Powered by Deep Web Technologies
Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 1,040 18 80 - 1,138 Alabama River 668 - - - 668 Alabama Truck 52 164 223 - 438 Alabama Total 1,760 181 303 - 2,244 Colorado Railroad 600 - - - 600 Illinois River 203 - 13 - 217 Indiana River 180 - - - 180 Kentucky Railroad 465 - 10 - 475 Kentucky (West) Railroad 465 - 10 - 475 Utah Railroad 18 - - -

2

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 914 12 66 - 992 Alabama River 949 - - - 949 Alabama Truck 78 189 237 - 504 Alabama Total 1,941 201 303 - 2,445 Colorado Railroad 575 - - - 575 Illinois River 99 - - - 99 Indiana River 241 - - - 241 Kentucky Railroad 827 - 12 - 839 Kentucky (East) Railroad 76 - - - 76 Kentucky (West) Railroad

3

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 839 11 83 - 933 Alabama River 1,347 - - - 1,347 Alabama Truck 118 216 236 - 571 Alabama Total 2,304 227 320 - 2,850 Colorado Railroad 514 - - - 514 Illinois River 99 - - - 99 Indiana River 172 - - - 172 Kentucky Railroad 635 - 11 - 647 Kentucky (East) Railroad 45 - - - 45 Kentucky (West)

4

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 944 16 77 - 1,037 Alabama River 781 - - - 781 Alabama Truck 77 224 220 - 521 Alabama Total 1,802 240 298 - 2,340 Colorado Railroad 385 - - - 385 Illinois River 15 - - - 15 Indiana Railroad 1 - - - 1 Indiana River 350 - - - 350 Indiana Total 351 - - - 351 Kentucky Railroad 682 - 2 - 685 Kentucky (East)

5

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 907 10 59 - 975 Alabama River 903 - - - 903 Alabama Truck 150 144 253 - 546 Alabama Total 1,960 153 311 - 2,424 Colorado Railroad 640 - - - 640 Illinois River 123 - - - 123 Indiana River 312 - - - 312 Kentucky Railroad 622 - 36 - 658 Kentucky (East) Railroad 96 - 36 - 132 Kentucky (West)

6

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,896 182 327 - 2,405 Alabama Railroad 1,192 2 74 - 1,268 Alabama River 655 - - - 655 Alabama Truck 50 180 253 - 482 Colorado Total 468 - - - 468 Colorado Railroad 468 - - - 468 Illinois Total 90 - 26 - 116 Illinois River 90 - 26 - 116 Indiana Total 181 - - - 181 Indiana River 181 -

7

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2012 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,407 184 231 - 1,822 Alabama Railroad 801 9 49 - 859 Alabama River 519 - - - 519 Alabama Truck 87 175 182 - 444 Colorado Total 82 - - - 82 Colorado Railroad 82 - - - 82 Illinois Total 149 - 14 - 163 Illinois Railroad 44 - - - 44 Illinois River 105 - 14 - 119 Indiana Total 99 - - - 99

8

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,486 155 328 - 1,970 Alabama Railroad 1,020 - 75 - 1,095 Alabama River 417 - - - 417 Alabama Truck 49 155 253 - 458 Colorado Total 195 - - - 195 Colorado Railroad 195 - - - 195 Illinois Total 127 - 18 - 145 Illinois Railroad 20 - - - 20 Illinois River 107 - 18 - 125 Indiana Total

9

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,942 160 335 - 2,437 Alabama Railroad 1,149 - 57 - 1,206 Alabama River 741 - - - 741 Alabama Truck 52 160 278 - 490 Colorado Total 621 2 - - 623 Colorado Railroad 621 2 - - 623 Illinois Total 113 - 11 - 123 Illinois River 113 - 11 - 123 Indiana Total 265 - - - 265 Indiana Railroad

10

By Coal Destination State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Colorado Total 2,113 - - - 2,113 Colorado Railroad 2,113 - - - 2,113 Illinois Total 336 - - - 336 Illinois River 336 - - - 336 Indiana Total 1,076

11

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

6. Estimated rail transportation rates for coal, state to state, STB data 6. Estimated rail transportation rates for coal, state to state, STB data Origin State Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama Alabama W W W W W W W W W W W Alabama Georgia W W W W W W W W W W W Alabama Illinois - - - - - W W W W - W Colorado Alabama - W W W W W W W W - W Colorado Arizona W W W W W W W W W W W Colorado Arkansas - - - - W W W W - - -

12

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

5. Estimated barge transportation rates for coal, state to state, EIA data 5. Estimated barge transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama $4.31 $4.36 $5.01 7.9 15.0 Alabama Ohio W - - - - Colorado Alabama W - - - - Colorado Florida $11.08 $12.65 $13.27 9.4 4.9 Colorado Indiana $6.29 W - - - Colorado Iowa W - - - - Colorado Kentucky W - - - - Colorado Mississippi - - W - - Colorado Ohio - W - - - Colorado Tennessee W - - - - Illinois Alabama W $13.15 $14.28 W 8.6

13

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

8. Estimated truck transportation rates for coal, state to state, EIA data 8. Estimated truck transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama W W W W W Alabama Georgia - - W - - Alabama Indiana W W - - - Colorado Colorado W W W W W Colorado Michigan - - W - - Illinois Florida W - - - - Illinois Illinois $7.51 $4.74 $3.37 -33.0 -28.8 Illinois Indiana W W - - - Illinois Minnesota W W - - - Illinois Missouri $21.73 $20.23 $13.30 -21.8 -34.3 Indiana Alabama - W - - -

14

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

5. Estimated rail transportation rates for coal, state to state, STB data 5. Estimated rail transportation rates for coal, state to state, STB data Origin State Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama Alabama W W W W W W W W W W W Alabama Georgia W W W W W W W W W W W Alabama Illinois - - - - - W W W W - W Colorado Alabama - W W W W W W W W - W Colorado Arizona W W W W W W W W W W W Colorado Arkansas - - - - W W W W - - -

15

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

4. Estimated rail transportation rates for coal, state to state, STB data 4. Estimated rail transportation rates for coal, state to state, STB data Origin State Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama Alabama W W W W W W W W W W W Alabama Georgia W W W W W W W W W W W Alabama Illinois - - - - - W W W W - W Colorado Alabama - W W W W W W W W - W Colorado Arizona W W W W W W W W W W W Colorado Arkansas - - - - W W W W - - -

16

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

6. Estimated barge transportation rates for coal, state to state, EIA data 6. Estimated barge transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama $3.97 $3.97 $4.52 6.7 13.7 Alabama Ohio W - - - - Colorado Alabama W - - - - Colorado Florida $10.21 $11.53 $11.95 8.2 3.7 Colorado Indiana $5.79 W - - - Colorado Iowa W - - - - Colorado Kentucky W - - - - Colorado Mississippi - - W - - Colorado Ohio - W - - - Colorado Tennessee W - - - - Illinois Alabama W $11.99 $12.87 W 7.3

17

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

7. Estimated truck transportation rates for coal, state to state, EIA data 7. Estimated truck transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama W W W W W Alabama Georgia - - W - - Alabama Indiana W W - - - Colorado Colorado W W W W W Colorado Michigan - - W - - Illinois Florida W - - - - Illinois Illinois $8.16 $5.20 $3.75 -32.2 -27.9 Illinois Indiana W W - - - Illinois Minnesota W W - - - Illinois Missouri $23.60 $22.20 $14.77 -20.9 -33.5 Indiana Alabama - W - - -

18

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

8. Estimated rail transportation rates for coal, state to state, EIA data 8. Estimated rail transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama $13.29 $12.39 $13.93 2.4 12.5 Alabama Georgia $17.62 $17.84 $20.09 6.8 12.6 Alabama Kentucky - W - - - Alabama New Jersey W - - - - Alabama Pennsylvania - W - - - Arizona Arizona W W W W W Colorado Alabama $31.79 $27.66 $24.93 -11.5 -9.9 Colorado Arizona $25.97 W - - - Colorado Arkansas W - - - - Colorado California - $34.20 $46.22 - 35.1 Colorado Colorado $13.04 $7.72 $8.13 -21.1 5.3

19

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated rail transportation rates for coal, state to state, EIA data Estimated rail transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama $14.43 $13.59 $15.46 3.5 13.8 Alabama Georgia $19.13 $19.58 $22.30 8.0 13.9 Alabama Kentucky - W - - - Alabama New Jersey W - - - - Alabama Pennsylvania - W - - - Arizona Arizona W W W W W Colorado Alabama $34.52 $30.35 $27.67 -10.5 -8.8 Colorado Arizona $28.20 W - - - Colorado Arkansas W - - - - Colorado California - $37.53 $51.30 - 36.7 Colorado Colorado $14.16 $8.47 $9.02 -20.2 6.6

20

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

3. Estimated rail transportation rates for coal, basin to state, EIA data 3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $28.49 - W W - Northern Appalachian Basin Florida - $38.51 $39.67 - 3.0 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $20.35 $16.14 $16.64 -9.6 3.1 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $19.64 $19.60 $20.41 1.9 4.2 Northern Appalachian Basin Michigan $14.02 $16.13 $16.23 7.6 0.6 Northern Appalachian Basin New Hampshire $43.43 $40.18 $39.62 -4.5 -1.4

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

4. Estimated rail transportation rates for coal, basin to state, EIA data 4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $26.24 - W W - Northern Appalachian Basin Florida - $35.10 $35.74 - 1.8 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $18.74 $14.70 $14.99 -10.6 1.9 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $18.09 $17.86 $18.39 0.8 3.0 Northern Appalachian Basin Michigan $12.91 $14.70 $14.63 6.4 -0.5 Northern Appalachian Basin New Hampshire $40.00 $36.62 $35.70 -5.5 -2.5

22

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

Basin Basin Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Northern Appalachian Basin Delaware W W $16.45 $14.29 W - W W - - - Northern Appalachian Basin Florida $21.45 W W W W $28.57 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $11.39 $10.39 $11.34 $12.43 $13.69 $14.25 $15.17 $18.16 $18.85 6.5 3.8

23

Domestic Coal Distribution 2009 Q1 by Destination State: Alabama  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons) 1 / 64 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons) Origin State Transportation Mode Electricity Generation Coke Plants Industrial Plants Excluding Coke Commercial & Institutional Total Alabama Railroad 950 4 84 - 1,038 Alabama River 1,110 - - - 1,110 Alabama Truck 37 170 249 - 456 Alabama Total 2,096 174 333 - 2,603 Arkansas Railroad - 6 - - 6 Colorado Railroad 279 - - - 279 Illinois Railroad 11 - - - 11 Illinois River 109 - - - 109 Illinois Total 119 - - - 119 Indiana River 197 - - - 197 Kentucky Railroad 442 - 28 - 471 Kentucky Truck - - 2 - 2 Kentucky Total 442 - 31 - 473 Kentucky (East) Railroad 357 - 28 - 385 Kentucky (East) Truck - - 2 - 2 Kentucky (East)

24

Domestic Coal Distribution 2009 Q2 by Destination State: Alabama  

U.S. Energy Information Administration (EIA) Indexed Site

61 61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons) 1 / 61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons) Origin State Transportation Mode Electricity Generation Coke Plants Industrial Plants Excluding Coke Commercial & Institutional Total Alabama Railroad 875 12 33 - 920 Alabama River 855 - - - 855 Alabama Truck 155 84 230 - 469 Alabama Total 1,885 96 263 - 2,244 Colorado Railroad 123 - - - 123 Illinois River 145 - - - 145 Indiana River 246 - - - 246 Indiana Truck 37 - - - 37 Indiana Total 283 - - - 283 Kentucky Railroad 426 - 30 - 457 Kentucky (East) Railroad 172 - 30 - 202 Kentucky (West) Railroad 255 - - - 255 Oklahoma Railroad - 6 - - 6 Utah Railroad 30 - - - 30 Virginia Railroad - 14 - - 14 West Virginia Railroad - 75 - -

25

Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Destination  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 (Thousand Short Tons) " " Coal-Exporting State and Destination ",,"Metallurgical ","Steam ","Total "," " "Alabama ",,3977,"-",3977," " ," Argentina ",225,"-",225," " ," Belgium ",437,"-",437," " ," Brazil ",1468,"-",1468," " ," Bulgaria ",75,"-",75," " ," Egypt ",363,"-",363," " ," Germany ",71,"-",71," " ," Italy ",61,"-",61," " ," Netherlands ",219,"-",219," " ," Spain ",415,"-",415," " ," Turkey ",362,"-",362," "

26

Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Destination  

U.S. Energy Information Administration (EIA) Indexed Site

3" 3" "(Thousand Short Tons)" "Coal-Exporting State and Destination ",,"Metallurgical ","Steam ","Total " "Alabama ",,5156,"-",5156 ,"Argentina ",345,"-",345 ,"Belgium ",387,"-",387 ,"Brazil ",1825,"-",1825 ,"Bulgaria ",363,"-",363 ,"Egypt ",477,"-",477 ,"Germany ",167,"-",167 ,"Italy ",87,"-",87 ,"Netherlands ",399,"-",399 ,"Spain ",198,"-",198 ,"Turkey ",551,"-",551 ,"United Kingdom ",359,"-",359 "Kentucky ",,1449,"-",1449 ,"Canada ",566,"-",566

27

Year","Quarter","Destination State","Origin State","Consumer Type","Transportati  

U.S. Energy Information Administration (EIA) Indexed Site

Destination State","Origin State","Consumer Type","Transportation Mode","Coal Volume (short tons)" Destination State","Origin State","Consumer Type","Transportation Mode","Coal Volume (short tons)" 2012,3,"Alabama","Alabama","Coke Plant","Railroad",25445 2012,3,"Alabama","Alabama","Coke Plant","Truck",141202 2012,3,"Alabama","Alabama","Electric Power Sector","Railroad",1051202 2012,3,"Alabama","Alabama","Electric Power Sector","River",729969 2012,3,"Alabama","Alabama","Electric Power Sector","Truck",56130 2012,3,"Alabama","Alabama","Industrial Plants Excluding Coke","Railroad",10029

28

EIA - Distribution of U.S. Coal by Destination  

U.S. Energy Information Administration (EIA) Indexed Site

Destination Destination Glossary Home > Coal> Distribution of U.S. Coal by Destination Distribution of U.S. Coal by Destination Release Date: January 2006 Next Release Date: 2006 Distribution of U.S Coal by Destination Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transportation, 2004 (Thousand Short Tons) DESTINATION: ALASKA State of Origin by Method of Transportation Electricity Generation Coke Plants Industrial Plants (Except Coke) Residential and Commercial Total Alaska 460 - - 497 957 Railroad 256 - - 497 753 Truck 204 - - * 204 State Total 460 - - 497 957 Railroad 256 - - 497 753 Truck 204 - - * 204 EIA - Distribution of U.S. Coal by Destination

29

Origin State Destination State STB EIA STB EIA Alabama  

U.S. Energy Information Administration (EIA) Indexed Site

State State Destination State STB EIA STB EIA Alabama Alabama W $13.59 W $63.63 21.4% 3,612 W 100.0% Alabama Georgia W $19.58 W $82.89 23.6% 538 W 99.9% Alabama Illinois W - - - - - - - Alabama Kentucky - W - W W W - W Alabama Pennsylvania - W - W W W - W Arizona Arizona - W - W W W - W Colorado Alabama W $30.35 W $70.84 42.8% 905 W 95.3% Colorado Arizona W W W W W W W W Colorado California W $37.53 W $83.78 44.8% 64 W 100.0%

30

Domestic Distribution of U.S. Coal by Destination State,  

U.S. Energy Information Administration (EIA) Indexed Site

2008 2008 Final May 2010 2008 Changes in Coal Distribution Table Format and Data Sources Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin State, destination State, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-exporting State. This Final 2008 Coal Distribution Report - Annual, supersedes the Preliminary 2008 Coal Distribution Report - Annual. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report contains actual annual data instead of imputed data for smaller electric generation plants that are excluded from the

31

Origin State Destination State  

Gasoline and Diesel Fuel Update (EIA)

Colorado Nevada - W W W W W W W W - W Colorado New York W - - - W W - - - - - Colorado Ohio - - - W W - - - - - - Colorado Oklahoma - W - W W W W W W - W Colorado Tennessee - - W...

32

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

43 $0.0294 W - W W - - - 43 $0.0294 W - W W - - - Northern Appalachian Basin Florida $0.0161 W W W W $0.0216 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0296 $0.0277 $0.0292 $0.0309 $0.0325 $0.0328 $0.0357 $0.0451 $0.0427 4.7 -5.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

33

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$15.49 $13.83 W - W W - - - $15.49 $13.83 W - W W - - - Northern Appalachian Basin Florida $19.46 W W W W $29.49 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $10.33 $9.58 $10.68 $12.03 $13.69 $14.71 $16.11 $19.72 $20.69 9.1 4.9 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

34

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$0.0323 $0.0284 W - W W - - - $0.0323 $0.0284 W - W W - - - Northern Appalachian Basin Florida $0.0146 W W W W $0.0223 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0269 $0.0255 $0.0275 $0.0299 $0.0325 $0.0339 $0.0380 $0.0490 $0.0468 7.2 -4.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

35

Saving Tons at the Register  

SciTech Connect

Duct losses have a significant effect on the efficiency of delivering space cooling to U.S. homes. This effect is especially dramatic during peak demand periods where half of the cooling equipment's output can be wasted. Improving the efficiency of a duct system can save energy, but can also allow for downsizing of cooling equipment without sacrificing comfort conditions. Comfort, and hence occupant acceptability, is determined not only by steady-state temperatures, but by how long it takes to pull down the temperature during cooling start-up, such as when the occupants come home on a hot summer afternoon. Thus the delivered tons of cooling at the register during start-up conditions are critical to customer acceptance of equipment downsizing strategies. We have developed a simulation technique which takes into account such things as weather, heat-transfer (including hot attic conditions), airflow, duct tightness, duct location and insulation, and cooling equipment performance to determine the net tons of cooling delivered to occupied space. Capacity at the register has been developed as an improvement over equipment tonnage as a system sizing measure. We use this concept to demonstrate that improved ducts and better system installation is as important as equipment size, with analysis of pull-down capability as a proxy for comfort. The simulations indicate that an improved system installation including tight ducts can eliminate the need for almost a ton of rated equipment capacity in a typical new 2,000 square foot house in Sacramento, California. Our results have also shown that a good duct system can reduce capacity requirements and still provide equivalent cooling at start-up and at peak conditions.

Brown, Karl; Seigel, Jeff; Sherman, Max; Walker, Iain

1998-05-01T23:59:59.000Z

36

SOLERAS - Solar Cooling Engineering Field Tests Project: Arizona State University. Prototype carrier 10 ton air-cooled solar absorption chiller. Final evaluation report  

DOE Green Energy (OSTI)

A prototype air-cooled 10 ton solar absorption chiller was disassembled and inspected after having been field-tested for three consecutive cooling seasons. Included in the inspection were some flow visualization experiments which revealed some problems in the absorber header design. The objectives of this evaluation project were to determine possible causes for the frequent crystallization and generally below-design performance of the chiller during the testing period. The major conclusions reached were that a combination of leaks and of poor (50%) flow distribution in the absorber could account for most of the chiller's poor performance.

Not Available

1982-01-01T23:59:59.000Z

37

Methodology for Estimating ton-Miles of Goods Movements for U.S. Freight Mulitimodal Network System  

SciTech Connect

Ton-miles is a commonly used measure of freight transportation output. Estimation of ton-miles in the U.S. transportation system requires freight flow data at disaggregated level (either by link flow, path flows or origin-destination flows between small geographic areas). However, the sheer magnitude of the freight data system as well as industrial confidentiality concerns in Census survey, limit the freight data which is made available to the public. Through the years, the Center for Transportation Analysis (CTA) of the Oak Ridge National Laboratory (ORNL) has been working in the development of comprehensive national and regional freight databases and network flow models. One of the main products of this effort is the Freight Analysis Framework (FAF), a public database released by the ORNL. FAF provides to the general public a multidimensional matrix of freight flows (weight and dollar value) on the U.S. transportation system between states, major metropolitan areas, and remainder of states. Recently, the CTA research team has developed a methodology to estimate ton-miles by mode of transportation between the 2007 FAF regions. This paper describes the data disaggregation methodology. The method relies on the estimation of disaggregation factors that are related to measures of production, attractiveness and average shipments distances by mode service. Production and attractiveness of counties are captured by the total employment payroll. Likely mileages for shipments between counties are calculated by using a geographic database, i.e. the CTA multimodal network system. Results of validation experiments demonstrate the validity of the method. Moreover, 2007 FAF ton-miles estimates are consistent with the major freight data programs for rail and water movements.

Oliveira Neto, Francisco Moraes [ORNL; Chin, Shih-Miao [ORNL; Hwang, Ho-Ling [ORNL

2013-01-01T23:59:59.000Z

38

Practice of Internet Marketing in Destination Branding.  

E-Print Network (OSTI)

??This study provides information about destination branding and the effect of Internet marketing on tourism. Tourism branding generates interest in a destination as well as,… (more)

Duong, Linh

2012-01-01T23:59:59.000Z

39

How do I convert between short tons and metric tons? - FAQ - U ...  

U.S. Energy Information Administration (EIA)

Other FAQs about Conversion & Equivalents. How do I convert between short tons and metric tons? How do I compare heating fuels?

40

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2011 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,896 182 327 - 2,405 Alabama Railroad 1,192 2 74 - 1,268 Alabama River 655 - - - 655 Alabama Truck 50 180 253 - 482 Georgia Total s - - - s Georgia Truck s - - - s Indiana Total - 72 - - 72 Indiana Railroad - 72 - - 72 Tennessee Total - - 7 - 7 Tennessee Truck - - 7 - 7 Origin State Total 1,896

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 914 12 66 - 992 Alabama River 949 - - - 949 Alabama Truck 78 189 237 - 504 Alabama Total 1,941 201 303 - 2,445 Georgia Railroad 23 - - - 23 Georgia Truck s - - - s Georgia Total 23 - - - 23 Indiana Railroad - 115 - - 115 Indiana Truck - 71 - - 71 Indiana Total - 186 - - 186 Tennessee Railroad - - 1 - 1 Tennessee Truck

42

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,407 184 231 - 1,822 Alabama Railroad 801 9 49 - 859 Alabama River 519 - - - 519 Alabama Truck 87 175 182 - 444 Georgia Total s - s - s Georgia Truck s - s - s Indiana Total - 98 - - 98 Indiana Railroad - 98 - - 98 Kentucky Total - - 12 - 12 Kentucky Truck - - 12 - 12 Ohio Total - 30 - - 30 Ohio

43

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success...

44

Domestic Coal Distribution 2009 Q2 by Origin State: Alabama  

U.S. Energy Information Administration (EIA) Indexed Site

Q2 by Origin State: Alabama Q2 by Origin State: Alabama (1000 Short Tons) 1 / 58 Domestic Coal Distribution 2009 Q2 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity Generation Coke Plants Industrial Plants Excluding Coke Commercial & Institutional Total Alabama Railroad 875 12 33 - 920 Alabama River 855 - - - 855 Alabama Truck 155 84 230 - 469 Alabama Total 1,885 96 263 - 2,244 Florida Railroad - - 8 - 8 Georgia Railroad 118 - - - 118 Georgia Truck s - 15 - 15 Georgia Total 118 - 15 - 133 Indiana Railroad - 83 - - 83 Indiana Truck 17 34 - - 50 Indiana Total 17 116 - - 133 Kentucky Railroad 83 - - - 83 Pennsylvania Railroad 95 - - - 95 Origin State Total 2,197 212 285 - 2,695 Railroad 1,171 95 40 - 1,305 River 855 - - - 855 Truck 171 118 245 - 534 2 / 58 Domestic Coal Distribution 2009 Q2 by Origin State: Alaska

45

Coal distribution, January-June 1985. [USA; January-June; 1981 to 1985; producing district; destination; transport means  

SciTech Connect

This Energy Information Administration (EIA) report continues the quarterly series on coal distribution started in 1957 by the Bureau of Mines, Department of the Interior, as a Mineral Industry Survey, Distribution of Bituminous Coal and Lignite Shipments. The publication provides volume data on coal distribution by coal-producing district of origin, consumer use, method of transportation, and State of destination necessary for EIA to fulfill its data colletion functions as authorized by the Federal Energy Administration Act of 1974. All data for 1985 in this report are preliminary. Data for 1981-1984 are final. Coal shipments from mines in Appalachia were 10.2% lower, while shipments from western mines were up by 13.7%, reaching a record 6-month high. Export shipments moved ahead of their 1984 pace by 9.2% despite a 27.0% decline in shipments to Canada. Texas expanded its lead as the Nation's top State to receive coal, and North Dakota experienced an upsurge in coal receipts due to the startup of the Great Plains coal gasification project. Coal production and purchases totaled 438.4 million short tons, 2.2% below last year's level. 6 figs., 33 tabs.

McNair, M.B.

1985-09-26T23:59:59.000Z

46

Optimal Forwarding in Delay Tolerant Networks with Multiple Destinations  

E-Print Network (OSTI)

We study the trade-off between delivery delay and energy consumption in a delay tolerant network in which a message (or a file) has to be delivered to each of several destinations by epidemic relaying. In addition to the destinations, there are several other nodes in the network that can assist in relaying the message. We first assume that, at every instant, all the nodes know the number of relays carrying the packet and the number of destinations that have received the packet. We formulate the problem as a controlled continuous time Markov chain and derive the optimal closed loop control (i.e., forwarding policy). However, in practice, the intermittent connectivity in the network implies that the nodes may not have the required perfect knowledge of the system state. To address this issue, we obtain an ODE (i.e., a deterministic fluid) approximation for the optimally controlled Markov chain. This fluid approximation also yields an asymptotically optimal open loop policy. Finally, we evaluate the performance o...

Singh, Chandramani; Kumar, Anurag; Sundaresan, Rajesh

2011-01-01T23:59:59.000Z

47

Domestic Coal Distribution 2009 Q1 by Origin State: Alabama  

U.S. Energy Information Administration (EIA) Indexed Site

Q1 by Origin State: Alabama Q1 by Origin State: Alabama (1000 Short Tons) 1 / 58 Domestic Coal Distribution 2009 Q1 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity Generation Coke Plants Industrial Plants Excluding Coke Commercial & Institutional Total Alabama Railroad 950 4 84 - 1,038 Alabama River 1,110 - - - 1,110 Alabama Truck 37 170 249 - 456 Alabama Total 2,096 174 333 - 2,603 Florida Railroad - - 22 - 22 Georgia Railroad 45 - - - 45 Georgia Truck s - 20 - 21 Georgia Total 45 - 20 - 65 Hawaii Ocean Vessel s - - - s Indiana Railroad - 78 - - 78 Indiana Truck - 32 - - 32 Indiana Total - 110 - - 110 South Carolina Truck - - 2 - 2 Tennessee Truck - - 1 - 1 Texas Railroad 72 - - - 72 Origin State Total 2,213 284 378 - 2,875 Ocean Vessel s - - - s Railroad 1,066 82 106 - 1,255 River 1,110 - - - 1,110 Truck 37 202 272 - 511 2 / 58

48

Ton père et autre débris ; suivi de Entretien.  

E-Print Network (OSTI)

??Ce mémoire en création littéraire est constitué de deux parties. La première, Ton père et autres débris, est un récit composé de vingt-quatre tableaux divisés… (more)

Grenier, Jacques

2006-01-01T23:59:59.000Z

49

KCP relocates 18-ton machine | National Nuclear Security Administratio...  

NLE Websites -- All DOE Office Websites (Extended Search)

relocates 18-ton machine | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

50

NETL: News Release - DOE Regional Partnerships Find Up To 3.5 Billion Tons  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2007 7, 2007 DOE Regional Partnerships Find More Than 3,500 Billion Tons of Possible CO2 Storage Capacity Atlas Details Stationary Sources and Geologic Reservoirs in U.S. and Canada WASHINGTON, DC - The Department of Energy's Regional Carbon Sequestration Partnerships have identified the powerplant and other stationary sources of more than 3.8 billion tons a year of the greenhouse gas CO2 in the United States and Canada and companion candidate storage capacity for more than 3,500 billion tons. The results are detailed in the new Carbon Sequestration Atlas of the United States and Canada which became available online today. MORE INFO Link to NETL's Carbon Sequestration Atlas web page Link to the Interactive Carbon Sequestration Atlas Learn more about DOE's Regional Carbon Sequestration Partnership program

51

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 944 16 77 - 1,037 Alabama River 781 - - - 781 Alabama Truck 77 224 220 - 521 Alabama Total 1,802 240 298 - 2,340 Florida Railroad - - 11 - 11 Georgia Railroad 52 - - - 52 Georgia Truck s - 5 - 5 Georgia Total 52 - 5 - 57 Indiana Railroad - 65 - - 65 Origin State Total 1,855 304 313 - 2,472 Railroad 996 81 89 - 1,165

52

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 907 10 59 - 975 Alabama River 903 - - - 903 Alabama Truck 150 144 253 - 546 Alabama Total 1,960 153 311 - 2,424 Florida Truck - - 3 - 3 Georgia Railroad 105 - 1 - 106 Georgia Truck s - 4 - 4 Georgia Total 105 - 5 - 110 Indiana Railroad - 106 - - 106 Tennessee Railroad - - 1 - 1 Origin State Total 2,065 259 321 - 2,644

53

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 839 11 83 - 933 Alabama River 1,347 - - - 1,347 Alabama Truck 118 216 236 - 571 Alabama Total 2,304 227 320 - 2,850 Georgia Railroad 9 - - - 9 Georgia Truck 7 - 5 - 12 Georgia Total 16 - 5 - 21 Indiana Railroad - 126 - - 126 Tennessee Truck - - 1 - 1 Origin State Total 2,320 353 325 - 2,998 Railroad 848 137 83 - 1,068

54

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2011 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,942 160 335 - 2,437 Alabama Railroad 1,149 - 57 - 1,206 Alabama River 741 - - - 741 Alabama Truck 52 160 278 - 490 Georgia Total s - 3 - 3 Georgia Truck s - 3 - 3 Ohio Total - 3 - - 3 Ohio River - 3 - - 3 Origin State Total 1,942 163 338 - 2,443 Railroad 1,149 - 57 - 1,206 River 741 3 - - 745 Truck 52 160

55

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2011 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 1,040 18 80 - 1,138 Alabama River 668 - - - 668 Alabama Truck 52 164 223 - 438 Alabama Total 1,760 181 303 - 2,244 Georgia Truck s - 2 - 2 Indiana Railroad - 148 - - 148 Ohio Railroad - 25 - - 25 Ohio River - 18 - - 18 Ohio Total - 43 - - 43 Origin State Total 1,760 373 305 - 2,438 Railroad 1,040 191 80 - 1,311 River

56

Tons of Heavy Metals in Mill Creek Sediments Heather Freeman  

E-Print Network (OSTI)

with industries. Paper, woolen, flour, and cotton mills, starch factories, slaughterhouses, distilleriesTons of Heavy Metals in Mill Creek Sediments Heather Freeman 8/30/99 Geology Department Advisors: Dr. Kees DeJong Dr. Barry Manyard Dr. David Nash #12;Tons of heavy metals in Mill Creek sediments

Maynard, J. Barry

57

Department of Energy Releases New 'Billion-Ton' Study Highlighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'Billion-Ton' Study 'Billion-Ton' Study Highlighting Opportunities for Growth in Bioenergy Resources Department of Energy Releases New 'Billion-Ton' Study Highlighting Opportunities for Growth in Bioenergy Resources August 10, 2011 - 3:41pm Addthis Washington, D.C. - The U.S. Department of Energy today released a report - 2011 U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry - detailing U.S. biomass feedstock potential nationwide. The report examines the nation's capacity to produce a billion dry tons of biomass resources annually for energy uses without impacting other vital U.S. farm and forest products, such as food, feed, and fiber crops. The study provides industry, policymakers, and the agricultural community with county-level data and includes analyses of

58

Table 10. Estimated rail transportation rates for coal, basin to state, STB dat  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated rail transportation rates for coal, basin to state, STB data" Estimated rail transportation rates for coal, basin to state, STB data" ,,"Real Dollars per Ton",,,,,,,,,,"Annual Percent Change" "Basin","Destination State",2001,2002,2003,2004,2005,2006,2007,2008,2009,," 2001-2009"," 2008-2009" "Northern Appalachian Basin","Delaware"," W"," W"," $16.45"," $14.29"," W"," -"," W"," W"," -",," -"," -" "Northern Appalachian Basin","Florida"," $21.45"," W"," W"," W"," W"," $28.57"," W"," W"," W",," W"," W"

59

By Coal Origin State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Florida Total - - 15 - 15 Florida Railroad - - 11 - 11 Florida Truck - - 3 - 3 Georgia Total 196 - 15 - 211 Georgia Railroad 189 - 1 - 190 Georgia Truck

60

Origin State Destination State STB EIA STB EIA Alabama  

U.S. Energy Information Administration (EIA) Indexed Site

4.43 W $65.38 22.1% 4,509 W 81.8% 4.43 W $65.38 22.1% 4,509 W 81.8% Alabama Georgia W W W W W W W W Alabama Illinois W - - - - - - - Alabama New Jersey - W - W W W - W Arizona Arizona - W - W W W - W Colorado Alabama W $34.52 W $62.70 55.1% 2,898 W 96.7% Colorado Arizona W W W W W W W W Colorado Arkansas W W W W W W W W Colorado Colorado $10.67 $14.16 32.7% $39.03 36.3% 7,105 39.3% 52.7% Colorado Delaware W - - - - - - -

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Year","Quarter","Destination State","Origin State","Consumer...  

U.S. Energy Information Administration (EIA) Indexed Site

2011,1,"Alabama","Alabama","Coke Plant","Truck",163874 2011,1,"Alabama","Alabama","Electric Power Sector","Railroad",1040261 2011,1,"Alabama","Alabama","Electric Power...

62

Year","Quarter","Origin State","Destination State","Consumer...  

U.S. Energy Information Administration (EIA) Indexed Site

2,3,"Alabama","Alabama","Electric Power Sector","Railroad",1051202 2012,3,"Alabama","Alabama","Coke Plant","Railroad",25445 2012,3,"Alabama","Alabama","Industrial Plants Excluding...

63

Year","Quarter","Origin State","Destination State","Consumer...  

U.S. Energy Information Administration (EIA) Indexed Site

Sector","Railroad",126343 2011,1,"Ohio","New York","Electric Power Sector","Truck",2030 2011,1,"Ohio","Ohio","Electric Power Sector","Railroad",656474 2011,1,"Ohio","Ohio","El...

64

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Reaches 15 Million Tons Disposed - Waste Disposal Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor July 9, 2013 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE, (509) 376-5365 Cameron.Hardy@rl.doe.gov Mark McKenna, WCH, (509) 372-9032 media@wch-rcc.com RICHLAND, Wash. - The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996. Removing contaminated material and providing for its safe disposal prevents contaminants from reaching the groundwater and the Columbia River. ERDF receives contaminated soil, demolition debris, and solid waste from

65

Department of Energy Releases New 'Billion-Ton' Study Highlighting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

report supports the conclusion of the original 2005 Billion-Ton Study with added in-depth production and costs analyses and sustainability studies. The 2011 report uses more...

66

Characterization of Arsenic Contamination on Rust from Ton Containers  

Science Conference Proceedings (OSTI)

The speciation and spatial distribution of arsenic on rusted steel surfaces affects both measurement and removal approaches. The chemistry of arsenic residing in the rust of ton containers that held the chemical warfare agents bis(2-chloroethyl)sulfide (sulfur mustard) and 2-chlorovinyldichloroarsine (Lewisite) is of particular interest, because while the agents have been decontaminated, residual arsenic could pose a health or environmental risk. The chemistry and distribution of arsenic in rust samples was probed using imaging secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX). Arsenic in the +3 and or +5 oxidation state is homogeneously distributed at the very top-most layer of the rust samples, and is intimately associated with iron. Sputter depth profiling followed by SIMS and XPS shows As at a depth of several nm, in some cases in a reduced form. The SEM/EDX experiments show that As is present at a depth of several microns, but is inhomogeneously distributed; most locations contained oxidized As at concentrations of a few percent, however several locations showed very high As in a metallic form. These results indicate that the rust material must be removed if the steel containers are to be cleared of arsenic.

Gary S. Groenewold; Recep Avci; Robert V. Fox; Muhammedin Deliorman; Jayson Suo; Laura Kellerman

2013-01-01T23:59:59.000Z

67

Visual Representations of Puerto Rico in Destination Marketing Materials  

E-Print Network (OSTI)

In the last thirty years, a large number of studies have researched the destination image that visitors, travel industry representatives, students, and general consumers have of tourist destinations. However, few studies have analyzed the perceptions that local residents have of their own countries as tourist destinations. Local residents can provide valuable information about their countries as tourism destinations and can help tourism marketers determine how to represent local culture in more authentic and sustainable ways. Local residents can also provide valuable information about how to improve tourism development based on their experiences living in the area. Residents can further provide information and services to visitors and are themselves an integral part of tourism at a destination. This study focused on understanding how destination marketing portrays the people and places of a destination and how residents perceive the visuals used in destination marketing and promotion. Using a visual qualitative approach, the study analyzed the images of recent promotional campaigns employed by the Puerto Rico Tourism Company. The study then interviewed Puerto Rican residents regarding their attitudes toward tourism development in general and toward the specific imagery used in the campaigns. Overall, residents had rather positive opinions of tourism in Puerto Rico. They also had largely positive attitudes toward the visual imagery used to market the destination. However, they felt the portrayal was incomplete and did not reflect the modern way of Puerto Rican daily life.

Davila Rodriguez, Mary Ann

2011-08-01T23:59:59.000Z

68

A 2-Dimensional Cellular Automaton for Agents Moving from Origins to Destinations  

E-Print Network (OSTI)

We develop a two-dimensional cellular automaton (CA) as a simple model for agents moving from origins to destinations. Each agent moves towards an empty neighbor site corresponding to the minimal distance to its destination. The stochasticity or noise ($p$) is introduced in the model dynamics, through the uncertainty in estimating the distance from the destination. The friction parameter $"\\mu"$ is also introduced to control the probability that the movement of all agents involved to the same site (conflict) is denied at one time step. This model displays two states; namely the freely moving and the jamming state. If $\\mu$ is large and $p$ is low, the system is in the jamming state even if the density is low. However, if $\\mu$ is large and $p$ is high, a freely moving state takes place whenever the density is low. The cluster size and the travel time distributions in the two states are studied in detail. We find that only very small clusters are present in the freely moving state while the jamming state displ...

Moussa, N

2005-01-01T23:59:59.000Z

69

U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments September 25, 2013 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Underscoring the Obama Administration's efforts to double energy productivity by 2030 and help businesses save money and energy, the Energy Department today recognized more than 120 manufacturers that are making smart investments to save on energy costs, cut greenhouse gas emissions and improve their bottom lines. Through the Department's Better Buildings, Better Plants Program (Better Plants), over 1,750 plants across the United States have saved about $1 billion in energy costs and

70

Great Plains Coal Gasification Project will make 17. 5 tons/day of methanol  

SciTech Connect

The Great Plains Coal Gasification Project will make 17.5 tons/day of methanol in addition to 125 million cu ft/day of pipeline-quality substitute natural gas (SNG), making the facility the first commercial producer of methanol-from-coal in the United States, according to the consortium building the $1.5 billion facility in Beulah, North Dakota. As originally conceived, the plant would have used 17 tons/day of purchased methanol to clean the raw-gas product stream of impurities, primarily sulfur. But based on the cost of transporting methanol to the plant site and storing it for use, the consortium decided it was more economical to produce its own methanol from lignite. The construction started in July 1980, and the facility is to come on stream in 1984.

Not Available

1980-11-17T23:59:59.000Z

71

Quantifying Brand Values Perception in Destination Websites: a ...  

Science Conference Proceedings (OSTI)

Search Options ... This paper presents a framework for systematically evaluating the short-term brand values perception of content-intensive destination ... Proceedings from ENTER 2006: International Conference in Lausanne, Switzerland.

72

THERMAL MODELING ANALYSIS OF SRS 70 TON CASK  

SciTech Connect

The primary objective of this work was to perform the thermal calculations to evaluate the Material Test Reactor (MTR) fuel assembly temperatures inside the SRS 70-Ton Cask loaded with various bundle powers. MTR fuel consists of HFBR, MURR, MIT, and NIST. The MURR fuel was used to develop a bounding case since it is the fuel with the highest heat load. The results will be provided for technical input for the SRS 70 Ton Cask Onsite Safety Assessment. The calculation results show that for the SRS 70 ton dry cask with 2750 watts total heat source with a maximum bundle heat of 670 watts and 9 bundles of MURR bounding fuel, the highest fuel assembly temperatures are below about 263 C. Maximum top surface temperature of the plastic cover is about 112 C, much lower than its melting temperature 260 C. For 12 bundles of MURR bounding fuel with 2750 watts total heat and a maximum fuel bundle of 482 watts, the highest fuel assembly temperatures are bounded by the 9 bundle case. The component temperatures of the cask were calculated by a three-dimensional computational fluid dynamics approach. The modeling calculations were performed by considering daily-averaged solar heat flux.

Lee, S.; Jordan, J.; Hensel, S.

2011-03-08T23:59:59.000Z

73

1998 TMS Annual Meeting: Destination Information  

Science Conference Proceedings (OSTI)

Now the ninth largest city in the United States, San Antonio has retained its sense of history and tradition, while carefully blending in cosmopolitan progress.

74

Dilution Refrigeration of Multi-Ton Cold Masses  

E-Print Network (OSTI)

Dilution refrigeration is the only means to provide continuous cooling at temperatures below 250 mK. Future experiments featuring multi-ton cold masses require a new generation of dilution refrigeration systems, capable of providing a heat sink below 10 mK at cooling powers which exceed the performance of present systems considerably. This thesis presents some advances towards dilution refrigeration of multi-ton masses in this temperature range. A new method using numerical simulation to predict the cooling power of a dilution refrigerator of a given design has been developed in the framework of this thesis project. This method does not only allow to take into account the differences between an actual and an ideal continuous heat exchanger, but also to quantify the impact of an additional heat load on an intermediate section of the dilute stream. In addition, transient behavior can be simulated. The numerical model has been experimentally verified with a dilution refrigeration system which has been designed, ...

Wikus, P; CERN. Geneva

2007-01-01T23:59:59.000Z

75

DOE to Remove 200 Metric Tons of Highly Enriched Uranium from...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile DOE to Remove 200 Metric Tons of Highly...

76

DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it...  

National Nuclear Security Administration (NNSA)

Metric Tons of Plutonium by Turning it into Fuel for Civilian Reactors January 23, 2002 Washington, DC DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for...

77

Figure 7.5 Coal Exports by Country of Destination  

U.S. Energy Information Administration (EIA)

Nether- Brazil United Japan Canada Italy Germany 0 2 4 6 8 10 12 Million Short Tons Kingdom Total Europe 1960 1965 1970 1975 1980 1985 1990 1995 2000 ...

78

Acceptance test report for the Westinghouse 100 ton hydraulic trailer  

DOE Green Energy (OSTI)

The SY-101 Equipment Removal System 100 Ton Hydraulic Trailer was designed and built by KAMP Systems, Inc. Performance of the Acceptance Test Procedure at KAMP`s facility in Ontario, California (termed Phase 1 in this report) was interrupted by discrepancies noted with the main hydraulic cylinder. The main cylinder was removed and sent to REMCO for repair while the trailer was sent to Lampson`s facility in Pasco, Washington. The Acceptance Test Procedure was modified and performance resumed at Lampson (termed Phase 2 in this report) after receipt of the repaired cylinder. At the successful conclusion of Phase 2 testing the trailer was accepted as meeting all the performance criteria specified.

Barrett, R.A.

1995-03-06T23:59:59.000Z

79

FUPWG Meeting Agenda - Destin, FL | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Destin, FL Destin, FL FUPWG Meeting Agenda - Destin, FL October 7, 2013 - 2:56pm Addthis Going coastal for energy efficiency. FUPWG. April 15-16, 2008, Destin, Florida Gulf Power: A Southern Company FEMP logo April 15-16, 2008 Hosted by Gulf Power Monday, April 14, 2008 6:30 pm Steering Committee Meeting & Networking Dinner Ocean Club 8955 US Highway 98 W Miramar Beach, FL 32550 Tuesday, April 15, 2008 7:45 - 8:30 am Registration and Continental Breakfast 8:30 - 8:45 am Gulf Power Welcome P. Bernard Jacob, Customer Operations Vice President 8:45 - 9:15 am FEMP Welcome David McAndrew, FEMP 9:15 - 10:00 am Washington Update David McAndrew, FEMP 10:00 - 10:30 am Technology Update Paul Kistler 10:30 - 11:00 am Networking Break & New Member Mentor Introductions 11:00 - 11:30 am Gulf Power Success Story - NAS Chiller Replacement

80

Origin/Destination-estimation Using Cellular Network Data  

Science Conference Proceedings (OSTI)

Today there are more than 600 billion geo special transactions every day in the US alone [1], and most of this data is passing through carriers networks. Hence, the carriers are sitting on a huge pile of potential knowledge which they could make more ... Keywords: Origin-destination estimation, mobility, privacy, location, Hadoop, geospatial

Erik Mellegard; Simon Moritz; Mohamed Zahoor

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A study for destination of solid wastes from vessels  

Science Conference Proceedings (OSTI)

Everyday humans around the globe perform a series of activities that, in addition to the final product concerned, results in a significant number of solid waste, commonly called "junk." These solid wastes not treated to an appropriate final destination ... Keywords: monitoring, oceanic pollution, scanning, solid waste management, tracking

Carla M. Maccagnan Fontana; Maria Lídia Dias; Eduardo Mario Dias; Sérgio Luiz Pereira

2010-07-01T23:59:59.000Z

82

Transportation system benefits of early deployment of a 75-ton multipurpose canister system  

SciTech Connect

In 1993 the US Civilian Radioactive Waste Management System (CRWMS) began developing two multipurpose canister (MPC) systems to provide a standardized method for interim storage and transportation of spent nuclear fuel (SNF) at commercial nuclear power plants. One is a 75-ton concept with an estimated payload of about 6 metric tons (t) of SNF, and the other is a 125-ton concept with an estimated payload of nearly 11 t of SNF. These payloads are two to three times the payloads of the largest currently certified US rail transport casks, the IF-300. Although is it recognized that a fully developed 125-ton MPC system is likely to provide a greater cost benefit, and radiation exposure benefit than the lower-capacity 75-ton MPC, the authors of this paper suggest that development and deployment of the 75-ton MPC prior to developing and deploying a 125-ton MPC is a desirable strategy. Reasons that support this are discussed in this paper.

Wankerl, M.W. [Oak Ridge National Lab., TN (United States); Schmid, S.P. [Science Applications International Corp., Oak Ridge, TN (United States)

1995-12-31T23:59:59.000Z

83

Application guide for 25-ton solar system (unitized)  

DOE Green Energy (OSTI)

Arkla has developed a unitary solar system for air conditioning, heating and service hot water loads in commercial buildings of up to 25 tons cooling requirement. A semi-exploded view shows the basic elements of the Arkla system. These elements, listed below, are described in individual sections of the guide in sufficient detail to enable a competent designer to duplicate the Arkla unitary system in a site built system. The elements are: (1) collectors with summary procedure guide; (2) storage/receiver; (3) pumps/piping/valves; (4) controls; (5) chiller; (6) cooling tower; (7) gas boiler back-up; (8) central air handling unit; and (9) service and DHW. Any successful solar HVAC system requires careful analysis of the integration of the elements. This is particularly true due to the large year-round variation in the temperature of the solar HW available. Several items of this nature are discussed in the element sections. Consequently, the designer should review this entire guide before proceeding to individual elements particularly A and B. This guide presumes that the monthly (and design) hot water loads have been determined for the heating, cooling, and service-DHW water Btu requirements. In addition to these normal calculations, an hourly profile for a typical day each month should be made. The hourly profile is necessary to maximize the solar fraction for a given amount of collector surface in conjunction with the size of the storage system; that is, the coincidence, or lack of, sunshine to the instantaneous demands.

Not Available

1983-01-01T23:59:59.000Z

84

Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds The Moab Uranium Mill Tailings Remedial Action Project reached its primary American Recovery and Reinvestment Act milestone ahead of schedule on Wednesday with the disposal of 2 million tons of uranium mill tailings. The project had originally planned to ship 2 million tons of tailings with Recovery Act funds. Now, Recovery Act workers are surpassing that goal. Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds More Documents & Publications EIS-0355: Record of Decision EIS-0355: Draft Environmental Impact Statement EIS-0355: Final Environmental Impact Statement

85

Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps (5.4 >=< 20 Tons) Heat Pumps (5.4 >=< 20 Tons) Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) October 8, 2013 - 2:22pm Addthis Vary equipment size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Project Type New Installation Replacement New Installation Condenser Type Air Source Water Source Air Source Existing Capacity * ton - Existing Cooling Efficiency * EER - Existing Heating Efficiency * COP - Existing IPLV Efficiency * IPLV - New Capacity ton 10 tons New Cooling Efficiency EER 10.1 EER New Heating Efficiency COP 3.2 COP New IPLV Efficiency IPLV 10.4 IPLV Energy Cost $ per kWh $0.06 per kWh

86

Table 7.1 Coal Overview, 1949-2011 (Million Short Tons)  

U.S. Energy Information Administration (EIA)

Table 7.1 Coal Overview, 1949-2011 (Million Short Tons) Year: Production 1: Waste Coal Supplied 2: Trade: Stock Change 4,5: Losses and

87

Coolerado 5 Ton RTU Performance: Western Cooling Challenge Results (Revised)  

Science Conference Proceedings (OSTI)

The Western Cooling Efficiency Center (WCEC) developed a set of criteria for test conditions, minimum energy, and water use performance for prototype cooling equipment and identified these conditions as indicative of western state climates.

Kozubal, E.; Slayzak, S.

2010-11-01T23:59:59.000Z

88

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S. nuclear weapons, signifying the Bush Administration's ongoing commitment to nonproliferation. Nine metric tons of plutonium is enough material to make over 1,000 nuclear weapons. The Secretary made today's announcement while speaking before the International Atomic Energy Agency's annual general conference.

89

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site June 18, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager (970) 257-2145 (Grand Junction, CO) - Today, the Department of Energy (DOE) announced that 6 million tons of uranium mill tailings have been shipped from Moab, Utah, under the Uranium Mill Tailings Remedial Action Project to an engineered disposal cell near Crescent Junction, Utah. The shipments mark continued progress toward relocating the 16-million-ton uranium mill tailings pile away from the Colorado River. "The federal budget continues to be stretched thin, and I am proud this

90

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site June 18, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager (970) 257-2145 (Grand Junction, CO) - Today, the Department of Energy (DOE) announced that 6 million tons of uranium mill tailings have been shipped from Moab, Utah, under the Uranium Mill Tailings Remedial Action Project to an engineered disposal cell near Crescent Junction, Utah. The shipments mark continued progress toward relocating the 16-million-ton uranium mill tailings pile away from the Colorado River. "The federal budget continues to be stretched thin, and I am proud this

91

Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely February 27, 2012 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director, (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager, (970) 257-2145 Grand Junction, CO- The U.S. Department of Energy (DOE) reached another milestone today for the Uranium Mill Tailings Remedial Action Project, having shipped 5 million tons of tailings from the massive pile located in Moab, Utah, to the engineered disposal cell near Crescent Junction, Utah. The pile comprised an estimated 16 million tons total when DOE's Remedial

92

Disposal Facility Reaches 15-Million-Ton Milestone | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Facility Reaches 15-Million-Ton Milestone Disposal Facility Reaches 15-Million-Ton Milestone Disposal Facility Reaches 15-Million-Ton Milestone July 30, 2013 - 12:00pm Addthis Matt McCormick, manager of the Richland Operations Office, commends a large group of Hanford workers for the 15-million-ton milestone at a public event at the Environmental Restoration Disposal Facility. Matt McCormick, manager of the Richland Operations Office, commends a large group of Hanford workers for the 15-million-ton milestone at a public event at the Environmental Restoration Disposal Facility. RICHLAND, Wash. - EM's Environmental Restoration Disposal Facility (ERDF) - a massive landfill for low-level radioactive and hazardous waste at the Hanford site - has achieved a major cleanup milestone. Since beginning operations in 1996, workers supporting the Richland

93

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Removes Nine Metric Tons of Plutonium From Nuclear Weapons Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S. nuclear weapons, signifying the Bush Administration's ongoing commitment to nonproliferation. Nine metric tons of plutonium is enough material to make over 1,000 nuclear weapons. The Secretary made today's announcement while speaking before the International Atomic Energy Agency's annual general conference.

94

Billion-Ton Update: Home-Grown Energy Resources Across the Nation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Billion-Ton Update: Home-Grown Energy Resources Across the Nation Billion-Ton Update: Home-Grown Energy Resources Across the Nation Billion-Ton Update: Home-Grown Energy Resources Across the Nation August 11, 2011 - 3:59pm Addthis Total potential biomass resources by county in the contiguous U.S. from the baseline scenario of the Update (Figure 6.4, page 159) | Map from Billion-Ton Update Total potential biomass resources by county in the contiguous U.S. from the baseline scenario of the Update (Figure 6.4, page 159) | Map from Billion-Ton Update Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy What does this mean for me? With continued developments in biorefinery capacity and technology, the feedstock resources identified in the report could produce about 85 billion gallons of biofuels -- enough to replace approximately 30 percent

95

Linear Extrusion 400 Tons/Day Dry Solids Pump  

Science Conference Proceedings (OSTI)

Pratt & Whitney Rocketdyne (PWR) has developed an innovative gasifier concept that uses rocket engine experience to significantly improve gasifier performance, life, and cost compared to current state-of-the-art systems. The PWR gasifier concept uses a compact and highly efficient (>50%) dry solids pump that has excellent availability (>99.5%). PWR is currently developing this dry solids pump under a U.S. Department of Energy (DOE) cooperative agreement. The conceptual design on two dry solids pumps were completed under this agreement and one pump concept was selected for preliminary design. A preliminary design review (PDR) of the selected pump was presented on September 20, 2007 to PWR management and numerous technical specialists. Feedback from the PDR review team has been factored into the design and a Delta-PDR was held on April 9, 2008.

Kenneth Sprouse; David Matthews

2008-04-30T23:59:59.000Z

96

Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Moab Uranium Mill Tailings Remedial Action The Moab Uranium Mill Tailings Remedial Action Project reached its primary American Recovery and Reinvestment Act milestone ahead of schedule on Wednesday with the disposal of 2 million tons of uranium mill tailings. The project had originally planned to ship 2 million tons of tailings with Recovery Act funds. Now, Recovery Act workers are surpass- ing that goal. "Although shipping 2 million tons was the original Recovery Act goal, we are planning to exceed this goal by shipping about 300,000 tons more using savings resulting from efficiencies we've gained in our first 2 years of moving tailings," Moab Federal Project Director Donald Metzler said. The project is using $108 million from the Recovery Act to move the tailings from the banks of the Colorado River by rail to a permanent

97

Moab Marks 6-Million-Ton Cleanup Milestone | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Marks 6-Million-Ton Cleanup Milestone Moab Marks 6-Million-Ton Cleanup Milestone Moab Marks 6-Million-Ton Cleanup Milestone June 20, 2013 - 12:00pm Addthis At Tuesday's Grand County Council meeting in Utah, Moab Federal Project Director Donald Metzler, center, moves a piece from a plaque representing Moab’s uranium mill tailings pile to a plaque representing the disposal cell in recognition of the site achieving a milestone by shipping 6 million tons of the tailings. Grand County Council Chair Gene Ciarus is on the left and Grand County Council Vice Chair Lynn Jackson is on the right. At Tuesday's Grand County Council meeting in Utah, Moab Federal Project Director Donald Metzler, center, moves a piece from a plaque representing Moab's uranium mill tailings pile to a plaque representing the disposal

98

DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile November 7, 2005 - 12:38pm Addthis Will Be Redirected to Naval Reactors, Down-blended or Used for Space Programs WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's (DOE) National Nuclear Security Administration (NNSA) will remove up to 200 metric tons (MT) of Highly Enriched Uranium (HEU), in the coming decades, from further use as fissile material in U.S. nuclear weapons and prepare this material for other uses. Secretary Bodman made this announcement while addressing the 2005 Carnegie International Nonproliferation Conference in Washington, DC.

99

A Concept for a Scalable 2 kTon Liquid Argon TPC Detector for Astroparticle Physics  

E-Print Network (OSTI)

-module configuration and to its large liquid nitrogen consumption (~1 liquid m3 /hour), the 300-ton geometry purity (UHP) liquefied noble gas and for coping with the engineering and safety issues related

McDonald, Kirk

100

DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mississippi Project Hits 1-Million-Ton Milestone for Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2 DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2 November 5, 2009 - 12:00pm Addthis Washington, DC - A large-scale carbon dioxide (CO2) storage project in Mississippi has become the fifth worldwide to reach the important milestone of more than 1 million tons injected. As a result, it is helping to both further carbon capture and storage (CCS) as a mitigation strategy for global climate change and move forward G-8 recommendations for launching 20 projects of this type internationally by 2010. The project, sponsored by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE), is located at the Cranfield site in Southwestern Mississippi. It is led by the Southeast Regional Carbon Sequestration

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

U.S. Energy Information Administration | Annual Coal Distribution...  

Gasoline and Diesel Fuel Update (EIA)

State, 2012 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke)...

102

U.S. Energy Information Administration | Annual Coal Distribution...  

U.S. Energy Information Administration (EIA) Indexed Site

by Origin State, 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke)...

103

DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin February 27, 2009 - 12:00pm Addthis Washington, D.C. -- Building on an initial injection project of 10,000 metric tons of carbon dioxide (CO2) into a Michigan geologic formation, a U.S. Department of Energy (DOE) team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change. DOE's Midwest Regional Carbon Sequestration Partnership (MRCSP), led by Battelle of Columbus, Ohio, began injecting the CO2 this week in the Michigan Basin near Gaylord, Mich., in a deep saline formation, the Silurian-age Bass Island dolomite. The MRCSP is one of seven partnerships

104

NETL: News Release - DOE Partner Begins Injecting 50,000 Tons of Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

February 27, 2009 February 27, 2009 DOE Partner Begins Injecting 50,000 Tons of Carbon Dioxide in Michigan Basin Project Expected to Advance National Carbon Sequestration Program, Create Jobs Washington, DC-Building on an initial injection project of 10,000 metric tons of carbon dioxide (CO2) into a Michigan geologic formation, a U.S. Department of Energy (DOE) team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change. MORE INFO Learn more about DOE's Regional Carbon Sequestration Partnership Program DOE's Midwest Regional Carbon Sequestration Partnership (MRCSP), led by Battelle of Columbus, Ohio, began injecting the CO2 this week in the

105

NNSA's Global Threat Reduction Initiative Removes More Than One Ton of  

NLE Websites -- All DOE Office Websites (Extended Search)

Removes More Than One Ton of Removes More Than One Ton of Food | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA's Global Threat Reduction Initiative Removes More ... NNSA's Global Threat Reduction Initiative Removes More Than One Ton of Food Posted By Office of Public Affairs Contributing to DOE/NNSA's efforts to support the Office of Personnel

106

U.S. Energy Information Administration | Quarterly Coal Distribution...  

U.S. Energy Information Administration (EIA) Indexed Site

3rd Quarter 2013 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke)...

107

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

1. Estimated rail transportation rates for coal, basin to state, STB data" ,,"Nominal dollars per ton-mile",,,"Annual percent change" "Basin","Destination...

108

Concentration in U.S. air transportation : an analysis of origin-destination markets since deregulation  

E-Print Network (OSTI)

The thesis examined the effects on competition of deregulation in the airline industry by analyzing changes in concentration over the ten-year period 1979-1989 in two sets of origin-destination city-pair markets: the top ...

Van Acker, Jan

1991-01-01T23:59:59.000Z

109

The Arabidopsis TRM1TON1 Interaction Reveals a Recruitment Network Common to Plant Cortical  

E-Print Network (OSTI)

microtubules via its C-terminal TON1 interaction motif. Interestingly, three motifs of TRMs are found in CAP350, a human centrosomal protein interacting with FOP, and the C-terminal M2 motif of CAP350 is responsible., 2006). CAP350 has also been proposed to specifically stabilize Golgi-associated microtubules

Paris-Sud XI, Université de

110

Photo of the Week: An Incredible Journey -- Transporting a 50-ton Magnet |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Incredible Journey -- Transporting a 50-ton An Incredible Journey -- Transporting a 50-ton Magnet Photo of the Week: An Incredible Journey -- Transporting a 50-ton Magnet July 11, 2013 - 4:38pm Addthis The Muon g-2 (pronounced gee minus two) is an experiment that will use the Fermilab accelerator complex to create an intense beam of muons -- a type of subatomic particle -- traveling at the speed of light. The experiment is picking up after a previous muon experiment at Brookhaven National Laboratory, which concluded in 2001. In this photo, the massive electromagnet is beginning its 3,200-mile journey from the woods of Long Island to the plains near Chicago, where scientists at Fermilab will refill its storage ring with muons created at Fermilab’s Antiproton Source. The 50-foot-diameter ring is made of steel, aluminum and superconducting wire. It will travel down the East Coast, around the tip of Florida, and up the Mississippi River to Fermilab in Illinois. Transporting the 50-ton device by truck requires meticulous precision -- just a tilt or a twist of a few degrees could leave the internal wiring irreparably damaged.

111

2 million tons per year: A performing biofuels supply chain for  

E-Print Network (OSTI)

1 2 million tons per year: A performing biofuels supply chain for EU aviation NOTE It is understood that in the context of this text the term "biofuel(s) use in aviation" categorically implies "sustainably produced biofuel(s)" according to the EU legislation. June 2011 #12;2 This technical paper was drafted

112

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry  

SciTech Connect

The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil pri

Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Graham, Robin Lambert [ORNL; Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Turhollow Jr, Anthony F [ORNL; Stokes, Bryce [Navarro Research & Engineering; Brandt, Craig C [ORNL

2011-08-01T23:59:59.000Z

113

Domestic Distribution of U.S. Coal by Origin State, Consumer...  

Gasoline and Diesel Fuel Update (EIA)

Origin State, Consumer, Destination and Method of Transportation Home > Coal > Annual Coal Distribution > Coal Origin Map > Domestic Distribution by Origin: Alaska Data For: 2002...

114

NETL: News Release - DOE-Sponsored Mississippi Project Hits 1-Million-Ton  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2009 5, 2009 DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2 Project Helping Further CCS Technology and Meeting G-8 Goals for Deployment Washington, D.C. -A large-scale carbon dioxide (CO2) storage project in Mississippi has become the fifth worldwide to reach the important milestone of more than 1 million tons injected. As a result, it is helping to both further carbon capture and storage (CCS) as a mitigation strategy for global climate change and move forward G-8 recommendations for launching 20 projects of this type internationally by 2010. MORE INFO Learn more about DOE's Regional Carbon Sequestration Partnership Program Link to SECARB web site The project, sponsored by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE), is located at the Cranfield site in Southwestern

115

Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of soil and debris disposed of from D, H Reactor Areas Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of soil and debris disposed of from D, H Reactor Areas January 11, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE (509) 376-5365, Cameron.Hardy@rl.doe.gov Dieter Bohrmann, Ecology (509) 372-7954, Dieter.Bohrmann@ecy.wa.gov Emerald Laija, EPA (509) 376-4919, Laija.Emerald@epamail.epa.gov RICHLAND, WASH. - Department of Energy (DOE) contractor, Washington Closure Hanford, recently cleaned up 77 waste sites at Hanford to meet two Tri-Party Agreement (TPA) milestones before the end of 2011. The waste sites were located in the D and H Reactor Areas at Hanford along

116

Multicriteria analysis of natural gas destination in Brazil: An application of the TODIM method  

Science Conference Proceedings (OSTI)

This article approaches the problem of selecting the best option for the destination of the natural gas reserves recently discovered in the Mexilhao field in the Santos basin, Brazil. The aims of the study reported here were: (1) to create a mechanism ... Keywords: Energy resources in Brazil, Multicriteria decisions, Natural gas reserves, Prospect Theory, Strategic analysis

Luiz Flavio Autran Monteiro Gomes; Luis Alberto Duncan Rangel; Francisco José Coelho MaranhãO

2009-07-01T23:59:59.000Z

117

Persuading people in a remote destination to sing by beaming there  

Science Conference Proceedings (OSTI)

We built a Collaborative Virtual Environment (CVE) allowing one person, the 'visitor' to be digitally transported to a remote destination to interact with local people there. This included full body tracking, vibrotactile feedback and voice. This allowed ... Keywords: collaborative virtual environments, embodiment, haptic interaction, presence, social touch

Pierre Bourdin; Josep Maria Tomàs Sanahuja; Carlota Crusafon Moya; Patrick Haggard; Mel Slater

2013-10-01T23:59:59.000Z

118

LANNDD -A line of liquid argon TPC detectors scalable in mass from 200 Tons to 100 KTons  

E-Print Network (OSTI)

and to its large liquid nitrogen consumption (~1 liquid m3/hour), the 300-ton geometry and construction required for a detector based on an ultra high purity (UHP) liquefied noble gas and for coping

McDonald, Kirk

119

Chemical reactions of UF{sub 6} with water on ingress to damaged model 48X 10 ton cylinder  

Science Conference Proceedings (OSTI)

Chemistry studies of the effects of water flooding in Model 48X 10-ton UF{sub 6} storage cylinders, as a result of impact fractures, were conducted to support the Safety Analysis Report for Packaging (SARP) review of the Paducah Tiger Overpack for transportation of those cylinders. The objectives of the study were to determine the maximum amount of water that could be admitted to the interior of such a damaged cylinder, the resulting geometries and chemical compositions from reactions of water with the UF{sub 6} contents of the cylinder, and the end-state water moderated and reflected configurations for input to nuclear criticality safety analyses. The case identified for analysis was the flooding of the inside of a cylinder, submerged horizontally in 3 ft of water. The flooding was driven by an initial pressure drop of 13 psig, through an assumed fracture (1/32 in. wide {times} 1/2 in. deep {times} 18 in. long) in the barrel of the cylinder. During the initial addition of water, transient back pressures occur from the effects of the heats of reaction and solution at the water/UF{sub 6} interface, with some chugging as more water is added to alternately coot the reaction surface and then heat it again as the added water reacts with more UF{sub 6}.

Rothman, A.B.

1996-02-01T23:59:59.000Z

120

Table 6. Coal production and number of mines by State and coal...  

U.S. Energy Information Administration (EIA) Indexed Site

Coal production and number of mines by State and coal rank, 2011" "(thousand short tons)" ,"Bituminous",,"Subbituminous",,"Lignite",,"Anthracite",,"Total" "Coal-Producing State and...

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Questions and Answers - How many atoms would it take to create a ton?  

NLE Websites -- All DOE Office Websites (Extended Search)

there in the world? there in the world? Previous Question (How many atoms are there in the world?) Questions and Answers Main Index Next Question (Could you please explain density?) Could you please explain density? How many atoms would it take to create a ton? There's a lot more to this question than first appears. There are many types of atoms and each of them has its own mass, so the answer varies depending on which atom you are talking about. Since even a tiny bit of matter has many atoms, it has become customary to use the unit "mole" to signify a standard number of atoms, namely, it is Avogadro's number which (almost) equals 6*1023, or 600,000 billion billon. If you look up the periodic table of elements, one of the numbers usually listed is the atomic mass which is the mass (in grams) of one mole of those atoms. Let's use

122

Dynamic performance testing of prototype 3 ton air-cooled carrier absorption chiller  

SciTech Connect

The performance of a prototype 3 ton cooling capacity air-cooled lithium bromide/water absorption chiller was tested using an absorption chiller test facility which was modified to expand its testing capabilities to include air-cooled chillers in addition to water-cooled chillers. Temperatures of the three externally supplied fluid loops: hot water, chilled water, and cooling air, were varied in order to determine the effects this would have on the two principal measures of chiller performance: cooling capacity and thermal coefficient of performance (COP). A number of interrelated factors were identified as contributing to less than expected performance. For comparison, experimental correlations of other investigators for this and other similar absorption chillers are presented. These have been plotted as both contour and three-dimensional performance maps in order to more clearly show the functional dependence of the chiller performance on the fluid loop temperatures.

Borst, R.R.; Wood, B.D.

1985-05-01T23:59:59.000Z

123

Background studies for a ton-scale argon dark matter detector (ArDM)  

E-Print Network (OSTI)

The ArDM project aims at operating a large noble liquid detector to search for direct evidence of Weakly Interacting Massive Particles (WIMP) as Dark Matter in the universe. Background sources relevant to ton-scale liquid and gaseous argon detectors, such as neutrons from detector components, muon-induced neutrons and neutrons caused by radioactivity of rock, as well as the internal $^{39}Ar$ background, are studied with simulations. These background radiations are addressed with the design of an appropriate shielding as well as with different background rejection potentialities. Among them the project relies on event topology recognition, event localization, density ionization discrimination and pulse shape discrimination. Background rates, energy spectra, characteristics of the background-induced nuclear recoils in liquid argon, as well as the shielding performance and rejection performance of the detector are described.

L. Kaufmann; A. Rubbia

2006-12-05T23:59:59.000Z

124

Alabama - State Energy Profile Analysis - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

The State also contains one of the world’s largest solid biofuel plants, designed to produce 520,000 metric tons of wood pellets each year, ...

125

APPENDIX A1 Domestic (CONUS) Per Diem Rates -Effective October 1, 2011 State Primary Destination County  

E-Print Network (OSTI)

Date M&IE Rate VT Middlebury Addison $61 VT Montpelier Washington $61 VT Stowe Lamoille October 1 March

126

APPENDIX A1 Domestic (CONUS) Per Diem Rates -Effective October 1, 2012 State Primary Destination County  

E-Print Network (OSTI)

$ 66 VT Manchester Bennington $ 71 VT Middlebury Addison $ 61 VT Montpelier Washington $ 61 VT Stowe

127

APPENDIX A1 Domestic (CONUS) Per Diem Rates -Effective October 1, 2010 State Primary Destination County  

E-Print Network (OSTI)

Manchester Bennington $71 VT Middlebury Addison $61 VT Montpelier Washington $61 VT Stowe Lamoille October 1

128

Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Florida W $38.51 W $140.84 27.3% 134 W 100.0% Florida W $38.51 W $140.84 27.3% 134 W 100.0% Northern Appalachian Basin Georgia - W - W W W - W Northern Appalachian Basin Indiana W $16.14 W $63.35 25.5% 1,681 W 88.5% Northern Appalachian Basin Maryland $20.69 $19.60 -5.3% $74.23 26.4% 4,845 31.9% 97.7% Northern Appalachian Basin Michigan $13.74 $16.13 17.4% $99.82 16.2% 840 32.1% 100.0% Northern Appalachian Basin New Hampshire W $40.18 W $94.03 42.7% 699 W 100.0% Northern Appalachian Basin New Jersey W $32.44 W $89.13 36.4% 1,064 W 47.6% Northern Appalachian Basin New York $21.87 $18.86 -13.8% $59.40 31.7% 2,373 49.3% 91.9%

129

Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware W $28.49 W $131.87 21.6% 59 W 100.0% Delaware W $28.49 W $131.87 21.6% 59 W 100.0% Northern Appalachian Basin Florida W - - - - - - - Northern Appalachian Basin Indiana W $20.35 W $64.82 31.4% 1,715 W 75.9% Northern Appalachian Basin Maryland $19.73 $19.64 -0.4% $81.15 24.2% 4,650 24.8% 99.3% Northern Appalachian Basin Michigan W $14.02 W $76.22 18.4% 713 W 100.0% Northern Appalachian Basin New Hampshire W $43.43 W $90.90 47.8% 499 W 89.6% Northern Appalachian Basin New Jersey W $27.19 W $74.81 36.3% 1,864 W 44.1% Northern Appalachian Basin New York $20.08 $15.26 -24.0% $53.68 28.4% 3,726 39.2% 79.1%

130

Authorized Limits for the Release of a 25 Ton Locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly Facility, Nevada Test Site, Nevada  

SciTech Connect

This document contains process knowledge and radiological data and analysis to support approval for release of the 25-ton locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly (EMAD) Facility, located on the Nevada Test Site (NTS). The 25-ton locomotive is a small, one-of-a-kind locomotive used to move railcars in support of the Nuclear Engine for Rocket Vehicle Application project. This locomotive was identified as having significant historical value by the Nevada State Railroad Museum in Boulder City, Nevada, where it will be used as a display piece. A substantial effort to characterize the radiological conditions of the locomotive was undertaken by the NTS Management and Operations Contractor, National Security Technologies, LLC (NSTec). During this characterization process, seven small areas on the locomotive had contamination levels that exceeded the NTS release criteria (limits consistent with U.S. Department of Energy [DOE] Order DOE O 5400.5, “Radiation Protection of the Public and the Environment”). The decision was made to perform radiological decontamination of these known accessible impacted areas to further the release process. On February 9, 2010, NSTec personnel completed decontamination of these seven areas to within the NTS release criteria. Although all accessible areas of the locomotive had been successfully decontaminated to within NTS release criteria, it was plausible that inaccessible areas of the locomotive (i.e., those areas on the locomotive where it was not possible to perform radiological surveys) could potentially have contamination above unrestricted release limits. To access the majority of these inaccessible areas, the locomotive would have to be disassembled. A complete disassembly for a full radiological survey could have permanently destroyed parts and would have ruined the historical value of the locomotive. Complete disassembly would also add an unreasonable financial burden for the contractor. A decision was reached between the NTS regulator and NSTec, opting for alternative authorized limits from DOE Headquarters. In doing so, NSTec personnel performed a dose model using the DOE-approved modeling code RESRAD-BUILD v3.5 to evaluate scenarios. The parameters used in the dose model were conservative. NSTec’s Radiological Engineering Calculation, REC-2010-001, “Public Dose Estimate from the EMAD 25 Ton Locomotive,” concluded that the four scenarios evaluated were below the 25-millirem per year limit, the “likely” dose scenarios met the “few millirem in a year” criteria, and that the EMAD 25-ton locomotive met the radiological requirements to be released with residual radioactivity to the public.

Jeremy Gwin and Douglas Frenette

2010-04-08T23:59:59.000Z

131

U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013  

U.S. Energy Information Administration (EIA) Indexed Site

Destination Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 1st Quarter 2013 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 807 158 282 - 1,247 Alabama Railroad 449 71 14 - 534 Alabama River 358 - - - 358 Alabama Truck - 87 267 - 354 Colorado Total 204 - - - 204 Colorado Railroad

132

Area wind farm energy production BACKGROUND -In Central New York State, home of the New York State Fair, wind turbine construction has had a noticeable  

E-Print Network (OSTI)

Area wind farm energy production ­ BACKGROUND - In Central New York State, home of the New York State Fair, wind turbine construction has they are then trucked to their destinations, and quite a few wind farms dot the hills. One

Keinan, Alon

133

Microsoft Word - state_analysis_2013  

U.S. Energy Information Administration (EIA) Indexed Site

7 Table 2. 2010 state energy-related carbon dioxide emissions by fuel million metric tons carbon dioxide Shares State Coal Petroleum Natural Gas Total Coal Petroleum Natural Gas Al...

134

Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply  

SciTech Connect

The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

Perlack, R.D.

2005-12-15T23:59:59.000Z

135

Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

Perlack, R.D.

2005-12-15T23:59:59.000Z

136

State  

U.S. Energy Information Administration (EIA) Indexed Site

Biodiesel Producers and Production Capacity by State, September 2013 Biodiesel Producers and Production Capacity by State, September 2013 State Number of Producers Annual Production Capacity (million gallons per year) Alabama 3 47 Alaska - - Arizona 1 2 Arkansas 3 85 California

137

state  

Science Conference Proceedings (OSTI)

NIST. state. (definition). Definition: The condition of a finite state machine or Turing machine at a certain time. Informally, the content of memory. ...

2013-11-08T23:59:59.000Z

138

State  

Science Conference Proceedings (OSTI)

State NIST. Weights and Measures. Laboratories. Program Handbook. NIST Handbook 143. March 2003. Preface. The National ...

2010-11-30T23:59:59.000Z

139

An Evaluation of the image of the Hashemite Kingdom of Jordan in the British and Swedish markets and the implications for marketing the country as a tourism destination.  

E-Print Network (OSTI)

??Tourism image is critical to the success of any destination, but few image studies to date have focused specifically on either Jordan or the UK… (more)

Harahsheh, Salem Salameh

2009-01-01T23:59:59.000Z

140

The Origin, Pathway, and Destination of Niño-3 Water Estimated by a Simulated Passive Tracer and Its Adjoint  

Science Conference Proceedings (OSTI)

The nature of subtropical–tropical water mass exchange in the Pacific Ocean is investigated, focusing on the origin, pathway, and destination of water occupying the surface layer of the eastern equatorial Pacific Ocean (Niño-3 region; 5°S–5°N, ...

Ichiro Fukumori; Tong Lee; Benny Cheng; Dimitris Menemenlis

2004-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Acquisition, filtering and toll data processing system for obtaining origin-destination matrix and travel times on highways  

Science Conference Proceedings (OSTI)

This paper presents an acquisition, filtering and real-time toll data processing system that provides a base for resolution and generation of studies and models of behavior on highways. Crossing points estimation, speed calculation, study traffic flow, ... Keywords: origin-destination matrix, toll data processing, traffic management, travel time

Ramón V. Cirilo Gimeno; Antonio García Celda; Pablo Mir Gómez

2012-05-01T23:59:59.000Z

142

To what extent are regional tourism organisations (RTOs) in Australia leveraging the benefits of web technology for destination marketing and eCommerce?  

Science Conference Proceedings (OSTI)

The information-intensive nature of the tourism and travel industry suggests an important role for Web technology in the promotion and marketing of tourist destinations. The rapid development of the Internet and WWW is having profound impacts on the ... Keywords: Destination marketing, Internet, Regional tourism, World Wide Web, eCommerce, eMICA

Lois Burgess; Belinda Parish; Carole Alcock

2011-09-01T23:59:59.000Z

143

Conceptual design study on incorporating a 25-ton/day pyrolysis unit into an operating total energy system. Final report  

DOE Green Energy (OSTI)

The results of a conceptual design study on incorporating a pyrolysis unit into an existing total energy plant are presented. The objectives of this study were to examine the institutional, technical and economic factors affecting the incorporation of a 25-ton/day pyrolysis unit into the Indian Creek Total Energy Plant. The Indian Creek total energy plant is described. Results of the conceptual design are presented. A survey of the availability of waste materials and a review of health and safety ordinances are included. The technical aspects of the pyrolysis system are discussed, including the results of the review of facilities requirements for the pyrolysis unit, the analysis of necessary system modification, and an estimate of the useful energy contribution by the pyrolysis unit. Results of the life-cycle cost analysis of the pyrolysis unit are presented. The major conclusions are that: there appears to be no institutional or technical barriers to constructing a waste pyrolysis unit at the Indian Creek Total Energy Plant; pyrolysis gas can be consumed in the engines and the boilers by utilizing venturi mixing devices; the engines can consume only 5% of the output of the 25-ton/day pyrolysis unit; Therefore, consumption of pyrolysis gas will be controlled by boiler energy demand patterns; a waste pyrolysis unit is not cost effective at the current natural gas price of $0.90/10/sup 6/ Btu; and pyrolysis is economically attractive at natural gas prices above $3.00/10/sup 6/ Btu.

None

1976-12-13T23:59:59.000Z

144

Message and State Cooperation in a Relay Channel When Only the Relay Knows the State  

E-Print Network (OSTI)

A state-dependent relay channel is studied in which strictly causal channel state information is available at the relay and no state information is available at the source and destination. The source and the relay are connected via two unidirectional out-of-band orthogonal links of finite capacity, and a state-dependent memoryless channel connects the source and the relay, on one side, and the destination, on the other. Via the orthogonal links, the source can convey information about the message to be delivered to the destination to the relay while the relay can forward state information to the source. This exchange enables cooperation between the source and the relay on transmission of message and state information to the destination. First, two achievable schemes are proposed that exploit both message and state cooperation. It is shown that a transmission scheme inspired by noisy network coding performs better than a strategy based on block Markov coding and backward decoding. Next, based on the given achi...

Li, Min; Yener, Aylin

2011-01-01T23:59:59.000Z

145

Methods and results for stress analyses on 14-ton, thin-wall depleted UF{sub 6} cylinders  

Science Conference Proceedings (OSTI)

Uranium enrichment operations at the three US gaseous diffusion plants produce depleted uranium hexafluoride (DUF{sub 6}) as a residential product. At the present time, the inventory of DUF{sub 6} in this country is more than half a million tons. The inventory of DUF{sub 6} is contained in metal storage cylinders, most of which are located at the gaseous diffusion plants. The principal objective of the project is to ensure the integrity of the cylinders to prevent causing an environmental hazard by releasing the contents of the cylinders into the atmosphere. Another objective is to maintain the cylinders in such a manner that the DUF{sub 6} may eventually be converted to a less hazardous material for final disposition. An important task in the DUF{sub 6} cylinders management project is determining how much corrosion of the walls can be tolerated before the cylinders are in danger of being damaged during routine handling and shipping operations. Another task is determining how to handle cylinders that have already been damaged in a manner that will minimize the chance that a breach will occur or that the size of an existing breach will be significantly increased. A number of finite element stress analysis (FESA) calculations have been done to analyze the stresses for three conditions: (1) while the cylinder is being lifted, (2) when a cylinder is resting on two cylinders under it in the customary two-tier stacking array, and (3) when a cylinder is resting on tis chocks on the ground. Various documents describe some of the results and discuss some of the methods whereby they have been obtained. The objective of the present report is to document as many of the FESA cases done at Oak Ridge for 14-ton thin-wall cylinders as possible, giving results and a description of the calculations in some detail.

Kirkpatrick, J.R.; Chung, C.K.; Frazier, J.L.; Kelley, D.K.

1996-10-01T23:59:59.000Z

146

Which states produce the most coal? - FAQ - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Which states produce the most coal? The five largest coal producing states, with production in million short tons, and share of total U.S. coal production, for 2012:

147

Destin Dome 56 Unit development and production plan and right-of-way pipeline application: Draft environmental impact statement. Volume 1: Sections 1--10  

SciTech Connect

The MMS prepared this environmental impact statement (EIS) on Chevron`s plan to drill 20 new wells within the Destin Dome (DD) 56 Unit, to produce up to 450 trillion cubic feet of natural gas per day, and to transport the gas through pipelines to processing plants in Alabama. Volume 1---Section 1 states the reasons for the proposed development of the DD 56 Unit and describes the plan and pipeline in detail. Section 2 describes the proposal, the alternatives, and the mitigation measures. Section 3 describes the physical, biological, and social resources within the DD 56 Unit and in areas from Pascadoula, Mississippi, to Cape San Blas, Florida, that might be affected if Chevron is allowed to go ahead with the plan. This descriptive background information gives the status of these reasons as they are now. Section 4 analyzes the environmental effects that could be anticipated from Chevron`s plan, and a separate analysis of possible and expected effects is done for the resources described in Section 3. Section 5 discusses how the Draft EIS was developed and distributed. Section 6 lists the references cited in the main text. Section 7 lists the people who wrote and worked on the EIS. Section 8 is a glossary of terms used. Section 9 (Appendices) contains technical information, including descriptions of the geology and physical oceanography of the DD 56 Unit.

NONE

1999-08-20T23:59:59.000Z

148

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

SciTech Connect

China's 11th Five-Year Plan (FYP) sets an ambitious target for energy-efficiency improvement: energy intensity of the country's gross domestic product (GDP) should be reduced by 20% from 2005 to 2010 (NDRC, 2006). This is the first time that a quantitative and binding target has been set for energy efficiency, and signals a major shift in China's strategic thinking about its long-term economic and energy development. The 20% energy intensity target also translates into an annual reduction of over 1.5 billion tons of CO2 by 2010, making the Chinese effort one of most significant carbon mitigation effort in the world today. While it is still too early to tell whether China will achieve this target, this paper attempts to understand the trend in energy intensity in China and to explore a variety of options toward meeting the 20% target using a detailed end-use energy model.

Zhou, Nan; Lin, Jiang; Zhou, Nan; Levine, Mark; Fridley, David

2007-07-01T23:59:59.000Z

149

file://C:\Documents%20and%20Settings\ICR\My%20Documents\Coal\Di  

U.S. Energy Information Administration (EIA) Indexed Site

Data For: 2002 Data For: 2002 Next Release Date: Summer 2004 Home > Coal > Annual Coal Distribution > Coal Destination Map > Domestic Distribution by Destination: Alaska Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transportation, 2002 (Thousand Short Tons) State of Origin by Method of Transportation Electricity Generation Coke Plants Industrial Plants (Except Coke) Residential and Commercial Total Destination: Alaska Alaska 376 - - 471 847 Railroad 376 - - 471 847 Truck - - - * * State Total 376 - - 471 847 Railroad 376 - - 471 847 Truck - - - * * See footnotes at end of table. EIA Home Page 1 of 1 Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transpo... Data For: 2002 Next Release Date: Summer 2004

150

By Thomas S. Jones Manganese (Mn) is essential to iron and silicomanganese increased about 7%. consisted of, in tons, natural battery-grade ore,  

E-Print Network (OSTI)

about 7%. consisted of, in tons, natural battery-grade ore, steel production by virtue of its sulfur aluminum alloys and is used in oxide form in dry cell batteries. The overall level and nature of manganese consumption in batteries was denoted by the expansion on schedule of domestic capacity for production

Torgersen, Christian

151

Review of corrosion in 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders  

Science Conference Proceedings (OSTI)

A literature review was conducted to determine the type, extent and severity of corrosion found in the 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders. Also discussed in this review is corrosion found in the valves and plugs used in the cylinders. Corrosion of the cylinders is a gradual process which occurs slowly over time. Understanding corrosion of the cylinders is an important concern for long term storage of the UF{sub 6} in the cylinder yards, as well as the final disposition of the depleted UF{sub 6} tails inventory in the future. The following conclusions are made from the literature review: (1) The general external corrosion rate of the cylinders is about 1 to 2 mils per year (1 mil = 0.001{double_prime}). The highest general external corrosion rate was over 5 mpy on the 48G type cylinders. (2) General internal corrosion from the depleted UF{sub 6} is negligible under normal storage conditions. Crevice corrosion can occur at the cylinder/saddle interface from the retention of water in this area. Crevice corrosion can occur at the cylinder/skirt interface on the older skirted cylinders due to the lack of water drainage in this area. Crevice corrosion can occur on cylinders that have been in ground contact. Crevice corrosion and galvanic corrosion can occur where the stainless steel I.D. nameplates are attached to the cylinder. The packing nuts on the bronze one-inch valves used in the cylinders are susceptible to stress corrosion cracking (SCC). Mechanical damage from routine handling can lead to a breach in a cylinder with subsequent accelerated corrosion of the mild steel due to attack from HF and other UF{sub 6} hydrolysis by-products.

Lykins, M.L.

1995-08-01T23:59:59.000Z

152

U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Destination Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2012 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,837 167 196 - 2,200 Alabama Railroad 1,051 25 10 - 1,087 Alabama River 730 - - - 730 Alabama Truck 56 141 186 - 384 Colorado Total 456 - 16 - 472

153

U.S. Energy Information Administration | Annual Coal Distribution Report 2011  

Gasoline and Diesel Fuel Update (EIA)

Destination Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Annual Coal Distribution Report 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 6,982 679 1,278 - 8,939 Alabama Railroad 4,400 20 286 - 4,706 Alabama River 1,885 - - - 1,885 Alabama Truck 696 659 992 - 2,347 Colorado Total 1,884 2 - - 1,885 Colorado Railroad

154

U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Destination Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2012 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,714 158 238 - 2,110 Alabama Railroad 1,056 12 45 - 1,113 Alabama River 464 - - - 464 Alabama Truck 194 146 193 - 532 Colorado Total 275 - - - 275

155

U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2013  

U.S. Energy Information Administration (EIA) Indexed Site

Destination Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2013 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 2nd Quarter 2013 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,066 210 301 - 1,577 Alabama Railroad 495 116 26 - 638 Alabama River 512 - 2 - 513 Alabama Truck 59 94 273 - 426 Colorado Total 97 - - - 97 Colorado

156

U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Destination Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 4th Quarter 2012 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,226 162 274 - 1,662 Alabama Railroad 803 17 22 - 842 Alabama River 384 - - - 384 Alabama Truck 39 144 252 - 436 Colorado Total 301 - 25 - 326 Colorado

157

United States country report for IEA integrated bioenergy systems activity  

SciTech Connect

This paper describes efforts to model hybrid poplar and switchgrass production costs and supply curves. Estimates of the full economic cost of producing switchgrass bales and hybrid poplar chips in six US regions are presented. Average production costs vary by region and yield, ranging from $US 25 to $62/dry ton for switchgrass bales and $US 30 to $86/dry ton for poplar chips. Biomass prices are generally lower for switchgrass than for hybrid poplar, and are higher in the Lake States and Corn Belt than for other regions. Estimated national biomass supply curves are also presented. Assuming average US yields of 5 dry ton/acre/year, approximately 300 million dry tons of switchgrass could be supplied nationally at farm-gate prices of less than $30/dry ton. Approximately 250 million dry tons of woody crops can be potentially supplied nationally at farm-gate prices of less than $40/dry ton. This is enough biomass to produce 24 to 33 billion gallons of ethanol at a feedstock price of $0.36 to $0.63/gal (depending on conversion efficiency), or 600 billion kWh at a price of $0.04 to $0.05/kWh.

Walsh, M.E.

1995-09-22T23:59:59.000Z

158

DOE Hydrogen and Fuel Cells Program Record 11002: Number of Cars Equivalent to 100 Metric Tons of Avoided Greenhouse Gases per Year  

NLE Websites -- All DOE Office Websites (Extended Search)

02 Date: January 5, 2011 02 Date: January 5, 2011 Title: Number of Cars Equivalent to 100 Metric Tons of Avoided Greenhouse Gases per Year Originator: Andrea Chew & Tien Nguyen Approved by: Sunita Satyapal Date: January 25, 2011 A conventional mid-size gasoline car emits 0.45 kg of greenhouse gases (GHG) per mile. 1 One hundred (100) metric tons (t) of GHG per year are equivalent to emissions from 17 conventional gasoline cars. Item: The GHG emissions cited above are from an analysis record prepared by the Department of Energy's Fuel Cell Technologies and Vehicle Technologies Programs on life-cycle emissions of greenhouse gases and petroleum use for several light-duty vehicles. 1 For cars that are between 1 and 5 years old, the average mileage is approximately 13,000,

159

Investigations on catalyzed steam gasification of biomass: feasibility study of methanol production via catalytic gasification of 200 tons of wood per day  

DOE Green Energy (OSTI)

This report is a result of an additional study made of the economic feasibility of producing fuel grade methanol from wood via catalytic gasification with steam. The report has as its basis the original 2000 tons of wood per day study generated from process development unit testing performed by the Pacific Northwest Laboratory (PNL). The goal of this additional work was to determine the feasibility of a smaller scale plant one tenth the size of the original or 200 tons of dry wood feed per day. Plant production based on this wood feed is 100 tons per day of methanol with a HHV of 9784 Btu per pound. All process and support facilities necessary to convert wood to methanol are included in this study. The plant location is Newport, Oregon. The capital cost for the plant is $34,830,000 - September 1980 basis. Methanol production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. These wood costs include delivery to the plant. For utility financing, the methanol production costs are, respectively, $1.20, $1.23, $1.30, and $1.44 per gallon for wood costs of $5, $10, $20, and $40 per dry ton. For private investor financing, the corresponding product costs are $1.60, $1.63, $1.70, and $1.84 per gallon for the corresponding wood costs. The costs calculated by the utility financing method include a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency of the plant is 52.0%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

160

Investigations on catalyzed steam gasification of biomass. Appendix B: feasibility study of methanol production via catalytic gasification of 2000 tons of wood per day  

SciTech Connect

A study has been made of the economic feasibility of producing fuel grade methanol from wood via catalytic gasification with steam. The plant design in this study was developed from information on gasifier operation supplied by the Pacific Northwest Laboratory (PNL), operated by Battelle. PNL obtained this information from laboratory and process development unit testing. The plant is designed to process 2000 tons per day of dry wood to methanol. Plant production is 997 tons per day of methanol with a HHV of 9784 Btu per pound. All process and support facilities necessary to convert wood to methanol are included in this study. The plant location is Newport, Oregon. The capital cost for the plant is $120,830,000 - September 1980 basis. Methanol production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. These wood costs include delivery to the plant. For utility financing, the methanol production costs are respectively $.45, $.48, $.55, and $.69 per gallon for wood costs of $5, $10, $20, and $40 per dry ton. For private investor financing, the corresponding product costs are $.59, $.62, $.69, and $.83 per gallon for the corresponding wood costs. Both calculation methods include a return on equity capital in the costs. The thermal efficiency of the plant is 52.9%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Helium-Based Soundwave Chiller: Trillium: A Helium-Based Sonic Chiller- Tons of Freezing with 0 GWP Refrigerants  

SciTech Connect

BEETIT Project: Penn State is designing a freezer that substitutes the use of sound waves and environmentally benign refrigerant for synthetic refrigerants found in conventional freezers. Called a thermoacoustic chiller, the technology is based on the fact that the pressure oscillations in a sound wave result in temperature changes. Areas of higher pressure raise temperatures and areas of low pressure decrease temperatures. By carefully arranging a series of heat exchangers in a sound field, the chiller is able to isolate the hot and cold regions of the sound waves. Penn State’s chiller uses helium gas to replace synthetic refrigerants. Because helium does not burn, explode or combine with other chemicals, it is an environmentally-friendly alternative to other polluting refrigerants. Penn State is working to apply this technology on a large scale.

None

2010-09-01T23:59:59.000Z

162

The development of short sea shipping in the United States : a dynamic alternative  

E-Print Network (OSTI)

Current projections show that U.S. international trade is expected to reach nearly two billion tons by 2020, approximately double today's level. With such a large forecasted growth in trade coming through the United States ...

Connor, Peter H. (Peter Harold)

2004-01-01T23:59:59.000Z

163

A nuclear criticality safety assessment of the loss of moderation control in 2 1/2 and 10-ton cylinders containing enriched UF sub 6  

Science Conference Proceedings (OSTI)

Moderation control for maintaining nuclear criticality safety in 2-1/2-ton, 10-ton, and 14-ton cylinders containing enriched uranium hexafluoride (UF{sub 6}) has been used safely within the nuclear industry for over thirty years, and is dependent on cylinder integrity and containment. This assessment evaluates the loss of moderation control by the breaching of containment and entry of water into the cylinders. The first objective of this study was to estimate the required amounts of water entering these large UF{sub 6} cylinders to react with, and to moderate the uranium compounds sufficiently to cause criticality. Hypothetical accident situations were modeled as a uranyl fluoride (UO{sub 2}F{sub 2}) slab above a UF{sub 6} hemicylinder, and a UO{sub 2} sphere centered within a UF{sub 6} hemicylinder. These situations were investigated by computational analyses utilizing the KENO V.a Monte Carlo Computer Code. The results were used to estimate both the masses of water required for criticality, and the limiting masses of water that could be considered safe. The second objective of the assessment was to calculate the time available for emergency control actions before a criticality would occur, i.e., a safetime,'' for various sources of water and different size openings in a breached cylinder. In the situations considered, except the case for a fire hose, the safetime appears adequate for emergency control actions. The assessment shows that current practices for handling moderation controlled cylinders of low enriched UF{sub 6}, along with the continuation of established personnel training programs, ensure nuclear criticality safety for routine and emergency operations. 2 refs., 5 figs., 1 tab.

Newvahner, R.L. (Portsmouth Gaseous Diffusion Plant, OH (United States)); Pryor, W.A. (PAI Corp., Oak Ridge, TN (United States))

1991-08-16T23:59:59.000Z

164

Investigations on catalyzed steam gasification of biomass: feasibility study of methane production via catalytic gasification of 200 tons of wood per day  

DOE Green Energy (OSTI)

This report is a result of an additional study made of the economic feasibility of producing substitute natural gas (SNG) from wood via catalytic gasification with steam. The report has as its basis the original 2000 tons of wood per day study generated from process development unit testing performed by the Pacific Northwest Laboratory. The goal of this additional work was to determine the feasibility of a smaller scale plant one-tenth the size of the original or 200 tons of dry wood feed per day. Plant production based on this wood feed is 2.16 MM Scfd of SNG with a HHV of 956 Btu per Scf. All process and support facilities necessary to convert wood to SNG are included in this study. The plant location is Newport, Oregon. The capital cost for the plant is $26,680,000 - September 1980 basis. Gas production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. These wood prices represent the cost of unchipped wood delivered to the plant site. For utility financing, the gas production costs are, respectively, $14.34, $14.83, $15.86, and $17.84 per MM Btu for wood costs of $5, $10, $20, and $40 per dry ton. For private investor financing, the corresponding product costs are $18.76, $19.26, $20.28, and $22.31 per MM Btu for the corresponding wood costs. The costs calculated by the utility financing method includes a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency without taking an energy credit for char is 57.4%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

165

Scale-up of mild gasification to be a process development unit mildgas 24 ton/day PDU design report. Final report, November 1991--July 1996  

Science Conference Proceedings (OSTI)

From November 1991 to April 1996, Kerr McGee Coal Corporation (K-M Coal) led a project to develop the Institute of Gas Technology (IGT) Mild Gasification (MILDGAS) process for near-term commercialization. The specific objectives of the program were to: design, construct, and operate a 24-tons/day adiabatic process development unit (PDU) to obtain process performance data suitable for further design scale-up; obtain large batches of coal-derived co-products for industrial evaluation; prepare a detailed design of a demonstration unit; and develop technical and economic plans for commercialization of the MILDGAS process. The project team for the PDU development program consisted of: K-M Coal, IGT, Bechtel Corporation, Southern Illinois University at Carbondale (SIUC), General Motors (GM), Pellet Technology Corporation (PTC), LTV Steel, Armco Steel, Reilly Industries, and Auto Research.

NONE

1996-03-01T23:59:59.000Z

166

1997 EMC: Destination Information  

Science Conference Proceedings (OSTI)

It is one of 68 land grant institutions established under the Morrill Act of 1862. As Colorado's land-grant university, CSU serves approximately 22,000 regular, ...

167

Superalloys 2000: Destination Information  

Science Conference Proceedings (OSTI)

Directions to the resort are available on the Seven Springs web site including distances to the resort from several nearby cities. Bus Transportation: Conference  ...

168

Investigations on catalyzed steam gasification of biomass. Appendix A. Feasibility study of methane production via catalytic gasification of 2000 tons of wood per day  

DOE Green Energy (OSTI)

A study has been made of the economic feasibility of producing substitute natural gas (SNG) from wood via catalytic gasification with steam. The plant design in this study was developed from information on gasifier operation supplied by the Pacific Northwest Laboratory (PNL). The plant is designed to process 2000 tons per day of dry wood to SNG. Plant production is 21.6 MM scfd of SNG with a HHV of 956 Btu per scf. All process and support facilities necessary to convert wood to SNG are included. The plant location is Newport, Oregon. The capital cost for the plant is $95,115,000 - September, 1980 basis. Gas production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. For utility financing, the gas production costs are respectively $5.09, $5.56, $6.50, and $8.34 per MM Btu for wood costs of $5, $10, $20, and $40 per dry ton delivered to the plant at a moisture content of 49.50 wt %. For private investor financing, the corresponding product costs are $6.62, $7.11, $8.10, and $10.06 per MM Btu. The cost calculated by the utility financing method includes a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency without taking an energy credit for by-product char is 58.3%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

169

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

9. Estimated rail transportation rates for coal, state to state, 2008" 9. Estimated rail transportation rates for coal, state to state, 2008" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin State","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Alabama","Alabama"," W"," $14.43",," W",," $65.38"," 22.1%"," 4,509"," W"," 81.8%"

170

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

0. Estimated rail transportation rates for coal, state to state, 2009" 0. Estimated rail transportation rates for coal, state to state, 2009" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin State","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Alabama","Alabama"," W"," $13.59",," W",," $63.63"," 21.4%"," 3,612"," W"," 100.0%"

171

Table 39. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2003  

U.S. Energy Information Administration (EIA) Indexed Site

State/Refiner/Location Alkylates Aromatics State/Refiner/Location Alkylates Aromatics Isobutane Lubricants Isomers Isopentane and Isohexane Asphalt and Road Oil Marketable Petroleum Coke Hydrogen (MMcfd) Sulfur (short tons per day) Table 4. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2013 (Barrels per Stream Day, Except Where Noted) Isooctane a

172

Saving Tons at the Register  

NLE Websites -- All DOE Office Websites (Extended Search)

Brown, and Max H. Sherman Conference Name Proceedings of the 1998 ACEEE Summer Study on Energy Effciency in Buildings, Pacific Grove, CA Volume 1 Pagination 367-383 Publisher...

173

Prairie State begins development work  

SciTech Connect

Lively Grove will be a state-of-the-art super section mine which will supply 6.7 million tons of bituminous coal per annum to a 1,600 MWS supercritical plant which is expected to begin generation electricity in 2011/2012. The projected cost of Prairie State Energy Campus is over $4 billion. The power plant will be 15% more efficient that similar sized plants and could be a model plant for the industry. The article describes the development plans which are 10% complete. 2 photos.

Buchsbaum, L.

2008-12-15T23:59:59.000Z

174

Energy resources of the United States  

DOE Green Energy (OSTI)

Estimates are made of United States resources of coal, petroleum liquids, natural gas, uranium, geothermal energy, and oil from oil shale. Accuracy of the estimates probably ranges from 20 to 50 percent for identified-recoverable resources to about an order of magnitude for undiscovered-submarginal resources. The total cost resource base in the United States is estimated to be about 3,200 billion tons, of which 200 to 390 billion tons can be considered in the category identified and recoverable. It is estimated that the total resource base for petroleum liquids is about 2,900 billion barrels, of which 52 billion barrels is identified and recoverable. Of the total resource base, some 600 billion barrels is in Alaska or offshore from Alaska, 1,500 billion barrels is offshore from the United States, and 1,300 billion barrels is onshore in the conterminous United States. Identified-recoverable resources of petroleum liquids corresponding to these geographic units are 11, 6, and 36 billion barrels, respectively. The total natural gas resource of the United States is estimated to be about 6,600 trillion cubic feet, of which 290 trillion cubic feet is identified and recoverable. Uranium resources in conventional deposits, where uranium is the major product, are estimated at 1,600,000 tons of U/sub 3/O/sub 8/, of which 250,000 tons is identified and recoverable. The resources of heat in potential geothermal energy sources are estimated to be greater than 10/sup 22/ calories, of which only 2.5 x 10/sup 18/ calories can be considered identified and recoverable at present. Oil shale is estimated to contain 26 trillion barrels of oil. None of this resource is economic at present, but if prices increase moderately, 160 to 600 billion barrels of this oil could be shifted into the identified-recoverable category.

Theobald, P.K.; Schweinfurth, S.P.; Duncan, D.C.

1972-01-01T23:59:59.000Z

175

Selected State Legislation and  

Gasoline and Diesel Fuel Update (EIA)

and and Selected State Legislation and Regulation in the Annual Energy Outlook Energy Information Administration/Assumptions to the Annual Energy Outlook 2007 156 Appendix A: Handling of Federal and Selected State Legislation and Regulation in the Annual Energy Outlook Legislation Brief Description AEO Handling Basis Residential Sector A. National Appliance Energy Conservation Act of 1987 Requires Secretary of Energy to set minimum efficiency standards for 10 appliance categories. Included for categories represented in the AEO residential sector forecast. a. Room Air Conditioners Current standard of 9.8 EER Federal Register Notice of Final Rulemaking. b. Other Air Conditioners (<5.4 tons) Current standard 10 SEET for central air conditioners and heat

176

Selected State Legislation and  

Gasoline and Diesel Fuel Update (EIA)

and and Selected State Legislation and Regulation in the Annual Energy Outlook U. S. Energy Information Administration/Assumptions to the Annual Energy Outlook 2009 173 Appendix A: Handling of Federal and Selected State Legislation and Regulation in the Annual Energy Outlook Legislation Brief Description AEO Handling Ba sis Residential Sector A. National Appliance Energy Conservation Act of 1987 Requires Secretary of Energy to set minimum efficiency standards for 10 appliance categories. Included for categories represented in the AEO residential sector forecast. a. Room Air Conditioners Current standard of 9.8 EER Federal Register Notice of Final Rulemaking. b. Other Air Conditioners (<5.4 tons) Current standard 10 SEET for central air conditioners and heat

177

SO2907, A Putative TonB-dependent Receptor, Is Involved in Dissimilatory Iron Reduction by Shewanella oneidensis Strain MR-1  

Science Conference Proceedings (OSTI)

Shewanella oneidensis strain MR-1 utilizes soluble and insoluble ferric ions as terminal electron acceptors during anaerobic respiration. The components of respiratory metabolism are localized in the membrane fractions which include the outer membrane and cytoplasmic membrane. Many of the biological components that interact with the various iron forms are proposed to be localized in these membrane fractions. To identify the iron-binding proteins acting either as an iron transporter or as a terminal iron reductase, we used metal-catalyzed oxidation reactions. This system catalyzed the oxidation of amino acids in close proximity to the iron binding site. The carbonyl groups formed from this oxidation can then be labeled with fluoresceinamine (FLNH2). The peptide harboring the FLNH2 can then be proteolytically digested, purified by HPLC and then identified by MALDI-TOF tandem MS. A predominant peptide was identified to be part of SO2907 that encodes a putative TonB-dependent receptor. Compared to wild type (wt), the so2097 gene deletion (?SO2907) mutant has impaired ability to reduce soluble Fe(III), but retains the same ability to respire oxygen or fumarate as the wt. The ?SO2907 mutant was also impacted in reduction of insoluble iron. Iron binding assays using isothermal titration calorimetry and fluorescence tryptophan quenching demonstrated that a truncated form of heterologous-expressed SO2907 that contains the Fe(III) binding site, is capable of binding soluble Fe(III) forms with Kd of approximate 50 ?M. To the best of our knowledge, this is the first report of the physiological role of SO2907 in Fe(III) reduction by MR-1.

Qian, Yufeng; Shi, Liang; Tien, Ming

2011-09-30T23:59:59.000Z

178

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

1. Estimated rail transportation rates for coal, basin to state, 2008" 1. Estimated rail transportation rates for coal, basin to state, 2008" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin Basin","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Northern Appalachian Basin","Delaware"," W"," $28.49",," W",," $131.87"," 21.6%", 59," W"," 100.0%"

179

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

2. Estimated rail transportation rates for coal, basin to state, 2009" 2. Estimated rail transportation rates for coal, basin to state, 2009" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin Basin","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Northern Appalachian Basin","Florida"," W"," $38.51",," W",," $140.84"," 27.3%", 134," W"," 100.0%"

180

Selected State Legislation and  

Gasoline and Diesel Fuel Update (EIA)

170 170 Energy Information Administration/Assumptions to the Annual Energy Outlook 2009 Appendix A: Handling of Federal and Selected State Legislation and Regulation in the Annual Energy Outlook Legislation Brief Description AEO Handling Basis Residential Sector A. National Appliance Energy Conservation Act of 1987 Requires Secretary of Energy to set minimum efficiency standards for 10 appliance categories. Included for categories represented in the AEO residential sector forecast. a. Room Air Conditioners Current standard of 9.8 EER Federal Register Notice of Final Rulemaking. b. Other Air Conditioners (<5.4 tons) Current standard 10 SEET for central air conditioners and heat pumps, increasing to 13 SEER in 2006. Federal Register Notice of Final Rulemaking.

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

8. Estimated truck transportation rates for coal, state to state, EIA data" 8. Estimated truck transportation rates for coal, state to state, EIA data" ,,"Real dollars per ton",,,,"Annual percent change" "Origin State","Destination State",2008,2009,2010,," 2008-2010"," 2009-2010" "Alabama","Alabama"," W"," W"," W",," W"," W" "Alabama","Georgia"," -"," -"," W",," -"," -" "Alabama","Indiana"," W"," W"," -",," -"," -" "Colorado","Colorado"," W"," W"," W",," W"," W"

182

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

7. Estimated truck transportation rates for coal, state to state, EIA data" 7. Estimated truck transportation rates for coal, state to state, EIA data" ,,"Nominal dollars per ton",,,,"Annual percent change" "Origin State","Destination State",2008,2009,2010,," 2008-2010"," 2009-2010" "Alabama","Alabama"," W"," W"," W",," W"," W" "Alabama","Georgia"," -"," -"," W",," -"," -" "Alabama","Indiana"," W"," W"," -",," -"," -" "Colorado","Colorado"," W"," W"," W",," W"," W"

183

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

3. Estimated rail transportation rates for coal, state to state, STB data" 3. Estimated rail transportation rates for coal, state to state, STB data" ,,"Nominal dollars per ton",,,,,,,,,,"Annual percent change" "Origin State","Destination State",2001,2002,2003,2004,2005,2006,2007,2008,2009,," 2001-2009"," 2008-2009" "Alabama","Alabama"," W"," W"," W"," W"," W"," W"," W"," W"," W",," W"," W" "Alabama","Georgia"," W"," W"," W"," W"," W"," W"," W"," W"," W",," W"," W"

184

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

4. Estimated rail transportation rates for coal, state to state, STB data" 4. Estimated rail transportation rates for coal, state to state, STB data" ,,"Real dollars per ton",,,,,,,,,,"Annual percent change" "Origin State","Destination State",2001,2002,2003,2004,2005,2006,2007,2008,2009,," 2001-2009"," 2008-2009" "Alabama","Alabama"," W"," W"," W"," W"," W"," W"," W"," W"," W",," W"," W" "Alabama","Georgia"," W"," W"," W"," W"," W"," W"," W"," W"," W",," W"," W"

185

Spent fuel transportation in the United States: commercial spent fuel shipments through December 1984  

Science Conference Proceedings (OSTI)

This report has been prepared to provide updated transportation information on light water reactor (LWR) spent fuel in the United States. Historical data are presented on the quantities of spent fuel shipped from individual reactors on an annual basis and their shipping destinations. Specifically, a tabulation is provided for each present-fuel shipment that lists utility and plant of origin, destination and number of spent-fuel assemblies shipped. For all annual shipping campaigns between 1980 and 1984, the actual numbers of spent-fuel shipments are defined. The shipments are tabulated by year, and the mode of shipment and the casks utilized in shipment are included. The data consist of the current spent-fuel inventories at each of the operating reactors as of December 31, 1984. This report presents historical data on all commercial spent-fuel transportation shipments have occurred in the United States through December 31, 1984.

Not Available

1986-04-01T23:59:59.000Z

186

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

United States: Energy Resources United States: Energy Resources (Redirected from United States of America) Jump to: navigation, search Click on a state to view that state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA Numeric ISO code 840 UN Region[1] Northern America OpenEI Resources Energy Maps 1143 view Tools 94 view Programs 25 view Energy Organizations 8947 view Research Institutions 128 view References CIA World Factbook, Appendix D[2] Energy Resources Resource Value Units Rank Period Source Wind Potential 2,237,435 Area(km²) Class 3-7 Wind at 50m 3 1990 NREL Solar Potential 24,557,081,451 MWh/year 6 2008 NREL Coal Reserves 260,551.00 Million Short Tons 1 2008 EIA

187

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

United States: Energy Resources United States: Energy Resources Jump to: navigation, search Click on a state to view that state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA Numeric ISO code 840 UN Region[1] Northern America OpenEI Resources Energy Maps 1143 view Tools 94 view Programs 25 view Energy Organizations 8947 view Research Institutions 128 view References CIA World Factbook, Appendix D[2] Energy Resources Resource Value Units Rank Period Source Wind Potential 2,237,435 Area(km²) Class 3-7 Wind at 50m 3 1990 NREL Solar Potential 24,557,081,451 MWh/year 6 2008 NREL Coal Reserves 260,551.00 Million Short Tons 1 2008 EIA Natural Gas Reserves 6,928,000,000,000 Cubic Meters (cu m) 6 2010 CIA World Factbook

188

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

United States: Energy Resources United States: Energy Resources (Redirected from USA) Jump to: navigation, search Click on a state to view that state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA Numeric ISO code 840 UN Region[1] Northern America OpenEI Resources Energy Maps 1143 view Tools 94 view Programs 25 view Energy Organizations 8947 view Research Institutions 128 view References CIA World Factbook, Appendix D[2] Energy Resources Resource Value Units Rank Period Source Wind Potential 2,237,435 Area(km²) Class 3-7 Wind at 50m 3 1990 NREL Solar Potential 24,557,081,451 MWh/year 6 2008 NREL Coal Reserves 260,551.00 Million Short Tons 1 2008 EIA

189

Evaluation of Escherichia coli O157:H7 Translocation and Decontamination for Beef Vacuum-packaged Subprimals Destined for Non-intact Use  

E-Print Network (OSTI)

The translocation of Escherichia coli O157:H7 as well as the impact of water washing and partial or complete surface trimming as possible pathogen reduction strategies were evaluated for vacuum-packaged beef subprimals destined for non-intact use. Cap-on and cap-off beef top sirloin butts were inoculated with two levels of E. coli O157:H7! a high-inoculum at approximately 10^4 CFU/cm^2 and a low-inoculum at approximately 10^2 CFU/cm^2. Following inoculation, the subprimals were vacuum packaged and stored for either 0, 14, or 28 days. Upon opening, the following sites were evaluated: exterior of the bag, purge, the inoculation site on the subprimal, the area adjacent to the inoculation site, and the surface opposite from the inoculation site. The following treatments then were applied: water wash, water wash followed by full-surface trimming, water wash followed by partial-surface trimming, full-surface trimming, full-surface trimming followed by water wash, partial-surface trimming, and partial-surface trimming followed by water wash. For both high and low inoculated top sirloin butts, contamination of adjacent and opposite surfaces was found after vacuum packaging. Of the treatments applied, water washing alone and partial-surface trimming were the least effective for both high and low inoculated subprimals. Full trimming, with or without a water wash, proved to be the most effective treatment used to reduce E. coli O157:H7 to non-detectable levels.

Lemmons, Jacob Lynn

2011-05-01T23:59:59.000Z

190

The Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada, was the site for a 12-kiloton-ton nuclear test  

Office of Legacy Management (LM)

NV/13609-53 NV/13609-53 Development of a Groundwater Management Model for the Project Shoal Area prepared by Gregg Lamorey, Scott Bassett, Rina Schumer, Douglas P. Boyle, Greg Pohll, and Jenny Chapman submitted to Nevada Site Office National Nuclear Security Administration U.S. Department of Energy Las Vegas, Nevada September 2006 Publication No. 45223 Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. Available for sale to the public, in paper, from: U.S. Department of Commerce

191

EIA - AEO2010 - Updated State air emissions regulations  

Gasoline and Diesel Fuel Update (EIA)

Updated State air emissions regulations Updated State air emissions regulations Annual Energy Outlook 2010 with Projections to 2035 Updated State air emissions regulations Regional Greenhouse Gas Initiative The Regional Greenhouse Gas Initiative (RGGI) is a program that includes 10 Northeast States that have agreed to curtail and reverse growth in their CO2 emissions. The RGGI program includes all electricity generating units with a capacity of at least 25 mega-watts and requires an allowance for each ton of CO2 emitted [30]. The first year of mandatory compliance was in 2009. Each participating State was provided a CO2 budget consisting of a history-based baseline with a cushion for emissions growth, so that meeting the cap is expected to be relatively easy initially and become more stringent in subsequent years. The requirements are expected to cover 95 percent of CO2 emissions from the region's electric power sector. Overall, the RGGI States as a whole must maintain covered emissions at a level of 188 million tons CO2 for the next 4 years, after which a mandatory 2.5-percent annual decrease in CO2 emissions through 2018 is expected to reduce the total for covered CO2 emissions in the RGGI States to 10 percent below the initial calculated bud-get. Although each State was given its own emissions budget, allowances are auctioned at a uniform price across the entire region.

192

Weekly Coal Production by State  

U.S. Energy Information Administration (EIA) Indexed Site

Weekly Coal Production Weekly Coal Production Data for week ended: December 14, 2013 | Release date: December 19, 2013 | Next release date: December 30, 2013 For the week ended December 14, 2013: U.S. coal production totaled approximately 18.9 million short tons (mmst) This production estimate is 3.1% higher than last week's estimate and 2.9% lower than the production estimate in the comparable week in 2012 Coal production east of the Mississippi River totaled 8.2 mmst Coal production west of the Mississippi River totaled 10.8 mmst U.S. year-to-date coal production totaled 957.1 mmst, 1.9% lower than the comparable year-to-date coal production in 2012 EIA revises its weekly estimates of state-level coal production using Mine Safety and Health Administration (MSHA) quarterly coal production data.

193

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

3. Estimated rail transportation rates for coal, basin to state, EIA data" 3. Estimated rail transportation rates for coal, basin to state, EIA data" ,,"Nominal dollars per ton",,,,"Annual percent change" "Basin","Destination State",2008,2009,2010,," 2008-2010"," 2009-2010" "Northern Appalachian Basin","Delaware"," $28.49"," -"," W",," W"," -" "Northern Appalachian Basin","Florida"," -"," $38.51"," $39.67",," -", 3.0 "Northern Appalachian Basin","Georgia"," -"," W"," -",," -"," -"

194

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

4. Estimated rail transportation rates for coal, basin to state, EIA data" 4. Estimated rail transportation rates for coal, basin to state, EIA data" ,,"Real dollars per ton",,,,"Annual percent change" "Basin","Destination State",2008,2009,2010,," 2008-2010"," 2009-2010" "Northern Appalachian Basin","Delaware"," $26.24"," -"," W",," W"," -" "Northern Appalachian Basin","Florida"," -"," $35.10"," $35.74",," -", 1.8 "Northern Appalachian Basin","Georgia"," -"," W"," -",," -"," -"

195

file://C:\Documents%20and%20Settings\TTH\Local%20Settings\Tempo  

U.S. Energy Information Administration (EIA) Indexed Site

Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2003 Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2003 (Thousand Short Tons) ORIGIN: Alabama State of Destination by Method of Transportation Electricity Generation (Except Coke) Coke Plants Industrial Plants (Except Coke) Residential and Commercial Total Alabama 459 441 13,708 3 14,610 Railroad 312 - 8,555 - 8,868 Tramway, Conveyor, and Slurry Pipeline 36 189 3,763 - 3,988 Truck 111 252 1,389 3 1,755 Arkansas - - 6 - 6 Truck - - 6 - 6 Georgia 995 - - - 995 Railroad 995 - - - 995 Illinois - - 87 - 87 Railroad - - 87 - 87 Indiana - 811 - - 811 Railroad - 811 - - 811 Maryland - - - * * Truck - - - * * Mississippi - - 47 - 47 Truck - - 47 - 47 Pennsylvania - 17 - - 17 Railroad - 17 - - 17 Tennessee - - 7 - 7 Truck - - 7 - 7 Unknown State - - - - 1 56 Unknown - - - - 1 56 State Total 1,454

196

Table 16. Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method,  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Table 16. Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Continuous 1 Conventional and Other 2 Longwall 3 Total Coal-Producing State Recoverable Coal Reserves at Producing Mines Average Recovery Percentage Recoverable Coal Reserves at Producing Mines Average Recovery Percentage Recoverable Coal Reserves at Producing Mines Average Recovery Percentage Recoverable Coal Reserves at Producing Mines Average Recovery Percentage

197

State Agencies  

NLE Websites -- All DOE Office Websites (Extended Search)

Agencies Beatrice State Developmental Center, Nebraska Black Hills State University, SD, South Dakota Fergus Falls State Hospital, Minnesota Hastings Regional Center, Nebraska...

198

Most U.S. coal exports went to European and Asian markets in 2011 ...  

U.S. Energy Information Administration (EIA)

South Korea (10 million short tons) ranked in the top 10 destinations for both U.S. metallurgical coal exports and steam coal exports. In fact, ...

199

Table 23. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Mining Productivity by State, Mine Type, and Mine Production Range, 2012 Mining Productivity by State, Mine Type, and Mine Production Range, 2012 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2012 Table 23. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2012 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2012 Mine Production Range (thousand short tons) Coal-Producing State, Region 1 and Mine Type Above 1,000 Above 500 to 1,000 Above 200 to 500 Above 100 to 200 Above 50 to 100 Above 10 to 50 10 or Under Total 2 Alabama 1.69 2.50 1.95 1.72 1.83 0.69 0.55 1.68 Underground 1.73 - - - 1.08 0.31 - 1.64 Surface 1.36 2.50 1.95 1.72 2.11 1.19 0.55 1.75 Alaska 5.98 - - - - - - 5.98 Surface 5.98 - - - - - - 5.98 Arizona 7.38 - - - - - - 7.38 Surface

200

Baldrige Impacts, State by State  

Science Conference Proceedings (OSTI)

... Several states are providing coverage for other states without current programs. To learn more about impacts and benefits in each state select a ...

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Ongoing Space Nuclear Systems Development in the United States  

DOE Green Energy (OSTI)

Reliable, long-life power systems are required for ambitious space exploration missions. Nuclear power and propulsion options can enable a bold, new set of missions and introduce propulsion capabilities to achieve access to science destinations that are not possible with more conventional systems. Space nuclear power options can be divided into three main categories: radioisotope power for heating or low power applications; fission power systems for non-terrestrial surface application or for spacecraft power; and fission power systems for electric propulsion or direct thermal propulsion. Each of these areas has been investigated in the United States since the 1950s, achieving various stages of development. While some nuclear systems have achieved flight deployment, others continue to be researched today. This paper will provide a brief overview of historical space nuclear programs in the U.S. and will provide a summary of the ongoing space nuclear systems research, development, and deployment in the United States.

S. Bragg-Sitton; J. Werner; S. Johnson; Michael G. Houts; Donald T. Palac; Lee S. Mason; David I. Poston; A. Lou Qualls

2011-10-01T23:59:59.000Z

202

Estimating the State of AC Power Systems using Semidefinite Programming  

E-Print Network (OSTI)

An important monitoring task for power networks is to estimate accurately the underlying grid state, which is useful for security-constrained dispatch and power system control. For nonlinear AC power systems, the state estimation (SE) problem is inherently nonconvex giving rise to many local optima. As a result, existing estimators used extensively in practice rely on iterative optimization methods, which are destined to return only locally optimal solutions. A semidefinite programming (SDP) based approach is introduced in this paper, which relies on convex relaxation of the original SE problem and thereby renders it efficiently solvable. A sufficient condition also becomes available to guarantee that the dual SDP problem attains zero duality gap, and thus ensure that the globally optimal SE solution is achievable in polynomial time. The novel scheme's ability to markedly outperform existing iterative alternatives is corroborated through numerical tests on the standard IEEE 14-bus benchmark system.

Zhu, Hao

2011-01-01T23:59:59.000Z

203

Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2004  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 (Thousand Short Tons) " "State / Region ","Domestic ","Foreign ","Total "," " "Alabama",18367,3744,22111," " "Alaska",957,546,1502," " "Arizona",13041,"-",13041," " "Colorado",37396,1239,38635," " "Illinois ",30611,440,31051," " "Indiana",34630,227,34857," " "Kansas",72,"-",72," " "Kentucky Total ",109413,3004,112417," " " Eastern ",87402,2816,90218," " " Western ",22011,188,22199," " "Louisiana",3889,"-",3889," " "Maryland",4502,1068,5571," "

204

Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 (Thousand Short Tons)" " State / Region"," Domestic"," Foreign"," Total " "Alabama ",15552,3425,18977," " "Alaska ",847,311,1158," " "Arizona ",12971,"-",12971," " "Arkansas ",12,"-",12," " "Colorado ",33904,843,34748," " "Illinois ",32719,21,32740," " "Indiana ",35391,"-",35391," " "Kansas ",205,"-",205," " "Kentucky Total ",123129,791,123920," " " East ",98492,791,99284," " " West ",24636,"-",24636," " "Louisiana ",3810,"-",3810," "

205

United States Government Department of Energy Memorandum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8-89) 8-89) EFG (07-90) United States Government Department of Energy Memorandum DATE: March 26, 2004 REPLY TO IG-30 (A03RL15) Audit Report No.: OAS-L-04-12 ATTN OF: SUBJECT: Audit of Consolidation of Hanford's Surplus Plutonium-Bearing Material TO: Assistant Secretary for Environmental Management INTRODUCTION AND OBJECTIVE The Department of Energy's (Department) Office of Environmental Management (EM) and National Nuclear Security Administration (NNSA) are responsible for stabilization, repackaging and safeguarding of about 13 metric tons of surplus weapons-usable plutonium or plutonium-bearing material (surplus plutonium). The Defense Nuclear Safety Board (DNFSB) agreed to the stabilization and repackaging as long as there would be a continued surveillance of the material.

206

Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit  

Science Conference Proceedings (OSTI)

During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

Zaltash, Abdolreza [ORNL; Petrov, Andrei Y [ORNL; Linkous, Randall Lee [ORNL; Vineyard, Edward Allan [ORNL

2007-01-01T23:59:59.000Z

207

How do I convert between short tons and metric tons? - FAQ - U ...  

U.S. Energy Information Administration (EIA)

Energy Conversion Calculators. Metric and Other Physical Conversion Factors. Last reviewed: September 13, 2013. Other FAQs about Coal.

208

How do I convert between short tons and metric tons? - FAQ - U ...  

U.S. Energy Information Administration (EIA)

Energy Conversion Calculators. Metric and Other Physical Conversion Factors. Last reviewed: September 13, 2013. Other FAQs about Prices.

209

Two (2) 175 Ton (350 Tons total) Chiller Geothermal Heat Pumps...  

Open Energy Info (EERE)

pump system is fully automated. The details of its optimized sequence of operation in all weather and building load conditions will be documented and shared. - Data Collection: The...

210

How do I convert between short tons and metric tons? - FAQ - U.S ...  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies ... What are the sources of energy-related carbon dioxide emissions by type of fuel ...

211

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

5. Estimated rail transportation rates for coal, state to state, STB data" 5. Estimated rail transportation rates for coal, state to state, STB data" ,,"Nominal dollars per ton-mile",,,,,,,,,,"Annual percent change" "Origin State","Destination State",2001,2002,2003,2004,2005,2006,2007,2008,2009,," 2001-2009"," 2008-2009" "Alabama","Alabama"," W"," W"," W"," W"," W"," W"," W"," W"," W",," W"," W" "Alabama","Georgia"," W"," W"," W"," W"," W"," W"," W"," W"," W",," W"," W"

212

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

5. Estimated barge transportation rates for coal, state to state, EIA data" 5. Estimated barge transportation rates for coal, state to state, EIA data" ,,"Nominal dollars per ton",,,,"Annual percent change" "Origin State","Destination State",2008,2009,2010,," 2008-2010"," 2009-2010" "Alabama","Alabama"," $4.31"," $4.36"," $5.01",, 7.9, 15.0 "Alabama","Ohio"," W"," -"," -",," -"," -" "Colorado","Alabama"," W"," -"," -",," -"," -" "Colorado","Florida"," $11.08"," $12.65"," $13.27",, 9.4, 4.9

213

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

6. Estimated rail transportation rates for coal, state to state, STB data" 6. Estimated rail transportation rates for coal, state to state, STB data" ,,"Real dollars per ton-mile",,,,,,,,,,"Annual percent change" "Origin State","Destination State",2001,2002,2003,2004,2005,2006,2007,2008,2009,," 2001-2009"," 2008-2009" "Alabama","Alabama"," W"," W"," W"," W"," W"," W"," W"," W"," W",," W"," W" "Alabama","Georgia"," W"," W"," W"," W"," W"," W"," W"," W"," W",," W"," W"

214

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

8. Estimated rail transportation rates for coal, state to state, EIA data" 8. Estimated rail transportation rates for coal, state to state, EIA data" ,,"Real dollars per ton",,,,"Annual percent change" "Origin State","Destination State",2008,2009,2010,," 2008-2010"," 2009-2010" "Alabama","Alabama"," $13.29"," $12.39"," $13.93",, 2.4, 12.5 "Alabama","Georgia"," $17.62"," $17.84"," $20.09",, 6.8, 12.6 "Alabama","Kentucky"," -"," W"," -",," -"," -" "Alabama","New Jersey"," W"," -"," -",," -"," -"

215

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

6. Estimated barge transportation rates for coal, state to state, EIA data" 6. Estimated barge transportation rates for coal, state to state, EIA data" ,,"Real dollars per ton",,,,"Annual percent change" "Origin State","Destination State",2008,2009,2010,," 2008-2010"," 2009-2010" "Alabama","Alabama"," $3.97"," $3.97"," $4.52",, 6.7, 13.7 "Alabama","Ohio"," W"," -"," -",," -"," -" "Colorado","Alabama"," W"," -"," -",," -"," -" "Colorado","Florida"," $10.21"," $11.53"," $11.95",, 8.2, 3.7

216

United States  

Office of Legacy Management (LM)

300 300 84-ER-14 Vitreous State Laboratory... . --- 5rooo 84-ER-15 National Center for Chemical -. Research .,.,,,..,.,,,..*..ll...* --- 51000...

217

Re-release Date: August 13, 2013  

U.S. Energy Information Administration (EIA) Indexed Site

Re-release Date: August 13, 2013" Re-release Date: August 13, 2013" "Table 27. Estimated rail transportation rates for coal, state to state, EIA data" ,,"Nominal Dollars per Ton",,,,"Annual Percent Change" "Origin State","Destination State",2008,2009,2010,," 2008-2010"," 2009-2010" "Alabama","Alabama"," $14.43"," $13.59"," $15.46",, 3.5, 13.8 "Alabama","Georgia"," $19.13"," $19.58"," $22.30",, 8.0, 13.9 "Alabama","Kentucky"," -"," W"," -",," -"," -" "Alabama","New Jersey"," W"," -"," -",," -"," -"

218

United States  

Office of Legacy Management (LM)

- I - I United States Department of Energy D lSCk Al M E R "This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency

219

Volume State  

Gasoline and Diesel Fuel Update (EIA)

22 22 Volume State State or Country From/To Receipts/ Imports From Deliveries/ Exports To Net a Alabama Florida .................................................................. 0 722,558 -722,558 Georgia................................................................. 0 1,352,308 -1,352,308 Gulf of Mexico....................................................... 123,132 0 123,132 Mississippi ............................................................ 2,758,595 0 2,758,595 Tennessee............................................................ 1,744 764,749 -763,005 Total..................................................................... 2,883,471 2,839,615 43,856

220

Materials and Science in Sports: Destination Information  

Science Conference Proceedings (OSTI)

The Materials and Science in Sports Symposium, sponsored by the Structural Materials Division of The Minerals, Metals & Materials Society (TMS), will be held  ...

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Motor Gasoline Blending Components Exports by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

222

Fuel Ethanol (Renewable) Exports by Destination  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total All Countries 32 31 27 27 38 43 2010-2013 Afghanistan 2010-2010 Albania 1 2013-2013 Angola 0 2011-2013 Anguilla 2010-2010 Antigua and Barbuda 0 2010-2013 Argentina 0 0 0 0 0 0 2010-2013 Aruba 0 0 0 2010-2013 Australia 0 0 2010-2013 Bahama Islands 0 0 0 2010-2013 Bahrain 0 2010-2013 Barbados 2010-2011 Belgium 0 0 0 0 0 2010-2013 Belize 0 2010-2013 Brazil 1 2 2 0 2010-2013 Bulgaria 2010-2010 Cambodia 2011-2011 Canada 19 21 22 23 25 24 2010-2013 Cayman Islands 2010-2012 Chile 0 0 0 0 0 0 2010-2013 China 0 0 0 0 0 2010-2013 Colombia 0 1 2010-2013 Costa Rica 0 0 0 0 0 0 2010-2013

223

Fuel Ethanol (Renewable) Exports by Destination  

U.S. Energy Information Administration (EIA)

China: 0: 0: 0: 0: 0 : 2010-2013: Colombia: 2 : 33 : 2010-2013: Costa Rica: 0: 0: 0: 0: 0: 0: 2010-2013: Cyprus : 2010-2010: Czech Republic : ...

224

Finished Motor Gasoline Exports by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

225

2001 Electronic Materials Conference: Destination Information - TMS  

Science Conference Proceedings (OSTI)

Call for times, availability, and prices. Tee times may be made seven days in advance. Swimming is available at two locations on campus with a $3.00 charge for ...

226

Materials Week '97: Destination Information - TMS  

Science Conference Proceedings (OSTI)

... meets West and North meets South," as the culturally and ethnically diverse cosmopolitan city welcomes visitors with its special brand of hometown hospitality.

227

PRICM-3: Travel and Destination Information  

Science Conference Proceedings (OSTI)

Each guest room has air conditioning, alarm clocks, balcony, cable TV with HBO, ... fee of $200 to their registration to assist in paying meeting space at the hotel.

228

ISSI-2: Travel and Destination Information  

Science Conference Proceedings (OSTI)

Please download the Housing Reservation Form, which is in Adobe Acrobat portable document format (.pdf). Mail or fax it directly to the Seven Springs Mountain ...

229

1998 Electronic Materials Conference: Travel and Destination ...  

Science Conference Proceedings (OSTI)

Airlines and Car Rental: US Airways has been designated the official airline carrier and Hertz Rental Car the official car rental company for the 1998 EMC.

230

Biomass-Based Diesel Exports by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

231

W. Africa Crude Destinations - Energy Information Administration  

U.S. Energy Information Administration (EIA)

In the 1995-1996 period, light-heavy crude oil differentials expanded as the light crude surpluses in the Atlantic Basin began to move to the Asian market, which was ...

232

2001 TMS Annual Meeting: Destination Highlights  

Science Conference Proceedings (OSTI)

Feb 11, 2001 ... New Orleans is one of the few cities that will capture your fascination with such vigor that you will dread the day you have to leave. The city's ...

233

2000 Electronic Materials Conference: Destination Information and ...  

Science Conference Proceedings (OSTI)

... 2000 · 42ND ELECTRONIC MATERIALS CONFERENCE · Denver, Colorado ... will be held June 21-23, 2000, at the University of Denver in Denver, Colorado.

234

Fuel Ethanol (Renewable) Exports by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

235

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BP Energy Company BP Energy Company OE Docket No. EA- 3 14 Order Authorizing Electricity Exports to Mexico Order No. EA-3 14 February 22,2007 BP Energy Company Order No. EA-314 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(Q of the Department of Energy Organization Act (42 U.S.C. 7 15 l(b), 7172(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.S24a(e)) . On May 22,2006, BP Energy Company (BP Energy) applied to DOE for an authorization to transmit electric energy from the United States to Mexico as a power marketer. BP Energy proposes to purchase surplus electric energy from electric utilities and other suppliers within the United States and to export that energy to ~Mexico. The cnergy

236

United States  

Office of Legacy Management (LM)

Office of Research and EPA 600/R-941209 Environmental Protection Development January 1993 Agency Washington, DC 20460 Offsite Environmental 57,,7 Monitoring Report Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1992 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT ENVIRONMENTAL MONITORING SYSTEMS LABORATORY-LAS VEGAS P.O. BOX 93478 LAS VEGAS. NEVADA 891 93-3478 702/798-2100 Dear Reader: Since 1954, the U.S. Environmental Protection Agency (EPA) and its predecessor the U.S, Public Health Service (PHs) has conducted radiological monitoring in the offsite areas around United States nuclear test areas. The primary objective of this monitoring has been the protection of the health and safety of

237

State Summaries  

Gasoline and Diesel Fuel Update (EIA)

46. 46. Percent Distribution of Natural Gas Supply and Disposition by State, 1996 Table State Estimated Proved Reserves (dry) Marketed Production Total Consumption Alabama................................................................... 3.02 2.69 1.48 Alaska ...................................................................... 5.58 2.43 2.04 Arizona..................................................................... NA 0 0.55 Arkansas.................................................................. 0.88 1.12 1.23 California.................................................................. 1.25 1.45 8.23 Colorado .................................................................. 4.63 2.90 1.40 Connecticut.............................................................. 0 0 0.58 D.C...........................................................................

238

Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2003  

U.S. Energy Information Administration (EIA) Indexed Site

3 " 3 " "(Thousand Short Tons) " "State / Region ","Domestic","Foreign","Total" "Alabama ",16639,3902,20541 "Alaska ",856,232,1088 "Arizona ",12093,"-",12093 "Arkansas ",6,"-",6 "Colorado ",34997,898,35895 "Illinois ",31751,55,31806 "Indiana ",35350,"-",35350 "Kansas ",154,"-",154 "Kentucky Total ",113241,906,114146 "East ",92391,890,93282 "West ",20849,15,20865 "Louisiana ",3959,"-",3959 "Maryland ",4955,596,5551 "Mississippi ",3739,"-",3739 "Missouri ",345,"-",345 "Montana ",36181,541,36721

239

Assessment of municipal solid waste for energy production in the western United States  

Science Conference Proceedings (OSTI)

Municipal solid waste (MSW) represents both a significant problem and an abundant resource for the production of energy. The residential, institutional, and industrial sectors of this country generate about 250 million tons of MSW each year. In this report, the authors have compiled data on the status of MSW in the 13-state western region, including economic and environmental issues. The report is designed to assist the members of the Western Regional Biomass Energy Program Ad Hoc Resource Committee in determining the potential for using MSW to produce energy in the region. 51 refs., 7 figs., 18 tabs.

Goodman, B.J.; Texeira, R.H.

1990-08-01T23:59:59.000Z

240

U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Origin Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,714 158 238 - 2,110 Alabama Railroad 1,056 12 45 - 1,113 Alabama River 464 - - - 464 Alabama Truck 194 146 193 - 532 Georgia Total s - - - s Georgia Truck s - - - s

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Origin Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 4th Quarter 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,226 162 274 - 1,662 Alabama Railroad 803 17 22 - 842 Alabama River 384 - - - 384 Alabama Truck 39 144 252 - 436 Georgia Total s - - - s Georgia Truck s - - - s Indiana Total

242

U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2013  

Gasoline and Diesel Fuel Update (EIA)

Origin Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2013 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 3rd Quarter 2013 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,198 151 353 - 1,702 Alabama Railroad 796 26 20 - 842 Alabama River 307 - 3 - 310 Alabama Truck 96 125 330 - 551 Georgia Total - - 3 - 3 Georgia Truck - - 3 - 3 Indiana Total

243

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

9. Estimated rail transportation rates for coal, basin to state, STB data" 9. Estimated rail transportation rates for coal, basin to state, STB data" ,,"Nominal dollars per ton",,,,,,,,,,"Annual percent change" "Basin","Destination State",2001,2002,2003,2004,2005,2006,2007,2008,2009,," 2001-2009"," 2008-2009" "Northern Appalachian Basin","Delaware"," W"," W"," $15.49"," $13.83"," W"," -"," W"," W"," -",," -"," -" "Northern Appalachian Basin","Florida"," $19.46"," W"," W"," W"," W"," $29.49"," W"," W"," W",," W"," W"

244

U.S. Energy Information Administration | Annual Coal Distribution Report 2011  

Gasoline and Diesel Fuel Update (EIA)

Origin Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Annual Coal Distribution Report 2011 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2011 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 6,982 679 1,278 - 8,939 Alabama Railroad 4,400 20 286 - 4,706 Alabama River 1,885 - - - 1,885 Alabama Truck 696 659 992 - 2,347 Georgia Total s - 5 - 5 Georgia Truck s - 5 - 5 Indiana Total - 221 -

245

U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2013  

U.S. Energy Information Administration (EIA) Indexed Site

Origin Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2013 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 2nd Quarter 2013 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,066 210 301 - 1,577 Alabama Railroad 495 116 26 - 638 Alabama River 512 - 2 - 513 Alabama Truck 59 94 273 - 426 Georgia Total - - 2 - 2 Georgia Truck - - 2 - 2 Indiana Total

246

U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013  

U.S. Energy Information Administration (EIA) Indexed Site

Origin Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 1st Quarter 2013 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 807 158 282 - 1,247 Alabama Railroad 449 71 14 - 534 Alabama River 358 - - - 358 Alabama Truck - 87 267 - 354 Indiana Total - 164 - - 164 Indiana Railroad - 164 - - 164

247

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

2. Estimated rail transportation rates for coal, basin to state, STB data" 2. Estimated rail transportation rates for coal, basin to state, STB data" ,,"Real dollars per ton-mile",,,,,,,,,,"Annual percent change" "Basin","Destination State",2001,2002,2003,2004,2005,2006,2007,2008,2009,," 2001-2009"," 2008-2009" "Northern Appalachian Basin","Delaware"," W"," W"," $0.0343"," $0.0294"," W"," -"," W"," W"," -",," -"," -" "Northern Appalachian Basin","Florida"," $0.0161"," W"," W"," W"," W"," $0.0216"," W"," W"," W",," W"," W"

248

AEO2011: Carbon Dioxide Emissions by Sector and Source - United States |  

Open Energy Info (EERE)

United States United States Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 30, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA United States Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - United States- Reference Case (xls, 75.1 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

249

U.S. Domestic and Foreign Coal Distribution by State of Origin  

Gasoline and Diesel Fuel Update (EIA)

Domestic and Foreign Coal Distribution by State of Origin Domestic and Foreign Coal Distribution by State of Origin ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Domestic and foreign distribution of U.S. coal by State of origin, 2010 (thousand short tons) Coal Exports Coal Origin State and Region Domestic Distribution By Coal Mines By Brokers & Traders* Total Exports Total Distribution Alabama 10,679.56 9,223.70 408.00 9,631.70 20,311.26 Alaska 920.68 1,080.60 88.05 1,168.65 2,089.33 Arizona 7,761.18 - - - 7,761.18 Arkansas 0.43 - - - 0.43 Colorado 21,831.81 748.98 1,446.25 2,195.23 24,027.04 Illinois 33,176.21 2,505.51

250

Annual Coal Distribution Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Coal Distribution Report Annual Coal Distribution Report Release Date: December 19, 2013 | Next Release Date: November 2014 | full report | Revision/Correction The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for 2012 are final, and this report supersedes the 2012 quarterly coal distribution reports. Highlights for 2012: Total coal distributions for 2012 were 1,003.1 million short tons (mmst), a decrease of 7.9% compared to 2011. Distributions to domestic destinations were 877.3 mmst, a decrease of 104.1 mmst (i.e. 10.6% decrease) compared to 2011. Distributions to

251

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E-T Global Energy, LLC E-T Global Energy, LLC OE Docket No. EA-381 Order Authorizing Electricity Exports to Mexico Order No. EA-381 June 10, 2011 I. BACKGROUND E-T Global Energy, LLC Order No. EA-381 Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department ofEnergy Organization Act (42 U.S.C. 7151(b), 7172(f)) and require authorization under section 202(e) ofthe Federal Power Act (FPA) (16 U.S.C.824a(e)) 1 * On May 10,2011, DOE received an application from E-T Global Energy, LLC (E-T Global) for authority to transmit electric energy from the United States to Mexico for five years as a power marketer using existing international transmission facilities. E-

252

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bangor Hydro-Electric Company Bangor Hydro-Electric Company OE Docket No. PP-89-1 Amendment to Presidential Permit Order No. PP-89-1 December 30,2005 PRESIDENTIAL PERMIT AMENDMENT Bangor Hydro-Electric Company Order No. PP-89-1 I. BACKGROUND The Department of Energy (DOE) has responsibility for implementing Executive Order (E.O.) 10485, as amended by E.O. 12038, which requires the issuance of a Presidential permit by DOE before electric trans~nission facilities may be constructed, operated, maintained, or connected at the borders of the United States. DOE may issue such a permit if it determines that the permit is in the public interest and after obtaining favorable recommendations from the U.S. Departments of State and Defense. On December 16, 1988, Bangor Hydro-Electric Company (BHE) applied to DOE

253

United States  

Office of Legacy Management (LM)

WASHINGTON, TUESDAY, JUNE 28, 1983 @nngmeional Ruord United States of America .__ -- . . ,- PROCEEDINGS AND DEBATES OF THE 9@ CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washmgton, D C 20402 OFFICIAL BUSINESS Penalty Ior pwate use. $xX Congresstonal Record (USPS 087-390) Postage and Fees Pad U S Government Prlnhng 0ffv.X 375 SECOND CLASS NEWSPAPER H.4578 ' C.QNGRESSIONAL RECORD - HOUSE June 28, 1983 H.J. Res. 273: Mr. BOUND. Mr. W~.XMAN. Mr. OBERSTAR, Mr. BEDELL. Mr. BONER of Tennessee, Mr. OWENS. Mr. DAUB, Mr. CONTE. Mr. RAHALL; Mr. GRAY, Mr. VANDER JACT. Mr. TRAKLER, and Mr. Vxrrro. H. Con. Res. 107: Mr. KASICH. Mr. AUCOIN. Mr. CARPER, and Mr. SIZHFIJER. H. Con. Res. 118: Mr. FISH. Mr. LANTOS.

254

United States  

Office of Legacy Management (LM)

ongrees;ional Record ongrees;ional Record United States of America __._ -.. I. :- PROCEEDINGS AND DEBATES OF THE 9tth CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washmcqton. Cl C 20402 OFFICIAL BUSINESS Penalty Ior pwate use. $300 Congressmal Record (USPS 087-390) Postage and Fees Pad U S Governme3n:jPnntmg OfIce SECOND CLASS NEWSPAPER H.4578 ' June 28, 1983 -: I H.J. Res. 273: Mr. BOLAND, Mr. WA-. Mr. OBERSTAFC, M' r. BEDELL, Mr. BONER of Tennessee, Mr. OWENS. Mr. DAUB. Mr. CONTE. Mr. RAHALL,. Mr. GRAY, Mr. VANDER JAGT. Mr. TRAKLER. and Mr. VENTO. H. Con. Res. iO7: Mr. KASICH. Mr. ALCOIN. Mr. CARPER. and Mr. SCHEUER. H. Con. Res. 118: Mr. FISH, Mr. LANTOS. Mr. KILDEE. Mr. SOLARZ Mr. Bmrr, Mr. BELWLL, Mr. RANG~L, Mr. DYMALLY. Mr.

255

UNITED STATES ATOMIC ENERGY COMMISSION CHICAGO OPERATIONS OFFICE  

Office of Legacy Management (LM)

$$ ,_, . $$ ,_, . UNITED STATES ATOMIC ENERGY COMMISSION CHICAGO OPERATIONS OFFICE TELEPHONE 9600 SOUTH CASS AVENUE (312) 739-7711 ARCONNE. ILLINOIS 60439 ^,/" _. i ' > ;.:a c. JAN 17 1975 Martin B. Biles, Director Division of Operational Safety, HQ _ DISPOSAL OF SCRAP COPPER, CYCLOTRON DISMANTLING PROJECT, NUCLEAR RESEARCH CENTER, CARNEGIE-MELLON UNIVERSITY (CMU) Enclosed for your information is a copy of the October 28, 1974, letter from T. Morris (CMD) to J. Krupa (CH) with pages 1-4 and 8-16 of its attachment (the October 23, 1974, F. Bomba to T. Morris, memo- randum; pages 5-7 are economically omitted as they were not relevant to the subject of this letter) regarding disposal of 4 to 6 tons of copper. The enclosure contains a summary of data obtained from

256

Total production of uranium concentrate in the United States  

Gasoline and Diesel Fuel Update (EIA)

3. U.S. uranium mills and heap leach facilities by owner, location, capacity, and operating status 3. U.S. uranium mills and heap leach facilities by owner, location, capacity, and operating status Operating Status at the End of Owner Mill and Heap Leach1 Facility Name County, State (existing and planned locations) Capacity (short tons of ore per day) 2012 1st Quarter 2013 2nd Quarter 2013 3rd Quarter 2013 EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating-Processing Alternate Feed Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Permitted and Licensed Energy Fuels Wyoming Inc Sheep Mountain Fremont, Wyoming 725 - Undeveloped Undeveloped Undeveloped

257

Solid-state production of ethanol from sorghum  

Science Conference Proceedings (OSTI)

The main goal of this research is to study the solid-state fermentation of sorghum-sudangrass, Grazex II (F{sub 1} hybrid of Sorghum vulgare X Sorghum sudanese), to ethanol. Our research focuses on using a modified method of ensiling to produce ethanol directly in the silo. Thirty-eight liters of ethanol/metric ton (L/MT) on a wet-weight basis were produced from sorghum receiving cellulose compared to 23.4 L/MT for sorghum not receiving cellulose additives. Based on total free sugar content, 101 and 84% of theoretical yield are achieved for cellulase-amended and nonamended sorghum, respectively. 47 refs., 4 figs., 4 tabs.

Henk, L.L.; Linden, J.C. [Colorado State Univ., Fort Collins, CO (United States)

1996-12-31T23:59:59.000Z

258

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CC-1-I Availability: This rate schedule shall be available to public bodies and cooperatives served through the facilities of Carolina Power & Light Company, Western Division (hereinafter called the Customers). Applicability: This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereinafter called collectively the "Cumberland Projects") and sold in wholesale quantities. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating

259

U.S. Energy Information Administration | Annual Coal Distribution...  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Energy Information Administration | Annual Coal Distribution Report 2011 By Coal Destination State ...

260

South Dakota State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Identification Home Federal and State Regulations State Regulations South Dakota State Regulations: South Dakota State of South Dakota The South Dakota...

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tenaslta Power Services Co. Tenaslta Power Services Co. OE Docket No. EA-243-A Order Authorizing Electricity Exports to Canada Order No. EA-243-A March 1,2007 Tenaska Power Services Co. Order No. EA-243-A I. BACKGROUND Exports of elcctricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30 I(b) and 402(f) of the Departrncnt of' Energy Organizatio~l Act (42 U, S.C. 7 15 1 (b), 7 1 72Cf)) and rcquirc authorization under section 202(e) of the Federal Power Act (FPA) ( Z 6 U. s.c.824a(e)j1. On August 16,2001, DOE issued Order No. EA-243 authorizing Tenaska Power Scrvices Co. (Tenaska) to transmit electric cncrgy from the United States to Canada as a power marketer. That authority expired on August 16,2003. On August 14,2006, Teilaska applied to renew the electricity export authority

262

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TexMex Energy, LLC TexMex Energy, LLC OE Docket No. EA-294-A Order Authorizing Electricity Exports to Mexico Order No. EA-294-A February 22, 2007 TexMex Energy, LLC Order No. EA-294-A I. BACKGROUND Exports of electricity from the United States to a foreign count~y are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 15 1 (b), 71 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.824a(e)) . On August 25,2004, DOE issued Order No. EA-294 authorizing TexMex Energy LLC (TexMex) to transmit electric energy fiom the United States to Mexico as a power marketer. That authority expired on August 25, 2006. On September 8, 2006, TexMex applied to renew the electricity export authority

263

State Volume  

Gasoline and Diesel Fuel Update (EIA)

Volume of Natural Gas Delivered to Processing Plants (million cubic feet) Total Liquids Extracted (thousand barrels) Extraction Loss Located Within the State Located Outside of the State Total Processed Volume (million cubic feet Estimated Heat Content (billion Btu) Alabama...................... 111,656 2,614 114,270 4,476 5,810 18,610 Alaska ......................... 2,987,364 0 2,987,364 33,346 38,453 148,444 Arkansas..................... 214,868 161 215,029 237 474 977 California..................... 240,566 0 240,566 9,798 12,169 41,037 Colorado ..................... 493,748 1,249 494,997 16,891 23,420 63,411 Florida......................... 5,900 0 5,900 1,130 1,143 4,202 Illinois.......................... 578 0 578 63 64 271 Kansas........................ 825,825 2,731 828,556 30,617 41,115 120,221 Kentucky .....................

264

United States  

Gasoline and Diesel Fuel Update (EIA)

United States United States Coal ................................................ 4,367 4,077 4,747 4,181 4,473 4,125 4,983 4,330 4,414 4,003 4,796 4,178 4,344 4,479 4,348 Natural Gas .................................... 2,802 2,843 3,694 2,863 2,713 2,880 3,636 2,707 2,792 2,972 3,815 2,849 3,052 2,986 3,109 Petroleum (a) .................................. 74 73 81 67 73 70 75 66 75 70 76 66 74 71 71 Other Gases ................................... 32 33 36 32 32 34 37 33 33 35 39 34 33 34 35 Nuclear ........................................... 2,176 2,044 2,257 2,170 2,106 2,037 2,167 2,010 2,144 2,074 2,206 2,055 2,162 2,080 2,120 Renewable Energy Sources: Conventional Hydropower ........... 736 886 716 633 765 887 708 646 767 919 729 659 742 751 768 Wind ............................................ 491 520 353 449 477 521 379 475

265

Annual Coal Distribution Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Distribution of U.S. Coal by Destination State, Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transportation, 2001 (Thousand Short Tons) DESTINATION: Alabama State of Origin by Method of Transportation Electricity Generation Coke Plants Industrial Plants (Except Coke) Residential and Commercial Total Alabama 7,212 375 6,032 3 13,622 Railroad 2,613 170 4,607 - 7,390 River 3,867 - - - 3,867 Truck 732 205 1,424 3 2,365 Illinois 1,458 - - * 1,458 Railroad 167 - - - 167 River 1,291 - - - 1,291 Truck - - - * * Kentucky Total 2,277 - 262 - 2,539 Railroad 1,928 - 165 - 2,093 River 349 - 83 - 432 Truck - - 14 - 14 Eastern 843 - 262 - 1,105 Railroad 843 - 165 - 1,008 River - - 83 - 83 Truck - - 14 - 14 Western 1,435 - - - 1,435 Railroad 1,086 - - - 1,086 River 349 - - - 349 Pennsylvania Total 242 - 62 - 304 Great Lakes - - 60 - 60 Railroad - - * - * River 242 - -

266

Wyoming produces almost as much coal as the next seven states ...  

U.S. Energy Information Administration (EIA)

Black Thunder Mine led production with a total of 116.2 million short tons, followed by the North Antelope Rochelle Mine, with production of 105.8 million short tons.

267

Alabama - State Energy Profile Analysis - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Although production has been in decline since the early ... designed to produce 520,000 metric tons of wood pellets each year, ...

268

Table 5. Per capita energy-related carbon dioxide emissions by state (2000 - 201  

U.S. Energy Information Administration (EIA) Indexed Site

Per capita energy-related carbon dioxide emissions by state (2000 - 2010)" Per capita energy-related carbon dioxide emissions by state (2000 - 2010)" "metric tons carbon dioxide per person" ,,,,,,,,,,,,"Change" ,,,,,,,,,,,,"2000 to 2010" "State",2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percent","Absolute" "Alabama",31.54590416,29.56352198,30.5739632,30.56483509,30.96927578,31.14605742,31.33283758,31.52225314,29.78727412,25.44798199,28.06679306,-0.1102872527,-3.479111105 "Alaska",70.60324067,68.51009907,67.8551127,67.17588806,70.92646205,72.04509462,67.81012638,64.8863351,57.56413017,54.58358965,54.63289567,-0.2261984697,-15.97034499 "Arizona",16.64049197,16.65546102,16.08173855,15.97087112,16.77174168,16.18743942,16.15392734,16.06780183,15.87052371,14.3654833,14.36549251,-0.1367146759,-2.274999466

269

Table 8. Carbon intensity of the economy by state (2000 - 2010  

U.S. Energy Information Administration (EIA) Indexed Site

Carbon intensity of the economy by state (2000 - 2010)" Carbon intensity of the economy by state (2000 - 2010)" "metric tons energy-related carbon dioxide per million dollars of GDP" ,,,,,,,,,,,,"Change" ,,,,,,,,,,,,"2000 to 2010" "State",2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percent","Absolute" "Alabama",1058.711976,985.9830444,997.7398528,980.4829779,950.0822539,936.4496611,935.6825335,938.4848601,889.0206564,785.4772247,861.2952959,-0.1864687321,-197.4166798 "Alaska",1298.328591,1216.063856,1175.487563,1199.290881,1223.852261,1270.682404,1148.488204,1084.165172,961.0592359,850.2898059,859.7252518,-0.337821521,-438.6033395 "Arizona",479.5818378,474.991173,460.4738058,446.205915,465.2665852,433.7092206,418.4239106,416.7348091,426.892719,409.9336342,419.7764202,-0.1247032579,-59.80541762

270

Table 1. State energy-related carbon dioxide emissions by year (2000 - 2010  

U.S. Energy Information Administration (EIA) Indexed Site

State energy-related carbon dioxide emissions by year (2000 - 2010)" State energy-related carbon dioxide emissions by year (2000 - 2010)" "million metric tons carbon dioxide" ,,,,,,,,,,,,"Change" ,,,,,,,,,,,," 2000 to 2010 " "State",2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percent","Absolute" "Alabama",140.4264977,131.9521389,136.7103146,137.2323195,139.6896437,141.493798,143.9716001,146.076107,139.2224128,119.7962734,132.7462762,-0.05469211069,-7.680221558 "Alaska",44.32104312,43.40375114,43.56121812,43.5078746,46.76217106,48.06229125,45.79367017,44.11576503,39.46205329,37.91867389,38.72718369,-0.1262122693,-5.593859429 "Arizona",85.96984024,88.33838336,87.66914741,89.29026566,96.58329461,96.7032775,100.0087541,102.1950438,103.1458188,94.63481918,95.91303514,0.1156591064,9.943194897

271

Table 3. 2010 state energy-related carbon dioxide emissions by sector  

U.S. Energy Information Administration (EIA) Indexed Site

2010 state energy-related carbon dioxide emissions by sector " 2010 state energy-related carbon dioxide emissions by sector " "million metric tons of carbon dioxide" "State","Commercial","Electric Power","Residential","Industrial","Transportation","Total" "Alabama",2.103862865,76.71236863,2.835897119,17.71721059,33.37693698,132.7462762 "Alaska",2.497277997,3.042968925,1.789261448,16.61816292,14.7795124,38.72718369 "Arizona",2.373783271,54.37078005,2.325955921,4.76376875,32.07874715,95.91303514 "Arkansas",2.566776983,32.30865878,2.320262268,8.646911643,20.27679552,66.11940519 "California",15.93482613,43.49564577,28.92778352,67.46363514,213.9882899,369.8101805 "Colorado",4.150125234,39.85763155,7.82954551,14.90850811,29.73188961,96.47770002

272

Table 2. 2010 state energy-related carbon dioxide emissions by fuel  

U.S. Energy Information Administration (EIA) Indexed Site

2010 state energy-related carbon dioxide emissions by fuel " 2010 state energy-related carbon dioxide emissions by fuel " "million metric tons of carbon dioxide" ,,,,,," Shares " "State","Coal","Petroleum","Natural Gas ","Total","Coal","Petroleum","Natural Gas" "Alabama",67.81545193,35.95576449,28.97505976,132.7462762,0.5108651925,0.2708608145,0.218273993 "Alaska",1.364880388,19.58916888,17.77313443,38.72718369,0.03524347131,0.5058247724,0.4589317562 "Arizona",43.2377726,34.82066125,17.85460129,95.91303514,0.4508018387,0.3630440972,0.1861540641 "Arkansas",27.72445786,23.82768621,14.56726112,66.11940519,0.4193089424,0.3603735717,0.2203174859 "California",5.157135123,241.2575077,123.3955377,369.8101805,0.01394535736,0.6523820067,0.3336726359

273

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CTV-1-H Availability: This rate schedule shall be available to the Tennessee Valley Authority (hereinafter called TVA). Applicability: This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the "Cumberland Projects") and the Laurel Project sold under agreement between the Department of Energy and TVA. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating current at a frequency of approximately 60 hertz at the outgoing terminals of the Cumberland

274

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CTVI-1-A Availability: This rate schedule shall be available to customers (hereinafter called the Customer) who are or were formerly in the Tennessee Valley Authority (hereinafter called TVA) service area. Applicability: This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the "Cumberland Projects") and the Laurel Project sold under agreement between the Department of Energy and the Customer. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating

275

UNITED STATES  

Office of Legacy Management (LM)

f).~<~~ \--\c :y-,ai F p"- KG f).~<~~ \--\c :y-,ai F p"- KG WASHINOTDN 28.0. C. ' -lr ' \ ' ' --- ".I ?--" ' z I. .~;-4.' J frr*o& 2 ii, - - -4 70-147 LRL:JCD JAN !! 8 1958 Oregon Metallurgical Corporation P. 0. Box 484 Albany, Oregon Attention: Mr. Stephen M. Shelton General Manager Gentlemen: Enclosed is Special Nuclear Material License No. SNM-144, as amended. Very 33uly yours, r:; I,;, ll)~gQ""d".- Lyall Johnson Chief, Licensing Branch Division of Licensing & Regulation Enclosure: SNM-144, as amended Distribution: bRO0 Attn: Dr. H.M.Roth DFMusser NMM MMMann INS JCRyan FIN (2) HSteele LRL SRGustavson LRL Document room Formal file Suppl. file Br & Div rf's ' .b liwwArry s/VW- ' q+ ' yj/ 2; 2-' , COP' 1 J JAM01958 -- UNITED STATES ATOMIC ENERGY COMMISSION

276

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule JW-2-F Availability: This rate schedule shall be available to the Florida Power Corporation (or Progress Energy Florida, hereinafter called the Company). Applicability: This rate schedule shall be applicable to electric energy generated at the Jim Woodruff Project (hereinafter called the Project) and sold to the Company in wholesale quantities. Points of Delivery: Power sold to the Company by the Government will be delivered at the connection of the Company's transmission system with the Project bus. Character of Service: Electric power delivered to the Company will be three-phase alternating current at a nominal frequency of 60 cycles per second.

277

States | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

States States Data Apps Challenges Policies States Welcome to States.Data.gov Bridging information from across the United States. Look at the data, use the apps, join the...

278

Estimates of Annual Fossil-Fuel CO2 Emitted for Each State in the U.S.A.  

NLE Websites -- All DOE Office Websites (Extended Search)

State-Level Emission Estimates State-Level Emission Estimates Estimates of Annual Fossil-Fuel CO2 Emitted for Each State in the U.S.A. and the District of Columbia for Each Year from 1960 through 2001 graphics Graphics data Data (ASCII comma-delimited) Investigators T.J. Blasing and Gregg Marland Carbon Dioxide Information Analysis Center, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6335, U.S.A. Christine Broniak Department of Agricultural & Resource Economics, Oregon State University, Corvallis, Oregon 97331-3601 DOI 10.3334/CDIAC/00003 Period of Record 1960-2001 Methods Consumption data for coal, petroleum, and natural gas are multiplied by their respective thermal conversion factors, which are in units of heat energy per unit of fuel consumed (i.e., per cubic foot, barrel, or ton), to

279

Numerical Simulation of Macrosegregation in 570-ton Low-alloyed ...  

Science Conference Proceedings (OSTI)

P-18: Phosphorus Partitioning During EAF Refining of DRI Based Steel · P-1: Mechanisms of Calcium Oxide Dissolution in CaO-Al2O3-SiO2-based Slags.

280

Disposal Facility Reaches 15-Million-Ton Milestone  

Energy.gov (U.S. Department of Energy (DOE))

RICHLAND, Wash. – EM’s Environmental Restoration Disposal Facility (ERDF) — a massive landfill for low-level radioactive and hazardous waste at the Hanford site — has achieved a major cleanup milestone.

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

KCP relocates 18-ton machine | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

8 a.m. and by lunchtime that day, it was in place at the NSC. The machine will undergo laser alignment and build test parts around mid-June. It will be ready for production again...

282

OFFICE WASTE DATA 2010 Recyclable Materials 1680 tons / 62%  

E-Print Network (OSTI)

is used to stabilise temperatures within conventional Energy from Waste incineration plants as well waste from high temperature incineration (Clinical waste) to incineration with energy recovery (Offensive and hygiene waste). Benefits include: Lower CO2 emissions. Energy recovered in process. Direct

Gannarelli, Ché

283

308 BILLION TON-HOURS OF REFUSE POWER EXPERIENCE  

E-Print Network (OSTI)

the special tarrif al ready granted by the utility to its large energy users. The output data are grouped

Columbia University

284

Bioenergy Technologies Office: U.S. Billion-Ton Update  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Update on AddThis.com... Publications Key Publications Newsletter Project Fact Sheets Biomass Basics Multimedia Webinars Databases Analytical Tools Glossary Student & Educator...

285

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

286

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

287

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

288

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

289

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

290

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

District of Columbia Electricity Profile 2010 District of Columbia profile District of Columbia Electricity Profile 2010 District of Columbia profile Table 1. 2010 Summary Statistics (District of Columbia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Petroleum Net Summer Capacity (megawatts) 790 51 Independent Power Producers & Combined Heat and Power 790 46 Net Generation (megawatthours) 199,858 51 Independent Power Producers & Combined Heat and Power 199,858 51 Emissions (thousand metric tons) Sulfur Dioxide 1 49 Nitrogen Oxide * 51 Carbon Dioxide 191 50 Sulfur Dioxide (lbs/MWh) 8.8 2 Nitrogen Oxide (lbs/MWh) 4.0 3 Carbon Dioxide (lbs/MWh) 2,104 1 Total Retail Sales (megawatthours) 11,876,995 43 Full Service Provider Sales (megawatthours) 3,388,490 50 Energy-Only Provider Sales (megawatthours) 8,488,505 12

291

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

292

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

293

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

294

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

295

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

296

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

297

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

298

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

299

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

300

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

302

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

303

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

304

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

305

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

306

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Electricity Profile 2010 Arizona profile Arizona Electricity Profile 2010 Arizona profile Table 1. 2010 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,392 15 Electric Utilities 20,115 14 Independent Power Producers & Combined Heat and Power 6,277 16 Net Generation (megawatthours) 111,750,957 12 Electric Utilities 91,232,664 11 Independent Power Producers & Combined Heat and Power 20,518,293 17 Emissions (thousand metric tons) Sulfur Dioxide 33 33 Nitrogen Oxide 57 17 Carbon Dioxide 55,683 15 Sulfur Dioxide (lbs/MWh) 0.7 43 Nitrogen Oxide (lbs/MWh) 1.1 31 Carbon Dioxide (lbs/MWh) 1,099 35 Total Retail Sales (megawatthours) 72,831,737 21 Full Service Provider Sales (megawatthours) 72,831,737 20

307

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

308

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

309

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

310

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

311

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

312

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

313

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

314

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

315

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

316

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

317

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

318

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

319

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

320

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

322

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

323

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

324

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

West Virginia Electricity Profile 2010 West Virginia profile West Virginia Electricity Profile 2010 West Virginia profile Table 1. 2010 Summary Statistics (West Virginia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 16,495 24 Electric Utilities 11,719 21 Independent Power Producers & Combined Heat and Power 4,775 19 Net Generation (megawatthours) 80,788,947 20 Electric Utilities 56,719,755 18 Independent Power Producers & Combined Heat and Power 24,069,192 13 Emissions (thousand metric tons) Sulfur Dioxide 105 20 Nitrogen Oxide 49 23 Carbon Dioxide 74,283 12 Sulfur Dioxide (lbs/MWh) 2.9 20 Nitrogen Oxide (lbs/MWh) 1.3 25 Carbon Dioxide (lbs/MWh) 2,027 5 Total Retail Sales (megawatthours) 32,031,803 34 Full Service Provider Sales (megawatthours) 32,031,803 33

325

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont Electricity Profile 2010 Vermont profile Vermont Electricity Profile 2010 Vermont profile Table 1. 2010 Summary Statistics (Vermont) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 1,128 50 Electric Utilities 260 45 Independent Power Producers & Combined Heat and Power 868 43 Net Generation (megawatthours) 6,619,990 49 Electric Utilities 720,853 44 Independent Power Producers & Combined Heat and Power 5,899,137 35 Emissions (thousand metric tons) Sulfur Dioxide * 51 Nitrogen Oxide 1 50 Carbon Dioxide 8 51 Sulfur Dioxide (lbs/MWh) * 51 Nitrogen Oxide (lbs/MWh) 0.2 51 Carbon Dioxide (lbs/MWh) 3 51 Total Retail Sales (megawatthours) 5,594,833 51 Full Service Provider Sales (megawatthours) 5,594,833 48 Direct Use (megawatthours) 19,806 47

326

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

327

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

328

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

329

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

330

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

331

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

332

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

333

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

334

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Electricity Profile 2010 Missouri profile Missouri Electricity Profile 2010 Missouri profile Table 1. 2010 Summary Statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 21,739 18 Electric Utilities 20,360 12 Independent Power Producers & Combined Heat and Power 1,378 39 Net Generation (megawatthours) 92,312,989 18 Electric Utilities 90,176,805 12 Independent Power Producers & Combined Heat and Power 2,136,184 46 Emissions (thousand metric tons) Sulfur Dioxide 233 8 Nitrogen Oxide 56 18 Carbon Dioxide 78,815 10 Sulfur Dioxide (lbs/MWh) 5.6 6 Nitrogen Oxide (lbs/MWh) 1.3 26 Carbon Dioxide (lbs/MWh) 1,882 7 Total Retail Sales (megawatthours) 86,085,117 17 Full Service Provider Sales (megawatthours) 86,085,117 15

335

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

336

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

337

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

338

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

339

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

340

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

342

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

343

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

344

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

York Electricity Profile 2010 New York profile York Electricity Profile 2010 New York profile Table 1. 2010 Summary Statistics (New York) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 39,357 6 Electric Utilities 11,032 25 Independent Power Producers & Combined Heat and Power 28,325 5 Net Generation (megawatthours) 136,961,654 9 Electric Utilities 34,633,335 31 Independent Power Producers & Combined Heat and Power 102,328,319 5 Emissions (thousand metric tons) Sulfur Dioxide 62 25 Nitrogen Oxide 44 28 Carbon Dioxide 41,584 22 Sulfur Dioxide (lbs/MWh) 1.0 40 Nitrogen Oxide (lbs/MWh) 0.7 44 Carbon Dioxide (lbs/MWh) 669 42 Total Retail Sales (megawatthours) 144,623,573 7 Full Service Provider Sales (megawatthours) 79,119,769 18

345

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

346

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

347

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

348

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Electricity Profile 2010 Illinois profile Illinois Electricity Profile 2010 Illinois profile Table 1. 2010 Summary Statistics (Illinois) Item Value U.S. Rank NERC Region(s) MRO/RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 44,127 5 Electric Utilities 4,800 35 Independent Power Producers & Combined Heat and Power 39,327 3 Net Generation (megawatthours) 201,351,872 5 Electric Utilities 12,418,332 35 Independent Power Producers & Combined Heat and Power 188,933,540 3 Emissions (thousand metric tons) Sulfur Dioxide 232 9 Nitrogen Oxide 83 8 Carbon Dioxide 103,128 6 Sulfur Dioxide (lbs/MWh) 2.5 25 Nitrogen Oxide (lbs/MWh) 0.9 38 Carbon Dioxide (lbs/MWh) 1,129 34 Total Retail Sales (megawatthours) 144,760,674 6 Full Service Provider Sales (megawatthours) 77,890,532 19

349

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

350

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

351

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 South Dakota profile Dakota Electricity Profile 2010 South Dakota profile Table 1. 2010 Summary Statistics (South Dakota) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,623 45 Electric Utilities 2,994 37 Independent Power Producers & Combined Heat and Power 629 48 Net Generation (megawatthours) 10,049,636 46 Electric Utilities 8,682,448 36 Independent Power Producers & Combined Heat and Power 1,367,188 47 Emissions (thousand metric tons) Sulfur Dioxide 12 43 Nitrogen Oxide 12 43 Carbon Dioxide 3,611 47 Sulfur Dioxide (lbs/MWh) 2.6 23 Nitrogen Oxide (lbs/MWh) 2.6 8 Carbon Dioxide (lbs/MWh) 792 41 Total Retail Sales (megawatthours) 11,356,149 46 Full Service Provider Sales (megawatthours) 11,356,149 42

352

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

353

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Electricity Profile 2010 Massachusetts profile Massachusetts Electricity Profile 2010 Massachusetts profile Table 1. 2010 Summary Statistics (Massachusetts) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 13,697 31 Electric Utilities 937 42 Independent Power Producers & Combined Heat and Power 12,760 8 Net Generation (megawatthours) 42,804,824 34 Electric Utilities 802,906 43 Independent Power Producers & Combined Heat and Power 42,001,918 10 Emissions (thousand metric tons) Sulfur Dioxide 35 31 Nitrogen Oxide 17 38 Carbon Dioxide 20,291 36 Sulfur Dioxide (lbs/MWh) 1.8 34 Nitrogen Oxide (lbs/MWh) 0.9 39 Carbon Dioxide (lbs/MWh) 1,045 38 Total Retail Sales (megawatthours) 57,123,422 26 Full Service Provider Sales (megawatthours) 31,822,942 34

354

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

355

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

356

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

357

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

358

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

359

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

360

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

362

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

363

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

364

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

365

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

366

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

367

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

368

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

369

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana Electricity Profile 2010 Indiana profile Indiana Electricity Profile 2010 Indiana profile Table 1. 2010 Summary Statistics (Indiana) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,638 13 Electric Utilities 23,008 8 Independent Power Producers & Combined Heat and Power 4,630 23 Net Generation (megawatthours) 125,180,739 11 Electric Utilities 107,852,560 5 Independent Power Producers & Combined Heat and Power 17,328,179 20 Emissions (thousand metric tons) Sulfur Dioxide 385 4 Nitrogen Oxide 120 4 Carbon Dioxide 116,283 5 Sulfur Dioxide (lbs/MWh) 6.8 4 Nitrogen Oxide (lbs/MWh) 2.1 12 Carbon Dioxide (lbs/MWh) 2,048 4 Total Retail Sales (megawatthours) 105,994,376 11 Full Service Provider Sales (megawatthours) 105,994,376 8

370

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

371

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

372

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

373

state and local government  

Science Conference Proceedings (OSTI)

... State Net - A source of information on bills and state agency regulations in the 50 states, District of Columbia and Congress. ...

2012-12-13T23:59:59.000Z

374

Mississippi State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Mississippi State Regulations: Mississippi State of Mississippi The Mississippi State Oil and Gas Board (MSOGB), an independent agency, promulgates and enforces rules to regulate...

375

State of Connecticut Connecticut State Library  

E-Print Network (OSTI)

to all employees of state agencies within the executive department, towns, cities, boroughs, districts, and §7-109 of the General Statutes of Connecticut (CGS). Definitions "Agency" means a state agencyState of Connecticut Connecticut State Library Office of the Public Records Administrator www

Holsinger, Kent

376

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

7 Table 7.5 Coal Exports by Country of Destination, Selected Years, 1960-2011 (Million Short Tons) Year Canada Brazil Europe Japan Other 3 Total Belgium 1 Denmark France Germany 2...

377

State Laboratory Contacts IL  

Science Conference Proceedings (OSTI)

State Laboratory Contact Information IL. Idaho. ... State of Iowa Metrology Laboratory Ellsworth Community College 1100 College Ave. ...

2013-11-07T23:59:59.000Z

378

State Laboratory Contacts DH  

Science Conference Proceedings (OSTI)

State Laboratory Contact Information DH. District of Columbia. ... Lab Closed See State Director's List. No Certificate. Delaware. ...

2013-10-24T23:59:59.000Z

379

Illinois State Geological Survey Evaluation of CO2 Capture Options from Ethanol Plants  

DOE Green Energy (OSTI)

The Illinois State Geological Survey and the Midwest Geological Sequestration Consortium are conducting CO{sub 2} sequestration and enhanced oil recovery testing at six different sites in the Illinois Basin. The capital and operating costs for equipment to capture and liquefy CO{sub 2} from ethanol plants in the Illinois area were evaluated so that ethanol plants could be considered as an alternate source for CO{sub 2} in the event that successful enhanced oil recovery tests create the need for additional sources of CO{sub 2} in the area. Estimated equipment and operating costs needed to capture and liquefy 68 metric tonnes/day (75 tons/day) and 272 tonnes/day (300 tons/day) of CO{sub 2} for truck delivery from an ethanol plant are provided. Estimated costs are provided for food/beverage grade CO{sub 2} and also for less purified CO{sub 2} suitable for enhanced oil recovery or sequestration. The report includes preliminary plant and equipment designs and estimates major capital and operating costs for each of the recovery options. Availability of used equipment was assessed.

Robert Finley

2006-09-30T23:59:59.000Z

380

United States Government Department of Energy Memorandum DATE: November 20, 2003 Audit Report Number: OAS-L-04-05  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOb F 1325.8 DOb F 1325.8 (8-89) EFG (07-90) United States Government Department of Energy Memorandum DATE: November 20, 2003 Audit Report Number: OAS-L-04-05 REPLY TO: IG-30 (A03AL036) SUBJECT: Audit of Controls Over Expenditures Within the Office of Secure Transportation TO: Michael Kane, Associate Administrator for Management and Administration INTRODUCTION AND OBJECTIVE The National Nuclear Security Administration's (NNSA) Office of Secure Transportation (OST) supports the Department of Energy's (Department) national security core programs by safely and securely transporting nuclear weapons, special nuclear materials, and components between Department facilities and Department of Defense destinations. OST's primary field facility locations are the Transportation Safeguards Training Center

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Estimated Carbon Dioxide Emissions in 2008: United States  

Science Conference Proceedings (OSTI)

Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary resource consumption, electricity generation, and energy consumption within each economic sector. Flow charts of state-level energy usage and explanations of the calculations and assumptions utilized can be found at: http://flowcharts.llnl.gov. This information is translated into carbon dioxide emissions using ratios of carbon dioxide emissions to energy use calculated from national carbon dioxide emissions and national energy use quantities for each particular sector. These statistics are reported annually in the U.S. EIA's Annual Energy Review. Data for 2008 (US. EIA, 2010) was updated in August of 2010. This is the first presentation of a comprehensive state-level package of flow charts depicting carbon dioxide emissions for the United States.

Smith, C A; Simon, A J; Belles, R D

2011-04-01T23:59:59.000Z

382

The effect of location and facility demand on the marginal cost of delivered wood chips from energy crops: A case study of the state of Tennessee  

DOE Green Energy (OSTI)

Cost-supply curves for delivered wood chips from short rotation woody crops were calculated for 21 regularly-spaced locations spanning the state of Tennessee. These curves were used to systematically evaluate the combined effects of location and facility demand on wood chip feedstock costs in Tennessee. The cost-supply curves were developed using BRAVO, a GIS-based decision support system which calculates marginal cost of delivering wood chips to a specific location given road network maps and maps of farmgate prices and supplies of woody chips from short rotation energy crops. Marginal costs of delivered chips varied by both facility location in the state and facility demand. Marginal costs were lowest in central Tennessee unless the facility demand was greater than 2.7 million dry Mg per year (3 million dry tons per year) in which case west Tennessee was the lowest cost region. Marginal costs rose rapidly with increasing facility demand in the mountainous eastern portion of the state. Transportation costs accounted for 18 to 29% of the delivered cost and ranged between $8 and $18/dry Mg ($7 and $16/dry ton). Reducing the expected farmer participation rate from 100% to 50% or 25% dramatically raised the marginal costs of feedstock supply in the east and central regions of the state. The analysis demonstrates the need to use geographically-specific information when projecting the potential costs and supplies of biomass feedstock.

Graham, R.L.; Liu, W.; Downing, M. [Oak Ridge National Lab., TN (United States). Biofuels Feedstock Development Program; Noon, C.; Daly, M. [Univ. of Tennessee, Knoxville, TN (United States). Management Science Program; Moore, A. [Dept. of Trade and Industry, Harwell (United Kingdom). Energy Technology Support Unit

1995-12-31T23:59:59.000Z

383

Funding for state, city, and county governments in the state...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding for state, city, and county governments in the state includes: Funding for state, city, and county governments in the state includes: Funding for state, city, and county...

384

Report to the United States Congress clean coal technology export markets and financing mechanisms  

SciTech Connect

This report responds to a Congressional Conference Report that requests that $625,000 in funding provided will be used by the Department to identify potential markets for clean coal technologies in developing countries and countries with economies in transition from nonmarket economies and to identify existing, or new, financial mechanisms or financial support to be provided by the Federal government that will enhance the ability of US industry to participate in these markets. The Energy Information Administration (EIA) expects world coal consumption to increase by 30 percent between 1990 and 2010, from 5.1 to 6.5 billion short tons. Five regions stand out as major foreign markets for the export of US clean coal technologies: China; The Pacific Rim (other than China); South Asia (primarily India); Transitional Economies (Central Europe and the Newly Independent States); and Other Markets (the Americas and Southern Africa). Nearly two-thirds of the expected worldwide growth in coal utilization will occur in China, one quarter in the United States. EIA forecasts nearly a billion tons per year of additional coal consumption in China between 1990 and 2010, a virtual doubling of that country`s coal consumption. A 30-percent increase in coal consumption is projected in other developing countries over that same period. This increase in coal consumption will be accompanied by an increase in demand for technologies for burning coal cost-effectively, efficiently and cleanly. In the Pacific Rim and South Asia, rapid economic growth coupled with substantial indigenous coal supplies combine to create a large potential market for CCTS. In Central Europe and the Newly Independent States, the challenge will be to correct the damage of decades of environmental neglect without adding to already-considerable economic disruption. Though the situation varies, all these countries share the basic need to use indigenous low-quality coal cleanly and efficiently.

Not Available

1994-05-01T23:59:59.000Z

385

Commodity Flow Survey | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Commodity Flow Survey Commodity Flow Survey BusinessUSA Data/Tools Apps Challenges Let's Talk BusinessUSA You are here Data.gov » Communities » BusinessUSA » Data Commodity Flow Survey Dataset Summary Description The Commodity Flow Survey provides information on commodities shipped, their value, weight, and mode of transportation, as well as the origin and destination of shipments of commodities from manufacturing, mining, wholesale, and selected retail and services establishments. It is undertaken through a partnership between the Bureau of the Census, U.S. Department of Commerce, and the Bureau of Transportation Statistics, Research and Innovative Technology Administration. Tags {cfc,commodity,flow," federal",state,local,transportation,facilities,services,energy,safety,environment,Mining,Manufacturing,Wholesale,trade,Retail,Services,auxiliary,establishments,warehouses,industries,export,shipment,distance,tons,weight,hazardous,miles,ton-miles,destination,industry,hazard,ship,intrastate,interstate,"UN number",packaging,"TIH number",u.s.,metropolitan}

386

Metropolitan Washington Council of Governments National Capital Region Transportation Planning Board Summary of the State of the Practice and State of the Art of Modeling Peak Spreading  

E-Print Network (OSTI)

Traffic congestion in large metropolitan areas has become so acute that many commuters are adjusting their departure and/or arrival times for work and other destinations to avoid the worst of what is now called the “peak period”. The adjustments in departure times combined with travel times that can last beyond the peak hour have led to the phenomena of peak spreading, where the peak hour demand on a particular roadway exceeds the peak hour capacity and causes demand to shift to the “shoulders ” of the peak hour, or the hours adjacent to the peak hour. This situation is so pronounced in the TPB region, that most of the major freeways in the areas have peak periods that last from roughly 6 AM to 10 AM in the morning and 3 PM to 7 PM in the evening where stop and go traffic is common throughout. The Metropolitan Washington Council of Governments, National Capital Region Transportation Planning Board (TPB) engaged Vanasse Hangen Brustlin (VHB) to review and summarize the state of the practice and the state of the art with regards to modeling peak spreading at the MPO level. VHB began this effort by reviewing the recent MPO survey and following up with staff at large MPOs with characteristics similar

unknown authors

2007-01-01T23:59:59.000Z

387

Background - State Data Reporting  

NLE Websites -- All DOE Office Websites (Extended Search)

State Data Reporting State-reported motor fuel data is a critical component of the process that distributes HTF monies to the States. Currently, motor-fuel-based apportionment...

388

Charge state simulation  

Science Conference Proceedings (OSTI)

... The charge state balance (eg, the population of different charge states) inside the EBIT is determined by the balance between the different ...

2010-12-07T23:59:59.000Z

389

finite state machine  

Science Conference Proceedings (OSTI)

... Moore machine), multiple start states, transitions conditioned on no input symbol (a null) or more than one transition for a given symbol and state ( ...

2013-11-08T23:59:59.000Z

390

Virginia State Energy Profile  

U.S. Energy Information Administration (EIA)

The State’s two nuclear power plants provided 38 percent of the net electricity generation ... Storage : 8,111 million cu ft ... energy demand is distributed fairly ...

391

Alaska State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Alaska State Regulations: Alaska State of Alaska The Alaska Oil and Gas Conservation Commission (AOGCC) regulates the drilling for and production of oil and gas resources, the...

392

Arizona State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Arizona State Regulations: Arizona State of Arizona The Arizona Geological Survey (AZGS) Oil and Gas Conservation Commission (OGCC) regulates the drilling for and production of...

393

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to this report. INTRODUCTION AND OBJECTIVE The European Laboratory for Particle Physics, CERN, in collaboration with the United States (U.S.) and other non-member states,...

394

State Laboratory Contacts AC  

Science Conference Proceedings (OSTI)

State Laboratory Contact Information AC. Alabama. Mailing Address, ... PDF. Alaska. Mailing Address, Contact Information. Alaska ...

2013-08-01T23:59:59.000Z

395

State and Regional Resources  

Science Conference Proceedings (OSTI)

... Center. -, Economic Developer's Assn. South Dakota, -, Small Business Development Center. -, Dakota State SBIR. Tennessee, ...

2012-11-19T23:59:59.000Z

396

Microsoft Word - state_analysis_2013  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Table 1. State energy-related carbon dioxide emissions by year (2000 - 2010) million metric tons carbon dioxide State 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Percent Absolute Alabama 140.4 132.0 136.7 137.2 139.7 141.5 144.0 146.1 139.2 119.8 132.7 -5.5% -7.7 Alaska 44.3 43.4 43.6 43.5 46.8 48.1 45.8 44.1 39.5 37.9 38.7 -12.6% -5.6 Arizona 86.0 88.3 87.7 89.3 96.6 96.7 100.0 102.2 103.1 94.6 95.9 11.6% 9.9 Arkansas 63.2 62.4 60.9 61.3 61.9 59.7 61.6 63.1 63.7 61.6 66.1 4.6% 2.9 California 381.3 385.8 384.9 389.5 391.5 389.0 397.5 403.7 389.8 375.9 369.8 -3.0% -11.4 Colorado 84.7 92.8 90.9 90.0 93.1 95.4 96.4 99.2 97.6 93.7 96.5 13.9% 11.8 Connecticut 42.8 41.5 39.9 42.3 44.4 43.9 40.9 40.3 38.2 36.5 36.9 -13.7% -5.8 Delaware 16.3 15.7 15.5 16.1 16.1 17.0 15.8 16.7 15.9 11.8 11.7 -27.9% -4.5 District of Columbia 4.3 4.1

397

Microsoft Word - state_analysis_2013  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Table 3. 2010 state energy-related carbon dioxide emissions by sector million metric tons carbon dioxide State Commercial Electric Power Residential Industrial Transportation Total Al a ba ma 2.1 76.7 2.8 17.7 33.4 132.7 Al a s ka 2.5 3.0 1.8 16.6 14.8 38.7 Ari zona 2.4 54.4 2.3 4.8 32.1 95.9 Arka ns a s 2.6 32.3 2.3 8.6 20.3 66.1 Ca l i forni a 15.9 43.5 28.9 67.5 214.0 369.8 Col ora do 4.2 39.9 7.8 14.9 29.7 96.5 Connecti cut 3.4 7.7 7.7 1.9 16.2 36.9 Del a wa re 0.8 4.2 1.1 1.1 4.5 11.7 Di s trict of Col umbi a 1.2 0.2 0.8 0.0 1.1 3.3 Fl ori da 5.4 119.6 1.6 12.4 107.0 246.0 Georgi a 4.0 79.1 8.3 14.5 67.8 173.7 Ha wa i i 0.3 7.6 0.1 1.7 9.3 18.9 Ida ho 1.1 0.7 1.6 3.4 9.4 16.2 Il l i noi s 11.5 94.0 23.7 33.9 67.2 230.4 Indi a na 5.4 114.3 8.7 48.5 42.2 219.1 Iowa 4.1 40.6 4.5 18.0 21.6 88.7 Ka ns a s 2.0 35.4 4.5 15.1 18.0 75.0 Kentucky 2.4 94.2 3.7 18.0 32.4 150.7 Loui s i a na 1.9 42.6 2.6 128.1

398

Microsoft Word - state_analysis_2013  

U.S. Energy Information Administration (EIA) Indexed Site

9 9 Table 5. Per capita energy-related carbon dioxide emissions by state (2000 - 2010) metric tons carbon dioxide per person Change 2000 to 2010 State 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Percent Absolute Al a ba ma 31.5 29.6 30.6 30.6 31.0 31.1 31.3 31.5 29.8 25.4 28.1 -11.0% -3.5 Al a s ka 70.6 68.5 67.9 67.2 70.9 72.0 67.8 64.9 57.6 54.6 54.6 -22.6% -16.0 Ari zona 16.6 16.7 16.1 16.0 16.8 16.2 16.2 16.1 15.9 14.4 14.4 -13.7% -2.3 Arka ns a s 23.6 23.2 22.5 22.5 22.6 21.5 21.9 22.2 22.2 21.3 22.7 -3.7% -0.9 Ca li fornia 11.2 11.2 11.0 11.1 11.0 10.9 11.1 11.2 10.7 10.2 9.9 -11.5% -1.3 Colora do 19.6 20.9 20.2 19.8 20.3 20.5 20.3 20.5 19.8 18.7 18.9 -3.2% -0.6 Connecticut 12.5 12.1 11.6 12.2 12.8 12.6 11.7 11.6 10.9 10.4 10.5 -16.5% -2.1 Dela wa re 20.7 19.8 19.3 19.7 19.5 20.2 18.5 19.3 18.2 13.4 13.1 -36.4% -7.5 Dis tri ct of Columbi a

399

State energy flow patterns. [All 50 states  

SciTech Connect

Highly visual and self-explanatory 1975 energy flow diagrams are presented for each of the 50 states and for the entire United States. Each diagram illustrates the energy produced and how it is consumed or lost. The diagrams are meant to serve as a convenient and useful reference (or starting point) for consideration of energy-related problems.

Kidman, R.B.; Barrett, R.J.

1977-01-01T23:59:59.000Z

400

Doorway states and billiards  

SciTech Connect

Whenever a distinct state is immersed in a sea of complicated and dense states, the strength of the distinct state, which we refer to as a doorway, is distributed in their neighboring states. We analyze this mechanism for 2-D billiards with different geometries. One of them is symmetric and integrable, another is symmetric but chaotic, and the third has a capricious form. The fact that the doorway-state mechanism is valid for such highly diverse cases, proves that it is robust.

Franco-Villafane, J. A.; Mendez-Sanchez, R. A. [Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, P.O. Box 48-3, 62251 Cuernavaca Mor. (Mexico); Flores, J. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, P.O. Box 20-364, 01000 Mexico, D. F. (Mexico); Centro Internacional de Ciencias, A. C., P.O. Box 6-101 C.P. 62131 Cuernavaca, Mor. (Mexico); Mateos, J. L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, P.O. Box 20-364, 01000 Mexico, D. F. (Mexico); Novaro, O. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, P.O. Box 20-364, 01000 Mexico, D. F. (Mexico); Seligman, T. H. [Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, P.O. Box 48-3, 62251 Cuernavaca Mor. (Mexico); Centro Internacional de Ciencias, A. C., P.O. Box 6-101 C.P. 62131 Cuernavaca, Mor. (Mexico)

2010-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Funding for state, city, and county governments in the state...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding for state, city, and county governments in the state includes: Funding for state, city, and county governments in the state includes: A chart detailling the funding for...

402

EIA - Future role of the United States in world coal trade  

Gasoline and Diesel Fuel Update (EIA)

Future role of the United States in world coal trade Future role of the United States in world coal trade International Energy Outlook 2010 Future role of the United States in world coal trade U.S. coal exports increased each year from 2002 to 2008 at an average annual rate of 12.8 percent, to 82 million tons in 2008. Some analysts have viewed the sharp increase in U.S. exports as an indication of the growing importance of the United States as a world coal supplier. There has also been speculation that China's growing demand for coal will support this trend in the future. However, U.S. coal is a relatively high-cost supply source when shipped to Asian markets, and in the long term U.S. coal will be competing in the Chinese market with lower cost suppliers, notably Australia and Indonesia among others. U.S. exports compete most strongly in European markets and then only when less expensive options are unavailable. In IEO2010, the United States remains a marginal coal supplier over the long term, responding to short-term disruptions or spikes in demand rather than significantly expanding its market share of world coal trade.

403

Weekly Coal Production by State - Energy Information Administration  

U.S. Energy Information Administration (EIA)

For the week ended October 12, 2013: U.S. coal production totaled approximately 18.9 million short tons (mmst) This production estimate is 6.7 percent higher than ...

404

Weekly Coal Production by State - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

For the week ended November 02, 2013: U.S. coal production totaled approximately 19.3 million short tons (mmst) This production estimate is 0.1 percent higher than ...

405

Parts of Quantum States  

E-Print Network (OSTI)

It is shown that generic N-party pure quantum states (with equidimensional subsystems) are uniquely determined by their reduced states of just over half the parties; in other words, all the information in almost all N-party pure states is in the set of reduced states of just over half the parties. For N even, the reduced states in fewer than N/2 parties are shown to be an insufficient description of almost all states (similar results hold when N is odd). It is noted that Real Algebraic Geometry is a natural framework for any analysis of parts of quantum states: two simple polynomials, a quadratic and a cubic, contain all of their structure. Algorithmic techniques are described which can provide conditions for sets of reduced states to belong to pure or mixed states.

Nick S. Jones; Noah Linden

2004-07-15T23:59:59.000Z

406

Parts of quantum states  

Science Conference Proceedings (OSTI)

It is shown that generic N-party pure quantum states (with equidimensional subsystems) are uniquely determined by their reduced states of just over half the parties; in other words, all the information in almost all N-party pure states is in the set of reduced states of just over half the parties. For N even, the reduced states in fewer than N/2 parties are shown to be an insufficient description of almost all states (similar results hold when N is odd). It is noted that real algebraic geometry is a natural framework for any analysis of parts of quantum states: two simple polynomials, a quadratic and a cubic, contain all of their structure. Algorithmic techniques are described which can provide conditions for sets of reduced states to belong to pure or mixed states.

Jones, Nick S.; Linden, Noah [Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW (United Kingdom)

2005-01-01T23:59:59.000Z

407

Solid-State Lighting: Postings  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting: Postings on Twitter Bookmark Solid-State Lighting: Postings on Google Bookmark Solid-State Lighting: Postings on Delicious Rank Solid-State Lighting:...

408

Commodity PAD Districts I II III IV V United States  

U.S. Energy Information Administration (EIA) Indexed Site

Commodity Commodity PAD Districts I II III IV V United States Table 10a. Fuel Consumed at Refineries by PAD District, 2012 (Thousand Barrels, Except Where Noted) Crude Oil 0 0 0 0 0 0 Liquefied Petroleum Gases 0 464 490 49 518 1,521 Distillate Fuel Oil 4 89 236 1 209 539 Residual Fuel Oil 26 18 11 16 469 540 Still Gas 13,838 50,328 108,359 8,694 38,875 220,094 Marketable Petroleum Coke 0 0 0 528 166 694 Catalyst Petroleum Coke 9,003 17,611 42,614 2,852 12,416 84,496 Natural Gas (million cubic feet) 38,347 143,702 474,359 26,971 159,849 843,228 Coal (thousand short tons) 30 0 0 0 0 30 Purchased Electricity (million kWh) 2,355 11,892 23,255 2,003 5,130 44,635 Purchased Steam (million pounds) 3,849 12,723 88,922 1,439 14,426 121,359 Other Products 40 47 677 67 1,141 1,972

409

U.S. Energy Information Administration State Energy Data  

Gasoline and Diesel Fuel Update (EIA)

21 21 Table CT1. Energy Consumption Estimates for Major Energy Sources in Physical Units, Selected Years, 1960-2011, United States Year Coal Net Imports of Coal Coke Natural Gas a Petroleum Nuclear Electric Power Hydro- electric Power f Fuel Ethanol g Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Million Short Tons Billion Cubic Feet Million Barrels Billion Kilowatthours Million Barrels 1960 398 (s) 11,967 685 136 227 1,453 559 525 3,586 1 149 NA 1965 472 -1 15,280 776 220 307 1,676 587 636 4,202 4 197 NA 1970 523 -2 21,139 927 353 447 2,111 804 722 5,364 22 251 NA 1971 502 -1 21,793 971 369 457 2,195 838 722 5,553 38 270 NA 1972 524 -1 22,101 1,066 382 520 2,334 926 762 5,990 54 276 NA 1973 563 (s) 22,049 1,129 387 529 2,436 1,030 807 6,317 83 275 NA 1974 558 2 21,223 1,076 363 513 2,386 963 777 6,078 114 304 NA 1975 563 1 19,538 1,041 365

410

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network (OSTI)

change. as long as cellulosic feedstock costs, Science 319:cellulosic biomass conversion processes should operate at efficiencies approaching 50%, implying that a $10 per ton increment in feedstock

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

411

Roadmap for Agriculture Biomass Feedstock Supply in the United States  

SciTech Connect

The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nation’s power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the country’s current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the research and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: • Biomass Availability – By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee • Sustainability – Production and use of the 1 billion dry tons annually must be accomplished in a sustainable manner • Feedstock Infrastructure – An integrated feedstock supply system must be developed and implemented that can serve the feedstock needs of the biorefinery at the cost, quality, and consistency of the set targets • System Profitability – Economic profitability and sustainability need to be ensured for all required participants in the feedstock supply system. For each step in the biomass supply process—production, harvesting and collection, storage, preprocessing, system integration, and transportation—this roadmap addresses the current technical situations, performance targets, technical barriers, R&D needs, and R&D priorities to overcome technical barriers and achieve performance targets. Crop residue biomass is an attractive starting feedstock, which shows the best near-term promise as a biorefinery feedstock. Because crop residue is a by-product of grain production, it is an abundant, underutilized, and low cost biomass resource. Corn stover and cereal straw are the two most abundant crop residues available in the United States. Therefore, this roadmap focuses primarily on the R&D needed for using these biomass sources as viable biorefinery feedstocks. However, achieving the goal of 1 billion dry tons of lignocellulosic feedstock will require the use of other biomass sources such as dedicated energy crops. In the long term, the R&D needs identified in this roadmap will need to accommodate these other sources of biomass as well.

J. Richard Hess; Thomas D. Foust; Reed Hoskinson; David Thompson

2003-11-01T23:59:59.000Z

412

Revised market guide for coal exports from the United States  

SciTech Connect

The world market for steam coal is assessed. In recent years, much has changed in the world coal markets and in the expected opportunities for coal exports from the US. As an example, the overseas steam coal exports climbed from about 2 million tons in 1979 to about 35 million tons in 1981. Since then the overseas steam coal exports have fallen to 27 million tons in 1982 and to 17 million tons in 1983. In addition, metallurgical coal exports to overseas customers dropped from 60 million tons in 1982 to 43 million tons in 1983. This market guide is divided into four sections: Section one contains a review of the most frequently asked questions by individuals interested in the overseas coal markets and the role of US producers in this market; Section two contains an overview of the market for US steam and metallurgical coal exports, including forecasts of import demands, potential US market share, and the factors affecting this market share; Section three contains an outline of the current structure of the steam coal export trade in the US and the potential developments that will influence its future, and Section four contains a review of the important data on the nature of the energy-using industries, utilities and power plants, cement plants, coal quality requirements, and ports of the major steam and metallurgical coal importing countries. 14 figures, 45 tables.

1984-06-01T23:59:59.000Z

413

State Technology Extension Assistance Project for the State of ...  

Science Conference Proceedings (OSTI)

... NIST provides technical assistance to State technology extension programs throughout the United States. The purpose ...

2013-09-05T23:59:59.000Z

414

Montana State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Montana State Regulations: Montana State of Montana The Montana Board of Oil and Gas Conservation (MBOGC) is a quasi-judicial body that is attached to the Department of Natural...

415

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA)

Trade and Reliability; All Reports ‹ See all Electricity Reports State Electricity Profiles. ... Electric Power Industry Emissions Estimates, 1990 Through 2010:

416

State Emissions Estimates  

Gasoline and Diesel Fuel Update (EIA)

Estimates of state energy-related carbon dioxide emissions Estimates of state energy-related carbon dioxide emissions Because energy-related carbon dioxide (CO 2 ) constitutes over 80 percent of total emissions, the state energy-related CO 2 emission levels provide a good indicator of the relative contribution of individual states to total greenhouse gas emissions. The U.S. Energy Information Administration (EIA) emissions estimates at the state level for energy-related CO 2 are based on data contained in the State Energy Data System (SEDS). 1 The state-level emissions estimates are based on energy consumption data for the following fuel categories: three categories of coal (residential/commercial, industrial, and electric power sector); natural gas; and ten petroleum products including-- asphalt and road oil, aviation gasoline, distillate fuel, jet fuel, kerosene, liquefied petroleum gases

417

Solid-State Lighting: Solid-State Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid-State Lighting Search Solid-State Lighting Search Search Help Solid-State Lighting HOME ABOUT THE PROGRAM R&D PROJECTS MARKET-BASED PROGRAMS SSL BASICS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES EERE » Building Technologies Office » Solid-State Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards.

418

State Technologies Advancement Collaborative  

DOE Green Energy (OSTI)

The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

David S. Terry

2012-01-30T23:59:59.000Z

419

State Clean Energy Policies Analysis: State, Utility, and Municipal...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Report State Clean Energy Policies NRELTP-6A2-47376 Analysis: State, Utility, and May 2010 Municipal Loan Programs Eric Lantz Technical Report State Clean Energy...

420

States | OpenEI  

Open Energy Info (EERE)

States States Dataset Summary Description The State Energy Data System (SEDS) is compiled by the U.S. Energy Information Administration's (EIA); it is a comprehensive database of energy statistics by state (and includes totals for the entire US). SEDS includes estimates of energy production, consumption, prices, and expenditures broken down by energy source and sector. Annual estimates are available from 1960 - 2009 for production and consumption estimates and from 1970 - 2009 for price and expenditure estimates. Source EIA Date Released June 30th, 2011 (3 years ago) Date Updated Unknown Keywords EIA Energy Consumption Energy Expenditures energy prices energy production SEDS State energy data States US Data text/csv icon Complete SEDS dataset as csv (may be too big for Excel) (csv, 40.6 MiB)

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Alabama State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

State Regulations » Alabama State Regulations » Alabama State Regulations: Alabama State of Alabama The State Oil and Gas Board of Alabama, under the direction of the State Geologist and Oil and Gas Supervisor, is responsible for the regulation of oil and gas operations. The Board is divided into two administrative regions-north and south. The Board has broad authority in Alabama's oil and gas conservation statutes to promulgate and enforce rules and regulations to ensure the conservation and proper development of Alabama's petroleum resources. A major duty of the Board is to prevent pollution of fresh water supplies by oil, gas, salt water, or other contaminants resulting from oil and gas operations. The Alabama Department of Environmental Management (ADEM) administers the major federal environmental protection laws through regulations governing air pollution, water quality and supply, solid and hazardous waste management.

422

Pennsylvania State University | .EDUconnections  

NLE Websites -- All DOE Office Websites (Extended Search)

Old Main, Credit: George Chriss Old Main, Credit: George Chriss Research Research at Penn State Capabilities and Projects Institutes of Energy and the Environment Huck Institutes of Life Sciences Materials Research Institute Eberly College of Science Alternative Energy Research Research Publications Faculty Expertise Database Research News DOE Research Results Penn State Commencement 2012 United States Secretary of Energy Dr. Steven Chu was the commencement speaker at Penn State's Eberly College of Science 2012 spring graduation ceremony held May 5 at the Bryce Jordan Center on the University Park campus. Read more. Search this site: Search Over the past ten years, more than 28,000 graduate degrees were conferred by Penn State, including over 6,300 doctoral degrees. Resources About Penn State

423

Twisted vortex state  

E-Print Network (OSTI)

We study a twisted vortex bundle where quantized vortices form helices circling around the axis of the bundle in a "force-free" configuration. Such a state is created by injecting vortices into rotating vortex-free superfluid. Using continuum theory we determine the structure and the relaxation of the twisted state. This is confirmed by numerical calculations. We also present experimental evidence of the twisted vortex state in superfluid 3He-B.

V. B. Eltsov; A. P. Finne; R. Hanninen; J. Kopu; M. Krusius; M. Tsubota; E. V. Thuneberg

2006-02-28T23:59:59.000Z

424

Florida State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

to conserve the state's oil and gas resources and minimize environmental impacts from exploration and production operations through regulation and inspection activities. The...

425

OpenEI - state  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm4330 en Alabama State Oil and Gas Board: Oil Well Records (2911 - 31811) http:en.openei.orgdatasetsnode469

The Alabama...

426

State of Idaho  

NLE Websites -- All DOE Office Websites (Extended Search)

fire chiefs association, Idaho society of professional engineers, Idaho state independent living council, southwest Idaho building trades, Idaho building trades, and any other...

427

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'OQOl - United States Government - Department of Energy National Nuclear Security Administration memorandum January 19, 201 1 DATE. REPLY TO ATTN OF: Y12-60:Gorman SUBJECT ANNUAL...

428

FY 2007 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy FY 2007 Congressional Budget Request February 2006 Office of Chief Financial Officer state tables preliminary Department of Energy FY 2007 Congressional Budget...

429

Georgia State Energy Profile  

U.S. Energy Information Administration (EIA)

Georgia has the largest land area of any state east of the Mississippi River, and, sitting at the southern end of the Blue Ridge Mountains, its land ...

430

United States Patent  

NLE Websites -- All DOE Office Websites (Extended Search)

( 1 of 1 ) United States Patent 6,994,831 Gentile , et al. February 7, 2006 Oxidative tritium decontamination system Abstract The Oxidative Tritium Decontamination System, OTDS,...

431

UNITED STATES OF AMERICA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empowering Consumers and the ) Request for Information Smart Grid: Data Access, Third Party ) Use and Privacy ) COMMENTS BY THE NATIONAL ASSOCIATION OF STATE UTILITY CONSUMER...

432

Solid-State Lighting: Registration  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: Registration on Twitter Bookmark Solid-State Lighting: Registration on Google Bookmark Solid-State Lighting: Registration on Delicious Rank Solid-State Lighting:...

433

Increasing State Capacity Through Clans  

E-Print Network (OSTI)

their role in increasing state capacity With the decline ofhere focus on state capacity and the associated discussionselements of state capacity during the transition from one

Doyle, Jr, Thomas Martin

2009-01-01T23:59:59.000Z

434

State of Arkansas-State Energy Program Assurances | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State of Arkansas-State Energy Program Assurances State of Arkansas-State Energy Program Assurances A letter describing the intentions of Arkansas's share of the 3.1 billion...

435

Solid-State Lighting: Solid-State Lighting Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Videos to Solid-State Lighting Videos to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Videos on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Videos on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Videos on Google Bookmark Solid-State Lighting: Solid-State Lighting Videos on Delicious Rank Solid-State Lighting: Solid-State Lighting Videos on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Videos on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Solid-State Lighting Videos On this page you can access DOE Solid-State Lighting (SSL) Program videos. Photo of a museum art gallery with LED lights in track fixtures overhead. The City of Los Angeles LED Streetlight Program

436

Solid-State Lighting: Solid-State Lighting Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

About the About the Program Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting Contacts to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Contacts on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Contacts on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Google Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Delicious Rank Solid-State Lighting: Solid-State Lighting Contacts on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Contacts on AddThis.com... Contacts Partnerships Solid-State Lighting Contacts For information about Solid-State Lighting, contact James Brodrick Lighting Program Manager Building Technologies Office U.S. Department of Energy

437

State Energy Production Data  

Gasoline and Diesel Fuel Update (EIA)

State Energy Data System State Energy Data System Production Estimates Technical Notes For 1960-2011 Estimates Table of Contents Section 1. Introduction ................................................................................................................... 1 Section 2. Coal ............................................................................................................................... 5 Section 3. Crude Oil ....................................................................................................................... 7 Section 4. Natural Gas (Marketed Production) .............................................................................. 9 Section 5. Renewable Energy and Nuclear Energy ..................................................................... 13

438

Vectorized Finite State Automata  

E-Print Network (OSTI)

We present a technique of finite state parsing based on vectorization and describe the application of this technique to a well-known problem of natural language processing, that of extracting relational information from English text. We define Vectorized Finite State Automata, the theoretical model behind the applied system, and discuss their significance.

András Kornai

1996-01-01T23:59:59.000Z

439

Solid State Division  

SciTech Connect

This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

Green, P.H.; Watson, D.M. (eds.)

1989-08-01T23:59:59.000Z

440

FY 2009 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request State Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper State Index Page Number FY 2009 Congressional Budget 1/30/2008 Department Of Energy (Dollars In Thousands) 9:01:45AM Page 1 of 2 FY 2007 Appropriation FY 2008 Appropriation FY 2009 Request State Table 1 1 $27,588

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

FY 2005 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Management, Budget Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Preliminary Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number

442

FY 2010 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request State Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper State Index Page Number FY 2010 Congressional Budget 5/4/2009 Department Of Energy (Dollars In Thousands) 2:13:22PM Page 1 of 2 FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request State Table 1 1 $46,946 $48,781 $38,844 Alabama 2 $6,569

443

New York State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

New York New York State Regulations: New York State of New York The primary responsibility for regulating oil and gas activities within New York resides with the Bureau of Oil and Gas Regulation in the Division of Mineral Resources (Office of Natural Resources) of the New York State Department of Environmental Conservation (NYSDEC). Other offices and divisions within the NYSDEC administer the major environmental protection laws. Contact New York State Department of Environmental Conservation Division of Mineral Resources Bureau of Oil and Gas Regulation 625 Broadway, 3rd Floor Albany, NY 12233-6500 (518) 402-8056 (phone) (518) 402-8060 (fax) Disposal Practices and Applicable Regulations Environmental conservation rules and regulations are contained in Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York (6 NYCRR). The rules and regulations for oil, gas and solution mining are provided in 6 NYCRR Parts 550-559.

444

FY 2006 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 State Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number FY 2006 Congressional Budget 1/27/2005 Department Of Energy (Dollars In Thousands) 3:32:58PM Page 1 of 2 FY 2004 Comp/Approp FY 2005 Comp/Approp FY 2006 Request State Table

445

Ground State Entanglement Energetics  

E-Print Network (OSTI)

We consider the ground state of simple quantum systems coupled to an environment. In general the system is entangled with its environment. As a consequence, even at zero temperature, the energy of the system is not sharp: a projective measurement can find the system in an excited state. We show that energy fluctuation measurements at zero temperature provide entanglement information. For two-state systems which exhibit a persistent current in the ground state, energy fluctuations and persistent current fluctuations are closely related. The harmonic oscillator serves to illustrate energy fluctuations in a system with an infinite number of states. In addition to the energy distribution we discuss the energy-energy time-correlation function in the zero-temperature limit.

M. Buttiker; A. N. Jordan

2005-01-04T23:59:59.000Z

446

state | OpenEI  

Open Energy Info (EERE)

state state Dataset Summary Description The Alabama State Oil and Gas Board publishes well record permits to the public as they are approved. This dataset is comprised of 50 recent well record permits from 2/9/11 - 3/18/11. The dataset lists the well name, county, operator, field, and date approved, among other fields. State's make oil and gas data publicly available for a range of topics. Source Geological Survey of Alabama Date Released February 09th, 2011 (3 years ago) Date Updated March 18th, 2011 (3 years ago) Keywords Alabama board gas oil state well records Data application/vnd.ms-excel icon Well records 2/9/11 - 3/18/11 (xls, 28.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License

447

FY 2008 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Table State Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer State Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number FY 2008 Congressional Budget 2/1/2007 Department Of Energy (Dollars In Thousands) 6:53:08AM Page 1 of 2 FY 2006 Appropriation FY 2007 Request FY 2008 Request State Table 1 1 $28,332 $30,341

448

Total Crude Oil and Products Exports by Destination  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total All Countries 522,879 659,392 738,803 858,685 1,089,848 1,172,965 1981-2012 Afghanistan 0 0 2 4 3 7 1997-2012 Albania 0 0 0 0 0 166 1998-2012 Algeria 2,602 5 1,257 4 1,226 219 1996-2012 Andora 0 2005-2011 Angola 25 33 615 7 27 12 1995-2012 Anguilla 0 1 1 1 5 2 2005-2012 Antigua and Barbuda 3 8 10 146 231 634 1995-2012 Argentina 3,208 6,431 6,600 6,951 14,632 19,097 1993-2012 Armenia 0 0 0 2005-2012 Aruba 1,931 3,542 2,410 2,578 2,835 2,969 2005-2012 Australia 3,343 3,618 4,689 3,561 4,022 3,748 1993-2012 Austria 9 6 1 1 10 2 1995-2012 Azerbaijan 0 0 1 1 175 1995-2012 Bahama Islands 11,946 9,732 14,878 19,582 16,125 15,113 1993-2012

449

Crude Oil Exports by Destination - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

450

Total Crude Oil and Products Exports by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

451

Total Crude Oil and Products Exports by Destination  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total All Countries 96,229 107,478 106,354 120,656 114,693 108,925 1981-2013 Afghanistan 0 0 0 0 0 0 1997-2013 Albania 110 0 55 0 0 1998-2013 Algeria 1 462 476 685 1 1996-2013 Andora 0 0 2005-2013 Angola 1 0 1 0 0 1995-2013 Anguilla 0 0 0 0 2005-2013 Antigua and Barbuda 0 0 3 0 0 0 1995-2013 Argentina 2,256 1,324 1,457 1,727 1,129 1,753 1993-2013 Armenia 0 2005-2013 Aruba 386 241 743 818 928 1,600 2005-2013 Australia 328 114 232 394 333 290 1993-2013 Austria 0 1 0 0 0 0 1995-2013 Azerbaijan 0 0 0 0 2 1995-2013 Bahama Islands 316 624 624 1,019 1,969 2,118 1993-2013 Bahrain 1 2 0 1 277 1 1993-2013 Barbados

452

Kazakhstan Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

453

Malaysia Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

454

Chile Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

455

India Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

456

Algeria Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

457

Afghanistan Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

458

Barbados Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

459

Croatia Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

460

Tunisia Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Guyana Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

462

Singapore Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 2012-2012: Special Naphthas: 0: 0: 0: 0: 0: 108: 1993-2013: Residual Fuel Oil: 3,227: 7,198: 3,010: 5,718: 3,067: 2,153: 1993-2013: Waxes: 0 ...

463

Lithuania Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 0: 2012-2012: Special Naphthas : 0 : 0: 2008-2012: Residual Fuel Oil : 1: 0 : 2010-2011: Waxes : 0: 0: 0: 0 : 2008-2011: Asphalt and Road Oil ...

464

Iran Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

465

Bolivia Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

466

Peru Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

467

Argentina Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

468

Venezuela Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

469

TMS Fall Meeting '99: Travel and Destination Information  

Science Conference Proceedings (OSTI)

Nov 4, 1999... is served by ten major regional and commuter airlines offering more than 660 daily arrivals and departures non-stop or direct to 85 cities.

470

Thailand Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

471

LEHD Origin-Destination Employment Statistics (LODES) | Data...  

NLE Websites -- All DOE Office Websites (Extended Search)

matthew.graham@census.gov Unique Identifier DOC-1992 Public Access Level public Data Dictionary http:lehd.did.census.govleddatatoolsonthemap.html Data Download URL http:...

472

Turkey Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

2007 2008 2009 2010 2011 2012 View History; Total Crude Oil and Products: 4,383: 10,194: 11,958: 10,801: 21,131: 19,591: 1993-2012

473

Oman Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

474

Morocco Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

475

Senegal Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

476

Namibia Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

477

Brazil Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

478

Total Products Exports by Destination - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

China: 2,463: 2,772: 3,568: 5,805: 2,917: 4,316: 2004-2013: Colombia: 3,013: 2,557: 3,125: 2,938: 3,356: 4,149: 2004-2013: Congo (Brazzaville) 0: 0: 0: 0: 0: 0: 2004 ...

479

China Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

480

Germany Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

Note: This page contains sample records for the topic "tons destination state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Taiwan Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

482

Mauritania Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

483

Greece Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

484

Cyprus Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

485

Kerosene-Type Jet Fuel Exports by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

486

Canada Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

487

Crude Oil Exports by Destination - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Canada: 1,981: 3,476: 3,120: 3,965: 3,863: 3,591: 1993-2013: China: 267 : 1996-2013: Costa Rica : 2011-2011: France : 2005-2005: Germany : 2004-2004: Hong Kong : 1996 ...

488

Mexico Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

489

Petroleum Coke Exports by Destination - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

490

Solid-State Lighting: Solid-State Lighting Manufacturing Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Solid-State Lighting Manufacturing Workshop to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Google Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Delicious Rank Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools Solid-State Lighting Manufacturing Workshop Nearly 200 lighting industry leaders, chip makers, fixture and component

491

Solid-State Lighting: Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

about Solid-State Lighting: Tools on Twitter Bookmark Solid-State Lighting: Tools on Google Bookmark Solid-State Lighting: Tools on Delicious Rank Solid-State Lighting: Tools on...

492

Solid-State Lighting: News  

NLE Websites -- All DOE Office Websites (Extended Search)

about Solid-State Lighting: News on Twitter Bookmark Solid-State Lighting: News on Google Bookmark Solid-State Lighting: News on Delicious Rank Solid-State Lighting: News on...

493

State and Local Baldrige Programs  

Science Conference Proceedings (OSTI)

State, local, and regional Baldrige-based award programs use the ... organizational excellence and competitiveness in their states and regions. ...

2013-05-15T23:59:59.000Z

494

Materials for solid state lighting  

E-Print Network (OSTI)

and Renewable Energy, Office of Building Technology, State andand Renewable Energy, Office of Building Technology, State and

Johnson, S.G.; Simmons, J.A.

2002-01-01T23:59:59.000Z

495

EIA - State Energy Data System  

U.S. Energy Information Administration (EIA)

State Energy Data System (SEDS) 500 . Unhandled exception thrown from /emeu/states/hf.jsp:90 jrun.jsp.runtime ...

496

Solid-State Lighting: Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards. Register Now for DOE's 11th Annual SSL R&D Workshop January 28-30, join other SSL R&D professionals from industry, government, and academia to learn, share, and shape the future of lighting.

497

California State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

California California State Regulations: California State of California The California Department of Conservation's Division of Oil, Gas, and Geothermal Resources oversees the drilling, operation, maintenance, and plugging and abandonment of oil, natural gas, and geothermal wells. The regulatory program emphasizes the development of oil, natural gas, and geothermal resources in the state through sound engineering practices that protect the environment, prevent pollution, and ensure public safety. Other agencies that may be involved in the regulation of drilling wastes include the State Water Resources Control Board and appropriate Regional Water Quality Control Boards, the California Integrated Waste Management Board, the California Air Resources Board and appropriate Air Quality Management Districts or Air Pollution Control Districts, and the Department of Toxic Substances Control.

498

FY 2011 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0054 March 2010 Office of Chief Financial Officer State Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Department of Energy FY 2011 Congressional Budget Request DOE/CF-0054 State Index Page Number FY 2011 Congressional Budget 1/29/2010 Department Of Energy (Dollars In Thousands) 6:34:40AM Page 1 of 2 FY 2009 Appropriation

499

Kansas State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Kansas Kansas State Regulations: Kansas State of Kansas The Kansas Corporation Commission (KCC) Conservation Division regulates oil and gas operations and protects correlative rights and environmental resources. Otherwise, the Kansas Department of Health and Environment (KDHE) administers the major environmental protection laws. Contact Kansas Corporation Commission (Main Office) 1500 S.W. Arrowhead Road Topeka, KS 66604-2425 (785) 271-3100 (phone) (785) 271-3354 (fax) Conservation Division Finney State Office Building 130 South Market, Room 2078 Wichita, KS 67202-3802 (316) 337-6200 (phone) (316) 337-6211 (fax) Kansas Department of Health and Environment Charles Curtis State Office Building 1000 S.W. Jackson Topeka, KS 66612 (785) 296-1500 (phone) (785) 368-6368 (fax)

500

State and Local Incentives  

Energy.gov (U.S. Department of Energy (DOE))

To help you make energy efficiency improvements in your commercial building, your state and/or local community might offer incentives or have special programs. See the following resources for more...