Powered by Deep Web Technologies
Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

IRRIGATION & ELECTRICAL DISTRICTS  

NLE Websites -- All DOE Office Websites (Extended Search)

IRRIGATION & ELECTRICAL DISTRICTS IRRIGATION & ELECTRICAL DISTRICTS ASSOCIATION OF ARIZONA R.D. JUSTICE SUITE 140 WILLIAM H. STACY PRESIDENT 340 E. PALM LANE SECRETARY-TREASURER PHOENIX, ARIZONA 85004-4603 ELSTON GRUBAUGH (602) 254-5908 ROBERT S. LYNCH VICE-PRESIDENT Fax (602) 257-9542 COUNSEL AND

2

IRRIGATION & ELECTRICAL DISTRICTS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IRRIGATION & ELECTRICAL DISTRICTS IRRIGATION & ELECTRICAL DISTRICTS ASSOCIATION OF ARIZONA R. GALE PEARCE SUITE 140 ELSTON GRUBAUGH PRESIDENT 340 E. PALM LANE SECRETARY-TREASURER PHOENIX, ARIZONA 85004-4603 R.D. JUSTICE (602) 254-5908 ROBERT S. LYNCH VICE-PRESIDENT Fax (602) 257-9542 ASSISTANT SECRETARY-TREASURER

3

Central Oregon Irrigation District | Open Energy Information  

Open Energy Info (EERE)

Oregon Irrigation District Oregon Irrigation District Jump to: navigation, search Name Central Oregon Irrigation District Place Redmond, Oregon Zip 97756 Sector Hydro Product Corporation of the State of Oregon that provides municipal, industrial, and agricultural water, as well as hydropower, for central Oregon. References Central Oregon Irrigation District[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Central Oregon Irrigation District is a company located in Redmond, Oregon . References ↑ "Central Oregon Irrigation District" Retrieved from "http://en.openei.org/w/index.php?title=Central_Oregon_Irrigation_District&oldid=343383" Categories: Clean Energy Organizations

4

Irrigation Districts: Establishment of Electric Light and Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Irrigation Districts: Establishment of Electric Light and Power Systems: Powers (Nebraska) Irrigation Districts: Establishment of Electric Light and Power Systems: Powers...

5

Turlock Irrigation District - PV Rebate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turlock Irrigation District - PV Rebate Turlock Irrigation District - PV Rebate Eligibility Commercial Residential Savings For Solar Buying & Making Electricity Maximum Rebate 50%...

6

Vera Irrigation District | Open Energy Information  

Open Energy Info (EERE)

Vera Irrigation District Vera Irrigation District Jump to: navigation, search Name Vera Irrigation District #15 Place Washington Utility Id 19784 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LARGE POWER Commercial LARGE POWER INDUSTRIAL Industrial NEW SMALL GENERAL Commercial RESIDENTIAL RATES Residential Average Rates Residential: $0.0556/kWh Commercial: $0.0582/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Vera_Irrigation_District&oldid=411927

7

Modesto Irrigation District | Open Energy Information  

Open Energy Info (EERE)

Modesto Irrigation District Modesto Irrigation District (Redirected from MID) Jump to: navigation, search Name Modesto Irrigation District Place Modesto, California Utility Id 12745 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] Energy Information Administration Form 826[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Modesto Irrigation District Smart Grid Project was awarded $1,493,149

8

Aguila Irrigation District | Open Energy Information  

Open Energy Info (EERE)

Aguila Irrigation District Aguila Irrigation District Jump to: navigation, search Name Aguila Irrigation District Place Arizona Utility Id 737 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate 3 Commercial Average Rates Industrial: $0.0582/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Aguila_Irrigation_District&oldid=408941" Categories: EIA Utility Companies and Aliases

9

Turlock Irrigation District | Open Energy Information  

Open Energy Info (EERE)

Turlock Irrigation District Turlock Irrigation District Jump to: navigation, search Name Turlock Irrigation District Place California Utility Id 19281 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO Other Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule BP Bulk Power Industrial, Demand Metered 7,000 kW and Over,

10

Merced Irrigation District | Open Energy Information  

Open Energy Info (EERE)

Irrigation District Irrigation District Jump to: navigation, search Name Merced Irrigation District Place California Utility Id 12312 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png SCHEDULE AG-2 AGRICULTURAL DEMAND GENERAL SERVICE Industrial SCHEDULE ED-2 COMMERCIAL / INDUSTRIAL LARGE DEMAND GENERAL SERVICE Industrial SCHEDULE ED-2P COMMERCIAL / INDUSTRIAL LARGE DEMAND PRIMARY SERVICE

11

Modesto Irrigation District | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Modesto Irrigation District Place Modesto, California Utility Id 12745 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] Energy Information Administration Form 826[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Modesto Irrigation District Smart Grid Project was awarded $1,493,149 Recovery Act Funding with a total project value of $2,986,298.

12

RESOLUTION NO. 2011-82 ADOPTING MODESTO IRRIGATION DISTRICT'S RENEWABLE  

E-Print Network (OSTI)

RESOLUTION NO. 2011-82 ADOPTING MODESTO IRRIGATION DISTRICT'S RENEWABLE ENERGY RESOURCES. 2003-245, the Board of Directors ofthe Modesto Irrigation District adopted a Renewable Portfolio Standard (RPS) in an effort to meet 20 percent ofits retail energy sales with renewable resources by 2017

13

Merced Irrigation District - PV Buydown Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Merced Irrigation District - PV Buydown Program Merced Irrigation District - PV Buydown Program Merced Irrigation District - PV Buydown Program < Back Eligibility Commercial Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: 8,400 Commercial: $70,000 Program Info State California Program Type Utility Rebate Program Rebate Amount 2.80/W AC, adjusted based on expected performance Provider Merced Irrigation District Merced Irrigation District (MID) offers its residential, commercial and non-profit customers a rebate for installing solar electric photovoltaic (PV) systems on their homes and offices. The rebate is $2.80 per watt (adjusted based on the expected performance of the system) with a maximum of $8,400 for residential systems and $70,000 for non-residential systems.

14

Imperial Irrigation District | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Imperial Irrigation District Place California Utility Id 9216 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS Schedule GS Commercial SCHEDULE A-2 GENERAL WHOLESALE POWER SERVICE Industrial SCHEDULE AL OUTDOOR AREA LIGHTING SERVICE-HIGH-PRESSURE SODIUM VAPOR 100W Lighting

15

Imperial Irrigation District | Open Energy Information  

Open Energy Info (EERE)

(Redirected from IID) (Redirected from IID) Jump to: navigation, search Name Imperial Irrigation District Place California Utility Id 9216 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS Schedule GS Commercial SCHEDULE A-2 GENERAL WHOLESALE POWER SERVICE Industrial SCHEDULE AL OUTDOOR AREA LIGHTING SERVICE-HIGH-PRESSURE SODIUM VAPOR 100W

16

Vera Irrigation District #15 - Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vera Irrigation District #15 - Energy Efficiency Rebate Program Vera Irrigation District #15 - Energy Efficiency Rebate Program Vera Irrigation District #15 - Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Commercial Weatherization Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Water Heating Maximum Rebate $1,500 Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Refrigerator/Freezer Recycling: $30 Water Heaters: $100 Windows: $6/sq. ft. Heat Pumps: $450 Duct Sealing: $400 - $500 Clothes Washer: $30 Ductless Heat Pumps: $1,500 Vera Irrigation District #15 offers rebates to electric customers who improve energy efficiency. Rebates are available for water heaters,

17

Modesto Irrigation District - New Home Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modesto Irrigation District - New Home Energy Efficiency Rebate Modesto Irrigation District - New Home Energy Efficiency Rebate Program Modesto Irrigation District - New Home Energy Efficiency Rebate Program < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State California Program Type Utility Rebate Program Rebate Amount Single-Family Dwelling: $500 Multi-Family Dwelling: $250 Provider Energy Management Department Modesto Irrigation District's MPower New Home Program provides incentives to builders and homeowners for designing and building energy-efficient homes. Eligible homes must meet the guidelines for California Energy Star Qualified New Homes, listed on the program application. Each qualified new

18

Modesto Irrigation District - Photovoltaic Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modesto Irrigation District - Photovoltaic Rebate Program Modesto Irrigation District - Photovoltaic Rebate Program Modesto Irrigation District - Photovoltaic Rebate Program < Back Eligibility Agricultural Commercial Local Government Nonprofit Residential State Government Savings Category Solar Buying & Making Electricity Maximum Rebate 50% of total project costs. Program Info State California Program Type Utility Rebate Program Rebate Amount Systems >1 kW to 30 kW: $1.00/W AC. Systems >30 kW to 1 MW: performance-based incentive of $0.10/kWh for 5 years. Provider PV Program Coordinator Modesto Irrigation District offers a photovoltaic rebate program for all of their electric customers. The peak output capacity of a system must be 1 kW or greater to participate. Systems up to 30 kilowatts (kW) in capacity can

19

Irrigation Districts: Establishment of Electric Light and Power Systems:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Irrigation Districts: Establishment of Electric Light and Power Irrigation Districts: Establishment of Electric Light and Power Systems: Powers (Nebraska) Irrigation Districts: Establishment of Electric Light and Power Systems: Powers (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Nebraska Program Type Siting and Permitting Provider Natural Resources Irrigation districts, created in section 46-1xx, are encouraged to

20

Modesto Irrigation District - Commercial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modesto Irrigation District - Commercial Energy Efficiency Rebate Modesto Irrigation District - Commercial Energy Efficiency Rebate Program Modesto Irrigation District - Commercial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Construction Commercial Weatherization Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Rebate Caps vary according to MID electric rate schedule, they range from $10,000 - $50,000. Cap exemption can be requested. Program Info Expiration Date 12/15/2012 State California Program Type Utility Rebate Program Rebate Amount Lighting and Sensors: Varies, consult program website Auto Door Closers: $56 - $65/closer Strip Curtains: $3/sq ft Plastic Swinging Doors: $4/sq ft

Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Modesto Irrigation District - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modesto Irrigation District - Residential Energy Efficiency Rebate Modesto Irrigation District - Residential Energy Efficiency Rebate Program Modesto Irrigation District - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Water Heating Program Info Expiration Date 12/15/2013 State California Program Type Utility Rebate Program Rebate Amount Room AC: $50 Clothes Washer: $35 Water Heater: $25 Heat Pump Water Heater: $100 Refrigerator/Freezer Recycling: $35 per unit Central AC: $250 Heat Pump: $350 High Efficiency AC/Heat Pump: $500 Mini-Split AC/Heat Pump: $500 Air Duct Sealing: up to $250 max Whole House Fan: $100 per unit

22

Modesto Irrigation District - Commercial New Construction Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modesto Irrigation District - Commercial New Construction Rebate Modesto Irrigation District - Commercial New Construction Rebate Program Modesto Irrigation District - Commercial New Construction Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Appliances & Electronics Commercial Lighting Lighting Maximum Rebate 50% of the incremental cost of the project(s) included in the application. The maximum annual payment cap is determined per account, by the applicable MID electric rate schedule: $15,000 (GS-1); $25,000 (P-3); $50,000 (GS-2); $125,000 (GS-TOU); $250,000 (GS-3); $500,000 (IC-25). Program Info Expiration Date 12/15/2013 State California Program Type

23

Modesto Irrigation District Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

District Smart Grid Project District Smart Grid Project Jump to: navigation, search Project Lead Modesto Irrigation District Recovery Act Funding $1,493,149.00 Total Project Value $2,986,298.00 Coverage Area Coverage Map: Modesto Irrigation District Smart Grid Project Coordinates 37.6390972°, -120.9968782° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

24

Modesto Irrigation District - Custom Commercial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Modesto Irrigation District - Custom Commercial Energy Efficiency Rebate Program Modesto Irrigation District - Custom Commercial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Rebate caps are adjusted according to MID's electric rate schedule they vary from $15,000 - $500,000. Exemptions from rebate caps can be requested. Program Info State California Program Type Utility Rebate Program Rebate Amount Lighting Measures: $250/kW reduced or $.04/kWh reduced Insulation Measures: $250/kW reduced or $.04/kWh reduced

25

Geographic information system (GIS) and simulation model for management of irrigation districts  

E-Print Network (OSTI)

IDMM (Irrigation District Management Model), a user friendly, GIS based, menu driven personal computer software program, was developed as a planning and management tool for improved water use and crop growth production in irrigation districts. It consists of IRDDESS (Irrigation District Decision Support System), a crop growth and district simulation model that was integrated into ArcView GIS software. To demonstrate the usefulness of the model, its predictions were compared with those observed in real systems with similar situations. The three simulation modules of IDMM were tested for two locations in the Brownsville Irrigation District (BID) in Texas. The POTPROD (potential production) simulation module, was used to simulate daily crop dry matter production and irrigation regimes during one season for four crops: maize, soybean, sorghum, and cotton. Generally, the larger irrigation volumes and more frequent irrigations resulted in the highest yields. The SIMDIRT (simulation under different irrigation treatments) module estimates potential yield under any combination of irrigation regimes. It was tested for sorghum for one crop season with eleven different irrigation regimes. Results show that actual yields were within 4 % of predicted in three of the irrigation regimes. The SIMWETH (simulation under different weather conditions) module allows the user to estimate yields for as many seasons as desired. Historical or stochastically produced weather data can be used to analyze how potential yields vary under a given irrigation regime over a long period of time. Proper water management in each farmer's field is important in improving the overall performance of an irrigation district; consequently IDMM's capabilities were demonstrated at the farm and the irrigation district levels. One of the most important components of IDMM is its ability to visually display and analyze all information concerning crops, fields, irrigation, gates, etc., providing irrigation districts with information crucial in the process of decision-making.

Nazarov, Azimjon S.

2000-01-01T23:59:59.000Z

26

Water transfers in Northern California : analyzing the termination of the San Francisco--Modesto Irrigation District water transfer  

E-Print Network (OSTI)

From 2011 to 2012, the Modesto Irrigation District (MID) and the San Francisco Public Utilities Commission (SFPUC) attempted to broker a deal that would transfer water from the rural Central California district to the ...

Tanner, Keith (Keith Richard)

2013-01-01T23:59:59.000Z

27

Joint irrigation districts hydropower assessment study. Final feasibility assessment report. Volume I  

DOE Green Energy (OSTI)

In August 1978, the United States Department of Energy and the Turlock Irrigation District entered into a cooperative agreement for a Joint District's Low-Head Hydropower Assessment Study. The purpose of the agreement was to carry out a study of the hydropower potential at sites within the borders of the Turlock, Merced, South San Joaquin, and Oakdale Irrigation Districts in California. The required data were gathered and analyzed. The results of this study indicate the total potential small hydropower capacity with the Joint Districts is 19,560 kW installed with an annual energy generation of 68,561,800 kWh. This is equivalent to oil-savings of 118,616 barrels per y.

None

1979-02-01T23:59:59.000Z

28

Validating the Estimated Cost of Saving Water Through Infrastructure Rehabilitation in the Texas Lower Rio Grande Valley (Hidalgo County Irrigation District No. 1)  

E-Print Network (OSTI)

A Case Study Using Actual Construction Costs for the Curry Main Pipeline Project, Hidalgo County Irrigation District No. 1 (Edinburg)

Lacewell, R. D.; Rister, M.; Sturdivant, A. W.

2005-09-01T23:59:59.000Z

29

Validating the Estimated Cost of Saving Water Through Infrastructure Rehabilitation in the Texas Lower Rio Grande Valley (Hidalgo County Irrigation District No. 2)  

E-Print Network (OSTI)

A Case Study Using Actual Construction Costs for the Lateral A Lining Project, Hidalgo County Irrigation District No. 2 (San Juan)

Lacewell, R. D.; Rister, M.; Sturdivant, A. W.

2005-09-01T23:59:59.000Z

30

Thermal Imaging of Canals for Remote Detection of Leaks: Evaluation in the United Irrigation District  

E-Print Network (OSTI)

This report summarizes our initial analysis of the potential of thermal imaging for detecting leaking canals and pipelines. Thermal imagery (video format) was obtained during a fly over of a portion of the main canal of United Irrigation District. The video was processed to produce individual images, and 45 potential sites were identified as having possible canal leakage problems (see Appendix I for all 45 thermal images). District Management System Team personnel traveled to 11 of the 45 sites to determine if canal leakage was actually occurring. Of the 11 sites, 10 had leakage problems. Thus, thermal image analysis had a success rate of 91% for leak detection. Two sites had leaks classified as severe by the DMS Team. This report also provides a detailed analysis of 4 sites, 3 with leaks and 1 without. For each site, photographs are included showing the source of the leak and/or condition of the canal segment. A literature review of thermal imagery for leak detection is included in Appendix II. Our findings and recommendations are as following: 1. thermal imaging is a promising technique for evaluation of canal conditions and leak detection; 2. the district provide should provide personnel to help the DMS Team verify the remaining 34 sites; and 3. the district should consider correcting the problems identified at sites 7 and 8.

Huang, Yanbo; Fipps, Guy

2008-11-01T23:59:59.000Z

31

Costs of Saving Water in South Texas with Irrigation District Infrastructure Rehabilitation - Using Capital Budgeting with RGIDECON  

E-Print Network (OSTI)

As a part of the irrigation district plans, economists with Texas AgriLife Research and the Texas AgriLife Extension Service (through the Rio Grande Basin Initiative), developed and applied a spreadsheet model RGIDECON (Rio Grande Irrigation District Economics) to facilitate unbiased comparisons of real project costs. That is, a Capital Budgeting Net Present Value (NPV) methodology, combined with calculation of annuity equivalent (AE) values, was developed to incorporate different initial construction costs, annual operation and maintenance costs, quantity of water saved, expected useful life, etc. of the various alternative projects. Using this combined approach allows for calculation of a single, annual $/acre-foot (af) {or $/1,000 gal} life-cycle cost, comprehensive of all relevant financial and economic parameters, thereby facilitating comparisons across and priority ranking among ID projects.

Rister, E.; Lacewell, R.; Sturdivant, A.

2013-03-01T23:59:59.000Z

32

Use of GIS as a Real Time Decision Support System for Irrigation Districts  

E-Print Network (OSTI)

The objectives were to provide the districts with a simple tool that would improve the availability of pumps and gates data from the existing SCADA system, improve the management of water orders, and allow access of data by account holders through the internet. An important component of the project was to interact and train District personnel. The final product of the project is a website, where pump and gates operations and water orders information are displayed in real-time, along with links to related historical data and other information. The on-line tool has three main components: 1) possibility to query real time and historic data from a new reorganized database created in our server; 2) status maps for display in real time of selected spatial information and alarms; 3) interactive maps for display of desired spatial information in real time and query historic spatial information. The main meaning of the status maps is to enable a friendlier and quicker access to the frequently used data. SCADA data include On/Off, current flow, upstream and downstream water level, and gate position. Water account data include pending orders, payment delinquents, and water balances.

Bonaiti, G.; Fipps, G.

2012-12-01T23:59:59.000Z

33

1989 environmental monitoring report, Tonopah Test Range, Tonopah, Nevada  

Science Conference Proceedings (OSTI)

This report summarizes the environmental surveillance activities conducted by Environmental Protection Agency (EPA) and Reynolds Electrical and Engineering Company (REECo) for the Tonopah Test Range (TTR) operated by Sandia National Laboratories (SNL). Other environmental compliance programs such as National Environmental Policy Act of 1969 (NEPA), environmental permits, environmental restoration, and waste management programs are also included. The maximum offsite dose impact from 1989 operations was 8.7 {times} 10{sup {minus}4} mrem as a result of an unusual occurrence. The population received a collective dose of 1.2 {times} 10{sup {minus}5} person-rem from this incidence, while the same populations received 4.94 person-rem from natural background radiation. The 1989 SNL, TTR operations had no adverse impact on the general public or the environment. 18 refs., 2 figs., 14 tabs.

Hwang, S.; Phelan, J.; Wolff, T.; Yeager, G.; Dionne, D.; West, G.

1990-05-01T23:59:59.000Z

34

Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 1 (Edinburg) - Curry Main - Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 1 to the Bureau of Reclamation and North American Development Bank. The proposed project involves installing 1 mile of 72" pipeline to replace a segment of the Curry Main canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated 49-year useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 2,258 ac-ft of water per year and 1,092,823,269 BTUs (320,288 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $24.68 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0000598 per BTU ($0.204 per kwh). In addition, expected real (rather than nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $27.49 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0000568 per BTU ($0.194 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -2.84.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-09-01T23:59:59.000Z

35

Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 1 (Edinburg) - North Branch / East Main - Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 1 to the Bureau of Reclamation and North American Development Bank. The proposed project involves installing 4.83 miles of multi-size pipeline to replace a segment of the North Branch / East Main canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated 48-year useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 5,838 ac-ft of water per year and 3,293,049,926 BTUs (965,138 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $15.58 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0000392 per BTU ($0.134 per kwh). In addition, expected real (rather than nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $30.68 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0000544 per BTU ($0.186 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -1.58.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-10-01T23:59:59.000Z

36

Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) - Relining Lateral A - Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 2, (a.k.a. San Juan) to the North American Development Bank (NADBank) and Bureau of Reclamation. The proposed project involves relining Lateral A with a geomembrane and shotcrete cover. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 2,542 ac-ft of water per year and 551,738,646 BTUs (161,705 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $74.49 per ac-ft. The calculated economic and financial cost of energy savings is estimated to be $0.0003698 per BTU ($1.262 per kwh). In addition, expected real (vs nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $57.76 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0002661 per BTU ($0.908 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -14.29.

Popp, Michael; Robinson, John; Sturdivant, Allen; Lacewell, Ronald; Rister, Edward

2003-07-01T23:59:59.000Z

37

Economic and Conservation Evaluation of Capital Renovation Projects: Brownsville Irrigation District 72" and 54" Pipeline Replacing Main Canal Preliminary  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Brownsville Irrigation District to the North American Development Bank (NADB) and Bureau of Reclamation (BOR). The proposed project involves constructing a 72" and 54" pipeline to replace 2.29 miles of the Main Canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated 49-year useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 1,844 ac-ft of water per year and 313,797,977 BTUs (91,969 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $24.70 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0001740 per BTU ($0.594 per kwh). In addition, expected real (rather than nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $56.74 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0003335 per BTU ($1.138 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -1.46.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-07-01T23:59:59.000Z

38

Economic and Conservation Evaluation of Capital Renovation Project: Hidalgo County Irrigation District No. 2 (San Juan) - Relining Lateral A Preliminary  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 2, (a.k.a. San Juan) to the North American Development Bank (NADBank) and Bureau of Reclamation. The proposed project involves relining Lateral A with a geomembrane and shotcrete cover. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 2,542 ac-ft of water per year and 551,738,646 BTUs (161,705 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $74.49 per ac-ft. The calculated economic and financial cost of energy savings is estimated to be $0.0003698 per BTU ($1.262 per kwh). In addition, expected real (vs nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $57.76 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0002661 per BTU ($0.908 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -14.29.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-05-01T23:59:59.000Z

39

Economic and Conservation Evaluation of Capital Renovation Projects: Brownsville Irrigation District 72" and 48" Pipeline Replacing Main Canal Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Brownsville Irrigation District to the North American Development Bank (NADB) and Bureau of Reclamation (BOR). The proposed project involves constructing a 72" and 48" pipeline to replace 2.31 miles of the Main Canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated 49-year useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 1,872 ac-ft of water per year and 318,479,103 BTUs (93,341 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $27.98 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0001933 per BTU ($0.660 per kwh). In addition, expected real (rather than nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $58.60 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0003444 per BTU ($1.175 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -1.53.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-10-01T23:59:59.000Z

40

Economic and Conservation Evaluation of Capital Renovation Projects: Cameron County Irrigation District No. 2 (San Benito) Infrastructure Rehabilitation Preliminary  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a five-component capital renovation project proposed by Cameron County Irrigation District No. 2, (a.k.a. San Benito) to the Bureau of Reclamation (BOR). The proposed project involves rehabilitating 42+ miles of canals, laterals, and pipelines. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful lives for all five components of the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 19,580 ac-ft of water per year and 2,151,277,209 BTUs (630,503 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $45.60 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0004399 per BTU ($1.501 per kwh). In addition, expected real (vs nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The aggregate initial construction cost per ac-ft of water savings measure is $46.98 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0004275 per BTU ($1.459 per kwh). The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -9.04.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Economic and Conservation Evaluation of Capital Renovation Projects: Cameron County Irrigation District No. 2 (San Benito) - Infrastructure Rehabilitation - Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a five-component capital renovation project proposed by Cameron County Irrigation District No. 2, (a.k.a. San Benito) to the Bureau of Reclamation (BOR). The proposed project involves rehabilitating 42+ miles of canals, laterals, and pipelines. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful lives for all five components of the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 19,580 ac-ft of water per year and 2,151,277,209 BTUs (630,503 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $45.60 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0004399 per BTU ($1.501 per kwh). In addition, expected real (vs nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The aggregate initial construction cost per ac-ft of water savings measure is $46.98 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0004275 per BTU ($1.459 per kwh). The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -9.04.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.; Popp, Michael C.

2003-08-01T23:59:59.000Z

42

Tonopah Test Range Post-Closure Inspection Annual Report, Tonopah Test Range, Nevada, Calendar Year 2003  

Science Conference Proceedings (OSTI)

This post-closure inspection report provides documentation of the semiannual inspection activities, maintenance and repair activities, and conclusions and recommendations for calendar year 2003 for eight corrective action units located on the Tonopah Test Range, Nevada.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

2004-04-01T23:59:59.000Z

43

EIS-0454: Department of Energy Loan Guarantee to Tonopah Solar...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

54: Department of Energy Loan Guarantee to Tonopah Solar Energy, LLC, for the Proposed Crescent Dunes Solar Energy Project, Nevada EIS-0454: Department of Energy Loan Guarantee to...

44

Tonopah Test Range Environmental Restoration Corrective Action Sites  

SciTech Connect

This report describes the status (closed, closed in place, or closure in progress) of the Corrective Action Sites and Corrective Action Units at the Tonopah Test Range

NSTec Environmental Restoration

2010-08-04T23:59:59.000Z

45

Tonopah, Nevada: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tonopah, Nevada: Energy Resources Tonopah, Nevada: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.0671553°, -117.2300825° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.0671553,"lon":-117.2300825,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

46

Economic and Conservation Evaluation of Capital Renovation Projects: United Irrigation District of Hidalgo County (United) Rehabilitation of Main Canal, Laterals, and Diversion Pump Station Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a three-component capital renovation project proposed by the United Irrigation District to the U.S. Bureau of Reclamation (USBR). The proposed project involves: installing 4.66 miles of pipeline in the Main Canal and Lateral 7N, installing 13.46 miles of pipeline in several laterals and sub-laterals, and rehabilitating the Districts Rio Grande diversion pumping plant. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful lives for all three components. Sensitivity results for both the cost of saving water and the cost of saving energy are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 1,522 ac-ft of water per year and 3,520,302,471 BTUs (1,031,742 kwh) of energy per year. The calculated economic and financial cost of saving water is estimated to be $341.51 per ac-ft. The calculated economic and financial cost of saving energy is estimated at $0.0001574 per BTU ($0.537 per kwh). In addition, real (vs. nominal) values are estimated for the USBRs three principal evaluation measures specified in the U.S. Public Law 106-576. The aggregate initial construction cost per ac-ft of water savings measure is $359.42 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0003468 per BTU ($1.183 per kwh). The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -3.551.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.

2006-03-01T23:59:59.000Z

47

Economic and Conservation Evaluation of Capital Renovation Projects: United Irrigation District of Hidalgo County (United) - Rehabilitation of Main Canal, Laterals, and Diversion Pump Station - Preliminary  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a three-component capital renovation project proposed by the United Irrigation District to the U.S. Bureau of Reclamation (USBR). The proposed project involves: installing 4.66 miles of pipeline in the Main Canal and Lateral 7N, installing 13.46 miles of pipeline in several laterals and sub-laterals, and rehabilitating the Districts Rio Grande diversion pumping plant. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful lives for all three components. Sensitivity results for both the cost of saving water and the cost of saving energy are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 1,409 ac-ft of water per year and 4,506,882,727 BTUs (1,320,892 kwh) of energy per year. The calculated economic and financial cost of saving water is estimated to be $325.20 per ac-ft. The calculated economic and financial cost of saving energy is estimated at $0.0001113 per BTU ($0.380 per kwh). In addition, real (vs. nominal) values are estimated for the USBRs three principal evaluation measures specified in the U.S. Public Law 106-576. The aggregate initial construction cost per ac-ft of water savings measure is $354.30 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0003376 per BTU ($1.152 per kwh). The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -3.442.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.

2005-09-01T23:59:59.000Z

48

Energy Department Finalizes $737 Million Loan Guarantee to Tonopah Solar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$737 Million Loan Guarantee to Tonopah $737 Million Loan Guarantee to Tonopah Solar Energy for Nevada Project Energy Department Finalizes $737 Million Loan Guarantee to Tonopah Solar Energy for Nevada Project September 28, 2011 - 12:32pm Addthis Washington D.C. --- U.S. Energy Secretary Steven Chu today announced the Department finalized a $737 million loan guarantee to Tonopah Solar Energy, LLC to develop the Crescent Dunes Solar Energy Project. The solar project, sponsored by SolarReserve, LLC, is a 110 megawatt concentrating solar power tower generating facility with molten salt as the primary heat transfer and storage medium. It will be the first of its kind in the United States and the tallest molten salt tower in the world. Located 14 miles northwest of Tonopah, Nevada on land leased from the Bureau of Land

49

Tonopah Test Range 2030 Meeting Summary Report  

SciTech Connect

Corrective Action Sites (CASs) and Corrective Action Units (CAUs) at the Tonopah Test Range (TTR) may be placed into three categories: Closed, Closed in Place, or Closure in Progress. CASs and CAUs where contaminants were either not detected or were cleaned up to within regulatory action levels are summarized. CASs and CAUs where contaminants and/or waste have been closed in place are summarized. There is also a table that summarizes the contaminant that has been closed at each site, if land-use restrictions are present, and if post-closure inspections are required.

NSTec Environmental Restoration

2009-04-01T23:59:59.000Z

50

Tonopah Airport Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Tonopah Airport Solar Power Plant Tonopah Airport Solar Power Plant Jump to: navigation, search Name Tonopah Airport Solar Power Plant Facility Tonopah Airport Solar Sector Solar Facility Type Concentrating Solar Power Developer Solar Millenium, LLC Location Nye County, Nevada Coordinates 38.5807111°, -116.0413889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5807111,"lon":-116.0413889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Tonopah Test Range Summary of Corrective Action Units  

SciTech Connect

Corrective Action Sites (CASs) and Corrective Action Units (CAUs) at the Tonopah Test Range (TTR) may be placed into three categories: Clean Closure/No Further Action, Closure in Place, or Closure in Progress.

Ronald B. Jackson

2007-05-01T23:59:59.000Z

52

Sandia National Laboratories: Sandia National Laboratories: Tonopah Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Tonopah Test Range Tonopah Test Range Tonopah Tonopah Test Range (TTR) is the testing range of choice for all national security missions. Sandia conducts operations at TTR in support of the Department of Energy/National Nuclear Security Administration's weapons programs. Principal DOE activities at TTR include stockpile reliability testing; arming, fusing, and firing systems testing; and the testing of nuclear weapon delivery systems. The range also offers a unique test environment for use by other U.S. government agencies and their contractors. Located about 160 miles northwest of Las Vegas, TTR is an immense area of flat terrain ideal for rockets and low-altitude, high-speed aircraft operations. Situated between two mountain ranges, TTR's remote location and restricted airspace ensure that tests can be conducted with a high degree

53

Audit of Alternatives to Testing at the Tonopah Test Range, IG...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Audit of Alternatives to Testing at the Tonopah Test Range, IG-0418 Audit of Alternatives to Testing at the Tonopah Test Range, IG-0418 The...

54

Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) - Rehabilitation of Alamo Main Canal - Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a two-component capital renovation project proposed by Hidalgo County Irrigation District No. 2, to the U. S. Bureau of Reclamation (USBR). The proposed project primarily consists of relining the Alamo Main canal and installing a flow-management system in the Alamo Main canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 876 ac-ft of water per year and 331,389,647 BTUs (97,125 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $201.50 per ac-ft. The calculated economic and financial cost of energy savings is estimated to be $0.0005592 per BTU ($1.908 per kwh). In addition, expected real (vs nominal) values are indicated for the USBRs three principal evaluation measures specified in the United States Public Law 106-576 legislation. The aggregate initial construction cost per ac-ft of water savings measure is $182.98 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0004837 per BTU ($1.650 per kwh). The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -20.74.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.

2005-04-01T23:59:59.000Z

55

Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) 48" Pipeline Replacing Wisconsin Canal Preliminary  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 2, (a.k.a. San Juan) to the North American Development Bank (NADBank) and Bureau of Reclamation. The proposed project involves constructing a 48" pipeline to replace the Wisconsin Canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 977 ac-ft of water per year and 372,892,700 BTUs (109,289 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $70.97 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0002124 per BTU ($0.725 per kwh). In addition, expected real (vs nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $75.29 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0001973 per BTU ($0.673 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -3.12.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-05-01T23:59:59.000Z

56

Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) - 48" Pipeline Replacing Wisconsin Canal - Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 2, (a.k.a. San Juan) to the North American Development Bank (NADBank) and Bureau of Reclamation. The proposed project involves constructing a 48" pipeline to replace the Wisconsin Canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 977 ac-ft of water per year and 372,892,700 BTUs (109,289 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $70.97 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0002124 per BTU ($0.725 per kwh). In addition, expected real (vs nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $75.29 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0001973 per BTU ($0.673 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -3.12.

Rister, Edward; Lacewell, Ronald; Sturdivant, Allen; Robinson, John; Popp, Michael

2003-07-01T23:59:59.000Z

57

Economic and Conservation Evaluation of Capital Renovation Projects: Edinburg Irrigation District Hidalgo County No. 1 - 72" Pipeline Replacing Delivery Canal and Multi-Size Pipeline Replacing Delivery Canal  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for the capital renovation project proposed by Edinburg Irrigation District Hidalgo County No. 1 to the North American Development Bank (NADBank). Both nominal and real, expected economic and financial costs of water and energy savings are identified throughout the anticipated useful lives for both components of the proposed project (i.e., 72" pipeline replacing a segment of delivery canal along the "Curry Main" and multi-size pipeline replacing a segment of delivery canal along the "North Branch / East Main"). Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Expected cost of water savings and cost of energy savings for both components are aggregated into a composite set of cost measures for the total proposed project. Aggregate cost of water savings is estimated to be $29.87 per ac-ft and energy savings are measured at an aggregate value of $0.0000595 per BTU (i.e., $0.203 per kwh). In addition, expected values are indicated for the Bureau of Reclamation's three principal evaluation measures specified in the United States Public Law 106-576 legislation. The aggregate initial construction cost per ac-ft of water savings measure is $50.90 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0000777 per BTU ($0.265 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -2.01.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.; Ellis, John R.

2002-11-01T23:59:59.000Z

58

Tonopah Test Range closure sites revegetation plan  

SciTech Connect

This document is a revegetation plan for long-term stabilization (revegetation) of land disturbed by activities associated with the closure of a Bomblet Pit and the Five Points Landfill. Both sites are on the Tonopah Test Range (TTR) located in south-central Nevada. This document contains general reclamation practices and procedures that will be followed during the revegetation of these sites. The revegetation procedures proposed have been developed over several years of research and include the results of reclamation trials at Area 11 and Area 19 on the Nevada Test Site (NTS), and more recently at the Double Tracks (Nellis Air Force Range) reclamation demonstration plots. In addition, the results of reclamation efforts and concurrent research efforts at the Yucca Mountain Project have been considered in the preparation of this revegetation plan.

Anderson, D.C.; Hall, D.B.

1997-05-01T23:59:59.000Z

59

Interior Bureau of Land Management Battle Mountain District Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Department of the United States Department of the Interior Bureau of Land Management Battle Mountain District Office Battle Mountain Nevada November 19, 2010 Tonopah Field Office Tonopah, Nevada FES-10-57 N-86292 DOI-BLM-NVB020-2009-0104-EIS Tonopah Solar Energy, LLC Crescent Dunes Solar Energy Project Final Environmental Impact Statement Proposed Crescent Dunes Solar Energy Project: Final EIS| ii BLM Mission Statement It is the mission of the Bureau of Land Management to sustain the health, diversity, and productivity of the public lands for the use and enjoyment of present and future generations. BLM/NV/BM/EIS/10/30+1793 DOI No. FES 10-57 http://www.blm.gov/nv/stlenlfo/battle_mountain_field.html In Reply Refer To: N-86292 DOI-BLM-NVBO2O-2009-0 1 04-EIS 2800 (NVB0200) Dear

60

Tonopah test range - outpost of Sandia National Laboratories  

Science Conference Proceedings (OSTI)

Tonopah Test Range is a unique historic site. Established in 1957 by Sandia Corporation, Tonopah Test Range in Nevada provided an isolated place for the Atomic Energy Commission to test ballistics and non-nuclear features of atomic weapons. It served this and allied purposes well for nearly forty years, contributing immeasurably to a peaceful conclusion to the long arms race remembered as the Cold War. This report is a brief review of historical highlights at Tonopah Test Range. Sandia`s Los Lunas, Salton Sea, Kauai, and Edgewood testing ranges also receive abridged mention. Although Sandia`s test ranges are the subject, the central focus is on the people who managed and operated the range. Comments from historical figures are interspersed through the narrative to establish this perspective, and at the end a few observations concerning the range`s future are provided.

Johnson, L.

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Precision Irrigators Network  

E-Print Network (OSTI)

Identifying best management practices (BMPs) promoting greater water use efficiency while maintaining crop yields is essential to the future of Texas cropping systems. Available water for irrigated crops is vital for sustaining crop production throughout the state. However, the availability of this water for irrigation is diminishing through competition by urban development and, in some regions such as the Edwards Aquifer, is falling under state regulation. The awareness and improvement of efficient irrigation and best management practices to conserve water while maintaining crop production will help preserve the aquifer levels and increase water savings to producers. One component of BMPs for conserving water use is the application of decision support systems (DSS) that are used as tools for implementing irrigation BMPs. This DSS guide was developed as a complement to TWDB Report 362, "Water Conservation Best Management Practices Guide," which is a more comprehensive report on water conservation including an "Agricultural Irrigation Water Use Management" BMPs section. The full TWDB Report 362 can be found at: http://www.twdb.state.tx.us/assistance/conservation/consindex.asp. DSS include the Texas High Plains Evapotranspiration Network (TXHPET), the Precision Irrigators Network (PIN) and the Crop Production Management (CroPMan) model. These DSS strive to promote grower awareness of water conservation strategies. Irrigation conservation strategies are proposed to result in savings of approximately 1.4 million acre-feet per year by 2060 (TWDB and TWRI). TXHPET operates 18 meteorological stations located in 15 counties across the Texas North Plains and Texas South Plains. The regional coverage of TXHPET is estimated at 4 million irrigated acres. The network offers insight to evapotranspiration (ET)-based crop water use that producers and agricultural consultants can reference when making decisions on when and how much to irrigate their crops. This information is available to data users via fax or online (http://txhighplainset.tamu.edu) and currently results in approximately 300,000 downloads or faxes annually. The PIN program was formed in 2004 with a goal of saving millions of gallons of water annually by reducing irrigation water use by as much as 20 percent over several years and currently supports several crops (corn, cotton, sorghum, wheat) in seven counties of South Central Texas. Cooperation of the PIN programs consists of area producers, Texas Agricultural Experiment Station researchers, Texas Cooperative Extension personnel, San Antonio Water System, Edwards Aquifer Authority, Texas Water Resources Institute, Texas Water Development Board, Uvalde County Underground Water Conservation District and Wintergarden Water Conservation District. The PIN database will allow producers to gain historical and real-time information for better management of irrigation scheduling. The PIN program estimates that when all irrigators in the Edwards Aquifer region implement limited irrigation scheduling, approximately 50,000 to 60,000 acre-feet of water can be saved per year and made available for purposes other than agriculture. CroPMan is a computer model designed to aid producers and agricultural consultants in optimizing crop management and maximizing production and profit through a production-risk approach. CroPMan will help growers identify limitations to crop yield, assist in making replant decisions and help recognize management practices that reduce the impact of agriculture on soil erosion and water quality. CroPMan is a Windows-based application program that can be downloaded from the CroPMan Web site (http://cropman.brc.tamus.edu).

Bynum, J.; Cothren, T.; Marek, T.; Piccinni, G.

2007-08-01T23:59:59.000Z

62

EIS-0454: Department of Energy Loan Guarantee to Tonopah Solar Energy, LLC,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

54: Department of Energy Loan Guarantee to Tonopah Solar 54: Department of Energy Loan Guarantee to Tonopah Solar Energy, LLC, for the Proposed Crescent Dunes Solar Energy Project, Nevada EIS-0454: Department of Energy Loan Guarantee to Tonopah Solar Energy, LLC, for the Proposed Crescent Dunes Solar Energy Project, Nevada Overview Tonopah Solar Energy, LLC applied to the BLM for a 7,680-acre right-of-way (ROW) on public lands to construct a concentrated solar thermal power plant facility approximately 13 miles northwest of Tonopah, Nye County, Nevada. The proposed project is not expected to use the total acres applied for in the ROW application. The facility is expected to operate for approximately 30 years. The proposed solar power project would use concentrated solar power technology, using heliostats or mirrors to focus

63

The Development of a Coordinated Database for Water Resources and Flow Model in the Paso Del Norte Watershed (Phase III) Part III GIS Coverage for the Valle de Jurez Irrigation District 009 (ID-009) (Distrito de Riego 009) Chihuahua, Mxico  

E-Print Network (OSTI)

This report fulfills the deliverables required by the cooperative agreement between the U.S. Army Corps of Engineers and Texas Agricultural Experiment Station (TAES/03-PL- 02: Modification No. 3) on behalf of the Paso del Norte Watershed Council. Tasks accomplished in this phase include (a) assessment of data availability for expansion of the URGWOM model, identification of data gaps, generation of data needed from historic data using empirical methods, compilation and verification of the water quality data for reaches between the Elephant Butte Reservoir, New Mexico and Fort Quitman, Texas; (b) development of the RiverWare physical model for the Rio Grande flow for the selected reaches between Elephant Butte Reservoir and El Paso, beginning with a conceptual model for interaction of surface water and groundwater in the Rincon and Mesilla valleys, and within the limits of available data; and (c) implementation of data transfer interface between the coordinated database and hydrologic models. This Project was conducted by researchers at Texas A&M University (TAMU) and New Mexico State University (NMSU) under the direction of Zhuping Sheng of TAMU and J. Phillip King of New Mexico State University. It was developed to enhance the coordinated database, which was originally developed by the Paso del Norte Watershed Council with support of El Paso Water Utilities to fulfill needs for better management of regional water resources and to expand the Upper Rio Grande Water Operations Model (URGWOM) to cover the river reaches between Elephant Butte Dam, New Mexico and Fort Quitman, Texas. In Phases I and II of this Project (TAES/03-PL-02), hydrological data needed for flow model development were compiled and data gaps were identified and a conceptual model developed. The objectives of this phase were to develop a physical model of the Rio Grande flow between Elephant Butte Dam and American Dam by using data collected in the first development phase of the PdNWC/Corps Coordinated Water Resources Database and to enhance the data portal capabilities of the PdNWC Coordinated Database Project. This report is Part III of a three part completion report for Phase III and provides information on water sources, uses, and GIS of the canals and ditches of the Valle de Jurez Irrigation District 009 (ID 009) in the Jurez Lower Valley, Chihuahua, Mxico. The author explains that the water needs of this region have changed in recent years from being primarily for agricultural purposes to domestic and industrial uses currently. Also, the United States wanted to assess and identify new data sources on a GIS format for the Mexican side. Therefore, this project produced several maps with the location of channels and ditches along the Valle de Jurez Irrigation District. This information also will support water planning of the Valle de Jurez Irrigation District 009. The maps were produced from existing digital data regarding water resources and by adding thematic layers such as soil salinity and soil texture from analog maps. ASTER satellite imagery and official panchromatic aerial photography were used to produce the maps.

Granados, Alfredo; Srinivasan, Raghavan; Sheng, Zhuping; King, J. Phillip; Creel, Bobby; Brown, Christopher; Michelsen, Ari

2009-01-01T23:59:59.000Z

64

District of Columbia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States » District of Columbia United States » District of Columbia District of Columbia October 16, 2013 Vera Irrigation District #15 - Energy Efficiency Rebate Program Vera Irrigation District #15 offers rebates to electric customers who improve energy efficiency. Rebates are available for water heaters, windows, heat pumps, clothes washer, duct sealing and appliance recycling. Certain efficiency standards must be met in order to receive a rebate for water heaters or windows. Vera Irrigation District also provides a $450 rebate for the installation of energy-efficient heat pumps; ductless heat pumps are eligible incentives of up to $1,500. See the program web site or contact the utility for more information about this program. October 16, 2013 Underground Storage Tank Management (District of Columbia)

65

Tonopah Test Range Post-Closure Inspection Annual Report, Tonopah Test Range, Nevada, Calendar Year 2002  

Science Conference Proceedings (OSTI)

This Post-Closure Inspection Annual Report provides documentation of the semiannual inspections conducted at the following Corrective Action Units (CAU)s: CAU 400: Bomblet Pit and Five Points Landfill; CAU 404: Roller Coaster Lagoons and Trench; CAU 407: Roller Coaster RadSafe Area; CAU 424: Area 3 Landfill Complexes; CAU 426: Cactus Spring Waste Trenches; CAU 427: Septic Waste Systems 2, 6; and CAU 453: Area 9 UXO Landfill, all located at the Tonopah Test Range, Nevada. Post-closure inspections are not required at CAU 400 but are conducted to monitor vegetation and fencing at the site. Site inspections were conducted in May and November 2002. All site inspections were made after Nevada Division of Environmental Protection (NDEP) approval of the appropriate Closure Report (CR), excluding CAU 400 which did not require a CR, and were conducted in accordance with the Post-Closure Inspection Plans in the NDEP-approved CRs. Post-closure inspections conducted during 2002 identified several areas requiring maintenance/repairs. Maintenance work and proposed additional monitoring are included in the appropriate section for each CAU. This report includes copies of the Post-Closure Inspection Plans, Post-Closure Inspection Checklists, copies of the field notes, photographs, and the Post-Closure Vegetative Monitoring Report. The Post-Closure Inspection Plan for each CAU is located in Attachment A. Post-Closure Inspection Checklists are in Attachment B. Copies of the field notes from each inspection are included in Attachment C. Attachment D consists of the photographic logs and photographs of the sites. The post-closure vegetative monitoring report for calendar year 2002 is included in Attachment E.

R. B. Jackson

2003-08-01T23:59:59.000Z

66

POST-CLOSURE INSPECTION REPORT FOR THE TONOPAH TEST RANGE, NEVADA FOR CALENDAR YEAR 2005  

SciTech Connect

This post-closure inspection report includes the results of inspections, maintenance and repair activities, and conclusions and recommendations for Calendar Year 2005 for nine Corrective Action Units located on the Tonopah Test Range , Nevada.

NONE

2006-06-01T23:59:59.000Z

67

Office of Inspector General audit of alternatives to testing at the Tonopah Test Range  

Science Conference Proceedings (OSTI)

Since the 1950s, the Department of Energy (DOE) and its predecessor agencies have done weapons program testing at the Tonopah Test Range (Tonopah). Beginning the in 1990s, DOE`s testing at Tonopah declined dramatically. This decline was coincident with the signing of various international treaties, the end of the Cold War, and the movement of some types of tests to other ranges. As a result, Tonopah was left with some bomb and work-for-others testing. The objective of this audit was to determine if there were viable, cost effective alternatives to testing at Tonopah. During the early 1990s, DOE`s Albuquerque Operations Office (Albuquerque) and Sandia National Laboratories (Sandia), which operates Tonopah for DOE, explored the alternative of testing elsewhere. Some of the data gathered by Albuquerque and Sandia provided indications that testing at another range would be practical and economical. This audit followed up on the Albuquerque/Sandia studies and also indicated that testing could be done elsewhere, at a potential cost savings of several million dollars annually. Therefore, it was recommended that Albuquerque conduct a comprehensive study of all testing alternatives. Albuquerque agreed to implement this recommendation but raised technical questions regarding issues such as environmental permits, scheduling flexibility, and cost components, which warrant a more detailed examination as part of the recommended study. It was also recommended that, if the study found that it was not feasible or economical to move the testing elsewhere, Albuquerque reduce the cost of Tonopah to the minimum level necessary to support testing requirements. Albuquerque agreed to this recommendation and stated that it and Sandia continued to actively pursue cost reductions at Tonopah.

Friedman, G.H.

1998-03-13T23:59:59.000Z

68

Irrigation Training Program (South Texas Edition)  

E-Print Network (OSTI)

The Irrigation Training Program is a collaborative effort between the Texas Water Resources Institute, a unit of Texas A&M AgriLife; the Texas State Soil and Water Conservation Board; and the United States Department of Agriculture Natural Resources Conservation Service. Special appreciation is expressed to the individual authors and technical advisors who have contributed to the information and publications contained in this manual; the agencies, irrigation districts, groundwater conservation districts, Texas Agricultural Irrigation Association and members of other associations who have contributed time and leadership in the delivery of irrigation training programs; and to the site coordinators and those who have shared their expertise as speakers at individual programs throughout the state.

Porter, D.

2008-10-01T23:59:59.000Z

69

Irrigation Training Program (North Texas edition)  

E-Print Network (OSTI)

The Irrigation Training Program is a collaborative effort between the Texas Water Resources Institute, a unit of Texas A&M AgriLife; the Texas State Soil and Water Conservation Board; and the United States Department of Agriculture Natural Resources Conservation Service. Special appreciation is expressed to the individual authors and technical advisors who have contributed to the information and publications contained in this manual; the agencies, irrigation districts, groundwater conservation districts, Texas Agricultural Irrigation Association and members of other associations who have contributed time and leadership in the delivery of irrigation training programs; and to the site coordinators and those who have shared their expertise as speakers at individual programs throughout the state.

Porter, D.

2008-08-01T23:59:59.000Z

70

Economic and Conservation Evaluation of Capital Renovation Projects: Harlingen Irrigation District Cameron County No. 1 Canal Meters and Telemetry Equipment, Impervious-Lining of Delivery Canals, Pipelines Replacing Delivery Canals, and On-Farm Delivery-Site Meters  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for the capital renovation project proposed by Harlingen Irrigation District Cameron County No. 1 to the North American Development Bank (NADBank). Both nominal and real, expected economic and financial costs of water and energy savings are identified throughout the anticipated useful lives for each of the four components of the proposed project (i.e., canal meters and telemetry equipment, impervious-lining of delivery canals, 24" pipelines replacing delivery canals, and on-farm delivery-site meters). Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Expected cost of water savings and cost of energy savings for each of the four components are aggregated into a composite set of cost measures for the total proposed project. Aggregate cost of water savings is estimated to be $31.37 per ac-ft and energy savings are measured at an aggregate value of $0.0002253 per BTU (i.e., $0.769 per kwh). In addition, expected values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the Public Law 106-576 legislation. The aggregate initial construction cost per ac-ft of water savings measure is $26.87 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0001603 per BTU ($0.547 per kwh). The amount of initial construction costs per dollar of total annual economic savings is estimated to be -1.30.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.; Ellis, John R.

2002-10-01T23:59:59.000Z

71

Economic and Conservation Evaluation of Capital Renovation Projects: Cameron County Irrigation District No. 2 (San Benito) Interconnect Between Canals 39 and 13-A1 and Replacement of Rio Grande Diversion Pumping Plant  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for the capital renovation project proposed by the Cameron County Irrigation District No. 2 (a.k.a. San Benito) to the North American Development Bank (NADBank) and Bureau of Reclamation. Both nominal and real, expected economic and financial costs of water and energy savings are identified throughout the anticipated useful lives for both components of the proposed project (i.e., a lined interconnect between Canals 39 and 13-A1 and replacement of the Rio Grande diversion pumping plant). Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Expected cost of water savings and cost of energy savings for both components are aggregated into a composite set of cost measures for the total proposed project. Aggregate cost of water savings is estimated to be $41.26 per ac-ft and energy savings are measured at an aggregate value of $0.0001586 per BTU (i.e., $0.541 per kwh). In addition, expected values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The aggregate initial construction cost per ac-ft of water savings measure is $157.07 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0001777 per BTU ($0.606 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -3.80.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.; Ellis, John R.

2003-01-01T23:59:59.000Z

72

Economic and Financial Costs of Saving Water and Energy: Preliminary Analysis for Hidalgo County Irrigation District No. 2 (San Juan) Replacement of Pipeline Units I-7A, I-18, and I-22  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a three-component capital renovation project proposed by Hidalgo County Irrigation District No. 2. The proposed project primarily consists of replacing aged mortar-joint pipe in pipeline units I-7A, I-18, and I-22 with new rubber-gasketed, reinforced concrete pipe. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful life for the proposed project. Sensitivity results for the cost of saving water are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 485 ac-ft of water per year and 179,486,553 BTUs {52,604 kwh} of energy per year. The calculated economic and financial cost-of-saving water is estimated to be $385.46 per ac-ft. The calculated economic and financial cost-of-saving energy is estimated to be $0.0010735 per BTU {$3.663 per kwh}. In addition, expected real (vs. nominal) values are provided for the U.S. Bureau of Reclamations three principal evaluation measures specified in U.S. Public Law 106-576. The aggregate initial construction cost per ac-ft of water saved measure is $510.92. The aggregate initial construction cost per unit of energy saved measure is $0.0013798 per BTU {$4.708 per kwh}. The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -2.53.

Sturdivant, Allen W.; Rister, M. Edward; Lacewell, Ronald D.

2007-06-01T23:59:59.000Z

73

1998 Annual Site Environmental Report Tonopah Test Range, Nevada  

SciTech Connect

Sandia National Laboratories (SNL) operates the Tonopah Test Range (TTR) for the Department of Energy (DOE) Weapons Ordnance Program. This annual report (calendar year 1998) summarizes the compliance status to environmental regulations applicable at the site including those statutes that govern air and water quality, waste management cleanup of contaminated areas, control of toxic substances, and adherence to requirements as related to the National Environmental Policy Act (NEPA). In compliance with DOE orders, SNL also conducts environmental surveillance for radiological and nonradiological contaminants. SNL's responsibility for environmental surveillance at TTR extends only to those areas where SNL activities are carried out. Annual radiological and nonradiological routine releases and unplanned releases (occurrences) are also summarized. This report has been prepared in accordance with DOE Order 5400.1, General Environmental Protection Program (DOE 1990a).

Duncan, D.K.; Fink, C.H.; Sanchez, R.V.

1999-09-01T23:59:59.000Z

74

1997 annual site environmental report, Tonopah Test Range, Nevada  

SciTech Connect

Sandia National Laboratories (SNL) operates the Tonopah Test Range for the Department of Energy's (DOE) Weapons Ordnance Program. Thes annual report (calendar year 1997) summarizes the compliance status to environmental regulations applicable at the site including those statutes that govern air and water quality, waste management, cleanup of contaminated areas, control of toxic substances, and adherence to requirements as related to the National Environmental Policy Act. In compliance with DOE orders, SNL also conducts environmental surveillance for radiological and nonradiological contaminants. SNL's responsibility for environmental surveillance extends only to those activities performed by SNL or under its direction. Annual radiological and nonradiological routine releases and unplanned releases (occurrences) are also summarized. This report has been prepared as required by DOE Order 5400.1, General Environmental Protection Program.

Culp, Todd; Duncan, Dianne (ed.); Forston, William; Sanchez, Rebecca (ed.)

1998-08-01T23:59:59.000Z

75

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 489: WWII UXO Sites, Tonopah Test Range, Nevada; May 2005  

Science Conference Proceedings (OSTI)

This Streamlined Approach for Environmental Restoration Plan provides the details for the closure of Corrective Action Unit (CAU) 489: WWII UXO Sites, Tonopah Test Range. CAU 489 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996.

Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2005-05-01T23:59:59.000Z

76

Largest irrigated district in the world  

SciTech Connect

The geothermal administration report includes the following: status of transfer of Imperial Valley Environmental Project, status of data cataloging and storage, findings of geothermal field inspections, status of cooperative efforts between industry and the County for commercialization, problems in local geothermal commercialization and recommendations for action, and the status of geothermal exploration development and production in the County. The number and types of applications for geothermal energy received, results of hearings on applications, permits issued, and EIR prepared are discussed. Other geothermal activities include the Department of Energy Region 9 meeting in April, the Department of Energy Direct Heat Developers meeting held in El Centro in April, and a new drilling company in the County. These are followed by the summary of events. (MHR)

1980-10-02T23:59:59.000Z

77

Turlock Irrigation District - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clothes Washers: 35 Sun Screens: 1.00square foot Whole House Fans: 75 Solar Attic Fan: 100 Radiant Barrier: 0.10square foot Shade Tree: 20 each (3 max) Turlock...

78

Modesto Irrigation District - Custom Commercial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Type Utility Rebate Program Rebate Amount Lighting Measures: 250kW reduced or .04kWh reduced Insulation Measures: 250kW reduced or .04kWh reduced Air Conditioning:...

79

Closure report for CAU No. 400: Bomblet Pit and Five Points Landfill, Tonopah test range  

SciTech Connect

This Closure Reports presents the information obtained from corrective and investigative actions performed to affirm the decision for clean closure of Corrective Action Unit No. 400 which includes the Bomblet Pit and the Five Points Landfill, two sites used for disposal of unexploded ordnance (UXO) and other solid waste at the U.S. Department of Energy`s (DOE) Tonopah Test Range, located in south-central Nevada. The first phase, or corrective action, for clean closure was performed under the Voluntary Correction Action Work Plan for Ordnance Removal from Five Disposal Sites at the Tonopah Test Range, hereafter referred to as the VCA Work Plan. The second phase consisted of collecting verification samples under the Streamlined Approach for Environmental Restoration Plan, CA U No. 400: Bomblet Pit and Five Points Landfill, Tonopah Test Range, hereafter referred to as the SAFER Plan. Results of the two phases are summarized in this document.

NONE

1996-11-01T23:59:59.000Z

80

Irrigation Training Program For Texas Agricultural Producers  

E-Print Network (OSTI)

The Irrigation Training Program, funded by the Texas Water Development Board (TWDB) through an Agricultural Water Conservation Grant, began in 2006. Administered by the Texas Water Resources Institute (TWRI), the Texas State Soil and Water Conservation Board (TSSWCB), the local Soil and Water Conservation Districts (SWCDs), United States Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS), Texas AgriLife Extension Service (Extension) and Texas AgriLife Research (Research) worked together to build a multi-disciplinary Irrigation Training Program (ITP) that included development of a core manual and training conferences that were designed to meet regional needs. The three year project was divided into four main tasks with separate objectives and deliverables. Under Task 1, the TSSWCB, SWCDs and USDA-NRCS supported the development and implementation of the Irrigation Training Program. Task 2 required TWRI, Extension and Research, in cooperation with the TSSWCB and USDA-NRCS to identify primary agency personnel to provide training and the key conference sites. To meet the objective of Task 3, TWRI, Extension and Research, in cooperation with the TSSWCB and USDA-NRCS developed the Irrigation Training Program manual and promoted irrigation training conferences. And finally, TWRI, Extension and Research, in cooperation with the TSSWCB and USDA-NRCS implemented the Irrigation Training Program through the delivery of six irrigation conferences to meet the task 4 goals.

Harris, B.L.

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Corrective Action Plan for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada  

SciTech Connect

This corrective action plan provides the closure implementation methods for the Area 3 Landfill Complex, Corrective Action Unit (CAU) 424, located at the Tonopah Test Range. The Area 3 Landfill Complex consists of 8 landfill sites, each designated as a separate corrective action site.

Bechtel Nevada

1998-08-31T23:59:59.000Z

82

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 496: Buried Rocket Site, Antelope Lake, Tonopah Test Range  

SciTech Connect

This Streamlined Approach for Environmental Restoration (SAFER) plan details the activities necessary to close Corrective Action Unit 496: Buried Rocket Site, Antelope Lake. CAU 496 consists of one site located at the Tonopah Test Range, Nevada.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

2004-05-01T23:59:59.000Z

83

Norris Public Power District | Open Energy Information  

Open Energy Info (EERE)

Norris Public Power District Norris Public Power District Place Nebraska Utility Id 13664 Utility Location Yes Ownership P NERC Location MRO Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png IRRIGATION SERVICE: RATE 10 - FULL SERVICE Commercial IRRIGATION SERVICE: RATE 12 - STANDBY Commercial IRRIGATION SERVICE: RATE 13 - ANYTIME INTERRUPTIBLE Commercial IRRIGATION SERVICE: RATE 14 - THREE DAYS ON/FOUR DAY INTERRUPTIBLE Commercial SCHEDULE 1 - FARM AND RURAL RESIDENTIAL Residential SCHEDULE 15 - LARGE POWER - BETWEEN 2,500 - 7,500 kW Industrial

84

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

85

FIA-12-0054 - In the Matter of California-Arizona-Nevada District  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 - In the Matter of California-Arizona-Nevada District 4 - In the Matter of California-Arizona-Nevada District Organization Contract Compliance FIA-12-0054 - In the Matter of California-Arizona-Nevada District Organization Contract Compliance On September 14, 2012, California-Arizona-Nevada District Organization Contract Compliance (CANDO) filed an appeal from a final determination issued by the Loan Guarantee Program Office (LGPO) of the Department of Energy (DOE). In this determination, LGPO responded to a request for information (Request) filed under the Freedom of Information Act (FOIA), 5 U.S.C. § 552, as implemented by the DOE in 10 C.F.R. Part 1004. Pursuant to the Request, LGPO released four documents. One of the documents provided to CANDO, the Tonopah Document, described below, consisted of seven pages, of which information had been withheld in four of the pages.

86

Harquahala Valley Pwr District | Open Energy Information  

Open Energy Info (EERE)

Harquahala Valley Pwr District Harquahala Valley Pwr District Jump to: navigation, search Name Harquahala Valley Pwr District Place Arizona Utility Id 8139 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Gin Commercial Irrigation Pumping Commercial Non-Irrigation Agriculture Commercial Average Rates Industrial: $0.0565/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Harquahala_Valley_Pwr_District&oldid=410799

87

Southern Public Power District | Open Energy Information  

Open Energy Info (EERE)

Southern Public Power District Southern Public Power District Place Nebraska Utility Id 17642 Utility Location Yes Ownership P NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GENERAL SERVICE Commercial GENERAL SERVICE - TOTAL ELECTRIC Commercial INTERRUPTIBLE IRRIGATION SERVICE ANYTIME PLUS SUNDAY Commercial INTERRUPTIBLE IRRIGATION SERVICE FOUR DAY PLUS SUNDAY Commercial INTERRUPTIBLE IRRIGATION SERVICE MULTIPLE PLUS SUNDAY Commercial

88

Columbia Rural Electric Association - Irrigation Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Irrigation Energy Efficiency Irrigation Energy Efficiency Rebate Program Columbia Rural Electric Association - Irrigation Energy Efficiency Rebate Program < Back Eligibility Agricultural Savings Category Other Maximum Rebate 70% of cost Program Info Expiration Date 9/31/2013 State District of Columbia Program Type Utility Rebate Program Rebate Amount Nozzle: $1.50 - $4.00 Sprinkler: $1 - $4 Gasket: $2.75 Regulator: $5 Drain: $1 Hub: $14.50 Goose Neck Elbows: $1.65 Drop Tube: $3 Pivot: $175 Pipe Section: $10 Leveler: $0.75 Provider Columbia REA Columbia REA, through the Bonneville Power Administration, offers an irrigation energy efficiency program for its agricultural customers. Stationary systems are not eligible for this program due to the number of sprinklers per acre. Replacement sprinklers are eligible for retrofits

89

Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2010  

Science Conference Proceedings (OSTI)

This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2010 and includes inspection and repair activities completed at the following seven CAUs: CAU 400: Bomblet Pit and Five Points Landfill (TTR) CAU 407: Roller Coaster RadSafe Area (TTR) CAU 424: Area 3 Landfill Complexes (TTR) CAU 426: Cactus Spring Waste Trenches (TTR) CAU 453: Area 9 UXO Landfill (TTR) CAU 484: Surface Debris, Waste Sites, and Burn Area (TTR) CAU 487: Thunderwell Site (TTR)

NSTec Environmental Restoration

2011-03-30T23:59:59.000Z

90

Calendar Year 2001 Annual Site Environmental Report Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

Sandia Corporation (a subsidiary of Lockheed Martin Corporation through its contract with the U.S. Department of Energy [DOE]), National Nuclear Security Administration (NNSA) operates the Tonopah Test Range (TTR) in Nevada. Westinghouse Government Service, TTR's operations and maintenance contractor, performs most all environmental program functions. This Annual Site Environmental Report (ASER), which is published to inform the public about environmental conditions at TTR, describes environmental protection programs and summarizes the compliance status with major environmental laws and regulations during Calendar Year (CY) 2001.

VIGIL, FRANCINE S.

2002-09-01T23:59:59.000Z

91

Corrective action investigation plan for CAU Number 453: Area 9 Landfill, Tonopah Test Range  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and criteria for conducting site investigation activities at the Area 9 Landfill, Corrective Action Unit (CAU) 453/Corrective Action (CAS) 09-55-001-0952, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Area 9 Landfill is located northwest of Area 9 on the TTR. The landfill cells associated with CAU 453 were excavated to receive waste generated from the daily operations conducted at Area 9 and from range cleanup which occurred after test activities.

NONE

1997-05-14T23:59:59.000Z

92

Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

Corrective Action Unit (CAU) 490, Station 44 Burn Area is located on the Tonopah Test Range (TTR). CAU 490 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and includes for Corrective Action Sites (CASs): (1) Fire Training Area (CAS 03-56-001-03BA); (2) Station 44 Burn Area (CAS RG-56-001-RGBA); (3) Sandia Service Yard (CAS 03-58-001-03FN); and (4) Gun Propellant Burn Area (CAS 09-54-001-09L2).

K. B. Campbell

2002-04-01T23:59:59.000Z

93

ERRATA SHEET for Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada  

SciTech Connect

Section 2.1.1.3 of the Table of Contents reference on Page v and on Page 12 of the Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada erroneously refers to the Nevada Environmental Policy Act Determination. The correct title of the referenced document is the National Environmental Policy Act Determination.

K. B. Campbell

2002-04-01T23:59:59.000Z

94

Garrison Diversion Conservancy District (North Dakota) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Garrison Diversion Conservancy District (North Dakota) Garrison Diversion Conservancy District (North Dakota) Garrison Diversion Conservancy District (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Home Weatherization Program Info State North Dakota Program Type Siting and Permitting The Garrison Conservancy District is a state agency established to provide for land irrigation, to establish and restore depleted lakes and stabilize

95

PAD District  

U.S. Energy Information Administration (EIA) Indexed Site

District District and State Production Capacity Alkylates Aromatics Asphalt and Road Oil Isomers Lubricants Marketable Petroleum Coke Sulfur (short tons/day) Hydrogen (MMcfd) Table 2. Production Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013 (Barrels per Stream Day, Except Where Noted) a 91,429 10,111 26,500 110,165 21,045 21,120 74 1,127 PAD District I Delaware 11,729 5,191 0 6,000 0 13,620 40 596 Georgia 0 0 24,000 0 0 0 0 0 New Jersey 37,200 0 63,500 4,000 12,000 7,500 31 290 Pennsylvania 42,500 4,920 22,065 16,500 2,945 0 0 240 West Virginia 0 0 600 0 6,100 0 3 1 268,106 95,300 159,000 260,414 9,100 158,868 584 7,104 PAD District II Illinois 83,900 19,900 38,100 16,000 0 70,495 202 2,397 Indiana 27,200 16,800 33,700 27,100 0 10,000 0 653

96

Custer Public Power District | Open Energy Information  

Open Energy Info (EERE)

Custer Public Power District Custer Public Power District Place Nebraska Utility Id 4671 Utility Location Yes Ownership P NERC Location MRO NERC SPP Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png ANNUAL AGRICULTURAL SERVICE /VACANT HOUSE - RATE CLASS 12 Commercial ANNUAL RURAL MISCELLANEOUS SERVICE - RATE CLASS 14 Commercial ANNUAL SINGLE PHASE GRAIN DRYING SERVICE - RATE CLASS 13 Commercial ANNUAL THREE PHASE GRAIN DRYING SERVICE - RATE CLASS 45 Commercial IRRIGATION - RATE CLASS 33 Commercial IRRIGATION - RATE CLASS 30 Commercial

97

Buckeye Water C&D District | Open Energy Information  

Open Energy Info (EERE)

Irrigation District) Irrigation District) Jump to: navigation, search Name Buckeye Water C&D District Place Arizona Utility Id 2469 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1010/kWh Commercial: $0.0784/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Buckeye_Water_C%26D_District&oldid=412227"

98

Geothermal district heating systems  

DOE Green Energy (OSTI)

Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

Budney, G.S.; Childs, F.

1982-01-01T23:59:59.000Z

99

Corrective action investigation plan for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

This Correction Action Investigation Plan contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Area 3 Landfill Complex, CAU No. 424, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, nevada. The CAU 424 is comprised of eight individual landfill sites that are located around and within the perimeter of the Area 3 Compound. Due to the unregulated disposal activities commonly associated with early landfill operations, an investigation will be conducted at each CAS to complete the following tasks: identify the presence and nature of possible contaminant migration from the landfills; determine the vertical and lateral extent of possible contaminant migration; ascertain the potential impact to human health and the environment; and provide sufficient information and data to develop and evaluate appropriate corrective action strategies for each CAS.

NONE

1997-04-01T23:59:59.000Z

100

Corrective Action Plan for Corrective Action Unit 453: Area 9 UXO Landfill, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

This corrective action plan proposes the closure method for the area 9 unexploded Ordnance landfill, corrective action unit 453 located at the Tonopah Test Range. The area 9 UXO landfill consists of corrective action site no. 09-55-001-0952 and is comprised of three individual landfill cells designated as A9-1, A9-2, and A9-3. The three landfill cells received wastes from daily operations at area 9 and from range cleanups which were performed after weapons testing. Cell locations and contents were not well documented due to the unregulated disposal practices commonly associated with early landfill operations. However, site process knowledge indicates that the landfill cells were used for solid waste disposal, including disposal of UXO.

Bechtel Nevada

1998-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2008  

SciTech Connect

This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2008 and includes inspection and repair activities completed at the following ten CAUs: #2; CAU 400: Bomblet Pit and Five Points Landfill (TTR) #2; CAU 404: Roller Coaster Lagoons and Trench (TTR) #2; CAU 407: Roller Coaster RadSafe Area (TTR) #2; CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR) #2; CAU 424: Area 3 Landfill Complexes (TTR) #2; CAU 426: Cactus Spring Waste Trenches (TTR) #2; CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR) #2; CAU 453: Area 9 UXO Landfill (TTR) #2; CAU 484: Surface Debris, Waste Sites, and Burn Area (TTR) #2; CAU 487: Thunderwell Site (TTR)

NSTec Environmental Restoration

2009-03-19T23:59:59.000Z

102

Corrective action decision document, Second Gas Station, Tonopah test range, Nevada (Corrective Action Unit No. 403)  

SciTech Connect

This Corrective Action Decision Document (CADD) for Second Gas Station (Corrective Action Unit [CAU] No. 403) has been developed for the U.S. Department of Energy`s (DOE) Nevada Environmental Restoration Project to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO) of 1996 as stated in Appendix VI, {open_quotes}Corrective Action Strategy{close_quotes} (FFACO, 1996). The Second Gas Station Corrective Action Site (CAS) No. 03-02-004-0360 is the only CAS in CAU No. 403. The Second Gas Station CAS is located within Area 3 of the Tonopah Test Range (TTR), west of the Main Road at the location of former Underground Storage Tanks (USTs) and their associated fuel dispensary stations. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada, by air and approximately 56 km (35 mi) southeast of Tonopah, Nevada, by road. The TTR is bordered on the south, east, and west by the Nellis Air Force Range and on the north by sparsely populated public land administered by the Bureau of Land Management and the U.S. Forest Service. The Second Gas Station CAS was formerly known as the Underground Diesel Tank Site, Sandia Environmental Restoration Site Number 118. The gas station was in use from approximately 1965 to 1980. The USTs were originally thought to be located 11 meters (m) (36 feet [ft]) east of the Old Light Duty Shop, Building 0360, and consisted of one gasoline UST (southern tank) and one diesel UST (northern tank) (DOE/NV, 1996a). The two associated fuel dispensary stations were located northeast (diesel) and southeast (gasoline) of Building 0360 (CAU 423). Presently the site is used as a parking lot, Building 0360 is used for mechanical repairs of vehicles.

NONE

1997-11-01T23:59:59.000Z

103

Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Tonopah Airport, Nye County, Nevada  

SciTech Connect

The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Tonopah Airport, Beatty, Rachel, Caliente, Pahranagat NWR, Crater Flat, and the Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

J. Engelbrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

2009-04-02T23:59:59.000Z

104

Letter Report: Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Tonopah Airport, Nye County, Nevada  

Science Conference Proceedings (OSTI)

The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Tonopah Airport, Beatty, Rachel, Caliente, Pahranagat NWR, Crater Flat, and the Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

J. Engelbrecht; I. Kavouras; D Campbell; S. Campbell; S. Kohl, D. Shafer

2008-08-01T23:59:59.000Z

105

Irrigation data base for Arizona  

DOE Green Energy (OSTI)

Determining the locations in the U.S. where solar energy might be used for irrigation was proposed. One of the first steps in determining these locations is to establish a data base for the agricultural states that extensively use irrigation. The data base must include information on the crops grown, the irrigation wells, and the irrigation pumps. The results of an effort to establish such a data base for the state of Arizona are presented.

Hall, I.J.; Vandevender, S.G.

1978-01-01T23:59:59.000Z

106

Kethcum District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

107

Midland District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

108

Boise City Geothermal District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

109

San Bernardino District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low Temperature...

110

Philip District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

111

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low Temperature Geothermal...

112

Elko County School District District Heating Low Temperature...  

Open Energy Info (EERE)

County School District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko County School District District Heating Low Temperature Geothermal...

113

City of Klamath Falls District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature...

114

Warm Springs Water District District Heating Low Temperature...  

Open Energy Info (EERE)

Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal...

115

Butler Public Power District | Open Energy Information  

Open Energy Info (EERE)

Butler Public Power District Butler Public Power District Jump to: navigation, search Name Butler Public Power District Place Nebraska Utility Id 2643 Utility Location Yes Ownership P NERC Location MRO Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial/Industrial Rate 04 Three Phase Commercial Commercial/Industrial Single/Three Phase Rate 06 Industrial Commercial/Industrial with demand Rate 07 Three Phase Industrial Grain Bin Single Phase Rate 08 Commercial Grain Bin Three Phase Rate 09 Commercial Irrigation Services Rate 40 Wheels only Single Phase

116

District of Columbia Profile  

U.S. Energy Information Administration (EIA)

District of Columbia Quick Facts. In 2010, the average price of total energy in the District of Columbia was the highest in the contiguous United ...

117

MHK Projects/Western Irrigation District | Open Energy Information  

Open Energy Info (EERE)

< MHK Projects < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.0841,"lon":-113.784,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

118

Sustainability of irrigated farming systems in a Tunisian region: A recursive stochastic programming analysis  

Science Conference Proceedings (OSTI)

The aim of this study was to evaluate the sustainability of farm irrigation systems in the Cebalat district in northern Tunisia. It addressed the challenging topic of sustainable agriculture through a bio-economic approach linking a biophysical model ... Keywords: Bio-economic modeling, Farmers' decisions, Farming system, Recursive stochastic programming, Sustainable agriculture

H. Belhouchette; M. Blanco; J. Wery; G. Flichman

2012-08-01T23:59:59.000Z

119

Closure Report for Corrective Action Unit 499: Hydrocarbon Spill Site, Tonopah Test Range, Nevada  

DOE Green Energy (OSTI)

This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 499: Hydrocarbon Spill Site, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 499: Hydrocarbon Spill Site, Tonopah Test Range (TTR), Nevada (US Department of Energy, Nevada Operations Office [DOE/NV], 2001). CAU 499 consists of one Corrective Action Site (CAS): RG-25-001-RD24: Radar 24 Diesel Spill Site which is approximately 4.0 kilometers (2.5 miles) southwest of the Area 3 Compound at the end of Avenue 24. The Hydrocarbon Spill Site is a diesel fuel release site that is assumed to have been caused by numerous small historical over-fillings, spills, and leaks from an above-ground storage tank (AST) over a period of approximately 36 years. The tank was located on the east side of Building 24-50 on the TTR.

K. B. Campbell

2002-07-01T23:59:59.000Z

120

Air Monitoring Network at Tonopah Test Range: Network Description and Capabilities  

SciTech Connect

During the period April to June 2008, at the behest of the U.S. Department of Energy (DOE) National Nuclear Security Administration, Nevada Site Office (NNSA/NSO); the Desert Research Institute (DRI) constructed and deployed two portable environmental monitoring stations at the Tonopah Test Range (TTR) as part of the Environmental Restoration Project Soils Sub-Project. The TTR is located within the boundaries of the Nevada Test and Training Range (NTTR) near the northern edge, and covers an area of approximately 725.20 km2 (179,200 acres). The primary objective of the monitoring stations is to evaluate whether and under what conditions there is wind transport of radiological contaminants from one of the three Soil Sub-Project Corrective Action Units (CAUs) associated with Operation Roller Coaster on TTR. Operation Roller Coaster was a series of tests, conducted in 1963, designed to examine the stability and dispersal of plutonium in storage and transportation accidents. These tests did not result in any nuclear explosive yield. However, the tests did result in the dispersal of plutonium and contamination of surface soils in the surrounding area.

Jeffrey Tappen; George Nikolich; Ken Giles; David Shafer; Tammy Kluesner

2010-05-18T23:59:59.000Z

Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Air Monitoring Network at Tonopah Test Range: Network Description, Capabilities, and Analytical Results  

SciTech Connect

During the period April to June 2008, at the behest of the Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office (NNSA/NSO); the Desert Research Institute (DRI) constructed and deployed two portable environmental monitoring stations at the Tonopah Test Range (TTR) as part of the Environmental Restoration Project Soils Activity. DRI has operated these stations since that time. A third station was deployed in the period May to September 2011. The TTR is located within the northwest corner of the Nevada Test and Training Range (NTTR), and covers an area of approximately 725.20 km2 (280 mi2). The primary objective of the monitoring stations is to evaluate whether and under what conditions there is wind transport of radiological contaminants from Soils Corrective Action Units (CAUs) associated with Operation Roller Coaster on TTR. Operation Roller Coaster was a series of tests, conducted in 1963, designed to examine the stability and dispersal of plutonium in storage and transportation accidents. These tests did not result in any nuclear explosive yield. However, the tests did result in the dispersal of plutonium and contamination of surface soils in the surrounding area.

Hartwell William T.,Daniels Jeffrey,Nikolich George,Shadel Craig,Giles Ken,Karr Lynn,Kluesner Tammy

2012-01-01T23:59:59.000Z

122

Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada & Kauai Test Facility, Hawaii.  

Science Conference Proceedings (OSTI)

Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).

Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

2005-09-01T23:59:59.000Z

123

Closure Report for Corrective Action Unit 426: Cactus Spring Waste Trenches, Tonopah Test Range, Nevada  

SciTech Connect

This Closure Report provides the documentation for closure of the Cactus Spring Waste Trenches Corrective Action Unit (CAU) 426. The site is located on the Tonopah Test Range, approximately 225 kilometers northwest of Las Vegas, NV. CAU 426 consists of one corrective action site (CAS) which is comprised of four waste trenches. The trenches were excavated to receive solid waste generated in support of Operation Roller Coaster, primary the Double Tracks Test in 1963, and were subsequently backfilled. The Double Tracks Test involved use of live animals to assess the biological hazards associated with the nonnuclear detonation of plutonium-bearing devices. The Nevada Division of Environmental Protection approved Corrective Action Plan (CAP)which proposed ''capping'' methodology. The closure activities were completed in accordance with the approved CAP and consisted of constructing an engineered cover in the area of the trenches, constructing/planting a vegetative cover, installing a perimeter fence and signs, implementing restrictions on future use, and preparing a Post-Closure Monitoring Plan.

Dave Madsen

1998-08-01T23:59:59.000Z

124

Increasing water holding capacity for irrigation  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing water holding capacity for irrigation Reseachers recommend solutions for sediment trapping in irrigation system LANL and SNL leveraged technical expertise to determine...

125

ERRATA Sheet for ''Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada''  

Science Conference Proceedings (OSTI)

In Appendix A the second sentence of the first paragraph on Page A-1-1 of the Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada, erroneously cites the EPA DQO guidance outline as (EPA, 1994). The correct citation is (EPA, 2000).

K. B. Campbell

2003-03-01T23:59:59.000Z

126

Overton Power District No 5 | Open Energy Information  

Open Energy Info (EERE)

Power District No 5 Power District No 5 Jump to: navigation, search Name Overton Power District No 5 Place Nevada Utility Id 14245 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Demand Industrial General Service Non- Demand Commercial Irrigation Commercial Residential Residential Average Rates Residential: $0.0994/kWh Commercial: $0.0925/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Overton_Power_District_No_5&oldid=411289"

127

Closure Report for Corrective Action Unit 407: Roller Coaster RADSAFE Area, Tonopah Test Range, Nevada  

SciTech Connect

This closure report (CR) provides documentation for the closure of the Roller Coaster RADSAFE Area (RCRSA) Corrective Action Unit (CAU) 407 identified in the Federal Facility Agreement and Consent Order (FFACO) (Nevada Division of Environmental Protection [NDEP] et al., 1996). CAU 407 is located at the Tonopah Test Range (TTR), Nevada. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The RCRSA is located on the northeast comer of the intersection of Main Road and Browne's Lake Road, which is approximately 8 km (5 mi) south of Area 3 (Figure 1). The RCRSA was used during May and June of 1963 to decontaminate vehicles, equipment, and personnel from the Double Tracks and Clean Slate tests. Investigation of the RCRSA was conducted from June through November of 1998. A Corrective Action Decision Document (CADD) (U.S. Department of Energy, Nevada Operations Office [DOEN], 1999) was approved in October of 1999. The purpose of this CR is to: Document the closure activities as proposed in the Corrective Action Plan (CAP) (DOEM, 2000). Obtain a Notice of Completion from the NDEP. Recommend the movement of CAU 407 from Appendix III to Appendix IV of the FFACO. The following is the scope of the closure actions implemented for CAU 407: Removal and disposal of surface soils which were over three times background for the area. Soils identified for removal were disposed of at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). Excavated areas were backfilled with clean borrow soil located near the site. A soil cover was constructed over the waste disposal pit area, where subsurface constituents of concern remain. The site was fenced and posted as an ''Underground Radioactive Material'' area.

T. M. Fitzmaurice

2001-12-01T23:59:59.000Z

128

Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2011  

SciTech Connect

This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2011 and includes inspection and repair activities completed at the following CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 407: Roller Coaster RadSafe Area (TTR); (3) CAU 424: Area 3 Landfill Complexes (TTR); (4) CAU 453: Area 9 UXO Landfill (TTR); and (5) CAU 487: Thunderwell Site (TTR) Inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Appendix B. The inspection checklists are included in Appendix C, field notes are included in Appendix D, and photographs taken during inspections are included in Appendix E. The annual post-closure inspections were conducted May 3 and 4, 2011. Maintenance was performed at CAU 424, CAU 453, and CAU 487. At CAU 424, two surface grade monuments at Landfill Cell A3-3 could not be located during the inspection. The two monuments were located and marked with lava rock on July 13, 2011. At CAU 453, there was evidence of animal burrowing. Animal burrows were backfilled on July 13, 2011. At CAU 487, one use restriction warning sign was missing, and wording was faded on the remaining signs. A large animal burrow was also present. The signs were replaced, and the animal burrow was backfilled on July 12, 2011. As a best management practice, the use restriction warning signs at CAU 407 were replaced with standard Federal Facility Agreement and Consent Order signs on July 13, 2011. Vegetation monitoring was performed at the CAU 400 Five Points Landfill and CAU 407 in June 2011, and the vegetation monitoring report is included in Appendix F.

NSTec Environmental Restoration

2012-02-21T23:59:59.000Z

129

Closure Report for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 425 is located on the Tonopah Test Range, approximately 386 kilometers (240 miles) northwest of Las Vegas, Nevada. CAU 425 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and is comprised of one Corrective Action Site (CAS). CAS 09-08-001-TA09 consisted of a large pile of concrete rubble from the original Hard Target and construction debris associated with the Tornado Rocket Sled Tests. CAU 425 was closed in accordance with the FFACO and the Nevada Division of Environmental Protection-approved Streamlined Approach for Environmental Restoration Plan for CAU 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada (U.S. Department of Energy, Nevada Operations Office, 2002). CAU 425 was closed by implementing the following corrective actions: The approved corrective action for this unit was clean closure. Closure activities included: (1) Removal of all the debris from the site. (2) Weighing each load of debris leaving the job site. (3) Transporting the debris to the U.S. Air Force Construction Landfill for disposal. (4) Placing the radioactive material in a U.S. Department of Transportation approved container for proper transport and disposal. (5) Transporting the radioactive material to the Nevada Test Site for disposal. (6) Regrading the job site to its approximate original contours/elevation.

K. B. Campbell

2003-03-01T23:59:59.000Z

130

Category:Congressional Districts | Open Energy Information  

Open Energy Info (EERE)

Congressional Districts Congressional Districts Jump to: navigation, search This category contains all congressional districts in the United States of America. Pages in category "Congressional Districts" The following 200 pages are in this category, out of 437 total. (previous 200) (next 200) A Alabama's 1st congressional district Alabama's 2nd congressional district Alabama's 3rd congressional district Alabama's 4th congressional district Alabama's 5th congressional district Alabama's 6th congressional district Alabama's 7th congressional district Alaska's At-large congressional district Arizona's 1st congressional district Arizona's 2nd congressional district Arizona's 3rd congressional district Arizona's 4th congressional district Arizona's 5th congressional district Arizona's 6th congressional district

131

Geologic investigation of Playa Lakes, Tonopah Test Range, Nevada : data report.  

SciTech Connect

Subsurface geological investigations have been conducted at two large playa lakes at the Tonopah Test Range in central Nevada. These characterization activities were intended to provide basic stratigraphic-framework information regarding the lateral distribution of ''hard'' and ''soft'' sedimentary materials for use in defining suitable target regions for penetration testing. Both downhole geophysical measurements and macroscopic lithilogic descriptions were used as a surrogate for quantitative mechanical-strength properties, although some quantitative laboratory strength measurements were obtained as well. Both rotary (71) and core (19) holes on a systematic grid were drilled in the southern half of the Main Lake; drill hole spacings are 300 ft north-south and 500-ft east-west. The drilled region overlaps a previous cone-penetrometer survey that also addressed the distribution of hard and soft material. Holes were drilled to a depth of 40 ft and logged using both geologic examination and down-hole geophysical surveying. The data identify a large complex of very coarse-grained sediment (clasts up to 8 mm) with interbedded finer-grained sands, silts and clays, underlying a fairly uniform layer of silty clay 6 to 12 ft thick. Geophysical densities of the course-grained materials exceed 2.0 g/cm{sup 2}, and this petrophysical value appears to be a valid discriminator of hard vs. soft sediments in the subsurface. Thirty-four holes, including both core and rotary drilling, were drilled on a portion of the much larger Antelope Lake. A set of pre-drilling geophysical surveys, including time-domain electromagnetic methods, galvanic resistivity soundings, and terrain-conductivity surveying, was used to identify the gross distribution of conductive and resistive facies with respect to the present lake outline. Conductive areas were postulated to represent softer, clay-rich sediments with larger amounts of contained conductive ground water. Initial drilling, consisting of cored drill holes to 100-ft (33-m) depth, confirmed both the specific surface geophysical measurements and the more general geophysical model of the subsurface lake facies. Good agreement of conductive regions with drill holes containing little to no coarse-grained sediments was observed, and vice-versa. A second phase of grid drilling on approximately 300-ft (100-m) centers was targeted a delineating a region of sufficient size containing essentially no coarse-grained ''hard'' material. Such a region was identified in the southwestern portion of Antelope Lake.

Rautman, Christopher Arthur

2004-12-01T23:59:59.000Z

132

Post-Closure Inspection Report for the Tonopah Test Range, Nevada  

SciTech Connect

This report provides the results of the semiannual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2006 and includes inspection and repair activities completed at the following nine CAUs: CAU 400: Bomblet Pit and Five Points Landfill (TTR); CAU 404: Roller Coaster Lagoons and Trench (TTR); CAU 407: Roller Coaster RadSafe Area (TTR); CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR); CAU 424: Area 3 Landfill Complexes (TTR); CAU 426: Cactus Spring Waste Trenches (TTR); CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR); CAU 453: Area 9 UXO Landfill (TTR); and CAU 487: Thunderwell Site (TTR). Post-closure inspections were conducted on May 9, 2006, May 31, 2006, and November 15, 2006. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in June 2006, and the vegetation monitoring report is included in Attachment F. Maintenance and/or repairs were performed at CAU 400, CAU 407, CAU 426, CAU 453, and CAU 487 in 2006. During the May inspection of CAU 400, it was identified that the east and west sections of chickenwire fencing beyond the standard fencing were damaged; they were repaired in June 2006. Also in June 2006, the southeast corner fence post and one warning sign at CAU 407 were reinforced and reattached, the perimeter fencing adjacent to the gate at CAU 426 was tightened, and large animal burrows observed at CAU 453 were backfilled. Cracking observed in three monuments at CAU 487 was repaired using sealant during the May 9, 2006, inspection. At this time, the TTR post-closure site inspections should continue as scheduled. Any potential problem areas previously identified (e.g., areas of erosion, subsidence) should be monitored closely, and periodic vegetation surveys of the vegetated covers should continue.

NSTec Environmental Restoration

2007-06-01T23:59:59.000Z

133

Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2007  

SciTech Connect

This report provides the results of the semiannual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2007 and includes inspection and repair activities completed at the following nine CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 404: Roller Coaster Lagoons and Trench (TTR); (3) CAU 407: Roller Coaster RadSafe Area (TTR); (4) CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR); (5) CAU 424: Area 3 Landfill Complexes (TTR); (6) CAU 426: Cactus Spring Waste Trenches (TTR); (7) CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR); (8) CAU 453: Area 9 UXO Landfill (TTR); and (9) CAU 487: Thunderwell Site (TTR). In a letter from the Nevada Division of Environmental Protection (NDEP) dated December 5, 2006, NDEP concurred with the request to reduce the frequency of post-closure inspections of CAUs at TTR to an annual frequency. This letter is included in Attachment B. Post-closure inspections were conducted on May 15-16, 2007. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in May 2007, and the vegetation monitoring report is included in Attachment F. Maintenance and/or repairs were performed at CAU 453. Animal burrows observed during the annual inspection at CAU 453 were backfilled on August 1, 2007. At this time, the TTR post-closure site inspections should continue as scheduled. Any potential problem areas previously identified (e.g., areas of erosion, subsidence) should be monitored closely, and periodic vegetation surveys of the vegetated covers should continue.

NSTec Environmental Restoration

2008-06-01T23:59:59.000Z

134

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 499: Hydrocarbon Spill Site, Tonopah Test Range, Nevada  

SciTech Connect

This Streamlined Approach for Environmental Restoration (SAFER) plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 499, Hydrocarbon Spill Site, Tonopah Test Range (TTR). This CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996). CAU 499 is located on the TTR and consists of the following single Corrective Action Site (CAS) (Figure 1): CAS RG-25-001-RD24 - Radar 24 Diesel Spill Site is a diesel fuel release site that is assumed to have been cased by numerous small historical over fillings, spills and leaks from an above-ground storage tank (AST) over a period of 36 years. The tank was located on the north side of Building 24-50 on the TTR approximately 4.0 kilometers (2.5 miles) southwest of the Area 3 Compound at the end of the Avenue 24.

T. M. Fitzmaurice

2001-09-01T23:59:59.000Z

135

Chemical analyses of soil samples collected from the Sandia National Laboratories/NM, Tonopah Test Range environs, 1994-2005.  

Science Conference Proceedings (OSTI)

From 1994 through 2005, the Environmental Management Department of Sandia National Laboratories (SNL) at the Tonopah Test Range (TTR), NV, has collected soil samples at numerous locations on-site, on the perimeter, and off-site for the purpose of determining potential impacts to the environs from operations at TTR. These samples were submitted to an analytical laboratory of metal-in-soil analyses. Intercomparisons of these results were then made to determine if there was any statistical difference between on-site, perimeter, and off-site samples, or if there were increasing or decreasing trends which indicated that further investigation may be warranted. This work provided the SNL Environmental Management Department with a sound baseline data reference against which to compare future operational impacts. In addition, it demonstrates the commitment that the Laboratories have to go beyond mere compliance to achieve excellence in its operations. This data is presented in graphical format with narrative commentaries on particular items of interest.

Deola, Regina Anne; Oldewage, Hans D.; Herrera, Heidi M.; Miller, Mark Laverne

2006-05-01T23:59:59.000Z

136

Irrigation pumping using geothermal energy  

DOE Green Energy (OSTI)

The potential of using geothermal energy in an isobutane binary system to drive directly a cluster of irrigation pumps was evaluated. This three well geothermal system, based at 150{sup 0}C (302{sup 0}F) resource at 2000 m (6560 ft), would cost an estimated $7,800,000 in capital investment to provide 6000 gpm of irrigation water from 12 water wells. It would serve approximately 4.5 square miles of irrigated agricultural land, with the delivered water costing $106.76 per acre-foot. This compares with an estimated cost of $60.78 per acre-foot for a conventional irrigation system driven by natural gas at the current price (1980 dollars) of $2.72/mm Btu. It is obvious that if natural gas prices continue to rise, or if geothermal resources can be found at depths less than 2000 meters, then the geothermal irrigation pumping system would be attractive economically. The importance of water to the economy and growth of Arizona was summarized. Total water consumption in Arizona is about 7,600,000 acre-feet annually of which about 87% is used for agriculture. Total supply from the Colorado River and water runoff is only 2,600,000 acre-feet per year, resulting in a net potable groundwater depletion of about 4,000,000 acre-feet per year assuming a recharge rate of about 1,000,000 acre-feet per year.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

137

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 484: Surface Debris, Waste Sites, and Burn Area, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

This Streamlined Approach for Environmental Restoration plan details the activities necessary to close Corrective Action Unit (CAU) 484: Surface Debris, Waste Sites, and Burn Area (Tonopah Test Range). CAU 484 consists of sites located at the Tonopah Test Range, Nevada, and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order. CAU 484 consists of the following six Corrective Action Sites: (1) CAS RG-52-007-TAML, Davis Gun Penetrator Test; (2) CAS TA-52-001-TANL, NEDS Detonation Area; (3) CAS TA-52-004-TAAL, Metal Particle Dispersion Test; (4) CAS TA-52-005-TAAL, Joint Test Assembly DU Sites; (5) CAS TA-52-006-TAPL, Depleted Uranium Site; and (6) CAS TA-54-001-TANL, Containment Tank and Steel Structure

Bechel Nevada

2004-05-01T23:59:59.000Z

138

Waterway Management Districts (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

Waterway management districts are established to manage and supervise the use and development of waterways in municipalities with populations between 29,600 and 29,900.

139

Municipal Utility Districts (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

Municipal Utility Districts, regulated by the Texas Commission on Environmental Quality, may be created for the following purposes: (1) the control, storage, preservation, and distribution of its...

140

ERRATA SHEET for Post-Closure Inspection Report for Corrective Action Unit 407: Roller Coaster RadSafe Area Tonopah Test Range, Nevada, Calendar year 2001  

SciTech Connect

The fifth sentence of the first paragraph on Page 1 of the Post Closure Inspection Report for Corrective Action Unit 407: Roller Coaster RadSafe Area, Tonopah Test Range, Nevada erroneously states that Revision 1 of the CR was issued in December of 2001 and was approved by NDEP on January 7, 2002. The sentence should state that Revision 1 of the CR was issued in December of 2001 and was approved by NDEP on February 22, 2002.

K. B. Campbell

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Efficient Irrigation for Water Conservation in the Rio Grande Basin: 2010/2011 Progress and Accomplishments  

E-Print Network (OSTI)

Since 2001, the Efficient Irrigation for Water Conservation in the Rio Grande Basin Federal Initiative-known as the Rio Grande Basin Initiative (RGBI)-has saved more than 5 million acre-feet of water. Researchers, Extension specialists, and county Extension agents from Texas AgriLife Research, the Texas AgriLife Extension Service, and the New Mexico State University Agricultural Experiment Station and Cooperative Extension Service work with local irrigation districts, agricultural producers, homeowners, and regional agencies to meet present and future water demand through water conservation and efficient irrigation measures. This project is funded through the U.S. Department of Agriculture National Institute of Food and Agriculture and is administered by the Texas Water Resources Institute and the New Mexico State University Water Task Force.

Kalisek, D.; Harris, B. L.; Runyan, C.; DeMouche, L.

2011-06-01T23:59:59.000Z

142

Efficient Irrigation for Water conservation in the Rio Grande Basin: 2010-2011 Progress and Accomplishments  

E-Print Network (OSTI)

Since 2001, the Efficient Irrigation for Water Conservation in the Rio Grande Basin Federal Initiative known as the Rio Grande Basin Initiative (RGBI)has saved more than 5 million acre-feet of water. Researchers, Extension specialists, and county Extension agents from Texas AgriLife Research, the Texas AgriLife Extension Service, and the New Mexico State University Agricultural Experiment Station and Cooperative Extension Service work with local irrigation districts, agricultural producers, homeowners, and regional agencies to meet present and future water demand through water conservation and efficient irrigation measures. This project is funded through the U.S. Department of Agriculture National Institute of Food and Agriculture and is administered by the Texas Water Resources Institute and the New Mexico State University Water Task Force.

Kalisek, D.; Harris, B.L.; Runyan, C.; DeMouche, L.

2011-06-21T23:59:59.000Z

143

Pricing and Conservation of Irrigation Water in Texas and New Mexico  

E-Print Network (OSTI)

Two possible policy alternatives for management of limited water supplies in arid portions of Texas and New Mexico were analyzed for economic feasibility. Detailed studies of the potential impact of a water accumulation policy for each of two irrigation districts (El Paso County Water Improvement District No. 1 in Texas, and the Elephant Butte Irrigation District in New Mexico) were undertaken using temporal linear programming techniques. Current cropping practices, soils, groundwater conditions, historical surface water allocations for Elephant Butte Reservoir and evaporation rates were incorporated within the analysis. Estimates of the benefits of accumulation of surplus portions of irrigation district member's annual surface water allocations, with subsequent use of the unevaporated portion in later years, were deemed insufficient to cover anticipated administrative costs of implementing the proposed policy. This suggests current allocations approximate a temporal optimum. Sensitivity analyses showed greater potential benefits, however, if current groundwater conditions worsen. Additional analysis of possible price-induced water conservation for the areas within the two states currently mining groundwater from the exhaustible Ogallala aquifer was also undertaken. The High Plains of Texas served as the representative region of study, with results assumed to be analogous for the portions of Eastern New Mexico relying on the Ogallala. Both static and temporal effects of a per unit tax on water pumpage and net returns were examined using a recursive linear programming model. Results indicated that imposition of a $20 per acre-foot tax on water pumped induced very little change in water use over a 40 year period, while reducing the present value of producer net returns from 9% to 27% depending upon initial groundwater conditions and the irrigation technology in use. These results imply that a price induced water conservation policy for the Ogallala is not economically justified.

Ellis, John R.; Lacewell, Ronald D.; Cornforth, G. C.; Teague, P. W.

1983-10-01T23:59:59.000Z

144

Solar irrigation program plan. Revision  

DOE Green Energy (OSTI)

This report describes the ERDA solar irrigation program plan through fiscal year 1979. It is an update of the original program plan as outlined in Sandia Report SAND--76-0594. The updated goals of the plan are listed, the participants named, and their responsibilities outlined. ERDA has the program responsibility, ERDA field offices the contractural responsibility, and Sandia Laboratories the technical direction responsibilities. Three solar irrigation experiments planned, system analyses to be conducted, and the participants of the program are described. This document is intended to be used as a program guide for accomplishing the program goals.

Alvis, R.L.; Vandevender, S.G.

1977-06-01T23:59:59.000Z

145

CATEGORICAL EXCLUSION FOR 331 BUILDING IRRIGATION UPGRADES,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EXCLUSION FOR 331 BUILDING IRRIGATION UPGRADES, EXCLUSION FOR 331 BUILDING IRRIGATION UPGRADES, 300 AREA, HANFORD SITE, RICHLAND, WASHINGTON Proposed Action: The U.S. Department of Energy (DOE), Pacific Northwest Site Office (PNSO) proposes to upgrade a landscaping irrigation system in the 300 Area. Location of Action: In the landscaped area around the 331 Building, Hanford Site Description of the Proposed Action: The proposed action is to upgrade the existing 331 Building landscaping irrigation system by using nearby aquaculture effluent instead of

146

Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations  

SciTech Connect

In 1963, the Atomic Energy Commission (AEC), predecessor to the US Department of Energy (DOE), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range (NAFR)). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in dispersal of plutonium over the ground surface downwind of the test ground zero. Three tests, Clean Slate 1, 2, and 3, were conducted on the TTR in Cactus Flat; the fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. DOE is working to clean up and close all four sites. Substantial cleaned up has been accomplished at Double Tracks and Clean Slate 1. Cleanup of Clean Slate 2 and 3 is on the DOE planning horizon for some time in the next several years. The Desert Research Institute installed two monitoring stations, number 400 at the Sandia National Laboratories Range Operations Center and number 401 at Clean Slate 3, in 2008 and a third monitoring station, number 402 at Clean Slate 1, in 2011 to measure radiological, meteorological, and dust conditions. The primary objectives of the data collection and analysis effort are to (1) monitor the concentration of radiological parameters in dust particles suspended in air, (2) determine whether winds are re-distributing radionuclides or contaminated soil material, (3) evaluate the controlling meteorological conditions if wind transport is occurring, and (4) measure ancillary radiological, meteorological, and environmental parameters that might provide insight to the above assessments. The following observations are based on data collected during CY2012. The mean annual concentration of gross alpha and gross beta is highest at Station 400 and lowest at Station 401. This difference may be the result of using filter media at Station 400 with a smaller pore size than the media used at the other two stations. Average annual gamma exposure at Station 401 is slightly greater than at Station 400 and 402. Average annual gamma exposure at all three TTR stations are in the upper range to slightly higher than values reported for the CEMP stations surrounding the TTR. At higher wind speeds, the saltation counts are greater at Station 401 than at Station 402 while the suspended particulate concentrations are greater at Station 402 than at Statin 401. Although these observations seem counterintuitive, they are likely the result of differences in the soil material present at the two sites. Station 401 is located on an interfluve elevated above two adjacent drainage channels where the soil surface is likely to be composed of coarser material. Station 402 is located in finer sediments at the playa edge and is also subject to dust from a dirt road only 500 m to the north. During prolonged high wind events, suspended dust concentrations at Station 401 peaked with the initial winds then decreased whereas dust concentrations at Station 402 peaked with each peak in the wind speed. This likely reflects a limited PM10 source that is quickly expended at Station 401 relative to an abundant PM10 source at Station 402. In CY2013, to facilitate comparisons between radiological analyses of collected dust, the filter media at all three stations will be standardized. In addition, a sequence of samples will be collected at Station 400 using both types of filter media to enable development of a mathematical relationship between the results derived from the two filter types. Additionally, having acquired approximately four years of observations at Stations 400 and 401 and a year of observations at Station 402, a period-of-record analysis of the radiological and airborne dust conditions will be undertaken.

Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

2013-07-01T23:59:59.000Z

147

POST-CLOSURE INSPECTION REPORT FOR THE TONOPAH TEST RANGE, NEVADA, FOR CALENDAR YEAR 2004  

SciTech Connect

This Post-Closure Inspection Report provides an analysis and summary of the semi-annual inspections conducted at the Tonopah Test Range (TTR) during Calendar Year 2004. The report includes the inspection and/or repair activities completed at the following nine Corrective Action Units (CAUs) located at TTR, Nevada: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 404: Roller Coaster Lagoons and Trench (TTR); (3) CAU 407: Roller Coaster RadSafe Area (TTR); (4) CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR) (5) CAU 424: Area 3 Landfill Complexes (TTR); (6) CAU 426: Cactus Spring Waste Trenches (TTR); (7) CAU 427: Area 3 Septic Waste Systems 2,6 (TTR); (8) CAU 453: Area 9 UXO Landfill (TTR); and (9) CAU 487: Thunderwell Site (TTR). Site inspections were conducted on July 7,2004, and November 9-10,2004. All inspections were conducted according to the post-closure plans in the approved Closure Reports (CRs). The post-closure inspection plan for each CAU is included in Appendix B, with the exception of CAU 400 and CAU 423. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. In addition, post-closure inspections are not currently required at CAU 423; however, the CR is being revised to include inspection requirements. The inspection checklists for each site inspection are included in Appendix C, the field notes are included in Appendix D, and the site photographs are included in Appendix E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in June 2004, and the vegetation monitoring report is included in Appendix F. In addition, topographic survey results of two repaired landfill cells in CAU 424 are included in Appendix G. Maintenance and/or repairs were performed at the CAU 400 Five Points Landfill, CAU 407, CAU 424, CAU 427, and CAU 487. CAU 400 repairs included mending the fence, reseeding of a flood damaged area, and anchoring straw bales in the wash to help control erosion at the Five Points Landfill. CAU 407 repairs included erosion repair, reseeding the cover, and replacement of one warning sign. CAU 424 repairs included filling topographically low areas to the surrounding grade. This was performed at Landfill Cell A3-1 (CAS 03-08-001-A301) and Landfill Cell A3-4 (CAS 03-08-002-A304). CAU 427 maintenance activities included placing additional red rocks over the subsurface site markers during the July inspection to assist in locating them for future inspections. CAU 487 repairs included installing eight above-grade monuments to mark the use restriction boundaries, installing use restriction warning signs, stamping coordinates on the brass survey markers, and subsidence repair at the A-8 anomaly. With the completion of these repairs and maintenance activities, all CAUs were in excellent condition at the end of 2004. The site inspections should continue as scheduled, and any potential problem areas, such as repaired areas of erosion or subsidence, should be monitored closely for further maintenance or repair needs.

BECHTEL NEVADA

2005-04-01T23:59:59.000Z

148

Fuel cell powered irrigation system  

SciTech Connect

Set out herein is a fuel cell power plant for use with irrigation systems wherein the fuel cell is utilized to generate electric current to drive a pump motor. This pump motor drives a first water pump which receives water for distribution through a traveling irrigation system, the output of the first pump first conveyed into a condenser heat exchanger connected to a steam engine or turbine cycle. The fuel cell itself is contained within a boiler assembly and the heat of production of the electric power is used to generate steam which is sent to the steam engine. In the course of cooling the condenser gases of the steam engine the irrigating water is passed through a second pump driven by the steam engine and it is through this second pump that the pressure is raised sufficiently to allow for the necessary spraying fans. To improve the condenser efficiency part of the condensate or the ullage thereof is connected to one of the spray heads on the irrigation system in a venturi nozzle which thereby lowers the back pressure thereof. The lower portion of the condenser or the liquid part thereof is fed back through yet another condenser pump to the boiler to be regenerated into steam.

Jacobi, E.F.; Madden, M.R.

1982-01-12T23:59:59.000Z

149

Closure Report for Corrective Action Unit 408: Bomblet Target Area Tonopah Test Range (TTR), Nevada, Revision 0  

Science Conference Proceedings (OSTI)

This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 408: Bomblet Target Area (TTR), Tonopah Test Range, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Corrective Action Unit 408 is located at the Tonopah Test Range, Nevada, and consists of Corrective Action Site (CAS) TA-55-002-TAB2, Bomblet Target Areas. This CAS includes the following seven target areas: Mid Target Flightline Bomblet Location Strategic Air Command (SAC) Target Location 1 SAC Target Location 2 South Antelope Lake Tomahawk Location 1 Tomahawk Location 2 The purpose of this CR is to provide documentation supporting the completed corrective actions and data confirming that the closure objectives for the CAS within CAU 408 were met. To achieve this, the following actions were performed: Review the current site conditions, including the concentration and extent of contamination. Implement any corrective actions necessary to protect human health and the environment. Properly dispose of corrective action and investigation wastes. Document Notice of Completion and closure of CAU 408 issued by the Nevada Division of Environmental Protection. From July 2009 through August 2010, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 408: Bomblet Target Area, Tonopah Test Range (TTR), Nevada. The purposes of the activities as defined during the data quality objectives process were as follows: Identify and remove munitions of explosive concern (MEC) associated with DOE activities. Investigate potential disposal pit locations. Remove depleted uranium-contaminated fragments and soil. Determine whether contaminants of concern (COCs) are present. If COCs are present, determine their nature and extent, implement appropriate corrective actions, and properly dispose of wastes. Analytes detected during the closure activities were evaluated against final action levels to determine COCs for CAU 408. Assessment of the data indicated COCs are not present at CAS TA-55-002-TAB2; therefore, no corrective action is necessary. No use restrictions are required to be placed on this CAU because the investigation showed no evidence of remaining soil contamination or remaining debris/waste upon completion of all investigation activities. The MEC was successfully removed and dispositioned as planned using current best available technologies. As MEC guidance and general MEC standards acknowledge that MEC response actions cannot determine with 100 percent certainty that all MEC and unexploded ordnance (UXO) are removed, the clean closure of CAU 408 will implement a best management practice of posting UXO hazard warning signs near the seven target areas. The signs will warn future land users of the potential for encountering residual UXO hazards. The DOE, National Nuclear Security Administration Nevada Site Office, provides the following recommendations: A Notice of Completion to the DOE, National Nuclear Security Administration Nevada Site Office, is requested from the Nevada Division of Environmental Protection for closure of CAU 408. Corrective Action Unit 408 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order.

Mark Krauss

2010-09-01T23:59:59.000Z

150

The Honolulu Engineer District Introduction  

E-Print Network (OSTI)

with jurisdiction over the Honolulu, Far East, and Okinawa districts.' Several histories of the engineer wartime

US Army Corps of Engineers

151

ELECTRICAL DISTRICT No.  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRICAL ELECTRICAL DISTRICT No. 4 PINAL COUNTY POST OFFICE BOX 605- ELOY, ARIZONA 85131 Telephone: (520) 468-7338 BOARD OF DIRECTORS: DISTRICT MANAGER: MARK HAMILTON, CHAIRMAN RON McEACHERN CHARLES BUSH ThOMAS W. SCM JAMES F. SHEDD WILLIAM WARREN VIA ELECTRONIC MAIL TO: DSWFPP~2wapa.gov July 19, 2010 Mr. Darrick Moe Desert Southwest Regional Manager Western Area Power Authority P.O. Box 6457 Phoenix, AZ 85005-6457 Re: SPPR Proposed ED5 to Palo Verde Transmission Project Electrical District Number Four of Pinal County ("ED4") and Electrical District Number Five of Pinal County ("ED5") are members of the Southwest Public Power Resource ("SPPR") Group and support the ED5 to Palo Verde Project Statement of Interest ("SOT") submitted by the SPPR Group. ED4 is also a participant in the Southeast Valley C'SEV") Project and has offered to

152

Drainage Districts (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

A Drainage District may be created by petition of landowners who desire to construct one or more drains, ditches, levees, waste ditches, or other works across the lands of others or to straighten,...

153

DISTRICT TECHNOLOGY PLAN  

E-Print Network (OSTI)

If you dont know where you are going, you will probably end up somewhere else. Lawrence J. Peter Ypsilanti School District established its school improvement process with the

Contact Person; Bob Wilkinson

2006-01-01T23:59:59.000Z

154

The Forest Preserve District  

NLE Websites -- All DOE Office Websites (Extended Search)

Forest Preserve District Forest Preserve District Nature Bulletin No. 109 March 29, 1947 Forest Preserve District of Cook County William N. Erickson, President Roberts Mann, Supt. of Conservation THE FOREST PRESERVE DISTRICT Forest Preserve Districts, in Illinois, are separate municipal bodies governed by a Board of Forest Preserve Commissioners consisting of the elected county commissioners, as in Cook County, or by a committee of the county board of supervisors, as in 7 other counties. The legislative act which provided for such a district, if authorized by referendum vote of the people, became a law on July 1, 1914. Under that act, the commissioners are empowered to levy taxes, issue bonds, and to acquire lands containing forests "for the purpose of protecting and preserving the flora, fauna and scenic beauties.... and to restore, restock, protect and preserve the natural forests and said lands with their flora and fauna, as nearly as may be in their natural state and condition for the purpose of the education, pleasure and recreation of the public". A limit of 35,000 acres was set; later increased to 39,000.

155

Calendar year 2002 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.  

SciTech Connect

Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, oversees TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2002. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).

Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

2003-09-01T23:59:59.000Z

156

Calendar year 2003 : annual site enviromental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.  

SciTech Connect

Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2003. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2003) and DOE Order 231.1 Chg 2., Environment, Safety, and Health Reporting (DOE 1996).

Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

2004-09-01T23:59:59.000Z

157

Corrective action plan for CAU No. 404: Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range  

Science Conference Proceedings (OSTI)

This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Roller Coaster Sewage Lagoons and North Disposal Trench Corrective Action Unit (CAU) No. 404. The site is located on the Tonopah Test Range. CAU 404 consists of two Corrective Action Sites (CAS): the Roller Coaster Lagoons (CAS No TA-03-001-TA-RC) and the North Disposal Trench (CAS No TA-21-001-TA-RC). A site map of the lagoons and trench is provided. The Roller Coaster Sewage Lagoons are comprised of two unlined lagoons that received liquid sanitary waste in 1963 from the Operation Roller Coaster Man Camp and debris from subsequent construction and range cleanup activities. The North Disposal Trench was excavated in approximately 1963 and received solid waste and debris from the man camp and subsequent construction and range cleanup activities. A small hydrocarbon spill occurred during the 1995 Voluntary Corrective Action (VCA) activities in an area associated with the North Disposal Trench CAS.

NONE

1997-07-01T23:59:59.000Z

158

Columbia Rural Electric Association - Irrigation Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Administration, offers an irrigation energy efficiency program for its agricultural customers. Stationary systems are not eligible for this program due to the number of...

159

Columbia Rural Electric Association - Irrigation Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0.75 Columbia REA, through the Bonneville Power Administration, offers an irrigation energy efficiency program for its agricultural customers. Stationary systems are not...

160

Metering Secondary Water in Residential Irrigation Systems.  

E-Print Network (OSTI)

??The use of residential secondary or dual water systems for irrigation purposes is common in the western United States where water supplies are scarce. While (more)

Richards, Gregory L.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

An in situ survey of Clean Slate 1, 2, and 3, Tonopah Test Range, Central Nevada. Date of survey: September--November 1993  

SciTech Connect

A ground-based in situ radiological survey was conducted downwind of the Clean Slate 1, 2, and 3 nuclear safety test sites at the Tonopah Test Range in central Nevada from September through November 1993. The purpose of the study was to corroborate the americium-241 ({sup 241}Am) soil concentrations that were derived from the aerial radiological survey of the Clean Slate areas, which was conducted from August through October 1993. The presence of {sup 241}Am was detected at 140 of the 190 locations, with unrecoverable or lost data accounting for fifteen (15) of the sampling points. Good agreement was obtained between the aerial and in situ results.

NONE

1995-08-01T23:59:59.000Z

162

BLM Vale District Office | Open Energy Information  

Open Energy Info (EERE)

Vale District Office Jump to: navigation, search Name BLM Vale District Office Parent Organization BLM Place Vale, Oregon References BLM Vale District Office Directory1 This...

163

BLM Prineville District Office | Open Energy Information  

Open Energy Info (EERE)

Prineville District Office Jump to: navigation, search Name BLM Prineville District Office Place Prineville, Oregon References BLM Prineville District Office Directory1 This...

164

Westlands Water District | Open Energy Information  

Open Energy Info (EERE)

Westlands Water District Jump to: navigation, search Name Westlands Water District Place California Sector Solar Product Water district in central California which administers a...

165

Regional Differences in the Influence of Irrigation on Climate  

Science Conference Proceedings (OSTI)

A global climate model experiment is performed to evaluate the effect of irrigation on temperatures in several major irrigated regions of the world. The Community Atmosphere Model, version 3.3, was modified to represent irrigation for the ...

David Lobell; Govindasamy Bala; Art Mirin; Thomas Phillips; Reed Maxwell; Doug Rotman

2009-04-01T23:59:59.000Z

166

Public Utility District No 2 | Open Energy Information  

Open Energy Info (EERE)

District No 2 District No 2 Jump to: navigation, search Name PUD No 2 of Pacific County Place Washington Utility Id 14324 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting 100 Watt H.P.S Lighting Area Lighting 200 Watt H.P.S Lighting Irrigation and Crop Pumping Service Rate Large Commercial Single Phase Commercial Large Commercial Three Phase Commercial Large Industrial Industrial Primary Metered Commercial Single Phase Commercial Primary Metered Commercial Three Phase Commercial

167

Boise City Geothermal District Heating District Heating Low Temperature  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Facility Boise City Geothermal District Heating Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

168

Philip District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal Facility Facility Philip District Heating Sector Geothermal energy Type District Heating Location Philip, South Dakota Coordinates 44.0394329°, -101.6651441° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

169

Pagosa Springs District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Facility Pagosa Springs District Heating Sector Geothermal energy Type District Heating Location Pagosa Springs, Colorado Coordinates 37.26945°, -107.0097617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

170

Elko County School District District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

County School District District Heating Low Temperature Geothermal County School District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko County School District District Heating Low Temperature Geothermal Facility Facility Elko County School District Sector Geothermal energy Type District Heating Location Elko, Nevada Coordinates 40.8324211°, -115.7631232° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

171

Inland Navigation Districts and Florida Inland Navigation District Law  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inland Navigation Districts and Florida Inland Navigation District Inland Navigation Districts and Florida Inland Navigation District Law (Florida) Inland Navigation Districts and Florida Inland Navigation District Law (Florida) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Florida Program Type Siting and Permitting Provider Florida Inland Navigation District (FIND) The first part of this legislation establishes Inland Navigation Districts,

172

Warm Springs Water District District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Water District District Heating Low Temperature Geothermal Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal Facility Facility Warm Springs Water District Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

173

City of Klamath Falls District Heating District Heating Low Temperature  

Open Energy Info (EERE)

District Heating District Heating Low Temperature District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath Falls District Heating Sector Geothermal energy Type District Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

174

Kethcum District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal Facility Facility Kethcum District Heating Sector Geothermal energy Type District Heating Location Ketchum, Idaho Coordinates 43.6807402°, -114.3636619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

175

San Bernardino District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Bernardino District Heating District Heating Low Temperature Geothermal Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating Location San Bernardino, California Coordinates 34.1083449°, -117.2897652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

176

Midland District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland, South Dakota Coordinates 44.0716539°, -101.1554178° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

177

Susanville District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature Geothermal Facility Facility Susanville District Heating Sector Geothermal energy Type District Heating Location Susanville, California Coordinates 40.4162842°, -120.6530063° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

178

Impact of potential large-scale irrigation on the West African Monsoon and its dependence on location of irrigated area  

Science Conference Proceedings (OSTI)

This study investigates the impact of potential large-scale irrigation on the West African Monsoon using the MIT Regional Climate Model (MRCM). A new irrigation module is implemented to assess the impact of location and scheduling of irrigation on ...

Eun-Soon Im; Marc P. Marcella; Elfatih A. B. Eltahir

179

Irrigation Monitoring with Soil Water Sensors  

E-Print Network (OSTI)

Monitoring soil water content is essential if growers want to optimize production, conserve water, reduce environmental impacts and save money. This publication illustrates how soil moisture monitoring can improve irrigation decisions and how it also can prevent irrigating the crop too much or too little.

Enciso, Juan; Porter, Dana; Peries, Xavier

2007-01-19T23:59:59.000Z

180

Forestry Policies (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

Forest policy and guidelines in Washington D.C. are focused on urban forestry, and are managed by the District Department of Transportation's Urban Forestry Administration. In 2010 The District...

Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

CORRECTIVE ACTION DECISION DOCUMENT FOR THE AREA 3 LANDFILL COMPLEX, TONOPAH TEST RANGE, CAU 424, REVISION 0, MARCH 1998  

SciTech Connect

This Corrective Action Decision Document (CADD) has been prepared for the Area 3 Landfill Complex (Corrective Action Unit [CAU] 424) in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996. Corrective Action Unit 424 is located at the Tonopah Test Range (TTR) and is comprised of the following Corrective Action Sites (CASs), each an individual landfill located around and within the perimeter of the Area 3 Compound (DOE/NV, 1996a): (1) Landfill A3-1 is CAS No. 03-08-001-A301. (2) Landfill A3-2 is CAS No. 03-08-002-A302. (3) Landfill A3-3 is CAS No. 03-08-002-A303. (4) Landfill A3-4 is CAS No. 03-08-002-A304. (5) Landfill A3-5 is CAS No. 03-08-002-A305. (6) Landfill A3-6 is CAS No. 03-08-002-A306. (7) Landfill A3-7 is CAS No. 03-08-002-A307. (8) Landfill A3-8 is CAS No. 03-08-002-A308. The purpose of this CADD is to identify and provide a rationale for the selection of a recommended corrective action alternative for each CAS. The scope of this CADD consists of the following: (1) Develop corrective action objectives. (2) Identify corrective action alternative screening criteria. (3) Develop corrective action alternatives. (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria. (6) Recommend and justify a preferred corrective action alternative for each CAS. In June and July 1997, a corrective action investigation was performed as set forth in the Corrective Action Investigation Plan (CAIP) for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada (DOE/NV, 1997). Details can be found in Appendix A of this document. The results indicated four groupings of site characteristics as shown in Table ES-1. Based on the potential exposure pathways, the following corrective action objectives have been identified for CAU No. 424: (1) Prevent or mitigate human exposure to subsurface soils containing waste. (2) Remediate the site per applicable state and federal regulations (NAC, 1996c). (3) Prevent adverse impacts to groundwater quality. Based on the review of existing data, future land use, and current operations at the TTR, the following alternatives were developed for consideration at the Area 3 Landfill Complex CAU: Alternative 1 - No Action; Alternative 2 - Administrative Closure; Alternative 3 - Partial Excavation, Backfill, and Recontouring The corrective action alternatives were evaluated based on four general corrective action standards and five remedy-selection decision factors. Based on the results of this evaluation, preferred alternatives were selected for each CAS as indicated in Table ES-2. The preferred corrective action alternatives were evaluated on their technical merits, focusing on performance, reliability, feasibility, and safety. The alternatives were judged to meet all requirements for the technical components evaluated. These alternatives meet all applicable state and federal regulations for closure of the site and will reduce potential future exposure pathways to the contents of the landfills. During corrective action implementation, these alternatives will present minimal potential threat to site workers who come in contact with the waste. However, procedures will be developed and implemented to ensure worker health and safety.

DOE /NV

1998-03-03T23:59:59.000Z

182

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 408: Bomblet Target Area, Tonopah Test Range, Nevada  

SciTech Connect

This Streamlined Approach for Environmental Restoration Plan provides the details for the closure of Corrective Action Unit (CAU) 408, Bomblet Target Area. CAU 408 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996. One Corrective Action Site (CAS) is included in CAU 408: {lg_bullet} CAS TA-55-002-TAB2, Bomblet Target Areas Based on historical documentation, personnel interviews, process knowledge, site visits, aerial photography, multispectral data, preliminary geophysical surveys, and the results of data quality objectives process (Section 3.0), clean closure will be implemented for CAU 408. CAU 408 closure activities will consist of identification and clearance of bomblet target areas, identification and removal of depleted uranium (DU) fragments on South Antelope Lake, and collection of verification samples. Any soil containing contaminants at concentrations above the action levels will be excavated and transported to an appropriate disposal facility. Based on existing information, contaminants of potential concern at CAU 408 include explosives. In addition, at South Antelope Lake, bomblets containing DU were tested. None of these contaminants is expected to be present in the soil at concentrations above the action levels; however, this will be determined by radiological surveys and verification sample results. The corrective action investigation and closure activities have been planned to include data collection and hold points throughout the process. Hold points are designed to allow decision makers to review the existing data and decide which of the available options are most suitable. Hold points include the review of radiological, geophysical, and analytical data and field observations.

NSTec Environmental Management

2006-10-01T23:59:59.000Z

183

ELECTRICAL DISTRICT NUMBER EIGHT  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRICAL DISTRICT NUMBER EIGHT ELECTRICAL DISTRICT NUMBER EIGHT Board of Directors Reply to: Ronald Rayner C. W. Adams James D. Downing, P.E. Chairman Billy Hickman 66768 Hwy 60 Brian Turner Marvin John P.O. Box 99 Vice-Chairman Jason Pierce Salome, AZ 85348 Denton Ross Jerry Rovey Secretary James N. Warkomski ED8@HARCUVARCO.COM John Utz Gary Wood PHONE:(928) 859-3647 Treasurer FAX: (928) 859-3145 Sent via e-mail Mr. Darrick Moe, Regional Manager Western Area Power Administration Desert Southwest Region P. O. Box 6457 Phoenix, AZ 85005-6457 moe@wapa.gov; dswpwrmrk@wapa.gov Re: ED5-Palo Verde Hub Project Dear Mr. Moe, In response to the request for comments issued at the October 6 Parker-Davis Project customer th meeting, and in conjunction with comments previously submitted by the Southwest Public Power

184

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turlock Irrigation District - PV Rebate California Commercial Residential Solar Buying & Making Electricity Turlock Irrigation District 12312016 Turlock Irrigation District -...

185

Impacts on irrigated agriculture of changes in electricity costs resulting from Western Area Power Administration`s power marketing alternatives  

DOE Green Energy (OSTI)

Irrigation is a major factor in the growth of US agricultural productivity, especially in western states, which account for more than 85% of the nation`s irrigated acreage. In some of these states, almost all cropland is irrigated, and nearly 50% of the irrigation is done with electrically powered pumps. Therefore, even small increases in the cost of electricity could have a disproportionate impact on irrigated agriculture. This technical memorandum examines the impacts that could result from proposed changes in the power marketing programs of the Western Area Power Administration`s Salt Lake City Area Office. The changes could increase the cost of power to all Western customers, including rural municipalities and irrigation districts that rely on inexpensive federal power to pump water. The impacts are assessed by translating changes in Western`s wholesale power rate into changes in the cost of pumping water as an input for agricultural production. Farmers can adapt to higher electricity prices in many ways, such as (1) using different pumping fuels, (2) adding workers and increasing management to irrigate more efficiently, and (3) growing more drought-tolerant crops. This study projects several responses, including using less groundwater and planting fewer waterintensive crops. The study finds that when dependence on Western`s power is high, the cost of power can have a major effect on energy use, agricultural practices, and the distribution of planted acreage. The biggest percentage changes in farm income would occur (1) in Nevada and Utah (however, all projected changes are less than 2% of the baseline) and (2) under the marketing alternatives that represent the lowest capacity and energy offer considered in Western`s Electric Power Marketing Environmental Impact Statement. The aggregate impact on farm incomes and the value of total farm production would be much smaller than that suggested by the changes in water use and planted acreage.

Edwards, B.K.; Flaim, S.J.; Howitt, R.E. [Argonne National Lab., IL (United States); Palmer, S.C. [Western Area Power Administration, Salt Lake City, UT (United States)

1995-03-01T23:59:59.000Z

186

Elko District Heat District Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Heat District Heating Low Temperature Geothermal Facility Heat District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko District Heat District Heating Low Temperature Geothermal Facility Facility Elko District Heat Sector Geothermal energy Type District Heating Location Elko, Nevada Coordinates 40.8324211°, -115.7631232° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

187

Corrective Action Plan for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5 Tonopah Test Range, Nevada  

SciTech Connect

Area 3 Septic Waste Systems 1 and 5 are located in Area 3 of the Tonopah Test Range (TTR) (Figure 1). The site is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) as Corrective Action Unit (CAU) 428 and includes Corrective Action Sites 03-05-002-SW01 (Septic Waste System 1 [SWS 1]), and 03-05-002-SW05 (Septic Waste System 5 [SWS 5]). The site history for the CAU is provided in the Corrective Action Investigation Plan (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1999). SWS 1 consists of two leachfields and associated septic tanks. SWS 1 received effluent from both sanitary and industrial sources from various buildings in Area 3 of the TTR (Figure 2). SWS 5 is comprised of one leachfield and outfall with an associated septic tank. SWS 5 received effluent from sources in Building 03-50 in Area 3 of the TTR (Figure 2). Both systems were active until 1990 when a consolidated sewer system was installed. The purpose of this Corrective Action Plan (CAP) is to provide the strategy and methodology to close the Area 3 SWS 1 and 5. The CAU will be closed following state and federal regulations and the FFACO (1996). Site characterization was done during May and June 1999. Samples of the tank contents, leachfield soil, and soil under the tanks and pipes were collected. The results of the characterization were reported in the Corrective Action Decision Document (CADD) (DOE/NV, 2000). Additional sampling was done in May 2000, the results of which are presented in this plan. Soil sample results indicated that two constituents of concern were detected above Preliminary Action Levels (PALs). Total arsenic was detected at a concentration of 68.7 milligrams per kilogram (mg/kg). The arsenic was found under the center distribution line at the proximal end of the SWS 5 Leachfield (Figure 3). Total benzo(a)pyrene was detected at a concentration of 480 micrograms per kilogram ({micro}g/kg). The benzo(a)pyrene was found in the soil under the discharge line at SWS 1 Septic Tank 33-1A (Figure 3). These concentrations are above the PALs of 3.0 mg/kg and 360 {micro}g/kg, respectively (DOE/NV, 1999) but are below the hazardous regulatory levels for these constituents. The soil will be excavated and disposed in the Nevada Test Site (NTS) Area 23 Sanitary Landfill.

D. S. Tobiason

2000-08-01T23:59:59.000Z

188

Corrective Action Decision Document for Corrective Action Unit 407: Roller Coaster RADSAFE Area, Tonopah Test Range, Nevada  

SciTech Connect

This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 407, Roller Coaster RADSAFE Area (RCRSA), under the Federal Facility Agreement and Consent Order. Located on Tonopah Test Range (TTR), CAU 407 is located approximately 140 miles northwest of Las Vegas, Nevada, and five miles south of Area 3. The RCRSA was used during May and June of 1963 to decontaminate vehicles, equipment, and personnel from the Clean Slate tests. As a result of these operations, the surface and subsurface soils in the area have been impacted by plutonium and other contaminants of potential concern associated with decontamination activities. In June and July 1998, corrective action investigation activities were performed at CAU 407 (as outlined in the related Corrective Action Investigation Plan [CAIP]). The purpose of this investigation was to determine if any analytes were present at the site in concentrations above the preliminary action levels (PALs). The results indicated in the detection of plutonium above the PAL in samples taken from surface and subsurface soil within the exclusion zone, and uranium and americium detected above the PAL in samples taken from surface soil within the exclusion zone. No other COCs were identified above PALs specified in the CAIP. Based on this data, two corrective action objectives (CAOs) were defined: (1) to prevent or mitigate human exposure to surface and subsurface soil containing COCs, and (2) to prevent adverse impacts to groundwater quality. To accomplish these objectives, five CAAs were developed and evaluated. Based on the results of the detailed and comparative analysis of these alternatives, Alternative 3 (Partial Excavation, Disposal, and Administrative Controls With a Surface Cap) was chosen as the preferred alternative. This alternative was judged to meet all requirements for the technical components evaluated, the applicable state and federal regulations for closure of the site, the CAOs under DOE Order 5400.5 and 10 Code of Federal Regulations 20, and the reduction of potential future exposure pathways to subsurface contaminated soil.

U.S. Department of Energy, Nevada Operations Office

1999-09-24T23:59:59.000Z

189

Addendum to the Closure Report for Corrective Action Unit 403: Second Gas Station, Tonopah Test Range, Nevada, Revision 0  

SciTech Connect

This document constitutes an addendum to the Closure Report for Corrective Action Unit 403: Second Gas Station, Tonopah Test Range, Nevada, September 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: This page that refers the reader to the SIR document for additional information The cover, title, and signature pages of the SIR document The NDEP approval letter The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the UR for CAS 03-02-004-0360, Underground Storage Tanks. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was reevaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above the risk-based FALs. Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at this site will be removed. Fencing and posting may be present at this site that are unrelated to the FFACO UR such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at this site.

Grant Evenson

2009-05-01T23:59:59.000Z

190

Increased Water Use Efficeincy Through Trickle Irrigation  

E-Print Network (OSTI)

The gap between supply and demand of water for agricultural and municipal uses is rapidly closing at a time when world food requirements are increasing at an alarming rate. To meet the demand for agricultural products, new lands must be brought into production or higher yields must be realized from existing lands. In either case, more efficient use of water is prerequisite. Trickle irrigation is an approach to obtain increased water use efficiencies (ratio of weight of grain harvested to weight of total crop water use) and therefore a way to increase food production with our limited water resources. The ultimate goal of this investigation was the development of required crop inputs for selected crops to optimize the design of trickle irrigation systems and obtain an optimum water balance for living plants. Specific objectives were as follows: 1. To quantitatively determine optimum irrigation timing and necessary water application amounts for selected crops when using trickle irrigation; and 2. To develop a general method for the hydraulic design of trickle irrigation systems using inputs from the first objective for optimizing the system. To achieve these objectives, experiments were conducted in field lysimeters and in a well-instrumented field plot installation for evaluating the crop inputs. Complete control of the soil water balance can be achieved by the use of these facilities. By knowing the required crop inputs and utilizing known principles of fluid mechanics proper design procedures were developed to provide optimum design for trickle irrigation systems. To achieve the first objective, three research experiments were conducted at the research lysimeters of the Department of Agricultural Engineering at Texas A&M University for which grain sorghum was selected as the experimental crop. The first two experiments were designed to study the response of grain sorghum to trickle and subsurface irrigation. A comparison of water use efficiencies under well-watered conditions using both intensified and conventional water application methods and the evaluation of water use efficiencies with trickle irrigation applications designed to limit the availability of water were the specific objectives. The results indicated higher water use efficiencies and better crop response when the trickle method of application was used. Also, the results showed that higher water use efficiencies can be obtained by applying sparing amounts. An additional investigation carried out under a different research project of the Texas Water Resources Institute (TWRI Project No. A024TEX) was designed to develop a computer model to simulate grain sorghum yield and water use under high frequency irrigation. The simulation methods used in this study can be used to simulate a complete irrigation experiment greatly reducing research costs and allowing the determination of water requirements for many crops under many different soil and climatic conditions. The objective of the third research experiment conducted in 1974 was to determine if different irrigation frequencies would influence the growth and water use efficiency of grain sorghum when irrigated at optimum levels. Results indicated that frequency of application had no significant effect on the water use efficiency of grain sorghum for irrigation intervals up to 7 days. To attain the second goal of this investigation two trickle irrigation lateral design methods were developed. With the first method the pressure loss and emitter flow ratio for trickle irrigation laterals can be determined. The design method is based upon known principles of fluid mechanics. A computer program was written to determine the lateral pressure loss and emitter flow ratio at a given design length as function of pipe size, tree spacing, number of emitters per tree, emitter spacing, downstream lateral pressure and lateral slope. For a given set of design inputs, the program can be used to determine if the given pipe size will be adequate to li

Hiler, E. A.

1975-06-01T23:59:59.000Z

191

Compare All CBECS Activities: District Heat Use  

U.S. Energy Information Administration (EIA) Indexed Site

District Heat Use District Heat Use Compare Activities by ... District Heat Use Total District Heat Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 433 trillion Btu of district heat (district steam or district hot water) in 1999. There were only five building types with statistically significant district heat consumption; education buildings used the most total district heat. Figure showing total district heat consumption by building type. If you need assistance viewing this page, please call 202-586-8800. District Heat Consumption per Building by Building Type Health care buildings used the most district heat per building. Figure showing district heat consumption per building by building type. If you need assistance viewing this page, please call 202-586-8800.

192

Los Angeles Unified School District  

Science Conference Proceedings (OSTI)

Los Angeles Unified School District. NVLAP Lab Code: 101505-0. Address and Contact Information: BSC Annex, Facility Services Div. Lab. 1449 So ...

2013-12-06T23:59:59.000Z

193

Comparison of Near-field and Far-field Air Monitoring of Plutonium-contaminated Soils from the Tonopah Test Range, Nevada  

SciTech Connect

Operation Roller Coaster, a series of nuclear material dispersal experiments, resulted in three areas (Clean Slates 1, 2, and 3) of widespread surface soil plutonium (Pu) contamination on the Tonopah Test Range (TTR), located 225 miles northwest of Las Vegas, Nevada. The State's Division of Environmental Protection raised concerns that dispersal of airborne Pu particles from the sites could result in undetected deposition further downwind that the background monitoring stations. Air monitoring data from different distances from the Clean Slate sites but during the same period of time were compared. From the available data, there is no indication that airborne PM10 particles are being transported to the farther distance,however, the data are statistically insufficient to conclude whether there is a difference in transport of respirable Pu particles to the closer verses the farther sites from the Clean Slate sites.

John L. Bowen; David S. Shafer

2001-05-01T23:59:59.000Z

194

Corrective Action Decision Document/Closure Report for Corrective Action Unit 410: Waste Disposal Trenches, Tonopah Test Range, Nevada: Revision No. 0  

SciTech Connect

This Corrective Action Decision Document/Closure Report (CADD/CR) has been prepared for Corrective Action Unit (CAU) 410: Waste Disposal Trenches, Tonopah Test Range, Nevada, in accordance with the Federal Facility Agreement and Consent Order. Corrective Action Unit 410 consists of five Corrective Action Sites (CASs): TA-21-003-TANL; 09-21-001-TA09; TA-19-002-TAB2; TA-21-002-TAAL; and 03-19-001. The CADD and CR have been combined into one report because no further action is recommended for this CAU. The corrective action alternative recommended for CAU 410 is Clean Closure; therefore, no corrective action or corrective action plan is required. No use restrictions are required to be placed on this CAU because the investigation showed no evidence of remaining soil contamination or remaining debris/waste upon completion of all investigation activities.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2003-12-22T23:59:59.000Z

195

An aerial radiological survey of the Tonopah Test Range including Clean Slate 1,2,3, Roller Coaster, decontamination area, Cactus Springs Ranch target areas. Central Nevada  

SciTech Connect

An aerial radiological survey was conducted of major sections of the Tonopah Test Range (TTR) in central Nevada from August through October 1993. The survey consisted of aerial measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. The initial purpose of the survey was to locate depleted uranium (detecting {sup 238}U) from projectiles which had impacted on the TTR. The examination of areas near Cactus Springs Ranch (located near the western boundary of the TTR) and an animal burial area near the Double Track site were secondary objectives. When more widespread than expected {sup 241}Am contamination was found around the Clean Slates sites, the survey was expanded to cover the area surrounding the Clean Slates and also the Double Track site. Results are reported as radiation isopleths superimposed on aerial photographs of the area.

Proctor, A.E.; Hendricks, T.J.

1995-08-01T23:59:59.000Z

196

Corrective action investigation plan for Corrective Action Unit Number 423: Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and the criteria for conducting site investigation activities at Corrective Action Unit (CAU) Number 423, the Building 03-60 Underground Discharge Point (UDP), which is located in Area 3 at the Tonopah Test Range (TTR). The TTR, part of the Nellis Air Force Range, is approximately 225 kilometers (140 miles) northwest of Las Vegas, Nevada. CAU Number 423 is comprised of only one Corrective Action Site (CAS) which includes the Building 03-60 UDP and an associated discharge line extending from Building 03-60 to a point approximately 73 meters (240 feet) northwest. The UDP was used between approximately 1965 and 1990 to dispose of waste fluids from the Building 03-60 automotive maintenance shop. It is likely that soils surrounding the UDP have been impacted by oil, grease, cleaning supplies and solvents as well as waste motor oil and other automotive fluids released from the UDP.

NONE

1997-10-27T23:59:59.000Z

197

Research District Seeing Growth  

Science Conference Proceedings (OSTI)

Monthly economic diversity column for the Tri-City Herald (May 2012) - excerpt follows: Its been a while since Ive updated you on the Tri-Cities Research District, most certainly not for lack of new activity over the past several months. In fact, much has happened, and theres more to come. I think many of us see new land development and construction as indicative of current or impending economic growth. So those of you who have ventured into North Richland either via Stevens Drive or George Washington Way lately have probably begun sensing and anticipating that such growth is afoot.

Madison, Alison L.

2012-05-13T23:59:59.000Z

198

Evaluation of Irrigation Efficiency Strategies for Far West Texas: Feasibility, Water Savings And Cost Considerations  

E-Print Network (OSTI)

ABSTRACT Texas recently completed its second round of nationally recognized water planning. The Water Plan for the state addresses how each of 16 regions will supply projected water demands for the next 50 years. Water availability in these plans is based on supply conditions experienced during the drought of record, that is, the severe drought conditions in the 1950's. In arid Far West Texas, Region E in the State Plan, agriculture is projected to have the largest unmet demand for water during drought. This situation is similar to many other irrigated agricultural production regions in the U.S. and world that rely upon limited and variable water supplies. In the Far West Texas (Region E) 50-year Water Plan, the primary strategy proposed to mitigate the impact of insufficient water supplies for agriculture is implementation of water conservation best management practices. However, the conservation practices identified were generic and gave a wide range of potential water savings compiled from many other sources and for other locations and conditions. The feasibility and amount of water saved by any given conservation practice varies substantially across regions, specific location, type and quality of water supplies, delivery systems and operational considerations, crops produced, irrigation technologies in use, and location specific costs and returns of implementation. The applicability to and actual water savings of the proposed practices in Far West Texas were generally unknown. This report evaluates the applicability, water savings potential, implementation feasibility and cost effectiveness of seventeen irrigated agriculture water conservation practices in Far West Texas during both drought and full water supply conditions. Agricultural, hydrologic, engineering, economic, and institutional conditions are identified and examined for the three largest irrigated agricultural areas which account for over 90% of total irrigated agricultural acreage in Far West Texas. Factors considered in evaluating conservation strategies included water sources, use, water quality, cropping patterns, current irrigation practices, delivery systems, technological alternatives, market conditions and operational constraints. The overall conclusion is that very limited opportunities exist for significant additional water conservation in Far West Texas irrigated agriculture. The primary reasons can be summarized by: the most effective conservation practices have already been implemented and associated water savings realized throughout the region; reduced water quality and the physical nature of gravity flow delivery limit or prohibit implementation of higher efficiency pressurized irrigation systems; increased water use efficiency upstream has the net effect of reducing water supplies and production of downstream irrigators; and, water conservation implementation costs for a number of practices exceed the agricultural value and benefits of any water saved. Those practices that suggest economic efficient additional water conservation included lining or pipelining district canals and the very small potential for additional irrigation scheduling and tail water recovery systems. In nearly all cases, these practices have been adopted to a large extent if applicable, further emphasizing the very limited opportunities for additional conservation. If all of these strategies were implemented, the water conserved would satisfy less than 25% of the projected unmet agricultural water demand in 2060 during drought-of-record conditions Overall, there are no silver bullets for agricultural water conservation in Far West Texas short of taking irrigated land out of production when water supplies are limited.

Michelsen, Ari; Chavez, Marissa; Lacewell, Ron; Gilley, James; Sheng, Zhuping

2009-06-01T23:59:59.000Z

199

Post-Closure Inspection Report for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada, Calendar Year 2000  

SciTech Connect

Corrective Action Unit (CAU) 424, the Area 3 Landfill Complex at Tonopah Test Range, consists of eight landfill sites, Corrective Action Sites (CASS), seven of which are landfill cells that were closed previously by capping. (The eighth CAS, A3-7, was not used as a landfill site and was closed without taking any corrective action.) Figure 1 shows the locations of the landfill cells. CAU 424 closure activities included removing small volumes of soil containing petroleum hydrocarbons, repairing cell covers that were cracked or had subsided, and installing above-grade and at-grade monuments marking the comers of the landfill cells. Post-closure monitoring requirements for CAU 424 are detailed in Section 5.0, Post-Closure Inspection Plan contained, in the Closure Report for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range. Nevada, report number DOE/NV--283. The Closure Report (CR) was approved by the Nevada Division of Environmental Protection (NDEP) in July 1999. The CR includes compaction and permeability results of soils that cap the seven landfill cells. Post-closure monitoring consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 20, 2000, and November 20, 2000. The inspections were preformed after the NDEP approval of the CR. This report includes copies of the inspection checklist and photographs, and recommendations and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and copies of the inspection photographs are found in Attachment C.

K. B. Campbell

2001-06-01T23:59:59.000Z

200

BLM Burns District Office | Open Energy Information  

Open Energy Info (EERE)

Burns District Office Jump to: navigation, search Name BLM Burns District Office Place Hines, Oregon References BLM Burns District Office1 This article is a stub. You can help...

Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

BLM Elko District Office | Open Energy Information  

Open Energy Info (EERE)

Elko District Office Jump to: navigation, search Name BLM Elko District Office Place Elko, Nevada References BLM Elko District Office Website1 This article is a stub. You can...

202

Process adequacy : successful school districts model  

E-Print Network (OSTI)

Probe: Does your district: follow a multiyear strategic planDoes your district: follow a multiyear strategic plan thatDoes your district: follow a multiyear strategic plan that

Estrada, Isaac

2010-01-01T23:59:59.000Z

203

Butler Public Power District | Open Energy Information  

Open Energy Info (EERE)

Public Power District (Redirected from Butler County Rural P P D) Jump to: navigation, search Name Butler Public Power District Place Nebraska Utility Id 2643 Utility Location Yes...

204

Litchfield Correctional Center District Heating Low Temperature...  

Open Energy Info (EERE)

Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature Geothermal...

205

California's 42nd congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. US Recovery Act Smart Grid Projects in California's 42nd congressional district...

206

California's 11th congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 11th congressional district Catalytic...

207

California's 44th congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 44th congressional district Access Fund...

208

California's 38th congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 38th congressional district California...

209

California's 40th congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. US Recovery Act Smart Grid Projects in California's 40th congressional district...

210

California's 45th congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 45th congressional district Chuckawalla...

211

California's 10th congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Research Institutions in California's 10th congressional district...

212

California's 18th congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 18th congressional district 1st Light...

213

California's 21st congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 21st congressional district Agrimass...

214

California's 24th congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 24th congressional district Advanced...

215

California's 41st congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 41st congressional district BCL...

216

California's 43rd congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 43rd congressional district Ecosystem...

217

California's 19th congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 19th congressional district 1st Light...

218

Community Renewable Energy Success Stories Webinar: District...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

District Heating with Renewable Energy (text version) Community Renewable Energy Success Stories Webinar: District Heating with Renewable Energy (text version) Below is the text...

219

Regional Districts (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Districts (Texas) Regional Districts (Texas) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial Construction...

220

CORRECTIVE ACTION DECISION DOCUMENT FOR AREA 9 UXO LANDFILL, TONOPAH TEST RNGE, CAU 453, REVISION 0, MARCH 1998  

SciTech Connect

This Corrective Action Decision Document (CADD) has been prepared for the Area 9 Unexploded Ordnance (UXO) Landfill (Corrective Action Unit [CAU] 453) in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996. Corrective Action Unit 453 is located at the Tonopah Test Range (TTR), Nevada, and is comprised of three individual landfill cells located northwest of Area 9. The cells are listed as one Corrective Action Site (CAS) 09-55-001-0952. The landfill cells have been designated as: ? Cell A9-1 ? Cell A9-2 ? Cell A9-3 The purpose of this CADD is to identify and provide a rationale for the selection of a recommended corrective action alternative for CAU 453. The scope of this CADD consists of the following tasks: ? Develop corrective action objectives. ? Identify corrective action alternative screening criteria. ? Develop corrective action alternatives. ? Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria. ? Recommend and justify a preferred corrective action alternative for the CAU. In June and July 1997, a corrective action investigation was performed that consisted of activities set forth in the Corrective Action Investigation Plan (CAIP) (DOE/NV, 1997). Subsurface investigation of the soils surrounding the cells revealed no contaminants of concern (COCs) above preliminary action levels. The cell contents were not investigated due to the potential for live UXO. Details concerning the analytical and investigation results can be found in Appendix A of this CADD. Based on the potential exposure pathways, the following corrective action objectives have been identified for CAU 453: ? Prevent or mitigate human exposure to subsurface soils containing COCs, solid waste, and/or UXO. ? Prevent adverse impacts to groundwater quality. Based on the review of existing data, future land use, and current operations at the TTR, the following alternatives have been developed for consideration at the Area 9 UXO Landfill CAU: ? Alternative 1 - No Further Action ? Alternative 2 - Closure in Place by Administrative Controls ? Alternative 3 - Closure in Place by Capping ? Alternative 4 - Clean Closure by Removal The corrective action alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors. Based on the results of this evaluation, Alternative 2, Closure in Place by Administrative Controls, was selected as the preferred corrective action alternative. The preferred corrective action alternative was evaluated on its technical merits, focusing on performance, reliability, feasibility, and safety. The alternative was judged to meet all requirements for the technical components evaluated and to represent the most cost-effective corrective action. The alternative meets all applicable state and federal regulations for closure of the site and will reduce potential future exposure pathways to the contents of the landfill. During corrective action implementation, this alternative will present minimal potential threat to site workers. However, appropriate health and safety procedures will be developed and implemented.

none

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Best Management Practice: Water-Efficient Irrigation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Irrigation Irrigation Best Management Practice: Water-Efficient Irrigation October 7, 2013 - 3:10pm Addthis Water efficiency must be considered from the initial irrigation system design phase through installation to ensure optimal performance. Consistent management and maintenance is also essential. Failure to do so can result in losing more than 50% of irrigation water due to evaporation, wind, poor management, and/or improper system design, installation, or maintenance. With the irrigation system hardware operating efficiently, it is important to consider the irrigation schedule, which dictates the amount and timing of the water applied. Water changes with the seasons as should your irrigation schedule. Many landscapes are watered at the same level all year, adding unnecessary water for months at a time. Over-watering can

222

Irrigation customer survey procedures and results  

SciTech Connect

This report describes the statistical procedures, administrative procedures, and results of a telephone survey designed to collect primary data from individuals in the Pacific Northwest region who use electricity in irrigating agricultural crops. The project was intended to collect data useful for a variety of purposes, including conservation planning, load forecasting, and rate design.

Harrer, B.J.; Johnston, J.W.; Dase, J.E.; Hattrup, M.P.; Reed, G.

1987-03-01T23:59:59.000Z

223

Data Mining Applied to Irrigation Water Management  

Science Conference Proceedings (OSTI)

This work addresses the application of data mining to obtain artificial neural network based models for the application in water management during crops irrigation. This problem is very important in the zone of the South-East of Spain, as there is an ...

Juan A. Bota; Antonio F. Gmez-Skarmeta; Mercedes Valds; Antonio Padilla

2001-06-01T23:59:59.000Z

224

Oklahoma, Kansas, Missouri Refinery District API Gravity ...  

U.S. Energy Information Administration (EIA)

Oklahoma, Kansas, Missouri Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

225

Indiana, Illinois, and Kentucky Refining District Percent ...  

U.S. Energy Information Administration (EIA)

Indiana, Illinois, and Kentucky Refining District Percent Utilization of Refinery Operable Capacity (Percent)

226

UNIVERSITY OF THE DISTRICT OF  

E-Print Network (OSTI)

UNIVERSITY OF THE DISTRICT OF COLUMBIA 1 Removal of Eutrophic Nutrients from Wastewater-Supplemented Digester Elutriate in the Fermentor 2. The Effect of Differential- Heating of Digester Elutriate on its

District of Columbia, University of the

227

Assessment of District Cooling Systems  

Science Conference Proceedings (OSTI)

District energy technologies are now regarded as an effective means to implement electric load management opportunities. Increasingly, electric utilities are adopting rate structures that provide incentives for more energy-efficient technologies and for shifting loads to off-peak.

1993-06-03T23:59:59.000Z

228

CORRRECTIVE ACTION DECISION DOCUMENT FOR CORRECTIVE ACTION UNIT 427: AREA 3 SEPTIC WASTE SYSTEMS 2 AND 6, TONOPAH TEST RANGE, NEVADA, REVISION 0, JUNE 1998  

SciTech Connect

This Corrective Action Decision Document has been prepared for the Area 3 Septic Waste Systems 2 and 6 (Corrective Action Unit 427) in accordance with the Federal Facility Agreement and Consent Order of 1996 (FFACO, 1996). Corrective Action Unit 427 is located at the Tonopah Test Range, Nevada, and is comprised of the following Corrective Action Sites, each an individual septic waste system (DOE/NV, 1996a): (1) Septic Waste System 2 is Corrective Action Site Number 03-05-002-SW02. (2) Septic Waste System 6 is Corrective Action Site Number 03-05-002-SW06. The purpose of this Corrective Action Decision Document is to identify and provide a rationale for the selection of a recommended corrective action alternative for each Corrective Action Site. The scope of this Correction Action Decision Document consists of the following tasks: (1) Develop corrective action objectives. (2) Identify corrective action alternative screening criteria. (3) Develop corrective action alternatives. (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria. (5) Recommend and justify a preferred corrective action alternative for each CAS. From November 1997 through January 1998, a corrective action investigation was performed as set forth in the Corrective Action Investigation Plan for Corrective Action Unit No. 427: Area 3 Septic Waste System Numbers 2 and 6, Tonopah Test Range, Nevada (DOE/NV, 1997b). Details can be found in Appendix A of this document. The results indicated that contamination is present in some portions of the CAU and not in others as described in Table ES-1 and shown in Figure A.2-2 of Appendix A. Based on the potential exposure pathways, the following corrective action objectives have been identified for Corrective Action Unit 427: (1) Prevent or mitigate human exposure to subsurface soils containing TPH at concentrations greater than 100 milligrams per kilogram (NAC, 1996b). (2) Close Sep tic Tank 33-5 in accordance with Nevada Administrative Code 459 (NAC, 1996c). (3) Prevent adverse impacts to groundwater quality. Based on the review of existing data, future land use, and current operations at the Tonopah Test Range, the following alternatives were developed for consideration at the Area 3 Septic Waste Systems 2 and 6: Alternative 1 - No Further Action; Alternative 2 - Closure of Septic Tank 33-5 and Administrative Controls; Alternative 3 - Closure of Septic Tank 33-5, Excavation, and Disposal The corrective action alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors. Based on the results of this evaluation, the preferred alternative for Corrective Action Unit 427 is Alternative 2, Closure of Septic Tank 33-5 and Administrative Controls. The preferred corrective action alternative was evaluated on technical merit, focusing on performance, reliability, feasibility, and safety. The alternative was judged to meet all requirements for the technical components evaluated. The alternative meets all applicable state and federal regulations for closure of the site and will reduce potential future exposure pathways to the contaminated soils. During corrective action implementation, this alternative will present minimal potential threat to site workers who come in contact with the waste. However, procedures will be developed and implemented to ensure worker health and safety.

DOE /NV

1998-06-23T23:59:59.000Z

229

Imperial Irrigation District RPS Policy (SBX1 2) Enforcement Program & Procurement Plan  

E-Print Network (OSTI)

the State mandate to encourage renewable resources · Obtain a diverse portfolio of cost-effective renewable public benefit program (PBC) portfolio. Funded through a separate state-mandated charge on GWP revenues to renewable resources. Specific objectives include: · Meet the State mandate to encourage renewable resources

230

Post-Closure Inspection Report for Corrective Action Unit 424: Area 3 Landfill Complexes Tonopah Test Range, Nevada Calendar Year 2001  

Science Conference Proceedings (OSTI)

Corrective Action Unit (CAU) 424, the Area 3 Landfill Complexes at Tonopah Test Range, consists of eight Corrective Action Sites (CASs), seven of which are landfill cells that were closed previously by capping. (The eighth CAS, A3-7, was not used as a landfill site and was closed without taking any corrective action.) Figure 1 shows the general location of the landfill cells. Figure 2 shows in more detail the location of the eight landfill cells. CAU 424 closure activities included removing small volumes of soil containing petroleum hydrocarbons, repairing cell covers that were cracked or had subsided, and installing above-grade and at-grade monuments marking the comers of the landfill cells. Post-closure monitoring requirements for CAU 424 are detailed in Section 5.0, Post-Closure Inspection Plan, contained in the Closure Report for Corrective Action Unit 424: Area 3 Landfill Complexes, Tonopah Test Range, Nevada, report number DOE/NV--283, July 1999. The Closure Report (CR) was approved by the Nevada Division of Environmental Protection (NDEP) in July 1999. The CR includes compaction and permeability results of soils that cap the seven landfill cells. As stated in Section 5.0 of the NDEP-approved CR, post-closure monitoring at CAU 424 consists of the following: (1) Site inspections conducted twice a year to evaluate the condition of the unit. (2) Verification that landfill markers and warning signs are in-place, intact, and readable. (3) Notice of any subsidence, erosion, unauthorized use, or deficiencies that may compromise the integrity of the landfill covers. (4) Remedy of any deficiencies within 90 days of discovery. (5) Preparation and submittal of an annual report. Site inspections were conducted on May 16, 2001, and November 6, 2001. The inspections were preformed after the NDEP approval of the CR. This report includes copies of the inspection checklist, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and copies of the inspection photographs are found in Attachment C.

K. B. Campbell

2002-02-01T23:59:59.000Z

231

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada  

DOE Green Energy (OSTI)

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 425, Area 9 Main Lake Construction Debris Disposal Area. This CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). This site will be cleaned up under the SAFER process since the volume of waste exceeds the 23 cubic meters (m{sup 3}) (30 cubic yards [yd{sup 3}]) limit established for housekeeping sites. CAU 425 is located on the Tonopah Test Range (TTR) and consists of one Corrective Action Site (CAS) 09-08-001-TA09, Construction Debris Disposal Area (Figure 1). CAS 09-08-001-TA09 is an area that was used to collect debris from various projects in and around Area 9. The site is located approximately 81 meters (m) (265 feet [ft]) north of Edwards Freeway northeast of Main Lake on the TTR. The site is composed of concrete slabs with metal infrastructure, metal rebar, wooden telephone poles, and concrete rubble from the Hard Target and early Tornado Rocket sled tests. Other items such as wood scraps, plastic pipes, soil, and miscellaneous nonhazardous items have also been identified in the debris pile. It is estimated that this site contains approximately 2280 m{sup 3} (3000 yd{sup 3}) of construction-related debris.

K. B. Campbell

2002-04-01T23:59:59.000Z

232

Radiological dose assessment for residual radioactive material in soil at the clean slate sites 1, 2, and 3, Tonopah Test Range  

SciTech Connect

A radiological dose assessment has been performed for Clean Slate Sites 1, 2, and 3 at the Tonopah Test Range, approximately 390 kilometers (240 miles) northwest of Las Vegas, Nevada. The assessment demonstrated that the calculated dose to hypothetical individuals who may reside or work on the Clean Slate sites, subsequent to remediation, does not exceed the limits established by the US Department of Energy for protection of members of the public and the environment. The sites became contaminated as a result of Project Roller Coaster experiments conducted in 1963 in support of the US Atomic Energy Commission (Shreve, 1964). Remediation of Clean Slate Sites 1, 2, and 3 is being performed to ensure that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works on a Clean Slate site should not exceed 100 millirems per year. The DOE residual radioactive material guideline (RESRAD) computer code was used to assess the dose. RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines (Yu et al., 1993a). In May and June of 1963, experiments were conducted at Clean Slate Sites 1, 2, and 3 to study the effectiveness of earth-covered structures for reducing the dispersion of nuclear weapons material as a result of nonnuclear explosions. The experiments required the detonation of various simulated weapons using conventional chemical explosives (Shreve, 1964). The residual radioactive contamination in the surface soil consists of weapons grade plutonium, depleted uranium, and their radioactive decay products.

NONE

1997-06-01T23:59:59.000Z

233

Post-Closure Inspection Report for Corrective Action Unit 453: Area 9 UXO Landfill Tonopah Test Range, Nevada, Calendar Year 2000  

SciTech Connect

Post-closure monitoring requirements for the Area 9 Unexploded Ordnance Landfill (Corrective Action Unit [CAU] 453) (Figure 1) are described in Closure Report for Corrective Action Unit 453: Area 9 UXO Landfill, Tonopah Test Range, Nevada, report number DOE/NV--284. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 5,1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on September 10,1999. Post-closure monitoring at CAU 453 consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 20, 2000 and November 21, 2000. Both site inspections were conducted after NDEP approval of the CR, and in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of the inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and inspection photographs are found in Attachment C.

K. B. Campbell

2001-06-01T23:59:59.000Z

234

Post-Closure Inspection Report for Corrective Action Unit 427: Area 3 Septic Waste Systems 2 and 6 Tonopah Test Range, Nevada, Calendar Year 2001  

Science Conference Proceedings (OSTI)

Post-closure inspection requirements for the Area 3 Septic Waste Systems 2 and 6 (Corrective Action Unit [CAU] 427) (Figure 1) are described in Closure Report for Corrective Action Unit 427, Area 3 Septic Waste Systems 2 and 6, Tonopah Test Range, Nevada, report number DOENV-56 1, August 1999. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 16, 1999. The CR (containing the Post-Closure Inspection Plan) was approved by the NDEP on August 27, 1999. As stated in Section 5.1 of the NDEP-approved CR, the annual Post-Closure inspection at CAU 427 consists of the following: (1) Verification of the presence of all leachfield and septic tank below-grade markers. (2) Verification that all warning signs are in-place, intact, and readable. (3) Visual observation of the soil and asphalt cover for indications of subsidence, erosion, and unauthorized use. The site inspections were conducted on May 16, 2001, and November 6, 2001. All inspections were made after NDEP approval of the CR, and were conducted in accordance with the Post-Closure Inspection Plan in the NDEP-approved CR. No maintenance or repairs were conducted at the site. This report includes copies of inspection checklists, photographs, recommendations, and conclusions. Copies of the Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and a copy of the inspection photographs is found in Attachments C.

K. B. Campbell

2002-01-01T23:59:59.000Z

235

Post-Closure Inspection Report for Corrective Action Unit 453: Area 9 UXO Landfill Tonopah Test Range, Nevada, Calendar Year 2001  

Science Conference Proceedings (OSTI)

Post-closure monitoring requirements for the Area 9 Unexploded Ordinance Landfill (Corrective Action Unit [CAU] 453) (Figure 1) are described in Closure Report for Corrective Action Unit 453: Area 9 UXO Landfill, Tonopah Test Range, Nevada, report number DOE/NV--284, August 1999. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 5 , 1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on September 10,1999. As stated in Section 5.0 of the NDEP-approved CR, post-closure monitoring at CAU 453 consists of the following: (1) Visual site inspections are conducted twice a year to evaluate the condition of the cover. (2) Verification that the site is secure and the condition of the fence and posted warning signs. (3) Notice of any subsidence, erosion, unauthorized excavation, etc., deficiencies that may compromise the integrity of the unit. (4) Remedy of any deficiencies within 90 days of discovery. (5) Preparation and submittal of an annual report. Site inspections were conducted on May 15, 2001 and November 6, 2001. Both site inspections were conducted in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of the inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and inspection photographs are found in Attachment C.

K. B. Campbell

2002-01-01T23:59:59.000Z

236

Post-Closure Inspection Report for Corrective Action Unit 426: Cactus Spring Waste Trenches Tonopah Test Range, Nevada Calendar Year 2000  

SciTech Connect

Post-closure monitoring requirements for the Cactus Spring Waste Trenches (Corrective Action Unit [CAW 426]) (Figure 1) are described in Closure Report for corrective Action Unit 426, Cactus Spring Waste Trenches. Tonopah Test Range, Nevada, report number DOE/NV--226. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 14, 1998. Permeability results of soils adjacent to the engineered cover and a request for closure of CAU 404 were transmitted to the NDEP on April 29, 1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on May 13, 1999. Post-closure monitoring at CAU 426 consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 19, 2000, and November 21, 2000. All inspections were made after NDEP approval of the CR, and were conducted in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of the inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and copies of the inspection photographs are found in Attachment C.

K. B. Campbell

2001-06-01T23:59:59.000Z

237

Post-Closure Inspection Report for Corrective Action Unit 427: Septic Waste Systems 2 and 6 Tonopah Test Range, Nevada Calendar Year 2000  

Science Conference Proceedings (OSTI)

Post-closure inspection requirements for the Area 3 Septic Waste Systems 2 and 6 (Corrective Action Unit [CAU] 427) (Figure 1) are described in Closure Report for Corrective Action Unit 427. Area 3 Septic Waste Systems 2 and 6. Tonopah Test Range, Nevada, report number DOE/NV-561. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 16, 1999. The CR (containing the Post-Closure Inspection Plan) was approved by the NDEP on August 27, 1999. The annual post-closure inspection at CAU 427 consists of the following: Verification of the presence of all leachfield and septic tank below-grade markers; Verification that the warning signs are in-place, intact, and readable; and Visual observation of the soil and asphalt cover for indications of subsidence, erosion, and unauthorized use. The site inspections were conducted on June 20, 2000, and November 21, 2000. All inspections were made after NDEP approval of the CR and were conducted in accordance with the Post-Closure Inspection Plan in the NDEP-approved CR. No maintenance or repairs were conducted at the site. This report includes copies of inspection checklists, photographs, recommendations, and conclusions. Copies of the Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and a copy of the inspection photographs is found in Attachments C.

K. B. Campbell

2001-06-01T23:59:59.000Z

238

Industrial Sites Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (including Record of Technical Change Nos. 1, 2, 3, and 4)  

SciTech Connect

This Leachfield Corrective Action Units (CAUs) Work Plan has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the U.S. Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the U.S. Department of Defense (FFACO, 1996). Under the FFACO, a work plan is an optional planning document that provides information for a CAU or group of CAUs where significant commonality exists. A work plan may be developed that can be referenced by leachfield Corrective Action Investigation Plans (CAIPs) to eliminate redundant CAU documentation. This Work Plan includes FFACO-required management, technical, quality assurance (QA), health and safety, public involvement, field sampling, and waste management documentation common to several CAUs with similar site histories and characteristics, namely the leachfield systems at the Nevada Test Site (NTS) and the Tonopah Test Range (TT R). For each CAU, a CAIP will be prepared to present detailed, site-specific information regarding contaminants of potential concern (COPCs), sampling locations, and investigation methods.

DOE /NV

1998-12-18T23:59:59.000Z

239

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 408: Bomblet Target Area Tonopah Test Range (TTR), Nevada, Revision 1  

SciTech Connect

This Streamlined Approach for Environmental Restoration Plan addresses the actions needed to achieve closure of Corrective Action Unit (CAU) 408, Bomblet Target Area (TTR). Corrective Action Unit 408 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order. Corrective Action Unit 408 comprises Corrective Action Site TA-55-002-TAB2, Bomblet Target Areas. Clean closure of CAU 408 will be accomplished by removal of munitions and explosives of concern within seven target areas and potential disposal pits. The target areas were used to perform submunitions related tests for the U.S. Department of Energy (DOE). The scope of CAU 408 is limited to submunitions released from DOE activities. However, it is recognized that the presence of other types of unexploded ordnance and munitions may be present within the target areas due to the activities of other government organizations. The CAU 408 closure activities consist of: Clearing bomblet target areas within the study area. Identifying and remediating disposal pits. Collecting verification samples. Performing radiological screening of soil. Removing soil containing contaminants at concentrations above the action levels. Based on existing information, contaminants of potential concern at CAU 408 include unexploded submunitions, explosives, Resource Conservation Recovery Act metals, and depleted uranium. Contaminants are not expected to be present in the soil at concentrations above the action levels; however, this will be determined by radiological surveys and verification sample results.

Mark Krauss

2010-03-01T23:59:59.000Z

240

Global irrigation demand - A holistic approach  

Science Conference Proceedings (OSTI)

To develop a research track on global irrigation demand and the use of future water resources to help feed the world, we need to adopt a holistic approach to understand inter-dependencies and the main drivers of the global water system and unravel positive (reinforcing) and negative (balancing) feedback loops that can lead to cascading consequences. Thus, there needs to be more research dedicated to 1) the modeling of the agricultural and water systems as components within an integrated assessment human-Earth modeling framework, 2) the understanding of the linkages between the physical processes and the human system, and to integrate them in an economic framework to capture the dynamics of market price, and institutional regulations. This editorial discusses the importance of tackling the global irrigation problem in an integrated assessment modeling framework.

Hejazi, Mohamad I.; Edmonds, James A.; Chaturvedi, Vaibhav

2012-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

BLM Battle Mountain District Office | Open Energy Information  

Open Energy Info (EERE)

Battle Mountain District Office Jump to: navigation, search Logo: BLM Battle Mountain District Office Name BLM Battle Mountain District Office Short Name Battle Mountain Parent...

242

DC Hazardous Waste Management (District of Columbia) | Open Energy...  

Open Energy Info (EERE)

District of Columbia Applies to Municipality District of Columbia Name DC Hazardous Waste Management (District of Columbia) Policy Type Environmental Regulations Affected...

243

International District Energy Association | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International District Energy Association International District Energy Association International District Energy Association November 1, 2013 - 11:40am Addthis International District Energy Association logo Since its formation in 1909, the International District Energy Association (IDEA) has served as a principal industry advocate and management resource for owners, operators, developers, and suppliers of district heating and cooling systems in cities, campuses, bases, and healthcare facilities. Today, with over 1,400 members in 26 countries, IDEA continues to organize high-quality technical conferences that inform, connect, and advance the industry toward higher energy efficiency and lower carbon emissions through innovation and investment in scalable sustainable solutions. With the support of DOE, IDEA

244

Drainage, Sanitation, and Public Facilities Districts (Virginia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drainage, Sanitation, and Public Facilities Districts (Virginia) Drainage, Sanitation, and Public Facilities Districts (Virginia) Drainage, Sanitation, and Public Facilities Districts (Virginia) < Back Eligibility Agricultural Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Virginia Program Type Siting and Permitting Provider Local Governments and Districts This legislation provides for the establishment of sanitary, sanitation, drainage, and public facilities districts in Virginia. Designated districts are public bodies, and have the authority to regulate the construction and development of sanitation and waste disposal projects in their

245

Streamlined Approach for Environmental Restoration Work Plan for Corrective Action Unit 461: Joint Test Assembly Sites and Corrective Action Unit 495: Unconfirmed Joint Test Assembly Sites Tonopah Test Range, Nevada  

SciTech Connect

This Streamlined Approach for Environmental Restoration plan addresses the action necessary for the clean closure of Corrective Action Unit 461 (Test Area Joint Test Assembly Sites) and Corrective Action Unit 495 (Unconfirmed Joint Test Assembly Sites). The Corrective Action Units are located at the Tonopah Test Range in south central Nevada. Closure for these sites will be completed by excavating and evaluating the condition of each artillery round (if found); detonating the rounds (if necessary); excavating the impacted soil and debris; collecting verification samples; backfilling the excavations; disposing of the impacted soil and debris at an approved low-level waste repository at the Nevada Test Site

Jeff Smith

1998-08-01T23:59:59.000Z

246

Embedded Agents for District Heating Management  

Science Conference Proceedings (OSTI)

We investigate the applicability of multi-agent systems as a control approach for district heating systems. The consumers, i.e., the heat exchange systems, in current district heating systems are purely reactive devices without communication capabilities. ...

Paul Davidsson; Fredrik Wernstedt

2004-07-01T23:59:59.000Z

247

Twin Falls District | Open Energy Information  

Open Energy Info (EERE)

Falls District Jump to: navigation, search Name BML Twin Falls District Office Address 2536 Kimberly Road Place Twin Falls, ID Zip 83301 Phone number 208-736-2350 Website http:...

248

Economic Development Project Districts (Indiana) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

may petition legislative bodies to designate economic development project districts in cities with populations between 80,500 and 500,000. Such districts may be established if it...

249

Columbia Rural Electric Association- Irrigation Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Columbia REA, through the Bonneville Power Administration, offers an irrigation energy efficiency program for its agricultural customers. Stationary systems are not eligible for this program due to...

250

South Coast Air Quality Management District  

Science Conference Proceedings (OSTI)

South Coast Air Quality Management District. NVLAP Lab Code: 101567-0. Address and Contact Information: 21865 Copley ...

2013-08-09T23:59:59.000Z

251

Energy Crossroads: Utility Energy Efficiency Programs District...  

NLE Websites -- All DOE Office Websites (Extended Search)

District of Columbia Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Pepco Information for Businesses Washington Gas...

252

Empire District Electric - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empire District Electric - Commercial and Industrial Energy Efficiency Rebates Empire District Electric - Commercial and Industrial Energy Efficiency Rebates < Back Eligibility...

253

Record of Technical Change {number_sign}1 for ''Corrective Action Investigation Plan for Corrective Action Unit 406: Area 3 Building 03-74 and Building 03-58 Underground Discharge Points and Corrective Action Unit 429: Area 3 Building 03-55 and Area 9 Building 09-52 Underground Discharge Points, Tonopah Test Range, Nevada'' Revision 0  

Science Conference Proceedings (OSTI)

This Record of Technical Change provides updates to the technical information included in ''Corrective Action Investigation Plan for Corrective Action Unit 406: Area 3 Building 03-74 and Building 03-58 Underground Discharge Points and Corrective Action Unit 429: Area 3 Building 03-55 and Area 9 Building 09-52 Underground Discharge Points, Tonopah Test Range, Nevada'' Revision 0

US DOE Nevada Operations Office

1999-06-30T23:59:59.000Z

254

Groundwater and geothermal: urban district heating applications  

DOE Green Energy (OSTI)

This report describes how several cities use groundwater and geothermal energy in district heating systems. It begins with groundwater, introducing the basic technology and techniques of development, and describing two case studies of cities with groundwater-based district heating systems. The second half of the report consists of three case studies of cities with district heating systems using higher temperature geothermal resources.

Mounts, R.; Frazier, A.; Wood, E.; Pyles, O.

1982-01-01T23:59:59.000Z

255

ABSORPTION HEAT PUMP IN THE DISTRICT HEATING  

E-Print Network (OSTI)

#12;ABSORPTION HEAT PUMP IN THE DISTRICT HEATING PLANT Dr.sc.ing. Agnese Lickrastina M.Sc. Normunds European Heat Pump Summit 2013, Nuremberg, 15-16.10.2013 · Riga District Heating company · Operation #12;JSC RGAS SILTUMS · the biggest District Heating company in Latvia and in the Baltic states

Oak Ridge National Laboratory

256

Estimated Farm Level Benefits of Improved Irrigation Efficiency  

E-Print Network (OSTI)

There are about 15 million acres of cropland in the U.S. that are irrigated from aquifers which are incurring declining water levels (sloggett). This is primarily in the Great Plains Region where irrigation water is pumped from the Ogallala Aquifer. Mining from the aquifer is estimated at 14 million acre feet per year (Frederick and Hanson). The declining groundwater supply increases pumping lift and reduces well yields. Concurrently, there has been a dramatic increase in the cost of energy for pumping since 1973. For example, in the Trans Pecos Region of Texas, natural gas prices increased 450% from 1972 to 1975. Energy has become one of the most important factors in irrigated crop production. A 1975 study showed that 53% of the total variable costs of producing corn in the Great Plains was energy related (Skold). The sensitivity of irrigated agriculture to increased fuel costs and declining groundwater levels has provided incentives for irrigated farmers to investigate alternative crop rotations and opportunities to improve irrigation water pumping and distributional efficiencies. The emphasis of this report is to estimate the value to an irrigated farmer on the Texas High Plains of improving irrigation water distribution efficiency. One means of improving the water use efficiency is to implement water conserving techniques. The main purpose of these techniques is to maximize crop production by minimizing the amount of water lost through the production systems. The major sources of water loss in a crop production system are runoff, percolation, and evaporation. Examples of water conserving techniques include terracing, furrow dams, reduced tillage, and crop rotations. In addition, improved irrigation application techniques can enhance the efficiency of water used for irrigation in the region. On-farm irrigation efficiency statewide for Texas has been estimated between 60 and 708 (Wyatt,1981). The implementation of advanced irrigation application techniques could potentially increase this efficiency up to 98% (Lyle & Bordovsky,1980). Furrow irrigation and sprinkler irrigation are the two major irrigation systems currently in use. Techniques designed to improve furrow efficiency include alternate furrow irrigation, furrow diking, and surge flow. Alternate furrow irrigation improves the timeliness of irrigation applications and increases lateral water movement thereby reducing deep percolation losses. Alternate furrow irrigation can be used with furrow diking or row dams on non-irrigated furrows to reduce rainfall runoff and soil erosion. The surge flow technique delivers large surges of water into the furrow on an intermittent cycle to reduce percolation losses at the upper end of the field. Sprinkler irrigation is the second major distribution system used for crop production primarily on mixed and sandy soils in the region. The use of these systems have increased tremendously over the past 25 years. This growth in the use of sprinkler irrigation systems is reflected in the increase for Texas from 668 thousand acres in 1958 to 2.2 million acres in 1979 (Texas Department of Water Resources). With the rapid rise in the relative price of energy during the 1970's, the emphasis of improving sprinkler efficiency has focused on both reducing their energy requirements and decreasing the amount of water lost through evaporation. One system which has been developed to meet these needs is the LEPA system or Low Energy Precision Application system (Lyle and Bordovsky,1980). This system operates by distributing water through drop tubes and low pressure emitters directly into the furrow as opposed to high pressure systems which utilize overhead sprinklers to distribute the water. In field trials of the LEPA system, measured application and distribution efficiencies averaged 98% and 96% respectively (Lyle et al., 1981).

Lee, John G.; Lacewell, Ronald D.; Ellis, John R.; Reneau, Duane R.

1984-06-10T23:59:59.000Z

257

Irrigation Depletions 1928-1989 : 1990 Level of Irrigation, Snake Yakima and Deschutes River Basins.  

DOE Green Energy (OSTI)

The vast amount of irrigation in relation to the available water and extensive system of reservoirs located in the Snake River Basin above Brownlee reservoir precludes this area from using methods such as Blaney-Criddle for estimating irrigation depletions. Also the hydrology, irrigation growth patterns, and water supply problems are unique and complex. Therefore regulation studies were utilized to reflect the net effect on streamflow of the changes in irrigated acreage in terms of corresponding changes in storage regulation and in the amount of water depleted and diverted from and returned to the river system. The regulation study for 1990 conditions was conducted by the Idaho Department of Water Resources. The end product of the basin simulation is 61 years of regulated flows at various points in the river system that are based on 1990 conditions. Data used by the Idaho Department of Water Resources is presented in this section and includes natural gains to the river system and diversions from the river system based on a 1990 level of development and operation criteria. Additional information can be obtained for an Idaho Department of Water Resources Open-File Report ``Stream Flows in the Snake River Basin 1989 Conditions of Use and Management`` dated June 1991. Similar considerations apply to the Yakima and Deschutes river basins.

United States. Bonneville Power Administation; A.G. Crook Company

1993-07-01T23:59:59.000Z

258

Corrective Action Investigation Plan for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5, Tonopah Test Range, Nevada, REVISION 0, march 1999  

Science Conference Proceedings (OSTI)

The Corrective Action Investigation Plan for Corrective Action Unit 428, Area 3 Septic Waste Systems 1 and 5, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U. S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 428 consists of Corrective Action Sites 03- 05- 002- SW01 and 03- 05- 002- SW05, respectively known as Area 3 Septic Waste System 1 and Septic Waste System 5. This Corrective Action Investigation Plan is used in combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada , Rev. 1 (DOE/ NV, 1998c). The Leachfield Work Plan was developed to streamline investigations at leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 428. A system of leachfields and associated collection systems was used for wastewater disposal at Area 3 of the Tonopah Test Range until a consolidated sewer system was installed in 1990 to replace the discrete septic waste systems. Operations within various buildings at Area 3 generated sanitary and industrial wastewaters potentially contaminated with contaminants of potential concern and disposed of in septic tanks and leachfields. Corrective Action Unit 428 is composed of two leachfield systems in the northern portion of Area 3. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern for the site include oil/ diesel range total petroleum hydrocarbons, and Resource Conservation and Recovery Act characteristic volatile organic compounds, semivolatile organic compounds, and metals. A limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from four of the septic tanks and if radiological field screening levels are exceeded. Additional samples will be analyzed for geotechnical and hydrological properties and a bioassessment may be performed. The technical approach for investigating this Corrective Action Unit consists of the following activities: (1) Perform video surveys of the discharge and outfall lines. (2) Collect samples of material in the septic tanks. (3) Conduct exploratory trenching to locate and inspect subsurface components. (4) Collect subsurface soil samples in areas of the collection system including the septic tanks and outfall end of distribution boxes. (5) Collect subsurface soil samples underlying the leachfield distribution pipes via trenching. (6) Collect surface and near- surface samples near potential locations of the Acid Sewer Outfall if Septic Waste System 5 Leachfield cannot be located. (7) Field screen samples for volatile organic compounds, total petroleum hydrocarbons, and radiological activity. (8) Drill boreholes and collect subsurface soil samples if required. (9) Analyze samples for total volatile organic compounds, total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, and total petroleum hydrocarbons (oil/ diesel range organics). Limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from particular septic tanks and if radiological field screening levels are exceeded. (10) Collect samples from native soils beneath the distribution system and analyze for geotechnical/ hydrologic parameters. (11) Collect and analyze bioassessment samples at the discretion of the Site Supervisor if total petroleum hydrocarbons exceed field- screening levels.

DOE /NV

1999-03-26T23:59:59.000Z

259

Corrective Action Decision Document for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5, Tonopah Test Range, Nevada  

SciTech Connect

This Corrective Action Decision Document identifies and rationalizes the US Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 428, Septic Waste Systems 1 and 5, under the Federal Facility Agreement and Consent Order. Located in Area 3 at the Tonopah Test Range (TTR) in Nevada, CAU 428 is comprised of two Corrective Action Sites (CASs): (1) CAS 03-05-002-SW01, Septic Waste System 1 and (2) CAS 03-05-002- SW05, Septic Waste System 5. A corrective action investigation performed in 1999 detected analyte concentrations that exceeded preliminary action levels; specifically, contaminants of concern (COCs) included benzo(a) pyrene in a septic tank integrity sample associated with Septic Tank 33-1A of Septic Waste System 1, and arsenic in a soil sample associated with Septic Waste System 5. During this investigation, three Corrective Action Objectives (CAOs) were identified to prevent or mitigate exposure to contents of the septic tanks and distribution box, to subsurface soil containing COCs, and the spread of COCs beyond the CAU. Based on these CAOs, a review of existing data, future use, and current operations in Area 3 of the TTR, three CAAs were developed for consideration: Alternative 1 - No Further Action; Alternative 2 - Closure in Place with Administrative Controls; and Alternative 3 - Clean Closure by Excavation and Disposal. These alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors. Based on the results of the evaluation, the preferred CAA was Alternative 3. This alternative meets all applicable state and federal regulations for closure of the site and will eliminate potential future exposure pathways to the contaminated soils at the Area 3 Septic Waste Systems 1 and 5.

U.S. Department of Energy, Nevada Operations Office

2000-02-08T23:59:59.000Z

260

Corrective Action Investigation Plan for Corrective Action Unit No. 423: Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV), the State of Nevada Division of Environmental Protection (NDEP), and the US Department of Defense. The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUS) or Corrective Action Sites (CASs) (FFACO, 1996). As per the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU No. 423, the Building 03-60 Underground Discharge Point (UDP), which is located in Area 3 at the Tonopah Test Range (TTR). The TTR, part of the Nellis Air Force Range, is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada (Figures 1-1 and 1-2). Corrective Action Unit No. 423 is comprised of only one CAS (No. 03-02-002-0308), which includes the Building 03-60 UDP and an associated discharge line extending from Building 03-60 to a point approximately 73 meters (m) (240 feet [ft]) northwest as shown on Figure 1-3.

DOE /NV

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Corrective Action Decision Document/Closure Report for Corrective Action 405: Area 3 Septic Systems, Tonopah Test Range, Nevada Rev. No.: 0, April 2002  

SciTech Connect

This Corrective Action Decision Document/Closure Report (CADD/CR) has been prepared for Corrective Action Unit (CAU) 405, Area 3 Septic Systems, in accordance with the Federal Facility Agreement and Consent Order. Located on the Tonopah Test Range (TTR) approximately 235 miles north of Las Vegas, Nevada, CAU 405 consists of three Corrective Action Sites (CASs): 03-05-002-SW03, Septic Waste System (aka: Septic Waste System [SWS] 3); 03-05-002-SW04, Septic Waste System (aka: SWS 4); 03-05-002-SW07, Septic Waste System (aka: SWS 7). The CADD and CR have been combined into one report because no further action is recommended for this CAU, and this report provides specific information necessary to support this recommendation. The CAU consists of three leachfields and associated collection systems that were installed in or near Area 3 for wastewater disposal. These systems were used until a consolidated sewer system was installed in 1990. Historically, operations within various buildin gs in and near Area 3 of the TTR generated sanitary and industrial wastewaters. There is a potential that contaminants of concern (COCs) were present in the wastewaters and were disposed of in septic tanks and leachfields. The justification for closure of this CAU without further action is based on process knowledge and the results of the investigative activities. Closure activities were performed at these CASs between January 14 and February 2, 2002, and included the removal and proper disposal of media containing regulated constituents and proper closure of septic tanks. No further action is appropriate because all necessary activities have been completed. No use restrictions are required to be imposed for these sites since the investigation showed no evidence of COCs identified in the soil for CAU 405.

IT Coroporation, Las Vegas, NV

2002-04-17T23:59:59.000Z

262

Environmental Restoration of Corrective Action Unit 408: Bomblet Target Area, Tonopah Test Range, Nevada (Funded by the American Reinvestment and Recovery Act)  

SciTech Connect

The mission of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Environmental Restoration Program is to address the environmental impacts of weapons testing conducted on the Nevada National Security Site and the Nevada Test and Training Range. The large physical size of these sites, along with limits on funding and other resources available for remediation efforts, means that environmental restoration activities must be prioritized and accomplished incrementally over time. The remediation of a bomblet target area on the Tonopah Test Range (TTR), which is located within the Nevada Test and Training Range, was originally planned in 2007 but was not carried out until funding became available in the summer of 2009 through the American Reinvestment and Recovery Act. This activity was implemented in accordance with the Federal Facility Agreement and Consent Order established between NNSA/NSO and the Nevada Division of Environmental Protection. This activity which was complete by the end of Fiscal Year 2010, involved the excavation of disposal pits suspected of containing submunitions and the surface clearance of submunitions on seven target areas amounting to approximately 6.7 square kilometers of land at the TTR. The TTR was used by Sandia National Laboratories from the late 1960s through the mid-1980s to conduct research into the deployment of submunitions. Although there were efforts to identify, collect, and dispose various amounts of unexploded ordnance on the TTR in the past, no comprehensive effort to remediate the entire flightline area for submunitions was undertaken before this project.

Kevin Cabble (NSO), Mark Burmeister and Mark Krauss (N-I)

2011-03-03T23:59:59.000Z

263

District of Columbia County, District of Columbia: Energy Resources | Open  

Open Energy Info (EERE)

Columbia County, District of Columbia: Energy Resources Columbia County, District of Columbia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.9059849°, -77.0334179° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9059849,"lon":-77.0334179,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

Empire District Electric - Residential Energy Efficiency Rebate |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empire District Electric - Residential Energy Efficiency Rebate Empire District Electric - Residential Energy Efficiency Rebate Empire District Electric - Residential Energy Efficiency Rebate < Back Eligibility Construction Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Other Ventilation Water Heating Windows, Doors, & Skylights Program Info State Missouri Program Type Utility Rebate Program Rebate Amount ENERGY STAR Home Performance Retrofit: 400 ENERGY STAR Qualified Home Designation: 800 Air Conditioner: 400 - 500; varies depending on SEER rating Provider Empire District Electric Company The Empire District Electric Company offers rebates for customers who

265

Economic Improvement Districts (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improvement Districts (Indiana) Improvement Districts (Indiana) Economic Improvement Districts (Indiana) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Bond Program Industry Recruitment/Support Provider Indiana Economic Development Corporation A legislative body may adopt an ordinance establishing an economic improvement district and an Economic Improvement Board to manage development in a respective district. The Board can choose to issue revenue

266

BLM Winnemucca District Office | Open Energy Information  

Open Energy Info (EERE)

BLM Winnemucca District Office BLM Winnemucca District Office Jump to: navigation, search Name BLM Winnemucca District Office Short Name Winnemucca Parent Organization BLM Nevada State Office Address 5100 E. Winnemucca Blvd. Place Winnemucca, Nevada Zip 89445 Phone number 775-623-1500 Website http://www.blm.gov/nv/st/en/fo References Winnemucca District Office website[1] Divisions Place BLM Humboldt River Field Office Winnemucca, Nevada This article is a stub. You can help OpenEI by expanding it. BLM Winnemucca District Office is an organization based in Winnemucca, Nevada. References ↑ "Winnemucca District Office website" Retrieved from "http://en.openei.org/w/index.php?title=BLM_Winnemucca_District_Office&oldid=640908" Categories: Government Agencies Stubs

267

Kenston School District | Open Energy Information  

Open Energy Info (EERE)

Kenston School District Kenston School District Jump to: navigation, search Name Kenston School District Facility Kenston School District Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Kenston School District Developer Kenston School District Energy Purchaser Kenston School District Location Chagrin Falls OH Coordinates 41.39386574°, -81.30529761° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.39386574,"lon":-81.30529761,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

Development of Clemson variable-rate lateral irrigation system  

Science Conference Proceedings (OSTI)

Crops in the Southern United States are generally produced in fields which are known to have a high degree of variability in soil type, water holding capacity, infiltration rates, and other major factors which affect crop production. In these fields, ... Keywords: Instrumentation, Irrigation, Lateral-move, Precision agriculture, Variable-rate irrigation

Young J. Han; Ahmad Khalilian; Tom O. Owino; Hamid J. Farahani; Sam Moore

2009-08-01T23:59:59.000Z

269

Stratified random sampling plan for an irrigation customer telephone survey  

SciTech Connect

This report describes the procedures used to design and select a sample for a telephone survey of individuals who use electricity in irrigating agricultural cropland in the Pacific Northwest. The survey is intended to gather information on the irrigated agricultural sector that will be useful for conservation assessment, load forecasting, rate design, and other regional power planning activities.

Johnston, J.W.; Davis, L.J.

1986-05-01T23:59:59.000Z

270

Irrigation-Induced Rainfall and the Great Plains  

Science Conference Proceedings (OSTI)

The postWorld War II increase in irrigation in the Great Plains represents the largest human-induced hydrologic impact in North America. Drawn primarily from the High Plains aquifer, water applied as irrigation in the region amounts to billions ...

Nathan Moore; Stuart Rojstaczer

2001-08-01T23:59:59.000Z

271

Crops reap benefits of Pantex irrigation system | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Crops reap benefits of Pantex irrigation system | National Nuclear Security Crops reap benefits of Pantex irrigation system | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Crops reap benefits of Pantex irrigation system Home > content > Crops reap benefits of Pantex irrigation system Crops reap benefits of Pantex irrigation system

272

California's 39th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 39th congressional district 3 Registered Policy Organizations in California's 39th congressional district 4 Registered Energy Companies in California's 39th congressional district 5 Registered Financial Organizations in California's 39th congressional district US Recovery Act Smart Grid Projects in California's 39th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 39th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 39th congressional district Clean Tech Los Angeles Registered Energy Companies in California's 39th congressional district

273

California's 5th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

district district 2 Registered Policy Organizations in California's 5th congressional district 3 Registered Energy Companies in California's 5th congressional district 4 Energy Generation Facilities in California's 5th congressional district 5 Utility Companies in California's 5th congressional district US Recovery Act Smart Grid Projects in California's 5th congressional district Sacramento Municipal Utility District Smart Grid Project Registered Policy Organizations in California's 5th congressional district California Energy Commission Registered Energy Companies in California's 5th congressional district Aerojet American Energy Power Systems Inc AEPS Anuvu Inc Ardent Energy Group Inc Atlantis Energy Systems Inc Aztec Solar California State Assembly Clean Energy Systems

274

California's 27th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 27th congressional district 3 Registered Policy Organizations in California's 27th congressional district 4 Registered Energy Companies in California's 27th congressional district 5 Registered Financial Organizations in California's 27th congressional district 6 Utility Companies in California's 27th congressional district US Recovery Act Smart Grid Projects in California's 27th congressional district Burbank Water and Power Smart Grid Project Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 27th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 27th congressional district

275

California's 34th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

4th congressional district 4th congressional district 2 Registered Research Institutions in California's 34th congressional district 3 Registered Policy Organizations in California's 34th congressional district 4 Registered Energy Companies in California's 34th congressional district 5 Registered Financial Organizations in California's 34th congressional district US Recovery Act Smart Grid Projects in California's 34th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 34th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 34th congressional district Clean Tech Los Angeles Registered Energy Companies in California's 34th congressional district

276

California's 33rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

3rd congressional district 3rd congressional district 2 Registered Research Institutions in California's 33rd congressional district 3 Registered Policy Organizations in California's 33rd congressional district 4 Registered Energy Companies in California's 33rd congressional district 5 Registered Financial Organizations in California's 33rd congressional district US Recovery Act Smart Grid Projects in California's 33rd congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 33rd congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 33rd congressional district Clean Tech Los Angeles Registered Energy Companies in California's 33rd congressional district

277

North Carolina's 4th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

4th congressional district 4th congressional district 2 Registered Research Institutions in North Carolina's 4th congressional district 3 Registered Policy Organizations in North Carolina's 4th congressional district 4 Registered Energy Companies in North Carolina's 4th congressional district 5 Registered Financial Organizations in North Carolina's 4th congressional district US Recovery Act Smart Grid Projects in North Carolina's 4th congressional district Progress Energy Service Company, LLC Smart Grid Project Registered Research Institutions in North Carolina's 4th congressional district N.C. Solar Center Registered Policy Organizations in North Carolina's 4th congressional district NC Sustainable Energy Association Registered Energy Companies in North Carolina's 4th congressional district

278

Oregon's 5th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Oregon. Oregon. Contents 1 US Recovery Act Smart Grid Projects in Oregon's 5th congressional district 2 Registered Research Institutions in Oregon's 5th congressional district 3 Registered Policy Organizations in Oregon's 5th congressional district 4 Registered Energy Companies in Oregon's 5th congressional district 5 Registered Financial Organizations in Oregon's 5th congressional district 6 Utility Companies in Oregon's 5th congressional district US Recovery Act Smart Grid Projects in Oregon's 5th congressional district Central Lincoln People's Utility District Smart Grid Project Pacific Northwest Generating Cooperative Smart Grid Project Registered Research Institutions in Oregon's 5th congressional district Clean Edge Inc Registered Policy Organizations in Oregon's 5th congressional district

279

California's 46th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 46th congressional district 3 Registered Policy Organizations in California's 46th congressional district 4 Registered Energy Companies in California's 46th congressional district 5 Registered Financial Organizations in California's 46th congressional district US Recovery Act Smart Grid Projects in California's 46th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 46th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 46th congressional district Clean Tech Los Angeles Registered Energy Companies in California's 46th congressional district

280

California's 31st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

1st congressional district 1st congressional district 2 Registered Research Institutions in California's 31st congressional district 3 Registered Policy Organizations in California's 31st congressional district 4 Registered Energy Companies in California's 31st congressional district 5 Registered Financial Organizations in California's 31st congressional district US Recovery Act Smart Grid Projects in California's 31st congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 31st congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 31st congressional district Clean Tech Los Angeles Registered Energy Companies in California's 31st congressional district

Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

California's 35th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 35th congressional district 3 Registered Policy Organizations in California's 35th congressional district 4 Registered Energy Companies in California's 35th congressional district 5 Registered Financial Organizations in California's 35th congressional district US Recovery Act Smart Grid Projects in California's 35th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 35th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 35th congressional district Clean Tech Los Angeles Registered Energy Companies in California's 35th congressional district

282

California's 36th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 36th congressional district 3 Registered Policy Organizations in California's 36th congressional district 4 Registered Energy Companies in California's 36th congressional district 5 Registered Financial Organizations in California's 36th congressional district US Recovery Act Smart Grid Projects in California's 36th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 36th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 36th congressional district Clean Tech Los Angeles Registered Energy Companies in California's 36th congressional district

283

California's 15th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

5th congressional district 5th congressional district 2 Registered Networking Organizations in California's 15th congressional district 3 Registered Policy Organizations in California's 15th congressional district 4 Registered Energy Companies in California's 15th congressional district 5 Registered Financial Organizations in California's 15th congressional district Registered Research Institutions in California's 15th congressional district Environmental Business Cluster Registered Networking Organizations in California's 15th congressional district MetaMatrix Groupe Registered Policy Organizations in California's 15th congressional district Silicon Valley Clean Tech Alliance Solar San Jose Registered Energy Companies in California's 15th congressional district AE Biofuels Inc formerly American Ethanol Inc

284

California's 25th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 25th congressional district 3 Registered Policy Organizations in California's 25th congressional district 4 Registered Energy Companies in California's 25th congressional district 5 Registered Financial Organizations in California's 25th congressional district 6 Energy Generation Facilities in California's 25th congressional district US Recovery Act Smart Grid Projects in California's 25th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 25th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 25th congressional district

285

California's 37th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 37th congressional district 3 Registered Policy Organizations in California's 37th congressional district 4 Registered Energy Companies in California's 37th congressional district 5 Registered Financial Organizations in California's 37th congressional district US Recovery Act Smart Grid Projects in California's 37th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 37th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 37th congressional district Clean Tech Los Angeles Registered Energy Companies in California's 37th congressional district

286

Geothermal district piping - A primer  

DOE Green Energy (OSTI)

Transmission and distribution piping constitutes approximately 40 -60% of the capital costs of typical geothermal district heating systems. Selections of economical piping suitable for the fluid chemistry is critical. Presently, most piping (56%) in geothermal systems is of asbestos cement construction. Some fiberglass (19%) and steel (19%) is also in use. Identification of an economical material to replace asbestos cement is important to future project development. By providing information on relative costs, purchase considerations, existing material performance and new products, this report seeks to provide a background of information to the potential pipe purchaser. A brief discussion of the use of uninsulated piping in geothermal district heating systems is also provided. 5 refs., 19 figs., 1 tab.

Rafferty, K.

1989-11-01T23:59:59.000Z

287

Nebraska Public Power District - Commercial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump: 20 x (EER - 14) + 180 x tons Variable Frequency Drives: 30 per HP HVAC Optimization: 0.01 per kWh (or 0.02 per kWh for the summer months only) Irrigation...

288

Original paper: An integrated model for simulation of border-check irrigated dairy pasture production systems  

Science Conference Proceedings (OSTI)

Border-check irrigation is the predominant method of applying water to dairy pastures in Australia. Dairy pastures consume 40% of total irrigation water in Australia and, with irrigation water security in Australia under threat from climate variability/change ... Keywords: Dairy pasture systems, Integrated modeling tools, Surface irrigation hydraulics

P. Douglas; K. B. Dassanayake; D. F. Chapman; I. R. Johnson; M. Khanna; H. Malano

2010-10-01T23:59:59.000Z

289

Engineering quality control of solar-powered intelligent water-saving irrigation  

Science Conference Proceedings (OSTI)

The development tendency of the agricultural irrigation technology is Automatic water-saving irrigation, powered by solar energy and achieved control purposes by moisture content monitoring techniques and the variable irrigation technology. In this paper, ... Keywords: intelligent, quality control, solar power, water-saving irrigation

Liu Xiaochu; Wu Hualong; Ling Jingpeng; Tao Jianhua; Yao Li

2010-03-01T23:59:59.000Z

290

California's 53rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

This page represents a congressional district in California. Contents 1 US Recovery Act Smart Grid Projects in California's 53rd congressional district 2 Registered Research Institutions in California's 53rd congressional district 3 Registered Policy Organizations in California's 53rd congressional district 4 Registered Energy Companies in California's 53rd congressional district 5 Registered Financial Organizations in California's 53rd congressional district 6 Utility Companies in California's 53rd congressional district US Recovery Act Smart Grid Projects in California's 53rd congressional district San Diego Gas and Electric Company Smart Grid Project Registered Research Institutions in California's 53rd congressional district Global Energy Network Institute

291

California's 32nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

2nd congressional district 2nd congressional district 2 Registered Research Institutions in California's 32nd congressional district 3 Registered Policy Organizations in California's 32nd congressional district 4 Registered Energy Companies in California's 32nd congressional district 5 Registered Financial Organizations in California's 32nd congressional district US Recovery Act Smart Grid Projects in California's 32nd congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Southern California Edison Company Smart Grid Demonstration Project Southern California Edison Company Smart Grid Demonstration Project (2) Registered Research Institutions in California's 32nd congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 32nd congressional district

292

North Carolina's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

2nd congressional district 2nd congressional district 2 Registered Research Institutions in North Carolina's 2nd congressional district 3 Registered Policy Organizations in North Carolina's 2nd congressional district 4 Registered Energy Companies in North Carolina's 2nd congressional district US Recovery Act Smart Grid Projects in North Carolina's 2nd congressional district Progress Energy Service Company, LLC Smart Grid Project Registered Research Institutions in North Carolina's 2nd congressional district N.C. Solar Center Registered Policy Organizations in North Carolina's 2nd congressional district NC Sustainable Energy Association Registered Energy Companies in North Carolina's 2nd congressional district Advanced Vehicle Research Center of North Carolina Agri Ethanol Products LLC AEPNC

293

Massachusetts's 8th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Massachusetts's 8th congressional district: Energy Resources Massachusetts's 8th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Massachusetts. Contents 1 Registered Research Institutions in Massachusetts's 8th congressional district 2 Registered Networking Organizations in Massachusetts's 8th congressional district 3 Registered Policy Organizations in Massachusetts's 8th congressional district 4 Registered Energy Companies in Massachusetts's 8th congressional district 5 Registered Financial Organizations in Massachusetts's 8th congressional district Registered Research Institutions in Massachusetts's 8th congressional district Fraunhofer Center for Sustainable Energy Systems

294

California's 30th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

0th congressional district 0th congressional district 2 Registered Research Institutions in California's 30th congressional district 3 Registered Networking Organizations in California's 30th congressional district 4 Registered Policy Organizations in California's 30th congressional district 5 Registered Energy Companies in California's 30th congressional district 6 Registered Financial Organizations in California's 30th congressional district US Recovery Act Smart Grid Projects in California's 30th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 30th congressional district University of Southern California-Energy Institute Registered Networking Organizations in California's 30th congressional

295

California's 16th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

6th congressional district 6th congressional district 2 Registered Networking Organizations in California's 16th congressional district 3 Registered Policy Organizations in California's 16th congressional district 4 Registered Energy Companies in California's 16th congressional district Registered Research Institutions in California's 16th congressional district Environmental Business Cluster Registered Networking Organizations in California's 16th congressional district MetaMatrix Groupe Registered Policy Organizations in California's 16th congressional district Solar San Jose Registered Energy Companies in California's 16th congressional district BioFuelBox Corporation Chromasun Clean Tech Institute Cupertino Electric Inc EIQ Energy Inc formerly Sympagis Echelon Corporation Electric Vehicle Infrastructure Network, Inc.

296

California's 50th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

California. California. Contents 1 US Recovery Act Smart Grid Projects in California's 50th congressional district 2 Registered Research Institutions in California's 50th congressional district 3 Registered Policy Organizations in California's 50th congressional district 4 Registered Energy Companies in California's 50th congressional district 5 Registered Financial Organizations in California's 50th congressional district 6 Utility Companies in California's 50th congressional district US Recovery Act Smart Grid Projects in California's 50th congressional district San Diego Gas and Electric Company Smart Grid Project Registered Research Institutions in California's 50th congressional district EcoElectron Ventures Inc Global Energy Network Institute Registered Policy Organizations in California's 50th congressional district

297

California's 29th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 29th congressional district 3 Registered Networking Organizations in California's 29th congressional district 4 Registered Policy Organizations in California's 29th congressional district 5 Registered Energy Companies in California's 29th congressional district 6 Registered Financial Organizations in California's 29th congressional district 7 Utility Companies in California's 29th congressional district US Recovery Act Smart Grid Projects in California's 29th congressional district Burbank Water and Power Smart Grid Project City of Glendale Water and Power Smart Grid Project Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 29th congressional

298

Washington's 5th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Contents Contents 1 US Recovery Act Smart Grid Projects in Washington's 5th congressional district 2 Registered Research Institutions in Washington's 5th congressional district 3 Registered Energy Companies in Washington's 5th congressional district 4 Energy Generation Facilities in Washington's 5th congressional district 5 Utility Companies in Washington's 5th congressional district US Recovery Act Smart Grid Projects in Washington's 5th congressional district Avista Utilities Smart Grid Project Registered Research Institutions in Washington's 5th congressional district Washington State University Registered Energy Companies in Washington's 5th congressional district Itron ReliOn Energy Generation Facilities in Washington's 5th congressional district Kettle Falls Biomass Facility

299

Pennsylvania's 15th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Energy Companies in Pennsylvania's 15th congressional district 3 Registered Financial Organizations in Pennsylvania's 15th congressional district 4 Utility Companies in Pennsylvania's 15th congressional district US Recovery Act Smart Grid Projects in Pennsylvania's 15th congressional district PPL Electric Utilities Corp. Smart Grid Project Registered Energy Companies in Pennsylvania's 15th congressional district Air Products Chemicals Inc Akrion Inc Minerals Technologies PPL Energy Services Holdings LLC PPL EnergyPlus LLC PPT Research Inc Protium Energy Technologies Registered Financial Organizations in Pennsylvania's 15th congressional district Sustainable Energy Fund of Central Eastern Pennsylvania Utility Companies in Pennsylvania's 15th congressional district

300

California's 51st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

California. California. Contents 1 US Recovery Act Smart Grid Projects in California's 51st congressional district 2 Registered Research Institutions in California's 51st congressional district 3 Registered Policy Organizations in California's 51st congressional district 4 Registered Energy Companies in California's 51st congressional district 5 Registered Financial Organizations in California's 51st congressional district 6 Energy Generation Facilities in California's 51st congressional district 7 Utility Companies in California's 51st congressional district US Recovery Act Smart Grid Projects in California's 51st congressional district San Diego Gas and Electric Company Smart Grid Project Registered Research Institutions in California's 51st congressional district

Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Washington's 7th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

7th congressional district: Energy Resources 7th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Washington. Contents 1 Registered Research Institutions in Washington's 7th congressional district 2 Registered Networking Organizations in Washington's 7th congressional district 3 Registered Policy Organizations in Washington's 7th congressional district 4 Registered Energy Companies in Washington's 7th congressional district 5 Registered Financial Organizations in Washington's 7th congressional district Registered Research Institutions in Washington's 7th congressional district ARCH Venture Partners (Washington) Northwest National Marine Renewable Energy Center

302

Alternative Fuels Data Center: School District Emissions Reduction Policies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School District School District Emissions Reduction Policies to someone by E-mail Share Alternative Fuels Data Center: School District Emissions Reduction Policies on Facebook Tweet about Alternative Fuels Data Center: School District Emissions Reduction Policies on Twitter Bookmark Alternative Fuels Data Center: School District Emissions Reduction Policies on Google Bookmark Alternative Fuels Data Center: School District Emissions Reduction Policies on Delicious Rank Alternative Fuels Data Center: School District Emissions Reduction Policies on Digg Find More places to share Alternative Fuels Data Center: School District Emissions Reduction Policies on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School District Emissions Reduction Policies

303

Nebraska's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Nebraska. Nebraska. Contents 1 US Recovery Act Smart Grid Projects in Nebraska's 1st congressional district 2 Registered Research Institutions in Nebraska's 1st congressional district 3 Registered Energy Companies in Nebraska's 1st congressional district 4 Utility Companies in Nebraska's 1st congressional district US Recovery Act Smart Grid Projects in Nebraska's 1st congressional district Cuming County Public Power District Smart Grid Project Stanton County Public Power District Smart Grid Project Registered Research Institutions in Nebraska's 1st congressional district University of Nebraska-Lincoln and University of Florida (Building Energy Efficient Homes for America) Registered Energy Companies in Nebraska's 1st congressional district Axis Technologies Group Inc

304

California's 52nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

California. California. Contents 1 US Recovery Act Smart Grid Projects in California's 52nd congressional district 2 Registered Research Institutions in California's 52nd congressional district 3 Registered Policy Organizations in California's 52nd congressional district 4 Registered Energy Companies in California's 52nd congressional district 5 Registered Financial Organizations in California's 52nd congressional district 6 Utility Companies in California's 52nd congressional district US Recovery Act Smart Grid Projects in California's 52nd congressional district San Diego Gas and Electric Company Smart Grid Project Registered Research Institutions in California's 52nd congressional district Global Energy Network Institute Registered Policy Organizations in California's 52nd congressional district

305

Oregon's 3rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Oregon. Oregon. Contents 1 US Recovery Act Smart Grid Projects in Oregon's 3rd congressional district 2 Registered Research Institutions in Oregon's 3rd congressional district 3 Registered Policy Organizations in Oregon's 3rd congressional district 4 Registered Energy Companies in Oregon's 3rd congressional district 5 Registered Financial Organizations in Oregon's 3rd congressional district 6 Utility Companies in Oregon's 3rd congressional district US Recovery Act Smart Grid Projects in Oregon's 3rd congressional district Pacific Northwest Generating Cooperative Smart Grid Project Registered Research Institutions in Oregon's 3rd congressional district Clean Edge Inc Registered Policy Organizations in Oregon's 3rd congressional district Bonneville Environmental Foundation

306

District of Columbia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Energy Utility - Residential Energy Efficiency Program Sustainable Energy Utility - Residential Energy Efficiency Program (District of Columbia) The District of Columbia Sustainable Energy Utility currently offers the Residential Energy Efficiency Program. The program provides incentives to residents who complete qualifying home energy upgrades. Qualifying items include refrigerators, clothes washers, LED lighting and CFL lighting upgrades. Appliances and lighting equipment must be Energy Star rated. More information on program requirements can be found on the program website. October 16, 2013 Sustainable Energy Utility - D.C. Home Performance (District of Columbia) The District of Columbia Sustainable Energy Utility currently offers the D.C. Home Performance program (DCHP). DCHP provides a $500 incentive to

307

Regional Districts, Commissions, and Authorities (South Carolina) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Districts, Commissions, and Authorities (South Carolina) Regional Districts, Commissions, and Authorities (South Carolina) Regional Districts, Commissions, and Authorities (South Carolina) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Siting and Permitting Provider Regional Districts, Commissions, and Authorities

308

Conservation Districts (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conservation Districts (Montana) Conservation Districts (Montana) Conservation Districts (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Natural Resources and Conservation Local Conservation Districts in the state of Montana may be formed by

309

Natural Resources Districts (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Districts (Nebraska) Districts (Nebraska) Natural Resources Districts (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Nebraska Program Type Siting and Permitting Provider Natural Resources This statute establishes Natural Resources District, encompassing all of

310

Massachusetts's 10th congressional district: Energy Resources...  

Open Energy Info (EERE)

10th congressional district AXI LLC BioEnergy International LLC Bluestone Energy Services Ltd Eco Power Solutions Heliotronics Heliotronics Inc Patriot Renewables LLC SiEnergy...

311

Groundwater Conservation Districts (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conservation Districts (Texas) Conservation Districts (Texas) Groundwater Conservation Districts (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Texas Program Type Environmental Regulations Provider Texas Commission on Environmental Quality Groundwater Conservation Districts, as created following procedures described in Water Code 36, are designed to provide for the conservation, preservation, protection, recharging, and prevention of waste of groundwater, and of groundwater reservoirs or their subdivisions, and to

312

California's 47th congressional district: Energy Resources |...  

Open Energy Info (EERE)

Companies in California's 47th congressional district BioCentric Energy Inc formerly Nano Chemical Systems Holdings Cosmos Energy Corporation Fuel Systems Solutions Inc...

313

District of Columbia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with respect to shade and insulation, as well as its mitigating effects to the impacts of climate change. October 16, 2013 Flood Zone Building Permits (District of Columbia)...

314

California's 22nd congressional district: Energy Resources |...  

Open Energy Info (EERE)

Facilities in California's 22nd congressional district Alpine SunTower Solar Power Plant Solar Millenium Ridgecrest Solar Power Plant Retrieved from "http:en.openei.org...

315

Modeling Satellite District Heating and Cooling Networks.  

E-Print Network (OSTI)

??Satellite District Heating and Cooling (DHC) systems offer an alternative structure to conventional, centralized DHC networks. Both use a piping network carrying steam or water (more)

Rulff, David

2011-01-01T23:59:59.000Z

316

Pennsylvania's 6th congressional district: Energy Resources ...  

Open Energy Info (EERE)

Inc Registered Financial Organizations in Pennsylvania's 6th congressional district EnerTech Capital Retrieved from "http:en.openei.orgwindex.php?titlePennsylvania%27s6thc...

317

Pennsylvania's 4th congressional district: Energy Resources ...  

Open Energy Info (EERE)

Registered Energy Companies in Pennsylvania's 4th congressional district Axion Power International Inc formerly Tamboril Retrieved from "http:en.openei.orgw...

318

Connecticut's 1st congressional district: Energy Resources |...  

Open Energy Info (EERE)

district Aztech Engineers Connecticut Light and Power Infinity Fuel Cell and Hydrogen Inc LiquidPiston Inc Nxegen SmartPower United Technologies Corp Registered Financial...

319

Pennsylvania's 18th congressional district: Energy Resources...  

Open Energy Info (EERE)

Energy Companies in Pennsylvania's 18th congressional district Allegheny Power HydroGen Corporation formerly Chiste Corp KeyTex Energy LLC Westinghouse Plasma Corporation...

320

Pennsylvania's 17th congressional district: Energy Resources...  

Open Energy Info (EERE)

Pennsylvania. Registered Energy Companies in Pennsylvania's 17th congressional district Agra Bio Fuels Independence Biofuels Inc Pennsylvania Department of Environmental Protection...

Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Massachusetts's 2nd congressional district: Energy Resources...  

Open Energy Info (EERE)

Massachusetts. Registered Energy Companies in Massachusetts's 2nd congressional district Alyra Renewable Energy Kosmo Solar Sanderson Engine Development LLC Retrieved from "http:...

322

Pennsylvania's 16th congressional district: Energy Resources...  

Open Energy Info (EERE)

Registered Energy Companies in Pennsylvania's 16th congressional district Enerwise Global Technologies Inc Jeannie Leggett Sikora Retrieved from "http:en.openei.orgw...

323

Connecticut's 3rd congressional district: Energy Resources |...  

Open Energy Info (EERE)

Connecticut. Registered Energy Companies in Connecticut's 3rd congressional district Avalence LLC Lite Trough LLC Nxegen Opel International Inc Poulsen Hybrid, LLC Sunlight Solar...

324

Special Improvement Districts (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

or town council may create a special improvement district for the purchase, installation, maintenance, and management of alternative energy production facilities. Under certain...

325

Conservation Districts (South Dakota) | Open Energy Information  

Open Energy Info (EERE)

form History Share this page on Facebook icon Twitter icon Conservation Districts (South Dakota) This is the approved revision of this page, as well as being the most...

326

Post-Closure Inspection Report for Corrective Action Unit 404: Roller Coaster Lagoons and Trench Tonopah Test Range, Nevada, Calendar Year 2001  

Science Conference Proceedings (OSTI)

Post-closure monitoring requirements for the Roller Coaster Lagoons and Trench (Corrective Action Unit [CAU] 404) (Figure 1) are described in Closure Report for Corrective Action Unit 404. Roller Coaster Sewage Lagoons and North Disposal Trench. Tonopah Test Range. Nevada, report number DOE/NV--187, September 1998. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on September 11, 1998. Permeability results of soils adjacent to the engineered cover and a request for closure of CAU 404 were transmitted to the NDEP on April 29, 1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on May 18, 1999. As stated in Section 5.0 of the NDEP-approved CRY post-closure monitoring at CAU 404 consists of the following: (1) Visual site inspections done twice a year to evaluate the condition of the cover and plant development. (2) Verification that the site is secure and condition of the fence and posted warning signs. (3) Notice of any subsidence, erosion, unauthorized excavation, etc., deficiencies that may compromise the integrity of the unit. (4) Remedy of any deficiencies within 90 days of discovery. (5) Preparation and submittal of an annual report. In addition to the above activities, vegetative monitoring of the cover (a plant census) will be done in the first, third and fifth year following revegetation. (Vegetative monitoring will done in fiscal year 2001, and the results reported in the 2002 Post-Closure Inspection Report.) Site inspections were conducted on May 16, 2001, and November 6, 2001. The site inspections were conducted after completion of the revegetation activities (October 30, 1997) and NDEP approval of the CR (May 18, 1999). All site inspections were conducted in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and copies of the inspection photographs are found in Attachment C.

K. B. Campbell

2002-01-01T23:59:59.000Z

327

Preliminary Assessment for CAU 485: Cactus Spring Ranch Pu and DU Site CAS No. TA-39-001-TAGR: Soil Contamination, Tonopah Test Range, Nevada  

SciTech Connect

Corrective Action Unit 485, Corrective Action Site TA-39-001-TAGR, the Cactus Spring Ranch Soil Contamination Area, is located approximately six miles southwest of the Area 3 Compound at the eastern mouth of Sleeping Column Canyon in the Cactus Range on the Tonopah Test Range. This site was used in conjunction with animal studies involving the biological effects of radionuclides (specifically plutonium) associated with Operation Roofer Coaster. The location had been used as a ranch by private citizens prior to government control of the area. According to historical records, Operation Roofer Coaster activities involved assessing the inhalation uptake of plutonium in animals from the nonnuclear detonation of nuclear weapons. Operation Roofer Coaster consisted of four nonnuclear destruction tests of a nuclear device. The four tests all took place during May and June 1963 and consisted of Double Tracks and Clean Slate 1, 11, and 111. Eighty-four dogs, 84 burros, and 136 sheep were used for the Double Tracks test, and ten sheep and ten dogs were used for Clean Slate 11. These animals were housed at Cactus Spring Ranch. Before detonation, all animals were placed in cages and transported to the field. After the shot, they were taken to the decontamination area where some may have been sacrificed immediately. All animals, including those sacrificed, were returned to Cactus Spring Ranch at this point to have autopsies performed or to await being sacrificed at a later date. A description of the Cactus Spring Ranch activities found in project files indicates the ranch was used solely for the purpose of the Roofer Coaster tests and bioaccumulation studies and was never used for any other project. No decontamination or cleanup had been conducted at Cactus Spring Ranch prior to the start of the project. When the project was complete, the pits at Cactus Spring Ranch were filled with soil, and trailers where dogs were housed and animal autopsies had been performed were removed. Additional pens and sheds were built to house and manage livestock involved with the Operation Roofer Coaster activities in 1963.

NONE

1998-07-01T23:59:59.000Z

328

Corrective Action Investigation Plan for Corrective Action Unit 410: Waste Disposal Trenches, Tonopah Test Range, Nevada, Revision 0 (includes ROTCs 1, 2, and 3)  

SciTech Connect

This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 410 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 410 is located on the Tonopah Test Range (TTR), which is included in the Nevada Test and Training Range (formerly the Nellis Air Force Range) approximately 140 miles northwest of Las Vegas, Nevada. This CAU is comprised of five Corrective Action Sites (CASs): TA-19-002-TAB2, Debris Mound; TA-21-003-TANL, Disposal Trench; TA-21-002-TAAL, Disposal Trench; 09-21-001-TA09, Disposal Trenches; 03-19-001, Waste Disposal Site. This CAU is being investigated because contaminants may be present in concentrations that could potentially pose a threat to human health and/or the environment, and waste may have been disposed of with out appropriate controls. Four out of five of these CASs are the result of weapons testing and disposal activities at the TTR, and they are grouped together for site closure based on the similarity of the sites (waste disposal sites and trenches). The fifth CAS, CAS 03-19-001, is a hydrocarbon spill related to activities in the area. This site is grouped with this CAU because of the location (TTR). Based on historical documentation and process know-ledge, vertical and lateral migration routes are possible for all CASs. Migration of contaminants may have occurred through transport by infiltration of precipitation through surface soil which serves as a driving force for downward migration of contaminants. Land-use scenarios limit future use of these CASs to industrial activities. The suspected contaminants of potential concern which have been identified are volatile organic compounds; semivolatile organic compounds; high explosives; radiological constituents including depleted uranium, beryllium, total petroleum hydrocarbons; and total Resource Conservation and Recovery Act metals. Field activities will consist of geophysical and radiological surveys, and collecting soil samples at biased locations by appropriate methods. A two-step data quality objective strategy will be followed: (1) define the nature of contamination at each CAS location by identifying any contamination above preliminary action levels (PALs); and, (2) determine the extent of contamination identified above PALs. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

NNSA /NV

2002-07-16T23:59:59.000Z

329

Addendum to the Closure Report for Corrective Action Unit 423: Area 3 Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada, Revision 0  

SciTech Connect

This document constitutes an addendum to the July 1999, Closure Report for Corrective Action Unit 423: Area 3 Building 0360 Underground Discharge Point, Tonopah Test Range, Nevada as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: This cover page that refers the reader to the UR Modification document for additional information The cover and signature pages of the UR Modification document The NDEP approval letter The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the UR for CAS 03-02-002-0308, Underground Discharge Point. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above the risk-based FALs. Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at this site will be removed. Fencing and posting may be present at this site that are unrelated to the FFACO UR such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004f). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at this site.

Lynn Kidman

2008-10-01T23:59:59.000Z

330

Addendum to the Closure Report for Corrective Action Unit 427: Area 3 Septic Waste Systems 2, 6, Tonopah Test Range, Nevada, Revision 0  

SciTech Connect

This document constitutes an addendum to the April 1999, Closure Report for Corrective Action Unit 427: Area 3 Septic Waste Systems 2, 6, Tonopah Test Range, Nevada as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: This cover page that refers the reader to the UR Modification document for additional information The cover and signature pages of the UR Modification document The NDEP approval letter The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: CAS 03-05-002-SW02, Septic Waste System CAS 03-05-002-SW06, Septic Waste System These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs. Requirements for inspecting and maintaining these URs will be canceled, and the postings and signage at each site will be removed. Fencing and posting may be present at these sites that are unrelated to the FFACO URs such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004f). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at these sites.

Lynn Kidman

2008-10-01T23:59:59.000Z

331

Closure Report for Corrective Action Unit 404: Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range, Nevada with ROTC 1, Revision 0  

SciTech Connect

This Closure Report provides the documentation for closure of the Roller Coaster Sewage Lagoons and North Disposal Trench Comective Action Unit (CAU) 404. CAU 404 consists of the Roller Coaster Sewage Lagoons (Corrective Action Site [CAS] TA-03-O01-TA-RC) and the North Disposal Trench (CAS TA-21-001-TA-RC). The site is located on the Tonopah Test Range, approximately 225 kilometers (km) (140 miles [mi]) northwest ofLas Vegas, Nevada. . The sewage lagoons received ~quid sanitary waste horn the Operation Roller Coaster Man Camp in 1963 and debris from subsequent range and construction cleanup activities. The debris and ordnance was subsequently removed and properly dispos~, however, pesticides were detected in soil samples born the bottom of the lagoons above the U,S. Environmental Protection Agency Region IX Prelimimuy Remediation Goals (EPA 1996). . The North Disposal Trench was excavated in 1963. Debris from the man camp and subsequent range and construction cleanup activities was placed in the trench. Investigation results indicated that no constituents of concern were detected in soil samples collected from the trench. Remedial alternative proposed in the Comctive Action Decision Document (CADD) fm the site was Covering (DOE, 1997a). The Nevada Division ofEnviromnental Protection (NDEP)-approved Correction Action Plan (CAP) proposed the Covering niethodology (1997b). The closure activities were completed in accorhce with the approwil CAP and consisted of baclctllling the sewage lagoons and disposal trench, constructing/planting an engineered/vegetative cover in the area of the sewage lagoons and dikposal trencQ installing a perimeter fence and signs, implementing restrictions on fi~e use, and preparing a Post-Closure Monitoring Plan. Since closure activities. for CAU 404 have been completed in accordance with the Nevada Division of Environmental Protection-approved CAP (DOE, 1997b) as documented in this Closure Report, the U.S. Department of Energy, NevadaOperations Office (DOE/NV) requests: CAU 404 be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order. NDEP provide a Notice of Completion to the DOE/NV.

Lynn Kidman

1998-09-01T23:59:59.000Z

332

Post-Closure Inspection Report for Corrective Action Unit 407: Roller Coaster RadSafe Area Tonopah Test Range, Nevada, Calendar Year 2001  

SciTech Connect

Post-closure monitoring requirements for the Roller Coaster RadSafe Area (Corrective Action Unit [CAU] 407) (Figure 1) are described in Closure Report for Corrective Action Unit 407, Roller Coaster RadSafe Area, Tonopah Test Range, Nevada, report number DOEN-694, October 2001. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on April 24,2001. No issues with the post-closure monitoring plan, Section 5 .O, were raised. However, other concerns raised by stakeholders required that the CR be revised. Revision 1 of CR was issued in December of 2001 and was approved by NDEP on January 7,2002. Section 5.2 of the NDEP-approved CR calls for site inspections to be conducted within the first six months following completion of cover construction. Following the first six months, site inspection are to be conducted twice yearly for the next two years. This report provides the results of the six month post-construction site inspection. As stated in Section 5.2 of the CR, Post-closure site inspections at CAU 407 consists of the following: (1) Visual site inspections done twice a year to evaluate the condition of the cover and plant development. (2) Verification that the site is secure and condition of the fence and posted warning signs. (3) Notice of any subsidence, erosion, unauthorized excavation, etc., deficiencies that may compromise the integrity of the unit. (4) Remedy of any deficiencies within 90 days of discovery. (5) Preparation and submittal of an annual report. To meet the fiscal year 2002 post-closure inspection schedule, the first post-closure site inspection was conducted on November 6,2001. The site inspection was conducted after completion of the revegetation activities (October 24,2000) and submittal of revision 0 of the CR (October 31,2001). All site inspections were conducted in accordance with the Post-Closure Inspection requirements stated in revision 0 of the CR. This report includes copies of inspection checklist, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklist is found in Attachment A, a copy of the field notes is found in Attachment By and copies of the inspection photographs are found in Attachment C.

K. B. Campbell

2002-01-01T23:59:59.000Z

333

Corrective Action Investigation Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (with Record of Technical Change No.1)  

DOE Green Energy (OSTI)

This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 490 under the Federal Facility Agreement and Consent Order. Corrective Active Unit 490 consists of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (FTA); RG-56-001-RGBA, Station 44 Burn Area; 03-58-001-03FN, Sandia Service Yard; and 09-54-001-09L2, Gun Propellant Burn Area. These CASs are located at the Tonopah Test Range near Areas 3 and 9. Historically, the FTA was used for training exercises where tires and wood were ignited with diesel fuel. Records indicate that water and carbon dioxide were the only extinguishing agents used during these training exercises. The Station 44 Burn Area was used for fire training exercises and consisted of two wooden structures. The two burn areas (ignition of tires, wood, and wooden structures with diesel fuel and water) were limited to the building footprints (10 ft by 10 ft each). The Sandia Service Yard was used for storage (i.e., wood, tires, metal, electronic and office equipment, construction debris, and drums of oil/grease) from approximately 1979 to 1993. The Gun Propellant Burn Area was used from the 1960s to 1980s to burn excess artillery gun propellant, solid-fuel rocket motors, black powder, and deteriorated explosives; additionally, the area was used for the disposal of experimental explosive items. Based on site history, the focus of the field investigation activities will be to: (1) determine the presence of contaminants of potential concern (COPCs) at each CAS, (2) determine if any COPCs exceed field-screening levels and/or preliminary action levels, and (3) determine the nature and extent of contamination with enough certainty to support selection of corrective action alternatives for each CAS. The scope of this CAIP is to resolve the question of whether or not potentially hazardous wastes were generated at three of the four CASs within CAU 490, and whether or not potentially hazardous and radioactive wastes were generated at the fourth CAS in CAU 490 (CAS 09-54-001-09L2). Suspected CAS-specific COPCs include volatile organic compounds, semivolatile organic compounds, total petroleum hydrocarbons, polychlorinated biphenyls, pesticides, explosives, and uranium and plutonium isotopes. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

U.S. Department of Energy, Nevada Operations Office

2000-06-09T23:59:59.000Z

334

Solar technology applications: a survey of solar powered irrigation systems  

DOE Green Energy (OSTI)

Published information on solar powered irrigation systems is presented. Thermal solar systems, thermoelectric solar systems, and photovoltaic solar systems are included. A bibliography and survey of on-going work is presented. (WHK)

Newkirk, H.W.

1978-04-17T23:59:59.000Z

335

Energy savings potential from energy-conserving irrigation systems  

SciTech Connect

This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

1982-11-01T23:59:59.000Z

336

Outlook for Energy and Implications for Irrigated Agriculture  

E-Print Network (OSTI)

Agriculture uses large quantities of energy to pump groundwater for irrigation. This means the cost of energy has important implications for the industry in terms of costs and profitability. Increases in the prices of energy sources such as natural gas, electricity, liquid petroleum gas and diesel can cause economic hardship for irrigators, particularly if those increases are unanticipated. The purpose of this paper is to briefly summarize important trends in the current domestic energy situation that could have significant impacts on the future cost and availability of energy, and to show what the implications of those trends are for irrigated agriculture. The primary focus of this study will be on trends in natural gas, since natural gas is the major fuel used for irrigation in the Great Plains states.

Patton, W. P.; Lacewell, R. D.

1977-09-01T23:59:59.000Z

337

Remote Sensing of Irrigated Agriculture: Opportunities and Challenges  

E-Print Network (OSTI)

Abstract: Over the last several decades, remote sensing has emerged as an effective tool to monitor irrigated lands over a variety of climatic conditions and locations. The objective of this review, which summarizes the methods and the results of existing remote sensing studies, is to synthesize principle findings and assess the state of the art. We take a taxonomic approach to group studies based on location, scale, inputs, and methods, in an effort to categorize different approaches within a logical framework. We seek to evaluate the ability of remote sensing to provide synoptic and timely coverage of irrigated lands in several spectral regions. We also investigate the value of archived data that enable comparison of images through time. This overview of the studies to date indicates that remote sensing-based monitoring of irrigation is at an intermediate stage of development at local scales. For instance, there is overwhelming consensus on the efficacy of vegetation indices in identifying irrigated fields. Also, single date imagery, acquired at peak growing season, may suffice to identify irrigated lands, although to multi-date image data are necessary for improved classification and to distinguish different crop types. At local scales, the mapping of irrigated lands with remote sensing is also strongly affected by the

Mutlu Ozdogan; Yang Yang; George Allez; Chelsea Cervantes

2010-01-01T23:59:59.000Z

338

Microsoft Word - district_of_columbia.doc  

U.S. Energy Information Administration (EIA) Indexed Site

District of Columbia District of Columbia NERC Region(s) ....................................................................................................... RFC Primary Energy Source........................................................................................... Petroleum Net Summer Capacity (megawatts) ....................................................................... 790 51 Independent Power Producers & Combined Heat and Power ................................ 790 46 Net Generation (megawatthours) ........................................................................... 199,858 51 Independent Power Producers & Combined Heat and Power ................................ 199,858 51 Emissions (thousand metric tons) ..........................................................................

339

Microsoft Word - district_of_columbia.doc  

Gasoline and Diesel Fuel Update (EIA)

District of Columbia District of Columbia NERC Region(s) ....................................................................................................... RFC Primary Energy Source........................................................................................... Petroleum Net Summer Capacity (megawatts) ....................................................................... 790 51 Independent Power Producers & Combined Heat and Power ................................ 790 46 Net Generation (megawatthours) ........................................................................... 199,858 51 Independent Power Producers & Combined Heat and Power ................................ 199,858 51 Emissions (thousand metric tons) ..........................................................................

340

Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA  

Science Conference Proceedings (OSTI)

Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather ...

Jiangfeng Wei; Paul A. Dirmeyer; Dominik Wisser; Michael G. Bosilovich; David M. Mocko

2013-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Potential for Photovoltaic Solar Installation in Non-Irrigated Corners of Center Pivot Irrigation Fields in the State of Colorado  

DOE Green Energy (OSTI)

The State of Colorado expressed an interest in assessing the potential for photovoltaic (PV) solar installations on non-irrigated corners of center-pivot irrigation (CPI) fields throughout the state. Using aerial imagery and irrigated land data available from the Colorado Water Conservation Board, an assessment of potentially suitable sites was produced. Productivity estimates were calculated from that assessment. The total area of non-irrigated corners of CPI fields in Colorado was estimated to be 314,674 acres, which could yield 223,418 acres of installed PV panels assuming 71% coverage in triangular plots. The total potential annual electricity production for the state was estimated to be 56,821 gigawatt hours (GWH), with an average of 1.3 GWH per available plot.

Roberts, B.

2011-07-01T23:59:59.000Z

342

Definition: District heat | Open Energy Information  

Open Energy Info (EERE)

District heat District heat Jump to: navigation, search Dictionary.png District heat A heating system that uses steam or hot water produced outside of a building (usually in a central plant) and piped into the building as an energy source for space heating, hot water or another end use.[1][2][3] View on Wikipedia Wikipedia Definition District heating (less commonly called teleheating) is a system for distributing heat generated in a centralized location for residential and commercial heating requirements such as space heating and water heating. The heat is often obtained from a cogeneration plant burning fossil fuels but increasingly biomass, although heat-only boiler stations, geothermal heating and central solar heating are also used, as well as nuclear power. District heating plants can provide higher efficiencies and better

343

California's 14th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

4th congressional district 4th congressional district 2 Registered Networking Organizations in California's 14th congressional district 3 Registered Policy Organizations in California's 14th congressional district 4 Registered Energy Companies in California's 14th congressional district 5 Registered Financial Organizations in California's 14th congressional district 6 Energy Incentives for California's 14th congressional district Registered Research Institutions in California's 14th congressional district Environmental Business Cluster Global Climate and Energy Project Google.org Stanford - Woods Institute for the Environment Stanford- Global Climate and Energy Project Stanford- Precourt Energy Efficiency Center Technology Ventures Corporation Registered Networking Organizations in California's 14th congressional

344

California's 9th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

district district 2 Registered Research Institutions in California's 9th congressional district 3 Registered Networking Organizations in California's 9th congressional district 4 Registered Policy Organizations in California's 9th congressional district 5 Registered Energy Companies in California's 9th congressional district US Recovery Act Smart Grid Projects in California's 9th congressional district Seeo, Inc Smart Grid Demonstration Project Registered Research Institutions in California's 9th congressional district Energy BioSciences Institute Lawrence Berkeley National Laboratory (LBNL) UC Berkeley- Energy Institute UC Berkeley-Renewable and Appropriate Energy Laboratory UC Berkeley-Transportation Sustainability Research Center UC Center for Information Technology Research in the Interest of

345

The Future of Pastoralism in Turkana District, Kenya  

E-Print Network (OSTI)

Development and Famine Risk in Kenya Maasai Land. Doctoralin Turkana District, Kenya by J. Michael Halderman Responsein Turkana District, Kenya. Response to a request for

Halderman, John Michael

2005-01-01T23:59:59.000Z

346

Fort Boise Veteran's Hospital District Heating Low Temperature...  

Open Energy Info (EERE)

Boise Veteran's Hospital District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fort Boise Veteran's Hospital District Heating Low Temperature...

347

New Mexico State University District Heating Low Temperature...  

Open Energy Info (EERE)

State University District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name New Mexico State University District Heating Low Temperature Geothermal...

348

Oregon Institute of Technology District Heating Low Temperature...  

Open Energy Info (EERE)

District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Institute of Technology District Heating Low Temperature Geothermal Facility Facility...

349

Ohio's 4th congressional district: Energy Resources | Open Energy...  

Open Energy Info (EERE)

a congressional district in Ohio. Registered Energy Companies in Ohio's 4th congressional district American Tower Company Energy Technologies, Inc. Fetz Plumbing, Heating & Air...

350

New Jersey's 2nd congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

district in New Jersey. Registered Energy Companies in New Jersey's 2nd congressional district Bartholomew Heating and Cooling Fishermen s Energy Fishermen s Energy of New...

351

Colorado's 7th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

7th congressional district 7th congressional district 2 Registered Policy Organizations in Colorado's 7th congressional district 3 Registered Energy Companies in Colorado's 7th congressional district 4 Energy Generation Facilities in Colorado's 7th congressional district Registered Research Institutions in Colorado's 7th congressional district Colorado School of Mines - Colorado Energy Research Institute National Renewable Energy Laboratory Registered Policy Organizations in Colorado's 7th congressional district Colorado Renewable Energy Society Registered Energy Companies in Colorado's 7th congressional district Abengoa Solar Ampulse Ampulse Corporation Ascent Solar Blue Sun Biodiesel LLC CCBI, Inc. Colorado Fuel Cell Center CFCC Coors Ceramics Distributed Generation Systems Inc Distributed Generation Systems Inc DISGEN

352

Colorado's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Colorado. Colorado. Contents 1 Registered Research Institutions in Colorado's 2nd congressional district 2 Registered Networking Organizations in Colorado's 2nd congressional district 3 Registered Policy Organizations in Colorado's 2nd congressional district 4 Registered Energy Companies in Colorado's 2nd congressional district 5 Registered Financial Organizations in Colorado's 2nd congressional district 6 Energy Incentives for Colorado's 2nd congressional district Registered Research Institutions in Colorado's 2nd congressional district National Wind Technology Center Rocky Mountain Institute University of Colorado at Boulder Renewable and Sustainable Energy Institute Registered Networking Organizations in Colorado's 2nd congressional district American Solar Energy Society

353

Texas's 22nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Texas. Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 22nd congressional district 2 Registered Research Institutions in Texas's 22nd congressional district 3 Registered Energy Companies in Texas's 22nd congressional district 4 Registered Financial Organizations in Texas's 22nd congressional district 5 Utility Companies in Texas's 22nd congressional district US Recovery Act Smart Grid Projects in Texas's 22nd congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 22nd congressional district Institute for Energy Research Registered Energy Companies in Texas's 22nd congressional district Air and Liquid Advisors ALA American Electric Technologies Inc

354

Illinois' 6th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Illinois. Illinois. Contents 1 US Recovery Act Smart Grid Projects in Illinois' 6th congressional district 2 Registered Networking Organizations in Illinois' 6th congressional district 3 Registered Energy Companies in Illinois' 6th congressional district 4 Registered Financial Organizations in Illinois' 6th congressional district 5 Utility Companies in Illinois' 6th congressional district US Recovery Act Smart Grid Projects in Illinois' 6th congressional district City of Naperville, Illinois Smart Grid Project Registered Networking Organizations in Illinois' 6th congressional district Chicago Clean Energy Alliance Registered Energy Companies in Illinois' 6th congressional district Acciona Wind Energy USA LLC Aerotecture International Inc American Bar Association Section on Environment

355

Massachusetts's 9th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

9th congressional district: Energy Resources 9th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Massachusetts. Contents 1 US Recovery Act Smart Grid Projects in Massachusetts's 9th congressional district 2 Registered Networking Organizations in Massachusetts's 9th congressional district 3 Registered Energy Companies in Massachusetts's 9th congressional district 4 Registered Financial Organizations in Massachusetts's 9th congressional district US Recovery Act Smart Grid Projects in Massachusetts's 9th congressional district NSTAR Electric & Gas Corporation Smart Grid Demonstration Project NSTAR Electric & Gas Corporation Smart Grid Demonstration Project

356

Arizona's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Contents Contents 1 Registered Research Institutions in Arizona's 1st congressional district 2 Registered Networking Organizations in Arizona's 1st congressional district 3 Registered Energy Companies in Arizona's 1st congressional district 4 Energy Generation Facilities in Arizona's 1st congressional district Registered Research Institutions in Arizona's 1st congressional district Northern Arizona University Registered Networking Organizations in Arizona's 1st congressional district Distributed Wind Energy Association Registered Energy Companies in Arizona's 1st congressional district Coolidge Petrosun Optimum Biodiesel Plant EV Solar Products Pacific Blue Energy Southwest Wind Power Southwest Windpower Inc Sunshine Arizona Wind Energy LLC Energy Generation Facilities in Arizona's 1st congressional district

357

California's 23rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Networking Organizations in California's 23rd congressional district Networking Organizations in California's 23rd congressional district 2 Registered Policy Organizations in California's 23rd congressional district 3 Registered Energy Companies in California's 23rd congressional district 4 Registered Financial Organizations in California's 23rd congressional district Registered Networking Organizations in California's 23rd congressional district California Coast Venture Forum Solar Action Network Registered Policy Organizations in California's 23rd congressional district Community Environmental Council Registered Energy Companies in California's 23rd congressional district Ashman Technologies Biodiesel Industries Inc Biodiesel of Las Vegas Inc Catalytic Solutions Inc CSI Clairvoyant Energy Clipper Windpower Clipper Windpower Inc

358

Virginia's 8th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

US Recovery Act Smart Grid Projects in Virginia's 8th congressional district US Recovery Act Smart Grid Projects in Virginia's 8th congressional district 2 Registered Policy Organizations in Virginia's 8th congressional district 3 Registered Energy Companies in Virginia's 8th congressional district 4 Registered Financial Organizations in Virginia's 8th congressional district US Recovery Act Smart Grid Projects in Virginia's 8th congressional district National Rural Electric Cooperative Association Smart Grid Demonstration Project Registered Policy Organizations in Virginia's 8th congressional district Bordeaux International Energy Consulting, LLC Conservation International Millennium Institute The Nature Conservancy Tropical Forest Foundation Registered Energy Companies in Virginia's 8th congressional district AES Corporation AES Solar

359

California's 7th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Policy Organizations in California's 7th congressional district Rahus...

360

BLM California Desert District Office | Open Energy Information  

Open Energy Info (EERE)

California Desert District Office Jump to: navigation, search Name California Desert District Office Address 22835 Calle San Juan De Los Lagos Place Moreno Valley, CA Zip 92553...

Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

California's 2nd congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 2nd congressional district Blue Lake...

362

BLM Color Country District Office | Open Energy Information  

Open Energy Info (EERE)

Color Country District Office Jump to: navigation, search Name BLM Color Country District Office Parent Organization BLM Place Cedar City, Utah References BLM Color Country...

363

BLM West Desert District Office | Open Energy Information  

Open Energy Info (EERE)

West Desert District Office Jump to: navigation, search Name BLM West Desert District Office Parent Organization BLM Place Salt Lake City, Utah Phone number (801) 977-4300...

364

Ohio's 8th congressional district: Energy Resources | Open Energy...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Ohio. Registered Research Institutions in Ohio's 8th congressional district University of...

365

Ohio's 9th congressional district: Energy Resources | Open Energy...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Ohio. Registered Energy Companies in Ohio's 9th congressional district Advanced Distributed...

366

Microsoft PowerPoint - Vicksburg District Federal Power Projects...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vicksburg District Federal Power Projects Vicksburg District Federal Power Projects Blakely Mountain Hydro DeGray Hydro DeGray Hydro Narrows Hydro Blakely Mountain Rewind Unit 1...

367

Washington Gas Energy Services (District of Columbia) | Open...  

Open Energy Info (EERE)

District of Columbia) Jump to: navigation, search Name Washington Gas Energy Services Place District of Columbia Utility Id 20659 References EIA Form EIA-861 Final Data File for...

368

Texas's 1st congressional district: Energy Resources | Open Energy...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Texas. Registered Energy Companies in Texas's 1st congressional district Eisenbach...

369

Texas's 6th congressional district: Energy Resources | Open Energy...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Texas. Registered Energy Companies in Texas's 6th congressional district Corsicana Chemical...

370

Colorado's 6th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Colorado. Registered Research Institutions in Colorado's 6th congressional district ITN Energy Systems, Inc. Registered Energy Companies in Colorado's 6th congressional district...

371

Illinois' 16th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Illinois. Registered Research Institutions in Illinois' 16th congressional district Freedom Field Registered Energy Companies in Illinois' 16th congressional district Blackhawk...

372

Michigan's 4th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Michigan. Registered Research Institutions in Michigan's 4th congressional district Ferris State University Registered Energy Companies in Michigan's 4th congressional district...

373

Michigan's 8th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Michigan. Registered Research Institutions in Michigan's 8th congressional district Michigan...

374

Regional Water, Sewage, and Solid Waste Districts (Indiana) ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water, Sewage, and Solid Waste Districts (Indiana) Regional Water, Sewage, and Solid Waste Districts (Indiana) Eligibility Agricultural Construction Fuel Distributor Industrial...

375

111th Congressional Districts and Counties | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Districts and Counties Dataset Summary Description This dataset contains a nationwide inventory of all congressional districts and the counties or pieces of counties associated...

376

Florida's 10th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

district in Florida. Registered Energy Companies in Florida's 10th congressional district Fuel Cells Technology Transit Idea One Inc Jabil Circuit Inc SolarPower Restoration...

377

Maryland's 7th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

district Baltimore Gas and Electric Company Smart Grid Project Registered Energy Companies in Maryland's 7th congressional district Alten Industries Inc Constellation Energy...

378

Maryland's 3rd congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

district Baltimore Gas and Electric Company Smart Grid Project Registered Energy Companies in Maryland's 3rd congressional district Alten Industries Inc Constellation Energy...

379

Florida's 12th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

12th congressional district Lakeland Electric Smart Grid Project Registered Energy Companies in Florida's 12th congressional district ECr Technologies Inc formerly GeoSolar...

380

Georgia's 6th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

district Cobb Electric Membership Corporation Smart Grid Project Registered Energy Companies in Georgia's 6th congressional district Cellnet Legacy Environmental Solutions...

Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Illinois' 13th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

district City of Naperville, Illinois Smart Grid Project Registered Energy Companies in Illinois' 13th congressional district BP America CECO Abatement Systems Inc...

382

Georgia's 13th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

district Cobb Electric Membership Corporation Smart Grid Project Registered Energy Companies in Georgia's 13th congressional district Prenova Inc formerly Service Resources Inc...

383

Alternative Fuels Data Center: Utility District Natural Gas Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Utility District Utility District Natural Gas Fueling Station Regulation to someone by E-mail Share Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Facebook Tweet about Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Twitter Bookmark Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Google Bookmark Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Delicious Rank Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Digg Find More places to share Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on AddThis.com... More in this section... Federal

384

Alternative Fuels Data Center: School District Alternative Fuel Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School District School District Alternative Fuel Vehicle Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: School District Alternative Fuel Vehicle Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: School District Alternative Fuel Vehicle Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: School District Alternative Fuel Vehicle Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: School District Alternative Fuel Vehicle Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: School District Alternative Fuel Vehicle Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: School District Alternative Fuel Vehicle Acquisition Requirements on

385

Massachusetts's 7th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Massachusetts. Massachusetts. Contents 1 Registered Research Institutions in Massachusetts's 7th congressional district 2 Registered Networking Organizations in Massachusetts's 7th congressional district 3 Registered Energy Companies in Massachusetts's 7th congressional district 4 Registered Financial Organizations in Massachusetts's 7th congressional district 5 Utility Companies in Massachusetts's 7th congressional district Registered Research Institutions in Massachusetts's 7th congressional district IDC Energy Insights Registered Networking Organizations in Massachusetts's 7th congressional district Northeast Energy Efficiency Partnerships, Inc Registered Energy Companies in Massachusetts's 7th congressional district A123 Systems A123Systems Ameresco, Inc. Analytic Power LLC

386

California's 28th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Contents Contents 1 US Recovery Act Smart Grid Projects in California's 28th congressional district 2 Registered Research Institutions in California's 28th congressional district 3 Registered Policy Organizations in California's 28th congressional district 4 Registered Energy Companies in California's 28th congressional district 5 Registered Financial Organizations in California's 28th congressional district US Recovery Act Smart Grid Projects in California's 28th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 28th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 28th congressional district Clean Tech Los Angeles

387

Illinois' 14th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Illinois. Registered Energy Companies in Illinois' 14th congressional district BP America...

388

Illinois' 15th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Illinois. Registered Research Institutions in Illinois' 15th congressional district The...

389

Illinois' 17th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Illinois. Registered Energy Companies in Illinois' 17th congressional district Archer Daniels...

390

South Carolina's 1st congressional district: Energy Resources...  

Open Energy Info (EERE)

Policy Organizations in South Carolina's 1st congressional district Coastal Conservation League Registered Energy Companies in South Carolina's 1st congressional district...

391

District of Columbia Natural Gas % of Total Residential - Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) District of Columbia Natural Gas % of Total Residential - Sales (Percent) District of Columbia Natural Gas % of Total...

392

Emergency Petition and Complaint of District of Columbia Public...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Petition and Complaint of District of Columbia Public Service Commission Emergency Petition and Complaint of District of Columbia Public Service Commission Docket No....

393

Texas's 12th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Texas. Registered Energy Companies in Texas's 12th congressional district Aecom Government...

394

Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Okaloosa Gas District Smart Grid RFI: Addressing Policy and...

395

Texas's 10th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district: Energy Resources th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 10th congressional district 2 Registered Research Institutions in Texas's 10th congressional district 3 Registered Networking Organizations in Texas's 10th congressional district 4 Registered Policy Organizations in Texas's 10th congressional district 5 Registered Energy Companies in Texas's 10th congressional district 6 Registered Financial Organizations in Texas's 10th congressional district 7 Utility Companies in Texas's 10th congressional district US Recovery Act Smart Grid Projects in Texas's 10th congressional district

396

Colorado's 3rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

3rd congressional district 3rd congressional district 2 Registered Networking Organizations in Colorado's 3rd congressional district 3 Registered Policy Organizations in Colorado's 3rd congressional district 4 Registered Energy Companies in Colorado's 3rd congressional district 5 Energy Incentives for Colorado's 3rd congressional district 6 Utility Companies in Colorado's 3rd congressional district US Recovery Act Smart Grid Projects in Colorado's 3rd congressional district Black Hills/Colorado Electric Utility Co. Smart Grid Project Registered Networking Organizations in Colorado's 3rd congressional district Haiti Repowered Peak Oil Awareness Network Peak Oil Food Network Registered Policy Organizations in Colorado's 3rd congressional district Sustainability Center of the Rockies Registered Energy Companies in Colorado's 3rd congressional district

397

Colorado's 4th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

4th congressional district 4th congressional district 2 Registered Research Institutions in Colorado's 4th congressional district 3 Registered Networking Organizations in Colorado's 4th congressional district 4 Registered Energy Companies in Colorado's 4th congressional district 5 Energy Incentives for Colorado's 4th congressional district 6 Utility Companies in Colorado's 4th congressional district US Recovery Act Smart Grid Projects in Colorado's 4th congressional district City of Fort Collins Utilities Smart Grid Project Registered Research Institutions in Colorado's 4th congressional district CSU - Institute for the Built Environment Renewable Energy Tech School Registered Networking Organizations in Colorado's 4th congressional district Northern Colorado Clean Cities Registered Energy Companies in Colorado's 4th congressional district

398

Addendum to the Closure Report for Corrective Action Unit 404: Roller Coaster Lagoons and Trench, Tonopah Test Range, Nevada, Revision 0  

Science Conference Proceedings (OSTI)

This document constitutes an addendum to the September 1998, Closure Report for Corrective Action Unit 404: Roller Coaster Lagoons and Trench, Tonopah Test Range, Nevada as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: This cover page that refers the reader to the UR Modification document for additional information The cover and signature pages of the UR Modification document The NDEP approval letter The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: CAS TA-03-001-TARC Roller Coaster Lagoons CAS TA-21-001-TARC Roller Coaster N. Disposal Trench These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to modify these URs to administrative URs. Administrative URs differ from standard URs in that they do not require onsite postings (i.e., signs) or other physical barriers (e.g., fencing, monuments), and they do not require periodic inspections (see Section 6.2 of the Industrial Sites Project Establishment of Final Action Levels [NNSA/NSO, 2006c]). These Administrative URs were based on a Remote Work Sites future land use scenario that was used to calculate the FAL. The administrative UR will protect workers from an exposure exceeding that used in the calculation of the FAL (i.e., 336 hours per year). Any proposed activity within these use restricted areas that would potentially cause an exposure exceeding this exposure limit would require approval from the Nevada Division of Environmental Protection (NDEP). Requirements for inspecting and maintaining these URs will be canceled, and the postings and signage at each site will be removed. Fencing and posting may be present at these sites that are unrelated to the FFACO URs such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004f). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at these sites.

Lynn Kidman

2008-10-01T23:59:59.000Z

399

Addendum to the Closure Report for Corrective Action Unit 404: Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range, Nevada, Revision 1  

Science Conference Proceedings (OSTI)

This document constitutes an addendum to the September 1998, Closure Report for Corrective Action Unit 404: Roller Coaster Lagoons and Trench, Tonopah Test Range, Nevada as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: This cover page that refers the reader to the UR Modification document for additional information The cover and signature pages of the UR Modification document The NDEP approval letter The corresponding section of the UR Modification document This addendum provides the documentation justifying the modification of the UR for CAS TA-03-001-TARC Roller Coaster Lagoons. This UR was established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and was based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This reevaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to modify the UR for CAS TA-03-001-TARC to an administrative UR. Administrative URs differ from standard URs in that they do not require onsite postings (i.e., signs) or other physical barriers (e.g., fencing, monuments), and they do not require periodic inspections (see Section 6.2 of the Industrial Sites Project Establishment of Final Action Levels [NNSA/NSO, 2006c]). This Administrative UR was based on a Remote Work Sites future land use scenario that was used to calculate the FAL. The administrative UR will protect workers from an exposure exceeding that used in the calculation of the FAL (i.e., 336 hours per year). Any proposed activity within these use restricted areas that would potentially cause an exposure exceeding this exposure limit would require approval from the Nevada Division of Environmental Protection (NDEP). Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at each site will be removed. Fencing and posting may be present at these sites that are unrelated to the FFACO URs such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004f). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at these sites.

Lynn Kidman

2009-02-01T23:59:59.000Z

400

Conservation Districts (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Dakota) South Dakota) Conservation Districts (South Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Association of Conservation Districts A Conservation District can be established by petition of registered voters

Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

District-heating system, La Grande, Oregon  

DOE Green Energy (OSTI)

The area suggested for district heating feasibility study encompassed slightly over 400 acres extending north and south from the geographic center of the city. This district was subdivided into 8 areas, which include the Grande Ronde Hospital, Eastern Oregon State College, La Grande school district, one institutional area, one commercial area and three residential areas. Basic space heating loads developed for the various areas after a survey by county personnel and computation using a computer program form the basis for this economic feasibility study.

Not Available

1982-01-01T23:59:59.000Z

402

Local Option - Special Districts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Special Districts Local Option - Special Districts Local Option - Special Districts < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Sealing Your Home Ventilation Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Bioenergy Solar Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Heating Wind Program Info State Florida Program Type PACE Financing '''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs. In response to the FHFA statement, most local PACE programs have been

403

Potential bias of model projected greenhouse warming in irrigated regions  

SciTech Connect

Atmospheric general circulation models (GCMs) used to project climate responses to increased CO{sub 2} generally omit irrigation of agricultural land. Using the NCAR CAM3 GCM coupled to a slab-ocean model, we find that inclusion of an extreme irrigation scenario has a small effect on the simulated temperature and precipitation response to doubled CO{sub 2} in most regions, but reduced warming by as much as 1 C in some agricultural regions, such as Europe and India. This interaction between CO{sub 2} and irrigation occurs in cases where agriculture is a major fraction of the land surface and where, in the absence of irrigation, soil moisture declines are projected to provide a positive feedback to temperature change. The reduction of warming is less than 25% of the temperature increase modeled for doubled CO{sub 2} in most regions; thus greenhouse warming will still be dominant. However, the results indicate that land use interactions may be an important component of climate change uncertainty in some agricultural regions. While irrigated lands comprise only {approx}2% of the land surface, they contribute over 40% of global food production. Climate changes in these regions are therefore particularly important to society despite their relatively small contribution to average global climate.

Lobell, D; Bala, G; Bonfils, C; Duffy, P

2006-04-27T23:59:59.000Z

404

Texas Gulf Coast Refinery District API Gravity (Weighted Average ...  

U.S. Energy Information Administration (EIA)

Texas Gulf Coast Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

405

Minnesota, Wisconsin, North and South Dakota Refining District ...  

U.S. Energy Information Administration (EIA)

Minnesota, Wisconsin, North and South Dakota Refining District Percent Utilization of Refinery Operable Capacity (Percent)

406

Texas Gulf Coast Refinery District API Gravity (Weighted ...  

U.S. Energy Information Administration (EIA)

Texas Gulf Coast Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

407

Appalachian No. 1 Refinery District Sulfur Content (Weighted ...  

U.S. Energy Information Administration (EIA)

Appalachian No. 1 Refinery District Sulfur Content (Weighted Average) of Crude Oil Input to Refineries (Percent)

408

Refining District New Mexico Gross Inputs to Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

Refining District New Mexico Gross Inputs to Atmospheric Crude Oil Distillation Units (Thousand Barrels per Day)

409

Texas Inland Refining District Operable Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

Texas Inland Refining District Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day)

410

East Coast Refining District Operable Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

East Coast Refining District Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day)

411

Refining District Minnesota-Wisconsin-North Dakota-South ...  

U.S. Energy Information Administration (EIA)

Refining District Minnesota-Wisconsin-North Dakota-South Dakota Refinery Yield of Petroleum Coke (Percent)

412

Underground Storage Tank Management (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

The installation, upgrade and operation of any petroleum UST (>110 gallons) or hazardous substance UST System, including heating oil tanks over 1,100 gallons capacity in the District requires a...

413

District of Columbia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 17, 2010 March 17, 2010 Deputy Secretary Daniel Poneman's Remarks to the Washington Institute for Near East Policy March 17, 2010 March 15, 2010 District of Columbia Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in the District of Columbia reflect a broad range of clean energy projects, from energy efficiency and the smart grid to renewable energy and advanced battery manufacturing. Through these investments, the District of Columbia's businesses, non-profits, and local governments are creating quality jobs today and positioning the District of Columbia to play an important role in the new energy economy of the future. March 1, 2010

414

Climate Action Plan (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

To lead by example, and to capitalize on the many benefits of energy efficiency and climate protection, the District Government is committed to reducing its greenhouse gas emissions by 20% (below...

415

BLM Boise District Office | Open Energy Information  

Open Energy Info (EERE)

Boise District Office Short Name Boise Parent Organization BLM Idaho State Office Place Boise, Idaho References Idaho BLM page1 This article is a stub. You can help OpenEI by...

416

Solidere : the battle for Beirut's Central District  

E-Print Network (OSTI)

The Beirut Central District was destroyed during the Lebanese Civil War which extended from 1975 to 1990. Unable to reconstruct the center itself, the Lebanese government turned to a private Real Estate Holding Company ...

Mango, Tamam, 1981-

2004-01-01T23:59:59.000Z

417

Industrial Revenue Bond Program (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

The District provides below market bond financing to lower the costs of borrowing for qualified capital construction and renovation projects. The program is available to non-profits, institutions,...

418

BIDDING ON URBANITY WITH BUSINESS IMPROVEMENT DISTRICTS: .  

E-Print Network (OSTI)

??BIDDING ON URBANITY WITH BUSINESS IMPROVEMENT DISTRICTS: RE-MAKING URBAN PLACES IN WASHINGTON, DC Susanna Francesca Schaller, Ph.D. Cornell University 2007 ?The livable city,? one that (more)

Schaller, Susanna

2007-01-01T23:59:59.000Z

419

California's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

California. California. Contents 1 Registered Research Institutions in California's 1st congressional district 2 Registered Policy Organizations in California's 1st congressional district 3 Registered Energy Companies in California's 1st congressional district 4 Energy Generation Facilities in California's 1st congressional district Registered Research Institutions in California's 1st congressional district California Lighting Technology Center (University of California, Davis) Western Cooling Efficiency Center Registered Policy Organizations in California's 1st congressional district California Fuel Cell Partnership Solar Living Institute Registered Energy Companies in California's 1st congressional district AMG Energy Advanced Energy Products Advanced Energy Products Corp AEP

420

Alternative Fuels Data Center: Metropolitan Utilities District Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Metropolitan Utilities Metropolitan Utilities District Fuels Vehicles With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Google Bookmark Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Delicious Rank Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on

Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Midland, South Dakota geothermal district heating  

SciTech Connect

This article describes historical aspects and present usage of geothermal district heating systems in the town of Midland, South Dakota. The use of geothermal resources exists due to a joint venture between the school district and the city back in the early 1960`s. A total of approximately 30,000 square feet (2800 square meters) of floor space is heated using geothermal energy in Midland. This provides an estimated annual saving in propane cost of $15,000 to the community.

Lund, J.W.

1997-12-01T23:59:59.000Z

422

Idaho Power - Irrigation Efficiency Rewards Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Irrigation Efficiency Rewards Rebate Program Irrigation Efficiency Rewards Rebate Program Idaho Power - Irrigation Efficiency Rewards Rebate Program < Back Eligibility Agricultural Commercial Savings Category Other Maximum Rebate Custom Incentive for Existing System Replacement: 75% of the total project cost Custom Incentive for a New System: 10% of the total project cost Sprinkler Equipment Incentives: 50% of equipment cost Program Info Funding Source Conservation Program Funding Charge collected by Idaho Power as approved by the state Public Utilities Commission. State Oregon Program Type Utility Rebate Program Rebate Amount Custom Incentive for Existing System Replacement: $0.25/annual kWh saved or $450/kW Custom Incentive for a New System: $0.25/annual kWh saved New Flow-Control Nozzles: $1.50/unit

423

Texas's 9th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

9th congressional district: Energy Resources 9th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 9th congressional district 2 Registered Research Institutions in Texas's 9th congressional district 3 Registered Energy Companies in Texas's 9th congressional district 4 Registered Financial Organizations in Texas's 9th congressional district 5 Utility Companies in Texas's 9th congressional district US Recovery Act Smart Grid Projects in Texas's 9th congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 9th congressional district

424

Arizona's 5th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Arizona's 5th congressional district: Energy Resources Arizona's 5th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Arizona. Contents 1 US Recovery Act Smart Grid Projects in Arizona's 5th congressional district 2 Registered Research Institutions in Arizona's 5th congressional district 3 Registered Networking Organizations in Arizona's 5th congressional district 4 Registered Energy Companies in Arizona's 5th congressional district 5 Utility Companies in Arizona's 5th congressional district US Recovery Act Smart Grid Projects in Arizona's 5th congressional district Salt River Project Smart Grid Project Registered Research Institutions in Arizona's 5th congressional district

425

California's 12th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

California's 12th congressional district: Energy Resources California's 12th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in California. Contents 1 US Recovery Act Smart Grid Projects in California's 12th congressional district 2 Registered Research Institutions in California's 12th congressional district 3 Registered Networking Organizations in California's 12th congressional district 4 Registered Policy Organizations in California's 12th congressional district 5 Registered Energy Companies in California's 12th congressional district 6 Registered Financial Organizations in California's 12th congressional district 7 Energy Generation Facilities in California's 12th congressional district

426

Washington's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Washington's 2nd congressional district: Energy Resources Washington's 2nd congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Washington. Contents 1 US Recovery Act Smart Grid Projects in Washington's 2nd congressional district 2 Registered Energy Companies in Washington's 2nd congressional district 3 Energy Generation Facilities in Washington's 2nd congressional district 4 Utility Companies in Washington's 2nd congressional district US Recovery Act Smart Grid Projects in Washington's 2nd congressional district Snohomish County Public Utilities District Smart Grid Project Registered Energy Companies in Washington's 2nd congressional district Mercurius Biofuels LLC

427

Florida's 3rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

3rd congressional district: Energy Resources 3rd congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Florida. Contents 1 US Recovery Act Smart Grid Projects in Florida's 3rd congressional district 2 Registered Networking Organizations in Florida's 3rd congressional district 3 Registered Energy Companies in Florida's 3rd congressional district 4 Energy Generation Facilities in Florida's 3rd congressional district 5 Utility Companies in Florida's 3rd congressional district US Recovery Act Smart Grid Projects in Florida's 3rd congressional district Intellon Corporation Smart Grid Project JEA Smart Grid Project Registered Networking Organizations in Florida's 3rd congressional district

428

Tennessee's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Tennessee's 2nd congressional district: Energy Resources Tennessee's 2nd congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Tennessee. Contents 1 US Recovery Act Smart Grid Projects in Tennessee's 2nd congressional district 2 Registered Research Institutions in Tennessee's 2nd congressional district 3 Registered Policy Organizations in Tennessee's 2nd congressional district 4 Registered Energy Companies in Tennessee's 2nd congressional district 5 Utility Companies in Tennessee's 2nd congressional district US Recovery Act Smart Grid Projects in Tennessee's 2nd congressional district Knoxville Utilities Board Smart Grid Project Registered Research Institutions in Tennessee's 2nd congressional district

429

Washington's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

1st congressional district: Energy Resources 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Washington. Contents 1 US Recovery Act Smart Grid Projects in Washington's 1st congressional district 2 Registered Networking Organizations in Washington's 1st congressional district 3 Registered Energy Companies in Washington's 1st congressional district 4 Registered Financial Organizations in Washington's 1st congressional district 5 Utility Companies in Washington's 1st congressional district US Recovery Act Smart Grid Projects in Washington's 1st congressional district Snohomish County Public Utilities District Smart Grid Project Registered Networking Organizations in Washington's 1st congressional

430

Ohio's 15th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

5th congressional district: Energy Resources 5th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Ohio. Contents 1 US Recovery Act Smart Grid Projects in Ohio's 15th congressional district 2 Registered Networking Organizations in Ohio's 15th congressional district 3 Registered Policy Organizations in Ohio's 15th congressional district 4 Registered Energy Companies in Ohio's 15th congressional district 5 Utility Companies in Ohio's 15th congressional district US Recovery Act Smart Grid Projects in Ohio's 15th congressional district Columbus Southern Power Company (doing business as AEP Ohio) Smart Grid Demonstration Project Registered Networking Organizations in Ohio's 15th congressional district

431

New York's 11th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district: Energy Resources th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in New York. Contents 1 US Recovery Act Smart Grid Projects in New York's 11th congressional district 2 Registered Research Institutions in New York's 11th congressional district 3 Registered Policy Organizations in New York's 11th congressional district 4 Registered Energy Companies in New York's 11th congressional district 5 Registered Financial Organizations in New York's 11th congressional district 6 Utility Companies in New York's 11th congressional district US Recovery Act Smart Grid Projects in New York's 11th congressional district Consolidated Edison Company of New York, Inc. Smart Grid

432

Ohio's 7th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

7th congressional district: Energy Resources 7th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Ohio. Contents 1 US Recovery Act Smart Grid Projects in Ohio's 7th congressional district 2 Registered Networking Organizations in Ohio's 7th congressional district 3 Registered Policy Organizations in Ohio's 7th congressional district 4 Registered Energy Companies in Ohio's 7th congressional district 5 Utility Companies in Ohio's 7th congressional district US Recovery Act Smart Grid Projects in Ohio's 7th congressional district Columbus Southern Power Company (doing business as AEP Ohio) Smart Grid Demonstration Project Registered Networking Organizations in Ohio's 7th congressional district

433

Oregon's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Oregon's 1st congressional district: Energy Resources Oregon's 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Oregon. Contents 1 US Recovery Act Smart Grid Projects in Oregon's 1st congressional district 2 Registered Research Institutions in Oregon's 1st congressional district 3 Registered Policy Organizations in Oregon's 1st congressional district 4 Registered Energy Companies in Oregon's 1st congressional district 5 Registered Financial Organizations in Oregon's 1st congressional district 6 Utility Companies in Oregon's 1st congressional district US Recovery Act Smart Grid Projects in Oregon's 1st congressional district Pacific Northwest Generating Cooperative Smart Grid Project

434

California's 8th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

8th congressional district: Energy Resources 8th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in California. Contents 1 US Recovery Act Smart Grid Projects in California's 8th congressional district 2 Registered Research Institutions in California's 8th congressional district 3 Registered Networking Organizations in California's 8th congressional district 4 Registered Policy Organizations in California's 8th congressional district 5 Registered Energy Companies in California's 8th congressional district 6 Registered Financial Organizations in California's 8th congressional district 7 Energy Generation Facilities in California's 8th congressional district

435

Property:ManagingDistrictOffice | Open Energy Information  

Open Energy Info (EERE)

ManagingDistrictOffice ManagingDistrictOffice Jump to: navigation, search Property Name ManagingDistrictOffice Property Type Page Pages using the property "ManagingDistrictOffice" Showing 25 pages using this property. (previous 25) (next 25) B BLM-NV-WN-ES-08-01-1310, NV-020-08-01 + BLM Winnemucca District Office + C CA-017-05-051 + BLM Bishop Field Office + CA-170-02-15 + BLM Central California District Office + CA-650-2005-086 + BLM California Desert District Office + CA-670-2010-107 + BLM California Desert District Office + CA-670-2010-CX + BLM California Desert District Office + D DOE-EA-1116 + DOE Golden Field Office + DOE-EA-1621 + DOE Golden Field Office + DOE-EA-1733 + DOE Golden Field Office + DOE-EA-1759 + DOE Golden Field Office + DOI-BLM-CA-C050-2009-0005-EA + BLM Central California District Office +

436

New York's 7th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

7th congressional district: Energy Resources 7th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in New York. Contents 1 US Recovery Act Smart Grid Projects in New York's 7th congressional district 2 Registered Research Institutions in New York's 7th congressional district 3 Registered Policy Organizations in New York's 7th congressional district 4 Registered Energy Companies in New York's 7th congressional district 5 Registered Financial Organizations in New York's 7th congressional district 6 Utility Companies in New York's 7th congressional district US Recovery Act Smart Grid Projects in New York's 7th congressional district Consolidated Edison Company of New York, Inc. Smart Grid

437

Idaho's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Idaho's 1st congressional district: Energy Resources Idaho's 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Idaho. Contents 1 US Recovery Act Smart Grid Projects in Idaho's 1st congressional district 2 Registered Research Institutions in Idaho's 1st congressional district 3 Registered Energy Companies in Idaho's 1st congressional district 4 Energy Generation Facilities in Idaho's 1st congressional district 5 Utility Companies in Idaho's 1st congressional district US Recovery Act Smart Grid Projects in Idaho's 1st congressional district Idaho Power Company Smart Grid Project M2M Communications Smart Grid Project Registered Research Institutions in Idaho's 1st congressional district

438

California's 49th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district: Energy Resources th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in California. Contents 1 US Recovery Act Smart Grid Projects in California's 49th congressional district 2 Registered Research Institutions in California's 49th congressional district 3 Registered Policy Organizations in California's 49th congressional district 4 Registered Energy Companies in California's 49th congressional district 5 Registered Financial Organizations in California's 49th congressional district 6 Utility Companies in California's 49th congressional district US Recovery Act Smart Grid Projects in California's 49th congressional district

439

New York's 21st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

1st congressional district: Energy Resources 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in New York. Contents 1 US Recovery Act Smart Grid Projects in New York's 21st congressional district 2 Registered Research Institutions in New York's 21st congressional district 3 Registered Networking Organizations in New York's 21st congressional district 4 Registered Policy Organizations in New York's 21st congressional district 5 Registered Energy Companies in New York's 21st congressional district 6 Registered Financial Organizations in New York's 21st congressional district US Recovery Act Smart Grid Projects in New York's 21st congressional district

440

Texas's 18th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

8th congressional district: Energy Resources 8th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 18th congressional district 2 Registered Research Institutions in Texas's 18th congressional district 3 Registered Energy Companies in Texas's 18th congressional district 4 Registered Financial Organizations in Texas's 18th congressional district 5 Utility Companies in Texas's 18th congressional district US Recovery Act Smart Grid Projects in Texas's 18th congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 18th congressional district

Note: This page contains sample records for the topic "tonopah irrigation district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Colorado's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Colorado's 1st congressional district: Energy Resources Colorado's 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Colorado. Contents 1 Registered Research Institutions in Colorado's 1st congressional district 2 Registered Networking Organizations in Colorado's 1st congressional district 3 Registered Policy Organizations in Colorado's 1st congressional district 4 Registered Energy Companies in Colorado's 1st congressional district 5 Registered Financial Organizations in Colorado's 1st congressional district 6 Energy Incentives for Colorado's 1st congressional district Registered Research Institutions in Colorado's 1st congressional district Colorado Renewable Energy Collaboratory

442

Texas's 13th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Texas's 13th congressional district: Energy Resources Texas's 13th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 13th congressional district 2 Registered Research Institutions in Texas's 13th congressional district 3 Registered Energy Companies in Texas's 13th congressional district 4 Utility Companies in Texas's 13th congressional district US Recovery Act Smart Grid Projects in Texas's 13th congressional district Golden Spread Electric Cooperative, Inc. Smart Grid Project Registered Research Institutions in Texas's 13th congressional district Alternative Energy Institute Registered Energy Companies in Texas's 13th congressional district

443

Texas's 14th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district: Energy Resources th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 14th congressional district 2 Registered Research Institutions in Texas's 14th congressional district 3 Registered Policy Organizations in Texas's 14th congressional district 4 Registered Energy Companies in Texas's 14th congressional district 5 Registered Financial Organizations in Texas's 14th congressional district 6 Utility Companies in Texas's 14th congressional district US Recovery Act Smart Grid Projects in Texas's 14th congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project

444

Texas's 29th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

9th congressional district: Energy Resources 9th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 29th congressional district 2 Registered Research Institutions in Texas's 29th congressional district 3 Registered Energy Companies in Texas's 29th congressional district 4 Registered Financial Organizations in Texas's 29th congressional district 5 Utility Companies in Texas's 29th congressional district US Recovery Act Smart Grid Projects in Texas's 29th congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 29th congressional district

445

Modeling Irrigated Area to Increase Water, Energy, and Food Security in Semiarid India  

Science Conference Proceedings (OSTI)

Because of declining public investments in irrigation projects in India, the growth of irrigated agricultural production has increasingly become reliant on unsustainable allocation of groundwater. As a result, groundwater resources are ...

Tobias Siegfried; Stefan Sobolowski; Pradeep Raj; Ram Fishman; Victor Vasquez; Kapil Narula; Upmanu Lall; Vijay Modi

2010-10-01T23:59:59.000Z

446

Effects of irrigation on crops and soils with Raft River geothermal water  

DOE Green Energy (OSTI)

The Raft River Irrigation Experiment investigated the suitability of using energy-expended geothermal water for irrigation of selected field-grown crops. Crop and soil behavior on plots sprinkled or surface irrigated with geothermal water was compared to crop and soil behavior on plots receiving water from shallow irrigation wells and the Raft River. In addition, selected crops were produced, using both geothermal irrigation water and special management techniques. Crops irrigated with geothermal water exhibited growth rates, yields, and nutritional values similar to comparison crops. Cereal grains and surface-irrigated forage crops did not exhibit elevated fluoride levels or accumulations of heavy metals. However, forage crops sprinkled with geothermal water did accumulate fluorides, and leaching experiments indicate that new soils receiving geothermal water may experience increased salinity, exchangeable sodium, and decreased permeability. Soil productivity may be maintained by leaching irrigations.

Stanley, N.E.; Schmitt, R.C.

1980-01-01T23:59:59.000Z

447

Large-Scale Utilization of Saline Groundwater for Irrigation of Pistachios Interplanted with Cotton  

E-Print Network (OSTI)

in the better areas. The Belridge Water District in westernof drip tape SDI with typical Belridge Water District cottonlarge-scale grower in the Belridge Water District of NW Kern

Sanden, Blake; Ferguson, Louise; Kallsen, Craig E.; Marsh, Brian; Hutmacher, Robert B.; Corwin, Dennis

2009-01-01T23:59:59.000Z

448

Empirical evidence for a recent slowdown in irrigation-induced cooling  

SciTech Connect

Understanding the influence of past land use changes on climate is needed to improve regional projections of future climate change and inform debates about the tradeoffs associated with land use decisions. The effects of rapid expansion of irrigated area in the 20th century has remained unclear relative to other land use changes, such as urbanization, that affected a similar total land area. Using spatial and temporal variations in temperature and irrigation extent observed in California, we show that irrigation expansion has had a large cooling effect on summertime average daily daytime temperatures (-0.15 to -0.25 C.decade{sup -1}), which corresponds to a cooling estimated at -2.0 - -3.3 C since the introduction of irrigation practice. Irrigation has negligible effects on nighttime temperatures, leading to a net cooling effect of irrigation on climate (-0.06 to -0.19 C.decade{sup -1}). Stabilization of irrigated area has occurred in California since 1980 and is expected in the near future for most irrigated regions. The suppression of past human-induced greenhouse warming by increased irrigation is therefore likely to slow in the future, and a potential decrease in irrigation may even contribute to a more rapid warming. Changes in irrigation alone are not expected to influence broadscale temperatures, but they may introduce large uncertainties in climate projections for irrigated agricultural regions, which provide roughly 40% of global food production.

Bonfils, C; Lobell, D

2007-01-19T23:59:59.000Z

449

Evaluations of emitter clogging in drip irrigation by two-phase flow simulations and laboratory experiments  

Science Conference Proceedings (OSTI)

Emitter clogging will affect greatly the irrigation efficiency and the running cost of a drip irrigation system. If there is an effective method to predict the emitter clogging, the lost will be reduced to a minimum. A solid-liquid two-phase turbulent ... Keywords: Clogging, Computational fluid dynamics, Drip emitters, Drip irrigation, Two-phase flow

Wei Qingsong; Lu Gang; Liu Jie; Shi Yusheng; Dong Wenchu; Huang Shuhuai

2008-10-01T23:59:59.000Z

450

Calculating Horsepower Requirements and Sizing Supply Pipelines for Irrigation  

E-Print Network (OSTI)

Pumping costs are often one of the largest single expenses in irrigated agriculture. This publication explains how to lower pumping costs by calculating horsepower requirements and sizing supply pipelines correctly. Examples take the reader through a step-by-step process. A special section deals with selecting PVC pipe.

Fipps, Guy

1995-09-05T23:59:59.000Z

451

Irrigation market for solar-thermal parabolic-dish systems  

Science Conference Proceedings (OSTI)

The potential size of the onfarm-pumped irrigation market for solar thermal parabolic dish systems in seven high-insolation states is estimated. The study is restricted to the displacement of three specific fuels: gasoline, diesel and natural gas. A model was developed to estimate the optimal number of parabolic dish modules per farm based on the minimum cost mix of conventional and solar thermal energy required to meet irrigation needs. Results indicate that the near-term market for such systems depends not only on the type of crop and method of irrigation, but also on the optimal utilization of each added module, which in turn depends on the price of conventional fuel, real discount rate, marginal cost of the solar thermal power system, local insolation level and parabolic dish system efficiency. The study concludes that the potential market size for onfarm-pumped irrigation applications ranges from 101,000 modules when a 14% real discount rate is assumed to 220,000 modules when the real discount rate drops to 8%. Arizona, Kansas, Nebraska, New Mexico and Texas account for 98% of the total demand for this application, with the natural gas replacement market accounting for the largest segment (71%) of the total market.

Habib-agahi, H.; Jones, S.C.

1981-09-01T23:59:59.000Z

452

New York's 16th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

New York's 16th congressional district New York's 16th congressional district 2 Registered Research Institutions in New York's 16th congressional district 3 Registered Policy Organizations in New York's 16th congressional district 4 Registered Energy Companies in New York's 16th congressional district 5 Registered Financial Organizations in New York's 16th congressional district 6 Utility Companies in New York's 16th congressional district US Recovery Act Smart Grid Projects in New York's 16th congressional district Consolidated Edison Company of New York, Inc. Smart Grid Demonstration Project Consolidated Edison Company of New York, Inc. Smart Grid Project Registered Research Institutions in New York's 16th congressional district Endeavor Global GlobalData United Nations Development Programme (UNDP)

453

California's 26th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

26th congressional district: Energy Resources 26th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in California. Contents 1 US Recovery Act Smart Grid Projects in California's 26th congressional district 2 Registered Research Institutions in California's 26th congressional district 3 Registered Policy Organizations in California's 26th congressional district 4 Registered Energy Companies in California's 26th congressional district 5 Registered Financial Organizations in California's 26th congressional district US Recovery Act Smart Grid Projects in California's 26th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration

454

Maine's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Maine's 1st congressional district: Energy Resources Maine's 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Maine. Contents 1 US Recovery Act Smart Grid Projects in Maine's 1st congressional district 2 Registered Energy Companies in Maine's 1st congressional district 3 Registered Financial Organizations in Maine's 1st congressional district 4 Utility Companies in Maine's 1st congressional district US Recovery Act Smart Grid Projects in Maine's 1st congressional district Central Maine Power Company Smart Grid Project Registered Energy Companies in Maine's 1st congressional district Ascendant Energy Company Inc Criterium Engineers International WoodFuels LLC

455

Tennessee's 3rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

3rd congressional district: Energy Resources 3rd congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Tennessee. Contents 1 US Recovery Act Smart Grid Projects in Tennessee's 3rd congressional district 2 Registered Research Institutions in Tennessee's 3rd congressional district 3 Registered Energy Companies in Tennessee's 3rd congressional district 4 Utility Companies in Tennessee's 3rd congressional district US Recovery Act Smart Grid Projects in Tennessee's 3rd congressional district Electric Power Board of Chattanooga Smart Grid Project Registered Research Institutions in Tennessee's 3rd congressional district Energy Technology Data Exchange Oak Ridge National Laboratory