National Library of Energy BETA

Sample records for tons average sulfur

  1. Average Stumpage Prices Measured in Price per Ton for Forest Products Large Pine Sawtimber Small Pine Sawtimber Hardwood Sawtimber

    E-Print Network [OSTI]

    Average Stumpage Prices Measured in Price per Ton for Forest Products Large Pine Sawtimber Small Pine Sawtimber Hardwood Sawtimber Year Unweighte d Average Prices Weighted Average Prices Average of Unweighted and Weighted Prices Unweighted Average Prices Weighted Average Prices Average of Unweighted

  2. Average Stumpage Prices Measured in Price per Ton for Forest Products Large Pine Sawtimber Small Pine Sawtimber Hardwood Sawtimber

    E-Print Network [OSTI]

    Average Stumpage Prices Measured in Price per Ton for Forest Products Large Pine Sawtimber Small Pine Sawtimber Hardwood Sawtimber Year Unweighted Average Prices Weighted Average Prices Average of Unweighted and Weighted Prices Unweighted Average Prices Weighted Average Prices Average of Unweighted

  3. Average Stumpage Prices Measured in Price per Ton for Forest Products Large Pine Sawtimber Small Pine Sawtimber Hardwood Sawtimber

    E-Print Network [OSTI]

    Average Stumpage Prices Measured in Price per Ton for Forest Products Large Pine Sawtimber Small Pine Sawtimber Hardwood Sawtimber Year Unweighted Average Prices Weighted Average Prices Simple average of Unweighted and Weighted Prices Unweighted Average Prices Weighted Average Prices Simple average of Unweighted

  4. Sulfur-Free Selective Pulping 

    E-Print Network [OSTI]

    Dimmel, D. R.; Bozell, J. J.

    1994-01-01

    an increase in pulping rate and yields, which translates to less energy required per ton of product. Less sulfur means a simplified process, lower odor emissions, and a decrease requirement for bleaching chemicals, meaning less organics being discharged...

  5. Table 1. Real Average Transportation and Delivered Costs of Coal...

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Average Transportation and Delivered Costs of Coal, By Year and Primary Transport Mode" "Year","Average Transportation Cost of Coal (Dollars per Ton)","Average Delivered Cost...

  6. Biogenic sulfur source strengths

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.; Robinson, E.; Pack, M.R.; Bamesberger, W.L.

    1981-12-01

    Conclusions are presented from a 4-yr field measurement study of biogenic sulfur gas emissions from soils, and some water and vegetated surfaces, at 35 locales in the eastern and southeastern United States. More than one soil order was examined whenever possible to increase the data base obtained from the 11 major soil orders comprising the study area. Data analysis and emission model development were based upon an (80 x 80)-km/sup 2/ grid system. The measured sulfur fluxes, adjusted for the annual mean temperature for each sampling locale, weigted by the percentage of each soil order within each grid, and averaged for each of the east-west grid tiers from 47/sup 0/N to 25/sup 0/N latitude, showed an exponential north-to-south increase in total sulfur gas flux. Our model predits an additional increase of nearly 25-fold in sulfur flux between 25/sup 0/N and the equator.

  7. Billion Ton Study—A Historical Perspective

    Broader source: Energy.gov [DOE]

    Breakout Session 1A: Biomass Feedstocks for the Bioeconomy Billion Ton Study—A Historical Perspective Bryce Stokes, Senior Advisor, CNJV

  8. "Table 2. Real Average Annual Coal Transportation Costs, By Primary...

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Average Annual Coal Transportation Costs, By Primary Transport Mode and Supply Region" "(2013 dollars per ton)" "Coal Supply Region",2008,2009,2010,2011,2012,2013 "Railroad"...

  9. Biogenic sulfur emissions in the SURE region

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.; Robinson, E.; Pack, M.R.

    1980-09-01

    The objective of this study was to estimate the magnitude of biogenic sulfur emissions from the northeastern United States - defined as the EPRI Sulfate Regional Experiment (SURE) study area. Initial laboratory efforts developed and validated a portable sulfur sampling system and a sensitive, gas chromatographic analytical detection system. Twenty-one separate sites were visited in 1977 to obtain a representative sulfur emission sampling of soil orders, suborders, and wetlands. The procedure determined the quantity of sulfur added to sulfur-free sweep air by the soil flux as the clean air was blown through the dynamic enclosure set over the selected sampling area. This study represents the first systematic sampling for biogenic sulfur over such a wide range of soils and such a large land area. The major impacts upon the measured sulfur flux were found to include soil orders, temperature, sunlight intensity, tidal effects along coastal areas. A mathematical model was developed for biogenic sulfur emissions which related these field variables to the mean seasonal and annual ambient temperatures regimes for each SURE grid and the percentage of each soil order within each grid. This model showed that at least 53,500 metric tons (MT) of biogenic sulfur are emitted from the SURE land surfaces and approximately 10,000 MT are emitted from the oceanic fraction of the SURE grids. This equates to a land sulfur flux of nearly 0.02 gram of sulfur per square meter per yr, or about 0.6% of the reported anthropogenic emissions withn the SURE study area. Based upon these data and the summertime Bermuda high clockwise circulation of maritime air across Florida and the Gulf Coast states northward through the SURE area, the total land biogenic sulfur emission contribution to the SURE area atmospheric sulfur burden might approach 1 to 2.5% of the anthropogenic.

  10. Coherent Averaging

    E-Print Network [OSTI]

    Julien M. E. Fraïsse; Daniel Braun

    2015-04-13

    We investigate in detail a recently introduced "coherent averaging scheme" in terms of its usefulness for achieving Heisenberg limited sensitivity in the measurement of different parameters. In the scheme, $N$ quantum probes in a product state interact with a quantum bus. Instead of measuring the probes directly and then averaging as in classical averaging, one measures the quantum bus or the entire system and tries to estimate the parameters from these measurement results. Combining analytical results from perturbation theory and an exactly solvable dephasing model with numerical simulations, we draw a detailed picture of the scaling of the best achievable sensitivity with $N$, the dependence on the initial state, the interaction strength, the part of the system measured, and the parameter under investigation.

  11. Uses of lunar sulfur

    SciTech Connect (OSTI)

    Vaniman, D.T.; Pettit, D.R.; Heiken, G.

    1988-01-01

    Sulfur and sulfur compounds have a wide range of applications for their fluid, electrical, chemical and biochemical properties. Although low in abundance on the Moon (/approximately/0.1% in mare soils), sulfur is surface-correlated and relatively extractable. Co-production of sulfur during oxygen extraction from ilmenite-rich soils could yield sulfur in masses up to 10% of the mass of oxygen produced. Sulfur deserves serious consideration as a lunar resource. 29 refs., 3 figs.

  12. Sulfuric acid-sulfur heat storage cycle

    DOE Patents [OSTI]

    Norman, John H. (LaJolla, CA)

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  13. An Aerosol Condensation Model for Sulfur Trioxide

    SciTech Connect (OSTI)

    Grant, K E

    2008-02-07

    This document describes a model for condensation of sulfuric acid aerosol given an initial concentration and/or source of gaseous sulfur trioxide (e.g. fuming from oleum). The model includes the thermochemical effects on aerosol condensation and air parcel buoyancy. Condensation is assumed to occur heterogeneously onto a preexisting background aerosol distribution. The model development is both a revisiting of research initially presented at the Fall 2001 American Geophysical Union Meeting [1] and a further extension to provide new capabilities for current atmospheric dispersion modeling efforts [2]. Sulfuric acid is one of the most widely used of all industrial chemicals. In 1992, world consumption of sulfuric acid was 145 million metric tons, with 42.4 Mt (mega-tons) consumed in the United States [10]. In 2001, of 37.5 Mt consumed in the U.S., 74% went into producing phosphate fertilizers [11]. Another significant use is in mining industries. Lawuyi and Fingas [7] estimate that, in 1996, 68% of use was for fertilizers and 5.8% was for mining. They note that H{sub 2}SO{sub 4} use has been and should continue to be very stable. In the United States, the elimination of MTBE (methyl tertiary-butyl ether) and the use of ethanol for gasoline production are further increasing the demand for petroleum alkylate. Alkylate producers have a choice of either a hydrofluoric acid or sulfuric acid process. Both processes are widely used today. Concerns, however, over the safety or potential regulation of hydrofluoric acid are likely to result in most of the growth being for the sulfuric acid process, further increasing demand [11]. The implication of sulfuric acid being a pervasive industrial chemical is that transport is also pervasive. Often, this is in the form of oleum tankers, having around 30% free sulfur trioxide. Although sulfuric acid itself is not a volatile substance, fuming sulfuric acid (referred to as oleum) is [7], the volatile product being sulfur trioxide. Sulfate aerosols and mist may form in the atmosphere on tank rupture. From chemical spill data from 1990-1996, Lawuyi02 and Fingas [7] prioritize sulfuric acid as sixth most serious. During this period, they note 155 spills totaling 13 Mt, out of a supply volume of 3700 Mt. Lawuyi and Fingas [7] summarize information on three major sulfuric acid spills. On 12 February 1984, 93 tons of sulfuric acid were spilled when 14 railroad cars derailed near MacTier, Parry Sound, Ontario. On 13 December 1978, 51 railroad cars derailed near Springhill, Nova Scotia. One car, containing 93% sulfuric acid, ruptured, spilling nearly its entire contents. In July 1993, 20 to 50 tons of fuming sulfuric acid spilled at the General Chemical Corp. plant in Richmond, California, a major industrial center near San Francisco. The release occurred when oleum was being loaded into a nonfuming acid railroad tank car that contained only a rupture disk as a safety device. The tank car was overheated and this rupture disk blew. The resulting cloud of sulfuric acid drifted northeast with prevailing winds over a number of populated areas. More than 3,000 people subsequently sought medical attention for burning eyes, coughing, headaches, and nausea. Almost all were treated and released on the day of the spill. By the day after the release, another 5,000 people had sought medical attention. The spill forced the closure of five freeways in the region as well as some Bay Area Rapid Transit System stations. Apart from corrosive toxicity, there is the additional hazard that the reactions of sulfur trioxide and sulfuric acid vapors with water are extremely exothermic [10, 11]. While the vapors are intrinsically denser than air, there is thus the likelihood of strong, warming-induced buoyancy from reactions with ambient water vapor, water-containing aerosol droplets, and wet environmental surface. Nordin [12] relates just such an occurrence following the Richmond, CA spill, with the plume observed to rise to 300 m. For all practical purposes, sulfur trioxide was the constituent released from the heated tank

  14. Timber prices remained sluggish during May/June 2009. Statewide average stump-

    E-Print Network [OSTI]

    Timber prices remained sluggish during May/June 2009. Statewide average stump- age prices of all on hous- ing starts and lumber prices nationally at the end of the period. Statewide pine sawlog prices. The average pine sawlog price was $20.41 per ton for Northeast Texas and $22.60 per ton for Southeast Texas

  15. Department of Energy Releases New 'Billion-Ton' Study Highlighting...

    Energy Savers [EERE]

    The U.S. Department of Energy today released a report - 2011 U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry - detailing U.S. biomass feedstock...

  16. Sulfur recovery process

    SciTech Connect (OSTI)

    Hise, R.E.; Cook, W.J.

    1991-06-04

    This paper describes a method for recovering sulfur from a process feed stream mixture of gases comprising sulfur-containing compounds including hydrogen sulfide using the Claus reaction to convert sulfur-containing compounds to elemental sulfur and crystallization to separate sulfur-containing compounds from a tail gas of the Claus reaction for further processing as a recycle stream. It comprises: providing a Claus feed stream containing a stoichiometric excess of hydrogen sulfide, the Claus feed stream including the process feed stream and the recycles stream; introducing the Claus feed stream and an oxidizing agent into a sulfur recovery unit for converting sulfur-containing compounds in the Claus feed stream to elemental sulfur; withdrawing the tail gas from the sulfur recovery unit; separating water from the tail gas to producing a dehydrated tail gas; separating sulfur-containing compounds including carbonyl sulfide from the dehydrated tail gas as an excluded material by crystallization and withdrawing an excluded material-enriched output from the crystallization to produce the recycle stream; and combining the recycle stream with the process feed stream to produce the Claus feed stream.

  17. Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996Deutsche Bank AG Weekly Download35 35 35Global

  18. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect (OSTI)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  19. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  20. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria (Winchester, MA); Hu, Zhicheng (Somerville, MA)

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  1. Method of burning sulfur-containing fuels in a fluidized bed boiler

    DOE Patents [OSTI]

    Jones, Brian C. (Windsor, CT)

    1982-01-01

    A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

  2. Carbonyl sulfide: potential agent of atmospheric sulfur corrosion

    SciTech Connect (OSTI)

    Graedel, T.E.; Kammlott, G.W.; Franey, J.P.

    1981-05-08

    Laboratory exposure experiments demonstrate that carbonyl sulfide in wet air corrodes copper at 22/sup 0/C at a rate that is approximately linear with total exposure (the product of exposure time and carbonyl sulfide concentration). The corrosion rate is similar to that of hydrogen sulfide, a widely recognized corrodant. The much greater average atmospheric abundance of carbonyl sulfide compared with that of hydrogen sulfide or sulfur dioxide suggests that carbonyl sulfide may be a major agent of atmospheric sulfur corrosion.

  3. LOW SULFUR HOME HEATING OIL DEMONSTRATION PROJECT SUMMARY REPORT.

    SciTech Connect (OSTI)

    BATEY, J.E.; MCDONALD, R.J.

    2005-06-01

    This project was funded by NYSERDA and has clearly demonstrated many advantages of using low sulfur content heating oil to provide thermal comfort in homes. Prior laboratory research in the United States and Canada had indicated a number of potential benefits of using lower sulfur (0.05%) heating oil. However, this prior research has not resulted in the widespread use of low sulfur fuel oil in the marketplace. The research project described in this report was conducted with the assistance of a well-established fuel oil marketer in New York State (NYS) and has provided clear proof of the many real-world advantages of marketing and using low sulfur content No. 2 fuel oil. The very positive experience of the participating marketer over the past three years has already helped to establish low sulfur heating oil as a viable option for many other fuel marketers. In large part, based on the initial findings of this project and the experience of the participating NYS oilheat marketer, the National Oilheat Research Alliance (NORA) has already fully supported a resolution calling for the voluntary use of low sulfur (0.05 percent) home heating oil nationwide. The NORA resolution has the goal of converting eighty percent of all oil-heated homes to the lower sulfur fuel (0.05 percent by weight) by the year 2007. The Oilheat Manufacturers Association (OMA) has also passed a resolution fully supporting the use of lower sulfur home heating oil in the equipment they manufacture. These are important endorsements by prominent national oil heat associations. Using lower sulfur heating oil substantially lowers boiler and furnace fouling rates. Laboratory studies had indicated an almost linear relationship between sulfur content in the oil and fouling rates. The completed NYSERDA project has verified past laboratory studies in over 1,000 occupied residential homes over the course of three heating seasons. In fact, the reduction in fouling rates so clearly demonstrated by this project is almost the same as predicted by past laboratory studies. Fouling deposition rates are reduced by a factor of two to three by using lower sulfur oil. This translates to a potential for substantial service cost savings by extending the interval between labor-intensive cleanings of the internal surfaces of the heating systems in these homes. In addition, the time required for annual service calls can be lowered, reducing service costs and customer inconvenience. The analyses conducted as part of this field demonstration project indicates that service costs can be reduced by up to $200 million a year nationwide by using lower sulfur oil and extending vacuum cleaning intervals depending on the labor costs and existing cleaning intervals. The ratio of cost savings to added fuel costs is economically attractive based on past fuel price differentials for the lower sulfur product. The ratio of cost savings to added costs vary widely as a function of hourly service rates and the additional cost for lower sulfur oil. For typical values, the expected benefit is a factor of two to four higher than the added fuel cost. This means that for every dollar spent on higher fuel cost, two to four dollars can be saved by lowered vacuum cleaning costs when the cleaning intervals are extended. Information contained in this report can be used by individual oil marketers to estimate the benefit to cost ratio for their specific applications. Sulfur oxide and nitrogen oxide air emissions are reduced substantially by using lower sulfur fuel oil in homes. Sulfur oxides emissions are lowered by 75 percent by switching from fuel 0.20 percent to 0.05 percent sulfur oil. This is a reduction of 63,000 tons a year nationwide. In New York State, sulfur oxide emissions are reduced by 13,000 tons a year. This translates to a total value of $12 million a year in Sulfur Oxide Emission Reduction Credits for an emission credit cost of $195 a ton. While this ''environmental cost'' dollar savings is smaller than the potential service costs reduction, it is very significant. It represents an important red

  4. Neutron resonance averaging

    SciTech Connect (OSTI)

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs.

  5. 1,153-ton Waste Vault Removed from 300 Area - Vault held waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1,153-ton Waste Vault Removed from 300 Area - Vault held waste tanks with contamination from Hanford's former laboratory facilities 1,153-ton Waste Vault Removed from 300 Area -...

  6. U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturers Save 1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments U.S. Manufacturers Save 1 Billion, 11 Million Tons of CO2 through Energy Efficiency...

  7. U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Manufacturers Save 1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments U.S. Manufacturers Save 1 Billion, 11 Million Tons of CO2 through Energy...

  8. Process for forming sulfuric acid

    DOE Patents [OSTI]

    Lu, Wen-Tong P. (Upper St. Clair, PA)

    1981-01-01

    An improved electrode is disclosed for the anode in a sulfur cycle hydrogen generation process where sulfur dioxie is oxidized to form sulfuric acid at the anode. The active compound in the electrode is palladium, palladium oxide, an alloy of palladium, or a mixture thereof. The active compound may be deposited on a porous, stable, conductive substrate.

  9. Do We Take Minerals for Granted? Did you know that the average automobile contains more than a ton of iron

    E-Print Network [OSTI]

    from the power plant to our homes or offices. When the battery dies, you do not automatically think about the lead, nickel, cadmium, or lithium used to make the batteries that store power for our cell, fiberglass, graphite, titanium, zirconium, beryllium, copper, tungsten, and steel have replaced wood

  10. Advanced Byproduct Recovery: Direct Catalytic Reduction of Sulfur Dioxide to Elemental Sulfur. Fifth quarterly technical progress report, December 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-01

    More than 170 wet scrubber systems applied, to 72,000 MW of U.S., coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed from the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). Due to the abundance and low cost of naturally occurring gypsum, and the costs associated with producing an industrial quality product, less than 7% of these scrubbers are configured to produce usable gypsum (and only 1% of all units actually sell the byproduct). The disposal of solid waste from each of these scrubbers requires a landfill area of approximately 200 to 400 acres. In the U.S., a total of 19 million tons of disposable FGD byproduct are produced, transported and disposed of in landfills annually. The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. In a regenerable sorbent system, the sulfur dioxide in the boiler flue gas is removed by the sorbent in an adsorber. The S0{sub 2}s subsequently released, in higher concentration, in a regenerator. All regenerable systems produce an off-gas stream from the regenerator that must be processed further in order to obtain a salable byproduct, such as elemental sulfur, sulfuric acid or liquid S0{sub 2}.

  11. Statewide average major timber product prices started the year on a decline except

    E-Print Network [OSTI]

    Statewide average major timber product prices started the year on a decline except for a slight rise in hardwood pulpwood price. Pine sawlog price continued to fall during the January/February 2008 period. State- wide pine sawlog averaged $35.20/ton, the lowest price since January 2006. This was a 5

  12. Stratospheric sulfur oxidation kinetics

    SciTech Connect (OSTI)

    Jayne, J.T.; Worsnop, D.R.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States)] [and others

    1995-12-31

    Oxidation of SO2 to H2SO4 in the atmosphere is believed to involve the reaction of SO3 with water. It is commonly assumed that this is an important step leading to homogeneous nucleation of H2SO4 aerosol particles. Heterogeneous chemistry on sulfuric acid aerosols regulate much of the ozone photochemistry in the lower stratosphere and are also believed to have significant effect on the climate. Understanding aerosol loading requires a detailed knowledge of the stratospheric sulfur budget, including its oxidation kinetics. Here we present results of a laboratory project studying a key step in the oxidation process, the homogeneous reaction between SO3 and H2O vapor. Kinetic measurements are performed in a high-pressure turbulent fast-flow reactor (fabricated at MIT) which minimizes heterogeneous loss of SO3 on reactorwalls. The rate of decay of SO3 and the appearance of H2SO4 is monitored in the presence of excess water vapor. Gas phase reactants and products are detected via an atmospheric pressure chemical ionization mass spectrometer which is coupled to the exit of the flow reactor. Sulfuric acid nucleation studies can also be performed using the turbulent flow reactor. Initial measurements using a particle detector (based on Mie scattering) showed that aerosol formation and particle size distribution are controlled by varying the SO3/H2O gas ratio and the reactor temperature. Results for the reaction SO3J+ H2O show a second order dependence in water vapor density and a strong negative temperature dependence. The results, measured in the range -30C to +95C, imply that an SO3.H2O adduct and/or a water dimer species is likely involved in the reaction mechanism. Results of recent theoretical calculations on the SO3 + H2O system also support the finding that two water molecules are involved. Implications for the gas phase production of sulfuric acid in the atmosphere will be discussed.

  13. Neutrino physics with multi-ton scale liquid xenon detectors

    SciTech Connect (OSTI)

    Baudis, L.; Ferella, A.; Kish, A.; Manalaysay, A.; Undagoitia, T. Marrodán; Schumann, M., E-mail: laura.baudis@physik.uzh.ch, E-mail: alfredo.ferella@lngs.infn.it, E-mail: alexkish@physik.uzh.ch, E-mail: aaronm@ucdavis.edu, E-mail: marrodan@mpi-hd.mpg.de, E-mail: marc.schumann@lhep.unibe.ch [Physik Institut, University of Zürich, Winterthurerstrasse 190, Zürich, CH-8057 (Switzerland)

    2014-01-01

    We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2–30 keV, where the sensitivity to solar pp and {sup 7}Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ? 2 × 10{sup ?48} cm{sup 2} and WIMP masses around 50 GeV?c{sup ?2}, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ? 6 GeV?c{sup ?2} to cross sections above ? 4 × 10{sup ?45}cm{sup 2}. DARWIN could reach a competitive half-life sensitivity of 5.6 × 10{sup 26} y to the neutrinoless double beta decay of {sup 136}Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.

  14. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOE Patents [OSTI]

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  15. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    DOE Patents [OSTI]

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  16. Evaluation of Sulfur in Syngas

    SciTech Connect (OSTI)

    None

    2006-04-01

    This project will define the options and costs at different scales of technology that can be used to remove sulfur from syngas.

  17. Process for removing sulfur from sulfur-containing gases

    DOE Patents [OSTI]

    Rochelle, Gary T. (Austin, TX); Jozewicz, Wojciech (Chapel Hill, NC)

    1989-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accorda The government may own certain rights in the present invention pursuant to EPA Cooperative Agreement CR 81-1531.

  18. Removal of 1,082-Ton Reactor Among Richland Operations Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from groundwater across the site ahead of schedule and pumped a record volume of water through treatment facilities to remove contamination, with more than 130 tons of...

  19. U.S. Billion-Ton Update. Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect (OSTI)

    none,

    2011-08-01

    This report is an update to the 2005 Billion-Ton Study that addresses shotcomings and questions that arose from the original report..

  20. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproduct...

    Broader source: Energy.gov (indexed) [DOE]

    2005 report, "Biomass as a Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply" billiontonupdate.pdf More Documents &...

  1. DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it...

    National Nuclear Security Administration (NNSA)

    Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for Civilian Reactors | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People...

  2. Average Angular Velocity

    E-Print Network [OSTI]

    H. Essen

    2004-01-28

    This paper addresses the problem of the separation of rotational and internal motion. It introduces the concept of average angular velocity as the moment of inertia weighted average of particle angular velocities. It extends and elucidates the concept of Jellinek and Li (1989) of separation of the energy of overall rotation in an arbitrary (non-linear) $N$-particle system. It generalizes the so called Koenig's theorem on the two parts of the kinetic energy (center of mass plus internal) to three parts: center of mass, rotational, plus the remaining internal energy relative to an optimally translating and rotating frame.

  3. Volume efficient sodium sulfur battery

    DOE Patents [OSTI]

    Mikkor, Mati (Ann Arbor, MI)

    1980-01-01

    In accordance with the teachings of this specification, a sodium sulfur battery is formed as follows. A plurality of box shaped sulfur electrodes are provided, the outer surfaces of which are defined by an electrolyte material. Each of the electrodes have length and width dimensions substantially greater than the thicknesses thereof as well as upwardly facing surface and a downwardly facing surface. An electrode structure is contained in each of the sulfur electrodes. A holding structure is provided for holding the plurality of sulfur electrodes in a stacked condition with the upwardly facing surface of one sulfur electrode in facing relationship to the downwardly facing surface of another sulfur electrode thereabove. A small thickness dimension separates each of the stacked electrodes thereby defining between each pair of sulfur electrodes a volume which receives the sodium reactant. A reservoir is provided for containing sodium. A manifold structure interconnects the volumes between the sulfur electrodes and the reservoir. A metering structure controls the flow of sodium between the reservoir and the manifold structure.

  4. DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin

    Broader source: Energy.gov [DOE]

    Building on an initial injection project of 10,000 metric tons of carbon dioxide into a Michigan geologic formation, a U.S. Department of Energy team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change.

  5. (Data in metric tons of silver content unless otherwise noted)

    E-Print Network [OSTI]

    in casino chips, freeway toll transponders, gasoline speed purchase devices, passports, and on packages,680 6,600 Exports 2 797 685 478 796 1,000 Consumption, apparent 5,250 6,300 4,600 7,220 7,850 Price September 2011, silver prices averaged $36.39 per troy ounce. The overall rise in silver prices corresponded

  6. Natural sulfur flux from the Gulf of Mexico: dimethyl sulfide, carbonyl sulfide, and sulfur dioxide. Technical report

    SciTech Connect (OSTI)

    Van Valin, C.C.; Luria, M.; Wellman, D.L.; Gunter, R.L.; Pueschel, R.F.

    1987-06-01

    Atmospheric measurements of natural sulfur compounds were performed over the northern Gulf of Mexico during the late summer months of 1984. Air samples were collected with an instrumented aircraft at elevations of 30-3500 m, during both day and night. Most air samples were representative of the clean maritime atmosphere, although some were from continental contaminated air during periods of offshore flow at the coastline. In all samples, carbonyl sulfide concentrations were within the range of 400-500 pptv. Conversely, the dimethyl sulfide concentrations showed significant variability: during clean atmospheric conditions the average of all measurements was 27 pptv, whereas under polluted conditions the average was 7 pptv. Measureable quantities of dimethyl sulfide (>5 pptv) were not observed above the boundary layer. The average sulfur dioxide concentration measured in the marine (clean) atmosphere was 215 pptv, which is consistent with the oxidation of dimethyl sulfide being its major source.

  7. Sulfur gas emissions from stored flue-gas-desulfurization sludges

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.

    1980-01-01

    In field studies conducted for the Electric Power Research Institute by the University of Washington (1978) and the University of Idaho (1979), 13 gas samples from sludge storage sites at coal-burning power plants were analyzed by wall-coated open-tube cryogenic capillary-column gas chromatography with a sulfur-selective flame-photometric detector. Hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, carbon disulfide, and dimethyl disulfide were identified in varying concentrations and ratios in the emissions from both operating sludge ponds and landfills and from FGD sludge surfaces that had been stored in the open for 3-32 mo or longer. Other sulfur compounds, probably propanethiols, were found in emissions from some sludges. Chemical ''stabilization/fixation'' sulfate-sulfite ratio, sludge water content, and temperature were the most significant variables controlling sulfur gas production. The average sulfur emissions from each of the 13 FGD storage sites ranged from 0.01 to 0.26 g/sq m/yr sulfur.

  8. Method of preparing graphene-sulfur nanocomposites for rechargeable...

    Office of Scientific and Technical Information (OSTI)

    Method of preparing graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes Citation Details In-Document Search Title: Method of preparing graphene-sulfur...

  9. Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds

    Broader source: Energy.gov [DOE]

    The Moab Uranium Mill Tailings Remedial Action Project reached its primary American Recovery and Reinvestment Act milestone ahead of schedule on Wednesday with the disposal of 2 million tons of...

  10. Delivering Tons to the Register: Energy Efficient Design and Operation of Residential Cooling Systems

    E-Print Network [OSTI]

    Delivering Tons to the Register: Energy Efficient Design and Operation of Residential Cooling Systems Jeffrey Siegel, Lawrence Berkeley National Laboratory Iain Walker, Lawrence Berkeley National and air conditioner performance. These parameters included placing the entire air conditioning system

  11. DOE to Remove 200 Metric Tons of Highly Enriched Uranium from...

    Broader source: Energy.gov (indexed) [DOE]

    Administration (NNSA) will remove up to 200 metric tons (MT) of Highly Enriched Uranium (HEU), in the coming decades, from further use as fissile material in U.S. nuclear...

  12. On the Origin of Sulfur

    E-Print Network [OSTI]

    Nils Ryde; David L. Lambert

    2005-10-05

    We present our work on the halo evolution of sulfur, based on observations of the S I lines around 9220 A for ten stars for which the S abundance was obtained previously from much weaker S I lines at 8694 A. We cannot confirm the rise and the high [S/Fe] abundances for low [Fe/H], as claimed in the literature from analysis of the 8694 A lines. The reasons for claims of an increase in [S/Fe] with decreasing [Fe/H] are probably twofold: uncertainties in the measurements of the weak 8694 A lines, and systematic errors in metallicity determinations from Fe I lines. The near-infrared sulfur triplet at 9212.9, 9228.1, and 9237.5 A are preferred for an abundance analysis of sulfur for metal-poor stars. Our work was presented in full by Ryde & Lambert (2004).

  13. Two stage sorption of sulfur compounds

    DOE Patents [OSTI]

    Moore, William E. (Manassas, VA)

    1992-01-01

    A two stage method for reducing the sulfur content of exhaust gases is disclosed. Alkali- or alkaline-earth-based sorbent is totally or partially vaporized and introduced into a sulfur-containing gas stream. The activated sorbent can be introduced in the reaction zone or the exhaust gases of a combustor or a gasifier. High efficiencies of sulfur removal can be achieved.

  14. Safety considerations for the use of sulfur in sulfur-modified pavement materials 

    E-Print Network [OSTI]

    Jacobs, Carolyn Yuriko

    1980-01-01

    Liquid Sulfur Page v111 ix 33 33 35 IV Symptoms of Poisoning . First Aid SULFUR IN THE PAVING INDUSTRY General Sand-Asphalt-Sulfur Pavements (SAS) ', , Sulfur-Extended Asphalt Pavements (SEA) Sulfur Concrete EVALUATION OF RISKS AND SAFETY... RECOMMENDATIONS General Stationary Sources Mobile Sources Maintenance 40 41 43 43 44 45 46 Hot-Mix Recycling VI EMISSIONS MONITORING METHODS General Area Monitoring - Continuous Samplina Short Term Sampling (" Grab" Sampling) Personnel Monitoring...

  15. Facile synthesis, spectral properties and formation mechanism of sulfur nanorods in PEG-200

    SciTech Connect (OSTI)

    Xie, Xin-yuan; Li, Li-yun; Zheng, Pu-sheng; Zheng, Wen-jie; Bai, Yan; Cheng, Tian-feng; Liu, Jie

    2012-11-15

    Graphical abstract: Homogeneous rod-like structure of sulfur with a typical diameter of about 80 nm and an average aspect ratio of about 6–8 was obtained. The sulfur nanoparticles could self-assemble from spherical particles to nanorods in PEG-200. During the self-assembling process, the absorption band showed a red shift which was due to the production of nanorods. Highlights: ? A novel, facile and greener method to synthesize sulfur nanorods by the solubilizing and templating effect of PEG-200 was reported. ? S{sup 0} nanoparticles could self assemble in PEG-200 and finally form monodisperse and homogeneous rod-like structure with an average diameter of about 80 nm, the length ca. 600 nm. ? The absorption band showed a red shift and the RRS intensity enhanced continuously during the self-assembling process. ? PEG-200 induced the oriented attachment of sulfur nanoparticles by the terminal hydroxyl groups. -- Abstract: The synthesis of nano-sulfur sol by dissolving sublimed sulfur in a green solvent-PEG-200 was studied. Homogeneous rod-like structure of sulfur with a typical diameter of about 80 nm and an average aspect ratio of 6–8 was obtained. The structure, morphology, size, and stability of the products were investigated by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS) measurements. The spectral properties of the products were investigated by ultraviolet-visible (UV–vis) absorption and resonance Rayleigh scattering spectroscopy (RRS). The results showed that the spherical sulfur nanoparticles could self-assemble into nanorods in PEG-200. During the self-assembling process, the absorption band showed a red shift and the RRS intensity enhanced continuously. There was physical cross-linking between PEG and sulfur nanoparticles. PEG-200 induced the oriented attachment of sulfur nanoparticles by the terminal hydroxyl groups. This research provides a greener and more environment-friendly synthetic method for the production of sulfur nanorods.

  16. The 1990 Clean Air Act and the implicit price of sulfur in coal - article no. 41

    SciTech Connect (OSTI)

    Lange, I.; Bellas, A.S. [US EPA, Washington, DC (United States)

    2007-07-01

    Prior to implementation of the 1990 Clean Air Act Amendments (CAAA), many estimates of the marginal cost of SO{sub 2} abatement were provided to guide policy makers. Numerous studies estimated the marginal cost of abatement to be between $250 and $760 per ton, though permits initially traded well below $200 and remained below $220 until 2004. We use a fixed effects estimator and a hedonic price model of coal purchases in order to determine the implicit price of sulfur. Data on contract coal purchases are divided into regulatory regimes based on when the contract was signed or re-negotiated. We find that purchases by Phase I plants made under contracts signed or re-negotiated after the passage of the 1990 CAAA show an implicit price of SO{sub 2} of approximately $50 per ton, an amount much closer to the eventual permit price. The implicit market price of sulfur seems to have revealed better information than did the calculations of industry experts.

  17. Spacetime Averaged Null Energy Condition

    E-Print Network [OSTI]

    Douglas Urban; Ken D. Olum

    2010-06-13

    The averaged null energy condition has known violations for quantum fields in curved space, even if one considers only achronal geodesics. Many such examples involve rapid variation in the stress-energy tensor in the vicinity of the geodesic under consideration, giving rise to the possibility that averaging in additional dimensions would yield a principle universally obeyed by quantum fields. However, after discussing various procedures for additional averaging, including integrating over all dimensions of the manifold, we give a class of examples that violate any such averaged condition.

  18. Spacetime averaged null energy condition

    SciTech Connect (OSTI)

    Urban, Douglas; Olum, Ken D.

    2010-06-15

    The averaged null energy condition has known violations for quantum fields in curved space, even when one considers only achronal geodesics. Many such examples involve rapid variation in the stress-energy tensor in the vicinity of the geodesic under consideration, giving rise to the possibility that averaging in additional dimensions would yield a principle universally obeyed by quantum fields. However, after discussing various procedures for additional averaging, including integrating over all dimensions of the manifold, we give here a class of examples that violate any such averaged condition.

  19. Planning for the 400,000 tons/year AISI ironmaking demonstration plant

    SciTech Connect (OSTI)

    Aukrust, E. (LTV Steel Corp., Cleveland, OH (United States). AISI Direct Steelmaking Program)

    1993-01-01

    The American Iron and Steel Institute (AISI) has formulated a four-year program to design, construct, and operate a 400,000 net ton per year ironmaking demonstration plant. The plant will employ the coal-based ironmaking process developed under a 1989 cooperative agreement with DOE. AISI will manage the design and construction to be completed in the first two years and operate the plant for the second two years with a variety or ores, coals, and fluxes. Campaigns of increasing length are planned to optimize operations. After successful operation, the plant will be taken over by the host company. Results of studies to date indicate that, on a commercial scale, the AISI process will use 27% less energy and have variable operating costs $10 per ton lower and capital costs of $160 per annual ton, compared to the $250 per annual ton rebuild cost for the coke oven-blast furnace process it will replace. The process will enable the domestic steel industry to become more competitive by reducing its capital and operating cost. Furthermore, by eliminating the pollution problems associated with coke production and by completely enclosing the smelting reactions, this process represents a major step towards an environmentally friendly steel industry.

  20. 2 million tons per year: A performing biofuels supply chain for

    E-Print Network [OSTI]

    1 2 million tons per year: A performing biofuels supply chain for EU aviation NOTE It is understood that in the context of this text the term "biofuel(s) use in aviation" categorically implies "sustainably produced biofuel(s)" according to the EU legislation. June 2011 #12;2 This technical paper was drafted

  1. A Concept for a Scalable 2 kTon Liquid Argon TPC Detector for Astroparticle Physics

    E-Print Network [OSTI]

    D. B. Cline; F. Sergiampietri

    2005-09-14

    This paper describes the results of a study on the general lines, main construction criteria, crucial points, parameters and required preliminary R&D activities for the construction of a LAr (liquid argon) imaging detector with active mass in the 10-100 kTon range. Such detectors are crucial for supernova detection, proton decay, LBL neutrino physics and other astroparticle physics applications.

  2. A Concept for a Scalable 2 kTon Liquid Argon TPC Detector for Astroparticle Physics

    E-Print Network [OSTI]

    McDonald, Kirk

    astroparticle physics applications. 1 Introduction The on-surface test of the 300-ton ICARUS module made the detection technique, that even with some possible improvements or changes is the well-established ICARUS one is optimized. A cylindrical vessel with the height equal to the diameter has the same S/V ratio than

  3. Averaging Hypotheses in Newtonian Cosmology

    E-Print Network [OSTI]

    T. Buchert

    1995-12-20

    Average properties of general inhomogeneous cosmological models are discussed in the Newtonian framework. It is shown under which circumstances the average flow reduces to a member of the standard Friedmann--Lema\\^\\i tre cosmologies. Possible choices of global boundary conditions of inhomogeneous cosmologies as well as consequences for the interpretation of cosmological parameters are put into perspective.

  4. ,"Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsMonthly","10/2015" ,"ReleaseVolumeMonthly","10/2015"NaturalMonthly","10/2015"

  5. Contribution of isotopologue self-shielding to sulfur mass-independent fractionation during sulfur dioxide photolysis

    E-Print Network [OSTI]

    Lyons, J. R.

    Signatures of sulfur mass-independent fractionation (S-MIF) are observed for sulfur minerals in Archean rocks, and for modern stratospheric sulfate aerosols (SSA) deposited in polar ice. Ultraviolet light photolysis of ...

  6. HYDROCARBON AND SULFUR SENSORS FOR SOFC SYSTEMS

    SciTech Connect (OSTI)

    A.M. Azad; Chris Holt; Todd Lesousky; Scott Swartz

    2003-11-01

    The following report summarizes work conducted during the Phase I program Hydrocarbon and Sulfur Sensors for SOFC Systems under contract No. DE-FC26-02NT41576. For the SOFC application, sensors are required to monitor hydrocarbons and sulfur in order to increase the operation life of SOFC components. This report discusses the development of two such sensors, one based on thick film approach for sulfur monitoring and the second galvanic based for hydrocarbon monitoring.

  7. Neon and Sulfur Abundances of Planetary Nebulae in the Magellanic Clouds

    E-Print Network [OSTI]

    J. Bernard-Salas; S. R. Pottasch; S. Gutenkunst; P. W. Morris; J. R. Houck

    2007-09-20

    The chemical abundances of neon and sulfur for 25 planetary nebulae (PNe) in the Magellanic Clouds are presented. These abundances have been derived using mainly infrared data from the Spitzer Space Telescope. The implications for the chemical evolution of these elements are discussed. A comparison with similarly obtained abundances of Galactic PNe and HII regions and Magellanic Clouds HII regions is also given. The average neon abundances are 6.0x10(-5) and 2.7x10(-5) for the PNe in the Large and Small Magellanic Clouds respectively. These are ~1/3 and 1/6 of the average abundances of Galactic planetary nebulae to which we compare. The average sulfur abundances for the LMC and SMC are respectively 2.7x10(-6) and 1.0x10(-6). The Ne/S ratio (23.5) is on average higher than the ratio found in Galactic PNe (16) but the range of values in both data sets is similar for most of the objects. The neon abundances found in PNe and HII regions agree with each other. It is possible that a few (3-4) of the PNe in the sample have experienced some neon enrichment, but for two of these objects the high Ne/S ratio can be explained by their very low sulfur abundances. The neon and sulfur abundances derived in this paper are also compared to previously published abundances using optical data and photo-ionization models.

  8. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect (OSTI)

    Downing, Mark; Eaton, Laurence M; Graham, Robin Lambert; Langholtz, Matthew H; Perlack, Robert D; Turhollow Jr, Anthony F; Stokes, Bryce; Brandt, Craig C

    2011-08-01

    The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil pri

  9. How well will ton-scale dark matter direct detection experiments constrain minimal supersymmetry?

    SciTech Connect (OSTI)

    Akrami, Yashar; Savage, Christopher; Scott, Pat; Conrad, Jan; Edsjö, Joakim E-mail: savage@fysik.su.se E-mail: conrad@fysik.su.se

    2011-04-01

    Weakly interacting massive particles (WIMPs) are amongst the most interesting dark matter (DM) candidates. Many DM candidates naturally arise in theories beyond the standard model (SM) of particle physics, like weak-scale supersymmetry (SUSY). Experiments aim to detect WIMPs by scattering, annihilation or direct production, and thereby determine the underlying theory to which they belong, along with its parameters. Here we examine the prospects for further constraining the Constrained Minimal Supersymmetric Standard Model (CMSSM) with future ton-scale direct detection experiments. We consider ton-scale extrapolations of three current experiments: CDMS, XENON and COUPP, with 1000 kg-years of raw exposure each. We assume energy resolutions, energy ranges and efficiencies similar to the current versions of the experiments, and include backgrounds at target levels. Our analysis is based on full likelihood constructions for the experiments. We also take into account present uncertainties on hadronic matrix elements for neutralino-quark couplings, and on halo model parameters. We generate synthetic data based on four benchmark points and scan over the CMSSM parameter space using nested sampling. We construct both Bayesian posterior PDFs and frequentist profile likelihoods for the model parameters, as well as the mass and various cross-sections of the lightest neutralino. Future ton-scale experiments will help substantially in constraining supersymmetry, especially when results of experiments primarily targeting spin-dependent nuclear scattering are combined with those directed more toward spin-independent interactions.

  10. How well will ton-scale dark matter direct detection experiments constrain minimal supersymmetry?

    E-Print Network [OSTI]

    Yashar Akrami; Christopher Savage; Pat Scott; Jan Conrad; Joakim Edsjö

    2011-04-18

    Weakly interacting massive particles (WIMPs) are amongst the most interesting dark matter (DM) candidates. Many DM candidates naturally arise in theories beyond the standard model (SM) of particle physics, like weak-scale supersymmetry (SUSY). Experiments aim to detect WIMPs by scattering, annihilation or direct production, and thereby determine the underlying theory to which they belong, along with its parameters. Here we examine the prospects for further constraining the Constrained Minimal Supersymmetric Standard Model (CMSSM) with future ton-scale direct detection experiments. We consider ton-scale extrapolations of three current experiments: CDMS, XENON and COUPP, with 1000 kg-years of raw exposure each. We assume energy resolutions, energy ranges and efficiencies similar to the current versions of the experiments, and include backgrounds at target levels. Our analysis is based on full likelihood constructions for the experiments. We also take into account present uncertainties on hadronic matrix elements for neutralino-quark couplings, and on halo model parameters. We generate synthetic data based on four benchmark points and scan over the CMSSM parameter space using nested sampling. We construct both Bayesian posterior PDFs and frequentist profile likelihoods for the model parameters, as well as the mass and various cross-sections of the lightest neutralino. Future ton-scale experiments will help substantially in constraining supersymmetry, especially when results of experiments primarily targeting spin-dependent nuclear scattering are combined with those directed more toward spin-independent interactions.

  11. Sulfur oxide adsorbents and emissions control

    DOE Patents [OSTI]

    Li, Liyu (Richland, WA); King, David L. (Richland, WA)

    2006-12-26

    High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

  12. Microbial Architecture of Environmental Sulfur Processes: A

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    potential impacts on water quality, including acid generation in acid mine drainage (AMD) environments, 2009. Accepted July 9, 2009. Microbial oxidation of sulfur-rich mining waste materials drives acid mine drainage (AMD) and affects the global sulfur biogeochemical cycle. The generation of AMD is a complex

  13. Additives and Cathode Materials for High-Energy Lithium Sulfur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries 2013 DOE Hydrogen and Fuel Cells...

  14. Method of removal of sulfur from coal and petroleum products

    DOE Patents [OSTI]

    Verkade, John G. (Ames, IA); Mohan, Thyagarajan (Ames, IA); Angelici, Robert J. (Ames, IA)

    1995-01-01

    A method for the removal of sulfur from sulfur-bearing materials such as coal and petroleum products using organophosphine and organophosphite compounds is provided.

  15. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)", "Sulfur dioxide (short tons)",3978753 "Nitrogen oxide (short tons)",2411564 "Carbon dioxide (thousand metric tons)",2172355 "Sulfur dioxide (lbsMWh)",2 "Nitrogen oxide...

  16. Quantum Averages of Weak Values

    E-Print Network [OSTI]

    Yakir Aharonov; Alonso Botero

    2005-08-23

    We re-examine the status of the weak value of a quantum mechanical observable as an objective physical concept, addressing its physical interpretation and general domain of applicability. We show that the weak value can be regarded as a \\emph{definite} mechanical effect on a measuring probe specifically designed to minimize the back-reaction on the measured system. We then present a new framework for general measurement conditions (where the back-reaction on the system may not be negligible) in which the measurement outcomes can still be interpreted as \\emph{quantum averages of weak values}. We show that in the classical limit, there is a direct correspondence between quantum averages of weak values and posterior expectation values of classical dynamical properties according to the classical inference framework.

  17. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Liu, W.

    1995-01-24

    A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

  18. Average-Atom Thomson Scattering

    E-Print Network [OSTI]

    Johnson, Walter R.

    -Atom Approximation W. R. Johnson, Notre Dame J. Nilsen & K. T. Cheng, LLNL The cross section for Thomson scattering Average-Atom Model Divide plasma into WS cells with a nucleus and Z electrons p2 2 - Z r + V a(r) = a a(r) V(r) = VKS(n(r), r) n(r) = nb(r) + nc(r) 4r2nb(r) = nl 2(2l+1) 1+exp[( nl -µ)/kBT] Pnl(r)2 Z = r

  19. Method for reducing the sulfur content of a sulfur-containing hydrocarbon stream

    SciTech Connect (OSTI)

    Mahajan, Devinder

    2004-12-28

    The sulfur content of a liquid hydrocarbon stream is reduced under mild conditions by contracting a sulfur-containing liquid hydrocarbon stream with transition metal particles containing the transition metal in a zero oxidation state under conditions sufficient to provide a hydrocarbon product having a reduced sulfur content and metal sulfide particles. The transition metal particles can be produced in situ by adding a transition metal precursor, e.g., a transition metal carbonyl compound, to the sulfur-containing liquid feed stream and sonicating the feed steam/transition metal precursor combination under conditions sufficient to produce the transition metal particles.

  20. Process for removing sulfur from coal

    DOE Patents [OSTI]

    Aida, T.; Squires, T.G.; Venier, C.G.

    1983-08-11

    A process is disclosed for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.

  1. Achronal averaged null energy condition

    SciTech Connect (OSTI)

    Graham, Noah; Olum, Ken D. [Department of Physics, Middlebury College, Middlebury, Vermont 05753 (United States) and Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155 (United States)

    2007-09-15

    The averaged null energy condition (ANEC) requires that the integral over a complete null geodesic of the stress-energy tensor projected onto the geodesic tangent vector is never negative. This condition is sufficient to prove many important theorems in general relativity, but it is violated by quantum fields in curved spacetime. However there is a weaker condition, which is free of known violations, requiring only that there is no self-consistent spacetime in semiclassical gravity in which ANEC is violated on a complete, achronal null geodesic. We indicate why such a condition might be expected to hold and show that it is sufficient to rule out closed timelike curves and wormholes connecting different asymptotically flat regions.

  2. Sulfur Dioxide Crossover during the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer

    E-Print Network [OSTI]

    Weidner, John W.

    Sulfur Dioxide Crossover during the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer membrane PEM electrolyzer has been investigated as a viable system for the electrolysis step of the electrolyzer and membranes developed to limit SO2 crossover. © 2009 The Electrochemical Society. DOI: 10

  3. Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Qiang; Zheng, Jianming; Walter, Eric; Pan, Huilin; Lv, Dongping; Zuo, Pengjian; Chen, Honghao; Deng, Z. D.; Liaw, Bor Y.; Yu, Xiqian; et al

    2015-01-09

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge processes follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials and the electrochemical characteristics of the cell, it is revealed that the chemical and electrochemical reactions in Li-Smore »cell are driving each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new perspectives to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.« less

  4. Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Wang, Qiang [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zheng, Jianming [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Walter, Eric [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Pan, Huilin [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lv, Dongping [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zuo, Pengjian [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Chen, Honghao [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Deng, Z. D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Liaw, Bor Y. [School of Ocean and Earth Science and Technology, Hawaii Natural Energy Institute, (United States); Yu, Xiqian [Brookhaven National Laboratory, Upton, NY (United States); Yang, Xiao-Qing [Brookhaven National Laboratory, Upton, NY (United States); Zhang, Ji-Guang [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Liu, Jun [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Xiao, Jie [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-12-09

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge processes follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials and the electrochemical characteristics of the cell, it is revealed that the chemical and electrochemical reactions in Li-S cell are driving each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new perspectives to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.

  5. Direct Observation of Sulfur Radicals as Reaction Media in lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Wang, Qiang; Zheng, Jianming; Walter, Eric D.; Pan, Huilin; Lu, Dongping; Zuo, Pengjian; Chen, Honghao; Deng, Zhiqun; Liaw, Bor Yann; Yu, Xiqian; Yang, Xiaoning; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2014-12-09

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge process follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials, it is revealed that the chemical and electrochemical reactions in Li-S cell are driven each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new insights to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.

  6. Cracked lifting lug welds on ten-ton UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Dorning, R.E. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    Ten-ton, Type 48X, UF{sub 6} cylinders are used at the Portsmouth Gaseous Diffusion Plant to withdraw enriched uranium hexafluoride from the cascade, transfer enriched uranium hexafluoride to customer cylinders, and feed enriched product to the cascade. To accomplish these activities, the cylinders are lifted by cranes and straddle carriers which engage the cylinder lifting lugs. In August of 1988, weld cracks on two lifting lugs were discovered during preparation to lift a cylinder. The cylinder was rejected and tagged out, and an investigating committee formed to determine the cause of cracking and recommend remedial actions. Further investigation revealed the problem may be general to this class of cylinder in this use cycle. This paper discusses the actions taken at the Portsmouth site to deal with the cracked lifting lug weld problem. The actions include inspection activities, interim corrective actions, metallurgical evaluation of cracked welds, weld repairs, and current monitoring/inspection program.

  7. Method of making a sodium sulfur battery

    DOE Patents [OSTI]

    Elkins, P. E.

    1981-09-22

    A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another. 3 figs.

  8. Multiple-sulfur isotope effects during photolysis of carbonyl sulfide

    E-Print Network [OSTI]

    Lin, Ying

    Laboratory experiments were carried out to determine sulfur isotope effects during ultraviolet photolysis of carbonyl sulfide (OCS) to carbon monoxide (CO) and elemental sulfur (S[superscript 0]). The OCS gas at 3.7 to 501 ...

  9. EPA Diesel Rule and the Sulfur Effects (DECSE) Project

    SciTech Connect (OSTI)

    2009-05-08

    The VT program collaborated with industry stakeholders and the EPA (in an effort initiated in 1998 called Diesel Emission Control – Sulfur Effects study, otherwise known as DECSE) to quantify the effects of fuel sulfur on emission control technologies.

  10. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2013 increased by 4% to about 1.22 million tons,

    E-Print Network [OSTI]

    .9% and consumption was projected to remain essentially unchanged. U.S. mine production increased by about 4% in 2013 Production and Use: U.S. mine production of copper in 2013 increased by 4% to about 1.22 million tons of production--accounted for more than 99% of domestic mine production; copper also was recovered in Idaho

  11. Process for removing sulfur from sulfur-containing gases: high calcium fly-ash

    DOE Patents [OSTI]

    Rochelle, Gary T. (Austin, TX); Chang, John C. S. (Cary, NC)

    1991-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accordance with the present invention include preparing an aqueous slurry composed of a calcium alkali source and a source of reactive silica and/or alumina, heating the slurry to above-ambient temperatures for a period of time in order to facilitate the formation of sulfur-absorbing calcium silicates or aluminates, and treating the gas with the heat-treated slurry components. Examples disclosed herein demonstrate the utility of these processes in achieving improved sulfur-absorbing capabilities. Additionally, disclosure is provided which illustrates preferred configurations for employing the present processes both as a dry sorbent injection and for use in conjunction with a spray dryer and/or bagfilter. Retrofit application to existing systems is also addressed.

  12. Mass-independent sulfur isotope fractionation during photochemistry of sulfur dioxide

    E-Print Network [OSTI]

    Whitehill, Andrew (Andrew Richard)

    2015-01-01

    Mass-independent sulfur isotope signatures are observed in Archean and early Paleoproterozoic sedimentary sulfate and sulfide minerals, and provide the most robust constraints on early atmospheric oxygen levels. Smaller ...

  13. Policy Analysis Changing Trends in Sulfur Emissions

    E-Print Network [OSTI]

    Jacobson, Mark

    Goddard Institute for Space Studies, New York, New York, and Disaster Prevention Research Institute, Kyoto in Asia where the pressing environ- mental problems of urban pollution, acid deposition, and climate change are intimately linked to sulfur (1). Over the last 25 years the primary energy demand in Asia has

  14. On the galactic chemical evolution of sulfur

    E-Print Network [OSTI]

    N. Ryde; D. L. Lambert

    2003-12-02

    Sulfur abundances have been determined for ten stars to resolve a debate in the literature on the Galactic chemical evolution of sulfur in the halo phase of the Milky Way. Our analysis is based on observations of the S I lines at 9212.9, 9228.1, and 9237.5 A for stars for which the S abundance was obtained previously from much weaker S I lines at 8694.0 and 8694.6 A. In contrast to the previous results showing [S/Fe] to rise steadily with decreasing [Fe/H], our results show that [S/Fe] is approximately constant for metal-poor stars ([Fe/H] < -1) at [S/Fe] = +0.3. Thus, sulfur behaves in a similar way to the other alpha elements, with an approximately constant [S/Fe] for metallicities lower than [Fe/H] = -1. We suggest that the reason for the earlier claims of a rise of [S/Fe] is partly due to the use of the weak S I 8694.0 and 8694.6 A lines and partly uncertainties in the determination of the metallicity when using Fe I lines. The S I 9212.9, 9228.1, and 9237.5 A lines are preferred for an abundance analysis of sulfur for metal-poor stars.

  15. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction

    SciTech Connect (OSTI)

    Chou, M.I.M.

    1991-01-01

    A pre-combustion coal desulfurization process at 120{degree}C using perchloroethylene (PCE) to remove up to 70% of the organic sulfur has been developed by the Midwest Ore Processing Co. (MWOPC). However, this process has not yet proven to be as successful with Illinois coals as it has for Ohio and Indiana coals. The organic sulfur removal has been achieved only with highly oxidized Illinois coals containing high sulfatic sulfur. A logical explanation for this observation is vital to successful process optimization for the use of Illinois coals. In addition, the high levels of organic sulfur removals observed by the MWOPC may be due to certain errors involved in the ASTM data interpretation; this needs verification. For example, elemental sulfur extracted by the PCE may be derived from pyrite oxidation during coal pre-oxidation, but it may be interpreted as organic sulfur removed by the PCE using ASTM analysis. The goals of this research are: (1) to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization process reported by the MWOPC, (2) to verify the forms-of-sulfur determination using the ASTM method for the PCE process evaluation, and (3) to determine the suitability of Illinois coals for use in the PCE desulfurization process. This project involves the Illinois State Geological Survey (ISGS), Eastern Illinois University (EIU), the University of Illinois-Urbana/Champaign (UI-UC), and the University of Kentucky, Lexington (UK). This is the first year of a two-year project.

  16. High temperature experiments on a 4 tons UF6 container TENERIFE program

    SciTech Connect (OSTI)

    Casselman, C.; Duret, B.; Seiler, J.M.; Ringot, C.; Warniez, P.

    1991-12-31

    The paper presents an experimental program (called TENERIFE) whose aim is to investigate the behaviour of a cylinder containing UF{sub 6} when exposed to a high temperature fire for model validation. Taking into account the experiments performed in the past, the modelization needs further information in order to be able to predict the behaviour of a real size cylinder when engulfed in a 800{degrees}C fire, as specified in the regulation. The main unknowns are related to (1) the UF{sub 6} behaviour beyond the critical point, (2) the relationship between temperature field and internal pressure and (3) the equivalent conductivity of the solid UF{sub 6}. In order to investigate these phenomena in a representative way it is foreseen to perform experiments with a cylinder of real diameter, but reduced length, containing 4 tons of UF{sub 6}. This cylinder will be placed in an electrically heated furnace. A confinement vessel prevents any dispersion of UF{sub 6}. The heat flux delivered by the furnace will be calibrated by specific tests. The cylinder will be changed for each test.

  17. Performance and results of the LBNE 35 ton membrane cryostat prototype

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Montanari, David; Adamowski, Mark; Hahn, Alan; Norris, Barry; Reichenbacher, Juergen; Rucinski, Russell; Stewart, Jim; Tope, Terry

    2015-07-15

    We report on the performance and commissioning of the first membrane cryostat to be used for scientific application. The Long Baseline Neutrino Experiment (LBNE) has designed and fabricated a membrane cryostat prototype in collaboration with Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI). LBNE has designed and fabricated the supporting cryogenic system infrastructure and successfully commissioned and operated the first membrane cryostat. Original goals of the prototype are: to demonstrate the membrane cryostat technology in terms of thermal performance, feasibility for liquid argon and leak tightness; to demonstrate that we can remove all the impurities from the vessel and achieve the puritymore »requirements in a membrane cryostat without evacuation; to demonstrate that we can achieve and maintain the purity requirements of the liquid argon using mol sieve and copper filters. The purity requirements of a large liquid argon detector such as LBNE are contaminants below 200 parts per trillion (ppt) oxygen equivalent. LBNE is planning the design and construction of a large liquid argon detector. This presentation will present requirements, design and construction of the LBNE 35 ton membrane cryostat prototype, and detail the commissioning and performance. The experience and results of this prototype are extremely important for the development of the LBNE detector.« less

  18. The Composition Of A Disrupted Extrasolar Planetesimal At SDSS J0845+2257 (Ton 345)

    E-Print Network [OSTI]

    Wilson, David J; Koester, Detlev; Toloza, Odette; Pala, Anna F; Breedt, Elmé; Parsons, Steven G

    2015-01-01

    We present a detailed study of the metal-polluted DB white dwarf SDSS J0845+2257 (Ton 345). Using high-resolution HST/COS and VLT spectroscopy, we have detected hydrogen and eleven metals in the atmosphere of the white dwarf. The origin of these metals is almost certainly the circumstellar disc of dusty and gaseous debris from a tidally-disrupted planetesimal, accreting at a rate of 1.6E10 gs^-1. Studying the chemical abundances of the accreted material demonstrates that the planetesimal had a composition similar to the Earth, dominated by rocky silicates and metallic iron, with a low water content. The mass of metals within the convection zone of the white dwarf corresponds to an asteroid of at least ~130-170 km in diameter, although the presence of ongoing accretion from the debris disc implies that the planetesimal was probably larger than this. While a previous abundance study of the accreted material has shown an anomalously high mass fraction of carbon (15 percent) compared to the bulk Earth, our indepe...

  19. Global MSW Generation in 2007 estimated at two billion tons Global Waste Management Market Assessment 2007, Key Note Publications Ltd ,

    E-Print Network [OSTI]

    Columbia University

    Global MSW Generation in 2007 estimated at two billion tons Global Waste Management Market analyses the global waste market, with particular reference to municipal solid waste (MSW). Key Note. Industrial waste generally has a greater tonnage than MSW, but its management is the responsibility

  20. Spectral averaging techniques for Jacobi matrices

    E-Print Network [OSTI]

    Rafael del Rio; Carmen Martinez; Hermann Schulz-Baldes

    2008-02-20

    Spectral averaging techniques for one-dimensional discrete Schroedinger operators are revisited and extended. In particular, simultaneous averaging over several parameters is discussed. Special focus is put on proving lower bounds on the density of the averaged spectral measures. These Wegner type estimates are used to analyze stability properties for the spectral types of Jacobi matrices under local perturbations.

  1. Method to prevent sulfur accumulation in membrane electrode assembly

    DOE Patents [OSTI]

    Steimke, John L; Steeper, Timothy J; Herman, David T

    2014-04-29

    A method of operating a hybrid sulfur electrolyzer to generate hydrogen is provided that includes the steps of providing an anolyte with a concentration of sulfur dioxide, and applying a current. During steady state generation of hydrogen a plot of applied current density versus concentration of sulfur dioxide is below a boundary line. The boundary line may be linear and extend through the origin of the graph with a slope of 0.001 in which the current density is measured in mA/cm2 and the concentration of sulfur dioxide is measured in moles of sulfur dioxide per liter of anolyte.

  2. CATALYST EVALUATION FOR A SULFUR DIOXIDE-DEPOLARIZED ELECTROLYZER

    SciTech Connect (OSTI)

    Hobbs, D; Hector Colon-Mercado, H

    2007-01-31

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. Testing examined the activity and stability of platinum and palladium as the electrocatalyst for the SDE in sulfuric acid solutions. Cyclic and linear sweep voltammetry revealed that platinum provided better catalytic activity with much lower potentials and higher currents than palladium. Testing also showed that the catalyst activity is strongly influenced by the concentration of the sulfuric acid electrolyte.

  3. Longitudinal study of children exposed to sulfur oxides

    SciTech Connect (OSTI)

    Dodge, R.; Solomon, P.; Moyers, J.; Hayes, C.

    1985-05-01

    This study is a longitudinal comparison of the health of children exposed to markedly different concentrations of sulfur dioxide and moderately different concentrations of particulate sulfate. The four groups of subjects lived in two areas of one smelter town and in two other towns, one of which was also a smelter town. In the area of highest pollution, children were intermittently exposed to high SO/sub 2/ levels (peak three-hour average concentration exceeded 2,500 micrograms/m3) and moderate particulate SO/sub 4/= levels (average concentration was 10.1 micrograms/m3). When the children were grouped by the four gradients of pollution observed, the prevalence of cough (measured by questionnaire) correlated significantly with pollution levels (trend chi-square = 5.6, p = 0.02). No significant differences in the incidence of cough or other symptoms occurred among the groups of subjects over three years, and pulmonary function and lung function growth over the study were roughly equal among all the groups. These results suggest that intermittent elevations in SO/sub 2/ concentration, in the presence of moderate particulate SO/sub 4/= concentration, produced evidence of bronchial irritation in the subjects, but no chronic effect on lung function or lung function growth was detected.

  4. Fuel-rich sulfur capture in a combustion environment

    SciTech Connect (OSTI)

    Lindgren, E.R.; Pershing, D.W.; Kirchgessner, D.A.; Drehmel, D.C.

    1992-01-01

    The paper discusses the use of a refactory-lined, natural gas furnace to study the fuel-rich sulfur capture reactions of calcium sorbents under typical combustion conditions. The fuel-rich sulfur species hydrogen sulfide and carbonyl sulfide were monitored in a nearly continuous fashion using a gas chromatograph equiped with a flame photometric detector and an automatic system that sampled every 30 seconds. Below the fuel-rich zone, 25% excess air was added, and the ultimate fuel-lean capture was simultaneously measured using a continuous sulfur dioxide monitor. Under fuel-rich conditions, high levels of sulfur capture were obtained, and calcium utilization increased with sulfur concentration. The ultimate lean capture was found to be weakly dependent on sulfur concentration and independent of the sulfur capture level obtained in the fuel-rich zone.

  5. A Proposal for a Ton Scale Bubble Chamber for Dark Matter Detection

    SciTech Connect (OSTI)

    Collar, Juan; Dahl, C.Eric; Fustin, Drew; Robinson, Alan; Behnke, Ed; Behnke, Joshua; Breznau, William; Connor, Austin; Kuehnemund, Emily Grace; Levine, Ilan; Moan, Timothy; /Indiana U., South Bend /Fermilab

    2010-10-07

    The nature of non-baryonic dark matter is one of the most intriguing questions for particle physics at the start of the 21st century. There is ample evidence for its existence, but almost nothing is known of its properties. WIMPs are a very appealing candidate particle and several experimental campaigns are underway around the world to search for these particles via the nuclear recoils that they should induce. The COUPP series of bubble chambers has played a significant role in the WIMP search. Through a sequence of detectors of increasing size, a number of R&D issues have arisen and been solved, and the technology has now been advanced to the point where the construction of large chambers requires a modest research effort, some development, but mostly just engineering. It is within this context that we propose to build the next COUPP detector - COUPP-500, a ton scale device to be built over the next three years at Fermilab and then deployed deep underground at SNOLAB. The primary advantages of the COUPP approach over other technologies are: (1) The ability to reject electron and gamma backgrounds by arranging the chamber thermodynamics such that these particles do not even trigger the detector. (2) The ability to suppress neutron backgrounds by having the radioactively impure detection elements far from the active volume and by using the self-shielding of a large device and the high granularity to identify multiple bubbles. (3) The ability to build large chambers cheaply and with a choice of target fluids. (4) The ability to increase the size of the chambers without changing the size or complexity of the data acquisition. (5) Sensitivity to spin-dependent and spin-independent WIMP couplings. These key advantages should enable the goal of one background event in a ton-year of exposure to be achieved. The conceptual design of COUPP-500 is scaled from the preceding devices. In many cases all that is needed is a simple scaling up of components previously used. Calibration and R&D are still needed on some aspects of the system. We know we have the ability to distinguish alpha-induced events from nuclear recoils, but we do not yet know whether the combination of material purity and rejection are good enough to run for a year with no alpha background. We also need to have more detailed measurements of the detector threshold and a better understanding of its high gamma rejection. In addition, there are important checks to make on the longevity of the detector components in the hydraulic fluid and on the chemistry of the active fluid. The 2009 PASAG report explicitly supported the construction of the COUPP-500 device in all funding scenarios. The NSF has shown similar enthusiasm. It awarded one of its DUSEL S4 grants to assist in the engineering needed to build COUPP-500. The currently estimated cost of COUPP-500 is $8M, about half the $15M-$20M price tag expected by the PASAG report for a next generation dark matter search experiment. The COUPP-500 device will have a spin independent WIMP-nucleus cross-section sensitivity of 6 x 10{sup -47} cm{sup 2} after a background-free year of running. This device should then provide the benchmark against which all other WIMP searches are measured.

  6. Methane Production: In the United States cattle emit about 5.5 million metric tons of methane per year into the

    E-Print Network [OSTI]

    Toohey, Darin W.

    Methane Production: In the United States cattle emit about 5.5 million metric tons of methane per year into the atmosphere. o Accounts for 20% of methane emissions from human sources. Globally cattle produce about 80 million metric tons of methane annually. o Accounts for 28% of global methane emissions

  7. Costs to reduce sulfur dioxide emissions

    SciTech Connect (OSTI)

    None

    1982-03-01

    Central to the resolution of the acid rain issue are debates about the costs and benefits of controlling man-made emissions of chemicals that may cause acid rain. In this briefing, the position of those who are calling for immediate action and implicating coal-fired powerplants as the cause of the problem is examined. The costs of controlling sulfur dioxide emissions using alternative control methods available today are presented. No attempt is made to calculate the benefits of reducing these emissions since insufficient information is available to provide even a rough estimate. Information is presented in two steps. First, costs are presented as obtained through straightforward calculations based upon simplifying but realistic assumptions. Next, the costs of sulfur dioxide control obtained through several large-scale analyses are presented, and these results are compared with those obtained through the first method.

  8. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria (Winchester, MA); Liu, Wei (Cambridge, MA)

    1995-01-01

    A catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(OF.sub.2).sub.1-n (RO.sub.1)n].sub.1-k M.sub.k, [(FO.sub.2).sub.1-n (RO.sub.1.5).sub.n ].sub.1-k M.sub.k, or [Ln.sub.x Zr.sub.1-x O.sub.2-0.5x ].sub.1-k M.sub.k wherein FO.sub.2 is a fluorite-type oxide; RO represents an alkaline earth oxide; RO.sub.1.5 is a Group IIIB or rare earth oxide; Ln is a rare earth element having an atomic number from 57 to 65 or mixtures thereof; M is a transition metal or a mixture of transition metals; n is a number having a value from 0.0 to 0.35; k is a number having a value from 0.0 to about 0.5; and x is a number having a value from about 0.45 to about 0.55.

  9. Dynamic Multiscale Averaging (DMA) of Turbulent Flow

    SciTech Connect (OSTI)

    Richard W. Johnson

    2012-09-01

    A new approach called dynamic multiscale averaging (DMA) for computing the effects of turbulent flow is described. The new method encompasses multiple applications of temporal and spatial averaging, that is, multiscale operations. Initially, a direct numerical simulation (DNS) is performed for a relatively short time; it is envisioned that this short time should be long enough to capture several fluctuating time periods of the smallest scales. The flow field variables are subject to running time averaging during the DNS. After the relatively short time, the time-averaged variables are volume averaged onto a coarser grid. Both time and volume averaging of the describing equations generate correlations in the averaged equations. These correlations are computed from the flow field and added as source terms to the computation on the next coarser mesh. They represent coupling between the two adjacent scales. Since they are computed directly from first principles, there is no modeling involved. However, there is approximation involved in the coupling correlations as the flow field has been computed for only a relatively short time. After the time and spatial averaging operations are applied at a given stage, new computations are performed on the next coarser mesh using a larger time step. The process continues until the coarsest scale needed is reached. New correlations are created for each averaging procedure. The number of averaging operations needed is expected to be problem dependent. The new DMA approach is applied to a relatively low Reynolds number flow in a square duct segment. Time-averaged stream-wise velocity and vorticity contours from the DMA approach appear to be very similar to a full DNS for a similar flow reported in the literature. Expected symmetry for the final results is produced for the DMA method. The results obtained indicate that DMA holds significant potential in being able to accurately compute turbulent flow without modeling for practical engineering applications.

  10. RARE EARTHS1 [Data in metric tons of rare-earth oxide (REO) content unless otherwise noted

    E-Print Network [OSTI]

    ) -- -- -- -- 20 Rare-earth metals, alloy 880 867 784 679 210 Cerium compounds 2,170 2,590 2,680 2,080 1,190 Mixed (monazite or various thorium materials) -- -- 1 61 23 Rare-earth metals, alloys 636 733 1,470 1,390 6128 RARE EARTHS1 [Data in metric tons of rare-earth oxide (REO) content unless otherwise noted

  11. MESOSCALE AVERAGING OF NUCLEATION AND GROWTH MODELS

    E-Print Network [OSTI]

    Ferguson, Thomas S.

    MESOSCALE AVERAGING OF NUCLEATION AND GROWTH MODELS MARTIN BURGER , VINCENZO CAPASSO , AND LIVIO-Kolmogorov relations for the degree of crystallinity. By relating the computation of expected values to mesoscale averaging, we obtain a suitable description of the process at the mesoscale. We show how the variance

  12. Optimal Average Cost Manufacturing Flow Controllers

    E-Print Network [OSTI]

    Veatch, Michael H.

    policy the differ- ential cost is C1 on attractive control switching boundaries. Index Terms Average costOptimal Average Cost Manufacturing Flow Controllers: Convexity and Differentiability Michael H and differentiability of the differential cost function are investigated. It is proven that under an optimal control

  13. Averages in vector spaces over finite fields 

    E-Print Network [OSTI]

    Wright J.; Carbery A.; Stones B.

    2008-01-01

    We study the analogues of the problems of averages and maximal averages over a surface in R-n when the euclidean structure is replaced by that of a vector space over a finite field, and obtain optimal results in a number ...

  14. Status of ArDM-1t: First observations from operation with a full ton-scale liquid argon target

    E-Print Network [OSTI]

    ArDM Collaboration; J. Calvo; C. Cantini; M. Daniel; U. Degunda; S. Di Luise; L. Epprecht; A. Gendotti; S. Horikawa; L. Knecht; B. Montes; W. Mu; M. Munoz; S. Murphy; G. Natterer; K. Nguyen; K. Nikolics; L. Periale; C. Regenfus; L. Romero; A. Rubbia; R. Santorelli; F. Sergiampietri; D. Sgalaberna; T. Viant; S. Wu

    2015-05-10

    ArDM-1t is the first operating ton-scale liquid argon detector for direct search of Dark Matter particles. Developed at CERN as Recognized Experiment RE18, the experiment has been approved in 2010 to be installed in the Spanish underground site LSC (Laboratorio Subterraneo de Canfranc). Under the label of LSC EXP-08-2010 the ArDM detector underwent an intensive period of technical completion and safety approval until the recent filling of the target vessel with almost 2 ton of liquid argon. This report describes the experimental achievements during commissioning of ArDM and the transition into a stage of first physics data taking in single phase operational mode. We present preliminary observations from this run. A first indication for the background discrimination power of LAr detectors at the ton-scale is shown. We present an outlook for completing the detector with the electric drift field and upgrade of the scintillation light readout system with novel detector modules based on SiPMs in order to improve the light yield.

  15. Process for production of synthesis gas with reduced sulfur content

    DOE Patents [OSTI]

    Najjar, Mitri S. (Hopewell Junction, NY); Corbeels, Roger J. (Wappingers Falls, NY); Kokturk, Uygur (Wappingers Falls, NY)

    1989-01-01

    A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1800.degree.-2200.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises an iron-containing compound portion and a sodium-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (i) a sulfur-containing sodium-iron silicate phase and (ii) a sodium-iron sulfide phase. The sulfur capture additive may optionally comprise a copper-containing compound portion.

  16. Sulfur control in ion-conducting membrane systems

    DOE Patents [OSTI]

    Stein, VanEric Edward; Richards, Robin Edward; Brengel, David Douglas; Carolan, Michael Francis

    2003-08-05

    A method for controlling the sulfur dioxide partial pressure in a pressurized, heated, oxygen-containing gas mixture which is contacted with an ion-conducting metallic oxide membrane which permeates oxygen ions. The sulfur dioxide partial pressure in the oxygen-depleted non-permeate gas from the membrane module is maintained below a critical sulfur dioxide partial pressure, p.sub.SO2 *, to protect the membrane material from reacting with sulfur dioxide and reducing the oxygen flux of the membrane. Each ion-conducting metallic oxide material has a characteristic critical sulfur dioxide partial pressure which is useful in determining the required level of sulfur removal from the feed gas and/or from the fuel gas used in a direct-fired feed gas heater.

  17. Sulfide catalysts for reducing SO2 to elemental sulfur

    DOE Patents [OSTI]

    Jin, Yun (Peking, CN); Yu, Qiquan (Peking, CN); Chang, Shih-Ger (El Cerrito, CA)

    2001-01-01

    A highly efficient sulfide catalyst for reducing sulfur dioxide to elemental sulfur, which maximizes the selectivity of elemental sulfur over byproducts and has a high conversion efficiency. Various feed stream contaminants, such as water vapor are well tolerated. Additionally, hydrogen, carbon monoxide, or hydrogen sulfides can be employed as the reducing gases while maintaining high conversion efficiency. This allows a much wider range of uses and higher level of feed stream contaminants than prior art catalysts.

  18. Effect of Environmental Factors on Sulfur Gas Emissions from Drywall

    E-Print Network [OSTI]

    Maddalena, Randy

    2012-01-01

    sulfide (H 2 S), carbonyl sulfide (OCS), sulfur dioxide (SOof hydrogen sulfide, carbonyl sulfide, methyl mercaptan,associated with the carbonyl sulfide that typically had very

  19. More Economical Sulfur Removal for Fuel Processing Plants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    crude oil it is present in sulfur-containing organic compounds which are converted into hydrocarbons and H 2 S during the removal process (hydrodesulfurization). In both cases,...

  20. Sulfur, Chlorine, and Argon Abundances in Planetary Nebulae. III: Observations and Results for a Final Sample

    E-Print Network [OSTI]

    K. B. Kwitter; R. B. C. Henry; J. B. Milingo

    2002-09-25

    This paper is the fourth in a series whose purpose is to study the interstellar abundances of sulfur, chlorine, and argon in the Galaxy using a sample of 86 planetary nebulae. Here we present new high-quality spectrophotometric observations of 20 Galactic planetary nebulae with spectral coverage from 3700-9600 Angstroms. A major feature of our observations throughout the entire study has been the inclusion of the near-infrared lines of [S III] 9069,9532, which allows us to calculate accurate S+2 abundances and to either improve upon or convincingly confirm results of earlier sulfur abundance studies. For each of the 20 objects here we calculate ratios of S/O, Cl/O, and Ar/O and find average values of S/O=1.1E-2+/-1.1E-2, Cl/O=4.2E-4+/-5.3E-4, and Ar/O=5.7E-3+/-4.3E-3. For six objects we are able to compare abundances of S+3 calculated directly from available [S IV] 10.5 micron measurements with those inferred indirectly from the values of the ionization correction factors for sulfur. In the final paper of the series, we will compile results from all 86 objects, search for and evaluate trends, and use chemical evolution models to interpret our results.

  1. STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES 2005 TO 2018 Mignon Marks Principal Author Mignon Marks Project Manager David Ashuckian Manager ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY DIVISION B.B. Blevins Executive Director

  2. Distributed Averaging Via Lifted Markov Chains

    E-Print Network [OSTI]

    Jung, Kyomin

    Motivated by applications of distributed linear estimation, distributed control, and distributed optimization, we consider the question of designing linear iterative algorithms for computing the average of numbers in a ...

  3. Thermal ghost imaging with averaged speckle patterns

    E-Print Network [OSTI]

    Shapiro, Jeffrey H.

    We present theoretical and experimental results showing that a thermal ghost imaging system can produce images of high quality even when it uses detectors so slow that they respond only to intensity-averaged (that is, ...

  4. Selling Geothermal Systems The "Average" Contractor

    E-Print Network [OSTI]

    Selling Geothermal Systems #12;The "Average" Contractor · History of sales procedures · Manufacturer Driven Procedures · What makes geothermal technology any harder to sell? #12;"It's difficult to sell a geothermal system." · It should

  5. Spacetime Average Density (SAD) cosmological measures

    SciTech Connect (OSTI)

    Page, Don N.

    2014-11-01

    The measure problem of cosmology is how to obtain normalized probabilities of observations from the quantum state of the universe. This is particularly a problem when eternal inflation leads to a universe of unbounded size so that there are apparently infinitely many realizations or occurrences of observations of each of many different kinds or types, making the ratios ambiguous. There is also the danger of domination by Boltzmann Brains. Here two new Spacetime Average Density (SAD) measures are proposed, Maximal Average Density (MAD) and Biased Average Density (BAD), for getting a finite number of observation occurrences by using properties of the Spacetime Average Density (SAD) of observation occurrences to restrict to finite regions of spacetimes that have a preferred beginning or bounce hypersurface. These measures avoid Boltzmann brain domination and appear to give results consistent with other observations that are problematic for other widely used measures, such as the observation of a positive cosmological constant.

  6. Nonflame, source-induced sulfur fluorescence detector for sulfur-containing compounds

    SciTech Connect (OSTI)

    Gage, D.R.; Farwell, S.O.

    1980-12-01

    Results of some preliminary investigations of the fluorescence spectra of S/sub 2/ and the non-flame production of S/sub 2/ from sulfur-containing molecules are reported. Passage of the gas to be analyzed through a catalyst-oven containing a plug of NiO/sub 2//Al/sub 2/O/sub 3/ catalyst containing 10 wt% NiO/sub 2/ and heated to 400/sup 0/C resulted in conversion of H/sub 2/S to S/sub 2/ and elemental sulfur. The S/sub 2/ was detected by measurement of its fluorescence bands at 260 and 310nm, and elemental sulfur condensed on the cool parts of the apparatus. However, determination of sulfur-content of gas mixtures with the apparatus described herein were not as repeatable as desired, and the work is being continued on various facets of the non-flame system with work being directed toward the evaluation of different catalysts, catalyst temperature, design of a smaller detector geometry utilizing a pulsed-light excitation source, a windowless cell, and optical filters instead of monochromators to select the S/sub 2/ excitation and emission wavelengths. (BLM)

  7. Sodium-tetravalent sulfur molten chloroaluminate cell

    DOE Patents [OSTI]

    Mamantov, Gleb (Knoxville, TN)

    1985-04-02

    A sodium-tetravalent sulfur molten chloroaluminate cell with a .beta."-alumina sodium ion conductor having a S-Al mole ratio of above about 0.15 in an acidic molten chloroaluminate cathode composition is disclosed. The cathode composition has an AlCl.sub.3 -NaCl mole percent ratio of above about 70-30 at theoretical full charge. The cell provides high energy densities at low temperatures and provides high energy densities and high power densities at moderate temperatures.

  8. Sulfur removal and comminution of carbonaceous material

    DOE Patents [OSTI]

    Narain, N.K.; Ruether, J.A.; Smith, D.N.

    1987-10-07

    Finely divided, clean coal or other carbonaceous material is provided by forming a slurry of coarse coal in aqueous alkali solution and heating the slurry under pressure to above the critical conditions of steam. The supercritical fluid penetrates and is trapped in the porosity of the coal as it swells in a thermoplastic condition at elevated temperature. By a sudden, explosive release of pressure the coal is fractured into finely divided particles with release of sulfur-containing gases and minerals. The finely divided coal is recovered from the minerals for use as a clean coal product. 2 figs.

  9. Sulfur removal and comminution of carbonaceous material

    DOE Patents [OSTI]

    Narain, Nand K. (Bethel Park, PA); Ruether, John A. (McMurray, PA); Smith, Dennis N. (Herminie, PA)

    1988-01-01

    Finely divided, clean coal or other carbonaceous material is provided by forming a slurry of coarse coal in aqueous alkali solution and heating the slurry under pressure to above the critical conditions of steam. The supercritical fluid penetrates and is trapped in the porosity of the coal as it swells in a thermoplastic condition at elevated temperature. By a sudden, explosive release of pressure the coal is fractured into finely divided particles with release of sulfur-containing gases and minerals. The finely divided coal is recovered from the minerals for use as a clean coal product.

  10. An Evolutionary Arms Race for Sulfur

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNaturalTestAn Evolutionary Arms Race for Sulfur An

  11. Average transmission probability of a random stack

    E-Print Network [OSTI]

    Yin Lu; Christian Miniatura; Berthold-Georg Englert

    2009-07-31

    The transmission through a stack of identical slabs that are separated by gaps with random widths is usually treated by calculating the average of the logarithm of the transmission probability. We show how to calculate the average of the transmission probability itself with the aid of a recurrence relation and derive analytical upper and lower bounds. The upper bound, when used as an approximation for the transmission probability, is unreasonably good and we conjecture that it is asymptotically exact.

  12. A Changing Planet Over the past century, the average global tempera-

    E-Print Network [OSTI]

    tons of hydrogen fuse into helium within the sun's core as part of a mas- sive chain of thermonuclear

  13. Using ISC & GIS to predict sulfur deposition from coal-fired power plants 

    E-Print Network [OSTI]

    Lopez, Jose Ignacio

    1993-01-01

    The goal of this research project was to determine if atmospheric sources have the potential of contributing significantly to the sulfur content of grazed forage. Sulfur deposition resulting from sulfur dioxide emissions from coal- fired power...

  14. X-ray reprocessing in Narrow-Line Seyfert 1 Galaxies: Ton S180 and Ark 564

    E-Print Network [OSTI]

    A. Janiuk; P. T. Zycki; B. Czerny

    2000-05-08

    We present the results of spectral analysis of the ASCA data for the Narrow-Line Seyfert 1 galaxy (NLS1) Ton S180 and simultaneous ASCA and RXTE data modelling for the NLS1 Ark 564. We model both the primary and reflected continuum as well as the iron K alpha line, the energy of which depends on the ionization state of the reprocessor. We show that the reprocessing matter is mildly ionized, and we find the soft to hard luminosity ratio to be about 2.5. The accretion rate approximately corresponds to the Eddington limit value.

  15. Quantifying Individual Potential Contributions of the Hybrid Sulfur Electrolyzer

    E-Print Network [OSTI]

    Weidner, John W.

    Quantifying Individual Potential Contributions of the Hybrid Sulfur Electrolyzer John A. Staser for the hybrid sulfur electrolyzer is controlled mainly by water transport in the cell. Water is required electrolyzer performance and operation. Experimental The experimental setup was the same as that described

  16. Sulfur removal from diesel fuel-contaminated methanol.

    SciTech Connect (OSTI)

    Lee, S. H. D.; Kumar, R.; Krumpelt, M.; Chemical Engineering

    2002-03-01

    Methanol is considered to be a potential on-board fuel for fuel cell-powered vehicles. In current distribution systems for liquid fuels used in the transportation sector, commodity methanol can occasionally become contaminated with the sulfur in diesel fuel or gasoline. This sulfur would poison the catalytic materials used in fuel reformers for fuel cells. We tested the removal of this sulfur by means of ten activated carbons (AC) that are commercially available. Tests were conducted with methanol doped with 1 vol.% grade D-2 diesel fuel containing 0.29% sulfur, which was present essentially as 33-35 wt.% benzothiophenes (BTs) and 65-67 wt.% dibenzothiophenes (DBT). In general, coconut shell-based carbons activated by high-temperature steam were more effective at sulfur removal than coal-based carbons. Equilibrium sorption data showed linear increase in sulfur capture with the increase of sulfur concentration in methanol. Both types of carbons had similar breakthrough characteristics, with the dynamic sorption capacity of each being about one-third of its equilibrium sorption capacity. Results of this study suggest that a fixed-bed sorber of granular AC can be used, such as in refueling stations, for the removal of sulfur in diesel fuel-contaminated methanol.

  17. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    DOE Patents [OSTI]

    Moore, Robert (Edgewood, NM); Pickard, Paul S. (Albuquerque, NM); Parma, Jr., Edward J. (Albuquerque, NM); Vernon, Milton E. (Albuquerque, NM); Gelbard, Fred (Albuquerque, NM); Lenard, Roger X. (Edgewood, NM)

    2010-01-12

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  18. Process for removing pyritic sulfur from bituminous coals

    DOE Patents [OSTI]

    Pawlak, Wanda (Edmonton, CA); Janiak, Jerzy S. (Edmonton, CA); Turak, Ali A. (Edmonton, CA); Ignasiak, Boleslaw L. (Edmonton, CA)

    1990-01-01

    A process is provided for removing pyritic sulfur and lowering ash content of bituminous coals by grinding the feed coal, subjecting it to micro-agglomeration with a bridging liquid containing heavy oil, separating the microagglomerates and separating them to a water wash to remove suspended pyritic sulfur. In one embodiment the coal is subjected to a second micro-agglomeration step.

  19. (Data in metric tons unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2007. Indium-containing

    E-Print Network [OSTI]

    gallium diselenide (CIGS) solar cells require approximately 50 metric tons of indium to produce 1 gigawatt of solar power. Research was underway to develop a low-cost manufacturing process for flexible CIGS solar cells that would yield high productio

  20. Polarized electron beams at milliampere average current

    SciTech Connect (OSTI)

    Poelker, Matthew

    2013-11-01

    This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today's CEBAF polarized source operating at ~ 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

  1. Laser Fusion Energy The High Average Power

    E-Print Network [OSTI]

    Laser Fusion Energy and The High Average Power Program John Sethian Naval Research Laboratory Dec for Inertial Fusion Energy with lasers, direct drive targets and solid wall chambers Lasers DPPSL (LLNL) Kr posters Snead Payne #12;Laser(s) Goals 1. Develop technologies that can meet the fusion energy

  2. Extracting gluon condensate from the average plaquette

    E-Print Network [OSTI]

    Taekoon Lee

    2015-03-27

    The perturbative contribution in the average plaquette is subtracted using Borel summation and the remnant of the plaquette is shown to scale as a dim-4 condensate. A critical review is presented of the renormalon subtraction scheme that claimed a dim-2 condensate. The extracted gluon condensate is compared with the latest result employing high order (35-loop) calculation in the stochastic perturbation theory.

  3. Performance and cost models for the direct sulfur recovery process. Task 1 Topical report, Volume 3

    SciTech Connect (OSTI)

    Frey, H.C. [North Carolina State Univ., Raleigh, NC (United States); Williams, R.B. [Carneigie Mellon Univ., Pittsburgh, PA (United States)

    1995-09-01

    The purpose of this project is to develop performance and cost models of the Direct Sulfur Recovery Process (DSRP). The DSRP is an emerging technology for sulfur recovery from advanced power generation technologies such as Integrated Gasification Combined Cycle (IGCC) systems. In IGCC systems, sulfur present in the coal is captured by gas cleanup technologies to avoid creating emissions of sulfur dioxide to the atmosphere. The sulfur that is separated from the coal gas stream must be collected. Leading options for dealing with the sulfur include byproduct recovery as either sulfur or sulfuric acid. Sulfur is a preferred byproduct, because it is easier to handle and therefore does not depend as strongly upon the location of potential customers as is the case for sulfuric acid. This report describes the need for new sulfur recovery technologies.

  4. Average gluon and quark jet multiplicities

    E-Print Network [OSTI]

    A. V. Kotikov

    2014-11-30

    We show the results in [1,2] for computing the QCD contributions to the scale evolution of average gluon and quark jet multiplicities. The new results came due a recent progress in timelike small-x resummation obtained in the MSbar factorization scheme. They depend on two nonperturbative parameters with clear and simple physical interpretations. A global fit of these two quantities to all available experimental data sets demonstrates by its goodness how our results solve a longstandig problem of QCD. Including all the available theoretical input within our approach, alphas(Mz)=0.1199 +- 0.0026 has been obtained in the MSbar scheme in an approximation equivalent to next-to-next-to-leading order enhanced by the resummations of ln x terms through the NNLL level and of ln Q2 terms by the renormalization group. This result is in excellent agreement with the present world average.

  5. Impact Ionization Model Using Average Energy and Average Square Energy of Distribution Function

    E-Print Network [OSTI]

    Dunham, Scott

    Impact Ionization Model Using Average Energy and Average Square Energy of Distribution Function Ken relaxation length, v sat ø h''i (¸ 0:05¯m), the energy distribution function is not well described calculation of impact ionization coefficient requires the use of a high energy distribution function because

  6. Amphiphilic Surface Modification of Hollow Carbon Nanofibers for Improved Cycle Life of Lithium Sulfur Batteries

    E-Print Network [OSTI]

    Cui, Yi

    Sulfur Batteries Guangyuan Zheng, Qianfan Zhang, Judy J. Cha, Yuan Yang, Weiyang Li, Zhi Wei Seh, and Yi lithium sulfur batteries, due to their high specific energy and relatively low cost. Despite recent progress in addressing the various problems of sulfur cathodes, lithium sulfur batteries still exhibit

  7. Low Temperature Sorbents for Removal of Sulfur Compounds from Fluid Feed Streams

    DOE Patents [OSTI]

    Siriwardane, Ranjani

    2004-06-01

    A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200 C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.

  8. Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?

    SciTech Connect (OSTI)

    Zhou, Nan; Lin, Jiang; Zhou, Nan; Levine, Mark; Fridley, David

    2007-07-01

    China's 11th Five-Year Plan (FYP) sets an ambitious target for energy-efficiency improvement: energy intensity of the country's gross domestic product (GDP) should be reduced by 20% from 2005 to 2010 (NDRC, 2006). This is the first time that a quantitative and binding target has been set for energy efficiency, and signals a major shift in China's strategic thinking about its long-term economic and energy development. The 20% energy intensity target also translates into an annual reduction of over 1.5 billion tons of CO2 by 2010, making the Chinese effort one of most significant carbon mitigation effort in the world today. While it is still too early to tell whether China will achieve this target, this paper attempts to understand the trend in energy intensity in China and to explore a variety of options toward meeting the 20% target using a detailed end-use energy model.

  9. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOE Patents [OSTI]

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G

    2013-08-13

    A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  10. Methods and results for stress analyses on 14-ton, thin-wall depleted UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Kirkpatrick, J.R.; Chung, C.K.; Frazier, J.L.; Kelley, D.K.

    1996-10-01

    Uranium enrichment operations at the three US gaseous diffusion plants produce depleted uranium hexafluoride (DUF{sub 6}) as a residential product. At the present time, the inventory of DUF{sub 6} in this country is more than half a million tons. The inventory of DUF{sub 6} is contained in metal storage cylinders, most of which are located at the gaseous diffusion plants. The principal objective of the project is to ensure the integrity of the cylinders to prevent causing an environmental hazard by releasing the contents of the cylinders into the atmosphere. Another objective is to maintain the cylinders in such a manner that the DUF{sub 6} may eventually be converted to a less hazardous material for final disposition. An important task in the DUF{sub 6} cylinders management project is determining how much corrosion of the walls can be tolerated before the cylinders are in danger of being damaged during routine handling and shipping operations. Another task is determining how to handle cylinders that have already been damaged in a manner that will minimize the chance that a breach will occur or that the size of an existing breach will be significantly increased. A number of finite element stress analysis (FESA) calculations have been done to analyze the stresses for three conditions: (1) while the cylinder is being lifted, (2) when a cylinder is resting on two cylinders under it in the customary two-tier stacking array, and (3) when a cylinder is resting on tis chocks on the ground. Various documents describe some of the results and discuss some of the methods whereby they have been obtained. The objective of the present report is to document as many of the FESA cases done at Oak Ridge for 14-ton thin-wall cylinders as possible, giving results and a description of the calculations in some detail.

  11. Abatement of Air Pollution: Control of Sulfur Compound Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    set limits on the sulfur content of allowable fuels (1.0% by weight, dry basis) for combustion, as well as for the heat input of any fuel burning equipment (250,000 Btuhour)....

  12. Physiology of multiple sulfur isotope fractionation during microbial sulfate reduction

    E-Print Network [OSTI]

    Sim, Min Sub

    2012-01-01

    Microbial sulfate reduction (MSR) utilizes sulfate as an electron acceptor and produces sulfide that is depleted in heavy isotopes of sulfur relative to starting sulfate. The fractionation of S-isotopes is commonly used ...

  13. Impact of Sulfur Oxides on Mercury Capture by Activated Carbon

    SciTech Connect (OSTI)

    Presto, A.A.; Granite, E.J.

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACI, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  14. Ultra Low Sulfur Home Heating Oil Demonstration Project

    SciTech Connect (OSTI)

    Batey, John E.; McDonald, Roger

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directly related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.

  15. Time-dependent angularly averaged inverse transport

    E-Print Network [OSTI]

    Guillaume Bal; Alexandre Jollivet

    2009-05-07

    This paper concerns the reconstruction of the absorption and scattering parameters in a time-dependent linear transport equation from knowledge of angularly averaged measurements performed at the boundary of a domain of interest. We show that the absorption coefficient and the spatial component of the scattering coefficient are uniquely determined by such measurements. We obtain stability results on the reconstruction of the absorption and scattering parameters with respect to the measured albedo operator. The stability results are obtained by a precise decomposition of the measurements into components with different singular behavior in the time domain.

  16. Reynolds-Averaged Navier-Stokes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100Nationalquestionnaires 0serial codesReversingprovedReynolds-Averaged

  17. An electrochemical Claus process for sulfur recovery

    SciTech Connect (OSTI)

    Pujare, N.U.; Tsai, K.J.; Sammuells, A.F. (Eltron Research, Inc., Aurora, IL (US))

    1989-12-01

    Electrochemical oxidation of H{sub 2}S to give sulfur and water was achieved at 900{degrees}C using fuel cells possessing the general configuration where anode electrocatalysts experimentally investigated for promoting the subject oxidation reaction included WS{sub 2} and the thiospinels CuNi{sub 2}S{sub 4}, CuCo{sub 2}S{sub 4}, CuFe{sub 2}S{sub 4}, and NiFe{sub 2}S{sub 4}. The predominant oxidizable electroactive species present in the fuel cell anode compartment was suggested to be hydrogen originating from the initial thermal dissociation of H{sub 2}S (H{sub 2}S {r reversible} H{sub 2} + 1/2 S{sub 2}) at fuel cell operating temperatures. Rapid anode kinetics were found for the anodic reaction with the empirical trend for exchange currents (i{sub o}) per geometric area being found to be NiFe{sub 2}S{sub 4}{gt}WS{sub 2}{gt}CuCo{sub 2}S{sub 4}{gt}CuFe{sub 2}S{sub 4}{approx equal}NiCo{sub 2}S{sub 4}{gt}CuNi{sub 2}S{sub 4}.

  18. The 2009 World Average of $?_s$

    E-Print Network [OSTI]

    Siegfried Bethke

    2009-08-15

    Measurements of $\\alpha_s$, the coupling strength of the Strong Interaction between quarks and gluons, are summarised and an updated value of the world average of $\\alpha_s (M_Z)$ is derived. Building up on previous reviews, special emphasis is laid on the most recent determinations of $\\alpha_s$. These are obtained from $\\tau$-decays, from global fits of electroweak precision data and from measurements of the proton structure function $\\F_2$, which are based on perturbative QCD calculations up to $O(\\alpha_s^4)$; from hadronic event shapes and jet production in $\\epem$ annihilation, based on $O(\\alpha_s^3) $ QCD; from jet production in deep inelastic scattering and from $\\Upsilon$ decays, based on $O(\\alpha_s^2) $ QCD; and from heavy quarkonia based on unquenched QCD lattice calculations. Applying pragmatic methods to deal with possibly underestimated errors and/or unknown correlations, the world average value of $\\alpha_s (M_Z)$ results in $\\alpha_s (M_Z) = 0.1184 \\pm 0.0007$. The measured values of $\\alpha_s (Q)$, covering energy scales from $Q \\equiv \\mtau = 1.78$ GeV to 209 GeV, exactly follow the energy dependence predicted by QCD and therefore significantly test the concept af Asymptotic Freedom.

  19. Lithium-Sulfur Batteries: Development of High Energy Lithium-Sulfur Cells for Electric Vehicle Applications

    SciTech Connect (OSTI)

    2010-10-01

    BEEST Project: Sion Power is developing a lithium-sulfur (Li-S) battery, a potentially cost-effective alternative to the Li-Ion battery that could store 400% more energy per pound. All batteries have 3 key parts—a positive and negative electrode and an electrolyte—that exchange ions to store and release electricity. Using different materials for these components changes a battery’s chemistry and its ability to power a vehicle. Traditional Li-S batteries experience adverse reactions between the electrolyte and lithium-based negative electrode that ultimately limit the battery to less than 50 charge cycles. Sion Power will sandwich the lithium- and sulfur-based electrode films around a separator that protects the negative electrode and increases the number of charges the battery can complete in its lifetime. The design could eventually allow for a battery with 400% greater storage capacity per pound than Li-Ion batteries and the ability to complete more than 500 recharge cycles.

  20. Radiative charge transfer in cold and ultracold Sulfur atoms colliding with Protons

    E-Print Network [OSTI]

    G Shen; P C Stancil; J G Wang; J F McCann; B M McLaughlin

    2015-02-25

    Radiative decay processes at cold and ultra cold temperatures for Sulfur atoms colliding with protons are investigated. The MOLPRO quantum chemistry suite of codes was used to obtain accurate potential energies and transition dipole moments, as a function of internuclear distance, between low-lying states of the SH$^{+}$ molecular cation. A multi-reference configuration-interaction (MRCI) approximation together with the Davidson correction is used to determine the potential energy curves and transition dipole moments, between the states of interest, where the molecular orbitals (MO's) are obtained from state-averaged multi configuration-self-consistent field (MCSCF) calculations. The collision problem is solved approximately using an optical potential method to obtain radiative loss, and a fully two-channel quantum approach for radiative charge transfer. Cross sections and rate coefficients are determined for the first time for temperatures ranging from 10 $\\mu$ K up to 10,000 K. Results are obtained for all isotopes of Sulfur, colliding with H$^{+}$ and D$^{+}$ ions and comparison is made to a number of other collision systems.

  1. Fact #744: September 10, 2012 Average New Light Vehicle Price...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: September 10, 2012 Average New Light Vehicle Price Grows Faster than Average Used Light Vehicle Price Fact 744: September 10, 2012 Average New Light Vehicle Price Grows Faster...

  2. Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51%...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cars are for gasoline cars only. Fuel economy average is the production-weighted harmonic mean. 2014 data are preliminary. Fact 849 Dataset Supporting Information Average...

  3. Fact #744: September 10, 2012 Average New Light Vehicle Price Grows Faster than Average Used Light Vehicle Price

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2011 the average used light vehicle price was 36% higher than in 1990, while the average new light vehicle price was 67% higher than it was in 1990. The average price of a used vehicle had been...

  4. Radiative charge transfer in cold and ultracold Sulfur atoms colliding with Protons

    E-Print Network [OSTI]

    Shen, G; Wang, J G; McCann, J F; McLaughlin, B M

    2015-01-01

    Radiative decay processes at cold and ultra cold temperatures for Sulfur atoms colliding with protons are investigated. The MOLPRO quantum chemistry suite of codes was used to obtain accurate potential energies and transition dipole moments, as a function of internuclear distance, between low-lying states of the SH$^{+}$ molecular cation. A multi-reference configuration-interaction (MRCI) approximation together with the Davidson correction is used to determine the potential energy curves and transition dipole moments, between the states of interest, where the molecular orbitals (MO's) are obtained from state-averaged multi configuration-self-consistent field (MCSCF) calculations. The collision problem is solved approximately using an optical potential method to obtain radiative loss, and a fully two-channel quantum approach for radiative charge transfer. Cross sections and rate coefficients are determined for the first time for temperatures ranging from 10 $\\mu$ K up to 10,000 K. Results are obtained for all ...

  5. Chemical reactions of UF{sub 6} with water on ingress to damaged model 48X 10 ton cylinder

    SciTech Connect (OSTI)

    Rothman, A.B.

    1996-02-01

    Chemistry studies of the effects of water flooding in Model 48X 10-ton UF{sub 6} storage cylinders, as a result of impact fractures, were conducted to support the Safety Analysis Report for Packaging (SARP) review of the Paducah Tiger Overpack for transportation of those cylinders. The objectives of the study were to determine the maximum amount of water that could be admitted to the interior of such a damaged cylinder, the resulting geometries and chemical compositions from reactions of water with the UF{sub 6} contents of the cylinder, and the end-state water moderated and reflected configurations for input to nuclear criticality safety analyses. The case identified for analysis was the flooding of the inside of a cylinder, submerged horizontally in 3 ft of water. The flooding was driven by an initial pressure drop of 13 psig, through an assumed fracture (1/32 in. wide {times} 1/2 in. deep {times} 18 in. long) in the barrel of the cylinder. During the initial addition of water, transient back pressures occur from the effects of the heats of reaction and solution at the water/UF{sub 6} interface, with some chugging as more water is added to alternately coot the reaction surface and then heat it again as the added water reacts with more UF{sub 6}.

  6. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine in the United States was a brine

    E-Print Network [OSTI]

    --United States: 2008 2009 2010 2011 2012 e Production W W W W W Imports for consumption 3,160 1,890 1,960 2,850 2 production capacity. Industry analysts and the major lithium producers expected worldwide consumption94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production

  7. Process for removal of sulfur compounds from fuel gases

    DOE Patents [OSTI]

    Moore, Raymond H. (Richland, WA); Stegen, Gary E. (Richland, WA)

    1978-01-01

    Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

  8. Weigh options for meeting future gasoline sulfur specifications

    SciTech Connect (OSTI)

    Johnson, T.E.

    1997-03-01

    The most frequently mentioned methods for reducing pool gasoline sulfur to the 50-ppm range are FCC feed hydrotreating and desulfurization of heavy cat naptha (HCN). Of these, cat feed hydrotreating (CFH) is preferred because of the compelling economics of improved FCC gasoline yield. Also, the additional C{sub 3}/C{sub 4} olefin yield opens up the possibility of additional production of sulfur-free alkylate and oxygenate. In addition to the obvious yield benefits, the ability to upgrade lower quality, higher sulfur stocks for inclusion in the FCC charge slate, while lowering flue gas SO{sub x} emissions, is also advantageous to the refiner. However, depending o the level of FCC feed sulfur and the severity of hydrotreating used, it may not be possible to meet 50-ppm sulfur in the gasoline pool. Two possible solutions to this problem are to use: (1) a very severe cat feed hydrotreating operation (i.e., 98%-plus desulfurization), (2) partial conversion hydrocracking.

  9. Gas phase reaction of sulfur trioxide with water vapor

    SciTech Connect (OSTI)

    Kolb, C.E.; Molina, M.J.; Jayne, J.T.; Meads, R.F.; Worsnop, D.R.

    1994-12-31

    Sulfur trioxide (SO3) has long been known to react with water to produce sulfuric acid (H2S04). It has been commonly assumed that the gas phase reaction in the Earth`s atmosphere between SO3 and water vapor to produce sulfuric acid vapor is an important step in the production of sulfuric acid aerosol particles. The kinetics of the gas phase reaction of SO3 with water vapor have previously been studied by Castleman and co-workers, Wang et al and Reiner and Arnold. Each of these studies was carried out in a flow reactor, with the first two studies performed at low pressure (1-10 Torr) and the latter from approx. 30 to 260 Torr. Each of these studies measured SO3 decays over a range of H2O vapor levels, obtaining data consistent with interpreting the reaction of gaseous SO3 and H2O as a bimolecular process. It is not clear why previous experimental studies failed to observe a nonlinear dependence of SO3 consumption on water vapor concentration. It is probable that sufficient water dimer exists in much of the Earth`s atmosphere to allow dimer reactions to participate in sulfuric acid vapor formation.

  10. ADDITIVE TESTING FOR IMPROVED SULFUR RETENTION: PRELIMINARY REPORT

    SciTech Connect (OSTI)

    Amoroso, J.; Fox, K.

    2011-09-07

    The Savannah River National Laboratory is collaborating with Alfred University to evaluate the potential for additives in borosilicate glass to improve sulfur retention. This preliminary report provides further background on the incorporation of sulfur in glass and outlines the experiments that are being performed by the collaborators. A simulated waste glass composition has been selected for the experimental studies. The first phase of experimental work will evaluate the impacts of BaO, PbO, and V{sub 2}O{sub 5} at concentrations of 1.0, 2.0, and 5.0 wt % on sulfate retention in simulated high level waste borosilicate glass. The second phase of experimental work will evaluate the effects of time at the melt temperature on sulfur retention. The resulting samples will be characterized to determine the amount of sulfur remaining as well as to identify the formation of any crystalline phases. The results will be used to guide the future selection of frits and glass forming chemicals in vitrifying Department of Energy wastes containing high sulfur concentrations.

  11. The Average Mass Profile of Galaxy Clusters

    E-Print Network [OSTI]

    R. G. Carlberg; H. K. C. Yee; E. Ellingson; S. L. Morris; R. Abraham; P. Gravel; C. J. Pritchet; T. Smecker-Hane; F. D. A. Hartwick; J. E. Hesser; J. B. Hutchings; J. B. Oke

    1997-05-23

    The average mass density profile measured in the CNOC cluster survey is well described with the analytic form rho(r)=A/[r(r+a_rho)^2], as advocated on the basis on n-body simulations by Navarro, Frenk & White. The predicted core radii are a_rho=0.20 (in units of the radius where the mean interior density is 200 times the critical density) for an Omega=0.2 open CDM model, or a_rho=0.26 for a flat Omega=0.2 model, with little dependence on other cosmological parameters for simulations normalized to the observed cluster abundance. The dynamically derived local mass-to-light ratio, which has little radial variation, converts the observed light profile to a mass profile. We find that the scale radius of the mass distribution, 0.20<= a_rho <= 0.30 (depending on modeling details, with a 95% confidence range of 0.12-0.50), is completely consistent with the predicted values. Moreover, the profiles and total masses of the clusters as individuals can be acceptably predicted from the cluster RMS line-of-sight velocity dispersion alone. This is strong support of the hierarchical clustering theory for the formation of galaxy clusters in a cool, collisionless, dark matter dominated universe.

  12. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",4202,43 "Nitrogen oxide (short tons)",18043,37 "Carbon dioxide (thousand metric tons)",3768,44 "Sulfur dioxide (lbsMWh)",1.3,29 "Nitrogen...

  13. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",6565,42 "Nitrogen oxide (short tons)",7627,46 "Carbon dioxide (thousand metric tons)",1942,49 "Sulfur dioxide (lbsMWh)",0.9,37 "Nitrogen...

  14. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",2241,47 "Nitrogen oxide (short tons)",2585,48 "Carbon dioxide (thousand metric tons)",4722,43 "Sulfur dioxide (lbsMWh)",0.6,40 "Nitrogen...

  15. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",2109,48 "Nitrogen oxide (short tons)",96842,5 "Carbon dioxide (thousand metric tons)",57323,13 "Sulfur dioxide (lbsMWh)",0,49 "Nitrogen...

  16. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",71,50 "Nitrogen oxide (short tons)",792,50 "Carbon dioxide (thousand metric tons)",15,51 "Sulfur dioxide (lbsMWh)",0,50 "Nitrogen oxide...

  17. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",7436,41 "Nitrogen oxide (short tons)",16438,39 "Carbon dioxide (thousand metric tons)",15690,37 "Sulfur dioxide (lbsMWh)",0.4,43 "Nitrogen...

  18. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",3196,46 "Nitrogen oxide (short tons)",15299,40 "Carbon dioxide (thousand metric tons)",15789,36 "Sulfur dioxide (lbsMWh)",0.1,48 "Nitrogen...

  19. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",3512,45 "Nitrogen oxide (short tons)",9372,45 "Carbon dioxide (thousand metric tons)",8726,41 "Sulfur dioxide (lbsMWh)",0.2,47 "Nitrogen...

  20. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",1271,49 "Nitrogen oxide (short tons)",1161,49 "Carbon dioxide (thousand metric tons)",2838,48 "Sulfur dioxide (lbsMWh)",0.4,44 "Nitrogen...

  1. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",3733,44 "Nitrogen oxide (short tons)",5057,47 "Carbon dioxide (thousand metric tons)",3447,46 "Sulfur dioxide (lbsMWh)",0.4,45 "Nitrogen...

  2. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",13365,38 "Nitrogen oxide (short tons)",9607,44 "Carbon dioxide (thousand metric tons)",3675,45 "Sulfur dioxide (lbsMWh)",1.9,23 "Nitrogen...

  3. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",237091,5 "Nitrogen oxide (short tons)",86058,8 "Carbon dioxide (thousand metric tons)",67193,10 "Sulfur dioxide (lbsMWh)",4.5,3 "Nitrogen...

  4. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",190782,7 "Nitrogen oxide (short tons)",87201,7 "Carbon dioxide (thousand metric tons)",85304,7 "Sulfur dioxide (lbsMWh)",4.3,4 "Nitrogen...

  5. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",0,51 "Nitrogen oxide (short tons)",148,51 "Carbon dioxide (thousand metric tons)",49,50 "Sulfur dioxide (lbsMWh)",0,51 "Nitrogen oxide...

  6. the average weight of Connecticut River fish was considerably less (Table 1). The difference in average

    E-Print Network [OSTI]

    the average weight of Connecticut River fish was considerably less (Table 1). The difference in the Connecticut River basin. Fisheries (Bethesda) 7(6): 2-11. POTTER. I. C.· F. W. H. BEAMISH, AND B. G. H. Freshwater fishes of Connecticut. State Geol. Nat. Hist. Servo Conn.· Dep. Environ. Prot., Bull. 101, 134 p

  7. Process and system for removing sulfur from sulfur-containing gaseous streams

    DOE Patents [OSTI]

    Basu, Arunabha (Aurora, IL); Meyer, Howard S. (Hoffman Estates, IL); Lynn, Scott (Pleasant Hill, CA); Leppin, Dennis (Chicago, IL); Wangerow, James R. (Medinah, IL)

    2012-08-14

    A multi-stage UCSRP process and system for removal of sulfur from a gaseous stream in which the gaseous stream, which contains a first amount of H.sub.2S, is provided to a first stage UCSRP reactor vessel operating in an excess SO.sub.2 mode at a first amount of SO.sub.2, producing an effluent gas having a reduced amount of SO.sub.2, and in which the effluent gas is provided to a second stage UCSRP reactor vessel operating in an excess H.sub.2S mode, producing a product gas having an amount of H.sub.2S less than said first amount of H.sub.2S.

  8. The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification

    E-Print Network [OSTI]

    Luo, Qian

    2012-01-01

    S breakthrough time and sulfur capture capacity increased asspace velocity on H 2 S on sulfur capture capacity for H 2 Sbased on the optimal sulfur capture capacity under CE-CERT

  9. Preliminary Investigation of Sulfur Loading in Hanford LAW Glass

    SciTech Connect (OSTI)

    Vienna, John D.; Hrma, Pavel R.; Buchmiller, William C.; Ricklefs, Joel S.

    2004-04-01

    A preliminary estimate was developed for loading limits for high-sulfur low-activity waste (LAW) feeds that will be vitrified into borosilicate glass at the Hanford Site in the waste-cleanup effort. Previous studies reported in the literature were consulted to provide a basis for the estimate. The examination of previous studies led to questions about sulfur loading in Hanford LAW glass, and scoping tests were performed to help answer these questions. These results of these tests indicated that a formulation approach developed by Vienna and colleagues shows promise for maximizing LAW loading in glass. However, there is a clear need for follow-on work. The potential for significantly lowering the amount of LAW glass produced at Hanford (after the initial phase of processing) because of higher sulfur tolerances may outweigh the cost and effort required to perform the necessary testing.

  10. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Fourth quarterly technical progress report

    SciTech Connect (OSTI)

    NONE

    1997-01-01

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams.

  11. Direct sulfur recovery during sorbent regeneration. Final report

    SciTech Connect (OSTI)

    Nelson, S.G.; Little, R.C. [Sorbent Technologies Corp., Twinsburg, OH (United States)

    1993-08-01

    The objective of this research project was to improve the direct elemental sulfur yields that occur during the regeneration of SO{sub 2}-saturated MgO-vermiculite sorbents (MagSorbents) by examining three approaches or strategies. The three approaches were regeneration-gas recycle, high-pressure regeneration, and catalytic reduction of the SO{sub 2} gas using a new catalyst developed by Research Triangle Institute (RTI). Prior to the project, Sorbent Technologies Corporation (Sorbtech) had developed a sorbent-regeneration process that yielded directly a pure elemental sulfur product. In the process, typically about 25 to 35 percent of the liberated S0{sub 2} was converted directly to elemental sulfur. The goal of this project was to achieve a conversion rate of over 90 percent. Good success was attained in the project. About 90 percent or more conversion was achieved with two of the approaches that were examined, regeneration-gas recycle and use of the RTI catalyst. Of these approaches, regeneration-gas recycle gave the best results (essentially 100 percent conversion in some cases). In the regeneration-gas recycle approach, saturated sorbent is simply heated to about 750{degree}C in a reducing gas (methane) atmosphere. During heating, a gas containing elemental sulfur, water vapor, H{sub 2}S, S0{sub 2}, and C0{sub 2} is evolved. The elemental sulfur and water vapor in the gas stream are condensed and removed, and the remaining gas is recycled back through the sorbent bed. After several recycles, the S0{sub 2} and H{sub 2}S completely disappear from the gas stream, and the stream contains only elemental sulfur, water vapor and C0{sub 2}.

  12. Improving fractionation lowers butane sulfur level at Saudi gas plant

    SciTech Connect (OSTI)

    Harruff, L.G.; Martinie, G.D.; Rahman, A. [Saudi Arabian Oil Co., Dhahran (Saudi Arabia)

    1998-10-12

    Increasing the debutanizer reflux/feed ratio to improve fractionation at an eastern Saudi Arabian NGL plant reduced high sulfur in the butane product. The sulfur resulted from dimethyl sulfide (DMS) contamination in the feed stream from an offshore crude-oil reservoir in the northern Arabian Gulf. The contamination is limited to two northeastern offshore gas-oil separation plants operated by Saudi Arabian Oil Co. (Saudi Aramco) and, therefore, cannot be transported to facilities outside the Eastern Province. Two technically acceptable solutions for removing this contaminant were investigated: 13X molecular-sieve adsorption of the DMS and increased fractionation efficiency. The latter would force DMS into the debutanizer bottoms.

  13. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOE Patents [OSTI]

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  14. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOE Patents [OSTI]

    Harkness, John B. L. (Naperville, IL); Gorski, Anthony J. (Woodridge, IL); Daniels, Edward J. (Oak Lawn, IL)

    1993-01-01

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  15. Structural insight into the assembly of iron-sulfur clusters and their function in radical generation

    E-Print Network [OSTI]

    Vey, Jessica L. (Jessica Lynn)

    2008-01-01

    This thesis addresses two emerging areas in the study of iron-sulfur cluster biochemistry: bioassembly of iron-sulfur clusters, and their involvement in initiation of radical chemistry. The structure of a cysteine desulfurase ...

  16. KINETICS AND MECHANISM FOR THE CATALYTIC OXIDATION OF SULFUR DIOXIDE ON CARBON IN AQUEOUS SUSPENSIONS

    E-Print Network [OSTI]

    Brodzinsky, R.

    2012-01-01

    AND MECHANISM FOR THE CATALYTIC OXIDATION OF SULFUR DIOXIDEmechanism for the catalytic oxidation of in an aqueous sus1ECHANISf 1 1 FOR TilE CATALYTIC OXIDATION OF SULFUR DIOXIDE

  17. A design strategy applied to sulfur resistant lean NOx̳ automotive catalysts

    E-Print Network [OSTI]

    Tang, Hairong

    2005-01-01

    Catalyst poisoning due to sulfur compounds derived from fuel sulfur presents a major challenge, intractable thus far, to development of many advanced technologies for automotive catalysts such as the lean NOx, trap. Under ...

  18. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOE Patents [OSTI]

    Mukerjee, Subhasish (Pittsford, NY); Haltiner, Jr., Karl J (Fairport, NY); Weissman, Jeffrey G. (West Henrietta, NY)

    2012-03-06

    A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  19. XAX: a multi-ton, multi-target detection system for dark matter, double beta decay and pp solar neutrinos

    E-Print Network [OSTI]

    K. Arisaka; H. Wang; P. F. Smith; D. Cline; A. Teymourian; E. Brown; W. Ooi; D. Aharoni; C. W. Lam; K. Lung; S. Davies; M. Price

    2009-01-07

    A multi-target detection system XAX, comprising concentric 10 ton targets of 136Xe and 129/131Xe, together with a geometrically similar or larger target of liquid Ar, is described. Each is configured as a two-phase scintillation/ionization TPC detector, enhanced by a full 4pi array of ultra-low radioactivity Quartz Photon Intensifying Detectors (QUPIDs) replacing the conventional photomultipliers for detection of scintillation light. It is shown that background levels in XAX can be reduced to the level required for dark matter particle (WIMP) mass measurement at a 10^-10 pb WIMP-nucleon cross section, with single-event sensitivity below 10^-11 pb. The use of multiple target elements allows for confirmation of the A^2 dependence of a coherent cross section, and the different Xe isotopes provide information on the spin-dependence of the dark matter interaction. The event rates observed by Xe and Ar would modulate annually with opposite phases from each other for WIMP mass >~100 GeV/c^2. The large target mass of 136Xe and high degree of background reduction allow neutrinoless double beta decay to be observed with lifetimes of 10^27-10^28 years, corresponding to the Majorana neutrino mass range 0.01-0.1 eV, the most likely range from observed neutrino mass differences. The use of a 136Xe-depleted 129/131Xe target will also allow measurement of the pp solar neutrino spectrum to a precision of 1-2%.

  20. Review of corrosion in 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders

    SciTech Connect (OSTI)

    Lykins, M.L.

    1995-08-01

    A literature review was conducted to determine the type, extent and severity of corrosion found in the 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders. Also discussed in this review is corrosion found in the valves and plugs used in the cylinders. Corrosion of the cylinders is a gradual process which occurs slowly over time. Understanding corrosion of the cylinders is an important concern for long term storage of the UF{sub 6} in the cylinder yards, as well as the final disposition of the depleted UF{sub 6} tails inventory in the future. The following conclusions are made from the literature review: (1) The general external corrosion rate of the cylinders is about 1 to 2 mils per year (1 mil = 0.001{double_prime}). The highest general external corrosion rate was over 5 mpy on the 48G type cylinders. (2) General internal corrosion from the depleted UF{sub 6} is negligible under normal storage conditions. Crevice corrosion can occur at the cylinder/saddle interface from the retention of water in this area. Crevice corrosion can occur at the cylinder/skirt interface on the older skirted cylinders due to the lack of water drainage in this area. Crevice corrosion can occur on cylinders that have been in ground contact. Crevice corrosion and galvanic corrosion can occur where the stainless steel I.D. nameplates are attached to the cylinder. The packing nuts on the bronze one-inch valves used in the cylinders are susceptible to stress corrosion cracking (SCC). Mechanical damage from routine handling can lead to a breach in a cylinder with subsequent accelerated corrosion of the mild steel due to attack from HF and other UF{sub 6} hydrolysis by-products.

  1. Low Quality Natural Gas Sulfur Removal and Recovery CNG Claus Sulfur Recovery Process

    SciTech Connect (OSTI)

    Klint, V.W.; Dale, P.R.; Stephenson, C.

    1997-10-01

    Increased use of natural gas (methane) in the domestic energy market will force the development of large non-producing gas reserves now considered to be low quality. Large reserves of low quality natural gas (LQNG) contaminated with hydrogen sulfide (H{sub 2}S), carbon dioxide (CO{sub 2}) and nitrogen (N) are available but not suitable for treatment using current conventional gas treating methods due to economic and environmental constraints. A group of three technologies have been integrated to allow for processing of these LQNG reserves; the Controlled Freeze Zone (CFZ) process for hydrocarbon / acid gas separation; the Triple Point Crystallizer (TPC) process for H{sub 2}S / C0{sub 2} separation and the CNG Claus process for recovery of elemental sulfur from H{sub 2}S. The combined CFZ/TPC/CNG Claus group of processes is one program aimed at developing an alternative gas treating technology which is both economically and environmentally suitable for developing these low quality natural gas reserves. The CFZ/TPC/CNG Claus process is capable of treating low quality natural gas containing >10% C0{sub 2} and measurable levels of H{sub 2}S and N{sub 2} to pipeline specifications. The integrated CFZ / CNG Claus Process or the stand-alone CNG Claus Process has a number of attractive features for treating LQNG. The processes are capable of treating raw gas with a variety of trace contaminant components. The processes can also accommodate large changes in raw gas composition and flow rates. The combined processes are capable of achieving virtually undetectable levels of H{sub 2}S and significantly less than 2% CO in the product methane. The separation processes operate at pressure and deliver a high pressure (ca. 100 psia) acid gas (H{sub 2}S) stream for processing in the CNG Claus unit. This allows for substantial reductions in plant vessel size as compared to conventional Claus / Tail gas treating technologies. A close integration of the components of the CNG Claus process also allow for use of the methane/H{sub 2}S separation unit as a Claus tail gas treating unit by recycling the CNG Claus tail gas stream. This allows for virtually 100 percent sulfur recovery efficiency (virtually zero SO{sub 2} emissions) by recycling the sulfur laden tail gas to extinction. The use of the tail gas recycle scheme also deemphasizes the conventional requirement in Claus units to have high unit conversion efficiency and thereby make the operation much less affected by process upsets and feed gas composition changes. The development of these technologies has been ongoing for many years and both the CFZ and the TPC processes have been demonstrated at large pilot plant scales. On the other hand, prior to this project, the CNG Claus process had not been proven at any scale. Therefore, the primary objective of this portion of the program was to design, build and operate a pilot scale CNG Claus unit and demonstrate the required fundamental reaction chemistry and also demonstrate the viability of a reasonably sized working unit.

  2. A. Paytan and E.T. Gray Chapter 9 Sulfur Isotope Stratigraphy

    E-Print Network [OSTI]

    Paytan, Adina

    A. Paytan and E.T. Gray Chapter 9 Sulfur Isotope Stratigraphy Abstract: The sulfur isotopic.4. Measurement and Materials for Sulfur Isotope Stratigraphy 171 9.4.1. Isotope Analyses 171 9.4.2. Materials. The features in the record can also be used to correlate between stratigraphic sections and sequences

  3. The variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India*

    E-Print Network [OSTI]

    The variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India* A.L. Ganesan of methane, nitrous oxide and sulfur hexafluoride in Northeast India A. L. Ganesan1, A. Chatterjee2, R. G-frequency atmospheric measurements of methane (CH4), nitrous oxide (N2O) and sulfur hexafluo- ride (SF6) from Darjeeling

  4. Nitrogen dioxide, sulfur dioxide, and ammonia detector for remote sensing of vehicle emissions

    E-Print Network [OSTI]

    Denver, University of

    sulfur diesel fuel is less expensive due to reduced taxes and as such may be prone to illegal use in on-road November 2005; published online 18 January 2006 A remote sensor for measuring on-road vehicles passing of reducing sulfur in fuel for all mobile sources. This process begins with ultralow sulfur on-road diesel

  5. Paper 2008-01-0434 Effects of Sulfur Level and Anisotropy of Sulfide Inclusions on

    E-Print Network [OSTI]

    Fatemi, Ali

    to fatigue strength, the high sulfur material had up to 25% lower fatigue strength than the ultra low sulfur, monotonic tensile and CVN impact behavior of SAE 4140 steel with high (0.077% S), low (0.012% S) and ultra low (0.004% S) sulfur contents at two hardness levels (40 HRC and 50 HRC). The longitudinally oriented

  6. Doped carbon-sulfur species nanocomposite cathode for Li--S batteries

    DOE Patents [OSTI]

    Wang, Donghai; Xu, Tianren; Song, Jiangxuan

    2015-12-29

    We report a heteroatom-doped carbon framework that acts both as conductive network and polysulfide immobilizer for lithium-sulfur cathodes. The doped carbon forms chemical bonding with elemental sulfur and/or sulfur compound. This can significantly inhibit the diffusion of lithium polysulfides in the electrolyte, leading to high capacity retention and high coulombic efficiency.

  7. Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil

    DOE Patents [OSTI]

    Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

    2014-07-08

    The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

  8. Attrition resistant, zinc titanate-containing, reduced sulfur sorbents

    DOE Patents [OSTI]

    Vierheilig, Albert A.; Gupta, Raghubir P.; Turk, Brian S.

    2004-11-02

    The disclosure is directed to sorbent compositions for removing reduced sulfur species (e.g., H.sub.2 S, COS and CS.sub.2) a feed stream. The sorbent is formed from a multi-phase composition including a zinc titanate phase and a zinc oxide-aluminate phase. The sorbent composition is substantially free of unreacted alumina.

  9. Catalyst added to Claus furnace reduces sulfur losses

    SciTech Connect (OSTI)

    Luinstra, E.A.; d'Haene, P.E. (Shell Canada Ltd., Toronto, ON (Canada). Oakville Research Centre)

    1989-07-01

    Several substances effectively catalyze the reduction of carbon disulfide in Claus gas streams at Claus reaction furnace conditions (about 1,000{sup 0}C). Some conversion of carbonyl sulfide also occurs. Carbon disulfide and carbonyl sulfide as well-known problem compounds that reduce sulfur recovery efficiency in many sulfur recovery plants. Installation of a suitable catalytic material in the reaction furnace promises significant improvement of Claus plant efficiency, and prolonged life of the catalytic converters. Almost every Claus sulfur recovery plant makes some carbon disulfide (CS/sub 2/) and carbonyl sulfide (COS) in the reaction furnace, and in many of these plants, these compounds constitute a significant problem. CS/sub 2/ and COS often comprise more than 50% of sulfur losses in the tail gas. This article reexamines the issue of CS/sub 2/ and COS in the Claus plant. The relative importance of these two troublesome components is explored with data accumulated from Shell Canada Claus plants. The authors discuss which factors tend to produce these components. Then a method for reducing CS/sub 2/ and COS virtually at the source will be introduced.

  10. Emission of reduced malodorous sulfur gases from wastewater treatment plants

    SciTech Connect (OSTI)

    Devai, I.; DeLaune, R.D.

    1999-03-01

    The emission of malodorous gaseous compounds from wastewater collection and treatment facilities is a growing maintenance and environmental problem. Numerous gaseous compounds with low odor detection thresholds are emitted from these facilities. Sulfur-bearing gases represent compounds with the lowest odor detection threshold. Using solid adsorbent preconcentration and gas chromatographic methods, the quantity and composition of reduced malodorous sulfur gases emitted from various steps of the treatment process were determined in wastewater treatment plants in Baton Rouge, Louisiana. Hydrogen sulfide, which is a malodorous, corrosive, and potentially toxic gas, was the most dominant volatile reduced sulfur (S) compound measured. Concentrations were not only more than the odor detection threshold of hydrogen sulfide, but above levels that may affect health during long-term exposure. The concentrations of methanethiol, dimethyl sulfide, carbon disulfide, and carbonyl sulfide were significantly less than hydrogen sulfide. However, even though emissions of reduced sulfur gases other than hydrogen sulfide were low, previous studies suggested that long-term exposure to such levels may cause respiratory problems and other symptoms.

  11. Sulfur tolerant molten carbonate fuel cell anode and process

    DOE Patents [OSTI]

    Remick, Robert J. (Naperville, IL)

    1990-01-01

    Molten carbonate fuel cell anodes incorporating a sulfur tolerant carbon monoxide to hydrogen water-gas-shift catalyst provide in situ conversion of carbon monoxide to hydrogen for improved fuel cell operation using fuel gas mixtures of over about 10 volume percent carbon monoxide and up to about 10 ppm hydrogen sulfide.

  12. Auction design and the market for sulfur dioxide emissions

    E-Print Network [OSTI]

    Joskow, Paul L.

    1996-01-01

    Title IV of the Clean Air Act Amendments of 1990 created a market for electric utility emissions of sulfur dioxide (SO2). Recent papers have argued that flaws in the design of the auctions that are part of this market have ...

  13. Hydroprocessing key issue in low-sulfur' era

    SciTech Connect (OSTI)

    Not Available

    1993-07-26

    Refiners gave heavy attention to hydroprocessing operations at the most recent National Petroleum Refiners Association annual question and answer session on refining and petrochemical technology. Among the topics covered were diesel color, blending to meet diesel sulfur specs, and ammonia injection in hydrocracking units. The panelists also related their experiences with increasing vacuum gas oil conversion in hydrocracking operations. These discussions are reproduced here.

  14. Sulfur controls edge closer in acid-rain debate

    SciTech Connect (OSTI)

    Not Available

    1984-10-04

    The role of airborne sulfur emissions from midwestern and southern coal-fired power plants in exacerbating the acid rain problem is discussed. This problem is discussed from the standpoint of legislation, compliance costs, scrubber performance and cost, and chemistry of acid rains.

  15. Workshop on sulfur chemistry in flue gas desulfurization

    SciTech Connect (OSTI)

    Wallace, W.E. Jr.

    1980-05-01

    The Flue Gas Desulfurization Workshop was held at Morgantown, West Virginia, June 7-8, 1979. The presentations dealt with the chemistry of sulfur and calcium compounds in scrubbers. DOE and EPRI programs in this area are described. Ten papers have been entered individually into EDB and ERA. (LTN)

  16. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2000-12-01

    This document summarizes progress on the Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2000 through September 30, 2000. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid will also be determined, as will the removal of arsenic, a known poison for NOX selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), First Energy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the second reporting period for the subject Cooperative Agreement. During this period, the first of four short-term sorbent injection tests were conducted at the First Energy Bruce Mansfield Plant. This test determined the effectiveness of dolomite injection through out-of-service burners as a means of controlling sulfuric acid emissions from this unit. The tests showed that dolomite injection could achieve up to 95% sulfuric acid removal. Balance of plant impacts on furnace slagging and fouling, air heater fouling, ash loss-on-ignition, and the flue gas desulfurization system were also determined. These results are presented and discussed in this report.

  17. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    Chou, M.I.M; Lytle, J.M.; Ruch, R.R.; Kruse, C.W.; Chaven, C.; Hackley, K.C.; Hughes, R.E.; Harvey, R.D.; Frost, J.K. [Illinois State Geological Survey, Champaign, IL (United States); Buchanan, D.H. [Eastern Illinois Univ., Charleston, IL (United States); Stucki, J.W. [Illinois Univ., Urbana, IL (United States); Huffman, G.; Huggins, F.E. [Kentucky Univ., Lexington, KY (United States)

    1992-09-01

    A pre-combustion coal desulfurization process at 120{degree}C using perchloroethylene (PCE) to remove up to 70% of the organic sulfur has been developed by the Midwest Ore Processing Co. (MWOPC). However, this process has not yet proven to be as successful with Illinois coals as it has for Ohio and Indiana coals. In addition, the high levels of organic sulfur removals observed by the MWOPC may be due to certain errors involved in the ASTM data interpretation; this needs verification. For example, elemental sulfur extracted by the PCE may be derived from pyrite oxidation during coal preoxidation, but it may be interpreted as organic sulfur removed by the PCE using ASTM analysis. The purposes of this research are to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization process reported by the MWOPC and to verify the forms-of-sulfur determination using the ASTM method for the PCE process evaluation.

  18. ENGINEERING EVALUATION OF HOT-GAS DESULFURIZATION WITH SULFUR RECOVERY

    SciTech Connect (OSTI)

    G.W. ROBERTS; J.W. PORTZER; S.C. KOZUP; S.K. GANGWAL

    1998-05-31

    Engineering evaluations and economic comparisons of two hot-gas desulfurization (HGD) processes with elemental sulfur recovery, being developed by Research Triangle Institute, are presented. In the first process, known as the Direct Sulfur Recovery Process (DSRP), the SO{sub 2} tail gas from air regeneration of zinc-based HGD sorbent is catalytically reduced to elemental sulfur with high selectivity using a small slipstream of coal gas. DSRP is a highly efficient first-generation process, promising sulfur recoveries as high as 99% in a single reaction stage. In the second process, known as the Advanced Hot Gas Process (AHGP), the zinc-based HGD sorbent is modified with iron so that the iron portion of the sorbent can be regenerated using SO{sub 2} . This is followed by air regeneration to fully regenerate the sorbent and provide the required SO{sub 2} for iron regeneration. This second-generation process uses less coal gas than DSRP. Commercial embodiments of both processes were developed. Process simulations with mass and energy balances were conducted using ASPEN Plus. Results show that AHGP is a more complex process to operate and may require more labor cost than the DSRP. Also capital costs for the AHGP are higher than those for the DSRP. However, annual operating costs for the AHGP appear to be considerably less than those for the DSRP with a potential break-even point between the two processes after just 2 years of operation for an integrated gasification combined cycle (IGCC) power plant using 3 to 5 wt% sulfur coal. Thus, despite its complexity, the potential savings with the AHGP encourage further development and scaleup of this advanced process.

  19. Fact #671: April 18, 2011 Average Truck Speeds | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Average Truck Speeds The Federal Highway Administration studies traffic volume and flow on major truck routes by tracking more than 500,000 trucks. The average speed of trucks...

  20. Fact #889: September 7, 2015 Average Diesel Price Lower than...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years Fact 889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First...

  1. Fact #614: March 15, 2010 Average Age of Household Vehicles

    Broader source: Energy.gov [DOE]

    The average age of household vehicles has increased from 6.6 years in 1977 to 9.2 years in 2009. Pickup trucks have the oldest average age in every year listed. Sport utility vehicles (SUVs), first...

  2. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply, April 2005

    SciTech Connect (OSTI)

    2005-04-01

    The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country’s present petroleum consumption – the goal set by the Biomass R&D Technical Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

  3. Averaging top quark results in Run 2 M. Strovink

    E-Print Network [OSTI]

    Strovink, Mark

    average (cont'd) The pie chart shows the relative weights of the five input measurements in the world

  4. Improving climate change detection through optimal seasonal averaging: the

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Improving climate change detection through optimal seasonal averaging: the case of the North. (2015) Improving climate change detection through optimal seasonal averaging: the case of the North;Improving climate change detection through optimal seasonal averaging:1 the case of the North Atlantic jet

  5. Engineering Grads Earn The Most Major Average Salary

    E-Print Network [OSTI]

    Shahabi, Cyrus

    Engineering Grads Earn The Most Table Major Average Salary Offer Petroleum Engineering $86/Aeronautical/Astronautical Engineering $57,231 Information Sciences & Systems $54,038 Source: Winter 2010 Salary Survey, National was the fourth most lucrative degree, with graduates starting at $61,205 on average. The average salary

  6. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    SciTech Connect (OSTI)

    wong, bunsen

    2014-11-20

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  7. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly report, April 1--June 30, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, the authors have planned a structured program including: Market/process/cost/evaluation; Lab-scale catalyst preparation/optimization studies; Lab-scale, bulk/supported catalyst kinetic studies; Bench-scale catalyst/process studies; and Utility review. Progress is reported from all three organizations.

  8. Integrated Process Configuration for High-Temperature Sulfur Mitigation during Biomass Conversion via Indirect Gasification

    SciTech Connect (OSTI)

    Dutta. A.; Cheah, S.; Bain, R.; Feik, C.; Magrini-Bair, K.; Phillips, S.

    2012-06-20

    Sulfur present in biomass often causes catalyst deactivation during downstream operations after gasification. Early removal of sulfur from the syngas stream post-gasification is possible via process rearrangements and can be beneficial for maintaining a low-sulfur environment for all downstream operations. High-temperature sulfur sorbents have superior performance and capacity under drier syngas conditions. The reconfigured process discussed in this paper is comprised of indirect biomass gasification using dry recycled gas from downstream operations, which produces a drier syngas stream and, consequently, more-efficient sulfur removal at high temperatures using regenerable sorbents. A combination of experimental results from NREL's fluidizable Ni-based reforming catalyst, fluidizable Mn-based sulfur sorbent, and process modeling information show that using a coupled process of dry gasification with high-temperature sulfur removal can improve the performance of Ni-based reforming catalysts significantly.

  9. Method of making sulfur-resistant composite metal membranes

    DOE Patents [OSTI]

    Way, J. Douglas (Boulder, CO) [Boulder, CO; Lusk, Mark (Golden, CO) [Golden, CO; Thoen, Paul (Littleton, CO) [Littleton, CO

    2012-01-24

    The invention provides thin, hydrogen-permeable, sulfur-resistant membranes formed from palladium or palladium-alloy coatings on porous, ceramic or metal supports. Also disclosed are methods of making these membranes via sequential electroless plating techniques, wherein the method of making the membrane includes decomposing any organic ligands present on the substrate, reducing the palladium crystallites on the substrate to reduced palladium crystallites, depositing a film of palladium metal on the substrate and then depositing a second, gold film on the palladium film. These two metal films are then annealed at a temperature between about 200.degree. C. and about 1200.degree. C. to form a sulfur-resistant, composite PdAu alloy membrane.

  10. Modeling sulfur dioxide capture in a pulverized coal combustor

    SciTech Connect (OSTI)

    Nair, R.B.; Yavuzkurt, S. [Pennsylvania State Univ., University Park, PA (United States)

    1997-04-01

    The formation and capture of sulfur dioxide in a pulverized coal combustor is investigated. A two-dimensional, steady, axisymmetric code, PCGC-2 (Pulverized Coal Gasification and Combustion-two Dimensional), originally developed at Brigham Young University, has been used to simulate combustion of the pulverized coal. This paper represents part of a project to investigate simultaneously enhancing sulfur capture and particulate agglomeration in combustor effluents. Results from the code have been compared to experimental data obtained from MTCI`s (Manufacturing Technology and Conversion International) test pulse combustor, which generates sound pressure levels of {approximately}180 dB. The overall goal behind the pulse combustor program at MTCI is to develop combustors for stationary gas turbines that use relatively inexpensive coal-based fuels. This study attempts to model the capture of sulfur dioxide when injected into a pulse combustor firing micronized coal. While this work does not presume to model the complex gas flow-field generated by the pulsating flow, the effects of the acoustic field are expressed by increased heat and mass transfer to the particles (coal/sorbent) in question. A comprehensive calcination-sintering-sulfation model for single particles was used to model the capture of sulfur dioxide by limestone sorbent. Processes controlling sulfation are external heat and mass transfer, pore diffusion, diffusion through the product layer of CaSO{sub 4}, sintering, and calcination. The model was incorporated into the PCGC-2 program. Comparisons of exit concentrations of SO{sub 2} showed a fairly good agreement (within {approximately}10 percent) with the experimental results from MTCI.

  11. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2000-12-01

    A test program is being sponsored by the US Department of Energy (DOE), EPRI, FirstEnergy, and TVA to investigate furnace injection of alkaline sorbents as a means of reducing sulfuric acid concentrations in the flue gas from coal-fired boilers. This test program is being conducted at the FirstEnergy Bruce Mansfield Plant (BMP), although later testing will be conducted at a TVA plant. A sorbent injection test was conducted the week of April 18, 2000. The test was the first of several short-term (one- to two-week duration) tests to investigate the effectiveness of various alkaline sorbents for sulfuric acid control and the effects of these sorbents on boiler equipment performance. This first short-term test investigated the effect of injecting dry dolomite powder (CaCO{sub 3} {center_dot} MgCO{sub 3}), a mineral similar to limestone, into the furnace of Unit 2. During the test program, various analytical techniques were used to assess the effects of sorbent injection. These primarily included sampling with the controlled condensation system (CCS) for determining flue gas SO{sub 3} content and an acid dew-point (ADP) meter for determining the sulfuric acid dew point (and, indirectly, the concentration of sulfuric acid) of the flue gas. EPA Reference Method 26a was used for determining hydrochloric acid (HCl) and hydrofluoric acid (HF), as well and chlorine (Cl{sub 2}) and fluorine (F{sub 2}) concentrations in the flue gas. Fly ash resistivity was measured using a Southern Research Institute (SRI) point-to-plane resistivity probe, and unburned carbon in fly ash was determined by loss on ignition (LOI). Coal samples were also collected and analyzed for a variety of parameters. Finally, visual observations were made of boiler furnace and convective pass surfaces prior to and during sorbent injection.

  12. Glass surface deactivants for sulfur-containing gases

    SciTech Connect (OSTI)

    Farwell, S.O.; Gluck, S.J.

    1980-10-01

    In gas chromatographic technique for measuring reduced sulfur-containing gases in biogenic air fluxes, the major problem seemed to be the irreversible adsorption of the polar sulfur compounds on the glass surfaces of the cryogenic sampling traps. This article discusses the comparative degrees of Pyrex glass surface passivation for over 25 chemical deactivants and their related pretreatment procedures. Since H/sub 2/S was discovered to be the sulfur compound with a consistently lower recovery efficiency than COS, CH/sub 3/SH, CH/sub 3/SCH, CS/sub 2/ or CH/sub 3/SSCH/sub 3/, the percent recovery for H/sub 2/S was employed as the indicator of effectiveness for the various deactivation treatments. Tables are presented summarizing the mean H/sub 2/S recoveries for chlorosilane deactivants and for the mean H/sub 2/S recoveries for different pyrex surface pretreatments with an octadecyltrialkoxysilane deactivation. The general conclusion of this investigation is that the relative degree of passivation for glass surfaces by present deactivation techniques is dependent on the types of analyzed compounds and the nature of the glass surface.

  13. Sibley station low-sulfur coal conversion program

    SciTech Connect (OSTI)

    Rupinskas, R.L. [Sargent & Lundy LLC, Chicago, IL (United States); Rembold, D.F. [Missouri Public Service, Kansas City, MO (United States)

    1995-03-01

    After embarking on an upgrade project in 1986 that was designed to allow efficient and reliable operation of its coal-fired Sibley station through 2010, Missouri Public Service (MPS) faced the uncertainty of impending acid-rain legislation. To protect its investment in the Sibley Rebuild Program, the utility evaluated compliance options based on the emerging legislation and concluded that switching to low-sulfur coal offered the least-cost compliance approach. Compared to installing a scrubber, switching to a low-sulfur coal was also more straightforward, although not without challenges and complications. This paper reviews the Sibley low-sulfur coal conversion program. At Sibley, fuel switching was chosen only after numerous internal and external studies; it withstood late challenges from natural gas and allowance trading. Switching demanded additional equipment to blend Power River Basin coals and other coals, and demanded additional and upgraded protective equipment in the areas of fire protection, dust collection, and explosion prevention. In the year since the coal conversion project was completed the facility has operated reliably, the economic benefits of the lower cost Powder River Basin coals have been realized, and the station has also met the requirements of both phases of the acid rain legislation. Fuel switching at Sibley required a team approach and careful analysis. The coal conversion project also required attention and dedication by team members in order to minimize fuel costs while maintaining optimum plant efficiency and availability.

  14. Removal of nitrogen and sulfur from oil-shale

    SciTech Connect (OSTI)

    Olmstead, W.N.

    1986-01-28

    This patent describes a process for enhancing the removal of nitrogen and sulfur from oil-shale. The process consists of: (a) contacting the oil-shale with a sufficient amount of an aqueous base solution comprised of at least a stoichiometric amount of one or more alkali metal or alkaline-earth metal hydroxides based on the total amount of nitrogen and sulfur present in the oil-shale. Also necessary is an amount sufficient to form a two-phase liquid, solid system, a temperature from about 50/sup 0/C to about 350/sup 0/C., and pressures sufficient to maintain the solution in liquid form; (b) separating the effluents from the treated oil-shale, wherein the resulting liquid effluent contains nitrogen moieties and sulfur moieties from the oil-shale and any resulting gaseous effluent contains nitrogen moieties from the oil-shale, and (c) converting organic material of the treated oil-shale to shale-oil at a temperature from about 450/sup 0/C to about 550/sup 0/C.

  15. How to Obtain Reproducible Results for Lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Lu, Dongping; Gu, Meng; Wang, Chong M.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-01-01

    The basic requirements for getting reliable Li-S battery data have been discussed in this work. Unlike Li-ion batteries, electrolyte-rich environment significantly affects the cycling stability of Li-S batteries prepared and tested under the same conditions. The reason has been assigned to the different concentrations of polysulfide-containing electrolytes in the cells, which have profound influences on both sulfur cathode and lithium anode. At optimized S/E ratio of 50 g L-1, a good balance among electrolyte viscosity, wetting ability, diffusion rate dissolved polysulfide and nucleation/growth of short-chain Li2S/Li2S2 has been built along with largely reduced contamination on the lithium anode side. Accordingly, good cyclability, high reversible capacity and Coulombic efficiency are achieved in Li-S cell with controlled S/E ratio without any additive. Other factors such as sulfur content in the composite and sulfur loading on the electrode also need careful concern in Li-S system in order to generate reproducible results and gauge the various methods used to improve Li-S battery technology.

  16. Process for recovery of sulfur from acid gases

    DOE Patents [OSTI]

    Towler, Gavin P. (Kirkbymoorside, GB2); Lynn, Scott (Pleasant Hill, CA)

    1995-01-01

    Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

  17. Lithium-Sulfur Batteries: from Liquid to Solid Cells?

    SciTech Connect (OSTI)

    Lin, Zhan [ORNL; Liang, Chengdu [ORNL

    2015-01-01

    Lithium-sulfur (Li-S) batteries supply a theoretical specific energy 5 times higher than that of lithium-ion batteries (2,500 vs. ~500 Wh kg-1). However, the insulating properties and polysulfide shuttle effects of the sulfur cathode and the safety concerns of the lithium anode in liquid electrolytes are still key limitations to practical use of traditional Li-S batteries. In this review, we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with the conventional liquid cells. Then, we introduce the most recent progresses in the liquid systems, including the sulfur positive electrodes, the lithium negative electrodes, and the electrolytes and binders. We discuss the significance of investigating electrode reaction mechanisms in liquid cells using in-situ techniques to monitor the compositional and morphological changes. By moving from the traditional liquid cells to recent solid cells, we discuss the importance of this game-changing shift with positive advances in both solid electrolytes and electrode materials. Finally, the opportunities and perspectives for future research on Li-S batteries are presented.

  18. RECENT ADVANCES IN THE DEVELOPMENT OF THE HYBRID SULFUR PROCESS FOR HYDROGEN PRODUCTION

    SciTech Connect (OSTI)

    Hobbs, D.

    2010-07-22

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In the HyS Process, sulfur dioxide is oxidized in the presence of water at the electrolyzer anode to produce sulfuric acid and protons. The protons are transported through a cation-exchange membrane electrolyte to the cathode and are reduced to form hydrogen. In the second stage of the process, the sulfuric acid by-product from the electrolyzer is thermally decomposed at high temperature to produce sulfur dioxide and oxygen. The two gases are separated and the sulfur dioxide recycled to the electrolyzer for oxidation. The Savannah River National Laboratory (SRNL) has been exploring a fuel-cell design concept for the SDE using an anolyte feed comprised of concentrated sulfuric acid saturated with sulfur dioxide. The advantages of this design concept include high electrochemical efficiency and small footprint compared to a parallel-plate electrolyzer design. This paper will provide a summary of recent advances in the development of the SDE for the HyS process.

  19. Orbit-averaged guiding-center Fokker-Planck operator

    SciTech Connect (OSTI)

    Brizard, A. J. [Department of Chemistry and Physics, Saint Michael's College, Colchester, Vermont 05439 (United States); Decker, J.; Peysson, Y.; Duthoit, F.-X. [CEA, IRFM, Saint-Paul-lez-Durance F-13108 (France)

    2009-10-15

    A general orbit-averaged guiding-center Fokker-Planck operator suitable for the numerical analysis of transport processes in axisymmetric magnetized plasmas is presented. The orbit-averaged guiding-center operator describes transport processes in a three-dimensional guiding-center invariant space: the orbit-averaged magnetic-flux invariant {psi}, the minimum-B pitch-angle coordinate {xi}{sub 0}, and the momentum magnitude p.

  20. The South Karelia Air Pollution Study. The effects of malodorous sulfur compounds from pulp mills on respiratory and other symptoms

    SciTech Connect (OSTI)

    Jaakkola, J.J.; Vilkka, V.; Marttila, O.; Jaeppinen, P.H.; Haahtela, T. )

    1990-12-01

    The paper mills in South Karelia, the southeast part of Finland, are responsible for releasing a substantial amount of malodorous sulfur compounds such as hydrogen sulfide (H2S), methyl mercaptan (CH3SH), and methyl sulfides ((CH3)2S and (CH3)2S2), into ambient air. In the most polluted residential area the annual mean concentrations of hydrogen sulfide and methyl mercaptan are estimated to be 8 and 2 to 5 micrograms/m3 and the highest daily average concentration 100 and 50 micrograms/m3. The annual mean and highest daily concentrations of sulfur dioxide (SO2) are very low. We studied the effects of malodorous sulfur compounds on eye, nasal and respiratory symptoms, and headache in adults. A cross-sectional self-administered questionnaire was distributed in February 1987 and responded to by 488 adults living in a severely (n = 198), a moderately (n = 204), and a nonpolluted community (n = 86). This included questions about occurrence of the symptoms of interest during the previous 4 wk and 12 months and individual, behavioral, and other environmental determinants of the symptoms. The response rate was 83%. The odds ratios (OR) for symptoms experienced often or constantly in severely versus nonpolluted and moderately versus nonpolluted communities were estimated in logistic regression analysis controlling potential confounders. The odds ratios for eye (moderate exposure OR 11.70, Cl95% 2.33 to 58.65; severe exposure OR 11.78, Cl95% 2.35 to 59.09) and nasal symptoms (OR 2.01, Cl95% 0.97 to 4.15; OR 2.19, Cl95% 1.06 to 4.55) and cough (OR 1.89, Cl95% 0.61 to 5.86; OR 3.06, Cl95% 1.02 to 9.29) during the previous 12 months were increased, with a dose-response pattern.

  1. Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong; Yang, Xiao-Qing; Zhang, Xuran; Li, Chao; McKinnon, Meaghan E.; Sadok, Rachel G.; Qu, Deyu; Yu, Xiqian; Lee, Hung-Sui; Qu, Deyang

    2014-12-02

    A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility ofmore »the method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.« less

  2. Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Dong [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; Yang, Xiao-Qing [Brookhaven National Laboratory (BNL), Upton, NY (United States). Chemistry Dept.; Zhang, Xuran [Wuhan Univ. of Technology, Hubei (China); Dept. of Chemistry; Li, Chao [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; McKinnon, Meaghan E. [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; Sadok, Rachel G. [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; Qu, Deyu [Wuhan Univ. of Technology, Hubei (China); Dept. of Chemistry; Yu, Xiqian [Brookhaven National Laboratory (BNL), Upton, NY (United States). Chemistry Dept.; Lee, Hung-Sui [Brookhaven National Laboratory (BNL), Upton, NY (United States). Chemistry Dept.; Qu, Deyang [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry

    2014-11-01

    A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility of the method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.

  3. Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Dong; Yang, Xiao-Qing; Zhang, Xuran; Li, Chao; McKinnon, Meaghan E.; Sadok, Rachel G.; Qu, Deyu; Yu, Xiqian; Lee, Hung-Sui; Qu, Deyang

    2014-12-02

    A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility of the method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.

  4. LOW-HIGH VALUES FOR PETROLEUM AVERAGE INVENTORY RANGES (MILLION...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ENERGY INFORMATION ADMINISTRATION LOW-HIGH VALUES FOR PETROLEUM AVERAGE INVENTORY RANGES (MILLION BARRELS) FILE UPDATED April 2004 Line Month Low High Number Product Name Geography...

  5. Advanced product recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Third quarterly technical progress report

    SciTech Connect (OSTI)

    NONE

    1996-07-01

    More than 170 wet scrubber systems applied to 72,000 MW of US, coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed form the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. Arthur D. Little, Inc., together with its industry and commercialization advisor, Engelhard Corporation, and its university partner, Tufts, plans to develop and scale-up an advanced, byproduct recovery technology that is a direct, catalytic process for reducing sulfur dioxide to elemental sulfur. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, they have planned a structured program including: market/process/cost/evaluation; lab-scale catalyst preparation/optimization studies; lab-scale, bulk/supported catalyst kinetic studies; bench-scale catalyst/process studies; and utility review. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning.

  6. Production of low-sulfur binder pitch from high-sulfur Illinois coals. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Knight, R.A. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-12-31

    The objective of this project is to produce electrode binder pitch with sulfur content below 0.6 wt% from high-sulfur Illinois coal mild gasification liquids. In this project, two approaches to sulfur reduction are being explored in conjunction with thermocracking: (1) the use of conventionally cleaned coal with low ({approximately}1%) sulfur as a mild gasification feedstock, and (2) direct biodesulfurization of the liquids prior to thermocracking. In Case 1, the crude pitch is being produced by mild gasification of IBC-109 coal in an existing IGT bench-scale reactor, followed by distillation of the scrubbing solvent and light-to-middle oils to isolate the crude pitch. In Case 2, the crude pitch for biodesulfurization is the same material previously studied, which was obtained from Illinois No. 6 coal tests conducted in the IGT mild gasification PRU in 1990. Biodesulfurization is to be performed by contacting the pitch with Rhodococcus Rhodochrous either as live cultures or in the form of concentrated biocatalyst. Following preparation of the crude pitches, pitch upgrading experiments are to be conducted in a continuous flash thermocracker (FTC) constructed in previous ICCI-sponsored studies. The finished pitch is then characterized for physical and chemical properties (density, softening point, QI, TI, coking value, and elemental composition), and compared to typical specifications for binder pitches. This quarter, 45 kg of IBC-109 coal was obtained and sized to 40 x 80 mesh for mild gasification. Laboratory experiments were conducted to identify means of dispersing or emulsifying pitch in water to render is accessible to biocatalysts, and exploratory desulfurization tests on one-gram pitch samples were begun.

  7. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    SciTech Connect (OSTI)

    Gorensek, M.; Edwards, T.

    2009-06-11

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  8. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-04-29

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub X} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub X} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the previous semi-annual technical progress report (April 1, 2001 through September 30, 2001). During the current reporting period, additional balance of plant impact information was determined for one of the two tests. These additional balance-of-plant results are presented and discussed in this report. There was no other technical progress to report, because all planned testing as part of this project has been completed.

  9. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2001-11-06

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. Balance of plant impacts, primarily on the ESP particulate control device, were also determined during both tests. These results are presented and discussed in this report.

  10. A nuclear criticality safety assessment of the loss of moderation control in 2 1/2 and 10-ton cylinders containing enriched UF{sub 6}

    SciTech Connect (OSTI)

    Newvahner, R.L. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States); Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States)

    1991-12-31

    Moderation control for maintaining nuclear criticality safety in 2 {1/2}-ton, 10-ton, and 14-ton cylinders containing enriched uranium hexafluoride (UF{sub 6}) has been used safely within the nuclear industry for over thirty years, and is dependent on cylinder integrity and containment. This assessment evaluates the loss of moderation control by the breaching of containment and entry of water into the cylinders. The first objective of this study was to estimate the required amounts of water entering these large UF{sub 6} cylinders to react with, and to moderate the uranium compounds sufficiently to cause criticality. Hypothetical accident situations were modeled as a uranyl fluoride (UO{sub 2}F{sub 2}) slab above a UF{sub 6} hemicylinder, and a UO{sub 2}F{sub 2} sphere centered within a UF{sub 6} hemicylinder. These situations were investigated by computational analyses utilizing the KENO V.a Monte Carlo Computer Code. The results were used to estimate both the masses of water required for criticality, and the limiting masses of water that could be considered safe. The second objective of the assessment was to calculate the time available for emergency control actions before a criticality would occur, i.e., a {open_quotes}safetime{close_quotes}, for various sources of water and different size openings in a breached cylinder. In the situations considered, except the case for a fire hose, the safetime appears adequate for emergency control actions. The assessment shows that current practices for handling moderation controlled cylinders of low enriched UF{sub 6}, along with the continuation of established personnel training programs, ensure nuclear criticality safety for routine and emergency operations.

  11. Lithium Polysulfidophosphates: A Family of Lithium-Conducting Sulfur-Rich Compounds for Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Lin, Zhan [ORNL] [ORNL; Liu, Zengcai [ORNL] [ORNL; Fu, Wujun [ORNL] [ORNL; Dudney, Nancy J [ORNL] [ORNL; Liang, Chengdu [ORNL] [ORNL

    2013-01-01

    Given the great potential for improving the energy density of state-of-the-art lithium-ion batteries by a factor of 5, a breakthrough in lithium-sulfur (Li-S) batteries will have a dramatic impact in a broad scope of energy related fields. Conventional Li-S batteries that use liquid electrolytes are intrinsically short-lived with low energy efficiency. The challenges stem from the poor electronic and ionic conductivities of elemental sulfur and its discharge products. We report herein lithium polysulfidophosphates (LPSP), a family of sulfur-rich compounds, as the enabler of long-lasting and energy-efficient Li-S batteries. LPSP have ionic conductivities of 3.0 10-5 S cm-1 at 25 oC, which is 8 orders of magnitude higher than that of Li2S (~10-13 S cm-1). The high Li-ion conductivity of LPSP is the salient characteristic of these compounds that impart the excellent cycling performance to Li-S batteries. In addition, the batteries are configured in an all-solid state that promises the safe cycling of high-energy batteries with metallic lithium anodes.

  12. Authorized Limits for the Release of a 25 Ton Locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly Facility, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Jeremy Gwin and Douglas Frenette

    2010-04-08

    This document contains process knowledge and radiological data and analysis to support approval for release of the 25-ton locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly (EMAD) Facility, located on the Nevada Test Site (NTS). The 25-ton locomotive is a small, one-of-a-kind locomotive used to move railcars in support of the Nuclear Engine for Rocket Vehicle Application project. This locomotive was identified as having significant historical value by the Nevada State Railroad Museum in Boulder City, Nevada, where it will be used as a display piece. A substantial effort to characterize the radiological conditions of the locomotive was undertaken by the NTS Management and Operations Contractor, National Security Technologies, LLC (NSTec). During this characterization process, seven small areas on the locomotive had contamination levels that exceeded the NTS release criteria (limits consistent with U.S. Department of Energy [DOE] Order DOE O 5400.5, “Radiation Protection of the Public and the Environment”). The decision was made to perform radiological decontamination of these known accessible impacted areas to further the release process. On February 9, 2010, NSTec personnel completed decontamination of these seven areas to within the NTS release criteria. Although all accessible areas of the locomotive had been successfully decontaminated to within NTS release criteria, it was plausible that inaccessible areas of the locomotive (i.e., those areas on the locomotive where it was not possible to perform radiological surveys) could potentially have contamination above unrestricted release limits. To access the majority of these inaccessible areas, the locomotive would have to be disassembled. A complete disassembly for a full radiological survey could have permanently destroyed parts and would have ruined the historical value of the locomotive. Complete disassembly would also add an unreasonable financial burden for the contractor. A decision was reached between the NTS regulator and NSTec, opting for alternative authorized limits from DOE Headquarters. In doing so, NSTec personnel performed a dose model using the DOE-approved modeling code RESRAD-BUILD v3.5 to evaluate scenarios. The parameters used in the dose model were conservative. NSTec’s Radiological Engineering Calculation, REC-2010-001, “Public Dose Estimate from the EMAD 25 Ton Locomotive,” concluded that the four scenarios evaluated were below the 25-millirem per year limit, the “likely” dose scenarios met the “few millirem in a year” criteria, and that the EMAD 25-ton locomotive met the radiological requirements to be released with residual radioactivity to the public.

  13. Prevalence of persistent cough and phlegm in young adults in relation to long-term ambient sulfur oxide exposure

    SciTech Connect (OSTI)

    Chapman, R.S.; Calafiore, D.C.; Hasselblad, V.

    1985-01-01

    In early 1976, a survey of persistent co gh and plegma (PCP) prevalence was conducted in 5623 young adults in four Utah communities. Over the previous five years, community specific mean sulfur dioxide levels had been 11, 18, 36, and 115 ug/mT. Corresponding mean suspended sulfate levels had been 5, 7, 8, and 14 g/mT No intercommunity exposure gradient of total suspended particulates or suspended nitrates was observed. In mothers, PCP prevalence among non-smokers was 4.2% in the high-exposure community and about 2.0% in all other communities. In smoking mothers, PCP prevalence was 21.8% in the high-exposure community and about 15.0% elsewhere. In fathers, PCP prevalence among non-smokers was about 8.0% in the high-exposure community and averaged about 3.0% elsewhere. In smoking fathers, PCP prevalence was less strongly associated with sulfur oxide exposure. PCP prevalence rates estimated in a categorical logistic regression model were qualitatively consistent with the prevalences presented above.

  14. The global warming signal is the average of

    E-Print Network [OSTI]

    Jones, Peter JS

    The global warming signal is the average of years 70-80 in the increasing CO2 run minus the average represent significant uncertainty in the global warming signal (Fig. 5). The differences at high latitudes, uncertainty in the isopycnal diffusivity causes uncertainty of up to 50% in the global warming signal

  15. Morgantown Slightly Exceeds National Average for Cost of Living

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    (an index value of 100 reflects the national average). The index expresses the cost of living, health care, and miscellaneous goods and services. The index is designed to reflect the cost of living Relative to National Average by Category In Figure 2, we illustrate how the cost of living index has

  16. SULFUR REMOVAL FROM PIPE LINE NATURAL GAS FUEL: APPLICATION TO FUEL CELL POWER GENERATION SYSTEMS

    SciTech Connect (OSTI)

    King, David L.; Birnbaum, Jerome C.; Singh, Prabhakar

    2003-11-21

    Pipeline natural gas is being considered as the fuel of choice for utilization in fuel cell-based distributed generation systems because of its abundant supply and the existing supply infrastructure (1). For effective utilization in fuel cells, pipeline gas requires efficient removal of sulfur impurities (naturally occurring sulfur compounds or sulfur bearing odorants) to prevent the electrical performance degradation of the fuel cell system. Sulfur odorants such as thiols and sulfides are added to pipeline natural gas and to LPG to ensure safe handling during transportation and utilization. The odorants allow the detection of minute gas line leaks, thereby minimizing the potential for explosions or fires.

  17. Fact #824: June 9, 2014 EPA Sulfur Standards for Gasoline | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Gasoline Sulfur naturally occurs in gasoline and diesel fuel, contributing to pollution when the fuel is burned. Beginning in 2004, standards were set on the amount of...

  18. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information AdministrationPetroleum Marketing Annual 1998 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District (Cents per Gallon Excluding...

  19. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Information AdministrationPetroleum Marketing Annual 1999 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District (Cents per Gallon Excluding...

  20. Portable instrument and method for detecting reduced sulfur compounds in a gas

    DOE Patents [OSTI]

    Gaffney, J.S.; Kelly, T.J.; Tanner, R.L.

    1983-06-01

    A portable real time instrument for detecting concentrations in the part per billion range of reduced sulfur compounds in a sample gas. Ozonized air or oxygen and reduced sulfur compounds in a sample gas stream react to produce chemiluminescence in a reaction chamber and the emitted light is filtered and observed by a photomultiplier to detect reduced sulfur compounds. Selective response to individual sulfur compounds is achieved by varying reaction chamber temperature and ozone and sample gas flows, and by the use of either air or oxygen as the ozone source gas.

  1. Sulfur barrier for use with in situ processes for treating formations

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Christensen, Del Scot (Friendswood, TX)

    2009-12-15

    Methods for forming a barrier around at least a portion of a treatment area in a subsurface formation are described herein. Sulfur may be introduced into one or more wellbores located inside a perimeter of a treatment area in the formation having a permeability of at least 0.1 darcy. At least some of the sulfur is allowed to move towards portions of the formation cooler than the melting point of sulfur to solidify the sulfur in the formation to form the barrier.

  2. A Long-Life, High-Rate Lithium/Sulfur Cell: A Multifaceted Approach...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Life, High-Rate LithiumSulfur Cell: A Multifaceted Approach to Enhancing Cell Performance Min-Kyu Song, , Yuegang Zhang,* ,, and Elton J. Cairns* ,, The...

  3. Status of Heavy Vehicle Diesel Emission Control Sulfur Effects (DECSE) Test Program

    SciTech Connect (OSTI)

    George Sverdrup

    1999-06-07

    DECSE test program is well under way to providing data on effects of sulfur levels in diesel fuel on performance of emission control technologies.

  4. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect (OSTI)

    Chou, M.I.M.; Lytle, J.M. [Illinois State Geological Survey, Champaign, IL (United States); Buchanan, D.H. [Eastern Illinois Univ., Charleston, IL (United States)] [and others

    1992-12-31

    The purposes of this Testing and Materials (ASTM) forms of sulfur analysis. The purposes of this research are to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization process and to verify the forms-of-sulfur determination using the ASTM method for the PCE process evaluation. Problem that limits commercial application of the PCE process is the high chlorine content in the PCE-treated coals. Hence, to develop a dechlorination procedure to remove excess PCE from the PCE-treated coal is an additional goal of this investigation. MWOPC`s results have been repeated on fresh IBC-104 coal. Oxidation of coals was found to affect subsequent PCE desulfurization. Elemental sulfur is more amenable to removal by PCE. Ohio 5/6 coal appears to produce elemental sulfur more readily than Illinois coal during oxidation. Data from X-Ray Diffraction spectroscopy indicate that sulfate in the oxidized Illinois IBC-104 coal is mainly in gypsum form, whereas, sulfate in oxidized Ohio 5/6 sample is mainly in szomolnokite form. These data suggest that the oxidation reaction for Ohio 5/6 coal might occur under catalytic conditions which readily convert pyrite to produce FeSO{sub 4} and elemental sulfur. The higher elemental sulfur content in that coal results in higher ASTM organic sulfur removal by PCE extraction. From mass balance calculation, 96% of the total sulfur and greater than 95% of total iron were accounted for during our PCE tests with both long-term ambient-oxidized IBC-104 coal and ambient-oxidized Ohio 516 coal.

  5. Effect of Environmental Factors on Sulfur Gas Emissions from Drywall

    SciTech Connect (OSTI)

    Maddalena, Randy

    2011-08-20

    Problem drywall installed in U.S. homes is suspected of being a source of odorous and potentially corrosive indoor pollutants. The U.S. Consumer Product Safety Commission's (CPSC) investigation of problem drywall incorporates three parallel tracks: (1) evaluating the relationship between the drywall and reported health symptoms; (2) evaluating the relationship between the drywall and electrical and fire safety issues in affected homes; and (3) tracing the origin and the distribution of the drywall. To assess the potential impact on human health and to support testing for electrical and fire safety, the CPSC has initiated a series of laboratory tests that provide elemental characterization of drywall, characterization of chemical emissions, and in-home air sampling. The chemical emission testing was conducted at Lawrence Berkeley National Laboratory (LBNL). The LBNL study consisted of two phases. In Phase 1 of this study, LBNL tested thirty drywall samples provided by CPSC and reported standard emission factors for volatile organic compounds (VOCs), aldehydes, reactive sulfur gases (RSGs) and volatile sulfur compounds (VSCs). The standard emission factors were determined using small (10.75 liter) dynamic test chambers housed in a constant temperature environmental chamber. The tests were all run at 25 C, 50% relative humidity (RH) and with an area-specific ventilation rate of {approx}1.5 cubic meters per square meter of emitting surface per hour [m{sup 3}/m{sup 2}/h]. The thirty samples that were tested in Phase 1 included seventeen that were manufactured in China in 2005, 2006 and 2009, and thirteen that were manufactured in North America in 2009. The measured emission factors for VOCs and aldehydes were generally low and did not differ significantly between the Chinese and North American drywall. Eight of the samples tested had elevated emissions of volatile sulfur-containing compounds with total RSG emission factors between 32 and 258 micrograms per square meter per hour [{micro}g/m{sup 2}/h]. The dominant sulfur containing compounds in the RSG emission stream were hydrogen sulfide with emission factors between 17-201 {micro}g/m{sup 2}/h, and sulfur dioxide with emission factors between 8-64 {micro}g/m{sup 2}/h. The four highest emitting samples also had a unique signature of VSC emissions including > 40 higher molecular weight sulfur-containing compounds although the emission rate for the VSCs was several orders of magnitude lower than that of the RSGs. All of the high emitting drywall samples were manufactured in China in 2005-2006. Results from Phase 1 provided baseline emission factors for drywall samples manufactured in China and in North America but the results exclude variations in environmental conditions that may exist in homes or other built structures, including various combinations of temperature, RH, ventilation rate and the influence of coatings such as texture and paints. The objective of Phase 2 was to quantify the effect of temperature and RH on the RSG emission factors for uncoated drywall, and to measure the effect of plaster and paint coatings on RSG emission factors from drywall. Additional experiments were also performed to assess the influence of ventilation rate on measured emission factors for drywall.

  6. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS

    SciTech Connect (OSTI)

    Gary M. Blythe; Richard McMillan

    2002-02-04

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NO{sub x} control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two First Energy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents the results of the short-term tests; the long-term test results will be reported in a later document. The short-term test results showed that three of the four reagents tested, dolomite powder, commercial magnesium hydroxide slurry, and byproduct magnesium hydroxide slurry, were able to achieve 90% or greater removal of sulfuric acid compared to baseline levels. The molar ratio of alkali to flue gas sulfuric acid content (under baseline conditions) required to achieve 90% sulfuric acid removal was lowest for the byproduct magnesium hydroxide slurry. However, this result may be confounded because this was the only one of the three slurries tested with injection near the top of the furnace across from the pendant superheater platens. Injection at the higher level was demonstrated to be advantageous for this reagent over injection lower in the furnace, where the other slurries were tested.

  7. SULFURIC ACID REMOVAL PROCESS EVALUATION: LONG-TERM RESULTS

    SciTech Connect (OSTI)

    Gary M. Blythe; Richard McMillan

    2002-07-03

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corp., the Tennessee Valley Authority, and Dravo Lime, Inc. Sulfuric acid controls are becoming of increasing interest to power generators with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NO{sub x} control on many coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project previously tested the effectiveness of furnace injection of four different calcium-and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents were tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide byproduct slurry produced from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization system. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm the effectiveness of the sorbents tested over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP, Unit 3, and the second test was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant testing provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. This report presents the results from those long-term tests. The tests determined the effectiveness of injecting commercially available magnesium hydroxide slurry (Gavin Plant) and byproduct magnesium hydroxide slurry (both Gavin Plant and BMP) for sulfuric acid control. The results show that injecting either slurry could achieve up to 70 to 75% overall sulfuric acid removal. At BMP, this overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NOX control than at removing SO{sub 3} formed in the furnace. The long-term tests also determined balance-of-plant impacts from slurry injection during the two tests. These include impacts on boiler back-end temperatures and pressure drops, SCR catalyst properties, ESP performance, removal of other flue gas species, and flue gas opacity. For the most part the balance-of-plant impacts were neutral to positive, although adverse effects on ESP performance became an issue during the BMP test.

  8. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS

    SciTech Connect (OSTI)

    Gary M. Blythe; Richard McMillan

    2002-03-04

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NOX control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents the results of the short-term tests; the long-term test results will be reported in a later document. The short-term test results showed that three of the four reagents tested, dolomite powder, commercial magnesium hydroxide slurry, and byproduct magnesium hydroxide slurry, were able to achieve 90% or greater removal of sulfuric acid compared to baseline levels. The molar ratio of alkali to flue gas sulfuric acid content (under baseline conditions) required to achieve 90% sulfuric acid removal was lowest for the byproduct magnesium hydroxide slurry. However, this result may be confounded because this was the only one of the three slurries tested with injection near the top of the furnace across from the pendant superheater platens. Injection at the higher level was demonstrated to be advantageous for this reagent over injection lower in the furnace, where the other slurries were tested.

  9. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-10-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the report for the time period April 1, 2002 through September 30, 2002. During the current period, process economic estimates were developed, comparing the costs of the furnace magnesium hydroxide slurry injection process tested as part of this project to a number of other candidate SO{sub 3}/sulfuric acid control technologies for coal-fired power plants. The results of this economic evaluation are included in this progress report.

  10. A solvent system to provide selective removal of sulfur compounds

    SciTech Connect (OSTI)

    Pearce, R.L.; Bacon, T.R.

    1986-01-01

    Energy costs and SRU inefficiencies resulting from utilization of low strength MEA technology induced a large refinery to convert to MDEA. One of the seven product streams being treated required extremely low carbonyl sulfide in the treated product. This required careful consideration in making the decision to convert. However, the conclusions were that the advantages outweighed the disadvantages. When the initial converted operations verified a need to improve the carbonyl sulfide removal, GAS/SPEC Tech Service produced an innovative solution which allowed for efficient operation at acceptable COS specification, lower energy utilization, reduced solvent losses, and improved sulfur recovery unit operation.

  11. Removal of sulfur and nitrogen containing pollutants from discharge gases

    DOE Patents [OSTI]

    Joubert, James I. (Pittsburgh, PA)

    1986-01-01

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  12. Method of preparing graphene-sulfur nanocomposites for rechargeable

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport) |(Patent) | SciTech Connect Patent:lithium-sulfur

  13. Effects of ambient sulfur oxides and suspended particles on respiratory health of preadolescent children

    SciTech Connect (OSTI)

    Ware, J.H.; Ferris, B.G. Jr.; Dockery, D.W.; Spengler, J.D.; Stram, D.O.; Speizer, F.E.

    1986-05-01

    Reported here are the results from an ongoing study of outdoor air pollution and respiratory health of children living in six cities in the eastern and midwestern United States. The study enrolled 10,106 white preadolescent children between 1974 and 1977 in 3 successive annual visits to each city. Each child received a spirometric examination, and a parent completed a standard questionnaire. Of this cohort, 8,380 children were seen for a second examination 1 yr later. An air pollution monitoring program was begun in each community at about the time of the first examination. For this report, measurements of total suspended particulates (TSP), the sulfate fraction of TSP (TSO/sub 4/), and sulfur dioxide (SO2) concentrations at study-affiliated outdoor stations were combined with measurements at other public and private monitoring sites to create a record of TSP, TSO/sub 4/, and SO/sub 2/ concentrations in each of 9 air pollution regions during the 1-yr period preceding each examination and, for TSP, during each child's lifetime up to the time of testing. Across the 6 cities, frequency of cough was significantly associated with the average of 24-h mean concentrations of all 3 air pollutants during the year preceding the health examination (p less than 0.01). Rates of bronchitis and a composite measure of lower respiratory illness were significantly associated with average particulate concentrations (p less than 0.05). In analyses restricted to lifetime residents, these outcomes were significantly associated with measures of lifetime mean TSP concentration. Within the cities, however, temporal and spatial variation in air pollutant concentrations and illness and symptom rates were not positively associated.

  14. Sulfur gas emissions from stored flue gas desulfurization solids. Final report

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.

    1981-10-01

    The emissions of volatile, sulfur-containing compounds from the surfaces of 13 flue gas desulfurization (FGD) solids field storage sites have been characterized. The sulfur gas emissions from these storage surfaces were determined by measuring the sulfur gas enhancement of sulfur-free sweep air passing through a dynamic emission flux chamber placed over selected sampling areas. Samples of the enclosure sweep air were cryogenically concentrated in surface-deactivated Pyrex U traps. Analyses were conducted by wall-coated, open-tubular, capillary column, cryogenic, temperature-programmed gas chromatography using a sulfur-selective flame photometric detector. Several major variables associated with FGD sludge production processes were examined in relation to the measured range and variations in sulfur fluxes including: the sulfur dioxide scrubbing reagent used, sludge sulfite oxidation, unfixed or stabilized (fixed) FGD solids, and ponding or landfill storage. The composition and concentration of the measured sulfur gas emissions were found to vary with the type of solids, the effectiveness of rainwater drainage from the landfill surface, the method of impoundment, and the sulfate/sulfite ratio of the solids. The FGD solids emissions may contain hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, carbon disulfide, and dimethyl disulfide in varying concentrations and ratios. In addition, up to four unidentified organo-sulfur compounds were found in the emissions from four different FGD solids. The measured, total sulfur emissions ranged from less than 0.01 to nearly 0.3 kg of sulfur per day for an equivalent 40.5 hectare (100 acre) FGD solids impoundment surface.

  15. Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress, 1978-2014 The Corporate Average Fuel Economy (CAFE) is the sales-weighted harmonic mean fuel economy of a manufacturer's fleet of new cars or light trucks in a certain...

  16. Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by the fleet of each manufacturer will be determined by computing the sales-weighted harmonic average of the targets applicable to each of the manufacturer's passenger cars and...

  17. On the Choice of Average Solar Zenith Angle

    E-Print Network [OSTI]

    Cronin, Timothy W.

    Idealized climate modeling studies often choose to neglect spatiotemporal variations in solar radiation, but doing so comes with an important decision about how to average solar radiation in space and time. Since both ...

  18. Does anyone have access to 2012 average residential rates by...

    Open Energy Info (EERE)

    Does anyone have access to 2012 average residential rates by utility company? I'm seeing an inconsistency between the OpenEI website and EIA 861 data set. Home > Groups > Utility...

  19. INDIVIDUAL REFORM ELEMENTS .63Average course exam score

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    INDIVIDUAL REFORM ELEMENTS .63Average course exam score .11In class clicker score .02Lecture: · Correlations with effort/curricular elements are positive but not high, indicating no individual course reform

  20. Fact #889: September 7, 2015 Average Diesel Price Lower than...

    Broader source: Energy.gov (indexed) [DOE]

    Average Diesel Price Lower than Gasoline for the First Time in Six Years fotw889web.xlsx More Documents & Publications Fact 859 February 9, 2015 Excess Supply is the Most Recent...

  1. Bounded Parameter Markov Decision Processes with Average Reward Criterion

    E-Print Network [OSTI]

    Tewari, Ambuj

    Bounded Parameter Markov Decision Processes with Average Reward Criterion Ambuj Tewari1 and Peter L, pp. 263­277, 2007. c Springer-Verlag Berlin Heidelberg 2007 #12;264 A. Tewari and P.L. Bartlett

  2. Averaged null energy condition violation in a conformally flat spacetime

    SciTech Connect (OSTI)

    Urban, Douglas; Olum, Ken D.

    2010-01-15

    We show that the averaged null energy condition can be violated by a conformally coupled scalar field in a conformally flat spacetime in 3+1 dimensions. The violation is dependent on the quantum state and can be made as large as desired. It does not arise from the presence of anomalies, although anomalous violations are also possible. Since all geodesics in conformally flat spacetimes are achronal, the achronal averaged null energy condition is likewise violated.

  3. Flavor Physics Data from the Heavy Flavor Averaging Group (HFAG)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Heavy Flavor Averaging Group (HFAG) was established at the May 2002 Flavor Physics and CP Violation Conference in Philadelphia, and continues the LEP Heavy Flavor Steering Group's tradition of providing regular updates to the world averages of heavy flavor quantities. Data are provided by six subgroups that each focus on a different set of heavy flavor measurements: B lifetimes and oscillation parameters, Semi-leptonic B decays, Rare B decays, Unitarity triangle parameters, B decays to charm final states, and Charm Physics.

  4. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",87718,17 "Nitrogen oxide (short tons)",24490,32 "Carbon dioxide (thousand metric tons)",22633,33 "Sulfur dioxide (lbsMWh)",3.3,9 "Nitrogen...

  5. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",47671,25 "Nitrogen oxide (short tons)",19035,36 "Carbon dioxide (thousand metric tons)",28809,30 "Sulfur dioxide (lbsMWh)",1,35 "Nitrogen...

  6. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",13259,39 "Nitrogen oxide (short tons)",17975,38 "Carbon dioxide (thousand metric tons)",12543,39 "Sulfur dioxide (lbsMWh)",0.2,46 "Nitrogen...

  7. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",123735,10 "Nitrogen oxide (short tons)",55462,20 "Carbon dioxide (thousand metric tons)",56812,15 "Sulfur dioxide (lbsMWh)",2,20 "Nitrogen...

  8. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",203951,6 "Nitrogen oxide (short tons)",63358,11 "Carbon dioxide (thousand metric tons)",97812,6 "Sulfur dioxide (lbsMWh)",2,21 "Nitrogen...

  9. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",30027,30 "Nitrogen oxide (short tons)",30860,30 "Carbon dioxide (thousand metric tons)",33125,27 "Sulfur dioxide (lbsMWh)",1.2,30 "Nitrogen...

  10. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",86204,18 "Nitrogen oxide (short tons)",23189,33 "Carbon dioxide (thousand metric tons)",38118,22 "Sulfur dioxide (lbsMWh)",2.2,19 "Nitrogen...

  11. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",12339,40 "Nitrogen oxide (short tons)",15150,41 "Carbon dioxide (thousand metric tons)",14735,38 "Sulfur dioxide (lbsMWh)",0.8,38 "Nitrogen...

  12. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",68077,21 "Nitrogen oxide (short tons)",39706,27 "Carbon dioxide (thousand metric tons)",34686,25 "Sulfur dioxide (lbsMWh)",1.8,26 "Nitrogen...

  13. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",17511,35 "Nitrogen oxide (short tons)",13803,42 "Carbon dioxide (thousand metric tons)",9500,40 "Sulfur dioxide (lbsMWh)",0.6,39 "Nitrogen...

  14. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",41539,26 "Nitrogen oxide (short tons)",21995,34 "Carbon dioxide (thousand metric tons)",18950,34 "Sulfur dioxide (lbsMWh)",2.3,17 "Nitrogen...

  15. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",17735,34 "Nitrogen oxide (short tons)",59055,16 "Carbon dioxide (thousand metric tons)",28535,31 "Sulfur dioxide (lbsMWh)",1,36 "Nitrogen...

  16. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",346873,2 "Nitrogen oxide (short tons)",102526,4 "Carbon dioxide (thousand metric tons)",102466,4 "Sulfur dioxide (lbsMWh)",5.1,1 "Nitrogen...

  17. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",157488,8 "Nitrogen oxide (short tons)",78033,10 "Carbon dioxide (thousand metric tons)",78344,8 "Sulfur dioxide (lbsMWh)",3.4,8 "Nitrogen...

  18. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",106879,14 "Nitrogen oxide (short tons)",44657,25 "Carbon dioxide (thousand metric tons)",39175,21 "Sulfur dioxide (lbsMWh)",3.8,6 "Nitrogen...

  19. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",80418,19 "Nitrogen oxide (short tons)",57024,17 "Carbon dioxide (thousand metric tons)",46268,19 "Sulfur dioxide (lbsMWh)",2.2,18 "Nitrogen...

  20. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",30947,29 "Nitrogen oxide (short tons)",44824,24 "Carbon dioxide (thousand metric tons)",33456,26 "Sulfur dioxide (lbsMWh)",0.5,41 "Nitrogen...

  1. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",122578,11 "Nitrogen oxide (short tons)",82286,9 "Carbon dioxide (thousand metric tons)",58274,12 "Sulfur dioxide (lbsMWh)",2.4,16 "Nitrogen...

  2. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",40012,27 "Nitrogen oxide (short tons)",49623,21 "Carbon dioxide (thousand metric tons)",39387,20 "Sulfur dioxide (lbsMWh)",1.5,27 "Nitrogen...

  3. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",66884,22 "Nitrogen oxide (short tons)",31505,29 "Carbon dioxide (thousand metric tons)",28043,32 "Sulfur dioxide (lbsMWh)",3.6,7 "Nitrogen...

  4. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",93888,15 "Nitrogen oxide (short tons)",60229,14 "Carbon dioxide (thousand metric tons)",68862,9 "Sulfur dioxide (lbsMWh)",2.5,14 "Nitrogen...

  5. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",49587,24 "Nitrogen oxide (short tons)",55615,19 "Carbon dioxide (thousand metric tons)",50687,17 "Sulfur dioxide (lbsMWh)",1.9,24 "Nitrogen...

  6. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",23716,31 "Nitrogen oxide (short tons)",59416,15 "Carbon dioxide (thousand metric tons)",55342,16 "Sulfur dioxide (lbsMWh)",0.4,42 "Nitrogen...

  7. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",273718,4 "Nitrogen oxide (short tons)",121681,3 "Carbon dioxide (thousand metric tons)",98895,5 "Sulfur dioxide (lbsMWh)",5,2 "Nitrogen oxide...

  8. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",20710,33 "Nitrogen oxide (short tons)",25416,31 "Carbon dioxide (thousand metric tons)",7428,42 "Sulfur dioxide (lbsMWh)",4,5 "Nitrogen oxide...

  9. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",16865,36 "Nitrogen oxide (short tons)",21789,35 "Carbon dioxide (thousand metric tons)",16951,35 "Sulfur dioxide (lbsMWh)",1.2,31 "Nitrogen...

  10. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",383728,1 "Nitrogen oxide (short tons)",228695,1 "Carbon dioxide (thousand metric tons)",257465,1 "Sulfur dioxide (lbsMWh)",1.8,25 "Nitrogen...

  11. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",23670,32 "Nitrogen oxide (short tons)",62296,13 "Carbon dioxide (thousand metric tons)",35699,24 "Sulfur dioxide (lbsMWh)",1.1,33 "Nitrogen...

  12. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",71293,20 "Nitrogen oxide (short tons)",62397,12 "Carbon dioxide (thousand metric tons)",56940,14 "Sulfur dioxide (lbsMWh)",1.1,32 "Nitrogen...

  13. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",56854,23 "Nitrogen oxide (short tons)",48454,22 "Carbon dioxide (thousand metric tons)",30274,28 "Sulfur dioxide (lbsMWh)",3.2,11 "Nitrogen...

  14. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",117797,12 "Nitrogen oxide (short tons)",88345,6 "Carbon dioxide (thousand metric tons)",108431,3 "Sulfur dioxide (lbsMWh)",1.1,34 "Nitrogen...

  15. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",15347,37 "Nitrogen oxide (short tons)",11430,43 "Carbon dioxide (thousand metric tons)",3228,47 "Sulfur dioxide (lbsMWh)",3,12 "Nitrogen...

  16. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",108306,13 "Nitrogen oxide (short tons)",44114,26 "Carbon dioxide (thousand metric tons)",47686,18 "Sulfur dioxide (lbsMWh)",3.3,10 "Nitrogen...

  17. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",276851,3 "Nitrogen oxide (short tons)",151148,2 "Carbon dioxide (thousand metric tons)",108729,2 "Sulfur dioxide (lbsMWh)",2.4,15 "Nitrogen...

  18. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",35625,28 "Nitrogen oxide (short tons)",36972,28 "Carbon dioxide (thousand metric tons)",29255,29 "Sulfur dioxide (lbsMWh)",1.4,28 "Nitrogen...

  19. ULTRA-LOW SULFUR REDUCTION EMISSION CONTROL DEVICE/DEVELOPMENT OF AN ON-BOARD FUEL SULFUR TRAP

    SciTech Connect (OSTI)

    Ron Rohrbach; Gary Zulauf; Tim Gavin

    2003-04-01

    Honeywell is actively working on a 3-year program to develop and demonstrate proof-of-concept for an ''on-vehicle'' desulfurization fuel filter for heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NO{sub x} adsorbers. The NO{sub x} adsorber may be required to meet the proposed new EPA Tier II and ''2007-Rule'' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters will also be examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. It is anticipated that the technology developed for heavy-duty applications will be applicable to light-duty as well. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consists of four phases. Phase I will focus on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II we will concentrate on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III will study life cycle and regeneration options for the spent filter. Phase IV will focus on efficacy and life testing and component integration. The project team will include a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer (Johnson Matthey), a CIDI engine manufacturer (Mack Trucks Inc.), a filter recycler (American Wastes Industries), and a low-sulfur fuel supplier (Equilon, a joint venture between Shell and Texaco).

  20. Crystal structure studies on sulfur oxygenase reductase from Acidianus tengchongensis

    SciTech Connect (OSTI)

    Li Mei [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Chen Zhiwei [State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Zhang Pingfeng; Pan Xiaowei [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Jiang Chengying [State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); An Xiaomin [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Liu Shuangjiang [State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Chang Wenrui [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China)], E-mail: wrchang@sun5.ibp.ac.cn

    2008-05-09

    Sulfur oxygenase reductase (SOR) simultaneously catalyzes oxidation and reduction of elemental sulfur to produce sulfite, thiosulfate, and sulfide in the presence of molecular oxygen. In this study, crystal structures of wild type and mutants of SOR from Acidianus tengchongensis (SOR-AT) in two different crystal forms were determined and it was observed that 24 identical SOR monomers form a hollow sphere. Within the icosatetramer sphere, the tetramer and trimer channels were proposed as the paths for the substrate and products, respectively. Moreover, a comparison of SOR-AT with SOR-AA (SOR from Acidianus ambivalens) structures showed that significant differences existed at the active site. Firstly, Cys31 is not persulfurated in SOR-AT structures. Secondly, the iron atom is five-coordinated rather than six-coordinated, since one of the water molecules ligated to the iron atom in the SOR-AA structure is lost. Consequently, the binding sites of substrates and a hypothetical catalytic process of SOR were proposed.

  1. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    DOE Patents [OSTI]

    Srinivas, Girish (Thornton, CO); Bai, Chuansheng (Baton Rouge, LA)

    2000-08-08

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  2. Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis

    E-Print Network [OSTI]

    Harris, E.

    The oxidation of SO[subscript 2] to sulfate is a key reaction in determining the role of sulfate in the environment through its effect on aerosol size distribution and composition. Sulfur isotope analysis has been used to ...

  3. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-06-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2002 through March 31, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the seventh reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO3 removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the previous report (April 1, 2002 through September 30, 2002). During the current period, there was no technical progress to report, because all planned testing as part of this project has been completed. The project period of performance was extended to allow the conduct of testing of another SO{sub 3} control technology, the sodium bisulfite injection process. However, these additional tests have not yet been conducted.

  4. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2004-01-01

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP Unit 3, and the second was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant test provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. A final task in the project was to compare projected costs for furnace injection of magnesium hydroxide slurries to estimated costs for other potential sulfuric acid control technologies. Estimates were developed for reagent and utility costs, and capital costs, for furnace injection of magnesium hydroxide slurries and seven other sulfuric acid control technologies. The estimates were based on retrofit application to a model coal-fired plant.

  5. Determination of total biogenic sulfur gases by filter/flash vaporization/flame photometry

    SciTech Connect (OSTI)

    Farwell, S.O.; Liebowitz, D.P.; Kagel, R.A.; Adams, D.F.

    1980-12-01

    Complete conversion of H/sub 2/S, COS, CH/sub 3/SH, CH/sub 3/SCH/sub 3/, CS/sub 2/, and CH/sub 3/SSCH/sub 3/ to SO/sub 2/ has been shown to occur in a quartz tube held at a furnace temperature of 1050/sup 0/C for sample air flows from 30 mL/min to 2.8 L/min. The resultant SO/sub 2/-containing air flow is passed through an inline, precleaned Gelman Spectrograde filter which collects an average of 1.5 +- 0.3 ..mu..g of S/47 mm filter prior to SO/sub 2/ breakthrough. The sulfur collected on the filters is extracted with a recovery of 100 +- 3%. Final quantitative determinations of the sulfur in the filter extracts are performed via the flash vaporization/flame photometric (FV/FPD) technique using platinum boats. Equivalent FV/FPD linear responses were observed for H/sub 2/SO/sub 4/, Na/sub 2/SO/sub 4/, K/sub 2/SO/sub 4/, and (NH/sub 4/)/sub 2/SO/sub 4/ standards in the range of 0.4 to 12 ng of S. Repeated analyses of sulfate standards showed a relative standard deviation (RSD) = +-7.0%. Experimental results obtained for NaHCO/sub 3/, Na/sub 2/CO/sub 3/, NaOH, NaCl, KHCO/sub 3/, K/sub 2/CO/sub 3/, KOH, NH/sub 4/HCO/sub 3/, (NH/sub 4/)/sub 2/CO/sub 3/, NH/sub 3/(aq), FeCl/sub 3/, MnCl/sub 2/, and Na/sub 2/HgCl/sub 4/ as chemical impregnants in glass fiber filters for SO/sub 2/ collection and their compatibility with the FV/FPD system are also described.

  6. Mechanistic Studies on the Formation of Trifluoromethyl Sulfur Pentafluoride, SF5CF3sa Greenhouse Gas

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    Mechanistic Studies on the Formation of Trifluoromethyl Sulfur Pentafluoride, SF5CF3sa Greenhouse that a source for this potentially dangerous greenhouse gas might be the recombination of SF5(X2A1) and CF3(X2A1 the strongest greenhouse gas trifluoromethyl sulfur pentafluoride (SF5CF3) with a radiative force of 0.59 W m-2

  7. Adsorbed sulfur-gas methods for both near-surface exploration and downhole logging

    SciTech Connect (OSTI)

    Farwell, S.O.; Barinaga, C.J.; Dolenc, M.R.; Farwell, G.H.

    1986-08-01

    The use of sulfur-containing gases in petroleum exploration is supported by (1) the idea that sulfur may play a role in petroleum genesis, (2) the corresponding existence of sulfur-containing compounds in petroleum and the potential for vertical migration of the low-molecular-weight sulfur species from these reservoirs, (3) the production of H/sub 2/S by anaerobic microorganism populations that develop in the subsurface areas overlying petroleum reservoirs due to the concomitant supply of hydrocarbon nutrients, (4) the recent discovery of near-surface accumulations of pyrite and marcasite as the source of induction potential anomalies over certain fields, and (5) the strong adsorptive affinities of sulfur gases to solid surfaces, which enhance both the concentration and localization of such sulfur-expressed anomalies. During the past 3 years, numerous near-surface soil samples and well cuttings from the Utah-Wyoming Overthrust belt have been analyzed for adsorbed sulfur-gas content by two novel analytical techniques: thermal desorption/metal foil collection/flash desorption/sulfur-selective detection (TD/MFC/FD/SSD) and thermal desorption/cryogenic preconcentration/high-resolution-gas chromatography/optimized-flame photometry (TD/CP/HRGC/OFP).

  8. Assessing historical global sulfur emission patterns for the period 1850--1990

    SciTech Connect (OSTI)

    Lefohn, A.S.; Husar, J.D.; Husar, R.B.; Brimblecombe, P.

    1996-07-19

    Anthropogenic sulfur dioxide emissions from energy-producing and metal production activities have become an important factor in better understanding the relationship between humans and the environment. Concerns about (1) acid rain effects on the environment and (2) anthropogenic aerosols affecting possible global change have prompted interest in the transformation and fate of sulfur in the environment. One step in assessing the importance of sulfur emissions is the development of a reliable regional emission inventory of sulfur as a function of time. The objective of this research effort was to create a homogeneous database for historical sulfur emission estimates for the world. The time from 1850--1990 was selected to include the period of industrialization form the time the main production of fuels and minerals began until the most recent year for which complete production data exist. This research effort attempts to correct some of the deficiencies associated with previous global sulfur emission estimates by (1) identifying those production activities that resulted in sulfur emissions by country and (2) calculating historical emission trends by country across years. An important component of this study was the comparison of the sulfur emission results with those of previous studies.

  9. Understanding the Role of Different Conductive Polymers in Improving the Nanostructured Sulfur Cathode Performance

    E-Print Network [OSTI]

    Cui, Yi

    structural configurations of conductive polymer-sulfur composites employed in previous studies. In this workUnderstanding the Role of Different Conductive Polymers in Improving the Nanostructured Sulfur for the confinement of lithium polysulfides. However, the roles of different conductive polymers

  10. In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries

    E-Print Network [OSTI]

    Cui, Yi

    In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries Johanna Information ABSTRACT: Rechargeable lithium-sulfur (Li-S) batteries hold great potential for high not well understood. In this Article, these changes in Li-S batteries are studied in operando by X

  11. High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature,

    E-Print Network [OSTI]

    Cui, Yi

    capacity of 849 and 610 mAh/g at 2C and 4C, respectively. lithium sulfur battery | energy storage | long energy storage (1­4). To achieve a quantum leap in the batteries specific energy density, new electrodeHigh-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature

  12. Surface Science 415 (1998) 2936 Structural studies of sulfur-passivated GaAs (100)

    E-Print Network [OSTI]

    Zhang, Yanchao

    1998-01-01

    . Keywords: Atomic force microscopy; Gallium arsenide; Low-energy electron diffraction; Roughness; SulfurSurface Science 415 (1998) 29­36 Structural studies of sulfur-passivated GaAs (100) surfaces Abstract We present the results of Auger electron spectroscopy (AES), low-energy electron diffraction (LEED

  13. Sulfur surface chemistry on the platinum gate of a silicon carbide based hydrogen sensor

    E-Print Network [OSTI]

    Tobin, Roger G.

    Sulfur surface chemistry on the platinum gate of a silicon carbide based hydrogen sensor Yung Ho September 2007 We have investigated the effects of sulfur contamination on a Pt-gate silicon carbide based monitoring, solid-oxide fuel cells, and coal gasification, require operation at much higher temperatures than

  14. Memory-Assisted Exciton Diffusion in the Chlorosome Light-Harvesting Antenna of Green Sulfur Bacteria

    E-Print Network [OSTI]

    Saikin, Semion

    Memory-Assisted Exciton Diffusion in the Chlorosome Light- Harvesting Antenna of Green Sulfur of bacteriochlorophylls (BChls) enclosed by a lipid monolayer.1-4 They can capture light and transfer it in a form. In green sulfur bacteria, light energy absorbed by the rolls is transferred via a baseplate9 to the Fenna

  15. The sulfur content of volcanic gases on Mars Fabrice Gaillard, a

    E-Print Network [OSTI]

    Boyer, Edmond

    The sulfur content of volcanic gases on Mars Fabrice Gaillard, a and Bruno Scaillet1, a a CNRS sulfur contents of the martian regolith and lack of detection of extensive carbonate deposits suggest that the latest geological events that shaped the landscapes of Mars were dominated by acidic waters possibly

  16. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction. Technical report, September 1, 1991--November 30, 1991

    SciTech Connect (OSTI)

    Chou, M.I.M.

    1991-12-31

    A pre-combustion coal desulfurization process at 120{degree}C using perchloroethylene (PCE) to remove up to 70% of the organic sulfur has been developed by the Midwest Ore Processing Co. (MWOPC). However, this process has not yet proven to be as successful with Illinois coals as it has for Ohio and Indiana coals. The organic sulfur removal has been achieved only with highly oxidized Illinois coals containing high sulfatic sulfur. A logical explanation for this observation is vital to successful process optimization for the use of Illinois coals. In addition, the high levels of organic sulfur removals observed by the MWOPC may be due to certain errors involved in the ASTM data interpretation; this needs verification. For example, elemental sulfur extracted by the PCE may be derived from pyrite oxidation during coal pre-oxidation, but it may be interpreted as organic sulfur removed by the PCE using ASTM analysis. The goals of this research are: (1) to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization process reported by the MWOPC, (2) to verify the forms-of-sulfur determination using the ASTM method for the PCE process evaluation, and (3) to determine the suitability of Illinois coals for use in the PCE desulfurization process. This project involves the Illinois State Geological Survey (ISGS), Eastern Illinois University (EIU), the University of Illinois-Urbana/Champaign (UI-UC), and the University of Kentucky, Lexington (UK). This is the first year of a two-year project.

  17. Nitrous oxide as a substitute for sulfur hexafluoride in the ANSI/ASHRAE 110 Method of hood performance evaluation

    E-Print Network [OSTI]

    Guffey, Eric J. (Eric Jemison)

    2011-01-01

    The ANSI/ASHRAE 110 Method is the standard test for laboratory hood containment performance. Sulfur hexafluoride is specified as the gas most suitable for this test and is most commonly used. Sulfur hexafluoride use has ...

  18. Fractionation of sulfur isotopes by Desulfovibrio vulgaris mutants lacking hydrogenases or type I tetraheme cytochrome c[subscript 3

    E-Print Network [OSTI]

    Sim, Min Sub

    The sulfur isotope effect produced by sulfate reducing microbes is commonly used to trace biogeochemical cycles of sulfur and carbon in aquatic and sedimentary environments. To test the contribution of intracellular coupling ...

  19. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect (OSTI)

    Chou, M.I.M. [Illinois State Geological Survey, Champaign, IL (United States); Buchanan, D.H. [Eastern Illinois Univ., Charleston, IL (United States); Stucki, J.W. [Illinois Univ., Urbana, IL (United States)

    1993-09-01

    The purposes of this project are: to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE process developed by the Midwest Ore Processing Co. (MWOPC), to verify the forms-of-sulfur determination using the ASTM method for evaluation of the PCE process, and to develop a dechlorination procedure to remove excess PCE from the PCE-treated coal. The objectives for the second year are: to verify the possible effects of PCE treatment on coal-derived FeS{sub 2}, FeSO{sub 4}, and Fe{sub 2}(SO{sub 4}){sub 3} on ASTM coal analysis, to investigate the behavior of sulfur during oxidation and PCE desulfurization using the isotopically signatured coal sample, to investigate the effects of conditions and/or reagents on the oxidation of the organic-sulfur-model compounds, to evaluate the extended oxidation condition on the organic sulfur removal by PCE desulfurization, and to study other innovative pretreatment processes for the removal of organic sulfur from coal under mild conditions.

  20. Effect of Prussian blue on organic sulfur of coal in aqueous medium

    SciTech Connect (OSTI)

    Demirbas, A. [Selcuk University, Konya (Turkey). Dept. of Chemical Engineering

    2007-01-15

    This study is an attempt to desulfurize organic sulfur from coal samples with ferric hexacyanoferrate (II), Fe{sub 4} (Fe(CN){sub 6}), as the desulfurization agent. Effect of temperature, particle size and concentration of ferrocyanide ion on desulfurization from the coal samples has been investigated. The temperature and stirring time are the most important parameters for the level of desulfurization of organic sulfur. Removal of organic sulfur content increased continuously with increasing temperature from 298 to 368 K. The organic sulfur removal rate sharply increases from 10 min to 30 min stirring time. After 30 min, it reaches a value of plateau. Particle size between -100 mesh and -200 mesh slightly affects the amount of organic sulfur removal. Gradual increase in the concentration of ferric hexacyanoferrate (II) raised the magnitude of desulfurization, but at higher concentration, the variation is not significant.

  1. Sulfur dioxide capture in the combustion of mixtures of lime, refuse-derived fuel, and coal

    SciTech Connect (OSTI)

    Churney, K.L.; Buckley, T.J. . Center for Chemical Technology)

    1990-06-01

    Chlorine and sulfur mass balance studies have been carried out in the combustion of mixtures of lime, refuse-derived fuel, and coal in the NIST multikilogram capacity batch combustor. The catalytic effect of manganese dioxide on the trapping of sulfur dioxide by lime was examined. Under our conditions, only 4% of the chlorine was trapped in the ash and no effect of manganese dioxide was observed. Between 42 and 14% of the total sulfur was trapped in the ash, depending upon the lime concentration. The effect of manganese dioxide on sulfur capture was not detectable. The temperature of the ash was estimated to be near 1200{degrees}C, which was in agreement with that calculated from sulfur dioxide capture thermodynamics. 10 refs., 12 figs., 10 tabs.

  2. Sulfur Poisoning and Regeneration of NOx Storage-Reduction Cu/K2Ti2O5 Qiang Wang,*,

    E-Print Network [OSTI]

    Guo, John Zhanhu

    Sulfur Poisoning and Regeneration of NOx Storage-Reduction Cu/K2Ti2O5 Catalyst Qiang Wang,*, Jiahua NOx through the NOx storage-reduction (NSR) process. However, its NSR performance in the presence of sulfur has not been investigated. In this article, the sulfur poisoning of the NOx storage-reduction

  3. Methanol Reaction with Sulfuric Acid: A Vibrational Spectroscopic Study Lisa L. Van Loon and Heather C. Allen*

    E-Print Network [OSTI]

    Methanol Reaction with Sulfuric Acid: A Vibrational Spectroscopic Study Lisa L. Van Loon 43210 ReceiVed: May 27, 2004; In Final Form: August 19, 2004 The reaction between methanol and sulfuric peak in the 800 cm-1 region, not present in either the neat methanol or concentrated sulfuric acid

  4. Population, Economy and Energy Use’s Influence on Sulfur Emissions in the United States Since 1900 

    E-Print Network [OSTI]

    Kissock, J. K.; Husar, R. B.

    1990-01-01

    and the transition from coal to less sulfur intensive fuels have reduced sulfur emissions. The net effect of all drivers has been moderate growth in sulfur emissions from 1900 to present. Since 1973, increased energy efficiency and the shift from an industrial to a...

  5. High average power scaleable thin-disk laser

    DOE Patents [OSTI]

    Beach, Raymond J. (Livermore, CA); Honea, Eric C. (Sunol, CA); Bibeau, Camille (Dublin, CA); Payne, Stephen A. (Castro Valley, CA); Powell, Howard (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)

    2002-01-01

    Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.

  6. Removal of sulfur contaminants in methanol for fuel cell applications

    SciTech Connect (OSTI)

    Lee, S.H.D.; Kumar, R. [Argonne National Lab., IL (United States); Sederquist, R. [International Fuel Cells Corp., South Windsor, CT (United States)

    1996-12-31

    Equilibrium adsorption isotherm and breakthrough data were used to assess feasibility of developing a granular activated carbon (GAC) adsorber for use as a sulfur removal subsystem in transportation fuel cell systems. Results suggest that an on-board GAC adsorber may not be attractive due to size and weight constraints. However, it may be feasible to install this GAC adsorber at methanol distribution stations, where space and weight are not a critical concern. Preliminary economic analysis indicated that the GAC adsorber concept will be attractive if the spent AC can be regenerated for reuse. These preliminary analyses were made on basis of very limited breakthrough data obtained from the bench-scale testing. Optimization on dynamic testing parameters and study on regeneration of spent AC are needed.

  7. Phosphate Glasses for Vitrification of Waste with High Sulfur Content

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Vienna, John D.; Hrma, Pavel R.; Cassingham, Nathan J.

    2002-10-31

    The low solubility of sulfate in silicate-based glasses, approximately 1 mass% as SO3, limits the loading of high-level waste (HLW) and low-activity waste (LAW) containing high concentrations of sulfur. Based on crucible melting studies, we have shown that the phosphate glasses may incorporate more than 5 mass% SO3; hence, the waste loading can be increased until another constraint is met, such as glass durability. A high-sulfate HLW glass has been formulated and tested to demonstrate the advantages of phosphate glasses. The effect of waste loading on the chemical durability of quenched and slow-cooled phosphate glasses was determined using the Product Consistency Test.

  8. Method of forming and starting a sodium sulfur battery

    DOE Patents [OSTI]

    Paquette, David G. (Costa Mesa, CA)

    1981-01-01

    A method of forming a sodium sulfur battery and of starting the reactive capability of that battery when heated to a temperature suitable for battery operation is disclosed. An anodic reaction zone is constructed in a manner that sodium is hermetically sealed therein, part of the hermetic seal including fusible material which closes up openings through the container of the anodic reaction zone. The hermetically sealed anodic reaction zone is assembled under normal atmospheric conditions with a suitable cathodic reaction zone and a cation-permeable barrier. When the entire battery is heated to an operational temperature, the fusible material of the hermetically sealed anodic reaction zone is fused, thereby allowing molten sodium to flow from the anodic reaction zone into reactive engagement with the cation-permeable barrier.

  9. Ultra-low Sulfur Reduction Emission Control Device/Development of an On-board Fuel Sulfur Trap

    SciTech Connect (OSTI)

    Rohrbach, Ron; Barron, Ann

    2008-07-31

    Honeywell has completed working on a multiyear program to develop and demonstrate proof-of-concept for an 'on-vehicle' desulfurization fuel filter for both light duty and heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NOx adsorbers. The NOx adsorber may be required to meet the proposed new EPA Tier II and '2007-Rule' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters was also examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. In the second phase of the program a light duty diesel engine test was also demonstrated. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consisted of four phases. Phase I focused on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II concentrated on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III studied life cycle and regeneration options for the spent filter. Phase IV focused on efficacy and benefits in the desulfation steps of a NOx adsorber on both a heavy and light duty engine. The project team included a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer (Johnson Matthey), a CIDI engine manufacturer (Navistar Inc. (formerly International Truck & Engine Corporation) and Mack Trucks Inc.), and filter recycler (American Wastes Industries).

  10. The High Average Power Laser Program 15th HAPL meeting

    E-Print Network [OSTI]

    , 2006 #12;2 The HAPL team is developing the science, technology and architecture needed for a laser1 The High Average Power Laser Program 15th HAPL meeting Aug 8 & 9, 2006 General Atomics Scientific Inst 16. Optiswitch Technology 17. ESLI Electricity Generator Electricity Generator Reaction

  11. FOCI RESEARCH BENEFITS FISHERIES MANAGEMENT 1993 Recruitment Forecast -Average

    E-Print Network [OSTI]

    Marine Fisheries Service (NMFS) advises the North Pacific Fisheries Management Council using a "stock data but addresses the autocorrelation of recruitment. In addition, it directly predicts recruitment to average 1991 year class, and a strong 1992 year class. In 1993 the transfer function model predicted

  12. Parity-violating anomalies and the stationarity of stochastic averages

    SciTech Connect (OSTI)

    Reuter, M.

    1988-01-15

    Within the framework of stochastic quantization the parity-violating anomalies in odd space-time dimensions are derived from the asymptotic stationarity of the stochastic average of a certain fermion bilinear. Contrary to earlier attempts, this method yields the correct anomalies for both massive and massless fermions.

  13. Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging

    E-Print Network [OSTI]

    Raftery, Adrian

    Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging J. MCLEAN 2011, in final form 26 May 2012) ABSTRACT Probabilistic forecasts of wind vectors are becoming critical with univariate quantities, statistical approaches to wind vector forecasting must be based on bivariate

  14. Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging

    E-Print Network [OSTI]

    Raftery, Adrian

    Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging J. Mc in the context of wind power, where under- forecasting and overforecasting carry different financial penal- ties, calibrated and sharp probabilistic forecasts can help to make wind power a more financially competitive alter

  15. Fact #693: September 19, 2011 Average Vehicle Footprint for Cars...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    information below. Supporting Information Average Vehicle Footprint, 2008-2010 Model Year Car Light Truck All Light Vehicles 2008 45.4 53.0 49.0 2009 45.2 52.7 48.2 2010 45.2 54.0...

  16. Prediction in moving average processes Anton Schick and Wolfgang Wefelmeyer

    E-Print Network [OSTI]

    Wefelmeyer, Wolfgang

    Prediction in moving average processes Anton Schick and Wolfgang Wefelmeyer Abstract(y + (x1, . . . , xr)) dF(y) The research of A. Schick was partially supported by NSF Grant DMS0405791. 1 #12;2 ANTON SCHICK AND WOLFGANG WEFELMEYER can be estimated at the "parametric" root-n rate

  17. Optimal Control with Weighted Average Costs and Temporal Logic Specifications

    E-Print Network [OSTI]

    Murray, Richard M.

    Optimal Control with Weighted Average Costs and Temporal Logic Specifications Eric M. Wolff Control and Dynamical Systems California Institute of Technology Pasadena, California 91125 Email: ewolff@caltech.edu Ufuk Topcu Control and Dynamical Systems California Institute of Technology Pasadena, California 91125

  18. Sulfur Partitioning During Vitrification of INEEL Sodium Bearing Waste: Status Report

    SciTech Connect (OSTI)

    Darab, John G.; Graham, Dennis D.; Macisaac, Brett D.; Russell, Renee L.; Smith, Harry D.; Vienna, John D.; Peeler, David K.

    2001-07-31

    The sodium bearing tank waste (SBW) at Idaho National Engineering and Environmental Laboratory (INEEL) contains high concentrations of sulfur (roughly 5 mass% of SO3 on a nonvolatile oxide basis). The amount of sulfur that can be feed to the melter will ultimately determine the loading of SBW in glass produced by the baseline (low-temperature, joule-heated, liquid-fed, ceramic-lined) melter. The amount of sulfur which can be fed to the melter is determined by several major factors including: the tolerance of the melter for an immiscible salt layer accumulation, the solubility of sulfur in the glass melt, the fraction of sulfur removed to the off-gas, and the incorporation of sulfur into the glass up to it?s solubility limit. This report summarizes the current status of testing aimed at determining the impacts of key chemical and physical parameters on the partitioning of sulfur between the glass, a molten salt, and the off-gas.

  19. Emission of biogenic sulfur gases from Chinese paddy soil and rice plant

    SciTech Connect (OSTI)

    Zhen Yang [Nanjing Univ. of Science and Technology (China); Li Kong [Nanjing Agricultural Univ. (China)

    1996-12-31

    Biogenic sulfur gases emitted from terrestrial ecosystem may play in important role in global sulfur cycle and have a profound influence on global climate change. But very little is known concerning emissions from paddy soil and rice plant, which are abundant in many parts of the world. As a big agricultural country, this is about 33 million hectare rice planted in China. With laboratory incubation and closed chamber method in the field, the biogenic sulfur gases emitted from Chinese paddy soil and rice plant were detected in both conditions: hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), methyl mercaptan (MSH), carbon disulfide (CS{sub 2}), dimethyl sulfide (DMS) and dimethyl disulfide (DMDS). Among which, DMS was predominant part of sulfur emission. Emission of sulfur gases from different paddy field exhibit high spatial and temporal variability. The application of fertilizer and organic manure, total sulfur content in wetland, air temperature were positively correlated to the emission of volatile sulfur gases from paddy soil. Diurnal and seasonal variation of total volatile sulfur gases and DMS indicate that their emissions were greatly influenced by the activity of the rice plant. The annual emission of total volatile sulfur gases, from Nanjing paddy field is ranged from 4.0 to 9.5 mg S m{sup -2}yr{sup -1}, that of DMS is ranged from 3.1 to 6.5 mg S m{sup -2}yr{sup -1}. Rice plant could absorb COS gas, that may be one of the sinks of COS.

  20. Toward understanding the effect of low-activity waste glass composition on sulfur solubility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vienna, John D.; Kim, Dong -Sang; Muller, Isabelle S.; Piepel, Greg F.; Kruger, Albert A.; Jantzen, C.

    2014-07-24

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, which inmore »turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5> CaO ? P2O5 > Na2O ? B2O3 > K2O. The components that most decrease sulfur solubility are Cl > Cr2O3 > Al2O3 > ZrO2 ? SnO2 > Others ? SiO2. As a result, the order of component effects is similar to previous literature data, in most cases.« less

  1. NONEQUILIBRIUM SULFUR CAPTURE & RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    SciTech Connect (OSTI)

    Bert Zauderer

    2003-04-21

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. The reacted particles impact and melt in the liquid slag layer on the combustor wall by the centrifugal force of the swirling combustion gases. Due to the low solubility of sulfur in slag, it must be rapidly drained from the combustor to limit sulfur gas re-evolution. Prior analyses and laboratory scale data indicated that for Coal Tech's 20 MMBtu/hour, air-cooled, slagging coal combustor slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to validate this sulfur-in-slag model in a group of combustor tests. A total of 36 days of testing on the combustor were completed during the period of performance of this project. This was more that double the 16 test days that were required in the original work statement. The extra tests were made possible by cost saving innovations that were made in the operation of the combustor test facility and in additional investment of Coal Tech resources in the test effort. The original project plan called for two groups of tests. The first group of tests involved the injection of calcium sulfate particles in the form of gypsum or plaster of Paris with the coal into the 20 MMBtu/hour-combustor. The second group of tests consisted of the entire two-step process, in which lime or limestone is co-injected with coal and reacts with the sulfur gas released during combustion to form calcium sulfate particles that impact and dissolve in the slag layer. Since this sulfur capture process has been validated in numerous prior tests in this combustor, the primary effort in the present project was on achieving the high slag flow rates needed to retain the sulfur in the slag.

  2. Toward Understanding the Effect of Nuclear Waste Glass Composition on Sulfur Solubility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vienna, John D.; Kim, Dong-Sang; Muller, I. S.; Kruger, Albert A.; Piepel, Gregory F.

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, which inmore »turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5> CaO ? P2O5 > Na2O ? B2O3 > K2O. The components that most decrease sulfur solubility are Cl > Cr2O3 > Al2O3 > ZrO2 ? SnO2 > Others ? SiO2. The order of component effects is similar to previous literature data, in most cases.« less

  3. Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility

    SciTech Connect (OSTI)

    Vienna, John D.; Kim, Dong-Sang; Muller, Isabelle S.; Piepel, Gregory F.; Kruger, Albert A.

    2014-10-01

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis). If the amount of sulfur exceeds its tolerance level a molten salt will accumulate and upset melter operations and potentially shorten melter useful life. Therefore relatively conservative limits have been placed on sulfur loading in melter feed which in-turn significantly impacts the amount of glass that will be produced, in particular at the Hanford site. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 312 individual glass compositions. This model was shown to well represent the data, accounting for over 80% of the variation in data and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed based on 19 scaled melter tests. The model is appropriate for control of waste glass processing which includes uncertainty quantification. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5 ? TiO2 < CaO < P2O5 ? ZnO. The components that most decrease sulfur solubility are Cl > Cr2O3 > SiO2 ? ZrO2 > Al2O3.

  4. Update on Transition to Ultra-Low-Sulfur Diesel Fuel (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    On November 8, 2005, the Environmental Protection Agency (EPA) Administrator signed a direct final rule that will shift the retail compliance date for offering ultra-low sulfur diesel (ULSD) for highway use from September 1, 2006, to October 15, 2006. The change will allow more time for retail outlets and terminals to comply with the new 15 parts per million (ppm) sulfur standard, providing time for entities in the diesel fuel distribution system to flush higher sulfur fuel out of the system during the transition. Terminals will have until September 1, 2006, to complete their transitions to ULSD. The previous deadline was July 15, 2006.

  5. Method of making a current collector for a sodium/sulfur battery

    DOE Patents [OSTI]

    Tischer, R.P.; Winterbottom, W.L.; Wroblowa, H.S.

    1987-03-10

    This specification is directed to a method of making a current collector for a sodium/sulfur battery. The current collector so-made is electronically conductive and resistant to corrosive attack by sulfur/polysulfide melts. The method includes the step of forming the current collector for the sodium/sulfur battery from a composite material formed of aluminum filled with electronically conductive fibers selected from the group of fibers consisting essentially of graphite fibers having a diameter up to 10 microns and silicon carbide fibers having a diameter in a range of 500--1,000 angstroms. 2 figs.

  6. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1984-06-19

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  7. High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1982-07-07

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  8. Complexation of Mercury(II) in Soil Organic Matter: EXAFS Evidence for Linear Two-Coordination with Reduced Sulfur Groups

    SciTech Connect (OSTI)

    Skyllberg,U.; Bloom, P.; Qian, J.; Lin, C.; Bleam, W.

    2006-01-01

    The chemical speciation of inorganic mercury (Hg) is to a great extent controlling biologically mediated processes, such as mercury methylation, in soils, sediments, and surface waters. Of utmost importance are complexation reactions with functional groups of natural organic matter (NOM), indirectly determining concentrations of bioavailable, inorganic Hg species. Two previous extended X-ray absorption fine structure (EXAFS) spectroscopic studies have revealed that reduced organic sulfur (S) and oxygen/nitrogen (O/N) groups are involved in the complexation of Hg(II) to humic substances extracted from organic soils. In this work, covering intact organic soils and extending to much lower concentrations of Hg than before, we show that Hg is complexed by two reduced organic S groups (likely thiols) at a distance of 2.33 Angstroms in a linear configuration. Furthermore, a third reduced S (likely an organic sulfide) was indicated to contribute with a weaker second shell attraction at a distance of 2.92-3.08 Angstroms. When all high-affinity S sites, corresponding to 20-30% of total reduced organic S, were saturated, a structure involving one carbonyl-O or amino-N at 2.07 Angstroms and one carboxyl-O at 2.84 Angstroms in the first shell, and two second shell C atoms at an average distance of 3.14 Angstroms, gave the best fit to data. Similar results were obtained for humic acid extracted from an organic wetland soil. We conclude that models that are in current use to describe the biogeochemistry of mercury and to calculate thermodynamic processes need to include a two-coordinated complexation of Hg(II) to reduced organic sulfur groups in NOM in soils and waters.

  9. An Analysis of Air Passenger Average Trip Lengths and Fare Levels in US Domestic Markets

    E-Print Network [OSTI]

    Huang, Sheng-Chen Alex

    2000-01-01

    California at Berkeley An Analysis of Air Passenger AverageCalifornia at Berkeley An Analysis of Air Passenger Average

  10. Anomalous transport and observable average in the standard map

    E-Print Network [OSTI]

    Lydia Bouchara; Ouerdia Ourrad; Sandro Vaienti; Xavier Leoncini

    2015-09-02

    The distribution of finite time observable averages and transport in low dimensional Hamiltonian systems is studied. Finite time observable average distributions are computed, from which an exponent $\\alpha$ characteristic of how the maximum of the distributions scales with time is extracted. To link this exponent to transport properties, the characteristic exponent $\\mu(q)$ of the time evolution of the different moments of order $q$ related to transport are computed. As a testbed for our study the standard map is used. The stochasticity parameter $K$ is chosen so that either phase space is mixed with a chaotic sea and islands of stability or with only a chaotic sea. Our observations lead to a proposition of a law relating the slope in $q=0$ of the function $\\mu(q)$ with the exponent $\\alpha$.

  11. A New World Average Value for the Neutron Lifetime

    E-Print Network [OSTI]

    A. P. Serebrov; A. K. Fomin

    2010-05-27

    The analysis of the data on measurements of the neutron lifetime is presented. A new most accurate result of the measurement of neutron lifetime [Phys. Lett. B 605 (2005) 72] 878.5 +/- 0.8 s differs from the world average value [Phys. Lett. B 667 (2008) 1] 885.7 +/- 0.8 s by 6.5 standard deviations. In this connection the analysis and Monte Carlo simulation of experiments [Phys. Lett. B 483 (2000) 15] and [Phys. Rev. Lett. 63 (1989) 593] is carried out. Systematic errors of about -6 s are found in each of the experiments. The summary table for the neutron lifetime measurements after corrections and additions is given. A new world average value for the neutron lifetime 879.9 +/- 0.9 s is presented.

  12. Modeling an Application's Theoretical Minimum and Average Transactional Response Times

    SciTech Connect (OSTI)

    Paiz, Mary Rose

    2015-04-01

    The theoretical minimum transactional response time of an application serves as a ba- sis for the expected response time. The lower threshold for the minimum response time represents the minimum amount of time that the application should take to complete a transaction. Knowing the lower threshold is beneficial in detecting anomalies that are re- sults of unsuccessful transactions. On the converse, when an application's response time falls above an upper threshold, there is likely an anomaly in the application that is causing unusual performance issues in the transaction. This report explains how the non-stationary Generalized Extreme Value distribution is used to estimate the lower threshold of an ap- plication's daily minimum transactional response time. It also explains how the seasonal Autoregressive Integrated Moving Average time series model is used to estimate the upper threshold for an application's average transactional response time.

  13. Average Interpolating Wavelets on Point Clouds and Graphs

    E-Print Network [OSTI]

    Rustamov, Raif M

    2011-01-01

    We introduce a new wavelet transform suitable for analyzing functions on point clouds and graphs. Our construction is based on a generalization of the average interpolating refinement scheme of Donoho. The most important ingredient of the original scheme that needs to be altered is the choice of the interpolant. Here, we define the interpolant as the minimizer of a smoothness functional, namely a generalization of the Laplacian energy, subject to the averaging constraints. In the continuous setting, we derive a formula for the optimal solution in terms of the poly-harmonic Green's function. The form of this solution is used to motivate our construction in the setting of graphs and point clouds. We highlight the empirical convergence of our refinement scheme and the potential applications of the resulting wavelet transform through experiments on a number of data stets.

  14. Average dynamics of a finite set of coupled phase oscillators

    SciTech Connect (OSTI)

    Dima, Germán C. Mindlin, Gabriel B.

    2014-06-15

    We study the solutions of a dynamical system describing the average activity of an infinitely large set of driven coupled excitable units. We compared their topological organization with that reconstructed from the numerical integration of finite sets. In this way, we present a strategy to establish the pertinence of approximating the dynamics of finite sets of coupled nonlinear units by the dynamics of its infinitely large surrogate.

  15. Averaging cross section data so we can fit it

    SciTech Connect (OSTI)

    Brown, D.

    2014-10-23

    The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).

  16. Averaged equilibrium and stability in low-aspect-ratio stellarators

    SciTech Connect (OSTI)

    Garcia, L.; Carreras, B.A.; Dominguez, N.

    1989-01-01

    The MHD equilibrium and stability calculations or stellarators are complex because of the intrinsic three-dimensional (3-D) character of these configurations. The stellarators expansion simplifies the equilibrium calculation by reducing it to a two-dimensional (2-D) problem. The classical stellarator expansion includes terms up to order epsilon/sup 2/, and the vacuum magnetic field is also included up to this order. For large-aspect-ratio configurations, the results of the stellarator expansion agree well with 3-D numerical equilibrium results. But for low-aspect-ratio configurations, these are significant discrepancies with 3-D equilibrium calculations. The main reason for these discrepancies is the approximation in the vacuum field contributions. This problem can be avoided by applying the average method in a vacuum flux coordinate system. In this way, the exact vacuum magnetic field contribution is included and the results agree well with 3-D equilibrium calculations even for low-aspect-ratio configurations. Using the average method in a vacuum flux coordinate system also permit the accurate calculation of local stability properties with the Mercier criterion. The main improvement is in the accurate calculation of the geodesic curvature term. In this paper, we discuss the application of the average method in flux coordinates to the calculation of the Mercier criterion for low-aspect-ratio stellarator configurations. 12 refs., 3 figs.

  17. Did the Clean Air Act cause the remarkable decline in sulfur dioxide concentrations?

    E-Print Network [OSTI]

    Greenstone, Michael

    2003-01-01

    Over the last three decades, ambient concentrations of sulfur dioxide (SO2) air pollution have declined by approximately 80%. This paper tests whether the 1970 Clean Air Act and its subsequent amendments caused this decline. ...

  18. Frataxin (FXN) Based Regulation of the Iron-Sulfur Cluster Assembly Complex 

    E-Print Network [OSTI]

    Rabb, Jennifer

    2012-07-16

    Iron-sulfur clusters are protein cofactors that are critical for all life forms. Elaborate multi-component systems have evolved for the biosynthesis of these cofactors to protect organisms from the toxic effects of free ...

  19. Transport Properties and Performance of Polymer Electrolyte Membranes for the Hybrid Sulfur Electrolyzer

    E-Print Network [OSTI]

    Weidner, John W.

    Transport Properties and Performance of Polymer Electrolyte Membranes for the Hybrid Sulfur hydrogen efficiently on a large scale.1 This process has the advantage over traditional i.e., coal gasifica

  20. Relationship between pyrite formation and organic sulfur content of coal as revealed by electron microscopy

    SciTech Connect (OSTI)

    Raymond, R. Jr.; Hagan, R.C.

    1982-01-01

    There are a large number of questions concerning the mode of occurrence of organic sulfur in peat, and what, if anything, alters its occurrence during and after coalification. The formation of pyrite during periods of peatification and coalification has been hypothesized to have a great effect on the organic sulfur content of organic material surrounding the pyrite. Measurement of organic sulfur contents at different distances from pyrite particles would serve as direct experimental proof for or against this pypothesis. A combination of in situ energy dispersive spectrometer (EDS) line profiles, EDS x-ray maps, and WDS analyses across pyrite/coal interfaces in a variety of coals shows unequivocally that formation of pyrite does not alter the organic sulfur contents of the surrounding coal macerals.

  1. Sulfur and Oxygen Isotope Analysis of Sulfate at Micromole Levels Using a Pyrolysis Technique in a

    E-Print Network [OSTI]

    Alexander, Becky

    Sulfur and Oxygen Isotope Analysis of Sulfate at Micromole Levels Using a Pyrolysis Technique sample. The technique takes advantage of the easy pyrolysis of Ag2SO4 to SO2, O2, and Ag metal

  2. SO2 impacts on forage and soil sulfur concentrations near coal-fired power plants 

    E-Print Network [OSTI]

    Beene, Jack Stephen

    1995-01-01

    The goal of this research was to determine if S02 emissions from coal-fired power plants could be contributing to the copper deficiency in cattle. Copper deficiency in cattle can result from excessive sulfur intake which is attributed...

  3. Cost-benefit analysis of ultra-low sulfur jet fuel

    E-Print Network [OSTI]

    Kuhn, Stephen (Stephen Richard)

    2010-01-01

    The growth of aviation has spurred increased study of its environmental impacts and the possible mitigation thereof. One emissions reduction option is the introduction of an Ultra Low Sulfur (ULS) jet fuel standard for ...

  4. Explaining low sulfur dioxide allowance prices : the effect of expectation errors and irreversibility

    E-Print Network [OSTI]

    Montero, Juan-Pablo

    1998-01-01

    The low price of allowances has been a frequently noted featured of the implementation of the sulfur dioxide emissions market of the U.S. Acid Rain Program. This paper presents theoretical and numerical analyses that explain ...

  5. Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es105liang2011o.pdf More Documents & Publications CarbonSulfur...

  6. Carbon-Sulfur Bond Cleavage of Methyl-Substituted Thiophenes with Iridium(III)

    E-Print Network [OSTI]

    Jones, William D.

    polluting sulfur compounds are removed during the hydroprocessing of crude oil. Unrefined petroleum contains of a hydrogen acceptor, the thiophene was desulfurized (eq 2).4 Also, in the heterogeneous CoMo system it has

  7. CORROSION OF ALUMINUM CLAD SPENT NUCLEAR FUEL IN THE 70 TON CASK DURING TRANSFER FROM L AREA TO H-CANYON

    SciTech Connect (OSTI)

    Mickalonis, J.

    2014-06-01

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material with the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33 % was found after 1 year in the cask with a maximum temperature of 260 {degrees}C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 {degrees}C. These losses are not expected to impact the overall confinement function of the aluminum cladding.

  8. Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control

    DOE Patents [OSTI]

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2011-03-15

    Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

  9. Interaction of CuS and sulfur in Li-S battery system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Ke; Su, Dong; Zhang, Qing; Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.; Gan, Hong

    2015-10-27

    Lithium-Sulfur (Li-S) battery has been a subject of intensive research in recent years due to its potential to provide much higher energy density and lower cost than the current state of the art lithiumion battery technology. In this work, we have investigated Cupric Sulfide (CuS) as a capacitycontributing conductive additive to the sulfur electrode in a Li-S battery. Galvanostatic charge/discharge cycling has been used to compare the performance of both sulfur electrodes and S:CuS hybrid electrodes with various ratios. We found that the conductive CuS additive enhanced the utilization of the sulfur cathode under a 1C rate discharge. However, undermore »a C/10 discharge rate, S:CuS hybrid electrodes exhibited lower sulfur utilization in the first discharge and faster capacity decay in later cycles than a pure sulfur electrode due to the dissolution of CuS. The CuS dissolution is found to be the result of strong interaction between the soluble low order polysulfide Li2S3 and CuS. As a result, we identified the presence of conductive copper-containing sulfides at the cycled lithium anode surface, which may degrade the effectiveness of the passivation function of the solid-electrolyte-interphase (SEI) layer, accounting for the poor cycling performance of the S:CuS hybrid cells at low rate.« less

  10. Experimental and computational investigations of sulfur-resistant bimetallic catalysts for reforming of biomass gasification products

    SciTech Connect (OSTI)

    Rangan, Meghana; Yung, Matthew M.; Medlin, J. William (NREL); (Colorado)

    2011-11-17

    A combination of density functional theory (DFT) calculations and experimental studies of supported catalysts was used to identify H{sub 2}S-resistant biomass gasification product reforming catalysts. DFT calculations were used to search for bimetallic, nickel-based (1 1 1) surfaces with lower sulfur adsorption energies and enhanced ethylene adsorption energies. These metrics were used as predictors for H{sub 2}S resistance and activity toward steam reforming of ethylene, respectively. Relative to Ni, DFT studies found that the Ni/Sn surface alloy exhibited enhanced sulfur resistance and the Ni/Ru system exhibited an improved ethylene binding energy with a small increase in sulfur binding energy. A series of supported bimetallic nickel catalysts was prepared and screened under model ethylene reforming conditions and simulated biomass tar reforming conditions. The observed experimental trends in activity were consistent with theoretical predictions, with observed reforming activities in the order Ni/Ru > Ni > Ni/Sn. Interestingly, Ni/Ru showed a high level of resistance to sulfur poisoning compared with Ni. This sulfur resistance can be partly explained by trends in sulfur versus ethylene binding energy at different types of sites across the bimetallic surface.

  11. Unusual refinery boiler tube failures due to corrosion by sulfuric acid induced by steam leaks

    SciTech Connect (OSTI)

    Lopez-Lopez, D.; Wong-Moreno, A.

    1998-12-31

    Corrosion by sulfuric acid in boilers is a low probability event because gas temperature and metal temperature of boiler tubes are high enough to avoid the condensation of sulfuric acid from flue gases. This degradation mechanism is frequently considered as an important cause of air preheaters materials degradation, where flue gases are cooled by heat transfer to the combustion air. Corrosion is associated to the presence of sulfuric acid, which condensates if metal temperature (or gas temperature) is below of the acid dew point. In economizer tubes, sulfuric acid corrosion is an unlikely event because flue gas and tube temperatures are normally over the acid dewpoint. In this paper, the failure analysis of generator tubes (similar to the economizer of bigger boilers) of two small oil-fired subcritical boilers is reported. It is concluded that sulfuric acid corrosion was the cause of the failure. The sulfuric acid condensation was due to the contact of flue gases containing SO{sub 3} with water-steam spray coming from leaks at the interface of rolled tube to the drum. Considering the information gathered from these two cases studied, an analysis of this failure mechanism is presented including a description of the thermodynamics condition of water leaking from the drum, and an analysis of the factors favoring it.

  12. Sulfur oxidation to sulfate coupled with electron transfer to electrodes by Desulfuromonas strain TZ1

    SciTech Connect (OSTI)

    Zhang, T; Bain, TS; Barlett, MA; Dar, SA; Snoeyenbos-West, OL; Nevin, KP; Lovley, DR

    2014-01-02

    Microbial oxidation of elemental sulfur with an electrode serving as the electron acceptor is of interest because this may play an important role in the recovery of electrons from sulfidic wastes and for current production in marine benthic microbial fuel cells. Enrichments initiated with a marine sediment inoculum, with elemental sulfur as the electron donor and a positively poised (+300 mV versus Ag/AgCl) anode as the electron acceptor, yielded an anode biofilm with a diversity of micro-organisms, including Thiobacillus, Sulfurimonas, Pseudomonas, Clostridium and Desulfuromonas species. Further enrichment of the anode biofilm inoculum in medium with elemental sulfur as the electron donor and Fe(III) oxide as the electron acceptor, followed by isolation in solidified sulfur/Fe(III) medium yielded a strain of Desulfuromonas, designated strain TZ1. Strain TZ1 effectively oxidized elemental sulfur to sulfate with an anode serving as the sole electron acceptor, at rates faster than Desulfobulbus propionicus, the only other organism in pure culture previously shown to oxidize S with current production. The abundance of Desulfuromonas species enriched on the anodes of marine benthic fuel cells has previously been interpreted as acetate oxidation driving current production, but the results presented here suggest that sulfur-driven current production is a likely alternative.

  13. Low-quality natural gas sulfur removal/recovery

    SciTech Connect (OSTI)

    Damon, D.A. [CNG Research Co., Pittsburgh, PA (United States); Siwajek, L.A. [Acrion Technologies, Inc., Cleveland, OH (United States); Klint, B.W. [BOVAR Inc., AB (Canada). Western Research

    1993-12-31

    Low quality natural gas processing with the integrated CFZ/CNG Claus process is feasible for low quality natural gas containing 10% or more of CO{sub 2}, and any amount of H{sub 2}S. The CNG Claus process requires a minimum CO{sub 2} partial pressure in the feed gas of about 100 psia (15% CO{sub 2} for a 700 psia feed gas) and also can handle any amount of H{sub 2}S. The process is well suited for handling a variety of trace contaminants usually associated with low quality natural gas and Claus sulfur recovery. The integrated process can produce high pressure carbon dioxide at purities required by end use markets, including food grade CO{sub 2}. The ability to economically co-produce high pressure CO{sub 2} as a commodity with significant revenue potential frees process economic viability from total reliance on pipeline gas, and extends the range of process applicability to low quality gases with relatively low methane content. Gases with high acid gas content and high CO{sub 2} to H{sub 2}S ratios can be economically processed by the CFZ/CNG Claus and CNG Claus processes. The large energy requirements for regeneration make chemical solvent processing prohibitive. The cost of Selexol physical solvent processing of the LaBarge gas is significantly greater than the CNG/CNG Claus and CNG Claus processes.

  14. Sulfur dioxide-induced chronic bronchitis in beagle dogs

    SciTech Connect (OSTI)

    Greene, S.A.; Wolff, R.K.; Hahn, F.F.; Henderson, R.F.; Mauderly, J.L.; Lundgren, D.L.

    1984-01-01

    This study was done to produce a model of chronic bronchitis. Twelve beagle dogs were exposed to 500 ppm sulfur dioxide (SO/sub 2/) for 2 h/d, 5d/wk for 21 wk and 4 dogs were sham-exposed to filtered ambient air for the same period. Exposure effects were evaluated by periodically examining the dogs using chest radiographs, pulmonary function, tracheal mucous clearance, and the cellular and soluble components of bronchopulmonary lavage fluids. Dogs were serially sacrificed after 13 and 21 wk of exposure and after 6 and 14 wk of recovery. Clinical signs produced in the SO/sub 2/-exposed dogs included mucoid nasal discharge, productive cough, moist rales on auscultation, tonsilitis, and conjunctivitis. Chest radiographs revealed mild peribronchiolar thickening. Histopathology, tracheal mucous clearance measurements, and lavage cytology were consistent with a diagnosis of chronic bronchitis. It is concluded that repeated exposure to 500 ppm SO/sub 2/ for 21 wk produced chronic bronchitis in the beagle dog. Complete recovery occurred within 5 wk following cessation of SO/sub 2/ exposure. 43 references, 2 figures, 2 tables.

  15. Sulfur gas sensor using a calcium fluoride solid electrolyte

    SciTech Connect (OSTI)

    Toniguchi, M.; Wakihara, M.; Uchida, T.; Hirakawa, K.; Nii, J.

    1988-01-01

    The sulfur gas potentials in the H/sub 2/S + H/sub 2/ buffer gases were measured by a galvanic cell Ps/sub 2/(g),Au(Pt)/(MoS/sub 2/ + CaS)/CaF/sub 2//(Cu + Cu/sub 2/S + CaS)/Au(Pt) in the temperature range from 650/sup 0/ to 950/sup 0/C and Ps/sub 2/ region from 10/sup -2/ to 10/sup -10/ atm. A quick response time (within 5 to 10 min) in emf with the change of Ps/sub 2/ at a given temperature was observed by placing a MoS/sub 2/ and CaS mixed pellet auxiliary electrode at the bottom of the cylindrical single-crystal CaF/sub 2/ electrolyte. The observed emf's agreed well with with those calculated from the Nernst equation. Using this sensor, Ps/sub 2/ values in the SO/sub 2/ + H/sub 2/ + H/sub 2/S gas system were also evaluated from the measured emf at 827/sup 0/C and were found to be in close agreement with those calculated from the thermochemical tables.

  16. (Approximate) Low-Mode Averaging with a new Multigrid Eigensolver

    E-Print Network [OSTI]

    Gunnar Bali; Sara Collins; Andreas Frommer; Karsten Kahl; Issaku Kanamori; Benjamin Müller; Matthias Rottmann; Jakob Simeth

    2015-09-23

    We present a multigrid based eigensolver for computing low-modes of the Hermitian Wilson Dirac operator. For the non-Hermitian case multigrid methods have already replaced conventional Krylov subspace solvers in many lattice QCD computations. Since the $\\gamma_5$-preserving aggregation based interpolation used in our multigrid method is valid for both, the Hermitian and the non-Hermitian case, inversions of very ill-conditioned shifted systems with the Hermitian operator become feasible. This enables the use of multigrid within shift-and-invert type eigensolvers. We show numerical results from our MPI-C implementation of a Rayleigh quotient iteration with multigrid. For state-of-the-art lattice sizes and moderate numbers of desired low-modes we achieve speed-ups of an order of magnitude and more over PARPACK. We show results and develop strategies how to make use of our eigensolver for calculating disconnected contributions to hadronic quantities that are noisy and still computationally challenging. Here, we explore the possible benefits, using our eigensolver for low-mode averaging and related methods with high and low accuracy eigenvectors. We develop a low-mode averaging type method using only a few of the smallest eigenvectors with low accuracy. This allows us to avoid expensive exact eigensolves, still benefitting from reduced statistical errors.

  17. Averaged null energy condition and quantum inequalities in curved spacetime

    E-Print Network [OSTI]

    Eleni-Alexandra Kontou

    2015-07-22

    The Averaged Null Energy Condition (ANEC) states that the integral along a complete null geodesic of the projection of the stress-energy tensor onto the tangent vector to the geodesic cannot be negative. ANEC can be used to rule out spacetimes with exotic phenomena, such as closed timelike curves, superluminal travel and wormholes. We prove that ANEC is obeyed by a minimally-coupled, free quantum scalar field on any achronal null geodesic (not two points can be connected with a timelike curve) surrounded by a tubular neighborhood whose curvature is produced by a classical source. To prove ANEC we use a null-projected quantum inequality, which provides constraints on how negative the weighted average of the renormalized stress-energy tensor of a quantum field can be. Starting with a general result of Fewster and Smith, we first derive a timelike projected quantum inequality for a minimally-coupled scalar field on flat spacetime with a background potential. Using that result we proceed to find the bound of a quantum inequality on a geodesic in a spacetime with small curvature, working to first order in the Ricci tensor and its derivatives. The last step is to derive a bound for the null-projected quantum inequality on a general timelike path. Finally we use that result to prove achronal ANEC in spacetimes with small curvature.

  18. Averaged null energy condition and quantum inequalities in curved spacetime

    E-Print Network [OSTI]

    Kontou, Eleni-Alexandra

    2015-01-01

    The Averaged Null Energy Condition (ANEC) states that the integral along a complete null geodesic of the projection of the stress-energy tensor onto the tangent vector to the geodesic cannot be negative. ANEC can be used to rule out spacetimes with exotic phenomena, such as closed timelike curves, superluminal travel and wormholes. We prove that ANEC is obeyed by a minimally-coupled, free quantum scalar field on any achronal null geodesic (not two points can be connected with a timelike curve) surrounded by a tubular neighborhood whose curvature is produced by a classical source. To prove ANEC we use a null-projected quantum inequality, which provides constraints on how negative the weighted average of the renormalized stress-energy tensor of a quantum field can be. Starting with a general result of Fewster and Smith, we first derive a timelike projected quantum inequality for a minimally-coupled scalar field on flat spacetime with a background potential. Using that result we proceed to find the bound of a qu...

  19. Plasma dynamics and a significant error of macroscopic averaging

    E-Print Network [OSTI]

    Marek A. Szalek

    2005-05-22

    The methods of macroscopic averaging used to derive the macroscopic Maxwell equations from electron theory are methodologically incorrect and lead in some cases to a substantial error. For instance, these methods do not take into account the existence of a macroscopic electromagnetic field EB, HB generated by carriers of electric charge moving in a thin layer adjacent to the boundary of the physical region containing these carriers. If this boundary is impenetrable for charged particles, then in its immediate vicinity all carriers are accelerated towards the inside of the region. The existence of the privileged direction of acceleration results in the generation of the macroscopic field EB, HB. The contributions to this field from individual accelerated particles are described with a sufficient accuracy by the Lienard-Wiechert formulas. In some cases the intensity of the field EB, HB is significant not only for deuteron plasma prepared for a controlled thermonuclear fusion reaction but also for electron plasma in conductors at room temperatures. The corrected procedures of macroscopic averaging will induce some changes in the present form of plasma dynamics equations. The modified equations will help to design improved systems of plasma confinement.

  20. Epidemiological-environemental study of lead acid battery workers. III. Chronic effects of sulfuric acid on the respiratory system and teeth

    SciTech Connect (OSTI)

    Gamble, J.; Jones, W.; Hancock, J.; Meckstroth, R.L.

    1984-10-01

    The effects of long-term exposure to sulfuric acid mist on the teeth and respiratory system were studied in 248 workers in five plants manufacturing lead acid batteries. The prevalence of cough, phlegm, dyspnea, and wheezing as determined by questionnaire were not associated with estimates of cumulative acid exposure. There was only one case of irregular opacities seen on the chest radiographs. There was no statistically significant association of reduced FEV/sub 1/ peak flow, FEF/sub 50/, and FEF/sub 75/ with acid exposure although the higher exposed group had lower mean values. FVC in the high exposure group showed a statistically significant reductioon compared to the low exposure group but there was no significant association when exposure was analyzed as a continuous variable. The ratio of observed to expected prevalence of teeth etching and erosion was about four times greater in the high acid-exposure group. The earliest case of etching occured after 4 months exposure to an estimated average exposure of 0.23 mg/m/sup 3/ sulfuric acid.

  1. Observation of neutral sulfuric acid-amine containing clusters in laboratory and ambient measurements

    SciTech Connect (OSTI)

    Kuang C.; Zhao, J.; Smith, J. N.; Eisele, F. L.; Chen, M.; McMurry, P. H.

    2011-11-02

    Recent ab initio calculations showed that amines can enhance atmospheric sulfuric acid-water nucleation more effectively than ammonia, and this prediction has been substantiated in laboratory measurements. Laboratory studies have also shown that amines can effectively displace ammonia in several types of ammonium clusters. However, the roles of amines in cluster formation and growth at a microscopic molecular scale (from molecular sizes up to 2 nm) have not yet been well understood. Processes that must be understood include the incorporation of amines into sulfuric acid clusters and the formation of organic salts in freshly nucleated particles, which contributes significantly to particle growth rates. We report the first laboratory and ambient measurements of neutral sulfuric acid-amine clusters using the Cluster CIMS, a recently-developed mass spectrometer designed for measuring neutral clusters formed in the atmosphere during nucleation. An experimental technique, which we refer to as Semi-Ambient Signal Amplification (SASA), was employed. Sulfuric acid was added to ambient air, and the concentrations and composition of clusters in this mixture were analyzed by the Cluster CIMS. This experimental approach led to significantly higher cluster concentrations than are normally found in ambient air, thereby increasing signal-to-noise levels and allowing us to study reactions between gas phase species in ambient air and sulfuric acid containing clusters. Mass peaks corresponding to clusters containing four H{sub 2}SO{sub 4} molecules and one amine molecule were clearly observed, with the most abundant sulfuric acid-amine clusters being those containing a C2- or C4-amine (i.e. amines with masses of 45 and 73 amu). Evidence for C3- and C5-amines (i.e. amines with masses of 59 and 87 amu) was also found, but their correlation with sulfuric acid tetramer was not as strong as was observed for the C2- and C4-amines. The formation mechanisms for those sulfuric acid-amine clusters were investigated by varying the residence time in the inlet. It was concluded that the amines react directly with neutral clusters and that ion-induced clustering of sulfuric acid cluster ions with amines was not a dominant process. Results from ambient measurements using the Cluster CIMS without addition of sulfuric acid have shown that the sulfuric acid-amine clusters were reasonably well correlated with sulfuric acid tetramer and consistent with the SASA experiments at the same Boulder sampling site. Also, clusters that contain C2- or C4-amines were more abundant and better correlated with sulfuric acid tetramer than other types of amine containing clusters. However, ambient measurements of sulfuric acid-amine clusters remain difficult and highly uncertain because their concentrations are only slightly above background levels, even during nucleation events.

  2. Mitigation of Sulfur Effects on a Lean NOx Trap Catalyst by Sorbate Reapplication

    SciTech Connect (OSTI)

    Parks, II, James E [ORNL

    2007-01-01

    Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping. Natural gas combusted over partial oxidation catalysts in the exhaust can be used to obtain the rich exhaust conditions necessary for catalyst regeneration. Thus, the lean NOx trap technology is well suited for lean natural gas engine applications. One potential limitation of the lean NOx trap technology is sulfur poisoning. Sulfur compounds directly bond to the NOx trapping sites of the catalyst and render them ineffective; over time, the sulfur poisoning leads to degradation in overall NOx reduction performance. In order to mitigate the effects of sulfur poisoning, a process has been developed to restore catalyst activity after sulfur poisoning has occurred. The process is an aqueous-based wash process that removes the poisoned sorbate component of the catalyst. A new sorbate component is reapplied after removal of the poisoned sorbate. The process is low cost and does not involve reapplication of precious metal components of the catalyst. Experiments were conducted to investigate the feasibility of the washing process on a lean 8.3-liter natural gas engine on a dynamometer platform. The catalyst was rapidly sulfur poisoned with bottled SO2 gas; then, the catalyst sorbate was washed and reapplied and performance was re-evaluated. Results show that the sorbate reapplication process is effective at restoring lost performance due to sulfur poisoning. Specific details relative to the implementation of the process for large stationary natural gas engines will be discussed.

  3. Biodesulfurization techniques: Application of selected microorganisms for organic sulfur removal from coals. Final report

    SciTech Connect (OSTI)

    Elmore, B.B.

    1993-08-01

    As an alternative to post-combustion desulfurization of coal and pre-combustion desulfurization using physicochemical techniques, the microbial desulfurization of coal may be accomplished through the use of microbial cultures that, in an application of various microbial species, may remove both the pyritic and organic fractions of sulfur found in coal. Organisms have been isolated that readily depyritize coal but often at prohibitively low rates of desulfurization. Microbes have also been isolated that may potentially remove the organic-sulfur fraction present in coal (showing promise when acting on organic sulfur model compounds such as dibenzothiophene). The isolation and study of microorganisms demonstrating a potential for removing organic sulfur from coal has been undertaken in this project. Additionally, the organisms and mechanisms by which coal is microbially depyritized has been investigated. Three cultures were isolated that grew on dibenzothiophene (DBT), a model organic-sulfur compound, as the sole sulfur source. These cultures (UMX3, UMX9, and IGTS8) also grew on coal samples as the sole sulfur source. Numerous techniques for pretreating and ``cotreating`` coal for depyritization were also evaluated for the ability to improve the rate or extent of microbial depyritization. These include prewashing the coal with various solvents and adding surfactants to the culture broth. Using a bituminous coal containing 0.61% (w/w) pyrite washed with organic solvents at low slurry concentrations (2% w/v), the extent of depyritization was increased approximately 25% in two weeks as compared to controls. At slurry concentrations of 20% w/v, a tetrachloroethylene treatment of the coal followed by depyritization with Thiobacillus ferrooxidans increased both the rate and extent of depyritization by approximately 10%.

  4. Sulfur containing sediments influenced wear of superheater tubes

    SciTech Connect (OSTI)

    Yoffe, P. [Israel Electric Corp. Ltd., Haifa (Israel)

    1996-10-01

    The failed superheater tube was investigated at the point of failure and at a distance of 25 cm. At both of the cross sections two layers of sediment were detected. The external one contains Na2SO4 and Na3VO3 in concentration relation 6.4:1 approximately. The internal layer that situated on the tube surface consisted of V2O3 mainly (about 70%) and sodium pyrosulfates Na2SO3{center_dot}xSO3. The tube surface was covered with usual passive oxides such as Cr2O3, Fe2CrO4, and magnetite. In the failed section the last layer contained iron and chromium sulfides. Thinning of the wall was detected in both sections, but it was more evident in the failed section. Thermodynamic and kinetic estimations of the results were carried out. The following failure mechanism was proposed: (1) at 460 C the pyrosulfate dissociates with SO3 emanation, during SO3 interaction with steel both passive oxides and iron sulfide are produced simultaneously, sulfides damage the passive (protective) film; (2) in vicinity of partition the temperature increases and the structure of steel is changed, SO3 penetration along grain boundaries is possible, and it leads to embrittlement of the steel through sulfidization; (3) the embrittled layer is stripped off by falling ash deposit and collapsed passive film, thinning of the tube is accelerated at such a region. So, sulfur containing sediment accelerates the wear of the tube. This acceleration is strong especially in the vicinity of the boiler walls.

  5. Average vertical and zonal F region plasma drifts over Jicamarca

    SciTech Connect (OSTI)

    Fejer, B.G.; Gonzalez, S.A. (Utah State Univ., Logan (United States)); de Paula, E.R. (Inst. de Pesquisas Espaciais-INPE, Sao Paulo (Brazil) Utah State Univ., Logan (United States)); Woodman, R.F. (Inst. Geofisico del Peru, Lima (Peru))

    1991-08-01

    The seasonal averages of the equatorial F region vertical and zonal plasma drifts are determined using extensive incoherent scatter radar observations from Jicamarca during 1968-1988. The late afternoon and nighttime vertical and zonal drifts are strongly dependent on the 10.7-cm solar flux. The authors show that the evening prereversal enhancement of vertical drifts increases linearly with solar flux during equinox but tends to saturate for large fluxes during southern hemisphere winter. They examine in detail, for the first time, the seasonal variation of the zonal plasma drifts and their dependence on solar flux and magnetic activity. The seasonal effects on the zonal drifts are most pronounced in the midnight-morning sector. The nighttime eastward drifts increase with solar flux for all seasons but decrease slightly with magnetic activity. The daytime westward drifts are essentially independent of season, solar cycle, and magnetic activity.

  6. Average System Cost Methodology : Administrator's Record of Decision.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1984-06-01

    Significant features of average system cost (ASC) methodology adopted are: retention of the jurisdictional approach where retail rate orders of regulartory agencies provide primary data for computing the ASC for utilities participating in the residential exchange; inclusion of transmission costs; exclusion of construction work in progress; use of a utility's weighted cost of debt securities; exclusion of income taxes; simplification of separation procedures for subsidized generation and transmission accounts from other accounts; clarification of ASC methodology rules; more generous review timetable for individual filings; phase-in of reformed methodology; and each exchanging utility must file under the new methodology within 20 days of implementation by the Federal Energy Regulatory Commission of the ten major participating utilities, the revised ASC will substantially only affect three. (PSB)

  7. The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification

    E-Print Network [OSTI]

    Luo, Qian

    2012-01-01

    sulfur was strongly dependent on coal type. Gryglewicz [19]coal) [9] and other factors such as heating rate, time, pressure and velocity of the carrying gas, type

  8. Toward Understanding the Effect of Nuclear Waste Glass Composition on Sulfur Solubility

    SciTech Connect (OSTI)

    Vienna, John D. [Pacific Northwest National Laboratory; Kim, Dong-Sang [Pacific Northwest National Laboratory; Muller, I. S. [The Catholic University National Laboratory; Kruger, Albert A. [Department of Energy -- Ofice of River Protection; Piepel, Gregory F. [Pacific Northwest National Laboratory

    2014-10-01

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, which in turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5> CaO ? P2O5 > Na2O ? B2O3 > K2O. The components that most decrease sulfur solubility are Cl > Cr2O3 > Al2O3 > ZrO2 ? SnO2 > Others ? SiO2. The order of component effects is similar to previous literature data, in most cases.

  9. Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility

    SciTech Connect (OSTI)

    Vienna, John D.; Kim, Dong-Sang; Muller, Isabelle S.; Piepel, Greg F.; Kruger, Albert A.

    2014-07-24

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, which in turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5> CaO ? P2O5 > Na2O ? B2O3 > K2O. The components that most decrease sulfur solubility are Cl > Cr2O3 > Al2O3 > ZrO2 ? SnO2 > Others ? SiO2. The order of component effects is similar to previous literature data, in most cases.

  10. Computational studies of experimentally observed structures of sulfur on metal surfaces

    SciTech Connect (OSTI)

    Alfonso, Dominic

    2011-09-01

    First-principles electronic structure calculations were carried out to examine the experimentally observed structures of sulfur on close packed surfaces of a number of important metals - Ag(111), Cu(111), Ni(111), Pt(111), Rh(111), Re(0001) and Ru(0001). At low coverages ({le} 1/3 ML), the prediction is consistent with the typical pattern of preferred sulfur occupancy of threefold hollow sites, notably the fcc site on the (111) surfaces and the hcp site on the (0001) surfaces. Theoretical confirmation for the existence of pure sulfur overlayer phases on Pt(111), Rh(111), Re(0001) and Ru(0001) at higher coverages (> 1/3 ML) was provided. For the ({radical}7 x {radical}7) phase seen on Ag(111), the most preferred structure identified for adsorbed S trimer consists of an S atom on the top site bonded to two S atoms situated on the nearest neighbor off-bridge site positions. Among the different densely packed mixed sulfur-metal overlayer models suggested for the ({radical}7 x {radical}7) phase on Cu(111), the structure which consists of metal and S atoms in a hexagonal-like arrangement on the top substrate was found to be the most energetically favorable. For the (5{radical}3 x 2) phase on Ni(111), the calculations confirm the existence of clock-reconstructed top layer metal atoms onto which sulfur atoms are adsorbed.

  11. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control

    SciTech Connect (OSTI)

    Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M. ); Gidaspow, D.; Gupta, R.; Wasan, D.T. ); Pfister, R.M.: Krieger, E.J. )

    1992-05-01

    This topical report on Sulfur Control'' presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT's electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

  12. Mitigation of Sulfur Poisoning of Ni/Zirconia SOFC Anodes by Antimony and Tin

    SciTech Connect (OSTI)

    Marina, Olga A.; Coyle, Christopher A.; Engelhard, Mark H.; Pederson, Larry R.

    2011-02-28

    Surface Ni/Sb and Ni/Sb alloys were found to efficiently minimize the negative effects of sulfur on the performance of Ni/zirconia anode-supported solid oxide fuel cells (SOFC). Prior to operating on fuel gas containing low concentrations of H2S, the nickel/zirconia anodes were briefly exposed to antimony or tin vapor, which only slightly affected the SOFC performance. During the subsequent exposures to 1 and 5 ppm H2S, increases in anodic polarization losses were minimal compared to those observed for the standard nickel/zirconia anodes. Post-test XPS analyses showed that Sb and Sn tended to segregate to the surface of Ni particles, and further confirmed a significant reduction of adsorbed sulfur on the Ni surface in Ni/Sn and Ni/Sb samples compared to the Ni. The effect may be the result of weaker sulfur adsorption on bimetallic surfaces, adsorption site competition between sulfur and Sb or Sn on Ni, or other factors. The use of dilute binary alloys of Ni-Sb or Ni-Sn in the place of Ni, or brief exposure to Sb or Sn vapor, may be effective means to counteract the effects of sulfur poisoning in SOFC anodes and Ni catalysts. Other advantages, including suppression of coking or tailoring the anode composition for the internal reforming, are also expected.

  13. Modified Force-Directed Scheduling for Peak and Average Power Optimization using Multiple Supply-Voltages

    E-Print Network [OSTI]

    Ramanujam, J. "Ram"

    - and a is the average number of transitions per clock phase heuristic for peak and average power cycle at the gate

  14. High-Capacity Sulfur Dioxide Absorbents for Diesel Emissions Control

    SciTech Connect (OSTI)

    Li, Liyu; King, David L.

    2005-01-05

    High capacity sulfur dioxide absorbents based on manganese oxide octahedral molecular sieves (OMS) have been identified. These materials are based on MnO6 octahedra sharing faces and edges to form various tunnel structures (2x2, 2x3, 2x4, 3x3) differentiated by the number of octahedra on a side. The SO2 capacities of these materials, measured at 325 C with a feed containing 250 ppmv SO2 in air, are as high as 70wt% (wt/wt), remarkably higher than conventional metal oxide-based SO2 absorbents. Among the OMS materials the 2x2 member, cryptomelane, exhibits the highest capacity and adsorption rate. Its SO2 absorption behavior has been further characterized as a function of temperature, space velocity, and feed composition. The dominant pathway for SO2 absorption is through the oxidation of SO2 to SO3 by Mn4+ followed by SO3 reaction with Mn2+ to form MnSO4. Absorption can occur in the absence of gas phase oxygen, with a moderate loss in overall capacity. The inclusion of reducible gases NO and CO in the feed does not reduce SO2 capacity. The absorption capacity decreases at high space velocity and lower absorption temperature, indicating the important role of diffusion of sulfate from the surface to the bulk of the material in order to reach full capacity. A color change of cryptomelane from black to yellow-brown after SO2 absorption can be used as an indicator of absorption progress. Cryptomelane can be synthesized using MnSO4 as a reagent. Therefore, after full SO2 absorption the product MnSO4 can be re-used as raw material for a subsequent cryptomelane synthesis. Cryptomelane has a similarly high capacity toward SO3, therefore it can be used for removal of all SOx species generated from a variety of combustion sources. Cryptomelane may find application as a replaceable absorbent for the removal of SOx from diesel truck exhaust, protecting downstream emissions control devices such as particulate filters and NOx traps.

  15. Dosimetry in Mammography: Average Glandular Dose Based on Homogeneous Phantom

    SciTech Connect (OSTI)

    Benevides, Luis A. [Naval Sea Systems Command,1333 Isaac Hull Avenue, Washington Navy Yard, DC 20376 (United States); Hintenlang, David E. [University of Florida, 202 Nuclear Sciences Center, P.O. Box 1183, Gainesville Florida 32611 (United States)

    2011-05-05

    The objective of this study was to demonstrate that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 and 46 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. The clinical dosimetry protocol developed in this study can reliably predict the AGD imparted to an individual patient during a routine screening mammogram.

  16. Long-term average performance benefits of parabolic trough improvements

    SciTech Connect (OSTI)

    Gee, R.; Gaul, H.W.; Kearney, D.; Rabl, A.

    1980-03-01

    Improved parabolic trough concentrating collectors will result from better design, improved fabrication techniques, and the development and utilization of improved materials. The difficulty of achieving these improvements varies as does their potential for increasing parabolic trough performance. The purpose of this analysis is to quantify the relative merit of various technology advancements in improving the long-term average performance of parabolic trough concentrating collectors. The performance benefits of improvements are determined as a function of operating temperature for north-south, east-west, and polar mounted parabolic troughs. The results are presented graphically to allow a quick determination of the performance merits of particular improvements. Substantial annual energy gains are shown to be attainable. Of the improvements evaluated, the development of stable back-silvered glass reflective surfaces offers the largest performance gain for operating temperatures below 150/sup 0/C. Above 150/sup 0/C, the development of trough receivers that can maintain a vacuum is the most significant potential improvement. The reduction of concentrator slope errors also has a substantial performance benefit at high operating temperatures.

  17. Ensemble bayesian model averaging using markov chain Monte Carlo sampling

    SciTech Connect (OSTI)

    Vrugt, Jasper A; Diks, Cees G H; Clark, Martyn P

    2008-01-01

    Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery etal. Mon Weather Rev 133: 1155-1174, 2(05)) has recommended the Expectation-Maximization (EM) algorithm for BMA model training, even though global convergence of this algorithm cannot be guaranteed. In this paper, we compare the performance of the EM algorithm and the recently developed Differential Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo (MCMC) algorithm for estimating the BMA weights and variances. Simulation experiments using 48-hour ensemble data of surface temperature and multi-model stream-flow forecasts show that both methods produce similar results, and that their performance is unaffected by the length of the training data set. However, MCMC simulation with DREAM is capable of efficiently handling a wide variety of BMA predictive distributions, and provides useful information about the uncertainty associated with the estimated BMA weights and variances.

  18. High average power magnetic modulator for copper lasers

    SciTech Connect (OSTI)

    Cook, E.G.; Ball, D.G.; Birx, D.L.; Branum, J.D.; Peluso, S.E.; Langford, M.D.; Speer, R.D.; Sullivan, J.R.; Woods, P.G.

    1991-06-14

    Magnetic compression circuits show the promise of long life for operation at high average powers and high repetition rates. When the Atomic Vapor Laser Isotope Separation (AVLIS) Program at Lawrence Livermore National Laboratory needed new modulators to drive their higher power copper lasers in the Laser Demonstration Facility (LDF), existing technology using thyratron switched capacitor inversion circuits did not meet the goal for long lifetimes at the required power levels. We have demonstrated that magnetic compression circuits can achieve this goal. Improving thyratron lifetime is achieved by increasing the thyratron conduction time, thereby reducing the effect of cathode depletion. This paper describes a three stage magnetic modulator designed to provide a 60 kV pulse to a copper laser at a 4. 5 kHz repetition rate. This modulator operates at 34 kW input power and has exhibited MTBF of {approx}1000 hours when using thyratrons and even longer MTBFs with a series of stack of SCRs for the main switch. Within this paper, the electrical and mechanical designs for the magnetic compression circuits are discussed as are the important performance parameters of lifetime and jitter. Ancillary circuits such as the charge circuit and reset circuit are shown. 8 refs., 5 figs., 1 tab.

  19. Effect of sulfur loading on the desulfation chemistry of a commercial lean NOx trap catalyst

    SciTech Connect (OSTI)

    Kim, Do Heui; Yezerets, Aleksey; Li, Junhui; Currier, Neal; Chen, Haiying; Hess, Howard .; Engelhard, Mark H.; Muntean, George G.; Peden, Charles HF

    2012-12-15

    We investigate the effects of initial sulfur loadings on the desulfation chemistry and the subsequent final activity of a commercial LNT catalyst. Identical total amounts of SO2 are applied to the samples, albeit with the frequency of desulfation varied. The results indicate that performance is better with less frequent desulfations. The greater the amount of sulfur deposited before desulfation, the more amount of SO2 evolution before H2S is observed during desulfation, which can be explained by two sequential reactions; initial conversion of sulfate to SO2, followed by the reduction of SO2 to H2S. After completing all sulfation/desulfation steps, the sample with only a single desulfation results in a fairly uniform sulfur distribution along the z-axis inside of the monolith. We expect that the results obtained in this study will provide useful information for optimizing regeneration strategies in vehicles that utilize the LNT technology.

  20. Desulfurization of organic sulfur from lignite by an electron transfer process

    SciTech Connect (OSTI)

    Demirbas, A. [Selcuk University, Konya (Turkey). Dept. for Chemical Engineering

    2006-10-15

    This study is an attempt to desulfurize organic sulfur from lignite samples with ferrocyanide ion as the electron transferring agent. Effect of temperature, particle size and concentration of ferrocyanide ion on desulfurization from the lignite samples has been investigated. The desulfurization process has been found to be continuous and gradually increases with increase of temperature from 298 to 368 K. The particle size has no significant impact on sulfur removal from the lignite samples. Particle size has no profound impact on the amount of sulfur removal. The desulfurization reaction has been found to be dependent on the concentration of potassium ferrocyanide. Gradual increase in the concentration of potassium ferrocyanide raised the magnitude of desulfurization, but at a higher concentration, the variation is not significant.

  1. Development of Ni-based Sulfur Resistant Catalyst for Diesel Reforming

    SciTech Connect (OSTI)

    Gunther Dieckmann

    2006-06-30

    In order for diesel fuel to be used in a solid oxide fuel cell auxiliary power unit, the diesel fuel must be reformed into hydrogen, carbon monoxide and carbon dioxide. One of the major problems facing catalytic reforming is that the level of sulfur found in low sulfur diesel can poison most catalysts. This report shows that a proprietary low cost Ni-based reforming catalyst can be used to reform a 7 and 50 ppm sulfur containing diesel fuel for over 500 hours of operation. Coking, which appears to be route of catalyst deactivation due to metal stripping, can be controlled by catalyst modifications, introduction of turbulence, and/or by application of an electromagnetic field with a frequency from {approx}50 kHz to 13.56 MHz with field strength greater than about 100 V/cm and more preferably greater about 500 V/cm.

  2. Behavior of sulfur and chlorine in coal during combustion and boiler corrosion

    SciTech Connect (OSTI)

    Chou, C.L.

    1991-01-01

    The purpose of this project is to conduct laboratory experiments to clarify the mechanism of boiler corrosion, which may lead to solving the corrosion problem associated with the utilization of Illinois' high-sulfur and high-chlorine coal. The kinetics of the release of sulfur and chlorine species during coal combustion is being determined in the laboratories using temperature-programmed pyrolysis coupled with quadrupole gas analysis (QGA) and thermogravimetric analysis in conjunction with Fourier transform infrared spectroscopy (FTIR). Samples of boiler deposits and ashes from different locations in boilers using Illinois coal will be analyzed for mineralogical and chemical compositions to understand the relations among deposit compositions, coal compositions, and the gaseous species in combustion gases. The relationship between the level of chlorine in Illinois coal and boiler corrosion will be studied by experiments with simulated combustion gases under combustion conditions. Reduction of sulfur and chloride concentrations in the flue gas using additives will also be evaluated.

  3. Method of removing oxides of sulfur and oxides of nitrogen from exhaust gases

    DOE Patents [OSTI]

    Walker, Richard J. (Bethel Park, PA)

    1986-01-01

    A continuous method is presented for removing both oxides of sulfur and oxides of nitrogen from combustion or exhaust gases with the regeneration of the absorbent. Exhaust gas is cleaned of particulates and HCl by a water scrub prior to contact with a liquid absorbent that includes an aqueous solution of bisulfite and sulfite ions along with a metal chelate, such as, an iron or zinc aminopolycarboxylic acid. Following contact with the combustion gases the spent absorbent is subjected to electrodialysis to transfer bisulfite ions into a sulfuric acid solution while splitting water with hydroxide and hydrogen ion migration to equalize electrical charge. The electrodialysis stack includes alternate layers of anion selective and bipolar membranes. Oxides of nitrogen are removed from the liquid absorbent by air stripping at an elevated temperature and the regenerated liquid absorbent is returned to contact with exhaust gases for removal of sulfur oxides and nitrogen oxides.

  4. Sulfur capture by oil shale ashes under atmospheric and pressurized FBC conditions

    SciTech Connect (OSTI)

    Yrjas, K.P.; Hupa, M. [Aabo Akademi Univ., Turku (Finland). Dept. of Chemical Engineering; Kuelaots, I.; Ots, A. [Tallinn Technical Univ. (Estonia). Thermal Engineering Dept.

    1995-12-31

    When oil shale contains large quantities of limestone, a significant auto-absorption of sulfur is possible under suitable conditions. The sulfur capture by oil shale ashes has been studied using a pressurized thermogravimetric apparatus. The chosen experimental conditions were typical for atmospheric and pressurized fluidized bed combustion. The Ca/S molar ratios in the two oil shales studied were 8 (Estonian) and 10 (Israeli). The samples were first burned in a gas atmosphere containing O{sub 2} and N{sub 2} (and CO{sub 2} if pressurized). After the combustion step, SO{sub 2} was added and sulfation started. The results with the oil shales were compared to those obtained with an oil shale cyclone ash from the Narva power plant in Estonia. In general, the results from the sulfur capture experiments under both atmospheric and pressurized conditions showed that the oil shale cannot only capture its own sulfur but also significant amounts of additional sulfur of another fuel if the fuels are mixed together. For example from the runs at atmospheric pressure, the conversion of CaO to CaSO{sub 4} was about 70% for Israeli oil shale and about 55% for Estonian oil shale (850 C). For the cyclone ash the corresponding conversion was about 20%. In comparison it could be mentioned that under the same conditions the conversions of natural limestones are about 30%. The reason the cyclone ash was a poor sulfur absorbent was probably due to its temperature history. In Narva the oil shale was burned at a significantly higher temperature (1,400 C) than was used in the experiments (750 C and 850 C). This caused the ash to sinter and the reactive surface area of the cyclone ash was therefore decreased.

  5. Sonic enhanced ash agglomeration and sulfur capture. Quarterly technical progress report, April--June 1995

    SciTech Connect (OSTI)

    NONE

    1995-08-01

    A major concern with the utilization of coal in directly fired gas turbines is the control of particulate emissions and reduction of sulfur dioxide, and alkali vapor from combustion of coal, upstream of the gas turbine. Much research and development has been sponsored on methods for particulate emissions control and the direct injection of calcium-based sorbents to reduce SO{sub 2} emission levels. The results of this research and development indicate that both acoustic agglomeration of particulates and direct injection of sorbents have the potential to become a significant emissions control strategy. The Sonic Enhanced Ash Agglomeration and Sulfur Capture program focuses upon the application of an MTCI proprietary invention (Patent No. 5,197,399) for simultaneously enhancing sulfur capture and particulate agglomeration of the combustor effluent. This application can be adapted as either a {open_quotes}hot flue gas cleanup{close_quotes} subsystem for the current concepts for combustor islands or as an alternative primary pulse combustor island in which slagging, sulfur capture, particulate agglomeration and control, and alkali gettering as well as NO{sub x} control processes become an integral part of the pulse combustion process. The goal of the program is to support the DOE mission in developing coal-fired combustion gas turbines. In particular, the MTCI proprietary process for bimodal ash agglomeration and simultaneous sulfur capture will be evaluated and developed. The technology embodiment of the invention provides for the use of standard grind, moderately beneficiated coal and WEM for firing the gas turbine with efficient sulfur capture and particulate emission control upstream of the turbine. The process also accommodates injection of alkali gettering material if necessary. The proposed technology provides for practical, reliable, and capital (and O&M) cost-effective means of protection for the gas turbine from impurities in the coal combustor effluent.

  6. A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol

    SciTech Connect (OSTI)

    Chin, M.; Davis, D.D. [Georgia Institute of Technology, Atlanta, GA (United States)] [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-05-20

    The authors present an analysis of carbonyl sulfide (OCS) in the earth`s atmosphere, with the objective being to assess its role in the formation of sulfate aerosols in the stratosphere. They review the amount of OCS in the atmosphere, its distribution between the troposphere and stratosphere, the estimated source term for emission to the atmosphere, and from one-dimensional model calculations infer a stratospheric lifetime to photochemical reactions of ten years. Calculations infer a sulfur production rate from OCS oxidation which is a factor of 2 to 5 less than recent sulfur aerosol estimates would infer. They discuss a number of possible explanations for the discrepancy.

  7. NO.sub.x reduction by sulfur tolerant coronal-catalytic apparatus and method

    DOE Patents [OSTI]

    Mathur, Virendra K. (Durham, NH); Breault, Ronald W. (Kingston, NH); McLarnon, Christopher R. (Exeter, NH); Medros, Frank G. (Waltham, MA)

    1992-01-01

    This invention presents an NO.sub.x environment effective reduction apparatus comprising a sulfur tolerant coronal-catalyst such as high dielectric coronal-catalysts like glass wool, ceramic-glass wool or zirconium glass wool and method of use. In one embodiment the invention comprises an NO.sub.x reduction apparatus of sulfur tolerant coronal-catalyst adapted and configured for hypercritical presentation to an NO.sub.x bearing gas stream at a minimum of at least about 75 watts/cubic meter.

  8. NOx reduction by sulfur tolerant coronal-catalytic apparatus and method

    DOE Patents [OSTI]

    Mathur, V.K.; Breault, R.W.; McLarnon, C.R.; Medros, F.G.

    1993-08-31

    This invention presents an NO[sub x] environment effective reduction apparatus comprising a sulfur tolerant coronal-catalyst such as high dielectric coronal-catalysts like glass wool, ceramic-glass wool or zirconium glass wool and method of use. In one embodiment the invention comprises an NO[sub x] reduction apparatus of sulfur tolerant coronal-catalyst adapted and configured for hypercritical presentation to an NO[sub x] bearing gas stream at a minimum of at least about 75 watts/cubic meter.

  9. NO.sub.x reduction by sulfur tolerant coronal-catalytic apparatus and method

    DOE Patents [OSTI]

    Mathur, Virendra K. (Durham, NH); Breault, Ronald W. (Kingston, NH); McLarnon, Christopher R. (Exeter, NH); Medros, Frank G. (Waltham, MA)

    1993-01-01

    This invention presents an NO.sub.x environment effective reduction apparatus comprising a sulfur tolerant coronal-catalyst such as high dielectric coronal-catalysts like glass wool, ceramic-glass wool or zirconium glass wool and method of use. In one embodiment the invention comprises an NO.sub.x reduction apparatus of sulfur tolerant coronal-catalyst adapted and configured for hypercritical presentation to an NO.sub.x bearing gas stream at a minimum of at least about 75 watts/cubic meter.

  10. NO[sub x] reduction by sulfur tolerant coronal-catalytic apparatus and method

    DOE Patents [OSTI]

    Mathur, V.K.; Breault, R.W.; McLarnon, C.R.; Medros, F.G.

    1992-09-15

    This invention presents an NO[sub x] environment effective reduction apparatus comprising a sulfur tolerant coronal-catalyst such as high dielectric coronal-catalysts like glass wool, ceramic-glass wool or zirconium glass wool and method of use. In one embodiment the invention comprises an NO[sub x] reduction apparatus of sulfur tolerant coronal-catalyst adapted and configured for hypercritical presentation to an NO[sub x] bearing gas stream at a minimum of at least about 75 watts/cubic meter. 7 figs.

  11. Selective trace determination of sulfur and aluminum using charged particle activation analysis 

    E-Print Network [OSTI]

    Burton, Terrence Dale

    1974-01-01

    for the characterization of ultra-pure materials. In a previous study ( 26) we had analyzed crude oil samples for their sulfur content using the reaction 3 S(p, oc ) P. P is a positron emitter with a half- 29 29 life of 4. . 2 seconds. The 0. 511 MeV gamma... gammas which tended to overload the detector, a lead absorber ( 2" thick) was used. A focused beam of 20 MeV protons was used for irradiating a pure sulfur pellet at very low beam currents (1 nano ampere) and the prompt 2. 23 MeV gamma ray...

  12. Sulfur determination in blood from inhabitants of Brazil using neutron activation analysis

    SciTech Connect (OSTI)

    Oliveira, Laura C.; Zamboni, Cibele B.

    2013-05-06

    In this study the NAA technique was applied to analyze sulfur in blood from inhabitants of Brazil for the proposition of an indicative interval. The measurements were performed considering lifestyle factors (non-smokers, non-drinkers and no history of toxicological exposure) of Brazilian inhabitants. The influence of gender was also investigated considering several age ranges (18-29, 30-39, 40-49, >50 years). These data are useful in clinical investigations, to identify or prevent diseases caused by inadequate sulfur ingestion and for nutritional evaluation of Brazilian population.

  13. Preliminary analysis of patent trends for sodium/sulfur battery technology

    SciTech Connect (OSTI)

    Triplett, M.B.; Winter, C.; Ashton, W.B.

    1985-07-01

    This document summarizes development trends in sodium/sulfur battery technology based on data from US patents. Purpose of the study was to use the activity, timing and ownership of 285 US patents to identify and describe broad patterns of change in sodium/sulfur battery technology. The analysis was conducted using newly developed statistical and computer graphic techniques for describing technology development trends from patent data. This analysis suggests that for some technologies trends in patent data provide useful information for public and private R and D planning.

  14. Toxicology Studies on Lewisite and Sulfur Mustard Agents: Modified Dominant Lethal Study of Sulfur Mustard in Rats Final Report

    SciTech Connect (OSTI)

    Sasser, L. B.; Cushing, J. A.; Kalkwarf, D. R.; Buschbom, R. L.

    1989-05-01

    Occupational health standards have not been established for sulfur mustard (HD) [bis{2-chloroethyl)-sulfide) ' a strong alkylating agent with known mutagenic properties. Little, however, is known about the mutagenic activity of HD in mammalian species and data regarding the dominant lethal effects of HD are ambiguous. The purpose of this study was to determine the dominant lethal effect in male and female rats orally exposed to HD. The study was conducted in two phases; a female dominant lethal phase and a male dominant lethal phase. Sprague-Dawley rats of each sex were administered 0.08, 0.20, or 0.50 mg/kg HD in sesame oil 5 days/week for 10 weeks. For the female phase, treated or untreated males were mated with treated females and their fetuses were evaluated at approximately 14 days after copulation. For the male dominant lethal phase, treated males cohabited with untreated femal (during 5 days of each week for 10 weeks) and females were sacrificed for fetal evaluation 14 days after the midweek of cohabitation during each of the 10 weeks. The appearance and behavior of the rats were unremarkable throughout the experiment and there were no treatment-related deaths. Growth rates were reduced in both female and male rats treated with 0.50 mg/kg HD. Indicators of reproductive performance did not demonstrate significant female dominant lethal effects, although significant male dominant lethal effects were observed at 2 and 3 week post-exposure. These effects included increases of early fetal resorptions and preimplantation losses and decreases of total live embryo implants. These effects were most consistently observed at a dose of 0.50 mg/kg, but frequently occurred at the lower doses. Although no treatment-related effects on male reproductive organ weights or sperm motility were found, a significant increase in the percentage of abnormal sperm was detected in males exposed to 0. 50 mg/kg HD. The timing of these effects is consistent with an effect during the postmeiotic stages of spermatogenesis, possibly involving the generally sensitive spermatids.

  15. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park. 1: The origin of thiosulfate in hot spring waters

    SciTech Connect (OSTI)

    Xu, Y.; Schoonen, M.A.A. [SUNY, Stony Brook, NY (United States). Dept. of Geosciences] [SUNY, Stony Brook, NY (United States). Dept. of Geosciences; Nordstrom, D.K.; Cunningham, K.M.; Ball, J.W. [Geological Survey, Boulder, CO (United States). Water Resources Div.] [Geological Survey, Boulder, CO (United States). Water Resources Div.

    1998-12-01

    Thiosulfate (S{sub 2}O{sub 3}{sup 2{minus}}), polythionate (S{sub x}O{sub 6}{sup 2{minus}}), dissolved sulfide (H{sub 2}S), and sulfate (SO{sub 4}{sup 2{minus}}) concentrations in thirty-nine alkaline and acidic springs in Yellowstone National Park (YNP) were determined. The analyses were conducted on site, using ion chromatography for thiosulfate, polythionate, and sulfate, and using colorimetry for dissolved sulfide. Thiosulfate was detected at concentrations typically less than 2 {micro}mol/L in neutral and alkaline chloride springs with low sulfate concentrations (Cl{sup {minus}}/SO{sub 4}{sup 2{minus}} > 25). The thiosulfate concentration levels are about one to two orders of magnitude lower than the concentration of dissolved sulfide in these springs. In most acid sulfate and acid sulfate-chloride springs (Cl{sup {minus}}/SO{sub 4}{sup 2{minus}} < 10), thiosulfate concentrations were also typically lower than 2 {micro}mol/L. However, in some chloride springs enriched with sulfate (Cl{sup {minus}}/SO{sub 4}{sup 2{minus}} between 10 and 25), thiosulfate was found at concentrations ranging from 9 to 95 {micro}mol/L, higher than the concentrations of dissolved sulfide in these waters. Polythionate was detected only in Cinder Pool, Norris Geyser basin, at concentrations up to 8 {micro}mol/L, with an average S-chain-length from 4.1 to 4.9 sulfur atoms. The results indicate that no thiosulfate occurs in the deeper parts of the hydrothermal system. Thiosulfate may form, however, from (1) hydrolysis of native sulfur by hydrothermal solutions in the shallower parts (<50 m) of the system, (2) oxidation of dissolved sulfide upon mixing of a deep hydrothermal water with aerated shallow groundwater, and (3) the oxidation of dissolved sulfide by dissolved oxygen upon discharge of the hot spring. Upon discharge of a sulfide-containing hydrothermal water, oxidation proceeds rapidly as atmospheric oxygen enters the water. The transfer of oxygen is particularly effective if the hydrothermal discharge is turbulent and has a large surface area.

  16. Structure of the Archaeoglobus fulgidus orphan ORF AF1382 determined by sulfur SAD from a moderately diffracting crystal

    SciTech Connect (OSTI)

    Zhu, Jin-Yi; Fu, Zheng-Qing; Chen, Lirong; Xu, Hao; Chrzas, John; Rose, John Wang, Bi-Cheng

    2012-09-01

    The crystal structure of the 11.14 kDa orphan ORF 1382 from Archaeoglobus fulgidus (AF1382) has been determined by sulfur SAD phasing using data collected from a moderately diffracting crystal and 1.9 Å synchrotron X-rays. The crystal structure of the 11.14 kDa orphan ORF 1382 from Archaeoglobus fulgidus (AF1382) has been determined by sulfur SAD phasing using a moderately diffracting crystal and 1.9 Å wavelength synchrotron X-rays. AF1382 was selected as a structural genomics target by the Southeast Collaboratory for Structural Genomics (SECSG) since sequence analyses showed that it did not belong to the Pfam-A database and thus could represent a novel fold. The structure was determined by exploiting longer wavelength X-rays and data redundancy to increase the anomalous signal in the data. AF1382 is a 95-residue protein containing five S atoms associated with four methionine residues and a single cysteine residue that yields a calculated Bijvoet ratio (?F{sub anom}/F) of 1.39% for 1.9 Å wavelength X-rays. Coupled with an average Bijvoet redundancy of 25 (two 360° data sets), this produced an excellent electron-density map that allowed 69 of the 95 residues to be automatically fitted. The S-SAD model was then manually completed and refined (R = 23.2%, R{sub free} = 26.8%) to 2.3 Å resolution. High-resolution data were subsequently collected from a better diffracting crystal using 0.97 Å wavelength synchrotron X-rays and the S-SAD model was refined (R = 17.9%, R{sub free} = 21.4%) to 1.85 Å resolution. AF1382 has a winged-helix–turn–helix structure common to many DNA-binding proteins and most closely resembles the N-terminal domain (residues 1–82) of the Rio2 kinase from A. fulgidus, which has been shown to bind DNA, and a number of MarR-family transcriptional regulators, suggesting a similar DNA-binding function for AF1382. The analysis also points out the advantage gained from carrying out data reduction and structure determination on-site while the crystal is still available for further data collection.

  17. ATMOSPHERIC CHEMISTRY IN GIANT PLANETS, BROWN DWARFS, AND LOW-MASS DWARF STARS. II. SULFUR AND PHOSPHORUS

    E-Print Network [OSTI]

    ATMOSPHERIC CHEMISTRY IN GIANT PLANETS, BROWN DWARFS, AND LOW-MASS DWARF STARS. II. SULFUR AND PHOSPHORUS Channon Visscher, Katharina Lodders, and Bruce Fegley, Jr. Planetary Chemistry Laboratory to model sulfur and phosphorus chemistry in giant planets, brown dwarfs, and extrasolar giant planets (EGPs

  18. Carbon Flow of Heliobacteria Is Related More to Clostridia than to the Green Sulfur Bacteria*S

    E-Print Network [OSTI]

    Alvarez-Cohen, Lisa

    Carbon Flow of Heliobacteria Is Related More to Clostridia than to the Green Sulfur Bacteria*S, California 94720 The recently discovered heliobacteria are the only Gram-pos- itive photosynthetic bacteria the photosynthetic green sulfur bacteria (containing the type I reaction center) and Clostridia (forming heat

  19. Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost and equipment

    E-Print Network [OSTI]

    Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost gas instead of continuing to burn low-sulfur fuel oil, a report said. Switching to liquefied natural who switch from gasoline-powered vehicles to ones fueled by compressed natural gas could save as much

  20. Insertion of Elemental Sulfur and SO2 into the Metal-Hydride and Metal-Carbon Bonds of Platinum

    E-Print Network [OSTI]

    Jones, William D.

    and other alkyl and aryl compounds, followed by insertion of sulfur-bearing species to syn- thesize sulfur-bearing or main- group metals.2,3 A second resonance is seen in the 31P NMR spectrum at 67.02 (JPtP ) 1811 Hz

  1. Improved Visible Light Harvesting of WO3 by Incorporation of Sulfur or Iodine: A Tale of Two Impurities

    E-Print Network [OSTI]

    Lin, Jung-Fu "Afu"

    Improved Visible Light Harvesting of WO3 by Incorporation of Sulfur or Iodine: A Tale of Two report the incorporation of sulfur or iodine into monoclinic tungsten trioxide (S:WO3 or I:WO3 pyrolysis with either ammonium sulfide or iodide added to the aqueous WO3 precursor solutions. Red shifts

  2. Development of bulk-type all-solid-state lithium-sulfur battery using LiBH{sub 4} electrolyte

    SciTech Connect (OSTI)

    Unemoto, Atsushi, E-mail: unemoto@imr.tohoku.ac.jp; Ikeshoji, Tamio [WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yasaku, Syun; Matsuo, Motoaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Nogami, Genki; Tazawa, Masaru; Taniguchi, Mitsugu [Mitsubishi Gas Chemicals Co., Ltd., 182 Tayuhama Shinwari, Kita-ku, Niigata 950-3112 (Japan); Orimo, Shin-ichi [WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-08-25

    Stable battery operation of a bulk-type all-solid-state lithium-sulfur battery was demonstrated by using a LiBH{sub 4} electrolyte. The electrochemical activity of insulating elemental sulfur as the positive electrode was enhanced by the mutual dispersion of elemental sulfur and carbon in the composite powders. Subsequently, a tight interface between the sulfur-carbon composite and the LiBH{sub 4} powders was manifested only by cold-pressing owing to the highly deformable nature of the LiBH{sub 4} electrolyte. The high reducing ability of LiBH{sub 4} allows using the use of a Li negative electrode that enhances the energy density. The results demonstrate the interface modification of insulating sulfur and the architecture of an all-solid-state Li-S battery configuration with high energy density.

  3. HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS

    SciTech Connect (OSTI)

    Gorensek, M.; Summers, W.; Boltrunis, C.; Lahoda, E.; Allen, D.; Greyvenstein, R.

    2009-05-12

    This report documents a detailed study to determine the expected efficiency and product costs for producing hydrogen via water-splitting using energy from an advanced nuclear reactor. It was determined that the overall efficiency from nuclear heat to hydrogen is high, and the cost of hydrogen is competitive under a high energy cost scenario. It would require over 40% more nuclear energy to generate an equivalent amount of hydrogen using conventional water-cooled nuclear reactors combined with water electrolysis compared to the proposed plant design described herein. There is a great deal of interest worldwide in reducing dependence on fossil fuels, while also minimizing the impact of the energy sector on global climate change. One potential opportunity to contribute to this effort is to replace the use of fossil fuels for hydrogen production by the use of water-splitting powered by nuclear energy. Hydrogen production is required for fertilizer (e.g. ammonia) production, oil refining, synfuels production, and other important industrial applications. It is typically produced by reacting natural gas, naphtha or coal with steam, which consumes significant amounts of energy and produces carbon dioxide as a byproduct. In the future, hydrogen could also be used as a transportation fuel, replacing petroleum. New processes are being developed that would permit hydrogen to be produced from water using only heat or a combination of heat and electricity produced by advanced, high temperature nuclear reactors. The U.S. Department of Energy (DOE) is developing these processes under a program known as the Nuclear Hydrogen Initiative (NHI). The Republic of South Africa (RSA) also is interested in developing advanced high temperature nuclear reactors and related chemical processes that could produce hydrogen fuel via water-splitting. This report focuses on the analysis of a nuclear hydrogen production system that combines the Pebble Bed Modular Reactor (PBMR), under development by PBMR (Pty.) Ltd. in the RSA, with the Hybrid Sulfur (HyS) Process, under development by the Savannah River National Laboratory (SRNL) in the US as part of the NHI. This work was performed by SRNL, Westinghouse Electric Company, Shaw, PBMR (Pty) Ltd., and Technology Insights under a Technical Consulting Agreement (TCA). Westinghouse Electric, serving as the lead for the PBMR process heat application team, established a cost-shared TCA with SRNL to prepare an updated HyS thermochemical water-splitting process flowsheet, a nuclear hydrogen plant preconceptual design and a cost estimate, including the cost of hydrogen production. SRNL was funded by DOE under the NHI program, and the Westinghouse team was self-funded. The results of this work are presented in this Final Report. Appendices have been attached to provide a detailed source of information in order to document the work under the TCA contract.

  4. Sulfur Emissions from Volcanic A c t i v i t y i n 1985 and 1990 Carmen M. Benkovitz and M. A l t a f Mubaraki

    E-Print Network [OSTI]

    APPENDIX C Sulfur Emissions from Volcanic A c t i v i t y i n 1985 and 1990 Carmen M. Benkovitz). Global estimates o f anthropogenic emissions o f sulfur f o r 1985 are approximately 65 Tg S y-l (Benkovi Anthropogenic Sulfur Emissions f o r 1985 and 1990 i n t h i s report). Sulfur from biogenic sources i s emitted

  5. Development of a real-time PCR method for the detection of fossil 16S rDNA fragments of phototrophic sulfur bacteria

    E-Print Network [OSTI]

    Gilli, Adrian

    of phototrophic sulfur bacteria in the sediments of Lake Cadagno D. F. RAVASI,1 S. PEDUZZI,1 , 2 V. GUIDI,2 , 3 R sulfur bacteria in the chemocline has been monitored since 1994 with molecular methods such as 16S r sulfur bacteria populations from sediment samples. We detected fossil 16S rDNA of nine populations

  6. New Model to Predict Formation Damage due to Sulfur Deposition in Sour M.A. Mahmoud and A.A. Al-Majed, KFUPM, all SPE

    E-Print Network [OSTI]

    Al-Majed, Abdulaziz Abdullah

    SPE 149535 New Model to Predict Formation Damage due to Sulfur Deposition in Sour Gas Wells M of SPE copyright. Abstract Elemental sulfur (S8) is often present in considerable amounts in sour gas to deposit in the formation. Sulfur deposition can cause severe loss in the pore space available for gas

  7. Attrition resistant, zinc titanate-containing, reduced sulfur sorbents and methods of use thereof

    DOE Patents [OSTI]

    Vierheilig, Albert A.; Gupta, Raghubir P.; Turk, Brian S.

    2006-06-27

    Reduced sulfur gas species (e.g., H.sub.2S, COS and CS.sub.2) are removed from a gas stream by compositions wherein a zinc titanate ingredient is associated with a metal oxide-aluminate phase material in the same particle species. Nonlimiting examples of metal oxides comprising the compositions include magnesium oxide, zinc oxide, calcium oxide, nickel oxide, etc.

  8. Study on removal of organic sulfur compound by modified activated carbon

    SciTech Connect (OSTI)

    Fan Huiling; Li Chunhu; Guo Hanxian [Taiyuan Univ. of Technology (China). Research Inst. for Chemical Engineering of Coal

    1997-12-31

    With the price of coal increasing in China, more and more small and medium scale chemical plants are turning to high sulfur coal as the raw material in order to cut cost. However, the major drawback is that the lifetime of the ammonia synthesis catalyst is then reduced greatly because of the high concentration of the sulfur compounds in the synthesis gas, especially organic sulfur, usually CS{sub 2} and COS. The effects of water vapor and experimental temperature on removal of organic sulfur compounds by using a modified activated carbon were studied in this paper. It was found that water vapor had a negative effect on removal of carbon disulfide by activated carbon impregnated with organic amine. The use of activated carbon impregnated with K{sub 2}CO{sub 3} for removal of carbonyl sulfide was also investigated over the temperature range 30--60, the results show a favorable temperature (40) existing for carbonyl sulfide removal. Fixed-bed breakthrough curves for the adsorbent bed were also offered in this paper.

  9. Understanding Sulfur Poisoning and Regeneration of Nickel Biomass Conditioning Catalysts using X-Ray Absorption Spectroscopy

    SciTech Connect (OSTI)

    Yung, M. M.; Cheah, S.; Kuhn, J. N.

    2013-01-01

    The production of biofuels can proceed via a biomass gasification to produce syngas, which can then undergo catalytic conditioning and reforming reactions prior to being sent to a fuel synthesis reactor. Catalysts used for biomass conditioning are plagued by short lifetimes which are a result of, among other things, poisoning. Syngas produced from biomass gasification may contain between 30-300 ppm H2S, depending on the feedstock and gasification conditions, and H2S is a key catalyst poison. In order to overcome catalyst poisoning, either an H2S-tolerant catalyst or an efficient regeneration protocol should be employed. In this study, sulfur K-edge X-ray absorption near edge spectroscopy (XANES) was used to monitor sulfur species on spent catalyst samples and the transformation of these species from sulfides to sulfates during steam and air regeneration on a Ni/Mg/K/Al2O3 catalyst used to condition biomass-derived syngas. Additionally, nickel K-edge EXAFS and XANES are used to examine the state of nickel species on the catalysts. Post-reaction samples showed the presence of sulfides on the H2S-poisoned nickel catalyst and although some gaseous sulfur species were observed to leave the catalyst bed during regeneration, sulfur remained on the catalyst and a transformation from sulfides to sulfates was observed. The subsequent H2 reduction led to a partial reduction of sulfates back to sulfides. A proposed reaction sequence is presented and recommended regeneration strategies are discussed.

  10. Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel Simulants

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel is a critical path for the use of jet fuels in powering the commercial growth of fuel cell systems for air the fuel through adsorptive methods is not practical for long term operations. The current work describes

  11. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification

    E-Print Network [OSTI]

    Mahowald, Natalie

    3 and H2SO4) and bases (NH3) alter surface seawater alkalinity, pH, and inorganic carbon storage. We and alkaline in the tropics because of am- monia inputs. However, because most of the excess ammonia Tmol/yr), ammonia (NH3, 4 Tmol/yr), and sulfur dioxide (SO2, 2 Tmol/yr) to the atmosphere (1). Globally

  12. Evidence of Quinone Metabolites of Naphthalene Covalently Bound to Sulfur Nucleophiles of Proteins of

    E-Print Network [OSTI]

    Hammock, Bruce D.

    Evidence of Quinone Metabolites of Naphthalene Covalently Bound to Sulfur Nucleophiles of Proteins in the mouse is associated with the covalent binding of electrophilic metabolites to cellular proteins. Epoxide binding to proteins. To identify the nature of reactive metabolites bound to proteins (cysteine residues

  13. Multilayer sulfur-resistant composite metal membranes and methods of making and repairing the same

    DOE Patents [OSTI]

    Way, J. Douglas; Hatlevik, Oyvind

    2014-07-15

    The invention relates to thin, hydrogen-permeable, sulfur-resistant membranes formed from multi-layers of palladium or palladium-alloy coatings on porous, ceramic or metal supports, methods of making these membranes, methods of repairing layers of these membranes and devices that incorporate these membranes.

  14. Sonic enhanced ash agglomeration and sulfur capture. Quarterly report, January 1996--March 1996

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    A major concern with the utilization of coal in directly fired gas turbines is the control of particulate emissions and reduction of sulfur dioxide, and alkali vapor from combustion of coal, upstream of the gas turbine. Much research and development has been sponsored on methods for particulate emissions control and the direct injection of calcium-based sorbents to reduce SO{sub 2} emission levels. The results of this research and development indicate that both acoustic agglomeration of particulates and direct injection of sorbents have the potential to become a significant emissions control strategy. The Sonic Enhanced Ash Agglomeration and Sulfur Capture program focuses upon the application of an MTCI proprietary invention (Patent No. 5,197,399) for simultaneously enhancing sulfur capture and particulate agglomeration of the combustor effluent. This application can be adapted as either a {open_quotes}hot flue gas cleanup{close_quotes} subsystem for the current concepts for combustor islands or as an alternative primary pulse combustor island in which stagging, sulfur capture, particulate agglomeration and control, and alkali gettering as well as NO{sub x} control processes become an integral part of the pulse combustion process.

  15. Sonic Enhanced Ash Agglomeration and Sulfur Capture. Technical progress report, October 1992--December 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    A major concern with the utilization of coal in directly fired gas turbines is the control of particulate emissions and reduction of sulfur dioxide, and alkali vapor from combustion of coal, upstream of the gas turbine. Much research and development has been sponsored on methods for particulate emissions control and the direct injection of calcium-based sorbents to reduce SO{sub 2} emission levels. The results of this research and development indicate that both acoustic agglomeration of particulates and direct injection of sorbents have the potential to become a significant emissions control strategy. The Sonic Enhanced Ash Agglomeration and Sulfur Capture program focuses upon the application of an MTCI proprietary invention (Invention Disclosure filed) for simultaneously enhancing sulfur capture and particulate agglomeration of the combustor effluent. This application can be adapted as either a ``hot flue gas cleanup`` subsystem for the current concepts for combustor islands or as an alternative primary pulse combustor island in which slagging, sulfur capture, particulate agglomeration and control, and alkali gettering as well as NO{sub x} control processes become an integral part of the pulse combustion process.

  16. Remote Sensing of Ammonia and Sulfur Dioxide from On-Road Light

    E-Print Network [OSTI]

    Denver, University of

    Remote Sensing of Ammonia and Sulfur Dioxide from On-Road Light Duty Vehicles D A N I E L A . B U R by dynamometer (16), remote sensing (17), and recently by a chase vehicle (18). Results from these studies vary

  17. Mechanistic Modeling of Sulfur-Deprived Photosynthesis and Hydrogen Production in

    E-Print Network [OSTI]

    Mechanistic Modeling of Sulfur-Deprived Photosynthesis and Hydrogen Production in Suspensions linked to the photosynthetic chain in such a way that hydrogen and oxygen production need to be separated- modate the production of hydrogen gas by partially- deactivating O2 evolution activity, leading

  18. Evidence of recovery of Juniperus virginiana trees from sulfur pollution after the Clean Air Act

    E-Print Network [OSTI]

    Nippert, Jesse

    Evidence of recovery of Juniperus virginiana trees from sulfur pollution after the Clean Air Act decades of acidic pollution. Acid deposition over much of the 20th century reduced stomatal conductance and temporal gradients in natural systems. For over a century, the combustion of fossil fuels resulted

  19. 1794 J. Phys. Chem. 1988, 92, 1794-1803 Photoelectron Spectroscopy of Sulfur Ions

    E-Print Network [OSTI]

    Ellison, Barney

    in combustion p r o c e s ~ e s . ~ ~ ~Early workes focused on the pho- toelectron spectra of 02-,OH-, HOC, CH30 in air pollution and acid rain. Less well studied are the divalent, reduced forms of sulfur important in combustion. Another, CH3SCH2-,is an example of a carbanion with an electron

  20. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect (OSTI)

    K.C. Kwon

    2005-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 0.059-0.87 seconds at 125-155 C to evaluate effects of reaction temperature, H{sub 2}S concentration, reaction pressure, and catalyst loading on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 62-78 v% hydrogen, 3,000-7,000-ppmv hydrogen sulfide, 1,500-3,500 ppmv sulfur dioxide, and 10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 50 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an oven at 125-155 C. The pressure of the reactor is maintained at 40-170 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the bubble reactor is maintained at 2 for all the reaction experiment runs.

  1. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect (OSTI)

    K.C. Kwon

    2004-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 1-6 milliseconds at 125-155 C to evaluate effects of reaction temperature, moisture concentration, reaction pressure on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 70 v% hydrogen, 2,500-7,500-ppmv hydrogen sulfide, 1,250-3,750 ppmv sulfur dioxide, and 0-15 vol% moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 100 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an oven at 125-155 C. The pressure of the reactor is maintained at 40-170 psia.

  2. CRADA Final Report For CRADA NO. CR-12-006 [Operation and Testing of an SO{sub 2}-depolarized Electrolyzer (SDE) for the Purpose of Hydrogen and Sulfuric Acid Production

    SciTech Connect (OSTI)

    Summers, W. A.; Colon-Mercado, H. R.; Steimke, J. L.; Zahn, Steffen

    2014-02-24

    Over the past several years, Savannah River National Laboratory (SRNL) has led a team of collaborators under the Department of Energy’s (DOE) nuclear hydrogen production program to develop the Hybrid Sulfur (HyS) Process. HyS is a 2-step water-splitting process consisting of high temperature decomposition of sulfuric acid to generate SO{sub 2}, followed by the electrolysis of aqueous SO{sub 2} to generate hydrogen and sulfuric acid. The latter is fed back into the high temperature reactor. SRNL designed and built an SO{sub 2}-depolarized electrolyzer (SDE) and a test facility. Over 40 SDE’s were tested using different catalysts, membranes and other components. SRNL demonstrated that an SDE could be operated continuously for approximately 200 hours under certain conditions without buildup of sulfur at the SDE’s cathode, thus solving a key technical problem with SDE technology. Air Products and Chemicals, Inc. (APCI) is a major supplier of hydrogen production systems, and they have proprietary technology that could benefit from the SDE developed by SRNS, or some improved version thereof. However, to demonstrate that SRNL’s SDE is a truly viable approach to the electrolyzer design, continuous operation for far greater periods of time than 200 hours must be demonstrated, and the electrolyzer must be scaled up to greater hydrogen production capacities. SRNL and Air Products entered into a Cooperative Research and Development Agreement with the objective of demonstrating the effectiveness of the SDE for hydrogen and sulfuric acid production and to demonstrate long-term continuous operation so as to dramatically increase the confidence in the SDE design for commercial operation. SRNL prepared a detailed technical report documenting previous SDE development, including the current SDE design and operating conditions that led to the 200-hour sulfurfree testing. SRNL refurbished its single cell SDE test facility and qualified the equipment for continuous operation. A new membrane electrode assembly (MEA) was fabricated and installed in the single cell electrolyzer (60 cm{sup 2} active cell area). Shakedown testing was conducted, and several modifications were made to the test facility equipment. Seven different MEAs were used during testing. Beginning on May 20, 2013, SRNL was able to test the SDE continuously for 1200 hours, including 1000 hours under power to generate hydrogen at an average rate of 10.8 liters per hour. The SDE was not removed or repaired during the 50-day test and was successfully restarted after each shutdown. The test was intentionally stopped after 1200 hours (1000 hours of hydrogen production) due to funding constraints. Post-test examination of the MEA using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Microanalysis (EDAX) showed no elemental sulfur deposits or sulfur layer inside the cell, thus successfully achieving the test goals. The results demonstrated that the SDE could be operated for extended periods without major performance degradation or the buildup of sulfur inside the MEA. Air Products conducted an assessment of the economic viability of the SDE based on the “as tested” design. The results indicated that the SDE faces significant economic obstacles in its current state. Further development and scale-up are necessary before the SDE is ready for commercialization.

  3. LTB universes as alternatives to dark energy: does positive averaged acceleration imply positive cosmic acceleration?

    E-Print Network [OSTI]

    Antonio Enea Romano

    2007-01-27

    We show that positive averaged acceleration obtained in LTB models through spatial averaging can require integration over a region beyond the event horizon of the central observer. We provide an example of a LTB model with positive averaged acceleration in which the luminosity distance does not contain information about the entire spatially averaged region, making the averaged acceleration unobservable. Since the cosmic acceleration is obtained from fitting the observed luminosity distance to a FRW model we conclude that in general a positive averaged acceleration in LTB models does not imply a positive FRW cosmic acceleration.

  4. LTB universes as alternatives to dark energy: does positive averaged acceleration imply positive cosmic acceleration?

    E-Print Network [OSTI]

    Romano, A E

    2006-01-01

    We show that positive averaged acceleration obtained in LTB models through spatial averaging can require integration over a region beyond the event horizon of the central observer. We provide an example of a LTB model with positive averaged acceleration in which the luminosity distance does not contain information about the entire spatially averaged region, making the averaged acceleration unobservable. Since the cosmic acceleration is obtained from fitting the observed luminosity distance to a FRW model we conclude that in general a positive averaged acceleration in LTB models does not imply a positive FRW cosmic acceleration.

  5. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    SciTech Connect (OSTI)

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  6. Analyzing organic sulfur in coal/char: Integrated mild gasification/XANES methods. Technical report, 1 March--31 May 1994

    SciTech Connect (OSTI)

    Palmer, S.R. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes; Huffman, G.P. [Kentucky Univ., Lexington, KY (United States)

    1994-09-01

    The overall goal of this study is to improve the understanding of sulfur in coals/chars via the use of combined advanced non-destructive and advanced destructive methods of sulfur analysis. This study combines selective oxidation, analytical pyrolysis, and sulfur X-ray Absorption Near Edge Structure Spectroscopy (XANES) analysis. Samples with a wide variety of sulfur contents, (0.63% to 4.40%) have been prepared for use in this study. This includes steam gasification chars, oxidized coals and desulfurized coals as well of the original unaltered coals. Mild pyrolysis and preliminary XANES data shows that the sulfur chemistry of gasification chars is significantly different from that of the original coals. Mild pyrolysis of the samples that were oxidized with peroxyacetic acid showed that the level of simple thiophene structures observed in the pyrolysis products declines with increasing levels of oxidation. Sulfur XANES spectra of treated samples showed various effects depending on the treatment severity. For the less severely treated samples (demineralization and solvent extraction), the XANES spectra were similar, although not identical, to the untreated coal spectra, whereas the more severe treatments (steam at 450 C; peroxyacetic acid at 25 C) showed preferential oxidation of one or more sulfur-bearing phases in the original coal. Additional samples have recently been examined by XANES and W-band EPR and the data is currently being processed and evaluated.

  7. Interfacial reaction dependent performance of hollow carbon nanosphere - sulfur composite as a cathode for Li-S battery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Jianming; Yan, Pengfei; Gu, Meng; Wagner, Michael J.; Hays, Kevin A.; Chen, Junzheng; Li, Xiaohong S.; Wang, Chong M.; Zhang, Ji -Guang; Liu, Jun; et al

    2015-05-26

    Lithium-sulfur (Li-S) battery is a promising energy storage system due to its high energy density, cost effectiveness and environmental friendliness of sulfur. However, there are still a number of challenges, such as low Coulombic efficiency and poor long-term cycling stability, impeding the commercialization of Li-S battery. The electrochemical performance of Li-S battery is closely related with the interfacial reactions occurring between hosting substrate and active sulfur species which are poorly conducting at fully oxidized and reduced states. Here, we correlate the relationship between the performance and interfacial reactions in the Li-S battery system, using a hollow carbon nanosphere (HCNS) withmore »highly graphitic character as hosting substrate for sulfur. With an appropriate amount of sulfur loading, HCNS/S composite exhibits excellent electrochemical performance because of the fast interfacial reactions between HCNS and the polysulfides. However, further increase of sulfur loading leads to increased formation of highly resistive insoluble reaction products (Li2S2/Li2S) which limits the reversibility of the interfacial reactions and results in poor electrochemical performance. In conclusion, these findings demonstrate the importance of the interfacial reaction reversibility in the whole electrode system on achieving high capacity and long cycle life of sulfur cathode for Li-S batteries.« less

  8. Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Each Year? Fact 794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year? According to the Federal Highway Administration, the average fuel economy...

  9. Model comparison for automatic characterization and classification of average ERPs using visual oddball paradigm

    E-Print Network [OSTI]

    Polikar, Robi

    Model comparison for automatic characterization and classification of average ERPs using visual December 2008 Keywords: EEG ERP Attention P300 N200 Oddball Pattern recognition Linear discriminant responses from averaged event-related potentials (ERPs) along with identifying appropriate features

  10. Fact #638: August 30, 2010 Average Expenditure for a New Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: August 30, 2010 Average Expenditure for a New Car Declines in Relation to Family Earnings Fact 638: August 30, 2010 Average Expenditure for a New Car Declines in Relation to...

  11. Fact #715: February 20, 2012 The Average Age of Light Vehicles Continues to Rise

    Broader source: Energy.gov [DOE]

    The average age for cars and light trucks continues to rise as consumers hold onto their vehicles longer. Between 1995 and 2011, the average age for cars increased by 32% from 8.4 years to 11.1...

  12. TIME-AVERAGING IN THE MARINE FOSSIL RECORD: OVERVIEW OF STRATEGIES AND

    E-Print Network [OSTI]

    , PALEOECOLOGY, BENTHIC, MARINE, TIME-AVERAGING. Rl~SUM]~ - Le raisonnement pal~ontologique qui a conduit ~ la

  13. Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream

    DOE Patents [OSTI]

    Cohen, Mitchell R. (Troy, NY); Gal, Eli (Lititz, PA)

    1993-01-01

    A process and system for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous The government of the United States of America has rights in this invention pursuant to Contract No. DE-AC21-88MC 23174 awarded by the U.S. Department of Energy.

  14. Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream

    DOE Patents [OSTI]

    Cohen, M.R.; Gal, E.

    1993-04-13

    A process and system are described for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous mixture.

  15. Sulfur dioxide and nitrogen oxides emissions from U.S. pulp and paper mills, 1980-2005

    SciTech Connect (OSTI)

    John E. Pinkerton

    2007-08-15

    Estimates of total SO{sub 2} and NOx emissions from U.S. pulp and paper mills were developed from industry-wide surveys conducted at 5-yr intervals from 1980 to 2005. The following conclusions were drawn from these estimates: (1) Total SO{sub 2} emissions from pulp and paper mills were 340,000 t in 2005. Since 1980, SO{sub 2} emissions have decreased steadily. The decline over the 25-yr period was over 60%. Paper production increased by 50% over the same period. (2) Boilers burning coal and oil are the primary source of SO{sub 2} emissions, with minor contributions from black liquor combustion in kraft recovery furnaces and the burning of noncondensable gases in boilers at kraft pulp mills. Factors contributing to the decline in boiler SO{sub 2} emissions include large reductions in residual oil use, recent decreases in coal use, declines in the average sulfur content of residual oil and coal being burned, and increasing use of flue gas desulfurization systems.(3) NOx emissions from pulp and paper mills were 230,000 t in 2005. NOx emissions were fairly constant through 1995, but then declined by 12% in 2000 and an additional 17% between 2000 and 2005. (4) In 2005, boilers accounted for two-thirds of the NOx emissions, and kraft mill sources approximately 30%. Boiler NOx emissions exhibited very little change through 1995, but decreased by one third in the next 10 yr. The lower emissions resulted from declines in fossil fuel use, a reduction in the EPA emission factors for natural gas combustion in boilers without NOx controls, and more widespread use of combustion modifications and add-on NOx control technologies, particularly on coal-fired boilers subject to EPA's NOx SIP call. Total NOx emissions from kraft mill sources changed little over the 25-yr period. 7 refs., 4 figs., 3 tabs.

  16. A structural analysis of vehicle design responses to Corporate Average Fuel Economy policy

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    A structural analysis of vehicle design responses to Corporate Average Fuel Economy policy Ching 2009 Accepted 29 August 2009 Keywords: Corporate Average Fuel Economy Energy policy Oligopolistic market Game theory Vehicle design a b s t r a c t The US Corporate Average Fuel Economy (CAFE

  17. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect (OSTI)

    K. C. Kwon

    2006-09-30

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2} in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives using a monolithic catalyst reactor, experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 40-560 seconds at 120-150 C to evaluate effects of reaction temperatures, total pressure, space time, and catalyst regeneration on conversion of hydrogen sulfide into elemental sulfur and formation of COS. Simulated coal gas mixtures consist of 3,600-4,000-ppmv hydrogen sulfide, 1,800-2,000 ppmv sulfur dioxide, 23-27 v% hydrogen, 36-41 v% CO, 10-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 30-180 SCCM. The temperature of the reactor is controlled in an oven at 120-150 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is mai

  18. SO[subscript 2] photolysis as a source for sulfur mass-independent isotope signatures in stratospehric aerosols

    E-Print Network [OSTI]

    Jiang, B.

    Signatures of sulfur isotope mass-independent fractionation (S-MIF) have been observed in stratospheric sulfate aerosols deposited in polar ice. The S-MIF signatures are thought to be associated with stratospheric ...

  19. Lubricant oil consumption effects on diesel exhaust ash emissions using a sulfur dioxide trace technique and thermogravimetry

    E-Print Network [OSTI]

    Plumley, Michael J

    2005-01-01

    A detailed experimental study was conducted targeting lubricant consumption effects on ,diesel exhaust ash levels using a model year 2002 5.9L diesel engine, high and low Sulfur commercial lubricants, and clean diesel ...

  20. Hartree-Fock-Bogoliubov calculations in coordinate space: Neutron-rich sulfur, zirconium, cerium, and samarium isotopes

    E-Print Network [OSTI]

    Teran, Edgar

    Hartree-Fock-Bogoliubov calculations in coordinate space: Neutron-rich sulfur, zirconium, cerium study the properties of neutron-rich zirconium 102,104 Zr , cerium 152 Ce , and samarium 158,160 Sm

  1. The development of autocatalytic structural materials for use in the sulfur-iodine process for the production of hydrogen

    E-Print Network [OSTI]

    Miu, Kevin (Kevin K.)

    2006-01-01

    The Sulfur-Iodine Cycle for the thermochemical production of hydrogen offers many benefits to traditional methods of hydrogen production. As opposed to steam methane reforming - the most prevalent method of hydrogen ...

  2. Update on sulfur compound distribution in NGL: Plant test data GPA Section A committee, plant design

    SciTech Connect (OSTI)

    Harryman, J.M. [Shell Oil Co., Houston, TX (United States); Smith, B. [Texaco E and P Inc., Tulsa, OK (United States)

    1996-12-31

    The mystery of why sulfur compounds could never be balanced from analyses of the product streams of NGL fractionation towers was solved by analyzing the data collected during testing completed by GPA Technical Section A in November and December of 1993 at Texaco`s Eunice, New Mexico fractionation plant. Decomposition of dimethyl disulfide (DMDS) to form methyl mercaptan within the towers is the cause of the sulfur balance discrepancies explained in the paper. The results of testing were reported to the 1994 convention, but at the time, a few weeks after completion of testing, the chemistry was not understood, i.e., what is the source of the hydrogen required to complete the formation of methyl mercaptan. This paper is an update of the previous paper and it includes the DMDS decomposition chemistry. It is essentially the body of a report completed in early 1995, excluding the Appendix of data. The 66-page Appendix may be obtained from the GPA, Tulsa.

  3. Co-firing high sulfur coal with refuse derived fuels. Quarterly report, October - December 1996

    SciTech Connect (OSTI)

    Pan, W.-P.; Riley, J.T.; Lloyd, W.G.

    1996-12-01

    The objectives of this quarter of study on the co-firing of high sulfur coal with refuse derived fuels project were two-fold. First, the effect of S0{sub 2} on the formation of chlorine during combustion processes was examined. To simulate the conditions used in the AFBC system, experiments were conducted in a quartz tube in an electrically heated furnace. The principle analytical technique used for identification of the products from this study was GC/MS. The evolved gas was trapped by an absorbent and analyzed with a GC/MS system. The preliminary results indicate an inhibiting effect of S0{sub 2} on the Deacon Reaction. Secondly, information on the evolution of chlorine, sulfur and organic compounds from coals 95031 and 95011 were studied with the AFBC system. 2 figs., 1 tab.

  4. Near-frictionless carbon coatings for use in fuel injectors and pump systems operating with low-sulfur diesel fuels

    SciTech Connect (OSTI)

    Erdemir, A.; Ozturk, O.; Alzoubi, M.; Woodford, J.; Ajayi, L.; Fenske, G.

    2000-01-19

    While sulfur in diesel fuels helps reduce friction and prevents wear and galling in fuel pump and injector systems, it also creates environmental pollution in the form of hazardous particulates and SO{sub 2} emissions. The environmental concern is the driving force behind industry's efforts to come up with new alternative approaches to this problem. One such approach is to replace sulfur in diesel fuels with other chemicals that would maintain the antifriction and antiwear properties provided by sulfur in diesel fuels while at the same time reducing particulate emissions. A second alternative might be to surface-treat fuel injection parts (i.e., nitriding, carburizing, or coating the surfaces) to reduce or eliminate failures associated with the use of low-sulfur diesel fuels. This research explores the potential usefulness of a near-frictionless carbon (NFC) film developed at Argonne National Laboratory in alleviating the aforementioned problems. The lubricity of various diesel fuels (i.e., high-sulfur, 500 ppm; low sulfur, 140 ppm; ultra-clean, 3 ppm; and synthetic diesel or Fischer-Tropsch, zero sulfur) were tested by using both uncoated and NFC-coated 52100 steel specimens in a ball-on-three-disks and a high-frequency reciprocating wear-test rig. The test program was expanded to include some gasoline fuels as well (i.e., regular gasoline and indolene) to further substantiate the usefulness of the NFC coatings in low-sulfur gasoline environments. The results showed that the NFC coating was extremely effective in reducing wear and providing lubricity in low-sulfur or sulfur-free diesel and gasoline fuels. Specifically, depending on the wear test rig, test pair, and test media, the NFC films were able to reduce wear rates of balls and flats by factors of 8 to 83. These remarkable reductions in wear rates raise the prospect for using the ultra slick carbon coatings to alleviate problems that will be caused by the use of low sulfur diesel and gasoline fuels. Surfaces of the wear scars and tracks were characterized by optical and scanning electron microscopy, and by Raman spectroscopy.

  5. Airborne measurements of total sulfur gases during NASA global tropospheric experiment/chemical instrumentation test and evaluation 3

    SciTech Connect (OSTI)

    Farwell, S.O.; MacTaggart, D.L.; Chatham, W.H.

    1995-04-20

    A metal foil collection/flash desorption/flame photometric detection (MFC/FD/FPD) technique was used by investigators from the University of Idaho (UI) to measure ambient total sulfur gas concentrations from an aircraft platform during the NASA Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation 3 (GTE/CITE 3) program. The MFC/FD/FPD technique allowed rapid quantitation of tropospheric background air masses using sample integration times of 1-3 min with little or no gap between measurements. The rapid and continual sampling nature of this technique yielded data covering approximately 75% of the entire CITE 3 program`s air track. Ambient air measurement data obtained during northern hemisphere (NH) flights often exhibited relatively high total sulfur gas values (up to 19 ppb) and an extremely high degree of sample heterogeneity, especially in coastal locations. Data from southern hemisphere (SH) flights typically exhibited relatively low total sulfur gas concentrations and a low degree of sample heterogeneity. A bimodal interhemispheric total sulfur gas gradient was observed using data obtained during transit flights between the two CITE 3 program ground bases. Comparisons were made of UI total sulfur gas measurements with composite sulfur gas values generated using speciated sulfur gas measurements from other CITE 3 participants. Only a relatively small number of overlap periods for comparison were obtained from all the available CITE 3 data because of large differences in measurement integration times and lack of synchronization of sample start/stop times for the various investigators. These effects were compounded with extreme sample heterogeneity in the NH and the speed at which the aircraft traversed the air masses being sampled. Comparison of NH UI total with composite sulfur gas values showed excellent correlation and linear curve fit, indicating substantial qualitative agreement. 20 refs., 10 figs., 7 tabs.

  6. NiW and NiRu Bimetallic Catalysts for Ethylene Steam Reforming: Alternative Mechanisms for Sulfur Resistance

    SciTech Connect (OSTI)

    Rangan, M.; Yung, M. M.; Medlin, J. W.

    2012-06-01

    Previous investigations of Ni-based catalysts for the steam reforming of hydrocarbons have indicated that the addition of a second metal can reduce the effects of sulfur poisoning. Two systems that have previously shown promise for such applications, NiW and NiRu, are considered here for the steam reforming of ethylene, a key component of biomass derived tars. Monometallic and bimetallic Al{sub 2}O{sub 3}-supported Ni and W catalysts were employed for ethylene steam reforming in the presence and absence of sulfur. The NiW catalysts were less active than Ni in the absence of sulfur, but were more active in the presence of 50 ppm H{sub 2}S. The mechanism for the W-induced improvements in sulfur resistance appears to be different from that for Ru in NiRu. To probe reasons for the sulfur resistance of NiRu, the adsorption of S and C{sub 2}H{sub 4} on several bimetallic NiRu alloy surfaces ranging from 11 to 33 % Ru was studied using density functional theory (DFT). The DFT studies reveal that sulfur adsorption is generally favored on hollow sites containing Ru. Ethylene preferentially adsorbs atop the Ru atom in all the NiRu (111) alloys investigated. By comparing trends across the various bimetallic models considered, sulfur adsorption was observed to be correlated with the density of occupied states near the Fermi level while C{sub 2}H{sub 4} adsorption was correlated with the number of unoccupied states in the d-band. The diverging mechanisms for S and C{sub 2}H{sub 4} adsorption allow for bimetallic surfaces such as NiRu that enhance ethylene binding without accompanying increases in sulfur binding energy. In contrast, bimetallics such as NiSn and NiW appear to decrease the affinity of the surface for both the reagent and the poison.

  7. COS-forming reaction between CO and sulfur: A high-temperature intrinsic kinetics study

    SciTech Connect (OSTI)

    Karan, K.; Mehrotra, A.K.; Behie, L.A. [Univ. of Calgary, Alberta (Canada). Dept. of Chemical and Petroleum Engineering] [Univ. of Calgary, Alberta (Canada). Dept. of Chemical and Petroleum Engineering

    1998-12-01

    Carbonyl sulfide is formed in the front end (i.e., the reaction furnace and the waste heat boiler) of Claus plants which are commonly used to recover sulfur from acid gases. Moreover, COS along with CS{sub 2}, are recognized as the problematic sulfur compounds that contribute significantly to plant sulfur emissions. Further, there is limited kinetic information on the important reaction for the formation of these two compounds. Now, it is well-known that one of the important COS-forming reactions is that between CO and sulfur. In this laboratory, the authors conducted an experimental study to measure the intrinsic kinetics of this homogeneous gas-phase reaction in the temperature range of 600--1150 C and over a residence time of 0.5--2.0 s. The overall reaction was found to be second order with a reaction rate constant k{sub f} = (3.18 {+-} 0.36) {times} 10{sup 5} exp[{minus}(6700 {+-} 108 K)/T] m{sup 3}/(kmol{center_dot}s). In addition, a kinetic model was developed to account for both the COS formation and the COS decomposition reactions. And, finally, for the reverse reaction, the COS decomposition reaction rate constant (k{sub r}) was regressed to match the equilibrium data of experiments at high temperatures giving a second-order reaction rate constant as k{sub r} = (2.18 {+-} 1.12) {times} 10{sup 9} exp[{minus}(21630 {+-} 160 K)/T] m{sup 3}/(kmol{center_dot}s).

  8. Photodissociation spectroscopy of the carbonyl sulfide ion with momentum analysis of the sulfur product ion

    SciTech Connect (OSTI)

    Snow, K.B.

    1993-01-01

    A Nuclide 12-90-G mass spectrometer was modified for use as a photofragment momentum spectrometer. The resultant apparatus was capable of obtaining both absolute cross sections for photodissociation with respect to wavelength and relative cross sections for photodissociation with respect to kinetic energy release. The kinetic energy release for the photodissociation reaction of the nitrous oxide cation (leading to the production of the nitric oxide cation and the nitrogen atom), was studied at 3080.4 [angstrom], 3371.3 [angstrom], and 3381.4 [angstrom]. When a nitrogen atom was produced in the [sup 4]S state, the nitric oxide cation was found to be formed predominantly with 5 to 7 quanta of vibrational energy. Nitrogen atoms were formed preferentially in the [sup 2]D state when it was energetically feasible at 3371.3 [angstrom] and 3080.4 [angstrom]. The kinetic energy release for the photodissociation reaction of the carbonyl sulfide cation (leading to the production of carbon monoxide and a sulfur cation), was studied at 2822.2 [angstrom], 2921.8 [angstrom], 2991.0 [angstrom], 2991.9 [angstrom], 3080.4 [angstrom], 3104.3 [angstrom], 3127.9 [angstrom], 3184.9 [angstrom], 3351.8 [angstrom], 3371.3 [angstrom], and 3393.0 [angstrom]. When sulfur cations were produced in the [sup 4]S state, the carbon monoxide products were formed predominantly with 5 to 7 quanta of vibrational energy. Sulfur cations were formed preferentially in the [sup 2]D state from hot bands at 3351.8 [angstrom], 3080.4 [angstrom], and 2991.9 [angstrom]. Sulfur cations were also produced in the [sup 2]D state at 2921.8 [angstrom] and 2822.2 [angstrom], where it was energetically feasible from the ground state of carbonyl sulfide cations.

  9. EVALUATION OF PROTON-CONDUCTING MEMBRANES FOR USE IN A SULFUR-DIOXIDE DEPOLARIZED ELECTROLYZER

    SciTech Connect (OSTI)

    Hobbs, D.; Elvington, M.; Colon-Mercado, H.

    2009-11-11

    The chemical stability, sulfur dioxide transport, ionic conductivity, and electrolyzer performance have been measured for several commercially available and experimental proton exchange membranes (PEMs) for use in a sulfur dioxide depolarized electrolyzer (SDE). The SDE's function is to produce hydrogen by using the Hybrid Sulfur (HyS) Process, a sulfur based electrochemical/thermochemical hybrid cycle. Membrane stability was evaluated using a screening process where each candidate PEM was heated at 80 C in 60 wt. % H{sub 2}SO{sub 4} for 24 hours. Following acid exposure, chemical stability for each membrane was evaluated by FTIR using the ATR sampling technique. Membrane SO{sub 2} transport was evaluated using a two-chamber permeation cell. SO{sub 2} was introduced into one chamber whereupon SO{sub 2} transported across the membrane into the other chamber and oxidized to H{sub 2}SO{sub 4} at an anode positioned immediately adjacent to the membrane. The resulting current was used to determine the SO{sub 2} flux and SO{sub 2} transport. Additionally, membrane electrode assemblies (MEAs) were prepared from candidate membranes to evaluate ionic conductivity and selectivity (ionic conductivity vs. SO{sub 2} transport) which can serve as a tool for selecting membranes. MEAs were also performance tested in a HyS electrolyzer measuring current density versus a constant cell voltage (1V, 80 C in SO{sub 2} saturated 30 wt% H2SO{sub 4}). Finally, candidate membranes were evaluated considering all measured parameters including SO{sub 2} flux, SO{sub 2} transport, ionic conductivity, HyS electrolyzer performance, and membrane stability. Candidate membranes included both PFSA and non-PFSA polymers and polymer blends of which the non-PFSA polymers, BPVE-6F and PBI, showed the best selectivity.

  10. Hybrid sulfur cycle operation for high-temperature gas-cooled reactors

    DOE Patents [OSTI]

    Gorensek, Maximilian B

    2015-02-17

    A hybrid sulfur (HyS) cycle process for the production of hydrogen is provided. The process uses a proton exchange membrane (PEM) SO.sub.2-depolarized electrolyzer (SDE) for the low-temperature, electrochemical reaction step and a bayonet reactor for the high-temperature decomposition step The process can be operated at lower temperature and pressure ranges while still providing an overall energy efficient cycle process.

  11. Sonic enhanced ash agglomeration and sulfur capture. Technical progress report, January 1992--March 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    This program will demonstrate the effectiveness of a unique approach which uses a bimodal distribution composed of large sorbent particles and fine fly ash particles to enhance ash agglomeration and sulfur capture at conditions found in direct coal-fired turbines. Under the impact of high-intensity sound waves, sorbent reactivity and utilization, it is theorized, will increase while agglomerates of fly ash and sorbents are formed which are readily collected in commercial cyclones.

  12. Iron-based alloys with corrosion resistance to oxygen-sulfur mixed gases

    DOE Patents [OSTI]

    Natesan, K.

    1992-11-17

    An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9--30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000--1100 C. 7 figs.

  13. Global Anthropogenic Sulfur Emissions for 1985 and 1990 Carmen M. Benkovitz

    E-Print Network [OSTI]

    i s retained i n bottom and f l y ashes. Various types o f f l u e gas desulfurization (FGD) control States, Canada, Western Europe, Japan and Australia. Crude petroleum i s a1so extremely variable i n the sulfur content, ranging from 0.3 t o 2%, depending on the location o f the petroleum f i e l d . I n

  14. Evaluation of an enhanced gravity-based fine-coal circuit for high-sulfur coal

    SciTech Connect (OSTI)

    Mohanty, M.K.; Samal, A.R.; Palit, A.

    2008-02-15

    One of the main objectives of this study was to evaluate a fine-coal cleaning circuit using an enhanced gravity separator specifically for a high sulfur coal application. The evaluation not only included testing of individual unit operations used for fine-coal classification, cleaning and dewatering, but also included testing of the complete circuit simultaneously. At a scale of nearly 2 t/h, two alternative circuits were evaluated to clean a minus 0.6-mm coal stream utilizing a 150-mm-diameter classifying cyclone, a linear screen having a projected surface area of 0.5 m{sup 2}, an enhanced gravity separator having a bowl diameter of 250 mm and a screen-bowl centrifuge having a bowl diameter of 500 mm. The cleaning and dewatering components of both circuits were the same; however, one circuit used a classifying cyclone whereas the other used a linear screen as the classification device. An industrial size coal spiral was used to clean the 2- x 0.6-mm coal size fraction for each circuit to estimate the performance of a complete fine-coal circuit cleaning a minus 2-mm particle size coal stream. The 'linear screen + enhanced gravity separator + screen-bowl circuit' provided superior sulfur and ash-cleaning performance to the alternative circuit that used a classifying cyclone in place of the linear screen. Based on these test data, it was estimated that the use of the recommended circuit to treat 50 t/h of minus 2-mm size coal having feed ash and sulfur contents of 33.9% and 3.28%, respectively, may produce nearly 28.3 t/h of clean coal with product ash and sulfur contents of 9.15% and 1.61 %, respectively.

  15. Formation of Large Polysulfide Complexes during the Lithium-Sulfur Battery Discharge

    SciTech Connect (OSTI)

    Wang, Bin; Alhassan, Saeed M.; Pantelides, Sokrates T

    2014-01-01

    Sulfur cathodes have much larger capacities than transition-metal-oxide cathodes used in commercial lithium-ion batteries but suffer from unsatisfactory capacity retention and long-term cyclability. Capacity degradation originates from soluble lithium polysulfides gradually diffusing into the electrolyte. Understanding of the formation and dynamics of soluble polysulfides during the discharging process at the atomic level remains elusive, which limits further development of lithium-sulfur (Li-S) batteries. Here we report first-principles molecular dynamics simulations and density functional calculations, through which the discharging products of Li-S batteries are studied. We find that, in addition to simple Li2Sn (1 n 8) clusters generated from single cyclooctasulfur (S8) rings, large Li-S clusters form by collectively coupling several different rings to minimize the total energy. At high lithium concentration, a Li-S network forms at the sulfur surfaces. The results can explain the formation of the soluble Li-S complex, such as Li2S8, Li2S6, and Li2S4, and the insoluble Li2S2 and Li2S structures. In addition, we show that the presence of oxygen impurities in graphene, particularly oxygen atoms bonded to vacancies and edges, may stabilize the lithium polysulfides that may otherwise diffuse into the electrolyte.

  16. Activated carbon cleanup of the acid gas feed to Claus sulfur plants

    SciTech Connect (OSTI)

    Harruff, L.G.; Bushkuhl, S.J. [Saudi Aramco, Dhahran (Saudi Arabia)

    1996-12-31

    This paper presents the details of a recently developed novel process using activated carbon to remove hydrocarbon contaminants from the acid gas feed to Claus sulfur recovery units. Heavy hydrocarbons, particularly benzene, toluene and xylene (BTX) have been linked to coke formation and catalyst deactivation in Claus converters. This deactivation results in reduced sulfur recovery and increased sulfur emissions from these plants. This effect is especially evident in split flow Claus plants which bypass some of the acid gas feed stream around the initial combustion step because of a low hydrogen sulfide concentration. This new clean-up process was proven to be capable of removing 95% of the BTX and other C{sub 6}{sup +} hydrocarbons from acid gas over a wide range of actual plant conditions. Following the adsorption step, the activated carbon was easily regenerated using low pressure steam. A post regeneration drying step using plant fuel gas also proved beneficial. This technology was extensively pilot tested in Saudi Aramco`s facilities in Saudi Arabia. Full scale commercial units are planned for two plants in the near future with the first coming on-line in 1997. The process described here represents the first application of activated carbon in this service, and a patent has been applied for. The paper will discuss the pilot plant results and the issues involved in scale-up to commercial size.

  17. RF driven sulfur lamp having driving electrodes arranged to cool the lamp

    DOE Patents [OSTI]

    Gabor, George (820 Skywood Rd., Lafayette, CA 94549); Orr, Thomas Robert (2285 Vestal, Castro Valley, CA 94546); Greene, Charles Maurice (6450 Regent St., Oakland, CA 94618); Crawford, Douglas Gordon (33 Longridge Rd., Orinda, CA 94563); Berman, Samuel Maurice (2832 Union St., San Francisco, CA 94123)

    1998-01-01

    A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance.

  18. RF driven sulfur lamp having driving electrodes which face each other

    DOE Patents [OSTI]

    Gabor, George (Lafayette, CA); Orr, Thomas Robert (Castro Valley, CA); Greene, Charles Maurice (Oakland, CA); Crawford, Douglas Gordon (Orinda, CA); Berman, Samuel Maurice (San Francisco, CA)

    1999-01-01

    A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance.

  19. RF driven sulfur lamp having driving electrodes arranged to cool the lamp

    DOE Patents [OSTI]

    Gabor, G.; Orr, T.R.; Greene, C.M.; Crawford, D.G.; Berman, S.M.

    1998-10-20

    A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance. 17 figs.

  20. Visbreaker hardware has alternate uses in low-sulfur fuel era

    SciTech Connect (OSTI)

    Toman, J.J.; Beckman, R.F. (Fluor Daniel Inc., Irvine, CA (United States))

    1993-03-22

    Several possible alternate uses for visbreaker equipment are available to refiners who must significantly increase the degree of residue processing to meet future fuel oil sulfur requirements. In both the U.S. and the European Economic Community (EEC), specifications for the sulfur content of residual fuels will likely be difficult to achieve for refiners who process high-sulfur crudes. Those refiners will have to curtail fuel oil production unless they have a significant fuel oil export market. To meet the coming specifications, residue streams will have to be either directly desulfurized or partially or totally destroyed in more-severe conversion processes such as coking, fluid-bed hydrocracking, or gasification. Under this scenario, normal operation of the visbreaker will not serve a useful purpose for the refiner. But revamping the visbreaker furnace and tower-as well as utilizing existing vessels, pumps, heat-exchange equipment, and piping-for alternative uses will require significantly less capital than would building an entirely new facility. The paper describes regulations; the role of visbreaker; integration of the visbreaker to form a new hydrotreating fractionator; and the use of the visbreaker as a preflash system.