remote control of the test and obtaining, processing and presentation of test data. As an example of the testing machine operation the test program and test results of the cyclic tensile fatigue tests of fullscale helium inlet sample of the PF1 coil ITER are presented.

  19. High temperature experiments on a 4 tons UF6 container TENERIFE program

    SciTech Connect (OSTI)

    Casselman, C.; Duret, B.; Seiler, J.M.; Ringot, C.; Warniez, P.

    1991-12-31

    The paper presents an experimental program (called TENERIFE) whose aim is to investigate the behaviour of a cylinder containing UF{sub 6} when exposed to a high temperature fire for model validation. Taking into account the experiments performed in the past, the modelization needs further information in order to be able to predict the behaviour of a real size cylinder when engulfed in a 800{degrees}C fire, as specified in the regulation. The main unknowns are related to (1) the UF{sub 6} behaviour beyond the critical point, (2) the relationship between temperature field and internal pressure and (3) the equivalent conductivity of the solid UF{sub 6}. In order to investigate these phenomena in a representative way it is foreseen to perform experiments with a cylinder of real diameter, but reduced length, containing 4 tons of UF{sub 6}. This cylinder will be placed in an electrically heated furnace. A confinement vessel prevents any dispersion of UF{sub 6}. The heat flux delivered by the furnace will be calibrated by specific tests. The cylinder will be changed for each test.

  20. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 620 1 7 * 105 * 3112 Grain and Oilseed Milling 318 15,464 * * 117 * 5 0 29 *

  1. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 620 1 7 * 105 * 3112 Grain and Oilseed Milling 318 15,464 * * 117 * 5 0 29 *

  2. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 3 0 * 2 * 0 * * 3112 Grain and Oilseed

  3. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 618 1 7 * 107

  4. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    4.1 Offsite-Produced Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,124 73,551 4 3

  5. Computerized economic and statistical investigation of the Alabama liquid asphalt market for public entities

    SciTech Connect (OSTI)

    Morgan, J.E. Jr.

    1986-01-01

    This study outlines the development of an economic data base and techniques utilized in identifying noncompetitive practices in the sealed bid market for liquid asphalt products purchased by public entities in the State of Alabama. It describes the organization of data and methods for displaying salient characteristics of market conduct and performance. Likely areas of anticompetitive activity are identified from an examination of conditional factors influencing collusion in a market and of circumstantial evidence of collusive behavior of the vendors. Methods of detecting and analyzing suspicious behavior are indicated and applied to selected data. The conclusion reached was that collusion was present in the Alabama liquid asphalt market during 1971-1978. An antitrust action was initiated by the State. Damages were calculated from the data base using a GLM regression model. An out-of-court settlement was negotiated by the defendant vendors.

  6. Geologic framework of the Jurassic (Oxfordian) Smackover Formation the Alabama coastal waters area

    SciTech Connect (OSTI)

    Tew, B.H.; Mancini, E.A. ); Mink R.M.; Mann, S.D. ); Mancini, E.A.

    1993-09-01

    The Jurassic (Oxfordian) Smackover Formation is a prolific hydrocarbon-producing geologic unit in the onshore Gulf of Mexico area, including southwest Alabama. However, no Smackover strata containing commercial accumulations of oil or gas have thus far been discovered in the Alabama state coastal waters area (ACW). This study of the regional geologic framework of the Smackover Formation was done to characterize the unit in the ACW and to compare strata in the ACW with productive Smackover intervals in the onshore area. In the study area, the Smackover Formation was deposited on a highly modified carbonate associated with pre-Smackover topographic features. In the onshore Alabama, north of the Wiggins arch complex, an inner ramp developed in the area of the Mississippi interior salt basin and the Manila and Conecuh embayments. South of the Wiggins arch complex in extreme southern onshore Alabama and in the ACW, an outer ramp formed that was characterized by a much thicker Smackover section. In the outer ramp setting, four lithofacies associations are recognized: lower, middle, and upper outer ramp lithofacies (ORL) and the coastal dolostone lithofacies. The coastal dolostone lithofacies accounts for most of the reservoir-grade porosity in the outer ramp setting. The lower, middle, and upper ORL, for the most part, are nonporous. Volumetrically, intercrystalline porosity is the most important pore type in the coastal dolostone lithofacies. Numerous data in the ACW area indicate that halokinesis has created structural conditions favorable for accumulation and entrapment of oil and gas in the outer ramp lithofacies of the Smackover. Prolific hydrocarbon source rocks are present in the ACW, as evidenced by the significant natural gas accumulations in the Norphlet Formation. To date, however, reservoir quality rocks of the coastal dolostone lithofacies coincident with favorable structural conditions have not been encountered in the ACW.

  7. A Proposal for a Ton Scale Bubble Chamber for Dark Matter Detection

    SciTech Connect (OSTI)

    Collar, Juan; Dahl, C.Eric; Fustin, Drew; Robinson, Alan; Behnke, Ed; Behnke, Joshua; Breznau, William; Connor, Austin; Kuehnemund, Emily Grace; Levine, Ilan; Moan, Timothy; /Indiana U., South Bend /Fermilab

    2010-10-07

    The nature of non-baryonic dark matter is one of the most intriguing questions for particle physics at the start of the 21st century. There is ample evidence for its existence, but almost nothing is known of its properties. WIMPs are a very appealing candidate particle and several experimental campaigns are underway around the world to search for these particles via the nuclear recoils that they should induce. The COUPP series of bubble chambers has played a significant role in the WIMP search. Through a sequence of detectors of increasing size, a number of R&D issues have arisen and been solved, and the technology has now been advanced to the point where the construction of large chambers requires a modest research effort, some development, but mostly just engineering. It is within this context that we propose to build the next COUPP detector - COUPP-500, a ton scale device to be built over the next three years at Fermilab and then deployed deep underground at SNOLAB. The primary advantages of the COUPP approach over other technologies are: (1) The ability to reject electron and gamma backgrounds by arranging the chamber thermodynamics such that these particles do not even trigger the detector. (2) The ability to suppress neutron backgrounds by having the radioactively impure detection elements far from the active volume and by using the self-shielding of a large device and the high granularity to identify multiple bubbles. (3) The ability to build large chambers cheaply and with a choice of target fluids. (4) The ability to increase the size of the chambers without changing the size or complexity of the data acquisition. (5) Sensitivity to spin-dependent and spin-independent WIMP couplings. These key advantages should enable the goal of one background event in a ton-year of exposure to be achieved. The conceptual design of COUPP-500 is scaled from the preceding devices. In many cases all that is needed is a simple scaling up of components previously used

  8. Year","Quarter","Destination State","Origin State","Consumer Type","Transportati

    U.S. Energy Information Administration (EIA) Indexed Site

    1,"Alabama","Alabama","Coke Plant","Railroad",50125 2015,1,"Alabama","Alabama","Coke Plant","Truck",152157 2015,1,"Alabama","Alabama","Electric Power Sector","Railroad",6992 2015,1,"Alabama","Alabama","Electric Power Sector","River",556685 2015,1,"Alabama","Alabama","Electric Power

  9. Year","Quarter","Destination State","Origin State","Consumer Type","Transportati

    U.S. Energy Information Administration (EIA) Indexed Site

    2,"Alabama","Alabama","Coke Plant","Railroad",44011 2015,2,"Alabama","Alabama","Coke Plant","Truck",141221 2015,2,"Alabama","Alabama","Electric Power Sector","Railroad",85327 2015,2,"Alabama","Alabama","Electric Power Sector","River",615682 2015,2,"Alabama","Alabama","Electric Power

  10. Year","Quarter","Destination State","Origin State","Consumer Type","Transportati

    U.S. Energy Information Administration (EIA) Indexed Site

    3,"Alabama","Alabama","Coke Plant","Truck",140151 2015,3,"Alabama","Alabama","Electric Power Sector","Railroad",114007 2015,3,"Alabama","Alabama","Electric Power Sector","River",646624 2015,3,"Alabama","Alabama","Electric Power Sector","Truck",142407 2015,3,"Alabama","Alabama","Industrial Plants Excluding

  11. Year","Quarter","Destination State","Origin State","Consumer Type","Transportati

    U.S. Energy Information Administration (EIA) Indexed Site

    4,"Alabama","Alabama","Coke Plant","Railroad",8671 2015,4,"Alabama","Alabama","Coke Plant","River",571 2015,4,"Alabama","Alabama","Coke Plant","Truck",112492 2015,4,"Alabama","Alabama","Electric Power Sector","Railroad",149084 2015,4,"Alabama","Alabama","Electric Power Sector","River",395310

  12. Year","Quarter","Origin State","Destination State","Consumer Type","Transportati

    U.S. Energy Information Administration (EIA) Indexed Site

    1,"Alabama","Alabama","Electric Power Sector","Railroad",6992 2015,1,"Alabama","Alabama","Coke Plant","Railroad",50125 2015,1,"Alabama","Alabama","Electric Power Sector","River",556685 2015,1,"Alabama","Alabama","Industrial Plants Excluding Coke","River",3870 2015,1,"Alabama","Alabama","Electric Power

  13. Year","Quarter","Origin State","Destination State","Consumer Type","Transportati

    U.S. Energy Information Administration (EIA) Indexed Site

    2,"Alabama","Alabama","Electric Power Sector","Railroad",85327 2015,2,"Alabama","Alabama","Coke Plant","Railroad",44011 2015,2,"Alabama","Alabama","Electric Power Sector","River",615682 2015,2,"Alabama","Alabama","Electric Power Sector","Truck",121818 2015,2,"Alabama","Alabama","Coke

  14. Year","Quarter","Origin State","Destination State","Consumer Type","Transportati

    U.S. Energy Information Administration (EIA) Indexed Site

    3,"Alabama","Alabama","Electric Power Sector","Railroad",114007 2015,3,"Alabama","Alabama","Industrial Plants Excluding Coke","Railroad",14106 2015,3,"Alabama","Alabama","Electric Power Sector","River",646624 2015,3,"Alabama","Alabama","Electric Power Sector","Truck",142407 2015,3,"Alabama","Alabama","Coke

  15. Year","Quarter","Origin State","Destination State","Consumer Type","Transportati

    U.S. Energy Information Administration (EIA) Indexed Site

    4,"Alabama","Alabama","Electric Power Sector","Railroad",149084 2015,4,"Alabama","Alabama","Coke Plant","Railroad",8671 2015,4,"Alabama","Alabama","Electric Power Sector","River",395310 2015,4,"Alabama","Alabama","Coke Plant","River",571 2015,4,"Alabama","Alabama","Electric Power

  16. Year","Quarter","Destination State","Origin State","Consumer Type","Transportati

    U.S. Energy Information Administration (EIA) Indexed Site

    2,3,"Alabama","Alabama","Coke Plant","Railroad",25445 2012,3,"Alabama","Alabama","Coke Plant","Truck",141202 2012,3,"Alabama","Alabama","Electric Power Sector","Railroad",1051202 2012,3,"Alabama","Alabama","Electric Power Sector","River",729969 2012,3,"Alabama","Alabama","Electric Power

  17. Year","Quarter","Origin State","Destination State","Consumer Type","Transportati

    U.S. Energy Information Administration (EIA) Indexed Site

    2,3,"Alabama","Alabama","Electric Power Sector","Railroad",1051202 2012,3,"Alabama","Alabama","Coke Plant","Railroad",25445 2012,3,"Alabama","Alabama","Industrial Plants Excluding Coke","Railroad",10029 2012,3,"Alabama","Alabama","Electric Power Sector","River",729969 2012,3,"Alabama","Alabama","Electric Power

  18. Alabama Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",3271,3272,3272,3272,3272 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",581,574,593,591,583 "MSW/Landfill

  19. Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 40 4 13 1980's 1 5 1990's 433 35 95 0 1 0 0 0 10 0 2000's 0 42 0 0 3 0 0 0 2 0 2010's 3 2 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: New

  20. Alabama Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -67 -133 -30 123 233 669 826 998 743 933 994 633 1997 156 40 226 203 337 -48 -197 -301 -376 -242 -356 405 1998 185 181 -92 24 -103 427 374 288 -376 -14 230 91 1999 29 103 39 -69 257 -156 88 -31 772 82 214 164 2000 63 175 802 599 219 615 462 381 -131 -196

  1. ,"Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  2. ,"Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  3. ,"Alabama Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  4. ,"Alabama Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290al2m.xls"

  5. ,"Alabama Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  6. ,"Alabama Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  7. ,"Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  8. Original Impact Calculations

    Broader source: Energy.gov [DOE]

    Original Impact Calculations, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  9. Assessment of Reusing 14-ton, Thin-Wall, Depleted UF{sub 6} Cylinders as LLW Disposal Containers

    SciTech Connect (OSTI)

    O'Connor, D.G.

    2000-11-30

    - 14TTW cylinders, which have a nominal diameter of 48 inches and nominally contain 14 tons (12.7 MT) of DUF{sub 6}, were originally designed and fabricated for temporary storage of DUF{sub 6}. They were fabricated from pressure-vessel-grade steels according to the provisions of the ASME Boiler and Pressure Vessel Code (Ref. 4). Cylinders are stored in open yards at the three sites and, due to historical storage techniques, were subject to corrosion. Roughly 10,000 of the 14TTW cylinders are considered substandard (Ref. 5) due to corrosion and other structural anomalies caused by mishandling. This means that approximately 40,000 14TTW cylinders could be made available as containers for LLW disposal In order to demonstrate the use of 14TTW cylinders as LLW disposal containers, several qualifying tasks need to be performed. Two demonstrations are being considered using 14TTW cylinders--one demonstration using contaminated soil and one demonstration using U{sub 3}O{sub 8}. The objective of this report are to determine how much information is known that could be used to support the demonstrations, and how much additional work will need to be done in order to conduct the demonstrations. Information associated with the following four qualifying tasks are evaluated in this report. (1) Perform a review of structural assessments that have been conducted for 14TTW. (2) Develop a procedure for filling 14TTW cylinders with LLW that have been previously washed. (3) Evaluate the transportation requirements for shipping 14TTW cylinders containing LLW. (4) Evaluate the WAC that will be imposed by the NTS. Two assumptions are made to facilitate this evaluation of using DUF{sub 6} cylinders as LLW disposal containers. (1) Only 14TTW cylinders will be considered for use as LLW containers, and (2) The NTS will be the LLW disposal site.

  10. Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,701 1990's 2,362 3,392 3,350 3,514 3,565 3,526 4,105 4,156 4,171 4,204 2000's 4,359 4,597 4,803 5,157 5,526 5,523 6,227 6,591 6,860 6,913 2010's 7,026 7,063 6,327 6,165 6,118 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  11. Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.74 6.46 4.60 4.24 3.51 2.92 2.42 1.98 2000's -- -- -- -- 17.32 19.17 2010's 16.24 11.45 17.99 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  12. Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?

    SciTech Connect (OSTI)

    Zhou, Nan; Lin, Jiang; Zhou, Nan; Levine, Mark; Fridley, David

    2007-07-01

    China's 11th Five-Year Plan (FYP) sets an ambitious target for energy-efficiency improvement: energy intensity of the country's gross domestic product (GDP) should be reduced by 20% from 2005 to 2010 (NDRC, 2006). This is the first time that a quantitative and binding target has been set for energy efficiency, and signals a major shift in China's strategic thinking about its long-term economic and energy development. The 20% energy intensity target also translates into an annual reduction of over 1.5 billion tons of CO2 by 2010, making the Chinese effort one of most significant carbon mitigation effort in the world today. While it is still too early to tell whether China will achieve this target, this paper attempts to understand the trend in energy intensity in China and to explore a variety of options toward meeting the 20% target using a detailed end-use energy model.

  13. Methods and results for stress analyses on 14-ton, thin-wall depleted UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Kirkpatrick, J.R.; Chung, C.K.; Frazier, J.L.; Kelley, D.K.

    1996-10-01

    Uranium enrichment operations at the three US gaseous diffusion plants produce depleted uranium hexafluoride (DUF{sub 6}) as a residential product. At the present time, the inventory of DUF{sub 6} in this country is more than half a million tons. The inventory of DUF{sub 6} is contained in metal storage cylinders, most of which are located at the gaseous diffusion plants. The principal objective of the project is to ensure the integrity of the cylinders to prevent causing an environmental hazard by releasing the contents of the cylinders into the atmosphere. Another objective is to maintain the cylinders in such a manner that the DUF{sub 6} may eventually be converted to a less hazardous material for final disposition. An important task in the DUF{sub 6} cylinders management project is determining how much corrosion of the walls can be tolerated before the cylinders are in danger of being damaged during routine handling and shipping operations. Another task is determining how to handle cylinders that have already been damaged in a manner that will minimize the chance that a breach will occur or that the size of an existing breach will be significantly increased. A number of finite element stress analysis (FESA) calculations have been done to analyze the stresses for three conditions: (1) while the cylinder is being lifted, (2) when a cylinder is resting on two cylinders under it in the customary two-tier stacking array, and (3) when a cylinder is resting on tis chocks on the ground. Various documents describe some of the results and discuss some of the methods whereby they have been obtained. The objective of the present report is to document as many of the FESA cases done at Oak Ridge for 14-ton thin-wall cylinders as possible, giving results and a description of the calculations in some detail.

  14. Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at Ft. Bliss, Texas. Interim report

    SciTech Connect (OSTI)

    Alvarez, R.A.; Yost, D.M.

    1995-11-01

    A technology demonstration program of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles was conducted at FL Bliss, Texas to demonstrate the use of CNG as an alternative fuel. The demonstration program at FL Bliss was the first Army initiative with CNG-fueled vehicles under the legislated Alternative Motor Fuels Act. This Department of Energy (DOE)-supported fleet demonstration consisted of 48 General Services Administration (GSA)-owned, Army-leased 1992 dedicated CNG General Motors (GM) 3/4-ton pickup trucks and four 1993 gasoline-powered Chevrolet 3/4-ton pickup trucks.

  15. Program in Functional Genomics of Autoimmunity and Immunology of yhe University of Kentucky and the University of Alabama

    SciTech Connect (OSTI)

    Alan M Kaplan

    2012-10-12

    This grant will be used to augment the equipment infrastructure and core support at the University of Kentucky and the University of Alabama particularly in the areas of genomics/informatics, molecular analysis and cell separation. In addition, we will promote collaborative research interactions through scientific workshops and exchange of scientists, as well as joint exploration of the role of immune receptors as targets in autoimmunity and host defense, innate and adaptive immune responses, and mucosal immunity in host defense.

  16. Original Signature on File

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Original Signature on File Page8 of 8 M. EMERGENCY PROCEDURES 1. The owneroperator must maintain an adequately trained onsite RCRA emergency coordinator to direct emergency...

  17. Chemical reactions of UF{sub 6} with water on ingress to damaged model 48X 10 ton cylinder

    SciTech Connect (OSTI)

    Rothman, A.B.

    1996-02-01

    Chemistry studies of the effects of water flooding in Model 48X 10-ton UF{sub 6} storage cylinders, as a result of impact fractures, were conducted to support the Safety Analysis Report for Packaging (SARP) review of the Paducah Tiger Overpack for transportation of those cylinders. The objectives of the study were to determine the maximum amount of water that could be admitted to the interior of such a damaged cylinder, the resulting geometries and chemical compositions from reactions of water with the UF{sub 6} contents of the cylinder, and the end-state water moderated and reflected configurations for input to nuclear criticality safety analyses. The case identified for analysis was the flooding of the inside of a cylinder, submerged horizontally in 3 ft of water. The flooding was driven by an initial pressure drop of 13 psig, through an assumed fracture (1/32 in. wide {times} 1/2 in. deep {times} 18 in. long) in the barrel of the cylinder. During the initial addition of water, transient back pressures occur from the effects of the heats of reaction and solution at the water/UF{sub 6} interface, with some chugging as more water is added to alternately coot the reaction surface and then heat it again as the added water reacts with more UF{sub 6}.

  18. Alabama Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 880 880 880 880 880 880 880 880 880 880 880 880 1996 880 650 650 650 880 1,071 1,083 1,088 1,190 1,190 1,190 1,190 1997 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1998 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1999 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190

  19. Alabama Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 221.1 244.8 179.6 64.8 86.8 112.2 130.5 1997 36.2 10.9 111.7 57.1 68.4 -5.0 -17.0 -19.4 -19.9 -12.1 -19.0 36.2 1998 31.5 45.0 -21.4 4.3 -12.4 46.2 38.7 23.0 -24.8 -0.8 15.1 6.0 1999 3.8 17.6 11.5 -11.9 35.3 -11.6 6.5 -2.0 67.7 4.7 12.2 10.2 2000 7.9 25.4 213.4 116.8 22.2 51.5 32.4 25.3

  20. [High Energy Physics Program at the University of Alabama. Final report

    SciTech Connect (OSTI)

    Baksay, L.; Busenitz, J.K.

    1993-10-01

    The High Energy Physics group at University of Alabama is a member of the L3 collaboration studying e+e{minus} collisions near the Z{degree} pole at the LEP accelerator at CERN. About 2 million Z{degree} events have been accumulated and the experiment has been prolific in publishing results on the Z resonance parameters, the Z couplings to all leptons and quarks with mass less than half the Z mass, searches for new particles and interactions, and studies of strong interactions and/or weak charged current decays of the quarks and leptons abundantly produced in Z decays. The group is contributing to data analysis as well as to detector hardware. In particular, the authors are involved in a major hardware upgrade for the experiment, namely the design, construction and commissioning of a Silicon Microvertex Detector (SMD) which has successfully been installed for operation during the present grant period. The authors present here a report on their recent L3 activities and their plans for the next grant period of twelve months (April 1, 1994--March 31, 1995). Their main interests in data analysis are in the study of single photon final states and the physics made more accessible by the SMD, such as heavy flavor physics. Their hardware efforts continue to be concentrated on the high precision capacitive and optical alignment monitoring systems for the SMD and also includes gas monitoring for the muon system. They are also planning to participate in the coming upgrade of the L3 detector.

  1. Alabama Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,014 1,016 1,016 1,016 1,016 1,017 1,016 1,016 1,017 1,018 1,018 2014 1,018 1,017 1,019 1,021 1,024 1,025 1,026 1,027 1,029 1,027 1,029 1,028 2015 1,028 1,026 1,029 1,032 1,031 1,032 1,032 1,030 1,030 1,030 1,029 1,029 2016 1,029 1,025 1,030 1,028 1,028 1,026

    Residential Deliveries (Percent) Alabama Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7

  2. Closeout Report: Experimental High Energy Physics Group at the University of South Alabama

    SciTech Connect (OSTI)

    Jenkins, Charles M; Godang, Romulus

    2013-06-25

    The High Energy Physics group at the University of South Alabama has been supported by this research grant (DE-FG02-96ER40970) since 1996. One researcher, Dr. Merrill Jenkins, has been supported on this grant during this time worked on fixed target experiments at the Fermi National Accelerator Laboratory, west of Chicago, Illinois. These experiments have been E-705, E-771, E-871 (HyperCP) and E-921 (CKM) before it was canceled for budgetary reasons. After the cancellation of CKM, Dr. Jenkins joined the Compact Muon Solenoid (CMS) experiment as an associate member via the High Energy Physics Group at the Florida State University. A second, recently tenured faculty member, Dr. Romulus Godang joined the group in 2009 and has been supported by this grant since then. Dr. Godang is working on the BaBaR experiment at SLAC and has joined the Belle-II experiment located in Japan at KEK. According to the instructions sent to us by our grant monitor, we are to concentrate on the activities over the last three years in this closeout report.

  3. Review of corrosion in 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders

    SciTech Connect (OSTI)

    Lykins, M.L.

    1995-08-01

    A literature review was conducted to determine the type, extent and severity of corrosion found in the 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders. Also discussed in this review is corrosion found in the valves and plugs used in the cylinders. Corrosion of the cylinders is a gradual process which occurs slowly over time. Understanding corrosion of the cylinders is an important concern for long term storage of the UF{sub 6} in the cylinder yards, as well as the final disposition of the depleted UF{sub 6} tails inventory in the future. The following conclusions are made from the literature review: (1) The general external corrosion rate of the cylinders is about 1 to 2 mils per year (1 mil = 0.001{double_prime}). The highest general external corrosion rate was over 5 mpy on the 48G type cylinders. (2) General internal corrosion from the depleted UF{sub 6} is negligible under normal storage conditions. Crevice corrosion can occur at the cylinder/saddle interface from the retention of water in this area. Crevice corrosion can occur at the cylinder/skirt interface on the older skirted cylinders due to the lack of water drainage in this area. Crevice corrosion can occur on cylinders that have been in ground contact. Crevice corrosion and galvanic corrosion can occur where the stainless steel I.D. nameplates are attached to the cylinder. The packing nuts on the bronze one-inch valves used in the cylinders are susceptible to stress corrosion cracking (SCC). Mechanical damage from routine handling can lead to a breach in a cylinder with subsequent accelerated corrosion of the mild steel due to attack from HF and other UF{sub 6} hydrolysis by-products.

  4. Human Genome: DOE Origins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Genome Research: DOE Origins Resources with Additional Information Charles DeLisi Charles DeLisi The genesis of the Department of Energy (DOE) human genome project took place ...

  5. Global Assessment of Hydrogen Technologies – Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

    2007-12-01

    This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOE’s high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies – steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

  6. Coal stratigraphy of deeper part of Black Warrior basin in Alabama

    SciTech Connect (OSTI)

    Thomas, W.A.; Womack, S.H.

    1983-09-01

    The Warrior coal field of Alabama is stratigraphically in the upper part of the Lower Pennsylvanian Pottsville Formation and structurally in the eastern part of the Black Warrior foreland basin. The productive coal beds extend southwestward from the mining area downdip into the deeper part of the Black Warrior structural basin. Because the deep part of the basin is beyond the limits of conventional coal exploration, study of the stratigraphy of coal beds must rely on data from petroleum wells. Relative abundance of coal can be stated in terms of numbers of beds, but because of the limitations of the available data, thicknesses of coals presently are not accurately determined. The lower sandstone-rich coal-poor part of the Pottsville has been interpreted as barrier sediments in the mining area. To the southwest in the deeper Black Warrior basin, coal beds are more numerous within the sandstone-dominated sequence. The coal-productive upper Pottsville is informally divided into coal groups each of which includes several coal beds. The Black Creek, Mary Lee, and Utley coal groups are associated with northeast-trending delta-distributary sandstones. The areas of most numerous coals also trend northeastward and are laterally adjacent to relatively thick distributary sandstones, suggesting coal accumulation in backswamp environments. The most numerous coals in the Pratt coal group are in an area that trends northwestward parallel with and southwest of a northwest-trending linear sandstone, suggesting coal accumulation in a back-barrier environment. Equivalents of the Cobb, Gwin, and Brookwood coal groups contain little coal in the deep part of the Black Warrior basin.

  7. Effect of increases in energy-related labor forces upon retailing in Alabama

    SciTech Connect (OSTI)

    Robicheaux, R.A.

    1983-06-01

    The heightened mining employment that will result from increased extraction of coal from Alabama's Warrior Coal Basin will boost retail sales and employment. The Warrior Coal Basin counties (Fayette, Jefferson, Tuscaloosa and Walker) are heavily dependent upon coal mining as a source of employment and wages. Further, since the counties' economies grew increasingly dependent upon coal mining activities throughout the 1970s, it was believed that it would be possible to measure, with some acceptable level of reliability, the impact of the steadily rising mining activity upon the area's retailing sector. Therefore, a small scale econometric model was developed which represents the interrelationships among income, mining and trade employment and retail sales in the four-county Warrior Coal Basin area. The results of two versions of the model are presented. In the first version, area-wide retail sales are treated in the aggregate. In the second version, retail sales are disaggregated into twelve categories (e.g., food, apparel, furniture, etc.). The models were specified using 1960 to 1976 data. The mining employment growth scenario used in this report called for steady increases in mining employment that culminated in an employment level that is 4000 above the baseline employment projections by 1985. Both versions of the model predicted that cumulative real regional income would increase by $1.39 billion over seven years with the added mining employment. The predicted impacts on trade employment and real retail sales varied between the two models, however. The aggregate model predicts the addition of 7500 trade workers and an additional $1.35 billion in real retail sales. The disaggregate model suggests that food stores, automobile dealers, general merchandise stores, gas stations and lumber and building materials retailers would enjoy the greatest positive benefits.

  8. ,"Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  9. ,"Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release

  10. ,"Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015"

  11. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply

    SciTech Connect (OSTI)

    Perlack, R.D.

    2005-12-15

    land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

  12. A Summary of the Results of the 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Vol. 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Summary of the Results of the 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Vol. 1 July 21, 2016 Dr. Mark Elless U.S. Department of Energy Dr. Matthew Langholtz Mr. Laurence Eaton Mr. Aaron Myers Oak Ridge National Laboratory Dr. Bryce Stokes Allegheny Science and Technology - Contractor to the U.S. Department of Energy 2 | Bioenergy Technologies Office Agenda I. Introduction: Bioenergy Technologies Office Mission and Organization - Mark Elless, Bioenergy

  13. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply, April 2005

    SciTech Connect (OSTI)

    2005-04-01

    The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country’s present petroleum consumption – the goal set by the Biomass R&D Technical Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

  14. OriginalPrototypes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Original Prototypes (Status of detectors June, 1998) Ionization Chamber with one cell instrumented Ring 2-3 Silicon Detector Prototype CsI with dimensions approximately of Ring 2-3 Prototype CsI with PMT on Ring 2-3 prototype holder Silicon detectors also installed More Pictures: Recent data from NIMROD: Data Graph 1 Data Graph 2

  15. The Origins of Mass

    SciTech Connect (OSTI)

    Lincoln, Don

    2014-07-30

    The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

  16. The Origins of Mass

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-07

    The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

  17. A nuclear criticality safety assessment of the loss of moderation control in 2 1/2 and 10-ton cylinders containing enriched UF{sub 6}

    SciTech Connect (OSTI)

    Newvahner, R.L.; Pryor, W.A.

    1991-12-31

    Moderation control for maintaining nuclear criticality safety in 2 {1/2}-ton, 10-ton, and 14-ton cylinders containing enriched uranium hexafluoride (UF{sub 6}) has been used safely within the nuclear industry for over thirty years, and is dependent on cylinder integrity and containment. This assessment evaluates the loss of moderation control by the breaching of containment and entry of water into the cylinders. The first objective of this study was to estimate the required amounts of water entering these large UF{sub 6} cylinders to react with, and to moderate the uranium compounds sufficiently to cause criticality. Hypothetical accident situations were modeled as a uranyl fluoride (UO{sub 2}F{sub 2}) slab above a UF{sub 6} hemicylinder, and a UO{sub 2}F{sub 2} sphere centered within a UF{sub 6} hemicylinder. These situations were investigated by computational analyses utilizing the KENO V.a Monte Carlo Computer Code. The results were used to estimate both the masses of water required for criticality, and the limiting masses of water that could be considered safe. The second objective of the assessment was to calculate the time available for emergency control actions before a criticality would occur, i.e., a {open_quotes}safetime{close_quotes}, for various sources of water and different size openings in a breached cylinder. In the situations considered, except the case for a fire hose, the safetime appears adequate for emergency control actions. The assessment shows that current practices for handling moderation controlled cylinders of low enriched UF{sub 6}, along with the continuation of established personnel training programs, ensure nuclear criticality safety for routine and emergency operations.

  18. Table 11.1 Carbon Dioxide Emissions From Energy Consumption by Source, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    Carbon Dioxide Emissions From Energy Consumption by Source, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal 3 Natural Gas 4 Petroleum Total 2,9 Biomass 2 Aviation Gasoline Distillate Fuel Oil 5 Jet Fuel Kero- sene LPG 6 Lubri- cants Motor Gasoline 7 Petroleum Coke Residual Fuel Oil Other 8 Total Wood 10 Waste 11 Fuel Ethanol 12 Bio- diesel Total 1949 1,118 270 12 140 NA 42 13 7 329 8 244 25 820 2,207 145 NA NA NA 145 1950 1,152 313 14 168 NA 48 16 9 357 8 273 26 918 2,382 147 NA NA

  19. Table 11.2c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Coal Coke Net Imports Natural Gas 3 Petroleum Retail Elec- tricity 8 Total 2 Biomass 2 Distillate Fuel Oil 4 Kero- sene LPG 5 Lubri- cants Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Other 7 Total Wood 9 Waste 10 Fuel Ethanol 11 Total 1949 500 -1 166 41 18 3 3 16 8 95 25 209 120 995 44 NA NA 44 1950 531 (s) 184 51 20 4 3 18 8 110 26 239 140 1,095 50 NA NA 50

  20. Table 11.2d Carbon Dioxide Emissions From Energy Consumption: Transportation Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    d Carbon Dioxide Emissions From Energy Consumption: Transportation Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Elec- tricity 7 Total 2 Biomass 2 Aviation Gasoline Distillate Fuel Oil 4 Jet Fuel LPG 5 Lubricants Motor Gasoline 6 Residual Fuel Oil Total Fuel Ethanol 8 Biodiesel Total 1949 161 NA 12 30 NA (s) 4 306 91 443 6 611 NA NA NA 1950 146 7 14 35 NA (s) 5 332 95 481 6 640 NA NA NA 1951 129 11 18 42 NA (s) 6 360 102 529 7 675 NA NA NA

  1. Development of a well spacing program for the South Womack Hill Field, Clarke and Choctaw Counties, Alabama

    SciTech Connect (OSTI)

    Daigre, R.G. Jr.; Wood, R.T.; Wiggins, G.B. III

    1986-01-01

    The degree of heterogeneity that can exist in carbonate reservoirs and the effect that heterogeneity can have on recovery efficiency has long been recognized. In sandstone reservoirs, the degree to which heterogeneity can exist and its effect on recovery efficiency is often overlooked or not considered in the development of a well spacing program. A recent study was conducted to determine the appropriate spacing for a newly discovered reservoir in Alabama. The results of this study indicated that in order to maximize recovery efficiency and present worth, closer spacing of well would be required due to reservoir heterogeneity reservoir size and configuration, the thickness of the reservoir and the amount of oil in place.

  2. Domestic and Foreign Distribution of U.S. Coal by State of Origin...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 " "State Region ","Domestic ","Foreign ","Total "," " "Alabama ",14828,4508,19336," " "Alaska ",825,698,1524," " "Arizona ",13143,"-",13143," " "Arkansas ",13,"-",13," "...

  3. THE COSMIC ORIGINS SPECTROGRAPH

    SciTech Connect (OSTI)

    Green, James C.; Michael Shull, J.; Snow, Theodore P.; Stocke, John [Department of Astrophysical and Planetary Sciences, University of Colorado, 391-UCB, Boulder, CO 80309 (United States); Froning, Cynthia S.; Osterman, Steve; Beland, Stephane; Burgh, Eric B.; Danforth, Charles; France, Kevin [Center for Astrophysics and Space Astronomy, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Ebbets, Dennis [Ball Aerospace and Technologies Corp., 1600 Commerce Street, Boulder, CO 80301 (United States); Heap, Sara H. [NASA Goddard Space Flight Center, Code 681, Greenbelt, MD 20771 (United States); Leitherer, Claus; Sembach, Kenneth [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Linsky, Jeffrey L. [JILA, University of Colorado and NIST, Boulder, CO 80309-0440 (United States); Savage, Blair D. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Siegmund, Oswald H. W. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Spencer, John; Alan Stern, S. [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Welsh, Barry [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720 (United States); and others

    2012-01-01

    The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in 2009 May, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F{sub {lambda}} Almost-Equal-To 1.0 Multiplication-Sign 10{sup -14} erg cm{sup -2} s{sup -1} A{sup -1}, COS can achieve comparable signal to noise (when compared to Space Telescope Imaging Spectrograph echelle modes) in 1%-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (2009 September-2011 June) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is nine times than sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of 2011 June. COS has measured, for the first time with high reliability, broad Ly{alpha} absorbers and Ne VIII in the intergalactic medium, and observed the He II reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

  4. Geologic setting, petrophysical characteristics, and regional heterogeneity patterns of the Smackover in southwest Alabama. Draft topical report on Subtasks 2 and 3

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Mann, S.D.; Tew, B.H.

    1992-06-01

    This is the draft topical report on Subtasks 2 and 3 of DOE contract number DE-FG22-89BC14425, entitled ``Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity.`` This volume constitutes the final report on Subtask 3, which had as its primary goal the geological modeling of reservoir heterogeneity in Smackover reservoirs of southwest Alabama. This goal was interpreted to include a thorough analysis of Smackover reservoirs, which was required for an understanding of Smackover reservoir heterogeneity. This report is divided into six sections (including this brief introduction). Section two, entitled ``Geologic setting,`` presents a concise summary of Jurassic paleogeography, structural setting, and stratigraphy in southwest Alabama. This section also includes a brief review of sedimentologic characteristics and stratigraphic framework of the Smackover, and a summary of the diagenetic processes that strongly affected Smackover reservoirs in Alabama. Section three, entitled ``Analytical methods,`` summarizes all nonroutine aspects of the analytical procedures used in this project. The major topics are thin-section description, analysis of commercial porosity and permeability data, capillary-pressure analysis, and field characterization. ``Smackover reservoir characteristics`` are described in section four, which begins with a general summary of the petrographic characteristics of porous and permeable Smackover strata. This is followed by a more-detailed petrophysical description of Smackover reservoirs.

  5. Table 11.2b Carbon Dioxide Emissions From Energy Consumption: Commercial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    b Carbon Dioxide Emissions From Energy Consumption: Commercial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Electricity 7 Total 2 Biomass 2 Distillate Fuel Oil 4 Kerosene LPG 5 Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Total Wood 8 Waste 9 Fuel Ethanol 10 Total 1949 148 19 16 3 2 7 NA 28 55 58 280 2 NA NA 2 1950 147 21 19 3 2 7 NA 33 66 63 297 2 NA NA 2 1951 125 25 21 4 3 8 NA 34 70 69 289 2 NA NA 2 1952 112 28 22 4 3 8 NA 35 71 73

  6. Table 11.2e Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    e Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Geo- thermal Non- Biomass Waste 5 Total 2 Biomass 2 Distillate Fuel Oil 4 Petroleum Coke Residual Fuel Oil Total Wood 6 Waste 7 Total 1949 187 30 2 NA 30 33 NA NA 250 1 NA 1 1950 206 35 2 NA 35 37 NA NA 278 1 NA 1 1951 235 42 2 NA 29 31 NA NA 308 1 NA 1 1952 240 50 2 NA 31 33 NA NA 323 1 NA 1 1953 260 57 3 NA 38 40 NA NA 358 (s) NA (s)

  7. Scale-up of mild gasification to be a process development unit mildgas 24 ton/day PDU design report. Final report, November 1991--July 1996

    SciTech Connect (OSTI)

    1996-03-01

    From November 1991 to April 1996, Kerr McGee Coal Corporation (K-M Coal) led a project to develop the Institute of Gas Technology (IGT) Mild Gasification (MILDGAS) process for near-term commercialization. The specific objectives of the program were to: design, construct, and operate a 24-tons/day adiabatic process development unit (PDU) to obtain process performance data suitable for further design scale-up; obtain large batches of coal-derived co-products for industrial evaluation; prepare a detailed design of a demonstration unit; and develop technical and economic plans for commercialization of the MILDGAS process. The project team for the PDU development program consisted of: K-M Coal, IGT, Bechtel Corporation, Southern Illinois University at Carbondale (SIUC), General Motors (GM), Pellet Technology Corporation (PTC), LTV Steel, Armco Steel, Reilly Industries, and Auto Research.

  8. Investigations on catalyzed steam gasification of biomass. Appendix A. Feasibility study of methane production via catalytic gasification of 2000 tons of wood per day

    SciTech Connect (OSTI)

    Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

    1981-01-01

    A study has been made of the economic feasibility of producing substitute natural gas (SNG) from wood via catalytic gasification with steam. The plant design in this study was developed from information on gasifier operation supplied by the Pacific Northwest Laboratory (PNL). The plant is designed to process 2000 tons per day of dry wood to SNG. Plant production is 21.6 MM scfd of SNG with a HHV of 956 Btu per scf. All process and support facilities necessary to convert wood to SNG are included. The plant location is Newport, Oregon. The capital cost for the plant is $95,115,000 - September, 1980 basis. Gas production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. For utility financing, the gas production costs are respectively $5.09, $5.56, $6.50, and $8.34 per MM Btu for wood costs of $5, $10, $20, and $40 per dry ton delivered to the plant at a moisture content of 49.50 wt %. For private investor financing, the corresponding product costs are $6.62, $7.11, $8.10, and $10.06 per MM Btu. The cost calculated by the utility financing method includes a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency without taking an energy credit for by-product char is 58.3%.

  9. Dry additives-reduction catalysts for flue waste gases originating from the combustion of solid fuels

    SciTech Connect (OSTI)

    1995-12-31

    Hard coal is the basic energy generating raw material in Poland. In 1990, 60% of electricity and thermal energy was totally obtained from it. It means that 100 million tons of coal were burned. The second position is held by lignite - generating 38% of electricity and heat (67.3 million tons). It is to be underlined that coal combustion is particularly noxious to the environment. The coal composition appreciably influences the volume of pollution emitted in the air. The contents of incombustible mineral parts - ashes - oscillates from 2 to 30%; only 0.02 comes from plants that had once originated coal and cannot be separated in any way. All the rest, viz. the so-called external mineral substance enters the fuel while being won. The most indesirable hard coal ingredient is sulfur whose level depends on coal sorts and its origin. The worse the fuel quality, the more sulfur it contains. In the utilization process of this fuel, its combustible part is burnt: therefore, sulfur dioxide is produced. At the present coal consumption, the SO{sub 2} emission reaches the level of 3.2 million per year. The intensifies the pressure on working out new coal utilization technologies, improving old and developing of pollution limiting methods. Research is also directed towards such an adaptation of technologies in order that individual users may also make use thereof (household furnaces) as their share in the pollution emission is considerable.

  10. Penser Original Contract - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Original Contract DOE-RL Contracts/Procurements RL Contracts & Procurements Home Prime Contracts Current Solicitations Other Sources DOE RL Contracting Officers DOE RL Contracting Officer Representatives Penser Original Contract Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Original contract issued on Date June 15, 2009 The following are links to Portable Document Format (PDF) format documents. You will need the Adobe Acrobat Reader in order to view the

  11. Magnetic nematicity: A debated origin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vaknin, David

    2016-01-22

    Different experimental studies based on nuclear magnetic resonance and inelastic neutron scattering reach opposing conclusions in regards to the origin of magnetic nematicity in iron chalcogenides.

  12. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 261 with Illinois No. 6 Burning Star Mine coal

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R & D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

  13. "(Million Metric Tons Carbon Dioxide)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ....0280756469,0.02562455361,0.02345646124 " China",2293,5558,5862,6284,7716,9057,10514,11945...,0.4312535075,0.4478837352,0.7550810962 " China",0.1064692737,0.1961919973,0.2032923089,0....

  14. Corrosion of aluminum clad spent nuclear fuel in the 70 ton cask during transfer from L area to H-canyon

    SciTech Connect (OSTI)

    Mickalonis, J. I.

    2015-08-01

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material with the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33% was found after 1 year in the cask with a maximum temperature of 263 °C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 °C. These losses are not expected to impact the overall confinement function of the aluminum cladding.

  15. Corrosion of aluminum clad spent nuclear fuel in the 70 ton cask during transfer from L area to H-canyon

    SciTech Connect (OSTI)

    Mickalonis, J. I.

    2015-08-31

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material with the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33 % was found after 1 year in the cask with a maximum temperature of 263 °C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 °C. These losses are not expected to impact the overall confinement function of the aluminum cladding.

  16. CORROSION OF ALUMINUM CLAD SPENT NUCLEAR FUEL IN THE 70 TON CASK DURING TRANSFER FROM L AREA TO H-CANYON

    SciTech Connect (OSTI)

    Mickalonis, J.

    2014-06-01

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material with the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33 % was found after 1 year in the cask with a maximum temperature of 260 {degrees}C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 {degrees}C. These losses are not expected to impact the overall confinement function of the aluminum cladding.

  17. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2004-01-01

    Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in

  18. Original Workshop Proposal and Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notes for Vis Requirements » Original Workshop Proposal and Description Original Workshop Proposal and Description Visualization Requirements for Computational Science and Engineering Applications Proposal for a DoE Workshop to Be Held 
at the Berkeley Marina Radisson Hotel,
Berkeley, California, June 5, 2002
(date and location are tenative) Workshop Co-organizers: Bernd Hamann 
University of California-Davis Lawrence Berkeley Nat'l Lab. E. Wes Bethel 
Lawrence Berkeley Nat'l Lab.

  19. U.S. Energy Information Administration | Annual Coal Distribution...

    Gasoline and Diesel Fuel Update (EIA)

    short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total...

  20. U.S. Energy Information Administration | Annual Coal Distribution...

    Gasoline and Diesel Fuel Update (EIA)

    tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 6,982 679...

  1. 189,"Alabama Electric Coop Inc",1,"Lowman","Chatom",100,19.94,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",500

    U.S. Energy Information Administration (EIA) Indexed Site

    189,"Alabama Electric Coop Inc",1,"Lowman","Chatom",100,19.94,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",500 189,"Alabama Electric Coop Inc",2,"Chatom","Waynesboro",42.7,32.11,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",469 189,"Alabama Electric Coop

  2. 189,"Alabama Electric Coop Inc",1,"Lowman","Chatom",100,19.94,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",500

    U.S. Energy Information Administration (EIA) Indexed Site

    189,"Alabama Electric Coop Inc",1,"Lowman","Chatom",100,19.94,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",500 189,"Alabama Electric Coop Inc",2,"Chatom","Waynesboro",42.7,32.11,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",469 189,"Alabama Electric Coop

  3. The Origin of the Elements

    SciTech Connect (OSTI)

    Murphy, Edward

    2012-11-20

    The world around us is made of atoms. Did you ever wonder where these atoms came from? How was the gold in our jewelry, the carbon in our bodies, and the iron in our cars made? In this lecture, we will trace the origin of a gold atom from the Big Bang to the present day, and beyond. You will learn how the elements were forged in the nuclear furnaces inside stars, and how, when they die, these massive stars spread the elements into space. You will learn about the origin of the building blocks of matter in the Big Bang, and we will speculate on the future of the atoms around us today.

  4. The Origin of the Elements

    ScienceCinema (OSTI)

    Murphy, Edward

    2014-08-06

    The world around us is made of atoms. Did you ever wonder where these atoms came from? How was the gold in our jewelry, the carbon in our bodies, and the iron in our cars made? In this lecture, we will trace the origin of a gold atom from the Big Bang to the present day, and beyond. You will learn how the elements were forged in the nuclear furnaces inside stars, and how, when they die, these massive stars spread the elements into space. You will learn about the origin of the building blocks of matter in the Big Bang, and we will speculate on the future of the atoms around us today.

  5. origins.indd | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    origins.indd origins.indd origins.indd (6.28 MB) More Documents & Publications Fehner and Gosling, Origins of the Nevada Test Site Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I NTS_History.indd

  6. Alabama Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    4.46 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 6.46 5.80 5.18 4.65 4.93 NA 1984-2015 Residential 15.79 15.08 16.20 15.47 14.59 13.95 1967-2015 Commercial 13.34 12.36 12.56 12.35 11.92 11.03 1967-2015 Industrial 6.64 5.57 4.35 4.98 5.49 3.94 1997-2015 Vehicle Fuel 16.24 11.45 17.99 1990-2012 Electric Power 4.85 W 3.09 4.14 4.74 3.06 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 2,629 2,475 2,228 1,597 2,036 1977-2014 Adjustments 32 -49 112 -274

  7. Alabama Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Citygate Price 3.22 3.18 3.00 2.90 2.99 3.34 1989-2016 Residential Price 12.00 11.12 12.01 14.27 16.95 19.07 1989-2016 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2016 Commercial Price 9.81 9.70 10.04 10.46 10.45 11.13 1989-2016 Percentage of Total Commercial Deliveries included in Prices 77.4 84.3 82.0 76.0 73.4 73.5 1989-2016 Industrial Price 3.54 3.55 3.11 3.12 2.87 3.23 2001-2016

  8. Alabama Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  9. Domestic* Foreign* Total Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    754 6,007 Mississippi 3,603 - 3,603 Missouri 596 - 596 Montana 39,612 653 40,265 New Mexico 26,262 - 26,262 North Dakota 30,055 - 30,055 Ohio 21,155 635 21,790 Oklahoma 1,782...

  10. Alabama Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.46 5.80 5.18 4.65 4.93 NA 1984-2015 Residential Price 15.79 15.08 16.20 15.47 14.59 13.95 1967-2015 Percentage of ...

  11. ,"Alabama Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 36661,34424,33911,512,,,1268,1947,75,31133 36692,32702,32147,555,,,1231,1796... 39859,20978,12275,441,0,8262,46,1320,143,19470,18112 39887,22927,13305,476,0,9147,42,152...

  12. ,"Alabama Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","04292016" ,"Excel File Name:","ngprisumdcusalm.xls" ,"Available from Web Page:","http:www.eia.govdnavngngprisumdcusalm.htm" ,"Source:","Energy ...

  13. Alabama Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    0 1 2 2 15 1996-2014 Lease Condensate (million bbls) 0 0 0 0 1 0 1998-2014 Total Gas (billion cu ft) 126 162 102 40 73 36 1996-2014 Nonassociated Gas (billion cu ft) 126 162 101 38 71 26 1996-2014 Associated Gas (billion cu ft) 0 0 1 2 2 1

  14. dynamic-origin-destination-matrix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamic Origin-Destination Matrix Estimation in TRANSIMS Using Direction-Guided Parallel Heuristic Search Algorithms Adel W. Sadek, Ph.D. Associate Professor University at Buffalo, The State University of New York 233 Ketter Hall Buffalo, NY 14260 Phone: (716) 645-4367 FAX: (716) 645-3733 E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. List of Authors ================ Adel W. Sadek, Ph.D. Shan Huang Liya Guo University at Buffalo, The State

  15. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2003-01-01

    Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and

  16. IMPROVED OIL RECOVERY FROM UPPER JURASSIC SMACKOVER CARBONATES THROUGH THE APPLICATION OF ADVANCED TECHNOLOGIES AT WOMACK HILL OIL FIELD, CHOCTAW AND CLARKE COUNTIES, ALABAMA, EASTERN GULF COASTAL PLAIN

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2004-12-06

    The principal research effort for Year 1 of the project is drilling an infill well in the Womack Hill Field, Choctaw and Clarke Counties, Alabama. The objectives of the project are to drill and core an infill well in Womack Hill Field; to utilize samples from the core to evaluate further the feasibility of implementing an immobilized enzyme technology project in the field; and to use the new information resulting from the drilling of the well to revise and modify the 3-D geologic model, to further modify the injection strategy for the existing pressure maintenance program, and to assess whether a second infill well should be drilled using lateral/multilateral well completions.

  17. IMPROVED OIL RECOVERY FROM UPPER JURASSIC SMACKOVER CARBONATES THROUGH THE APPLICATION OF ADVANCED TECHNOLOGIES AT WOMACK HILL OIL FIELD, CHOCTAW AND CLARKE COUNTIES, ALABAMA, EASTERN GULF COASTAL PLAIN

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2004-12-13

    The principal research effort for Year 1 of the project is drilling an infill well in the Womack Hill Field, Choctaw and Clarke Counties, Alabama. The objectives of the project are to drill and core an infill well in Womack Hill Field; to utilize samples from the core to evaluate further the feasibility of implementing an immobilized enzyme technology project in the field; and to use the new information resulting from the drilling of the well to revise and modify the 3-D geologic model, to further modify the injection strategy for the existing pressure maintenance program, and to assess whether a second infill well should be drilled using lateral/multilateral well completions.

  18. The Origin of Cosmic Rays

    ScienceCinema (OSTI)

    Blasi, Pasquale [INAF/Arcetri-Italy and Fermilab, Italy

    2010-01-08

    Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the ?end? of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At ~1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform ?cosmic ray astronomy?, as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.

  19. Origin of primordial magnetic fields

    SciTech Connect (OSTI)

    Souza, Rafael S. de; Opher, Reuven

    2008-02-15

    Magnetic fields of intensities similar to those in our galaxy are also observed in high redshift galaxies, where a mean field dynamo would not have had time to produce them. Therefore, a primordial origin is indicated. It has been suggested that magnetic fields were created at various primordial eras: during inflation, the electroweak phase transition, the quark-hadron phase transition (QHPT), during the formation of the first objects, and during reionization. We suggest here that the large-scale fields {approx}{mu}G, observed in galaxies at both high and low redshifts by Faraday rotation measurements (FRMs), have their origin in the electromagnetic fluctuations that naturally occurred in the dense hot plasma that existed just after the QHPT. We evolve the predicted fields to the present time. The size of the region containing a coherent magnetic field increased due to the fusion of smaller regions. Magnetic fields (MFs) {approx}10 {mu}G over a comoving {approx}1 pc region are predicted at redshift z{approx}10. These fields are orders of magnitude greater than those predicted in previous scenarios for creating primordial magnetic fields. Line-of-sight average MFs {approx}10{sup -2} {mu}G, valid for FRMs, are obtained over a 1 Mpc comoving region at the redshift z{approx}10. In the collapse to a galaxy (comoving size {approx}30 kpc) at z{approx}10, the fields are amplified to {approx}10 {mu}G. This indicates that the MFs created immediately after the QHPT (10{sup -4} s), predicted by the fluctuation-dissipation theorem, could be the origin of the {approx}{mu}G fields observed by FRMs in galaxies at both high and low redshifts. Our predicted MFs are shown to be consistent with present observations. We discuss the possibility that the predicted MFs could cause non-negligible deflections of ultrahigh energy cosmic rays and help create the observed isotropic distribution of their incoming directions. We also discuss the importance of the volume average magnetic field

  20. Nature and Origin of the Cuprate Pseudogap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature and Origin of the Cuprate Pseudogap Nature and Origin of the Cuprate Pseudogap Print Wednesday, 30 May 2007 00:00 The workings of high-temperature superconductive (HTSC)...

  1. On the origin of Laurentia

    SciTech Connect (OSTI)

    Dalziel, I.W.D. . Inst. for Geophysics)

    1992-01-01

    Laurentia, the Precambrian core of the North American continent, is surrounded by late Precambrian rift systems and therefore constitutes a suspect terrane''. A geometric and geological fit can be achieved between the Atlantic margin of Laurentia and the Pacific margin of the Gondwana craton. The enigmatic Arequipa massif along the southern Peruvian coast, that yields ca. 2.0 Ga radiometric ages, is juxtaposed with the Makkovik-Ketilidian province of the same age range in Labrador and southern Greenland. The Greenville belt continues beneath the ensialic Andes of the present day to join up with the 1.3--1.0 Ga San Ignacio and Sonsas-Aguapei orogens of the Transamazonian craton. Together with the recent identification of possible continuations of the Greenville orogen in East Antarctica and of the Taconic Appalachians in southern South America, the fit supports suggestions that Laurentia originated between East Antarctica-Australia and embryonic South America prior to the opening of the Pacific Ocean basin and amalgamation of the Gondwana Cordilleran and Appalachian margins, this implies that there may have been two supercontinents during the Neoproterozoic, before and after opening of the Pacific Ocean. As Laurentia and Gondwana appear to have collided on at least two occasions during the Paleozoic, this scenario therefore calls to question the existence of so-called supercontinental cycles. The Arica bight of the present day may reflect a primary reentrant in the South American continental margin that controlled subduction processes along the Andean margin and eventually led to uplift of the Altiplano.

  2. Penser Original Contract (EM0003383) - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE-RL Contracts/Procurements Prime Contracts Penser Original Contract (EM0003383) DOE-RL Contracts/Procurements RL Contracts & Procurements Home Prime Contracts Current Solicitations Other Sources DOE RL Contracting Officers DOE RL Contracting Officer Representatives Penser Original Contract (EM0003383) Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Original contract issued on Date September 15, 2014 The following are links to Portable Document Format (PDF)

  3. Nature and Origin of the Cuprate Pseudogap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature and Origin of the Cuprate Pseudogap Nature and Origin of the Cuprate Pseudogap Print Wednesday, 30 May 2007 00:00 The workings of high-temperature superconductive (HTSC) materials are a mystery wrapped in an enigma. However, a team of researchers from the ALS, Brookhaven National Laboratory, and Cornell University has taken a major step in understanding part of this mystery-the nature and origin of the pseudogap. Using angle-resolved photoemission spectroscopy (ARPES) and scanning

  4. Nature and Origin of the Cuprate Pseudogap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature and Origin of the Cuprate Pseudogap Print The workings of high-temperature superconductive (HTSC) materials are a mystery wrapped in an enigma. However, a team of...

  5. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Annual report, March 1996--March 1997

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Groshong, R.H.

    1997-08-01

    Gilbertown Field is the oldest oil field in Alabama and produces oil from chalk of the Upper Cretaceous Selma Group and from sandstone of the Eutaw Formation along the southern margin of the Gilbertown fault system. Most of the field has been in primary recovery since establishment, but production has declined to marginally economic levels. This investigation applies advanced geologic concepts designed to aid implementation of improved recovery programs. The Gilbertown fault system is detached at the base of Jurassic salt. The fault system began forming as a half graben and evolved in to a full graben by the Late Cretaceous. Conventional trapping mechanisms are effective in Eutaw sandstone, whereas oil in Selma chalk is trapped in faults and fault-related fractures. Burial modeling establishes that the subsidence history of the Gilbertown area is typical of extensional basins and includes a major component of sediment loading and compaction. Surface mapping and fracture analysis indicate that faults offset strata as young as Miocene and that joints may be related to regional uplift postdating fault movement. Preliminary balanced structural models of the Gilbertown fault system indicate that synsedimentary growth factors need to be incorporated into the basic equations of area balance to model strain and predict fractures in Selma and Eutaw reservoirs.

  6. "FERC423",2006,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",273020,22.846,0.62,6.4,192.4

    U.S. Energy Information Administration (EIA) Indexed Site

    6,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",273020,22.846,0.62,6.4,192.4 "FERC423",2006,1,195,"Alabama Power Co",3,"Barry","AL","I",,"Gas","NG",,,,,,"BAY GAS PIPELINE",597198,1.053,0,0,1185.7 "FERC423",2006,1,195,"Alabama Power

  7. OriginOil Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Place: Los Angeles, California Zip: 90016 Product: California-based OTC-quoted algae-to-oil technology developer. References: OriginOil Inc1 This article is a stub. You...

  8. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Alabama. Preliminary background report

    SciTech Connect (OSTI)

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    The Alabama legislature has created the Public Service Commission which has general supervisory powers over utilities. The PSC consists of a president and two associates, who are elected to four-year terms. The PSC has no jurisdiction over municipal utilities and, as a result, local governments retain the power to regulate the operation of their municipally-owned utilities. Municipalities also retain their police power over streets and highways within their territory. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  9. Nature and Origin of the Cuprate Pseudogap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature and Origin of the Cuprate Pseudogap Print The workings of high-temperature superconductive (HTSC) materials are a mystery wrapped in an enigma. However, a team of researchers from the ALS, Brookhaven National Laboratory, and Cornell University has taken a major step in understanding part of this mystery-the nature and origin of the pseudogap. Using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM), they have determined the electronic structure of

  10. Nature and Origin of the Cuprate Pseudogap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature and Origin of the Cuprate Pseudogap Print The workings of high-temperature superconductive (HTSC) materials are a mystery wrapped in an enigma. However, a team of researchers from the ALS, Brookhaven National Laboratory, and Cornell University has taken a major step in understanding part of this mystery-the nature and origin of the pseudogap. Using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM), they have determined the electronic structure of

  11. Nature and Origin of the Cuprate Pseudogap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature and Origin of the Cuprate Pseudogap Print The workings of high-temperature superconductive (HTSC) materials are a mystery wrapped in an enigma. However, a team of researchers from the ALS, Brookhaven National Laboratory, and Cornell University has taken a major step in understanding part of this mystery-the nature and origin of the pseudogap. Using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM), they have determined the electronic structure of

  12. Nature and Origin of the Cuprate Pseudogap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature and Origin of the Cuprate Pseudogap Print The workings of high-temperature superconductive (HTSC) materials are a mystery wrapped in an enigma. However, a team of researchers from the ALS, Brookhaven National Laboratory, and Cornell University has taken a major step in understanding part of this mystery-the nature and origin of the pseudogap. Using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM), they have determined the electronic structure of

  13. Billion Ton Study … A Historical Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... http:georgewbush-whitehouse.archives.govceqadvanced-energy.html 16 | ... 2006 http:georgewbush-whitehouse.archives.govstateoftheunion2006energysection3 17 | ...

  14. Site Characterization for CO{sub 2} Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama

    SciTech Connect (OSTI)

    Clark, Peter; Pashin, Jack; Carlson, Eric; Goodliffe, Andrew; McIntyre-Redden, Marcella; Mann, Steven; Thompson, Mason

    2012-08-31

    Coal-fired power plants produce large quantities of carbon dioxide. In order to mitigate the greenhouse gas emissions from these power plants, it is necessary to separate and store the carbon dioxide. Saline formations provide a potential sink for carbon dioxide and delineating the capacity of the various known saline formations is a key part of building a storage inventory. As part of this effort, a project was undertaken to access the storage capacity of saline reservoirs in the Black Warrior Basin of Alabama. This basin has been a productive oil and gas reservoir that is well characterized to the west of the two major coal-fired power plants that are north of Birmingham. The saline zones were thought to extend as far east as the Sequatchie Anticline which is just east of the power plants. There is no oil or gas production in the area surrounding the power plants so little is known about the formations in that area. A geologic characterization well was drilled on the Gorgas Power Plant site, which is the farthest west of two power plants in the area. The well was planned to be drilled to approximately 8,000 feet, but drilling was halted at approximately 5,000 feet when a prolific freshwater zone was penetrated. During drilling, a complete set of cores through all of the potential injection zones and the seals above these zones were acquired. A complete set of openhole logs were run along with a vertical seismic profile (VSP). Before drilling started two approximately perpendicular seismic lines were run and later correlated with the VSP. While the zones that were expected were found at approximately the predicted depths, the zones that are typically saline through the reservoir were found to be saturated with a light crude oil. Unfortunately, both the porosity and permeability of these zones were small enough that no meaningful hydrocarbon production would be expected even with carbon dioxide flooding. iv While this part of the basin was found to be unsuitable

  15. EIA - Distribution of U.S. Coal by Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State Glossary Home > Coal> Distribution of U.S. Coal by Origin State Distribution of U.S. Coal by Origin State Release Date: January 2006 Next Release Date: 2006...

  16. The origin of white luminescence from silicon oxycarbide thin...

    Office of Scientific and Technical Information (OSTI)

    origin of white luminescence from silicon oxycarbide thin films Citation Details In-Document Search Title: The origin of white luminescence from silicon oxycarbide thin films ...

  17. Origins of optical absorption characteristics of Cu2+ complexes...

    Office of Scientific and Technical Information (OSTI)

    Origins of optical absorption characteristics of Cu2+ complexes in solutions Citation Details In-Document Search Title: Origins of optical absorption characteristics of Cu2+ ...

  18. Postinflationary Higgs Relaxation and the Origin of Matter-Antimatter...

    Office of Scientific and Technical Information (OSTI)

    Postinflationary Higgs Relaxation and the Origin of Matter-Antimatter Asymmetry Prev Next Title: Postinflationary Higgs Relaxation and the Origin of Matter-Antimatter ...

  19. EIA-Voluntary Reporting of Greenhouse Gases Program - Original...

    U.S. Energy Information Administration (EIA) Indexed Site

    of Greenhouse Gases Program Original 1605(b) Program Calculation Tools The workbooks below were developed to assist participants in the original Voluntary Reporting of Greenhouse ...

  20. Toward Understanding the Microscopic Origin of Nuclear Clustering...

    Office of Scientific and Technical Information (OSTI)

    Toward Understanding the Microscopic Origin of Nuclear Clustering Citation Details In-Document Search Title: Toward Understanding the Microscopic Origin of Nuclear Clustering Open...

  1. Alabama Offshore-Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 53,348 53,771 49,474 2012-2014 Total Liquids Extracted (Thousand Barrels) 2,695 2,767 2,519 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 3,978 3,721

  2. Alabama Onshore Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update (EIA)

    46,751 139,215 134,305 128,312 120,666 110,226 1992-2014 From Gas Wells 33,294 29,961 32,602 27,009 27,182 24,726 1992-2014 From Oil Wells 5,758 6,195 5,975 10,978 8,794 7,937 1992-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 107,699 103,060 95,727 90,325 84,690 77,563 2007-2014 Repressuring 783 736 531 NA NA NA 1992-2014 Vented and Flared 1,972 2,085 3,012 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 9,239 8,200 13,830 NA NA NA 1992-2014 Marketed Production 134,757 128,194

  3. Alabama Onshore-Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 100,491 33,921 35,487 31,116 2011-2014 Total Liquids Extracted (Thousand Barrels) 2,614 2,781 2,620 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 3,132 3,323

  4. Origin of magnetic fields in galaxies

    SciTech Connect (OSTI)

    Souza, Rafael S. de; Opher, Reuven

    2010-03-15

    Microgauss magnetic fields are observed in all galaxies at low and high redshifts. The origin of these intense magnetic fields is a challenging question in astrophysics. We show here that the natural plasma fluctuations in the primordial Universe (assumed to be random), predicted by the fluctuation -dissipation theorem, predicts {approx}0.034 {mu}G fields over {approx}0.3 kpc regions in galaxies. If the dipole magnetic fields predicted by the fluctuation-dissipation theorem are not completely random, microgauss fields over regions > or approx. 0.34 kpc are easily obtained. The model is thus a strong candidate for resolving the problem of the origin of magnetic fields in < or approx. 10{sup 9} years in high redshift galaxies.

  5. Alabama Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","5,043",15.6,"37,941",24.9 "Coal","11,441",35.3,"63,050",41.4 "Hydro and Pumped

  6. Alabama Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","5,043",15.6,"37,941",24.9 "Coal","11,441",35.3,"63,050",41.4 "Hydro and Pumped ...

  7. Recovery Act State Memos Alabama

    Broader source: Energy.gov (indexed) [DOE]

    Updated July 2010 | Department of Energy Chart listing projects selected for Smart Grid Investment Grants under American Recovery and Reinvestment Act. There is a November 2011 Update to the "Recovery Act Selections for Smart Grid Investment Grant Awards - By Category" file. Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category (461.59 KB) More Documents & Publications FINAL Combined SGIG Selections - By Category for Press -AOv10.xls Recovery Act Selections

  8. Alabama Nuclear Profile - Browns Ferry

    U.S. Energy Information Administration (EIA) Indexed Site

    expiration date" 1,"1,101","8,072",83.7,"BWR","applicationvnd.ms-excel","applicationvnd.ms-excel" 2,"1,104","8,843",91.5,"BWR","applicationvnd.ms-excel","application...

  9. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  10. Alabama Nuclear Profile - Browns Ferry

    U.S. Energy Information Administration (EIA) Indexed Site

    Browns Ferry" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,101","8,072",83.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel"

  11. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama -- Year 2. Annual report, March 1997--March 1998

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.

    1998-09-01

    Gilbertown Field is the oldest oil field in Alabama and has produced oil from fractured chalk of the Cretaceous Selma Group and glauconitic sandstone of the Eutaw Formation. Nearly all of Gilbertown Field is still in primary recovery, although waterflooding has been attempted locally. The objective of this project is to analyze the geologic structure and burial history of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas in order to suggest ways in which oil recovery can be improved. Indeed, the decline of oil production to marginally economic levels in recent years has made this type of analysis timely and practical. Key technical advancements being sought include understanding the relationship of requisite strain to production in Gilbertown reservoirs, incorporation of synsedimentary growth factors into models of area balance, quantification of the relationship between requisite strain and bed curvature, determination of the timing of hydrocarbon generation, and identification of the avenues and mechanisms of fluid transport.

  12. Copy of Bound Original For Scanning

    Office of Legacy Management (LM)

    Copy of Bound Original For Scanning Document # 1\1\ i g -b DOE/El/-0005/6 Formerly Utilized IVIEWAEC Site! Remedial Action Progrhn, F@diilogical Survey of the Seaway Industrial Par Tonawanda, New Yor May 197 Final Repel Prepared f U.S. Department of Enerc Assistant Secretary for Environme Division of Environmental Control Technolo Washington, D.C. 205, uric Contract No. W-7405-ENG- - - - Available from: ' : -. National Technical Information Service (NTIS) U.S. Department of Comnerce 5285 Port

  13. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect (OSTI)

    Zaltash, Abdolreza; Petrov, Andrei Y; Linkous, Randall Lee; Vineyard, Edward Allan

    2007-01-01

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient

  14. "FERC423",2007,1,195,"Alabama Power Co",3,"Barry","AL","C","application/vnd.ms-excel","Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",289050,22.732,0.5,5.2,217.3

    U.S. Energy Information Administration (EIA) Indexed Site

    7,1,195,"Alabama Power Co",3,"Barry","AL","C","application/vnd.ms-excel","Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",289050,22.732,0.5,5.2,217.3 "FERC423",2007,1,195,"Alabama Power Co",3,"Barry","AL","C","application/vnd.ms-excel","Coal","BIT",45,"IM","SU","County

  15. FE Carbon Capture and Storage News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    construct, and operate a system that will capture and store approximately 400,000 tons of carbon dioxide per year. June 16, 2010 Alabama Project Testing Potential for Combining CO2...

  16. Microscopic origin of volume modulus inflation

    SciTech Connect (OSTI)

    Cicoli, Michele; Muia, Francesco; Pedro, Francisco Gil

    2015-12-21

    High-scale string inflationary models are in well-known tension with low-energy supersymmetry. A promising solution involves models where the inflaton is the volume of the extra dimensions so that the gravitino mass relaxes from large values during inflation to smaller values today. We describe a possible microscopic origin of the scalar potential of volume modulus inflation by exploiting non-perturbative effects, string loop and higher derivative perturbative corrections to the supergravity effective action together with contributions from anti-branes and charged hidden matter fields. We also analyse the relation between the size of the flux superpotential and the position of the late-time minimum and the inflection point around which inflation takes place. We perform a detailed study of the inflationary dynamics for a single modulus and a two moduli case where we also analyse the sensitivity of the cosmological observables on the choice of initial conditions.

  17. "FERC423",2003,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",13,"AL","U","Jefferson",73,"SHOAL CREEK MINE",85080,24.098,0.8,13.2,183.1

    U.S. Energy Information Administration (EIA) Indexed Site

    3,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",13,"AL","U","Jefferson",73,"SHOAL CREEK MINE",85080,24.098,0.8,13.2,183.1 "FERC423",2003,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBEMOW",278810,23.498,0.56,4.3,141.7

  18. "FERC423",2005,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",358990,22.722,0.6,6.1,209.8

    U.S. Energy Information Administration (EIA) Indexed Site

    5,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",358990,22.722,0.6,6.1,209.8 "FERC423",2005,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",45260,22.926,0.59,5.7,196.8

  19. The Origin of Mass (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    The Origin of Mass Citation Details In-Document Search Title: The Origin of Mass You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is ...

  20. OpenEI:No original research | Open Energy Information

    Open Energy Info (EERE)

    No original research Jump to: navigation, search OpenEI is a platform for bringing together the world's energy information. It is not a platform for original research. This means...