Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Planning for the 400,000 tons/year AISI ironmaking demonstration plant  

SciTech Connect (OSTI)

The American Iron and Steel Institute (AISI) has formulated a four-year program to design, construct, and operate a 400,000 net ton per year ironmaking demonstration plant. The plant will employ the coal-based ironmaking process developed under a 1989 cooperative agreement with DOE. AISI will manage the design and construction to be completed in the first two years and operate the plant for the second two years with a variety or ores, coals, and fluxes. Campaigns of increasing length are planned to optimize operations. After successful operation, the plant will be taken over by the host company. Results of studies to date indicate that, on a commercial scale, the AISI process will use 27% less energy and have variable operating costs $10 per ton lower and capital costs of $160 per annual ton, compared to the $250 per annual ton rebuild cost for the coke oven-blast furnace process it will replace. The process will enable the domestic steel industry to become more competitive by reducing its capital and operating cost. Furthermore, by eliminating the pollution problems associated with coke production and by completely enclosing the smelting reactions, this process represents a major step towards an environmentally friendly steel industry.

Aukrust, E. (LTV Steel Corp., Cleveland, OH (United States). AISI Direct Steelmaking Program)

1993-01-01T23:59:59.000Z

2

2 million tons per year: A performing biofuels supply chain for  

E-Print Network [OSTI]

1 2 million tons per year: A performing biofuels supply chain for EU aviation NOTE It is understood that in the context of this text the term "biofuel(s) use in aviation" categorically implies "sustainably produced biofuel(s)" according to the EU legislation. June 2011 #12;2 This technical paper was drafted

3

Methane Production: In the United States cattle emit about 5.5 million metric tons of methane per year into the  

E-Print Network [OSTI]

Methane Production: In the United States cattle emit about 5.5 million metric tons of methane per year into the atmosphere. o Accounts for 20% of methane emissions from human sources. Globally cattle produce about 80 million metric tons of methane annually. o Accounts for 28% of global methane emissions

Toohey, Darin W.

4

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

SciTech Connect (OSTI)

China's 11th Five-Year Plan (FYP) sets an ambitious target for energy-efficiency improvement: energy intensity of the country's gross domestic product (GDP) should be reduced by 20% from 2005 to 2010 (NDRC, 2006). This is the first time that a quantitative and binding target has been set for energy efficiency, and signals a major shift in China's strategic thinking about its long-term economic and energy development. The 20% energy intensity target also translates into an annual reduction of over 1.5 billion tons of CO2 by 2010, making the Chinese effort one of most significant carbon mitigation effort in the world today. While it is still too early to tell whether China will achieve this target, this paper attempts to understand the trend in energy intensity in China and to explore a variety of options toward meeting the 20% target using a detailed end-use energy model.

Zhou, Nan; Lin, Jiang; Zhou, Nan; Levine, Mark; Fridley, David

2007-07-01T23:59:59.000Z

5

Use of POTW biosolids in bituminous concrete  

SciTech Connect (OSTI)

Although wastewater treatment helps alleviate water pollution, it creates residual by-products that can pose a disposal dilemma. Four main practices are presently employed to dispose of wastewater treatment plant sludge: land application, composting, incineration, and landfilling. A fifth disposal method that may help to alleviate the sludge disposal problem in future years is the incorporation of sludge into useful end products such as fertilizer or construction materials. This research was designed to evaluate the properties of bituminous concrete mixes that had anaerobically digested sewage sludge incorporated into their design. In doing so, it was desired to verify the work of Wells concerning sludge incorporation into bituminous concrete mixes using today`s asphalts. Hot mix and cold mix designs were studied.

Smith, R.C. [Jones and Henry Engineers, Ltd., Toledo, OH (United States); Angelbeck, D.I. [Univ. of Toledo, OH (United States)

1995-11-01T23:59:59.000Z

6

Assessment of underground coal gasification in bituminous coals. Volume I. Executive summary. Final report  

SciTech Connect (OSTI)

This report describes the bituminous coal resources of the United States, identifies those resources which are potentially amenable to Underground Coal Gasification (UCG), identifies products and markets in the vicinity of selected target areas, identifies UCG concepts, describes the state of the art of UCG in bituminous coal, and presents three R and D programs for development of the technology to the point of commercial viability. Of the 670 billion tons of bituminous coal remaining in-place as identified by the National Coal Data System, 32.2 billion tons or 4.8% of the total are potentially amenable to UCG technology. The identified amenable resource was located in ten states: Alabama, Colorado, Illinois, Kentucky, New Mexico, Ohio, Oklahoma, Utah, Virginia, and West Virginia. The principal criteria which eliminated 87.3% of the resource was the minimum thickness (42 inches). Three R and D programs were developed using three different concepts at two different sites. Open Borehole, Hydraulic Fracture, and Electrolinking concepts were developed. The total program costs for each concept were not significantly different. The study concludes that much of the historical information based on UCG in bituminous coals is not usable due to the poor siting of the early field tests and a lack of adequate diagnostic equipment. This information gap requires that much of the early work be redone in view of the much improved understanding of the role of geology and hydrology in the process and the recent development of analytical tools and methods.

None

1981-01-01T23:59:59.000Z

7

Assessment of China's Energy-Saving and Emission-Reduction Accomplishments and Opportunities During the 11th Five Year Plan  

E-Print Network [OSTI]

Swedish National Energy Administration ton coal equivalenttCO 2 ) Energy Electricity * bituminous coal Costs areare needed, such as energy price reform (coal, electricity,

Levine, Mark D.

2010-01-01T23:59:59.000Z

8

Bituminous pavement recycling Aravind K. and Animesh Das  

E-Print Network [OSTI]

Bituminous pavement recycling Aravind K. and Animesh Das Department of Civil Engineering IIT Kanpur Introduction The bituminous pavement rehabilitation alternatives are mainly overlaying, recycling and reconstruction. In the recycling process the material from deteriorated pavement, known as reclaimed asphalt

Das, Animesh

10

Incinerator residue in bituminous base construction  

E-Print Network [OSTI]

for use of the material in a bituminous base. Preliminary investigation on the optimum mix design included Hveem stability, Marshall stability and Durability tests, A test section consisting of the experimental hot-mixed pavement, littercrete, and a... for flexural fatigue tests, Hveem and Marshall stabilities, thermal expansion, direct tension, splitting tensile and Schmidt tests. Four in. (10. 2 cm. ) diameter cores were taken after compaction (before traffic) and after six months in service. Samples...

Haynes, Joseph Anthony

1975-01-01T23:59:59.000Z

11

Process for removing pyritic sulfur from bituminous coals  

DOE Patents [OSTI]

A process is provided for removing pyritic sulfur and lowering ash content of bituminous coals by grinding the feed coal, subjecting it to micro-agglomeration with a bridging liquid containing heavy oil, separating the microagglomerates and separating them to a water wash to remove suspended pyritic sulfur. In one embodiment the coal is subjected to a second micro-agglomeration step.

Pawlak, Wanda (Edmonton, CA); Janiak, Jerzy S. (Edmonton, CA); Turak, Ali A. (Edmonton, CA); Ignasiak, Boleslaw L. (Edmonton, CA)

1990-01-01T23:59:59.000Z

12

E-Print Network 3.0 - australian bituminous coal Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

extractable material from perhydrous vitrinites Summary: an important role in their coking ability 19. The development of a mobile phase during the bituminous coal... to...

13

ZIRCONIUM AND HAFNIUM (Data in metric tons, unless otherwise noted)  

E-Print Network [OSTI]

of hafnium metal was insignificant. Import Sources (1998-2001): Zirconium ores and concentrates: South Africa%; Germany, 8%; United Kingdom, 3%; and other, 9%. Tariff: Item Number Normal Trade Relations 12,838 short tons) of zirconium ore (baddeleyite) during fiscal year 2002. The U.S. Department of Energy (DOE

14

DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin  

Broader source: Energy.gov [DOE]

Building on an initial injection project of 10,000 metric tons of carbon dioxide into a Michigan geologic formation, a U.S. Department of Energy team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change.

15

Investigation of the combustion characteristics of Zonguldak bituminous coal using DTA and DTG  

SciTech Connect (OSTI)

Combustion characteristics of coking, semicoking, and noncoking Turkish bituminous coal samples from Zonguldak basin were investigated applying differential thermal analysis (DTA) and differential thermogravimetry (DTG) techniques. Results were compared with that of the coke from Zonguldak bituminous coal, a Turkish lignite sample from Soma, and a Siberian bituminous coal sample. The thermal data from both techniques showed some differences depending on the proximate analyses of the samples. Noncombustible components of the volatile matter led to important changes in thermal behavior. The data front both methods were, evaluated jointly, and some thermal properties were interpreted considering these methods in a complementary combination.

Haykiri-Acma, H.; Yaman, S.; Kucukbayrak, S.; Okutan, H. [Istanbul Technical University, Istanbul (Turkey). Dept. of Chemical Engineering

2006-06-21T23:59:59.000Z

16

INTERACTION OF A SUB-BITUMINOUS COAL WITH A STRONG ACID AND A STRONG BASE  

E-Print Network [OSTI]

indicate that coal-derived asphaltenes exhibit an acid-baseanyone functional group is asphaltenes is amphoteric. Theseto oil, and 31.6% to asphaltenes) of a bituminous coal when

Seth, M.

2010-01-01T23:59:59.000Z

17

Physical and mechanical properties of bituminous mixtures containing oil shales  

SciTech Connect (OSTI)

Rutting of bituminous surfaces on the Jordanian highways is a recurring problem. Highway authorities are exploring the use of extracted shale oil and oil shale fillers, which are abundant in Jordan. The main objectives of this research are to investigate the rheological properties of shale oil binders (conventional binder with various percentages of shale oil), in comparison with a conventional binder, and to investigate the ability of mixes to resist deformation. The latter is done by considering three wearing course mixes containing three different samples of oil shale fillers--which contained three different oil percentages--together with a standard mixture containing limestone filler. The Marshall design method and the immersion wheel tracking machine were adopted. It was concluded that the shale oil binders displayed inconsistent physical properties and therefore should be treated before being used. The oil shale fillers have provided mixes with higher ability to resist deformation than the standard mix, as measured by the Marshall quotients and the wheel tracking machine. The higher the percentages of oil in the oil shale fillers, the lower the ability of the mixes to resist deformation.

Katamine, N.M.

2000-04-01T23:59:59.000Z

18

Surface Properties of Photo-Oxidized Bituminous Coals: Final report  

SciTech Connect (OSTI)

Natural weathering has a detrimental effect on the hydrophobic nature of coal, which in turn can influence clean-coal recovery during flotation. Few techniques are available that can establish the quality of coal surfaces and that have a short analysis time to provide input for process control. Luminescence emissions which can be quantified with an optical microscope and photometer system, are measurably influenced by degree of weathering as well as by mild storage deterioration. In addition, it has been shown that when vitrinite is irradiated with a relatively high intensity flux of violet- or ultraviolet- light in the presence of air, photo-oxidation of the surface occurs. The combination of measuring the change in luminescence emission intensity with degree of surface oxidation provided the impetus for the current investigation. The principal aim of this research was to determine whether clear correlations could be established among surface oxygen functionality, hydrophobicity induced by photo-oxidation, and measurements of luminescence intensity and alteration. If successful, the project would result in quantitative luminescence techniques based on optical microscopy that would provide a measure of the changes in surface properties as a function of oxidation and relate them to coal cleanability. Two analytical techniques were designed to achieve these goals. Polished surfaces of vitrain bands or a narrow size fraction of powdered vitrain concentrates were photo-oxidized using violet or ultraviolet light fluxes and then changes in surface properties and chemistry were measured using a variety of near-surface analytical techniques. Results from this investigation demonstrate that quantitative luminescence intensity measurements can be performed on fracture surfaces of bituminous rank coals (vitrains) and that the data obtained do reveal significant variations depending upon the level of surface oxidation. Photo-oxidation induced by violet or ultraviolet light fluxes does result in a progressive and significant increase in the amount of near-surface oxygen concentration at about the same level regardless of bituminous coal rank. These incremental changes in oxygen concentration appear to lower the hydrophobicity as shown by contact angle measurements on polished surfaces. Although this influence diminished as coal rank increased, the level of oxygen uptake was about the same, suggesting that the type of oxygen functionality formed during oxidation may be of great importance in modifying surface hydrophobicity. Changes in functional-group chemistry, measured by a variety of near-surface techniques, showed a general increase in the concentration of carbonyl-containing groups while those of CH{sub 2} groups decreased. All of these observations follow the trends observed in previous investigations of naturally weathered coals. The photo-oxidation technique also resulted in the development of phenolic, ester and anhydride moieties instead of the expected emplacement of carboxylic acid groups which are normally associated with naturally weathered coals. The importance of this observation is that esters and anhydrides would result in a more hydrophobic surface in comparison to the more hydrophilic surface resulting from acid functionality. This observation is consistent with the results of film flotation of UV-irradiated powdered vitrain in which floatability was generally observed to increase with increasing photo- oxidation.

NONE

1998-09-01T23:59:59.000Z

19

KCP relocates 18-ton machine | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApply for Our Jobs / HowSecurityrelocates 18-ton

20

JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal  

SciTech Connect (OSTI)

The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

2009-03-29T23:59:59.000Z

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)  

E-Print Network [OSTI]

Stockpile Center continued to solicit offers for the sale of titanium sponge held in the Government-grade sponge. For fiscal year 2001, 4,540 tons of titanium sponge is being offered for sale. Stockpile Status for disposal FY 2000 FY 2000 Titanium sponge 19,100 3,390 19,100 4,540 4,240 Ev

22

Updated Costs (June 2011 Basis) for Selected Bituminous Baseline Cases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEM with EDAXUpdated Capital Cost

23

Tons of Heavy Metals in Mill Creek Sediments Heather Freeman  

E-Print Network [OSTI]

objectives for this summer research were to: 1.) determine how much heavy metal pollution has accumulatedTons of Heavy Metals in Mill Creek Sediments Heather Freeman 8/30/99 Geology Department Advisors: Dr. Kees DeJong Dr. Barry Manyard Dr. David Nash #12;Tons of heavy metals in Mill Creek sediments

Maynard, J. Barry

24

(Data in metric tons of silver content unless otherwise noted)  

E-Print Network [OSTI]

146 SILVER (Data in metric tons 1 of silver content unless otherwise noted) Domestic Production.S. refiners of commercial-grade silver, with an estimated total output of 6,500 tons from domestic and foreign to minimize odor, electroplating, hardening bearings, inks, mirrors, solar cells, water purification, and wood

25

(Data in metric tons of silver content unless otherwise noted)  

E-Print Network [OSTI]

146 SILVER (Data in metric tons 1 of silver content unless otherwise noted) Domestic Production.S. refiners of commercial-grade silver, with an estimated total output of 6,500 tons from domestic and foreign, hardening bearings, inks, mirrors, solar cells, water purification, and wood treatment to resist mold

26

(Data in metric tons of silver content unless otherwise noted)  

E-Print Network [OSTI]

146 SILVER (Data in metric tons 1 of silver content unless otherwise noted) Domestic Production, with an estimated total output of 2,500 tons from domestic and foreign ores and concentrates, and from old and new, mirrors, solar cells, water purification, and wood treatment. Silver was used for miniature antennas

27

YEAR  

National Nuclear Security Administration (NNSA)

5 YEAR 2014 Males 61 Females 24 PAY PLAN YEAR 2014 SES 1 EJEK 8 EN 04 22 NN (Engineering) 23 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 3 YEAR 2014 American Indian Alaska...

28

YEAR  

National Nuclear Security Administration (NNSA)

96 YEAR 2013 Males 69 Females 27 YEAR 2013 SES 1 EJEK 9 EN 04 27 NN (Engineering) 26 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska Native Male...

29

TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)  

E-Print Network [OSTI]

metal recycled by the titanium industry totaled about 18,000 tons in 2001. Estimated use of titanium as scrap and in the form of ferrotitanium made from scrap by the steel industry was about 6,000 tons; by the superalloy industry, 900 tons; and, in other industries, 700 tons. Old scrap reclaimed totaled about 500 tons

30

Department of Energy Releases New 'Billion-Ton' Study Highlighting...  

Energy Savers [EERE]

The U.S. Department of Energy today released a report - 2011 U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry - detailing U.S. biomass feedstock...

31

YEAR  

National Nuclear Security Administration (NNSA)

8 Females 25 PAY PLAN YEAR 2014 SES 1 EJEK 3 EN 05 1 EN 04 25 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 25 NU (TechAdmin Support) 2 YEAR 2014 American Indian Alaska Native...

32

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012 Males42 YEAR

33

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296 YEAR 2013

34

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296 YEAR 20135

35

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296 YEAR

36

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296 YEAR17 111

37

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296 YEAR17

38

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296 YEAR179

39

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296 YEAR1794

40

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296 YEAR17949

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296 YEAR17949

42

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296 YEAR179495

43

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 20129689 YEAR

44

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 20129689 YEAR64

45

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 20129689 YEAR643

46

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296892 YEAR

47

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296892 YEAR94

48

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296892707 YEAR

49

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR6 8731 YEAR 2012

50

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR6 8731 YEAR 201233

51

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR6 8731 YEAR

52

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0137 YEAR 2013

53

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0137 YEAR

54

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0137 YEAR49

55

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0137 YEAR4993

56

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK013702 YEAR

57

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK013702 YEAR

58

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK01370274 YEAR

59

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012 Males 19

60

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012 Males 1916

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012 Males 191686

62

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012 Males

63

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012 Males42

64

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012 Males427

65

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012 Males4278

66

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012 Males427825

67

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012 Males4278251

68

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012

69

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296

70

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 20129689

71

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296892

72

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296892707

73

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012968927072659

74

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 20129689270726598

75

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR

76

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR6 87 -9.38% ↓

77

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR6 87 -9.38% ↓558

78

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR6 87 -9.38%

79

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR6 87 -9.38%563

80

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR6 87 -9.38%56378

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR6 87 -9.38%5637831

82

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR6 87

83

YEAR  

National Nuclear Security Administration (NNSA)

YEAR 2012 2013 SES 2 1 -50.00% EN 05 0 1 100.00% EN 04 4 4 0.00% NN (Engineering) 13 12 -7.69% NQ (ProfTechAdmin) 13 9 -30.77% NU (TechAdmin Support) 1 1...

84

Fixed-bed gasification research using US coals. Volume 9. Gasification of Elkhorn bituminous coal  

SciTech Connect (OSTI)

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the ninth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Elkhorn bituminous coal. The period of gasificastion test was September 13 to October 12, 1983. 9 refs., 24 figs., 35 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01T23:59:59.000Z

85

Fixed-bed gasification research using US coals. Volume 7. Gasification of Piney Tipple bituminous coal  

SciTech Connect (OSTI)

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the seventh volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Piney Tipple bituminous coal. The period of the gasification test was July 18-24, 1983. 6 refs., 20 figs., 17 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01T23:59:59.000Z

86

Fixed-bed gasification research using US coals. Volume 2. Gasification of Jetson bituminous coal  

SciTech Connect (OSTI)

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report describes the gasification testing of Jetson bituminous coal. This Western Kentucky coal was gasified during an initial 8-day and subsequent 5-day period. Material flows and compositions are reported along with material and energy balances. Operational experience is also described. 4 refs., 24 figs., 17 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-03-31T23:59:59.000Z

87

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0

88

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0137

89

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK013702

90

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK01370274

91

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0137027440

92

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK01370274403

93

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK013702744038

94

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0137027440384

95

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A

96

ZIRCONIUM AND HAFNIUM (Data in metric tons, unless otherwise noted)  

E-Print Network [OSTI]

of hafnium metal was insignificant. Import Sources (1997-2000): Zirconium ores and concentrates: South Africa%; Germany, 7%; United Kingdom, 2%; and other, 9%. Tariff: Item Number Normal Trade Relations 12 Stockpile, the U.S. Department of Energy (DOE) held over 500 tons of zirconium in various forms. DOE also

97

ZIRCONIUM AND HAFNIUM (Data in metric tons, unless otherwise noted)  

E-Print Network [OSTI]

. Import Sources (1995-98): Zirconium ores and concentrates: South Africa, 53%; Australia, 45%; and other Kingdom, 4%. Tariff: Item Number Normal Trade Relations 12/31/99 Zirconium ores and concentrates 2615.S. Department of Energy (DOE) held over 500 tons of zirconium in various forms. DOE also maintained a supply

98

ZIRCONIUM AND HAFNIUM (Data in metric tons, unless otherwise noted)  

E-Print Network [OSTI]

was insignificant. Import Sources (1996-99): Zirconium ores and concentrates: South Africa, 56%; Australia, 41, 4%; and other, 9%. Tariff: Item Number Normal Trade Relations 12/31/00 Zirconium ores.S. Department of Energy (DOE) held over 500 tons of zirconium in various forms. DOE also maintained a stockpile

99

(Data in metric tons1 of gold content, unless noted)  

E-Print Network [OSTI]

combined production accounted for nearly 80% of the U.S. total. The trend for recent U.S. gold exploration68 GOLD (Data in metric tons1 of gold content, unless noted) Domestic Production and Use: Gold was recovered as a byproduct of processing base metals, chiefly copper. Twenty-five lode mines yielded

100

Alaska has 4. 0 trillion tons of low-sulfur coal: Is there a future for this resource  

SciTech Connect (OSTI)

The demand for and use of low-sulfur coal may increase because of concern with acid rain. Alaska's low-sulfur coal resources can only be described as enormous: 4.0 trillion tons of hypothetical onshore coal. Mean total sulfur content is 0.34% (range 0.06-6.6%, n = 262) with a mean apparent rank of subbituminous B. There are 50 coal fields in Alaska; the bulk of the resources are in six major fields or regions: Nenana, Cook Inlet, Matanuska, Chignik-Herendeen Bay, North Slope, and Bering River. For comparison, Carboniferous coals in the Appalachian region and Interior Province have a mean total sulfur content of 2.3% (range 0.1-19.0%, n = 5,497) with a mean apparent rank of high-volatile A bituminous coal, and Rocky Mountain and northern Great Plains Cretaceous and Tertiary coals have a mean total sulfur content of 0.86% (range 0.02-19.0%, n = 2,754) with a mean apparent rank of subbituminous B. Alaskan coal has two-fifths the total sulfur of western US coals and one-sixth that of Carboniferous US coals. Even though Alaska has large resources of low-sulfur coal, these resources have not been developed because of (1) remote locations and little infrastructure, (2) inhospitable climate, and (3) long distances to potential markets. These resources will not be used in the near future unless there are some major, and probably violent, changes in the world energy picture.

Stricker, G.D. (Geological Survey, Denver, CO (USA))

1990-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

THERMAL MODELING ANALYSIS OF SRS 70 TON CASK  

SciTech Connect (OSTI)

The primary objective of this work was to perform the thermal calculations to evaluate the Material Test Reactor (MTR) fuel assembly temperatures inside the SRS 70-Ton Cask loaded with various bundle powers. MTR fuel consists of HFBR, MURR, MIT, and NIST. The MURR fuel was used to develop a bounding case since it is the fuel with the highest heat load. The results will be provided for technical input for the SRS 70 Ton Cask Onsite Safety Assessment. The calculation results show that for the SRS 70 ton dry cask with 2750 watts total heat source with a maximum bundle heat of 670 watts and 9 bundles of MURR bounding fuel, the highest fuel assembly temperatures are below about 263 C. Maximum top surface temperature of the plastic cover is about 112 C, much lower than its melting temperature 260 C. For 12 bundles of MURR bounding fuel with 2750 watts total heat and a maximum fuel bundle of 482 watts, the highest fuel assembly temperatures are bounded by the 9 bundle case. The component temperatures of the cask were calculated by a three-dimensional computational fluid dynamics approach. The modeling calculations were performed by considering daily-averaged solar heat flux.

Lee, S.; Jordan, J.; Hensel, S.

2011-03-08T23:59:59.000Z

102

1,153-ton Waste Vault Removed from 300 Area - Vault held waste...  

Energy Savers [EERE]

1,153-ton Waste Vault Removed from 300 Area - Vault held waste tanks with contamination from Hanford's former laboratory facilities 1,153-ton Waste Vault Removed from 300 Area -...

103

TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)  

E-Print Network [OSTI]

E E E E E Recycling: New scrap metal recycled by the titanium industry was about 25,000 tons in 1996 industry was 4,700 tons; by the superalloy industry, 730 tons; and in other industries, 510 tons. Old scrap nation (MFN) Non-MFN3 12/31/96 12/31/96 Waste and scrap metal 8108.10.1000 Free Free. Unwrought metal

104

Evaluation of reclaimed rubber in bituminous pavements. Final report, July 1993-April 1995  

SciTech Connect (OSTI)

Section 1038 of the 1991 Intermodel Surface Transportation efficiency Act (ISTEA) mandated use of crumb rubber from scrap tires in asphalt pavement starting in FY 94. To gain some experience, the Illinois Department of Transportation (IDOT) constructed five demonstration projects in 1993 and one in 1994. All used the `dry process` to introduce crumb rubber into the mix. With the dry process, crumb rubber is added to the heated aggregate prior to addition of asphalt cement (AC). Three projects used very low addition rates. Each was divided into five equal segments. One segment, the control, used no crumb rubber. The other segments used 1/2, 1, 1 1/2 and 2 pounds of crumb rubber per ton of hot mix. The other three projects each used 20 pounds of crumb rubber per ton of hot mix. Both batch plants and drier-drum plants were used, and the crumb rubber was supplied in pre-measured batch-size packets, 50-pound paper bags and 2000-pound super sacks.

Trepanier, J.

1995-06-01T23:59:59.000Z

105

Pore size distribution and accessible pore size distribution in bituminous coals  

SciTech Connect (OSTI)

The porosity and pore size distribution of coals determine many of their properties, from gas release to their behavior on carbonization, and yet most methods of determining pore size distribution can only examine a restricted size range. Even then, only accessible pores can be investigated with these methods. Small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) are increasingly used to characterize the size distribution of all of the pores non-destructively. Here we have used USANS/SANS to examine 24 well-characterized bituminous and subbituminous coals: three from the eastern US, two from Poland, one from New Zealand and the rest from the Sydney and Bowen Basins in Eastern Australia, and determined the relationships of the scattering intensity corresponding to different pore sizes with other coal properties. The range of pore radii examinable with these techniques is 2.5 nm to 7 {micro}m. We confirm that there is a wide range of pore sizes in coal. The pore size distribution was found to be strongly affected by both rank and type (expressed as either hydrogen or vitrinite content) in the size range 250 nm to 7 {micro}m and 5 to 10 nm, but weakly in intermediate regions. The results suggest that different mechanisms control coal porosity on different scales. Contrast-matching USANS and SANS were also used to determine the size distribution of the fraction of the pores in these coals that are inaccessible to deuterated methane, CD{sub 4}, at ambient temperature. In some coals most of the small ({approx} 10 nm) pores were found to be inaccessible to CD{sub 4} on the time scale of the measurement ({approx} 30 min - 16 h). This inaccessibility suggests that in these coals a considerable fraction of inherent methane may be trapped for extended periods of time, thus reducing the effectiveness of methane release from (or sorption by) these coals. Although the number of small pores was less in higher rank coals, the fraction of total pores that was inaccessible was not rank dependent. In the Australian coals, at the 10 nm to 50 nm size scales the pores in inertinites appeared to be completely accessible to CD{sub 4}, whereas the pores in the vitrinite were about 75% inaccessible. Unlike the results for total porosity that showed no regional effects on relationships between porosity and coal properties, clear regional differences in the relationships between fraction of closed porosity and coal properties were found. The 10 to 50 nm-sized pores of inertinites of the US and Polish coals examined appeared less accessible to methane than those of the inertinites of Australian coals. This difference in pore accessibility in inertinites may explain why empirical relationships between fluidity and coking properties developed using Carboniferous coals do not apply to Australian coals.

Sakurovs, Richard [ORNL; He, Lilin [ORNL; Melnichenko, Yuri B [ORNL; Radlinski, Andrzej Pawell [ORNL; Blach, Tomasz P [ORNL

2012-01-01T23:59:59.000Z

106

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2013, 5 companies operated 10 primary aluminum smelters; 3 smelters were  

E-Print Network [OSTI]

and Use: In 2013, 5 companies operated 10 primary aluminum smelters; 3 smelters were closed temporarily, and Issues: In February 2013, the owner of the 270,000-ton-per-year Hannibal, OH, smelter filed for chapter in October. In June, the Sebree, KY, smelter was sold as part of a corporate restructuring. Expansion

107

Methodology for Estimating ton-Miles of Goods Movements for U.S. Freight Mulitimodal Network System  

SciTech Connect (OSTI)

Ton-miles is a commonly used measure of freight transportation output. Estimation of ton-miles in the U.S. transportation system requires freight flow data at disaggregated level (either by link flow, path flows or origin-destination flows between small geographic areas). However, the sheer magnitude of the freight data system as well as industrial confidentiality concerns in Census survey, limit the freight data which is made available to the public. Through the years, the Center for Transportation Analysis (CTA) of the Oak Ridge National Laboratory (ORNL) has been working in the development of comprehensive national and regional freight databases and network flow models. One of the main products of this effort is the Freight Analysis Framework (FAF), a public database released by the ORNL. FAF provides to the general public a multidimensional matrix of freight flows (weight and dollar value) on the U.S. transportation system between states, major metropolitan areas, and remainder of states. Recently, the CTA research team has developed a methodology to estimate ton-miles by mode of transportation between the 2007 FAF regions. This paper describes the data disaggregation methodology. The method relies on the estimation of disaggregation factors that are related to measures of production, attractiveness and average shipments distances by mode service. Production and attractiveness of counties are captured by the total employment payroll. Likely mileages for shipments between counties are calculated by using a geographic database, i.e. the CTA multimodal network system. Results of validation experiments demonstrate the validity of the method. Moreover, 2007 FAF ton-miles estimates are consistent with the major freight data programs for rail and water movements.

Oliveira Neto, Francisco Moraes [ORNL] [ORNL; Chin, Shih-Miao [ORNL] [ORNL; Hwang, Ho-Ling [ORNL] [ORNL

2013-01-01T23:59:59.000Z

108

Characterization of Arsenic Contamination on Rust from Ton Containers  

SciTech Connect (OSTI)

The speciation and spatial distribution of arsenic on rusted steel surfaces affects both measurement and removal approaches. The chemistry of arsenic residing in the rust of ton containers that held the chemical warfare agents bis(2-chloroethyl)sulfide (sulfur mustard) and 2-chlorovinyldichloroarsine (Lewisite) is of particular interest, because while the agents have been decontaminated, residual arsenic could pose a health or environmental risk. The chemistry and distribution of arsenic in rust samples was probed using imaging secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX). Arsenic in the +3 and or +5 oxidation state is homogeneously distributed at the very top-most layer of the rust samples, and is intimately associated with iron. Sputter depth profiling followed by SIMS and XPS shows As at a depth of several nm, in some cases in a reduced form. The SEM/EDX experiments show that As is present at a depth of several microns, but is inhomogeneously distributed; most locations contained oxidized As at concentrations of a few percent, however several locations showed very high As in a metallic form. These results indicate that the rust material must be removed if the steel containers are to be cleared of arsenic.

Gary S. Groenewold; Recep Avci; Robert V. Fox; Muhammedin Deliorman; Jayson Suo; Laura Kellerman

2013-01-01T23:59:59.000Z

109

JV Task-123 Determination of Trace Element Concentrations at an Eastern Bituminous Coal Plant Employing an SCR and Wet FGD  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC), in partnership with Babcock & Wilcox (B&W) and with funding from U.S. Department of Energy (DOE), conducting tests to prove that a high level of mercury control (>90%) can be achieved at a power plant burning a high-sulfur eastern bituminous coal. With funding from the Electric Power Research Institute (EPRI), DOE, and Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates Program, the EERC completed an additional sampling project to provide data as to the behavior of a number of trace elements across the various pollution control devices, with a special emphasis on the wet flue gas desulfurization (FGD) system. Results showed that the concentrations of almost all the elements of interest leaving the stack were very low, and a high percentage of the trace elements were captured in the electrostatic precipitator (ESP) (for most, >80%). Although, with a few exceptions, the overall mass balances were generally quite good, the mass balances across the wet FGD were more variable. This is most likely a result of some of the concentrations being very low and also the uncertainties in determining flows within a wet FGD.

Dennis Laudal

2008-05-01T23:59:59.000Z

110

Assessment of underground coal gasification in bituminous coals: potential UCG products and markets. Final report, Phase I  

SciTech Connect (OSTI)

The following conclusions were drawn from the study: (1) The US will continue to require new sources of energy fuels and substitutes for petrochemical feedstocks into the foreseeable future. Most of this requirement will be met using coal. However, the cost of mining, transporting, cleaning, and preparing coal, disposing of ash or slag and scrubbing stack gases continues to rise; particularly, in the Eastern US where the need is greatest. UCG avoids these pitfalls and, as such, should be considered a viable alternative to the mining of deeper coals. (2) Of the two possible product gases LBG and MBG, MBG is the most versatile. (3) The most logical use for UCG product in the Eastern US is to generate power on-site using a combined-cycle or co-generation system. Either low or medium Btu gas (LBG or MBG) can be used. (4) UCG should be an option whenever surface gasification is considered; particularly, in areas where deeper, higher sulfur coal is located. (5) There are environmental and social benefits to use of UCG over surface gasification in the Eastern US. (6) A site could be chosen almost anywhere in the Illinois and Ohio area where amenable UCG coal has been determined due to the existence of existing transportation or transmission systems. (7) The technology needs to be demonstrated and the potential economic viability determined at a site in the East-North-Central US which has commercial quantities of amenable bituminous coal before utilities will show significant interest.

None

1982-01-31T23:59:59.000Z

111

9,248,559 Metric Tons of CO2 Injected as of January 16, 2015  

Broader source: Energy.gov [DOE]

This carbon dioxide (CO2) has been injected in the United States as part of DOE’s Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is equivalent to the...

112

9,981,117 Metric Tons of CO2 Injected as of April 2, 2015 | Department...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

113

9,449,421 Metric Tons of CO2 Injected as of February 12, 2015...  

Office of Environmental Management (EM)

This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

114

Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds  

Broader source: Energy.gov [DOE]

The Moab Uranium Mill Tailings Remedial Action Project reached its primary American Recovery and Reinvestment Act milestone ahead of schedule on Wednesday with the disposal of 2 million tons of...

115

9,805,742 Metric Tons of CO2 Injected as of February 27, 2015...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

116

A FLUKA Study of $\\beta$-delayed Neutron Emission for the Ton-size DarkSide Dark Matter Detector  

E-Print Network [OSTI]

In the published cosmogenic background study for a ton-sized DarkSide dark matter search, only prompt neutron backgrounds coincident with cosmogenic muons or muon induced showers were considered, although observation of the initiating particle(s) was not required. The present paper now reports an initial investigation of the magnitude of cosmogenic background from $\\beta$-delayed neutron emission produced by cosmogenic activity in DarkSide. The study finds a background rate for $\\beta$-delayed neutrons in the fiducial volume of the detector on the order of < 0.1 event/year. However, detailed studies are required to obtain more precise estimates. The result should be compared to a radiogenic background event rate from the PMTs inside the DarkSide liquid scintillator veto of 0.2 events/year.

Empl, Anton

2014-01-01T23:59:59.000Z

117

14,700 tons of silver at Y-12  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloweenReliable solar:210th

118

Fermilab | Newsroom | Press Releases | June 24, 2014: Massive 30-ton  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALLSubscriptioncomplete theat

119

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThis road mapF ReactorJohn

120

Energy Department Employee Recognized for Eliminating One Million Tons of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department ofto Cellulosic Bioenergy |EnergyDevelopment |Irene

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy Department Sponsored Project Captures One Millionth Metric Ton of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles asSecondCareer Awards | U.S. DOE Office ofCO2 |

122

Department of Energy Releases New 'Billion-Ton' Study Highlighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealing WithDevelopment ofNoPreparesReport | Department

123

Fertilizer and Nitrogen 1 billion tons of artificial nitrogen fertilizer used annually.  

E-Print Network [OSTI]

Fertilizer and Nitrogen 1 billion tons of artificial nitrogen fertilizer used annually. Emissions. (fertilizers that use nitric acid or ammonium bicarbonate result in emissions of nitrogen oxides, nitrous oxide, ammonia and carbon dioxide into the atmosphere.) ~Indirect: Phosphorus in excess causes eutrophication

Toohey, Darin W.

124

TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)  

E-Print Network [OSTI]

consumption E E E E E Recycling: New scrap metal recycled by the titanium industry totaled about 29,000 tons and automotive industries led to an increase in global production of TiO2 pigment compared with that in 2009

125

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2012 increased by 4% to about 1.15 million tons,  

E-Print Network [OSTI]

%; and copper smelters and refiners, 5%. Copper in all old and new, refined or remelted scrap contributed about48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2012 increased by 4% to about 1.15 million tons

126

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2011 increased slightly to about 1.1 million tons  

E-Print Network [OSTI]

%; and copper smelters and refiners, 5%. Copper in all old and new, refined or remelted scrap contributed about48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2011 increased slightly to about 1.1 million tons

127

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2013 increased by 4% to about 1.22 million tons,  

E-Print Network [OSTI]

manufacturers, foundries, and chemical plants, 11%; ingot makers,10%; and copper smelters and refiners, 548 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2013 increased by 4% to about 1.22 million tons

128

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry  

SciTech Connect (OSTI)

The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil pri

Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Graham, Robin Lambert [ORNL; Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Turhollow Jr, Anthony F [ORNL; Stokes, Bryce [Navarro Research & Engineering; Brandt, Craig C [ORNL

2011-08-01T23:59:59.000Z

129

Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor  

SciTech Connect (OSTI)

Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan [Western Kentucky University (WKU), Bowling Green, KY (USA). Institute for Combustion Science and Environmental Technology (ICSET)

2008-12-15T23:59:59.000Z

130

Authorized Limits for the Release of a 25 Ton Locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly Facility, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This document contains process knowledge and radiological data and analysis to support approval for release of the 25-ton locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly (EMAD) Facility, located on the Nevada Test Site (NTS). The 25-ton locomotive is a small, one-of-a-kind locomotive used to move railcars in support of the Nuclear Engine for Rocket Vehicle Application project. This locomotive was identified as having significant historical value by the Nevada State Railroad Museum in Boulder City, Nevada, where it will be used as a display piece. A substantial effort to characterize the radiological conditions of the locomotive was undertaken by the NTS Management and Operations Contractor, National Security Technologies, LLC (NSTec). During this characterization process, seven small areas on the locomotive had contamination levels that exceeded the NTS release criteria (limits consistent with U.S. Department of Energy [DOE] Order DOE O 5400.5, “Radiation Protection of the Public and the Environment”). The decision was made to perform radiological decontamination of these known accessible impacted areas to further the release process. On February 9, 2010, NSTec personnel completed decontamination of these seven areas to within the NTS release criteria. Although all accessible areas of the locomotive had been successfully decontaminated to within NTS release criteria, it was plausible that inaccessible areas of the locomotive (i.e., those areas on the locomotive where it was not possible to perform radiological surveys) could potentially have contamination above unrestricted release limits. To access the majority of these inaccessible areas, the locomotive would have to be disassembled. A complete disassembly for a full radiological survey could have permanently destroyed parts and would have ruined the historical value of the locomotive. Complete disassembly would also add an unreasonable financial burden for the contractor. A decision was reached between the NTS regulator and NSTec, opting for alternative authorized limits from DOE Headquarters. In doing so, NSTec personnel performed a dose model using the DOE-approved modeling code RESRAD-BUILD v3.5 to evaluate scenarios. The parameters used in the dose model were conservative. NSTec’s Radiological Engineering Calculation, REC-2010-001, “Public Dose Estimate from the EMAD 25 Ton Locomotive,” concluded that the four scenarios evaluated were below the 25-millirem per year limit, the “likely” dose scenarios met the “few millirem in a year” criteria, and that the EMAD 25-ton locomotive met the radiological requirements to be released with residual radioactivity to the public.

Jeremy Gwin and Douglas Frenette

2010-04-08T23:59:59.000Z

131

A Specification Logic for Termination Reasoning Ton-Chanh Le, Cristian Gherghina, Aquinas Hobor, and Wei-Ngan Chin  

E-Print Network [OSTI]

A Specification Logic for Termination Reasoning Ton-Chanh Le, Cristian Gherghina, Aquinas Hobor a logical framework for specifying and proving asser- tions about program termination. Although termination. Here we propose to integrate termination requirements directly into our specification logic

Hobor, Aquinas

132

The Scale of the Energy Challenge 22,000 gallons of fuel oil 150 tons of coal  

E-Print Network [OSTI]

and rooftops in the United States. The total land area required by nuclear power plants is small! Ă? 20 15The Scale of the Energy Challenge Biomass Wind Nuclear Solar 22,000 gallons of fuel oil 150 tons

Hochberg, Michael

133

A nuclear criticality safety assessment of the loss of moderation control in 2 1/2 and 10-ton cylinders containing enriched UF{sub 6}  

SciTech Connect (OSTI)

Moderation control for maintaining nuclear criticality safety in 2 {1/2}-ton, 10-ton, and 14-ton cylinders containing enriched uranium hexafluoride (UF{sub 6}) has been used safely within the nuclear industry for over thirty years, and is dependent on cylinder integrity and containment. This assessment evaluates the loss of moderation control by the breaching of containment and entry of water into the cylinders. The first objective of this study was to estimate the required amounts of water entering these large UF{sub 6} cylinders to react with, and to moderate the uranium compounds sufficiently to cause criticality. Hypothetical accident situations were modeled as a uranyl fluoride (UO{sub 2}F{sub 2}) slab above a UF{sub 6} hemicylinder, and a UO{sub 2}F{sub 2} sphere centered within a UF{sub 6} hemicylinder. These situations were investigated by computational analyses utilizing the KENO V.a Monte Carlo Computer Code. The results were used to estimate both the masses of water required for criticality, and the limiting masses of water that could be considered safe. The second objective of the assessment was to calculate the time available for emergency control actions before a criticality would occur, i.e., a {open_quotes}safetime{close_quotes}, for various sources of water and different size openings in a breached cylinder. In the situations considered, except the case for a fire hose, the safetime appears adequate for emergency control actions. The assessment shows that current practices for handling moderation controlled cylinders of low enriched UF{sub 6}, along with the continuation of established personnel training programs, ensure nuclear criticality safety for routine and emergency operations.

Newvahner, R.L. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States); Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

134

Materials management in an internationally safeguarded fuels reprocessing plant. [1500 and 210 metric tons heavy metal per year  

SciTech Connect (OSTI)

The second volume describes the requirements and functions of materials measurement and accounting systems (MMAS) and conceptual designs for an MMAS incorporating both conventional and near-real-time (dynamic) measurement and accounting techniques. Effectiveness evaluations, based on recently developed modeling, simulation, and analysis procedures, show that conventional accountability can meet IAEA goal quantities and detection times in these reference facilities only for low-enriched uranium. Dynamic materials accounting may meet IAEA goals for detecting the abrupt (1-3 weeks) diversion of 8 kg of plutonium. Current materials accounting techniques probably cannot meet the 1-y protracted-diversion goal of 8 kg for plutonium.

Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Markin, J.T.; Shipley, J.P.; Barnes, J.W.; Scheinman, L.

1980-04-01T23:59:59.000Z

135

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

E-Print Network [OSTI]

recently. In 2005, total energy consumption reached 2,225unfolds as forecast, total energy consumption in 2010 wouldthereby reducing total energy consumption from 2,833 Mtce to

Lin, Jiang

2008-01-01T23:59:59.000Z

136

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

E-Print Network [OSTI]

Y. , Yu, C. , Guo, Y. , Sinton, J. , and Lewis, J. and Zhu,Ernst Worrell, Jonathan E. Sinton, and Jiang Yun. 2003. “1998; Volume 19, No. 4 Sinton, J. , Fridley, D. , Lewis,

Lin, Jiang

2008-01-01T23:59:59.000Z

137

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

E-Print Network [OSTI]

differences in 2010 primary energy consumption among three12 illustrates the primary energy consumption for the BPS,Efficiency Figure 12 Primary energy consumption by sector in

Lin, Jiang

2008-01-01T23:59:59.000Z

138

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

E-Print Network [OSTI]

as a result, energy use per unit of GDP (energy intensity)a rebound in energy use per unit of GDP after 2001, afterresidual energy use in industry per unit of GDP (economic

Lin, Jiang

2008-01-01T23:59:59.000Z

139

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

E-Print Network [OSTI]

boiler boiler stove district heating heat pump conditionerSmall cogen Stove District heating Heat pump Centralized AC

Lin, Jiang

2008-01-01T23:59:59.000Z

140

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

E-Print Network [OSTI]

into rural and urban locales due to the different energyand rural road transport exhibits very different energyabove: k = energy type m = locale type (urban, rural) P m,i

Lin, Jiang

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

E-Print Network [OSTI]

Heat Pump Centralized AC by NG Electric water heater Gasheater gas boiler boiler stove district heating heat pump conditioner Air conditioning Lighting Cooking and waterWater heating Technologies Electric heater Gas boiler Boiler Small cogen Stove District heating Heat pump

Lin, Jiang

2008-01-01T23:59:59.000Z

142

Evaluation of Control Strategies to Effectively Meet 70-90% Mercury Reduction on an Eastern Bituminous Coal Cyclone Boiler with SCR  

SciTech Connect (OSTI)

This is the final site report for testing conducted at Public Service of New Hampshire's (PSNH) Merrimack Unit 2 (MK2). This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase III project with the goal to develop mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. While results from testing at Merrimack indicate that the DOE goal was partially achieved, further improvements in the process are recommended. Merrimack burned a test blend of eastern bituminous and Venezuelan coals, for a target coal sulfur content of 1.2%, in its 335-MW Unit 2. The blend ratio is approximately a 50/50 split between the two coals. Various sorbent injection tests were conducted on the flue gas stream either in front of the air preheater (APH) or in between the two in-series ESPs. Initial mercury control evaluations indicated that, without SO3 control, the sorbent concentration required to achieve 50% control would not be feasible, either economically or within constraints specific to the maximum reasonable particle loading to the ESP. Subsequently, with SO{sub 3} control via trona injection upstream of the APH, economically feasible mercury removal rates could be achieved with PAC injection, excepting balance-of-plant concerns. The results are summarized along with the impacts of the dual injection process on the air heater, ESP operation, and particulate emissions.

Tom Campbell

2008-12-31T23:59:59.000Z

143

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. Final report, September 20, 1991--September 19, 1993  

SciTech Connect (OSTI)

One of the main goals for competitive coal liquefaction is to decrease gas yields to reduce hydrogen consumption. Complexing this element as methane and ethane decreases process efficiently and is less cost effective. To decrease the gas yield and increase the liquid yield, an effective preconversion process has been explored on the basis of the physically associated molecular nature of coal. Activities have been focused on two issues: (1) maximizing the dissolution of associated coal and (2) defining the different reactivity associated with a wide molecular weight distribution. Two-step soaking at 350{degrees}C and 400{degrees}C in a recycle oil was found to be very effective for coal solubilization. No additional chemicals, catalysts, and hydrogen are required for this preconversion process. High-volatile bituminous coals tested before liquefaction showed 80--90% conversion with 50--55% oil yields. New preconversion steps suggested are as follows: (1) dissolution of coal with two-step high-temperature soaking, (2) separation into oil and heavy fractions of dissolved coal with vacuum distillation, and (3) selective liquefaction of the separated heavy fractions under relatively mild conditions. Laboratory scale tests of the proposed procedure mode using a small autoclave showed a 30% increase in the oil yield with a 15--20% decrease in the gas yield. This batch operation projects a substantial reduction in the ultimate cost of coal liquefaction.

Not Available

1993-09-01T23:59:59.000Z

144

Cracked lifting lug welds on ten-ton UF{sub 6} cylinders  

SciTech Connect (OSTI)

Ten-ton, Type 48X, UF{sub 6} cylinders are used at the Portsmouth Gaseous Diffusion Plant to withdraw enriched uranium hexafluoride from the cascade, transfer enriched uranium hexafluoride to customer cylinders, and feed enriched product to the cascade. To accomplish these activities, the cylinders are lifted by cranes and straddle carriers which engage the cylinder lifting lugs. In August of 1988, weld cracks on two lifting lugs were discovered during preparation to lift a cylinder. The cylinder was rejected and tagged out, and an investigating committee formed to determine the cause of cracking and recommend remedial actions. Further investigation revealed the problem may be general to this class of cylinder in this use cycle. This paper discusses the actions taken at the Portsmouth site to deal with the cracked lifting lug weld problem. The actions include inspection activities, interim corrective actions, metallurgical evaluation of cracked welds, weld repairs, and current monitoring/inspection program.

Dorning, R.E. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

1991-12-31T23:59:59.000Z

145

Review of corrosion in 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders  

SciTech Connect (OSTI)

A literature review was conducted to determine the type, extent and severity of corrosion found in the 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders. Also discussed in this review is corrosion found in the valves and plugs used in the cylinders. Corrosion of the cylinders is a gradual process which occurs slowly over time. Understanding corrosion of the cylinders is an important concern for long term storage of the UF{sub 6} in the cylinder yards, as well as the final disposition of the depleted UF{sub 6} tails inventory in the future. The following conclusions are made from the literature review: (1) The general external corrosion rate of the cylinders is about 1 to 2 mils per year (1 mil = 0.001{double_prime}). The highest general external corrosion rate was over 5 mpy on the 48G type cylinders. (2) General internal corrosion from the depleted UF{sub 6} is negligible under normal storage conditions. Crevice corrosion can occur at the cylinder/saddle interface from the retention of water in this area. Crevice corrosion can occur at the cylinder/skirt interface on the older skirted cylinders due to the lack of water drainage in this area. Crevice corrosion can occur on cylinders that have been in ground contact. Crevice corrosion and galvanic corrosion can occur where the stainless steel I.D. nameplates are attached to the cylinder. The packing nuts on the bronze one-inch valves used in the cylinders are susceptible to stress corrosion cracking (SCC). Mechanical damage from routine handling can lead to a breach in a cylinder with subsequent accelerated corrosion of the mild steel due to attack from HF and other UF{sub 6} hydrolysis by-products.

Lykins, M.L.

1995-08-01T23:59:59.000Z

146

XAX: a multi-ton, multi-target detection system for dark matter, double beta decay and pp solar neutrinos  

E-Print Network [OSTI]

A multi-target detection system XAX, comprising concentric 10 ton targets of 136Xe and 129/131Xe, together with a geometrically similar or larger target of liquid Ar, is described. Each is configured as a two-phase scintillation/ionization TPC detector, enhanced by a full 4pi array of ultra-low radioactivity Quartz Photon Intensifying Detectors (QUPIDs) replacing the conventional photomultipliers for detection of scintillation light. It is shown that background levels in XAX can be reduced to the level required for dark matter particle (WIMP) mass measurement at a 10^-10 pb WIMP-nucleon cross section, with single-event sensitivity below 10^-11 pb. The use of multiple target elements allows for confirmation of the A^2 dependence of a coherent cross section, and the different Xe isotopes provide information on the spin-dependence of the dark matter interaction. The event rates observed by Xe and Ar would modulate annually with opposite phases from each other for WIMP mass >~100 GeV/c^2. The large target mass of 136Xe and high degree of background reduction allow neutrinoless double beta decay to be observed with lifetimes of 10^27-10^28 years, corresponding to the Majorana neutrino mass range 0.01-0.1 eV, the most likely range from observed neutrino mass differences. The use of a 136Xe-depleted 129/131Xe target will also allow measurement of the pp solar neutrino spectrum to a precision of 1-2%.

K. Arisaka; H. Wang; P. F. Smith; D. Cline; A. Teymourian; E. Brown; W. Ooi; D. Aharoni; C. W. Lam; K. Lung; S. Davies; M. Price

2009-01-07T23:59:59.000Z

147

Proposal to Increase the Amount of the Contract about to be Awarded for the Supply of 12 Tons of Heavy Water  

E-Print Network [OSTI]

Proposal to Increase the Amount of the Contract about to be Awarded for the Supply of 12 Tons of Heavy Water

1977-01-01T23:59:59.000Z

148

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2009 declined by about 9% to 1.2 million tons and its  

E-Print Network [OSTI]

makers, 11%; and copper smelters and refiners, 6%. Copper in all old and new, refined or remelted scrap48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic--Arizona, Utah, New Mexico, Nevada, and Montana--accounted for more than 99% of domestic production; copper also

149

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2002 declined to 1.13 million metric tons and was  

E-Print Network [OSTI]

- and nickel-base scrap), brass mills recovered 70%; copper smelters and refiners, 8%; ingot makers, 1156 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic, accounted for 99% of domestic production; copper was also recovered at mines in three other States. Although

150

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2008 increased by about 12% to 1.3 million tons and  

E-Print Network [OSTI]

plants, 14%; ingot makers, 9%; and copper smelters and refiners, 5%. Copper in all old and new, refined50 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic--Arizona, Utah, New Mexico, Nevada, and Montana--accounted for more than 99% of domestic production; copper also

151

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2000 declined to 1.45 million metric tons and was  

E-Print Network [OSTI]

scrap, brass mills recovered 67%; copper smelters and refiners,18%; ingot makers, 11%; and miscellaneous52 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic, and Montana, accounted for 99% of domestic production; copper was also recovered at mines in three other

152

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2004 rose to 1.16 million tons and was valued at  

E-Print Network [OSTI]

scrap (including aluminum- and nickel-base scrap), brass mills recovered 71%; copper smelters54 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic% of domestic production; copper was also recovered at mines in four other States. Although copper was recovered

153

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2001 declined to 1.34 million metric tons and was  

E-Print Network [OSTI]

scrap (including aluminum- and nickel-base scrap), brass mills recovered 65%; copper smelters54 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic, accounted for 99% of domestic production; copper was also recovered at mines in three other States. Although

154

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2007 declined nominally to 1.19 million tons, but its  

E-Print Network [OSTI]

plants, 11%; ingot makers, 9%; and copper smelters and refiners, 5%. Copper in all old and new, refined54 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic--Arizona, Utah, New Mexico, Nevada, and Montana--accounted for 99% of domestic production; copper was also

155

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2006 rose to more than 1.2 million tons and was  

E-Print Network [OSTI]

manufacturers, foundries, and chemical plants, 12%; ingot makers, 10%; and copper smelters and refiners, 452 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Mexico, Nevada, and Montana--accounted for 99% of domestic production; copper was also recovered at mines

156

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1999 declined to 1.66 million metric tons and was  

E-Print Network [OSTI]

mills. Of the total copper recovered from scrap, brass mills recovered 67%; copper smelters and refiners56 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic, Nevada, and Montana, accounted for 99% of domestic production; copper was also recovered at mines

157

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2003 declined to 1.12 million tons and was valued at  

E-Print Network [OSTI]

- and nickel-base scrap), brass mills recovered 70%; copper smelters and refiners, 6%; ingot makers, 1254 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic% of domestic production; copper was also recovered at mines in three other States. Although copper

158

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1998 declined to 1.85 million metric tons and was  

E-Print Network [OSTI]

, copper smelters and refiners recovered 23%; ingot makers, 10%; brass mills, 63%; and miscellaneous56 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic, Nevada, and Montana, accounted for 99% of domestic production; copper was also recovered at mines

159

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2005 fell nominally to 1.15 million tons and was  

E-Print Network [OSTI]

(including aluminum- and nickel-base scrap), brass mills recovered 73%; copper smelters and refiners, 556 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Mexico, Nevada, and Montana, accounted for 99% of domestic production; copper was also recovered at mines

160

Characterization of liquids derived from laboratory coking of decant oil and co-coking of Pittsburgh seam bituminous coal with decant oil  

SciTech Connect (OSTI)

In this study, decant oil and a blend of Pittsburgh seam bituminous coal with decant oil were subjected to coking and co-coking in a laboratory-scale delayed coker. Higher yields of coke and gas were obtained from co-coking than from coking. Coal addition into the feedstock resulted in lighter overhead liquid. GC/MS analyses of gasoline, jet fuel, and diesel show that co-coking of coal/decant oil gave higher quantity aromatic components than that of coking of decant oil alone. Simulated distillation gas chromatography analyses of overhead liquids and GC/MS analyses of vacuum fractions show that when coal was reacted with a decant oil, the coal constituents contributed to the distillable liquids. To address the reproducibility of the liquid products, overhead liquid samples collected at the first, third, and fifth hours of experiments of 6 h duration were evaluated using simulated distillation gas chromatography and {sup 1}H and {sup 13}C NMR. NMR analyses of the liquid products showed that, even though there were slight changes in the {sup 1}H and {sup 13}C spectra, the standard deviation was low for the time-dependent samples. Simulated distillation gas chromatography showed that the yields of refinery boiling range materials (i.e., gasoline, jet fuel, diesel, and fuel oil cuts) were reproducible between runs. Fractionation of the overhead liquids into refinery boiling range materials (gasoline, jet fuel, diesel, fuel oil fractions) showed that the boiling range materials and chemical compositions of fractions were found to be reproducible. 54 refs., 17 tabs.

Omer Gul; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University, University Park, PA (United States)

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal  

SciTech Connect (OSTI)

This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0) concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH{sub 3} addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH{sub 3} reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation. 30 refs., 4 figs.

Yan Cao; Zhengyang Gao; Jiashun Zhu; Quanhai Wang; Yaji Huang; Chengchung Chiu; Bruce Parker; Paul Chu; Wei-ping Pan [Western Kentucky University (WKU), Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology (ICSET)

2008-01-01T23:59:59.000Z

162

TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)  

E-Print Network [OSTI]

and pigment industries. Global production of titanium mineral concentrates was expected to increase during half of 2015. In Western Australia, the heavy-mineral resource, data for at the Keysbrook project were172 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise

163

ZIRCONIUM AND HAFNIUM (Data in metric tons of zirconium oxide (ZrO ) equivalent, unless otherwise noted)2  

E-Print Network [OSTI]

and concentrates: Australia, 51%; South Africa, 48%; and other, 1%. Zirconium, wrought, unwrought, waste and scrap: France, 69%; Australia, 21%; Germany, 8%; and United Kingdom, 2%. Tariff: Item Number Normal Trade, the U.S. Department of Energy (DOE) held over 500 tons of zirconium in various forms. DOE also

164

26The Frequency of Large Meteor Impacts On February 14, 2013 a 10,000 ton meteor  

E-Print Network [OSTI]

over the town of Chelyabinsk and the explosion caused major damage to the town injuring 1,000 people `discovered' for many decades afterwards, the Chelyabinsk Meteor was extensively videoed by hundreds explodes with an energy of 4.2x109 Joules. How many tons of TNT did the Chelyabinsk Meteor yield

165

(Data in metric tons of contained lithium, unless otherwise noted) Domestic Production and Use: The United States was the largest producer and consumer of lithium minerals and  

E-Print Network [OSTI]

,000 tons of the material from the Department of Energy's stockpile, while the remaining 10,000 tons,700 1,800 150,000 160,000e Bolivia -- -- -- 5,400,00 Brazil 32 32 910 NA Canada 660 660 180,000 360

166

High temperature experiments on a 4 tons UF6 container TENERIFE program  

SciTech Connect (OSTI)

The paper presents an experimental program (called TENERIFE) whose aim is to investigate the behaviour of a cylinder containing UF{sub 6} when exposed to a high temperature fire for model validation. Taking into account the experiments performed in the past, the modelization needs further information in order to be able to predict the behaviour of a real size cylinder when engulfed in a 800{degrees}C fire, as specified in the regulation. The main unknowns are related to (1) the UF{sub 6} behaviour beyond the critical point, (2) the relationship between temperature field and internal pressure and (3) the equivalent conductivity of the solid UF{sub 6}. In order to investigate these phenomena in a representative way it is foreseen to perform experiments with a cylinder of real diameter, but reduced length, containing 4 tons of UF{sub 6}. This cylinder will be placed in an electrically heated furnace. A confinement vessel prevents any dispersion of UF{sub 6}. The heat flux delivered by the furnace will be calibrated by specific tests. The cylinder will be changed for each test.

Casselman, C.; Duret, B.; Seiler, J.M.; Ringot, C.; Warniez, P.

1991-12-31T23:59:59.000Z

167

1000–ton testing machine for cyclic fatigue tests of materials at liquid nitrogen temperatures  

SciTech Connect (OSTI)

One of the main tasks of superconductive magnets R and D is to determine the mechanical and fatigue properties of structural materials and the critical design elements in the cryogenic temperature range. This paper describes a new facility built based on the industrial 1000-ton (10 MN) testing machine Schenk PC10.0S. Special equipment was developed to provide the mechanical and cyclic tensile fatigue tests of large-scale samples at the liquid nitrogen temperature and in a given load range. The main feature of the developed testing machine is the cryostat, in which the device converting a standard compression force of the testing machine to the tensile force affected at the test object is placed. The control system provides the remote control of the test and obtaining, processing and presentation of test data. As an example of the testing machine operation the test program and test results of the cyclic tensile fatigue tests of fullscale helium inlet sample of the PF1 coil ITER are presented.

Khitruk, A. A.; Klimchenko, Yu. A.; Kovalchuk, O. A.; Marushin, E. L.; Mednikov, A. A.; Nasluzov, S. N.; Privalova, E. K.; Rodin, I. Yu.; Stepanov, D. B.; Sukhanova, M. V. [The D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), 3 Doroga na Metallostroy, Metallostroy, Saint Petersburg 196641 (Russian Federation)

2014-01-29T23:59:59.000Z

168

Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

Perlack, R.D.

2005-12-15T23:59:59.000Z

169

CORROSION OF ALUMINUM CLAD SPENT NUCLEAR FUEL IN THE 70 TON CASK DURING TRANSFER FROM L AREA TO H-CANYON  

SciTech Connect (OSTI)

Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material with the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33 % was found after 1 year in the cask with a maximum temperature of 260 {degrees}C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 {degrees}C. These losses are not expected to impact the overall confinement function of the aluminum cladding.

Mickalonis, J.

2014-06-01T23:59:59.000Z

170

DOE to Remove 200 Metric Tons of Highly Enriched Uranium from...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Energy and NTI Announce Key Nonproliferation Project with Kazakhstan U.S.-Russia Twenty-Year Partnership Completes Final Milestone in Converting 20,000 Russian Nuclear...

171

The BosTon College Chronicle april 12, 2007-vol. 15 no. 15  

E-Print Network [OSTI]

phases during the next several years, will address numerous problems that have resulted from nearly contemporary issues from stem cell research, abortion and euthanasia to gay marriage and "just war," among

Huang, Jianyu

172

RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless noted)  

E-Print Network [OSTI]

rare earths consumed in the United States was more than $500 million. Principal uses were in petroleum and Foreign). Government Stockpile: Stockpile Status--9-30-95 Uncommitted Committed Authorized Disposals was reported in the first half of the year. China remained a major source of separated rare-earth compounds

173

1,153-ton Waste Vault Removed from 300 Area - Vault held waste tanks with  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of Shipment Notice) FederalLANDFILL COVERChapter

174

Methods and results for stress analyses on 14-ton, thin-wall depleted UF{sub 6} cylinders  

SciTech Connect (OSTI)

Uranium enrichment operations at the three US gaseous diffusion plants produce depleted uranium hexafluoride (DUF{sub 6}) as a residential product. At the present time, the inventory of DUF{sub 6} in this country is more than half a million tons. The inventory of DUF{sub 6} is contained in metal storage cylinders, most of which are located at the gaseous diffusion plants. The principal objective of the project is to ensure the integrity of the cylinders to prevent causing an environmental hazard by releasing the contents of the cylinders into the atmosphere. Another objective is to maintain the cylinders in such a manner that the DUF{sub 6} may eventually be converted to a less hazardous material for final disposition. An important task in the DUF{sub 6} cylinders management project is determining how much corrosion of the walls can be tolerated before the cylinders are in danger of being damaged during routine handling and shipping operations. Another task is determining how to handle cylinders that have already been damaged in a manner that will minimize the chance that a breach will occur or that the size of an existing breach will be significantly increased. A number of finite element stress analysis (FESA) calculations have been done to analyze the stresses for three conditions: (1) while the cylinder is being lifted, (2) when a cylinder is resting on two cylinders under it in the customary two-tier stacking array, and (3) when a cylinder is resting on tis chocks on the ground. Various documents describe some of the results and discuss some of the methods whereby they have been obtained. The objective of the present report is to document as many of the FESA cases done at Oak Ridge for 14-ton thin-wall cylinders as possible, giving results and a description of the calculations in some detail.

Kirkpatrick, J.R.; Chung, C.K.; Frazier, J.L.; Kelley, D.K.

1996-10-01T23:59:59.000Z

175

DOE Moab Project Safely Removes 7 Million Tons of Mill Tailings |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at MultipleorderNuclear Plants | DepartmentIf you

176

DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofTheEnergyWeapons Stockpile | Department of

177

Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartmentPolicyClean, EERE Small

178

Photo of the Week: Smashing Atoms with 80-ton Magnets | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket | Department ofSecretaryMarchEnergy What

179

Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared TemansonEnergySAR.docEnergyThroughAccomplishes

180

Microsoft Word - VitPlant_Installs_102Ton_Shield_Door_20110113.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs535:UFC

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransition Documents - 2008 DOEDOEDOE

182

Long-term Decline of Aggregate Fuel Use per Cargo-ton-mile of Commercial  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term Storage of Cesium and StrontiumSites

183

Energy Department Project Captures and Stores One Million Metric Tons of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusiness CompetitionDepartmentand Reduce Energy Costs |HelpCarbon

184

Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department of Energy benchmarking.Department of

185

NNSA's Global Threat Reduction Initiative Removes More Than One Ton of  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclearhas 'Natitude' | National NuclearAdministrator for

186

Billion-Ton Update: Home-Grown Energy Resources Across the Nation |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy and NaturalBethelNovember 21, 2014 DOE alleged

187

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartment of1: OracleHanfordU.S. Battery

188

U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept. of Energy, Office of CivilEnergy

189

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept. of Energy, Office ofNuclear Weapons StrategyU.S.Department

190

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine in the United States was a brine  

E-Print Network [OSTI]

94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine in the United States was a brine operation in Nevada. The mine's production capacity was expanded in 2012, and a new lithium hydroxide plant opened in North

191

(Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,  

E-Print Network [OSTI]

100 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China, Russia, and the United States were large producers also. Australia, Canada, and Zimbabwe were major producers of lithium

192

(Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,  

E-Print Network [OSTI]

98 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China, Russia, and the United States were large producers also. Australia, Canada, and Zimbabwe were major producers of lithium

193

(Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,  

E-Print Network [OSTI]

96 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China, Russia, and the United States were large producers also. Australia, Canada, and Zimbabwe were major producers of lithium

194

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine operating in the United States was a  

E-Print Network [OSTI]

94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine operating in the United States was a brine operation in Nevada. Two companies produced a large array of downstream lithium compounds in the United States from

195

(Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2009, clay and shale production was reported in 41 States. About 190 companies  

E-Print Network [OSTI]

44 CLAYS (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2009, clay and shale production was reported in 41 States. About 190 companies operated approximately 830% drilling mud, 17% foundry sand bond, 14% iron ore pelletizing, and 20% other uses; common clay--57% brick

196

(Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2008, clay and shale production was reported in 41 States. About 190 companies  

E-Print Network [OSTI]

46 CLAYS (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2008, clay and shale production was reported in 41 States. About 190 companies operated approximately 830% drilling mud, 17% foundry sand bond, 14% iron ore pelletizing, and 20% other uses; common clay--57% brick

197

(Data in metric tons of contained lithium, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world, followed by China,  

E-Print Network [OSTI]

, but growing through the recycling of lithium batteries. Import Sources (1994-97): Chile, 96%; and other, 4 lithium salts from battery recycling and lithium hydroxide monohydrate from former Department of Energy102 LITHIUM (Data in metric tons of contained lithium, unless otherwise noted) Domestic Production

198

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: Limited shipments of tungsten concentrates were made from a California mine in  

E-Print Network [OSTI]

178 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and primary products, wrought and unwrought tungsten, and waste and scrap: China, 43%; Germany, 11%; Canada,630 1,450 Events, Trends, and Issues: World tungsten supply was dominated by Chinese production

199

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: A tungsten mine in California produced concentrates in 2012. Approximately eight  

E-Print Network [OSTI]

176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and concentrates, intermediate and primary products, wrought and unwrought tungsten, and waste and scrap: China, 45,200 3,630 1,610 Events, Trends, and Issues: World tungsten supply was dominated by Chinese production

200

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: One mine in California produced tungsten concentrates in 2010. Approximately  

E-Print Network [OSTI]

176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production. Import Sources (2006­09): Tungsten contained in ores and concentrates, intermediate and primary products, Trends, and Issues: World tungsten supply is dominated by Chinese production and exports. China

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: A mine in California produced tungsten concentrates in 2009. Approximately eight  

E-Print Network [OSTI]

176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production. Import Sources (2005-08): Tungsten contained in ores and concentrates, intermediate and primary products, and Issues: World tungsten supply was dominated by Chinese production and exports. China's Government limited

202

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: A tungsten mine in California produced concentrates in 2013. Approximately eight  

E-Print Network [OSTI]

174 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and concentrates, intermediate and primary products, wrought and unwrought tungsten, and waste and scrap: China, 45,100 2,300 2,240 Events, Trends, and Issues: World tungsten supply was dominated by Chinese production

203

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: One mine in California produced tungsten concentrates in 2011. Approximately  

E-Print Network [OSTI]

176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production (2007­10): Tungsten contained in ores and concentrates, intermediate and primary products, wrought: World tungsten supply is dominated by Chinese production and exports. China's Government regulates its

204

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production, which had remained unchanged in 1995, resumed the  

E-Print Network [OSTI]

recovered from scrap, copper smelters and refiners recovered 26%; ingot makers, 10%; brass mills, 5752 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic% of domestic production; copper was also recovered at mines in six other States. While copper was recovered

205

(Data in thousand metric tons of copper content, unless noted) Domestic Production and Use: Domestic mine production in 1995 continued its upward trend, begun in 1984, rising  

E-Print Network [OSTI]

in new scrap was consumed at brass mills. Of the total copper recovered from scrap, copper smelters50 COPPER (Data in thousand metric tons of copper content, unless noted) Domestic Production, Arizona, Utah, New Mexico, Montana, and Michigan, accounted for 97% of domestic production; copper

206

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production of copper in 2010 declined by about 5% to 1.12 million  

E-Print Network [OSTI]

plants, 14%; ingot makers, 11%; and copper smelters and refiners, 5%. Copper in all old and new, refined48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production of copper in 2010 declined by about 5% to 1.12 million tons

207

Chemical reactions of UF{sub 6} with water on ingress to damaged model 48X 10 ton cylinder  

SciTech Connect (OSTI)

Chemistry studies of the effects of water flooding in Model 48X 10-ton UF{sub 6} storage cylinders, as a result of impact fractures, were conducted to support the Safety Analysis Report for Packaging (SARP) review of the Paducah Tiger Overpack for transportation of those cylinders. The objectives of the study were to determine the maximum amount of water that could be admitted to the interior of such a damaged cylinder, the resulting geometries and chemical compositions from reactions of water with the UF{sub 6} contents of the cylinder, and the end-state water moderated and reflected configurations for input to nuclear criticality safety analyses. The case identified for analysis was the flooding of the inside of a cylinder, submerged horizontally in 3 ft of water. The flooding was driven by an initial pressure drop of 13 psig, through an assumed fracture (1/32 in. wide {times} 1/2 in. deep {times} 18 in. long) in the barrel of the cylinder. During the initial addition of water, transient back pressures occur from the effects of the heats of reaction and solution at the water/UF{sub 6} interface, with some chugging as more water is added to alternately coot the reaction surface and then heat it again as the added water reacts with more UF{sub 6}.

Rothman, A.B.

1996-02-01T23:59:59.000Z

208

About Armstrong Coal Company In just a few short years, Armstrong Coal has grown from a start-up  

E-Print Network [OSTI]

About Armstrong Coal Company In just a few short years, Armstrong Coal has grown from a start approximately 370 million tons of coal reserves, Armstrong operates six active mines in Western Kentucky, along the U.S. Midwest and Southeast. Armstrong is fully committed to meeting strict environmental standards

Fisher, Kathleen

209

Demonstration and evaluation of the 20-ton-capacity load-cell-based weighing system, Eldorado Resources, Ltd. , Port Hope, Ontario, September 3-4, 1986  

SciTech Connect (OSTI)

On September 3 and 4, 1986, the prototype 20-ton-capacity load-cell-based weighing system (LCBWS) developed by the US Enrichment Safeguards Program (ESP) at Martin Marietta Energy Systems, Inc., was field tested at the Eldorado Resources, Ltd., (ERL) facility in Port Hope, Ontario. The 20-ton-capacity LCBWS has been designed and fabricated for use by the International Atomic Energy Agency (IAEA) for verifying the masses of large-capacity UF/sub 6/ cylinders during IAEA safeguards inspections at UF/sub 6/ handling facilities. The purpose of the Canadian field test was to demonstrate and to evaluate with IAEA inspectorates and with UF/sub 6/ bulk handling facility operators at Eldorado the principles, procedures, and hardware associated with using the 20-ton-capacity LCBWS as a portable means for verifying the masses of 10- and 14-ton UF/sub 6/ cylinders. Session participants included representatives from the IAEA, Martin Marietta Energy Systems, Inc., Eldorado Resources, Ltd., the Atomic Energy Control Board (AECB), and the International Safeguards Project Office (ISPO) at Brookhaven National Laboratory (BNL). Appendix A presents the list of participants and their organization affiliation. The two-day field test involved a formal briefing by ESP staff, two cylinder weighing sessions, IAEA critiques of the LCBWS hardware and software, and concluding discussions on the field performance of the system. Appendix B cites the meeting agenda. Summarized in this report are (1) the technical information presented by the system developers, (2) results from the weighing sessions, and (3) observations, suggestions, and concluding statements from meeting participants.

Cooley, J.N.; Huxford, T.J.

1986-10-01T23:59:59.000Z

210

(Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1999, clays were produced in most States except Alaska, Delaware, Hawaii,  

E-Print Network [OSTI]

, and 32% other uses; bentonite--26% foundry sand bond, 23% pet waste absorbent, 20% drilling mud, 16% iron,710 Total3 43,000 43,100 41,800 41,600 42,200 Imports for consumption 35 45 64 86 97 Exports 4,680 4,830 5,080 5,230 4,700 Consumption, apparent 38,500 38,300 36,800 36,500 37,600 Price, average, dollars per ton

211

(Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1998, clays were produced in most States except Alaska, Delaware, Hawaii, Idaho,  

E-Print Network [OSTI]

% foundry sand bond, 23% drilling mud, 17% pet waste absorbent, 15% iron ore pelletizing, and 9% other uses,100 43,100 42,000 43,0003 Imports for consumption 36 35 45 64 75 Exports 4,620 4,680 4,830 5,080 5,100 Consumption, apparent 37,600 38,500 38,300 37,000 38,000 Price, average, dollars per ton: Ball clay 43 46 44

212

(Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2003, clay and shale production was reported in all States except Alaska,  

E-Print Network [OSTI]

; bentonite-- 25% pet waste absorbent, 21% drilling mud, 21% foundry sand bond, 15% iron ore pelletizing,300 Imports for consumption: Artificially activated clay and earth 17 18 21 27 20 Kaolin 57 63 114 158 275,980 Consumption, apparent 37,500 35,600 34,800 34,600 34,600 Price, average, dollars per ton: Ball clay 40 42 42

213

Y YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK FORWomens79

214

Y YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK FORWomens798

215

Y YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK FORWomens7981

216

Y YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK

217

Y YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0 36 -10.00%

218

Y YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0 36 -10.00%4

219

Y YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0 36 -10.00%49

220

Y YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0 36

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Y YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0 367 35

222

Y YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0 367 3591 81

223

Y YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0 367 3591 815

224

Y YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0 367 3591 815

225

Y YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0 367 3591

226

Y YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0 367

227

Y YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0 3674 79

228

Y YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0 3674 797 80

229

Y YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0 3674 797

230

Y YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0 3674 7978 27

231

Student ID Advisor 1st Year Fall __________ (year) 1st Year Spr. __________ (year) 1st Year Sum. __________ (year)  

E-Print Network [OSTI]

Name Major Student ID Advisor 1st Year Fall __________ (year) 1st Year Spr. __________ (year) 1st) Projected Graduation Date SUBJECT SUBJECT CR. HRS. SUBJECT COURSE # CR. HRS. Advisor Signature Date Student

Barrash, Warren

232

New York looks to the future of waste (10 March 2006) New York City has been investigating ways to manage its waste more sustainably in years  

E-Print Network [OSTI]

and the lack of sites within the urban area itself which can process it. The city produces 46,000 tons of waste City Department of Sanitation (DSNY) attempted to build a series of waste-to-energy facilities and cleaner waste-to-energy facilities in New York City four years #12;ago, the proposal was met

Columbia University

233

Final Technical Report for DUSEL Research and Development on Sub-Kelvin Germanium Detectors for Ton Scale Dark Matter Search  

SciTech Connect (OSTI)

We have supported one graduate student and a small percentage of fabrication staff on $135k per year for three years plus one no cost extension year on this DUSEL R&D grant. � There were three themes within our research program: (1) how to improve the radial sensitivity for single sided phonon readout with four equal area sensors of which three form a central circle and fourth a surrounding ring; (2) how to instrument double sided phonon readouts which will give us better surface event rejection and increased fiducial volume for future CDMS style detectors; and (3) can we manufacture much larger Ge detectors using six inch diameter material which is not suitable for standard gamma ray spectroscopy.

Prof. Blas Cabrera

2012-09-10T23:59:59.000Z

234

Scale-up of mild gasification to be a process development unit mildgas 24 ton/day PDU design report. Final report, November 1991--July 1996  

SciTech Connect (OSTI)

From November 1991 to April 1996, Kerr McGee Coal Corporation (K-M Coal) led a project to develop the Institute of Gas Technology (IGT) Mild Gasification (MILDGAS) process for near-term commercialization. The specific objectives of the program were to: design, construct, and operate a 24-tons/day adiabatic process development unit (PDU) to obtain process performance data suitable for further design scale-up; obtain large batches of coal-derived co-products for industrial evaluation; prepare a detailed design of a demonstration unit; and develop technical and economic plans for commercialization of the MILDGAS process. The project team for the PDU development program consisted of: K-M Coal, IGT, Bechtel Corporation, Southern Illinois University at Carbondale (SIUC), General Motors (GM), Pellet Technology Corporation (PTC), LTV Steel, Armco Steel, Reilly Industries, and Auto Research.

NONE

1996-03-01T23:59:59.000Z

235

Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014Biogas andManaged byThe United States

236

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only active lithium carbonate plant in the United States was a brine operation in  

E-Print Network [OSTI]

94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only active lithium carbonate plant in the United States was a brine operation in Nevada. Two companies produced a large array of downstream lithium compounds in the United States from domestic or South

237

(Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S.  

E-Print Network [OSTI]

176 TIN (Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms used about 92% of the primary tin consumed

238

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

170 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 90% of the primary tin consumed domestically in 2012. The major uses were as follows

239

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S.  

E-Print Network [OSTI]

174 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms used about 80% of the primary tin consumed

240

(Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1998, there was no domestic tin mine production. Production of tin at the only U.S.  

E-Print Network [OSTI]

180 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1998, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 85% of the primary tin. The major uses

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

(Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1997, there was no domestic tin mine production. Production of tin at the only  

E-Print Network [OSTI]

178 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1997, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 85% of the primary tin. The major uses

242

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

172 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 81% of the primary tin consumed domestically in 2006. The major uses were as follows

243

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

172 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 86% of the primary tin consumed domestically in 2008. The major uses were as follows

244

(Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1999, there was no domestic tin mine production. Production of tin at the only  

E-Print Network [OSTI]

176 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1999, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 97% of the primary tin. The major uses

245

(Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S.  

E-Print Network [OSTI]

174 TIN (Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms used about 77% of the primary tin consumed

246

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

176 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 81% of the primary tin consumed domestically in 2005. The major uses were as follows

247

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

170 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 84% of the primary tin consumed domestically in 2009. The major uses were as follows

248

(Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1996, there was no domestic tin mine production. Production of tin at the only U.S.  

E-Print Network [OSTI]

178 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1996, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 85% of the primary tin. The major uses

249

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

168 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms accounted for about 90% of the primary tin consumed domestically in 2013. The major uses for tin

250

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

170 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 91% of the primary tin consumed domestically in 2010. The major uses were as follows

251

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

176 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 84% of the primary tin consumed domestically in 2007. The major uses were as follows

252

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1997 was essentially unchanged at 1.9 million metric  

E-Print Network [OSTI]

52 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Mexico, Nevada, and Montana, accounted for 98% of domestic production; copper was also recovered at mines in six other States. While copper was recovered at about 35 mines operating in the United States, 15

253

Year of last Year of last  

E-Print Network [OSTI]

Herring 2003 2002 Transboundary Resource Assessment Committee Monkfish Northern Monkfish 2003 2003FMP Stock Year of last assessment Year of last data used in last stock assessment Source document for stock assessment Atlantic Sea Scallop Atlantic Sea Scallop 2000 2000 Stock Assessment Workshop (SAW

254

Coal upgrading program for Usti nad Labem, Czech Republic: Task 8.3. Topical report, October 1994--August 1995  

SciTech Connect (OSTI)

Coal has been a major energy source in the Czech Republic given its large coal reserves, especially brown coal and lignite (almost 4000 million metric tons) and smaller reserves of hard, mainly bituminous, coal (over 800 million tons). Political changes since 1989 have led to the reassessment of the role of coal in the future economy as increasing environmental regulations affect the use of the high-sulfur and high-ash brown coal and lignite as well as the high-ash hard coal. Already, the production of brown coal has declined from 87 million metric tons per year in 1989 to 67 million metric tons in 1993 and is projected to decrease further to 50 million metric tons per year of brown coal by the year 2000. As a means of effectively utilizing its indigenous coal resources, the Czech Republic is upgrading various technologies, and these are available at different stages of development, demonstration, and commercialization. The purpose of this review is to provide a database of information on applicable technologies that reduce the impact of gaseous (SO{sub 2}, NO{sub x}, volatile organic compounds) and particulate emissions from the combustion of coal in district and residential heating systems.

Young, B.C.; Musich, M.A.

1995-10-01T23:59:59.000Z

255

Foundation Year Aguideforinternationalstudents  

E-Print Network [OSTI]

Foundation Year Aguideforinternationalstudents #12;2 Contents TheFoundationYears 5 Engineering/Physics/Geophysics FoundationYear 6 ScienceFoundationYear 7 EntryRequirements 8 Moneymatters 10 Universitylife 10 The-termcommitmentandabig investmentinyourfuture.OurFoundationYearsare designedtoprepareyouforundergraduatestudyandto

Molinari, Marc

256

Foundation Year Aguideforstudents  

E-Print Network [OSTI]

Foundation Year Aguideforstudents #12;2 Contents TheFoundationYears 5 Engineering/Physics/Geophysics FoundationYear 6 ScienceFoundationYear 7 EntryRequirements 8 Moneymatters 10 Universitylife 10 TheUniversity 10 Thecity 10 Accommodation 10 Studentaccommodation MontefioreHouse4.. #12;3 OurFoundation

Anderson, Jim

257

Secretary Moniz's First Year  

Broader source: Energy.gov [DOE]

We're looking back at some of the biggest moments from Energy Secretary Ernest Moniz's first year in office.

258

Year 1 Year 2 Anne 3 Anne 4 Year 5 Year 6 Year 7Year 3 Year 4 INGENIEUR POLYTECHNICIENINGENIEUR POLYTECHNICIEN  

E-Print Network [OSTI]

: Biology / Chemistry / Computer Science / Economics / Energy / Mechanics and Environmental Sciences / Mathematics and Applied Mathematics / Physics / Science, Technology & Society / Software Systems / Innovation Duration: 2 years - Possibility to be directly admitted to Year 2 Master of ScienceMaster of Science #12

Cengarle, MarĂ­a Victoria

259
260

Project Year Project Team  

E-Print Network [OSTI]

design goals for this project include low cost (less than $30 per paddle) and robustness. The projectProject Year 2001 Project Team Faculty: Allison Okamura, Mechanical Engineering, Whiting School Project Title Haptic Display of Dynamic Systems Audience 30 to 40 students per year, enrolled

Gray, Jeffrey J.

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Project Year Project Team  

E-Print Network [OSTI]

-year section of the summer project will cost $1344.) This project will be measured by the CER surveys conductedProject Year 2005 Project Team Sean Greenberg, Faculty, Philosophy Department, Krieger School of Arts & Sciences; Kevin Clark, Student, Philosophy Department, Krieger School of Arts & Sciences Project

Gray, Jeffrey J.

262

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2010, five companies operated nine primary aluminum smelters; six smelters  

E-Print Network [OSTI]

and Use: In 2010, five companies operated nine primary aluminum smelters; six smelters were closed the entire year. Demolition of two smelters that had been idle for several years was started in 2010. Based: During the first half of 2010, production from domestic primary aluminum smelters had stabilized after

263

Evaluation of a 5-Year Cloud and Radiative Property Dataset Derived from GOES-8 Data over the Southern Great Plains  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance100 ton StanatAccepted|theEvaluationdetection.a

264

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Louise Pasternack, Chemistry Department, Krieger School, Krieger School of Arts & Sciences Project Title Introductory Chemistry Lab Demonstrations Audience an interactive virtual lab manual that will facilitate understanding of the procedures and techniques required

Gray, Jeffrey J.

265

By Thomas S. Jones Manganese (Mn) is essential to iron and silicomanganese increased about 7%. consisted of, in tons, natural battery-grade ore,  

E-Print Network [OSTI]

. years of apparent consumption. 25. At yearend, the estimated manganese Ironmaking and steelmaking have to reported data, the rates of consumption of manganese as ore in ironmaking and as ferroalloys and metal

Torgersen, Christian

266

HPSS Yearly Network Traffic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuided Self-Assembly of GoldHAWCHIGS flux4-00nHPSSHPSS Yearly

267

Prior Fiscal Years  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home DesignPresentationsSRS Responds to TrainPrior-Fiscal-Years Sign In

268

Allocation Year Rollover process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCHThermal SolarAllocatio Year Rollover process

269

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Gregory Hager, Computer Science, Whiting School of Engineering Fellow: Alan Chen, Biomedical Engineering, Whiting School of Engineering Project Title Robotics is complicated, time-consuming, and costly, making a robot for an introductory-level class is not practical

Gray, Jeffrey J.

270

Project Year Project Title  

E-Print Network [OSTI]

the cost of the project to labor only. The efficacy of the examples will be assessed through their useProject Year 2012-2013 Project Title Sight-Reading at the Piano Project Team Ken Johansen, Peabody) Faculty Statement The goal of this project is to create a bank of practice exercises that student pianists

Gray, Jeffrey J.

271

Project Year Project Title  

E-Print Network [OSTI]

Project Year 2013-2014 Project Title German Online Placement Exam Project Team Deborah Mifflin to increased cost. As well, it lacked listening comprehension, writing and speaking components providing support, we will use Blackboard for this project. The creation will require numerous steps

Gray, Jeffrey J.

272

Project Year Spring 2009  

E-Print Network [OSTI]

Project Year Spring 2009 Project Title A Database of Film and Media History and Aesthetics Part 2 experience with colleagues, they were eager to participate in expanding the database to include clips or they simply don't have the time, or both. Solution: The development of a user-friendly database of clips would

Gray, Jeffrey J.

273

Project Year Project Title  

E-Print Network [OSTI]

operators, matrix indexing, vector computations, loops, functions, and plotting graphs, among others basic arithmetic operators, matrix indexing, and vector computations in MATLAB. After creatingProject Year 2011-2012 Project Title Online Tutorial for MATLAB Project Team Eileen Haase, Whiting

Gray, Jeffrey J.

274

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2005 Project Team Krysia Hudson, Faculty, School of Nursing, Undergraduate Instruction for Educational Resources Project Title Enhanced Web-based Learning Environments for Beginning Nursing Students (e.g., demonstrations of procedures or tasks) into the WBL systems, it will be possible to increase

Gray, Jeffrey J.

275

Project Year Project Title  

E-Print Network [OSTI]

that incorporate video taped procedures for student preview. Solution This project will create videos for more to study the procedure and techniques before coming to class. Our previous fellowship project addressedProject Year 2009 Project Title Enhancing Biology Laboratory Preparation through Video

Gray, Jeffrey J.

276

Project Year Project Team  

E-Print Network [OSTI]

, there is no resource available to view the procedure before class. Solution The purpose of this project is to capture available to view the procedure before class. The purpose #12;of this project is to capture variousProject Year 2007 Project Team Kristina Obom, Faculty, Advanced Academic Programs, Krieger School

Gray, Jeffrey J.

277

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Michael McCloskey, Cognitive Science/Neuroscience, Krieger of Arts & Sciences Project Title Cognitive Neuropsychology Audience The initial audience to access. The current procedure calls for individual students or researchers to contact the faculty member

Gray, Jeffrey J.

278

Project Year Project Title  

E-Print Network [OSTI]

Project Year 2011-2012 Project Title Using M-Health and GIS Technology in the Field to Improve-specialized, but practically useless skill. Solution One goal of this summer's Applied Geographic Information Systems in Public lessons about observational epidemiology. Technologies Used Geographic Info System (GIS), Blackboard

Gray, Jeffrey J.

279

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2009, 6 companies operated 13 primary aluminum smelters; 4 smelters were  

E-Print Network [OSTI]

and Use: In 2009, 6 companies operated 13 primary aluminum smelters; 4 smelters were closed the entire year, and demolition of 1 smelter that had been idle since 2000 was completed in 2009. Of the operating smelters, three were temporarily idled and parts of four others were temporarily closed in 2009. Based

280

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2011, 5 companies operated 10 primary aluminum smelters; 5 smelters were  

E-Print Network [OSTI]

and Use: In 2011, 5 companies operated 10 primary aluminum smelters; 5 smelters were closed the entire year. One smelter that was closed in 2009 was reopened during the first quarter of 2011. Five potlines that were closed in late 2008 and early 2009 at four other smelters were also restarted in early 2011. Based

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

(Data in metric tons unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2009. Indium-containing  

E-Print Network [OSTI]

global indium consumption. ITO thin-film coatings were primarily used for electrically conductive ITO is deposited as a thin-film coating onto a substrate, is highly inefficient; approximately 30 and the weaker won. In December 2008, China began a 4-year, 13% subsidy program in certain agricultural regions

282

Previous Year Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home DesignPresentations Presentations SortConferences

283

Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products  

SciTech Connect (OSTI)

ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates from the use ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2009, annual forecasts for 2010 and 2011, and cumulative savings estimates for the period 1993 through 2009 and cumulative forecasts for the period 2010 through 2015. Through 2009 the program saved 9.5 Quads of primary energy and avoided the equivalent of 170 million metric tons carbon (MMTC). The forecast for the period 2009-2015 is 11.5 Quads or primary energy saved and 202 MMTC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 110 MMTC and 231 MMTC (1993 to 2009) and between 130 MMTC and 285 MMTC (2010 to 2015).

Homan, Gregory K; Sanchez, Marla C.; Brown, Richard E.

2010-11-15T23:59:59.000Z

284

LLNL Underground Coal Gasification Project annual report - fiscal year 1984  

SciTech Connect (OSTI)

The Laboratory has been conducting an interdisciplinary underground coal gasification program since 1974 under the sponsorship of DOE and its predecessors. We completed three UCG tests at the Hoe Creek site near Gillette, Wyoming, during the period 1975 to 1979. Five small field experiments, the large-block tests, were completed from 1981 to 1982 at the exposed coal face in the WIDCO coal mine near Centralia, Washington. A larger test at the same location, the partial-seam CRIP test, was completed during fiscal year 1984. In conjunction with the DOE and an industrial group lead by the Gas Research Institute, we have prepared a preliminary design for a large-scale test at the WIDCO site. The planned test features dual injection and production wells, module interaction, and consumption of 20,000 tons of coal during a hundred-day steam-oxygen gasification. During fiscal year 1984, we documented the large-block excavations. The cavities were elongated, the cavity cross sections were elliptical, and the cavities contained ash and slag at the bottom, char and dried coal above that, and a void at the top. The results from the large-block tests provided enough data to allow us to construct a composite model, CAVSM. Preliminary results from the model agree well with the product-gas chemistry and cavity shape observed in the large-block tests. Other models and techniques developed during the year include a transient, moving-front code, a two-dimensional, reactive-flow code using the method of lines, and a wall-recession-rate model. In addition, we measured the rate of methane decomposition in the hot char bed and developed an engineering rate expression to estimate the magnitude of the methane-decomposition reaction. 16 refs., 30 figs., 1 tab.

Stephens, D.R.; O'Neal, E.M. (eds.)

1985-06-15T23:59:59.000Z

285

Evaluation of an alternative bituminous material as a soil stabilizer  

E-Print Network [OSTI]

granular base materials, the PRB material coated soil or aggregate particles and decreased the volume of voids, which can be thought as potential water flow channels. Consequently, the PRB material is expected to reduce permeability....

Kim, Yong-Rak

1999-01-01T23:59:59.000Z

286

Predictors of plasticity in bituminous coals. Final technical report  

SciTech Connect (OSTI)

A group of 40 hvb coals, mostly from western Kentucky fields, has been examined with regard to ASTM Gieseler plastometric properties. Twenty-nine of these coals have also been studied over a range of temperatures by isothermal Gieseler plastometry. Raw Gieseler data provide melting and coking slopes and readily calculable fluidity spans. Maximum fluidity by slope intersection is a more consistent measure than observed maximum fluidity. Isothermal slopes and maximum fluidities follow Arrhenius temperature dependencies, with activation energies related systematically to fluid properties. These freshly sampled coals are also characterized by chemical, physical and petrographic criteria, by quantitative solvent extractions, by pyrolysis gas chromatography, by Fourier Transform infrared analysis of coals and extraction residues, by the HPLC analysis of coal extracts, and by optical microscopy of coals and Gieseler semi-coke residues. Multiple linear regression analysis yields three-term expressions which estimate maximum fluidities (both ASTM and isothermal) with R values of .90 to .92. Slopes and critical temperatures are similarly predictable. Plastometer experiments with selected coals under superatmospheric pressures show both melting slopes and maximum fluidities to be sharply increased, the latter by one to three orders of magnitude. Some suggestions are offered to accommodate this new information into the general body of knowledge concerning the phenomenon of plasticity in mid-ranked coals. 81 references, 28 figures, 40 tables.

Lloyd, W. G.; Reasoner, J. W.; Hower, J. C.; Yates, L. P.; Clark, C. P.; Davis, E.; Fitzpatrick, A.; Irefin, A.; Jiminez, A.; Jones, T. M.

1984-02-01T23:59:59.000Z

287

Updated Costs (June 2011 Basis) for Selected Bituminous Baseline...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 - GEE IGCC without CO 2 capture * Case 2 - GEE IGCC with CO 2 capture * Case 9 - Subcritical PC without CO 2 capture * Case 10 - Subcritical PC with CO 2 capture * Case 11 -...

288

NETL - Bituminous Baseline Performance and Cost Interactive Tool | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area EnergyMohawkaccrediationNASA-SurfaceNEPA Home

289

Five Year Plan  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.Financial Statement:Fire2 ASCEM4Five FactsFive

290

70 Years of Innovations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGasand Video ClipsRELEASE: APRIL 22,

291

2013 Year in Review  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( SampleEnergyofDepartment ofLabor2013Department

292

four-year goal  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF

293

50 Years of Space  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon, Next2025Steps to Making Your Windows5 Top50

294

Through the years  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1A: HandlingJeffersonThree-yearyears Early 1960s

295

Month Day Year  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps MoreWSRC-STI-2007-00250 Rev. 05 Oak09 UAnUtilitiesMonicaColorado,

296

Prior Fiscal Years  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR PrimaryDelegations, andRoute

297

Allocation Year Rollover  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre theAdministratorCFMFusionReview Off-siteAllinea DDT

298

18 years experience on UF{sub 6} handling at Japanese nuclear fuel manufacturer  

SciTech Connect (OSTI)

In the spring of 1991, a leading nuclear fuel manufacturing company in Japan, celebrated its 18th anniversary. Since 1973, the company has produced over 5000 metric ton of ceramic grade UO{sub 2} powder to supply to Japanese fabricators, without major accident/incident and especially with a successful safety record on UF{sub 6} handling. The company`s 18 years experience on nuclear fuel manufacturing reveals that key factors for the safe handling of UF{sub 6} are (1) installing adequate facilities, equipped with safety devices, (2) providing UF{sub 6} handling manuals and executing them strictly, and (3) repeating on and off the job training for operators. In this paper, equipment and the operation mode for UF{sub 6} processing at their facility are discussed.

Fujinaga, H.; Yamazaki, N.; Takebe, N. [Japan Nucelar Fuel Conversion Co., Ltd., Ibaraki (Japan)

1991-12-31T23:59:59.000Z

299

The Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada, was the site for a 12-kiloton-ton nuclear test  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River,

300

THE A.EROSPACE CORPORATION Suite 4000, 955 L'Enfk Plaza, S. W,, Wash&-ton, D,C: 200.24~ZJ74, Telephone:'(  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28SacandagaSite A/Plot3,Suirr.j:

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Planning for Years to Come  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Planning for Years to Come Planning for Years to Come LANL's Governing Policy on the Environment August 1, 2013 Water sampling tour for the Association of Experiential Education...

302

The Foundation Year Monash University  

E-Print Network [OSTI]

The Foundation Year Monash University Foundation Year Monash College has helped me to make my future better. By studying the Foundation Year, I am always learning something new and still having lots of fun. Thanks to the Foundation Year, I am preparing for a successful future. Vonny Leonardy, Monash

Albrecht, David

303

NUCLEAR ENGINEERING Four Year Plan  

E-Print Network [OSTI]

NUCLEAR ENGINEERING Four Year Plan Fall 2009 Nuclear Engineering (67 hrs) CH Grade Perspectives (15;Nuclear Engineering Four Year Plan Starting Fall 2009 FALL Year 1 Credits WINTER Year 1 Credits SPRING I NE 452 3 Neutronic Analysis II NE 457 2 Nuclear Reactor Lab Western Culture (3): NE 467 4 Nucl

Tullos, Desiree

304

YEAR 2 BIOMASS UTILIZATION  

SciTech Connect (OSTI)

This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

Christopher J. Zygarlicke

2004-11-01T23:59:59.000Z

305

Nepal Migration Year Book 2011 Migration Year Book  

E-Print Network [OSTI]

Nepal Migration Year Book 2011 1 #12;Nepal Migration Year Book 2011 NIDS NCCR North-South #12;Book Nepal Migration Year Book 2011 Publishers Nepal Institute of Development Studies (NIDS) G.P.O. Box: 7647, Kathmandu, Nepal Email: nids@mail.com.np Web: www.nids.org.np National Centre of Competence in Research

Richner, Heinz

306

ATNI Mid-year Convention  

Broader source: Energy.gov [DOE]

The Affiliated Tribes of Northwest Indians Mid-year Convention will be hosted by the Chehalis Tribe.

307

The status of coal briquetting technology in Korea  

SciTech Connect (OSTI)

Anthracite is the only indigenous fossil fuel resource produced in Korea and is an important main source of residential fuel. Due to its particular characteristics, the best way to use Korean coal is in the form of briquettes, called {open_quotes}Yontan.{close_quotes} The ability to use this coal as briquettes was a great discovery made nearly 50 years ago and since then, has made a great contribution to the energy consumption of low and middle income households. Korean anthracite in coal briquette form has been used widely for household heating purposes. Collieries in Korea produced no more than one million tons of anthracite annually in the 1960s. Production, however, increased substantially up to about 17 million tons per year in the mid-1970s. In 1986, Korea succeeded in raising its coal production to 24.2 million tons, which was the maximum production level achieved by the Korean coal industrial sector. Since then, anthracite production has fallen. In 1991, coal output dropped to 15.1 million tons, a decrease of 12.2 percent from the 17.2 million tons produced in 1990, due to falling coal demand and rising labor costs. The role of coal as an energy source will be more important in the future to meet projected economic growth in Korea. While the production of indigenous Korean anthracite is expected to decrease under a coal mining rationalization policy, imports of bituminous coal will increase rapidly and will be used as an oil substitute in industry and power generation. In this chapter, general aspects of the Korean coal industry and coal utilization for residential uses, especially the Yontan coal briquetting techniques, are discussed. In addition, coal briquetting technology applications suitable for the APEC region will be presented.

Choi, Woo-Zin

1993-12-31T23:59:59.000Z

308

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities http://www.fin.mmu.ac.uk/f18_001b.htm06/07/2004 13:02:41 #12;5 Year Financial Profile - Charts - Income 5 Year Financial Profile Charts Income Back http://www.fin.mmu.ac.uk/f18 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_001d.htm06/07/2004 13:02:52 #12;5 Year

309

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities http://www.fin.mmu.ac.uk/f18_0029.htm06/07/2004 13:01:23 #12;5 Year Financial Profile - Charts - Income 5 Year Financial Profile Charts Income Back http://www.fin.mmu.ac.uk/f18 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_002d.htm06/07/2004 13:01:34 #12;5 Year

310

Yearly  

E-Print Network [OSTI]

In 2009, a new activity was launched under the International Energy Agency Wind Implementing Agreement (IEA Wind) for the small wind sector. The main focus of this activity, called Task 27, is to develop recommended practices for consumer labeling of existing commercial small wind turbines. Participants will also exchange information about the status of the small wind industry in the member countries. This report outlines the status of the small wind sector in 2009 in the countries participating in Task 27. (For more information about IEA Wind and the consumer label developed under Task 27, see www.ieawind.org.)

unknown authors

2009-01-01T23:59:59.000Z

311

YEAR  

National Nuclear Security Administration (NNSA)

2012 2013 SES 2 1 -50.00% EJEK 10 9 -10.00% EN 04 27 24 -11.11% NN (Engineering) 28 24 -14.29% NQ (ProfTechAdmin) 31 29 -6.45% NU (TechAdmin Support) 4...

312

YEAR  

National Nuclear Security Administration (NNSA)

American Female 2 Asian Male 2 Asian Female 0 Hispanic Male 13 Hispanic Female 17 White Male 37 White Female 17 DIVERSITY GENDER Workforce Diversity Sandia Site Office As of...

313

YEAR  

National Nuclear Security Administration (NNSA)

Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 4 White Female (W F) 5 DIVERSITY TOTAL WORKFORCE GENDER Associate...

314

YEAR  

National Nuclear Security Administration (NNSA)

0 0 0.00% Hispanic Male (H,M) 12 12 0.00% Hispanic Female (H,F) 12 11 -8.33% White Male (W,M) 34 34 0.00% White Female (W,F) 17 16 -5.88% Change DIVERSITY Change...

315

YEAR  

National Nuclear Security Administration (NNSA)

Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 5 Hispanic Female (H F) 3 White Male (W M) 26 White Female (W F) 16 DIVERSITY TOTAL WORKFORCE GENDER Livermore Field...

316

YEAR  

National Nuclear Security Administration (NNSA)

American Female 4 Asian Male 22 Asian Female 4 Hispanic Male 5 Hispanic Female 4 White Male 30 White Female 19 Workforce Diversity Livermore Site Office As of March 24, 2012...

317

YEAR  

National Nuclear Security Administration (NNSA)

Pacific Islander Female (AAPI, F) 0 Hispanic Male (H, M) 12 Hispanic Female (H, F) 11 White Male (W, M) 34 White Female (W, F) 16 PAY PLAN DIVERSITY TOTAL WORKFORCE GENDER Sandia...

318

YEAR  

National Nuclear Security Administration (NNSA)

Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 13 White Female (W F) 5 DIVERSITY TOTAL WORKFORCE GENDER Savannah River...

319

YEAR  

National Nuclear Security Administration (NNSA)

African American Female 3 Asian Male 1 Asian Female 0 Hispanic Male 1 Hispanic Female 0 White Male 4 White Female 6 DIVERSITY Workforce Diversity Associate Administrator of...

320

YEAR  

National Nuclear Security Administration (NNSA)

Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 12 Hispanic Female (H F) 12 White Male (W M) 34 White Female (W F) 16 DIVERSITY TOTAL WORKFORCE GENDER Sandia Field...

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

YEAR  

National Nuclear Security Administration (NNSA)

Pacific Islander Female (AAPI, F) 0 Hispanic Male (H, M) 1 Hispanic Female (H, F) 0 White Male (W, M) 25 White Female (W, F) 6 TOTAL WORKFORCE GENDER Kansas City Field Office...

322

YEAR  

National Nuclear Security Administration (NNSA)

African American Female 3 Asian Male 1 Asian Female 0 Hispanic Male 1 Hispanic Female 0 White Male 5 White Female 6 DIVERSITY Workforce Diversity Associate Administrator of...

323

YEAR  

National Nuclear Security Administration (NNSA)

Pacific Islander Female (AAPI, F) 2 Hispanic Male (H, M) 5 Hispanic Female (H, F) 4 White Male (W, M) 25 White Female (W, F) 17 PAY PLAN DIVERSITY TOTAL WORKFORCE GENDER...

324

YEAR  

National Nuclear Security Administration (NNSA)

2 2 0.00% Hispanic Male (H,M) 76 75 -1.32% Hispanic Female (H,F) 22 21 -4.55% White Male (W,M) 389 400 2.83% White Female (W,F) 21 19 -9.52% Change DIVERSITY...

325

YEAR  

National Nuclear Security Administration (NNSA)

Pacific Islander Female (AAPI, F) 2 Hispanic Male (H, M) 6 Hispanic Female (H, F) 6 White Male (W, M) 51 White Female (W, F) 14 PAY PLAN DIVERSITY TOTAL WORKFORCE GENDER Nevada...

326

YEAR  

National Nuclear Security Administration (NNSA)

African American Female 4 Asian Male 2 Asian Female 3 Hispanic Male 7 Hispanic Female 5 White Male 52 White Female 20 Workforce Diversity Nevada Site Office As of March 24, 2012...

327

YEAR  

National Nuclear Security Administration (NNSA)

Pacific Islander Female (AAPI, F) 0 Hispanic Male (H, M) 0 Hispanic Female (H, F) 0 White Male (W, M) 15 White Female (W, F) 7 TOTAL WORKFORCE GENDER Savannah River Field...

328

YEAR  

National Nuclear Security Administration (NNSA)

Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 24 White Female (W F) 6 TOTAL WORKFORCE GENDER Kansas City Field Office As...

329

YEAR  

National Nuclear Security Administration (NNSA)

Pacific Islander Female (AAPI F) 1 Hispanic Male (H M) 6 Hispanic Female (H F) 6 White Male (W M) 68 White Female (W F) 30 DIVERSITY TOTAL WORKFORCE GENDER NNSA Production...

330

The BosTon College STOKES HALL  

E-Print Network [OSTI]

's enduring commit- ment to the liberal arts," said Col- lege of Arts & Sciences Dean Da- vid Quigley. "The David Quigley September 30, 2010 Publi

Huang, Jianyu

331

One Year Passport to Success  

Broader source: Energy.gov [DOE]

Describes the framework for the Department's on-boarding program for a new employee from day one through their first year.

332

Arrow Lakes Reservoir Fertilization Experiment; Years 4 and 5, Technical Report 2002-2003.  

SciTech Connect (OSTI)

This report presents the fourth and fifth year (2002 and 2003, respectively) of a five-year fertilization experiment on the Arrow Lakes Reservoir. The goal of the experiment was to increase kokanee populations impacted from hydroelectric development on the Arrow Lakes Reservoir. The impacts resulted in declining stocks of kokanee, a native land-locked sockeye salmon (Oncorhynchus nerka), a key species of the ecosystem. Arrow Lakes Reservoir, located in southeastern British Columbia, has undergone experimental fertilization since 1999. It is modeled after the successful Kootenay Lake fertilization experiment. The amount of fertilizer added in 2002 and 2003 was similar to the previous three years. Phosphorus loading from fertilizer was 52.8 metric tons and nitrogen loading from fertilizer was 268 metric tons. As in previous years, fertilizer additions occurred between the end of April and the beginning of September. Surface temperatures were generally warmer in 2003 than in 2002 in the Arrow Lakes Reservoir from May to September. Local tributary flows to Arrow Lakes Reservoir in 2002 and 2003 were generally less than average, however not as low as had occurred in 2001. Water chemistry parameters in select rivers and streams were similar to previous years results, except for dissolved inorganic nitrogen (DIN) concentrations which were significantly less in 2001, 2002 and 2003. The reduced snow pack in 2001 and 2003 would explain the lower concentrations of DIN. The natural load of DIN to the Arrow system ranged from 7200 tonnes in 1997 to 4500 tonnes in 2003; these results coincide with the decrease in DIN measurements from water samples taken in the reservoir during this period. Water chemistry parameters in the reservoir were similar to previous years of study except for a few exceptions. Seasonal averages of total phosphorus ranged from 2.11 to 7.42 {micro}g/L from 1997 through 2003 in the entire reservoir which were indicative of oligo-mesotrophic conditions. Dissolved inorganic nitrogen concentrations have decreased in 2002 and 2003 compared to previous years. These results indicate that the surface waters in Arrow Lakes Reservoir were approaching nitrogen limitation. Results from the 2003 discrete profile series indicate nitrate concentrations decreased significantly below 25 {micro}g/L (which is the concentration where nitrate is considered limiting to phytoplankton) between June and July at stations in Upper Arrow and Lower Arrow. Nitrogen to phosphorus ratios (weight:weight) were also low during these months indicating that the surface waters were nitrogen deficient. These results indicated that the nitrogen to phosphorus blends of fertilizer added to the reservoir need to be fine tuned and closely monitored on a weekly basis in future years of nutrient addition. Phytoplankton results shifted during 2002 and 2003 compared to previous years. During 2002, there was a co-dominance of potentially 'inedible' diatoms (Fragilaria spp. and Diatoma) and 'greens' (Ulothrix). Large diatom populations occurred in 2003 and these results indicate it may be necessary to alter the frequency and amounts of weekly loads of nitrogen and phosphorus in future years to prevent the growth of inedible diatoms. Zooplankton density in 2002 and 2003, as in previous years, indicated higher densities in Lower Arrow than in Upper Arrow. Copepods and other Cladocera (mainly tiny specimens such as Bosmina sp.) had distinct peaks, higher than in previous years, while Daphnia was not present in higher numbers particularly in Upper Arrow. This density shift in favor to smaller cladocerans was mirrored in a weak biomass increase. In Upper Arrow, total zooplankton biomass decreased from 1999 to 2002, and in 2003 increased slightly, while in Lower Arrow the biomass decreased from 2000-2002. In Lower Arrow the majority of biomass was comprised of Daphnia throughout the study period except in 2002, while in Upper Arrow the total biomass was comprised of copepods from 2000-2003.

Schindler, E.

2007-02-01T23:59:59.000Z

333

Taking out one billion tones of carbon: the magic of China's 11thFive-Year Plan  

SciTech Connect (OSTI)

China's 11th Five-Year Plan (FYP) sets an ambitious targetfor energy-efficiency improvement: energy intensity of the country sgross domestic product (GDP) should be reduced by 20 percent from 2005 to2010 (NDRC, 2006). This is the first time that a quantitative and bindingtarget has been set for energy efficiency, and signals a major shift inChina's strategic thinking about its long-term economic and energydevelopment. The 20 percent energy intensity target also translates intoan annual reduction of over one billion tons of CO2 by 2010, making theChinese effort one of most significant carbon mitigation effort in theworld today. While it is still too early to tell whether China willachieve this target, this paper attempts to understand the trend inenergy intensity in China and to explore a variety of options towardmeeting the 20 percent target using a detailed endues energymodel.

Lin, Jiang; Zhou, Nan; Levine, Mark D.; Fridley, David

2007-05-01T23:59:59.000Z

334

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

Charts Income Back http://www.fin.mmu.ac.uk/f18_004b.htm06/07/2004 12:57:08 #12;5 Year Financial Profile - Charts - zoom 5 Year Financial Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_004c.htm06 http://www.fin.mmu.ac.uk/f18_004d.htm06/07/2004 12:57:19 #12;5 Year Financial Profile - Charts - zoom 5

335

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

Charts Income Back http://www.fin.mmu.ac.uk/f18_008b.htm06/07/2004 12:51:21 #12;5 Year Financial Profile - Charts - zoom 5 Year Financial Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_008c.htm06 http://www.fin.mmu.ac.uk/f18_008d.htm06/07/2004 12:51:31 #12;5 Year Financial Profile - Charts - zoom 5

336

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

Charts Income Back http://www.fin.mmu.ac.uk/f18_010b.htm06/07/2004 10:57:23 #12;5 Year Financial Profile - Charts - zoom 5 Year Financial Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_010c.htm06 http://www.fin.mmu.ac.uk/f18_010d.htm06/07/2004 12:40:15 #12;5 Year Financial Profile - Charts - zoom 5

337

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities & Reserves http://www.fin.mmu.ac.uk/f18_0067.htm06/07/2004 13 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_006b.htm06/07/2004 13:04:46 #12;5 Year Financial Profile - Charts - Assets 5 Year Financial Profile Charts Assets Back http://www.fin.mmu.ac.uk/f18

338

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities Income Breakdown Expenditure Breakdown http://www.fin.mmu.ac.uk/f18 Charts Income Back http://www.fin.mmu.ac.uk/f18_005b.htm06/07/2004 13:00:29 #12;5 Year Financial Profile - Charts - zoom 5 Year Financial Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_005c.htm06

339

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities & Reserves http://www.fin.mmu.ac.uk/f18_0079.htm06/07/2004 13 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_007b.htm06/07/2004 13:05:59 #12;5 Year Financial Profile - Charts - Assets 5 Year Financial Profile Charts Assets Back http://www.fin.mmu.ac.uk/f18

340

CONSOL Energy invests in West Virginia CTL plant  

SciTech Connect (OSTI)

Working with Synthesis Energy Systems (SES), America's leading bituminous coal producer assists with the engineering design package for a coal gasification and liquefaction plant to be located near Benwood in West Virginia. Coal will be converted to syngas using SES's proprietary U-GAS technology. The syngas is expected to be used to produce about 720,000 metric tons per year of methanol. The U-GAS technology is licensed from the Gas Technology Institute (GTI). The article explains how the GTI gasification process works. It is based on a surge-stage fluidised bed for production of low-to-medium calorific value synthesis gas from a variety of feedstocks, including coal. 2 figs.

NONE

2008-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Encoal mild coal gasification project: Final design modifications report  

SciTech Connect (OSTI)

The design, construction and operation Phases of the Encoal Mild Coal Gasification Project have been completed. The plant, designed to process 1,000 ton/day of subbituminous Power River Basin (PRB) low-sulfur coal feed and to produce two environmentally friendly products, a solid fuel and a liquid fuel, has been operational for nearly five years. The solid product, Process Derived Fuel (PDF), is a stable, low-sulfur, high-Btu fuel similar in composition and handling properties to bituminous coal. The liquid product, Coal Derived Liquid (CDL), is a heavy, low-sulfur, liquid fuel similar in properties to heavy industrial fuel oil. Opportunities for upgrading the CDL to higher value chemicals and fuels have been identified. Significant quantities of both PDF and CDL have been delivered and successfully burned in utility and industrial boilers. A summary of the Project is given.

NONE

1997-07-01T23:59:59.000Z

342

Venice data > year = 1931:1981  

E-Print Network [OSTI]

:3,] year r1 1 1931 103 2 1932 78 3 1933 121 > attach(venice) ## > plot(year,r1) > lm(r1 ~ year) Call: lm(formula = r1 ~ year) #12;Coefficients: (Intercept) year -989.382 0.567 > lm(r1 ~ year - mean(year)) ## Error differ (found for 'mean(year)') ### > lm(r1 ~ I(year - mean(year))) Call: lm(formula = r1 ~ I(year - mean

Reid, Nancy

343

Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2004  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), ''Notice of Intent and Emissions Inventory Requirements''. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department, Air Quality Bureau, under 20.2.70 NMAC. This Title V Operating Permit (Permit No. P-100) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semi-annual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semi-annual emissions reporting for LANL for calendar year 2004. LANL's 2004 emissions are well below the emission limits in the Title V Operating Permit.

M. Stockton

2005-10-01T23:59:59.000Z

344

Emissions inventory report summary for Los Alamos National Laboratory for calendar year 2008  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory’s potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department/Air Quality Bureau, under 20.2.70 NMAC. This permit was modified and reissued on July 16, 2007. This Title V Operating Permit (Permit No. P-100M2) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semiannual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semiannual emissions reporting for LANL for calendar year 2008. LANL’s 2008 emissions are well below the emission limits in the Title V Operating Permit.

Ecology and Air Quality Group

2009-10-01T23:59:59.000Z

345

Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2009  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department/Air Quality Bureau, under 20.2.70 NMAC. This permit was modified and reissued on July 16, 2007. This Title V Operating Permit (Permit No. P-100M2) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semiannual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semiannual emissions reporting for LANL for calendar year 2009. LANL's 2009 emissions are well below the emission limits in the Title V Operating Permit.

Environmental Stewardship Group

2010-10-01T23:59:59.000Z

346

Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2006  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department, Air Quality Bureau, under 20.2.70 NMAC. Modification Number 1 to this Title V Operating Permit was issued on June 15, 2006 (Permit No P-100M1) and includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semi-annual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semi-annual emissions reporting for LANL for calendar year 2006. LANL's 2006 emissions are well below the emission limits in the Title V Operating Permit.

Ecology and Air Quality Group

2007-09-28T23:59:59.000Z

347

Accountability report - fiscal year 1997  

SciTech Connect (OSTI)

This document contains the US NRC`s accountability report for fiscal year 1997. Topics include uses of funds, financial condition, program performance, management accountability, and the audited financial statement.

NONE

1998-04-01T23:59:59.000Z

348

Chapeau! First-Year French  

E-Print Network [OSTI]

Chapeau! is a first-year college text. Although it may appear, at first glance, o move very fast and introduce a large amount of material early, the vocabulary and grammatical structures that we expect students to control ...

Dinneen, David A.; Kernen, Madeleine

1989-01-01T23:59:59.000Z

349

NIST 3-Year Programmatic Plan  

E-Print Network [OSTI]

areas critical to the nation's economy.The America COMPETES Act outlines major roles for NIST-year period.NIST will continue to refine this plan as it works with the Administration to address national

350

NIST 3-Year Programmatic Plan  

E-Print Network [OSTI]

NIST 3-Year Programmatic Plan FY 2013-2015 June 2012 #12;N I S T 3 - Y e a r P r o g r a m m a t i and Industry Services programs; and · Priorities for NIST FY 2013-2015. (Credit: Christina Kiffney Photography to submit a three-year programmatic plan concurrent with the submission of the President's budget request

351

Emissions Inventory Report Summary: Reporting Requirements for the New Mexico Administrative Code, Title 20, Chapter 2, Part 73 (20 NMAC 2.73) for Calendar Year 2001  

SciTech Connect (OSTI)

Los Alamos National Laboratory is subject to annual emissions-reporting requirements for regulated air contaminants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. For calendar year 2001, the Technical Area 3 steam plant was the primary source of criteria air pollutants from the Laboratory, while research and development activities were the primary source of volatile organic compounds. Emissions of beryllium and aluminum were reported for activities permitted under 20.2.72 NMAC. Hazardous air pollutant emissions from chemical use for research and development activities were also reported.

Margorie Stockton

2003-04-01T23:59:59.000Z

352

Characteristics RSE Column Factor: All Model Years Model Year  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,64397 272 522. U.S. Vehicles by Model Year,

353

Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit  

SciTech Connect (OSTI)

During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

Zaltash, Abdolreza [ORNL; Petrov, Andrei Y [ORNL; Linkous, Randall Lee [ORNL; Vineyard, Edward Allan [ORNL

2007-01-01T23:59:59.000Z

354

Year's End 2012 | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2 ContinuingYan Mei Wang Yan Mei WangYear's

355

Calendar Year 2007 Program Benefits for U.S. EPA Energy Star Labeled Products: Expanded Methodology  

E-Print Network [OSTI]

$/MBtu) Electric Heat Rate (Btu/kWh) kWh = kilowatthour; TWh= terawatthour; MBtu = Million Btu; MtC = Metric tons ofon heavy load. Idle Rate (Btu/h) Table 6-9. Energy Star

Sanchez, Marla

2010-01-01T23:59:59.000Z

356

Annual Report Fiscal Year 2008  

E-Print Network [OSTI]

funding to Washington University in FY08 was $548.4M, up 2% from the previous year. Both the dollar amount funding. Funding from the NIH, consistently the University's main contributor of research funding, increased by $1.5M (0.4%) in FY08. Funding from private sources to Washington University actually increased

Kroll, Kristen L.

357

STUDENT AFFAIRS YEAR 1 ORIENTATION  

E-Print Network [OSTI]

STUDENT AFFAIRS YEAR 1 ORIENTATION Student Affairs Team #12;Objectives: ·Introductions ·Services Offered ·Policies ·Student Disability Services #12;Student Affairs Team: · Assistant Dean of Student/Events Guru: Allison Gherardini · Student Organizations: Tracey Eady · Glue: Benita Patrick, Jean Mc

Finley Jr., Russell L.

358

BIOLOGY MAJOR First two years  

E-Print Network [OSTI]

BIOLOGY MAJOR First two years Introductory Biology with labs Biology 117 AND INTRODUCTION TO ORGANISMAL AND POPULATION BIOLOGY BIO 116 GENERAL BIOLOGY 2 Biology 118 INTRODUCTION TO CELL AND MOLECULAR BIOLOGY BIO 115 GENERAL BIOLOGY 1 Introductory Chemistry with labs Chemistry 107 AND INTRODUCTORY

Suzuki, Masatsugu

359

BIOLOGY MAJOR First two years  

E-Print Network [OSTI]

BIOLOGY MAJOR First two years Introductory Biology with labs Biology 117 AND INTRODUCTION TO ORGANISMAL AND POPULATION BIOLOGY BIOL 105 GENERAL BIOLOGY II Biology 118 INTRODUCTION TO CELL AND MOLECULAR BIOLOGY BIOL 104 GENERAL BIOLOGY I Introductory Chemistry with labs Chemistry 107 AND INTRODUCTORY

Suzuki, Masatsugu

360

BIOLOGY MAJOR First two years  

E-Print Network [OSTI]

BIOLOGY MAJOR First two years Introductory Biology with labs Biology 117 AND INTRODUCTION TO ORGANISMAL AND POPULATION BIOLOGY BIO 1580 PRINCIPLES OF BIOLOGY II Biology 118 INTRODUCTION TO CELL AND MOLECULAR BIOLOGY BIO 1570 PRINCIPLES OF BIOLOGY I Introductory Chemistry with labs Chemistry 107

Suzuki, Masatsugu

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

BIOLOGY MAJOR First two years  

E-Print Network [OSTI]

BIOLOGY MAJOR First two years Introductory Biology with labs Biology 117 AND INTRODUCTION TO ORGANISMAL AND POPULATION BIOLOGY BIO 102 GENERAL BIOLOGY II Biology 118 INTRODUCTION TO CELL AND MOLECULAR BIOLOGY BIO 101 GENERAL BIOLOGY I Introductory Chemistry with labs Chemistry 107 AND INTRODUCTORY

Suzuki, Masatsugu

362

BIOLOGY MAJOR First two years  

E-Print Network [OSTI]

BIOLOGY MAJOR First two years Introductory Biology with labs Biology 117 AND INTRODUCTION TO ORGANISMAL AND POPULATION BIOLOGY BIOL 117 + BIOL 118 GENERAL BIOLOGY II and LAB Biology 118 INTRODUCTION TO CELL AND MOLECULAR BIOLOGY BIOL 115 + BIOL 116 GENERAL BIOLOGY I and LAB Introductory Chemistry

Suzuki, Masatsugu

363

BIOLOGY MAJOR First two years  

E-Print Network [OSTI]

BIOLOGY MAJOR First two years Introductory Biology with labs Biology 117 AND INTRODUCTION TO ORGANISMAL AND POPULATION BIOLOGY BI 202 GENERAL BIOLOGY II Biology 118 INTRODUCTION TO CELL AND MOLECULAR BIOLOGY BI 201 GENERAL BIOLOGY I Introductory Chemistry with labs Chemistry 107 AND INTRODUCTORY CHEMISTRY

Suzuki, Masatsugu

364

BIOLOGY MAJOR First two years  

E-Print Network [OSTI]

BIOLOGY MAJOR First two years Introductory Biology with labs Biology 117 AND INTRODUCTION TO ORGANISMAL AND POPULATION BIOLOGY BIO 152 GENERAL BIOLOGY I Biology 118 INTRODUCTION TO CELL AND MOLECULAR BIOLOGY BIO 151 GENERAL BIOLOGY II Introductory Chemistry with labs Chemistry 107 AND INTRODUCTORY

Suzuki, Masatsugu

365

BIOLOGY MAJOR First two years  

E-Print Network [OSTI]

BIOLOGY MAJOR First two years Introductory Biology with labs Biology 117 AND INTRODUCTION TO ORGANISMAL AND POPULATION BIOLOGY BIO 156 GENERAL BIOLOGY II Biology 118 INTRODUCTION TO CELL AND MOLECULAR BIOLOGY BIO 155 GENERAL BIOLOGY I Introductory Chemistry with labs Chemistry 107 AND INTRODUCTORY

Suzuki, Masatsugu

366

BIOLOGY MAJOR First two years  

E-Print Network [OSTI]

BIOLOGY MAJOR First two years Introductory Biology with labs Biology 117 AND INTRODUCTION TO ORGANISMAL AND POPULATION BIOLOGY BIOL 1520 GENERAL BIOLOGY II Biology 118 INTRODUCTION TO CELL AND MOLECULAR BIOLOGY BIOL 1510 GENERAL BIOLOGY I Introductory Chemistry with labs Chemistry 107 AND INTRODUCTORY

Suzuki, Masatsugu

367

BIOLOGY MAJOR First two years  

E-Print Network [OSTI]

BIOLOGY MAJOR First two years Introductory Biology with labs Biology 117 AND INTRODUCTION TO ORGANISMAL AND POPULATION BIOLOGY BIO 152 / BY 52 MODERN BIOLOGY II Biology 118 INTRODUCTION TO CELL AND MOLECULAR BIOLOGY BIO 150 / BY 50 MODERN BIOLOGY I Introductory Chemistry with labs Chemistry 107

Suzuki, Masatsugu

368

BIOLOGY MAJOR First two years  

E-Print Network [OSTI]

BIOLOGY MAJOR First two years Introductory Biology with labs Biology 117 AND INTRODUCTION TO ORGANISMAL AND POPULATION BIOLOGY BIO 220 BIOLOGY II Biology 118 INTRODUCTION TO CELL AND MOLECULAR BIOLOGY BIO 210 BIOLOGY I Introductory Chemistry with labs Chemistry 107 AND INTRODUCTORY CHEMISTRY I CHE 201

Suzuki, Masatsugu

369

BIOLOGY MAJOR First two years  

E-Print Network [OSTI]

BIOLOGY MAJOR First two years Introductory Biology with labs Biology 117 AND INTRODUCTION TO ORGANISMAL AND POPULATION BIOLOGY BIOL 102 GENERAL BIOLOGY II Biology 118 INTRODUCTION TO CELL AND MOLECULAR BIOLOGY BIOL 101 GENERAL BIOLOGY I Introductory Chemistry with labs Chemistry 107 AND INTRODUCTORY

Suzuki, Masatsugu

370

BIOLOGY MAJOR First two years  

E-Print Network [OSTI]

BIOLOGY MAJOR First two years Introductory Biology with labs Biology 117 AND INTRODUCTION TO ORGANISMAL AND POPULATION BIOLOGY BIO 110 PRINCIPLES OF BIOLOGY II Biology 118 INTRODUCTION TO CELL AND MOLECULAR BIOLOGY BIO 109 PRINCIPLES OF BIOLOGY I Introductory Chemistry with labs Chemistry 107

Suzuki, Masatsugu

371

BIOLOGY MAJOR First two years  

E-Print Network [OSTI]

BIOLOGY MAJOR First two years Introductory Biology with labs Biology 117 AND INTRODUCTION TO ORGANISMAL AND POPULATION BIOLOGY SC 139 INTRODUCTORY BIOLOGY: ANIMALS AND PLANTS Biology 118 INTRODUCTION TO CELL AND MOLECULAR BIOLOGY SC 135 INTRODUCTORY BIOLOGY: MOLECULES AND CELLS Introductory Chemistry

Suzuki, Masatsugu

372

BIOLOGY MAJOR First two years  

E-Print Network [OSTI]

BIOLOGY MAJOR First two years Introductory Biology with labs Biology 117 AND INTRODUCTION TO ORGANISMAL AND POPULATION BIOLOGY BIO 117 PRINCIPLES OF BIOLOGY I Biology 118 INTRODUCTION TO CELL AND MOLECULAR BIOLOGY BIO 118 PRINCIPLES OF BIOLOGY II Introductory Chemistry with labs Chemistry 107

Suzuki, Masatsugu

373

BIOLOGY MAJOR First two years  

E-Print Network [OSTI]

BIOLOGY MAJOR First two years Introductory Biology with labs Biology 117 AND INTRODUCTION TO ORGANISMAL AND POPULATION BIOLOGY BIO 132 PRINCIPLES OF BIOLOGY 2 Biology 118 INTRODUCTION TO CELL AND MOLECULAR BIOLOGY BIO 131 PRINCIPLES OF BIOLOGY 1 Introductory Chemistry with labs Chemistry 107

Suzuki, Masatsugu

374

BIOLOGY MAJOR First two years  

E-Print Network [OSTI]

BIOLOGY MAJOR First two years Introductory Biology with labs Biology 117 AND INTRODUCTION TO ORGANISMAL AND POPULATION BIOLOGY BI 102 GENERAL BIOLOGY II Biology 118 INTRODUCTION TO CELL AND MOLECULAR BIOLOGY BI 101 GENERAL BIOLOGY I Introductory Chemistry with labs Chemistry 107 AND INTRODUCTORY CHEMISTRY

Suzuki, Masatsugu

375

BIOLOGY MAJOR First two years  

E-Print Network [OSTI]

BIOLOGY MAJOR First two years Introductory Biology with labs Biology 117 AND INTRODUCTION TO ORGANISMAL AND POPULATION BIOLOGY BIO 01400 GENERAL BIOLOGY II Biology 118 INTRODUCTION TO CELL AND MOLECULAR BIOLOGY BIO 01300 GENERAL BIOLOGY I Introductory Chemistry with labs Chemistry 107 AND INTRODUCTORY

Suzuki, Masatsugu

376

BIOLOGY MAJOR First two years  

E-Print Network [OSTI]

BIOLOGY MAJOR First two years Introductory Biology with labs Biology 117 AND INTRODUCTION TO ORGANISMAL AND POPULATION BIOLOGY BIO 106H GENERAL BIOLOGY II HONORS Biology 118 INTRODUCTION TO CELLULAR AND MOLECULAR BIOLOGY BIO 105H GENERAL BIOLOGY I HONORS Introductory Chemistry with labs Chemistry 107

Suzuki, Masatsugu

377

BIOLOGY MAJOR First two years  

E-Print Network [OSTI]

BIOLOGY MAJOR First two years Introductory Biology with labs Biology 117 AND INTRODUCTION TO ORGANISMAL AND POPULATION BIOLOGY BI 102 GENERAL BIOLOGY 2 Biology 118 INTRODUCTION TO CELL AND MOLECULAR BIOLOGY BI 101 GENERAL BIOLOGY 1 Introductory Chemistry with labs Chemistry 107 AND INTRODUCTORY CHEMISTRY

Suzuki, Masatsugu

378

Annual Review of the Year  

E-Print Network [OSTI]

will play a major role in cutting Scotland's carbon footprint as well as positioning forestry to be an increasingly important player in the national economy in the next few years. But carbon-sequestering wood can substitute for more than just carbon-emitting fuels. It can also replace carbon-intensive materials

379

Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review  

SciTech Connect (OSTI)

The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas and nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).

Thiel, E.C.; Fuhrman, P.W.

2002-05-30T23:59:59.000Z

380

Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review  

SciTech Connect (OSTI)

The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas and nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).

Thiel, Elizabeth Chilcote

2002-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Fiscal Year 2013 Revegetation Assessment  

SciTech Connect (OSTI)

This report summarizes the Fiscal Year 2013 Revegetation Assessment by Battelle Energy Alliance, LLC. This assessment was conducted to supplement documentation related to the Storm Water Pollution Prevention Plan for Construction Activities and to ensure that disturbed vegetation and soil at various locations are being restored. This report provides the following information for each site being monitored by the Idaho National Laboratory Environmental Support and Services: Summary of each site Assessment of vegetation status and site stabilization at each location Actions and Resolutions for each site. Six disturbed sites were evaluated for this assessment. One has achieved final stabilization. The remaining five sites not meeting the criteria for final stabilization will be evaluated again in the next fiscal year.

Jenifer Nordstrom

2013-11-01T23:59:59.000Z

382

Fiscal Year 2012 Revegetation Assessment  

SciTech Connect (OSTI)

This report summarizes the Fiscal Year 2012 Revegetation Assessment by Battelle Energy Alliance, LLC. This assessment was conducted to supplement documentation related to the Storm Water Pollution Prevention Plan for Construction Activities and to ensure that disturbed vegetation and soil at various locations are being restored. This report provides the following information for each site being monitored by the Idaho National Laboratory Environmental Support and Services: • Summary of each site • Assessment of vegetation status and site stabilization at each location • Actions and Resolutions for each site. Ten disturbed sites were evaluated for this assessment. Six have achieved final stabilization. The remaining four sites not meeting the criteria for final stabilization will be evaluated again in the next fiscal year.

Jenifer Nordstrom

2012-11-01T23:59:59.000Z

383

Aggregate Transfers Historical Yearly Peak  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre theAdministratorCFM LEAPAgenda Agenda Large

384

Northeast Regional Biomass Program. Ninth year, Fourth quarterly report, July--September 1992  

SciTech Connect (OSTI)

The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

Lusk, P.D.

1992-12-01T23:59:59.000Z

385

Grand Junction Projects Office site environmental report for calendar year 1992  

SciTech Connect (OSTI)

This report presents information pertaining to environmental activities conducted during calendar year 1992 at the US Department of Energy Grand Junction Projects Office (DOE-GJPO) facility in Colorado. Environmental activities conducted at the GJPO facility during 1992 included those associated with environmental compliance, site remediation, off-site dose modeling, and radiological and nonradiological monitoring. Four phases of the on-site Grand Junction Projects Office Remedial Action Project were completed in 1992. Remediation activities, which included the removal of 161,589 tons of uranium-mill-tailings-contaminated material from the facility, were conducted in compliance with all applicable permits. Off-site dose modeling for the GJPO was conducted to determine compliance with current National Emission Standards for Hazardous Air Pollutants, Subpart H, and applicable DOE Orders (5400.1 and 5400.5). The total off-site EDE to the public from all sources of radiation emanating from the facility (radon, air particulates, gamma) was calculated as 9 mrem/yr, which is well below the DOE dose limit of 100 mrem/yr above background. The radiological and nonradiological monitoring program at the GJPO facility included monitoring of activities that generate potentially hazardous or toxic wastes and monitoring of ambient air, surface water, and ground water.

Not Available

1993-05-01T23:59:59.000Z

386

Earth: 15 Million Years Ago  

E-Print Network [OSTI]

In Einstein's general relativity theory the metric component gxx in the direction of motion (x-direction) of the sun deviates from unity due to a tensor potential caused by the black hole existing around the center of the galaxy. Because the solar system is orbiting around the galactic center at 200 km/s, the theory shows that the Newtonian gravitational potential due to the sun is not quite radial. At the present time, the ecliptic plane is almost perpendicular to the galactic plane, consistent with this modification of the Newtonian gravitational force. The ecliptic plane is assumed to maintain this orientation in the galactic space as it orbits around the galactic center, but the rotational angular momentum of the earth around its own axis can be assumed to be conserved. The earth is between the sun and the galactic center at the summer solstice all the time. As a consequence, the rotational axis of the earth would be parallel to the axis of the orbital rotation of the earth 15 million years ago, if the solar system has been orbiting around the galactic center at 200 km/s. The present theory concludes that the earth did not have seasons 15 million years ago. Therefore, the water on the earth was accumulated near the poles as ice and the sea level was very low. Geological evidence exists that confirms this effect. The resulting global ice-melting started 15 million years ago and is ending now.

Masataka Mizushima

2008-10-13T23:59:59.000Z

387

Fiscal Year 2009 Revegetation Assessment  

SciTech Connect (OSTI)

This report summarizes the Fiscal Year 2009 Revegetation Assessment by Battelle Energy Alliance, LLC. This assessment was conducted to supplement documentation related to the Storm Water Pollution Prevention Plan for Construction Activities and to ensure that disturbed vegetation and soil at various locations are being restored. This report provides the following information for each site being monitored by the Idaho National Laboratory Environmental Support and Services: • Summary of each site • Assessment of vegetation status and site stabilization at each location • Recommendation(s) for each site.

Michael Lewis

2009-10-01T23:59:59.000Z

388

Fiscal Year 2010 Revegetation Assessment  

SciTech Connect (OSTI)

This report summarizes the Fiscal Year 2010 Revegetation Assessment by Battelle Energy Alliance, LLC. This assessment was conducted to supplement documentation related to the Storm Water Pollution Prevention Plan for Construction Activities and to ensure that disturbed vegetation and soil at various locations are being restored. This report provides the following information for each site being monitored by the Idaho National Laboratory Environmental Support and Services: • Summary of each site • Assessment of vegetation status and site stabilization at each location • Recommendation(s) for each site.

Jenifer Nordstrom; Mike Lewis

2010-11-01T23:59:59.000Z

389

Fiscal Year 2011 Congressional Budget  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES ANDIndustrialEnergyFinal FY8 of 864 1.0 EXECUTIVE Energy Energy1

390

Fiscal Year 2012 Congressional Budget  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES ANDIndustrialEnergyFinal FY8 of 864 1.0 EXECUTIVE Energy Energy12

391

Year STB EIA STB EIA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.0 52,418.4520.7 W203,449.8 100,779.27

392

Year STB EIA STB EIA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.0 52,418.4520.7 W203,449.8

393

Year STB EIA STB EIA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.0 52,418.4520.7 W203,449.894 - $14.26

394

Year STB EIA STB EIA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.0 52,418.4520.7 W203,449.894 -

395

Year STB EIA STB EIA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.0 52,418.4520.7 W203,449.894 -74 -

396

Year STB EIA STB EIA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.0 52,418.4520.7 W203,449.894 -74 -41

397

Year STB EIA STB EIA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.0 52,418.4520.7 W203,449.894 -74

398

Year STB EIA STB EIA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.0 52,418.4520.7 W203,449.894

399

Concurrent Transfers Historical Yearly Peak  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositional VariationCluster) |About Us /Transfers

400

Transfer Activity Historical Yearly Peak  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler Tina ButlerTodayTransForum TransForumActivity Historical

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

WIPP_Marks_12_Years  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014WIPP's Scott Maxwell

402

Previous years User Surveys | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home DesignPresentations Presentations SortConferencesMagnetic

403

2013 Director's New Year Address  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H. I. Park,October 2013Agenda3 2013320132013

404

Planning for Years to Come  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic Theory and ModelingPink SkiesEXTERNALa

405

Microsoft Word - The Oppenheimer Years  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs Assessment0Investigations9,5

406

200 Years of Arc Discharges  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite JC-118794 PREPRINTWillisHormetic effect969

407

Two Year Difference | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof Energy Two CompaniesTwo Studies Reveal Details

408

TEN-YEAR CAPITAL PROGRAM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout »LabSustainabilitySynthetic fuelTPension PlanTEAM

409

Coal is a combustible sedimentary rock and a valuable economic resource. During the Pennsylvanian Period  

E-Print Network [OSTI]

Coal is a combustible sedimentary rock and a valuable economic resource. During the Pennsylvanian of years produced the bituminous coals currently found in southwestern Indiana. Bituminous coals in Indiana currently ranks as the seventh-largest coal-producing state in the nation and has an estimated 17.57 billion

Polly, David

410

Emissions Inventory Report Summary Reporting Requirements for the New Mexico Administrative Code, Title 20, Chapter 2, Part 73 (20 NMAC 2.73) for Calendar Year 1998  

SciTech Connect (OSTI)

Los Alamos National Laboratory (the Laboratory) is subject to emissions reporting requirements for regulated air contaminants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20 NMAC 2.73), Notice of Intent and Emissions Inventory Requirements. The Laboratory has the potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, and volatile organic compounds. For 1998, combustion products from the industrial sources contributed the greatest amount of criteria air pollutants from the Laboratory. Research and development activities contributed the greatest amount of volatile organic compounds. Emissions of beryllium and aluminum were reported for activities permitted under 20 NMAC 2.72 Construction Permits.

Air Quality Group, ESH-17

1999-09-01T23:59:59.000Z

411

Emissions Inventory Report Summary: Reporting Requirements for the New Mexico Administrative code, Title 20, Chapter 2, Part 73 (20 NMAC 2.73) for Calendar Year 1997  

SciTech Connect (OSTI)

Los Alamos National Laboratory (the Laboratory) is subject to emissions reporting requirements for regulated air contaminants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73, (20 NMAC 2.73), Notice of Intent and Emissions Inventory Requirements. The Laboratory has the potential to emit 100 tons per year of suspended particulate matter (PM), nitrogen oxides (NO{sub x}), carbon monoxide (CO), and volatile organic compounds (VOCs). For 1997, combustion products from the industrial sources contributed the greatest amount of regulated air emissions from the Laboratory. Research and development activities contributed the greatest amount of VOCs. Emissions of beryllium and aluminum were reported for activities permitted under 20 NMAC 2.72, Construction Permits.

NONE

1999-01-01T23:59:59.000Z

412

(Data in thousand metric tons of boric oxide (B O ), unless otherwise noted)2 3 Domestic Production and Use: The estimated value of boric oxide contained in minerals and compounds produced in  

E-Print Network [OSTI]

to reduce debt. The company leased the facilities for a term of 15 years. Electricity and steam produced), 14% (Foreign). Government Stockpile: None. Prepared by Phyllis A. Lyday, (703) 648-7713 [Fax: (703, insulating and reinforcing fiberglass, and agriculture. One company sold its electric and steam generating

413

Budget estimates, fiscal year 1997. Volume 12  

SciTech Connect (OSTI)

This report contains the fiscal year budget justification to Congress. The budget provides estimates for salaries and expenses and for the Office of the Inspector General for fiscal year 1997.

NONE

1996-03-01T23:59:59.000Z

414

West Virginia University 1 First Year Experience  

E-Print Network [OSTI]

West Virginia University 1 First Year Experience FAQs · What is a First-Year Seminar? · Who must the knowledge and skills necessary for academic success. What are the goals and objectives of FYS? 1. Set

Mohaghegh, Shahab

415

Vehicle technologies program Government Performance and Results Act (GPA) report for fiscal year 2012  

SciTech Connect (OSTI)

The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy has defined milestones for its Vehicle Technologies Program (VTP). This report provides estimates of the benefits that would accrue from achieving these milestones relative to a base case that represents a future in which there is no VTP-supported vehicle technology development. Improvements in the fuel economy and reductions in the cost of light- and heavy-duty vehicles were estimated by using Argonne National Laboratory's Autonomie powertrain simulation software and doing some additional analysis. Argonne also estimated the fraction of the fuel economy improvements that were attributable to VTP-supported development in four 'subsystem' technology areas: batteries and electric drives, advanced combustion engines, fuels and lubricants, and materials (i.e., reducing vehicle mass, called 'lightweighting'). Oak Ridge National Laboratory's MA{sup 3}T (Market Acceptance of Advanced Automotive Technologies) tool was used to project the market penetration of light-duty vehicles, and TA Engineering's TRUCK tool was used to project the penetrations of medium- and heavy-duty trucks. Argonne's VISION transportation energy accounting model was used to estimate total fuel savings, reductions in primary energy consumption, and reductions in greenhouse gas emissions that would result from achieving VTP milestones. These projections indicate that by 2030, the on-road fuel economy of both light- and heavy-duty vehicles would improve by more than 20%, and that this positive impact would be accompanied by a reduction in oil consumption of nearly 2 million barrels per day and a reduction in greenhouse gas emissions of more than 300 million metric tons of CO{sub 2} equivalent per year. These benefits would have a significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.

Ward, J.; Stephens, T. S.; Birky, A. K. (Energy Systems); (DOE-EERE); (TA Engineering)

2012-08-10T23:59:59.000Z

416

Secretary Chu Celebrates NNSA's 10-Year Anniversary  

ScienceCinema (OSTI)

Department of Energy Secretary Steven Chu speaks at NNSA's 10-year anniversary celebration on April 28, 2010.

Department of Energy Secretary Steven Chu

2010-09-01T23:59:59.000Z

417

Foundation Year Programmes: AGuideforParents  

E-Print Network [OSTI]

Foundation Year Programmes: AGuideforParents #12;Welcometo Southampton Studying in the UK is a long exciting adventures of their life. Our foundation year courses are designed to help your son or daughter, foundation year students who meet the required criteria are guaranteed a place on an undergraduate course

Anderson, Jim

418

PHMC Year 2000 handbook: Volume 1  

SciTech Connect (OSTI)

The PHMC [Project Hanford Management Contract] Year 2000 Project involves the effective cooperation and participation of the Year 2000 Project Office, FDH Project Direction, FDH Chief Information Officer, major subcontractors and DynCorp. The primary responsibilities of the Year 2000 Project Office is to develop and facilitate a Year 2000 approach, provide an awareness program, report status, and perform compliance assurance reviews. The primary responsibility of the FDH Project Directors is to direct the major subcontractors, and DynCorp toward the successful completion of Year 2000 activities.

Layfield, K.A.

1998-09-02T23:59:59.000Z

419

U.S. Department of Energy Grand Junction Projects Office site environmental report for calendar year 1995  

SciTech Connect (OSTI)

This report presents information pertaining to environmental activities conducted during calendar year 1995 at the US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Environmental activities conducted at the GJPO facility during 1995 were associated with mixed-waste treatment, site remediation, off-site dose modeling, and radiological and nonradiological monitoring. As part of the GJPO Mixed-Waste Treatment Program, on-site treatability studies were conducted in 1995 that made use of pilot-scale evaporative-oxidation and thermal-desorption units and bench-scale stabilization. DOE-GJPO used some of its own mixed-waste as well as samples received from other DOE sites for these treatability studies. These studies are expected to conclude in 1996. Removal of radiologically contaminated materials from GJPO facility buildings was conducted under the provisions of the Grand Junction Projects Office Remedial Action Project. Remediation activities included the removal of 394 metric tons of contaminated material from Buildings 18 and 28 and revegetation activities on the GJPO site; remediation was conducted in compliance with applicable permits.

NONE

1996-05-01T23:59:59.000Z

420

Calendar Year 2014 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2014 Calendar Year 2014 RSS October 17, 2014 Special Review: DOEIG-0923 Issues Pertaining to the Termination of Ms. Donna Busche, a Contractor Employee at the Waste Treatment...

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

BSc Computing Year 3 Graphics Programming  

E-Print Network [OSTI]

BSc Computing Year 3 Graphics Programming 3D Maze Room Assignment Two by Richard M. Mann: 20032144 .................................................................................7 Figure 4: Controls Key-Map ......................................................................8

Hill, Gary

422

EMSL Fiscal Year 2008 Annual Report  

SciTech Connect (OSTI)

This annual report provides details on the research conducted at EMSL--the Environmental Molecular Sciences Laboratory in Fiscal Year 2008.

Showalter, Mary Ann

2009-01-23T23:59:59.000Z

423

Earth: The Early Years We discuss ...  

E-Print Network [OSTI]

Earth: The Early Years We discuss ... · What happened to the Earth during the first few billion)? · What is the relationship to (early) life? #12;Age of Earth James Ussher (17th C) biblical account: 6: 20-40 m.y. (million years!) Charles Darwin evolution >300 m.y. Lord Kelvin (1880's) cooling Earth: 50

424

Journal of Melittology: First year ‘abuzz’  

E-Print Network [OSTI]

State University, 100 Campus Drive, Weatherford, Oklahoma 73096, USA (victorgonzab@gmail.com). This year, on the 11th of January, we celebrated the first anniversary of the Journal of Melittology (JoM). What many years earlier started as a dream...

Engel, Michael S.; Gonzalez, Victor H.; Michener, Charles D.

2014-01-18T23:59:59.000Z

425

BIO-OPTICAL PRESENTATIONS YEARS 2000 2004  

E-Print Network [OSTI]

BIO-OPTICAL PRESENTATIONS YEARS 2000 ­ 2004 YEAR 00-01 Armstrong, R.A., F. Gilbes, R. Guerrero. Lopez, and F. Gilbes, 2000, "Apparent Optical Properties at the Caribbean Time Station", Ocean Optics XV, Monaco. Gilbes, F., and R.A. Armstrong, 2000, "Inherent Optical Properties at the Caribbean Time Series

Gilbes, Fernando

426

Working Gas % Change from Year Ago  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet)perWesternPipeline2 U.S.3

427

Working Gas Volume Change from Year Ago  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet)perWesternPipeline2 U.S.3-377,507

428

Natural Gas 2006 Year-In-Review  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Mar Apr MayYear Monthly Annual530 47421 20 210 0 06

429

Natural Gas 2007 Year-In-Review  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Mar Apr MayYear Monthly Annual530 47421 20 210 0 067

430

PHMC Year 2000: Status reporting for mission essential Year 2000 projects. Revision 0, Volume 3  

SciTech Connect (OSTI)

The PHMC Year 2000 status reporting process is designed to encompass the reporting requirements of the Office of Management and Budget (OMB), DOE HQ, RL and the PHMC for mission essential Year 2000 projects. Status reporting is required for all Year 2000 projects. The Year 2000 project list will be maintained current as Year 2000 projects are modified, added or deleted. Reporting is required until a Year 2000 project has completed compliance assurance. Some projects will be identified as DOE HQ reportable. These are projects determined to be the most critical and due the attention of DOE HQ.

Layfield, K.A.

1998-09-02T23:59:59.000Z

431

Emissions Inventory Report Summary: Reporting Requirements for the New Mexico Administrative Code, Title 20, Chapter 2, Part 73 (20.2.73 NMAC) for Calendar Year 2003  

SciTech Connect (OSTI)

Los Alamos National Laboratory is subject to annual emissions-reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. For calendar year 2003, the Technical Area 3 steam plant and the air curtain destructors were the primary sources of criteria air pollutants from the Laboratory, while the air curtain destructors and chemical use associated with research and development activities were the primary sources of volatile organic compounds and hazardous air pollutants. Emissions of beryllium and aluminum were reported for activities permitted under 20.2.72 NMAC. Hazardous air pollutant emissions were reported from chemical use as well as from all combustion sources. In addition, estimates of particulate matter with diameter less than 2.5 micrometers and ammonia were provided as requested by the New Mexico Environment Department, Air Quality Bureau.

M. Stockton

2005-01-01T23:59:59.000Z

432

Occupational and traning requirements for expanded coal production (as of October 1980). [Forecasting to 1995  

SciTech Connect (OSTI)

This study was initiated because of the anticipated rapid growth in trained personnel requirements in bituminous coal mining, and because the industry had already experienced significant problems in recruiting skilled manpower in the course of its employment expansion during the 1970's. Employment in bituminous coal mining is projected to nearly double, from 234,000 in 1977 to 456,000 in 1995, as the net result of a projected threefold increase in coal output to nearly 2.0 billion in 1995 and of an expected significant improvement in overall productivity. A large proportion of current coal mining employees are in occupations which require significant amounts of training for effective work performance. Employment growth to 1955 will be most rapid in those occupations requiring the greatest training or educational preparation. The new training infrastructure which has emerged to meet these needs includes both internal, company-operated training programs and those offered by various external providers. Among the latter are: Vocational schools, community colleges, and university extension departments; public agencies, such as MSHA and state mining departments; coal industry trade associations; and vendors or training consultant groups. The Conference Board survey of coal industry training programs, conducted in late 1979, was designed to provide comprehensive data on the scope of the coal industry's own training activities and on related training issues, based on a mail questionnaire survey addressed to all companies producing 300,000 or more tons per year. The training programs are described with emphasis on time changes, regional effects and implications for a coordinated plan.

Not Available

1982-04-01T23:59:59.000Z

433

E-Print Network 3.0 - adaptation and use of bituminous materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University, School of Forest Resources and Environmental Science, Aspen FACE (Free-Air Carbon Dioxide Enrichment) Experiment Collection: Environmental Sciences and Ecology ;...

434

Development and evaluation of an automated reflectance microscope system for the petrographic characterization of bituminous coals  

SciTech Connect (OSTI)

The development of automated coal petrographic techniques will lessen the demands on skilled personnel to do routine work. This project is concerned with the development and successful testing of an instrument which will meet these needs. The fundamental differences in reflectance of the three primary maceral groups should enable their differentiation in an automated-reflectance frequency histogram (reflectogram). Consequently, reflected light photometry was chosen as the method for automating coal petrographic analysis. Three generations of an automated system (called Rapid Scan Versions I, II and III) were developed and evaluated for petrographic analysis. Their basic design was that of a reflected-light microscope photometer with an automatic stage, interfaced with a minicomputer. The hardware elements used in the Rapid Scan Version I limited the system's flexibility and presented problems with signal digitization and measurement precision. Rapid Scan Version II was designed to incorporate a new microscope photometer and computer system. A digital stepping stage was incorporated into the Rapid Scan Version III system. The precision of reflectance determination of this system was found to be +- 0.02 percent reflectance. The limiting factor in quantitative interpretation of Rapid Scan reflectograms is the resolution of reflectance populations of the individual maceral groups. Statistical testing indicated that reflectograms were highly reproducible, and a new computer program, PETAN, was written to interpret the curves for vitrinite reflectance parameters ad petrographic.

Hoover, D. S.; Davis, A.

1980-10-01T23:59:59.000Z

435

Eastern gas shales bibliography selected annotations: gas, oil, uranium, etc. Citations in bituminous shales worldwide  

SciTech Connect (OSTI)

This bibliography contains 2702 citations, most of which are annotated. They are arranged by author in numerical order with a geographical index following the listing. The work is international in scope and covers the early geological literature, continuing through 1979 with a few 1980 citations in Addendum II. Addendum I contains a listing of the reports, well logs and symposiums of the Unconventional Gas Recovery Program (UGR) through August 1979. There is an author-subject index for these publications following the listing. The second part of Addendum I is a listing of the UGR maps which also has a subject-author index following the map listing. Addendum II includes several important new titles on the Devonian shale as well as a few older citations which were not found until after the bibliography had been numbered and essentially completed. A geographic index for these citations follows this listing.

Hall, V.S. (comp.)

1980-06-01T23:59:59.000Z

436

THE EFFECTS OF SOLVENTS ON SUB-BITUMINOUS COAL BELOW ITS PYROLYSIS TEMPERATURE  

E-Print Network [OSTI]

48. Table 1. Roland seam coal analyses Proximate analysis: (some ext'racts of Roland seam coal - 4 hours extraction at5. Extraction of Roland seam coal with solvent mixtures for

Grens III., Edward A.

2013-01-01T23:59:59.000Z

437

INTERACTION OF A SUB-BITUMINOUS COAL WITH A STRONG ACID AND A STRONG BASE  

E-Print Network [OSTI]

alkali con- alkali-soluble Seam coal over the temperaturefor the Pittsburgh Seam coal. Another important conclusionVI, Composition of Roland seam coal--ultimate analysis~ wt%,

Seth, M.

2010-01-01T23:59:59.000Z

438

HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS  

E-Print Network [OSTI]

variations in coal from rank to rank, mine to mine, seam tocoal was supplied by the Wyodak t. Resources Development Corporation from the Roland top seam

Holten, R.R.

2010-01-01T23:59:59.000Z

439

HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS  

E-Print Network [OSTI]

for Liquefaction and Gasification of Western Coals", in5272 (1976). COal Processing - Gasification, Liguefaction,or gaseous fuels, coal gasification has advanced furthest

Holten, R.R.

2010-01-01T23:59:59.000Z

440

Solvent extraction of bituminous coals using light cycle oil: characterization of diaromatic products in liquids  

SciTech Connect (OSTI)

Many studies of the pyrolytic degradation of coal-derived and petroleum-derived aviation fuels have demonstrated that the coal-derived fuels show better thermal stability, both with respect to deposition of carbonaceous solids and cracking to gases. Much previous work at our institute has focused on the use of refined chemical oil (RCO), a distillate from the refining of coal tar, blended with light cycle oil (LCO) from catalytic cracking of vacuum gas oil. Hydroprocessing of this blend forms high concentrations of tetralin and decalin derivatives that confer particularly good thermal stability on the fuel. However, possible supply constraints for RCO make it important to consider alternative ways to produce an 'RCO-like' product from coal in an inexpensive process. This study shows the results of coal extraction using LCO as a solvent. At 350{sup o}C at a solvent-to-coal ratio of 10:1, the conversions were 30-50 wt % and extract yields 28-40 wt % when testing five different coals. When using lower LCO/coal ratios, conversions and extract yields were much smaller; lower LCO/coal ratios also caused mechanical issues. LCO is thought to behave similarly to a nonpolar, non-hydrogen donor solvent, which would facilitate heat-induced structural relaxation of the coal followed by solubilization. The main components contributed from the coal to the extract when using Pittsburgh coal are di- and triaromatic compounds. 41 refs., 3 figs., 12 tabs.

Josefa M. Griffith; Caroline E. Burgess Clifford; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University, University Park, PA (United States). EMS Energy Institute

2009-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Evaluation of methods of mixing lime in bituminous paving mixtures in batch and drum plants  

E-Print Network [OSTI]

prepared mixtures, field mixtures obtained at the plant and pavement cores. Laboratory tests included Hveem and Marshall stability, resilient modulus and indirect tension. Mixture conditioning to evaluate resistance to moisture damage included vacuum... Mixed and Compacted Specimens Tensile Strength Ratio for Laboratory Mixed and Compacted Specimens 14 Marshall Stability Before and After 7-days Soaking in Water for Lab Mixed and Compacted Specimens 36 FIGURE Page 15 16 Hveem Stability Before...

Button, Joseph Wade

1984-01-01T23:59:59.000Z

442

Predictors of plasticity in bituminous coals. Technical progress report No. 7  

SciTech Connect (OSTI)

The 40-coal database for the prediction of the plastic properties of hvb coals has been completed. Statistical analysis has been commenced. Most of the 37 ostensibly independent experimental variables and the 22 derived variables are shown to have little or no predictive power. Approximately a dozen independent variables appear to be systematically related to plasticity. Maximum fluidity can be determined in several ways from Gieseler plastometer data. Under both ASTM and isothermal conditions, maximum fluidity can be predicted using just two independent variables with a standard linear regression model of the form ln(maximum fluidity) = ..beta../sub 0/ + ..beta../sub 1/*V/sub 1/ + ..beta../sub 2/*V/sub 2/ with correlation coefficients greater than .85. The use of three or four independent variables permits predictions with R greater than .90. Pyrolysis gas chromatography has emerged as a powerful and relatively inexpensive new tool for the characterization of coals. In conjunction with studies of extraction, extract characteristics, and residue swelling, pyrolysis/GC affords insights into the basic factors determining the plastic behavior of coals.

Lloyd, W.G.; Reasoner, J.W.; Hower, J.C.; Yates, L.P.; Clark, C.P.; Davis, E.; Fitzpatrick, A.; Reagles, C.L.; Whitt, J.M.

1983-06-13T23:59:59.000Z

443

Predictors of plasticity in bituminous coals. Technical progress report No. 2, March 1, 1982  

SciTech Connect (OSTI)

The approach of this study is to secure three dozen (or more) coals of varying rank, composition and plasticity, and to analyze these coals carefully by standard chemical and petrographic techniques. The bitumen fractions will be determined, both by THF (asphaltenes but not preasphaltenes) and DMF (everything). Pyrolysis gas chromatography on both whole coals and extracted residues will compare capacities to generate metaplast. Extracts from coals with plasticities differing by at least four orders of magnitude will be examined for identifiable differences; extraction residues will be subjected to differential FTIR analysis. All of the data will be combined and subjected to systematic statistical analysis with the objective of identifying predictors of coal plasticity. This report describes the work in the first six months of the study. During this period equipment and instrumentation has been obtained, 24 coal samples have been obtained, the nonclassical methods have been developed and checked out, and an appreciable amount of experimentl data has been obtained.

Lloyd, W. G.; Reasoner, J. W.; Hower, J. C.; Yates, L. P.; Clark, C. P.; Jones, T. M.; Sturgeon, L. P.; Whitt, J. M.

1982-03-01T23:59:59.000Z

444

Predictors of plasticity in bituminous coals. Technical progress report No. 5. [Gieseler plastometer  

SciTech Connect (OSTI)

The forty fresh coal samples have been obtained, and the proximate, ultimate and petrographic characterization on all samples is now completed. ASTM Gieseler plastometry analyses have been completed on all 40 coals, in quadruplicate, and the melting and coking slopes and intersection maximum fluidities have been estimated. Significant progress has been made in completing the nonstandard analyses which will provide an important part of the project database. Fifteen coals have been subjected to the 20-run sets of isothermal Gieseler analyses; the balance of this group is expected to be completed by mid-1983. Pyrolysis gas chromatogrpahy has been completed for 36 of the 40 coals. Quantitative extractions have now been completed for 32 of the 40 coals, both with tegrahydrofuran and with dimethylformamide. FTIR spectra have been obtained in sets of three (whole coal, residue from THF extraction, residue from DMF extraction) for 31 of the 40 coals. This report also includes a descriptive study by optical microscopy of selected coals and semi-cokes derived from these coals. Future work will include correlation analysis of the completed datasets, and an intensive study of the characteristics of six or seven coals selected from the present set.

Lloyd, W.G.; Reasoner, J.W.; Hower, J.C.; Yates, L.P.; Bowling, C.C.; Davis, E.; Whitt, J.M.

1982-12-01T23:59:59.000Z

445

Predictors of plasticity in bituminous coals. Technical progress report No. 3, June 1, 1982  

SciTech Connect (OSTI)

An additional 13 coals have been obtained, bringing the total to 37. Classical chemical and petrographic characterizations have been completed for most of the coals now in hand. The database for analytical pyrolysis/gas chromatography and for quantitative extraction (THF and DMF) has been more than doubled. The procedures for Fourier Transform infrared analysis have been further modified, making use of a new micropulverizer and drying system, and a procedure for the production of uniform and reproducible KBr pellets has been developed and is now in use. The first analytical isothermal plastometry (AIP) data have been obtained, on two highly plastic coals, and additional data are now being generated. Additional work will be carried out with the pyrolysis/GC system and the THF and DMF extraction work. With the progress made in FTIR spectra acquisition, it is expected to complete acquisition and storage of raw coal spectra and to commence application of techniques to provide differential spectrometric information. HPLC analysis of extracts now appears ready for standardization of procedure. Finally, with the data available, statistical analytical work will be initiated.

Lloyd, W.G.; Reasoner, J.W.; Hower, J.C.; Yates, L.P.; Bowling, C.C.; Jones, T.M.; Sturgeon, L.P.; Whitt, J.M.

1982-06-01T23:59:59.000Z

446

Predictors of plasticity in bituminous coals. Technical progress report No. 4, Part I of II  

SciTech Connect (OSTI)

We have substantially enlarged the analytical database developed from the first 37 coals obtained for this study. Pyrolysis/GC has now been completed for 30 coals, and THF and DMF quantitative extractions for 23 coals. FT-IR spectra have been obtained and disc-stored for all coals; differential analysis of these data is now commencing. The first statistical trial runs have been made. ASTM maximum fluidity can be predicted by a simple two-variable regression equation with R = 0.95. This initial success encourages us to undertake a more sophisticated examination of the interdependencies which are becoming evident as the database is built. Under the original work plan we are to enter an intensive Phase 2 study of six selected coals by January 1983.

Lloyd, W.G.; Reasoner, J.W.; Hower, J.C.; Yates, L.P.; Bowling, C.C.; Davis, E.; Jones, T.M.; Whitt, J.M.

1982-09-01T23:59:59.000Z

447

Predictors of plasticity in bituminous coals. Technical progress report No. 1  

SciTech Connect (OSTI)

The first dozen coals - high volatile B and C from western Kentucky - have been identified and samples obtained. Classical analyses are nearly completed on this first group. Method development work has been undertaken and is substantially completed for pyrolysis gas chromatography, quantitative extraction of bitumen fraction, and isothermal plastometry. The principal item of new equipment, a Fourier transform infrared spectrometer, has been purchased and has been delivered. It is planned to acquire and to commence classical (ASTM and petrographic) characterization of the second dozen coals to be used, and to commence the systematic acquisition of isothermal plastometric data, GC pyrograms, and quantitative extractions. Development work will be initiated on the statistical analytical approaches to be used, with the expectation of commencing the first statistical analysis in May 1982.

Lloyd, W.G.; Reasoner, J.W.; Jiminez, A.; Hower, J.C.; Yates, L.P.; Jones, T.M.

1981-12-01T23:59:59.000Z

448

Predictors of plasticity in bituminous coals. Technical progress report No. 8  

SciTech Connect (OSTI)

The greater part of the present study on predictors of coal fluidity has now been completed, with most of the developed database presented in the preceding Technical Progress Report. The one critical area in which we have fallen behind schedule is that of isothermal fluidity measurements at superatmospheric pressures. During the past quarter we have made several modifications to the experimental high-pressure Gieseler plastometer, and have been able to complete over 60 superatmospheric runs. This work will be completed and analyzed within the period of the 90-day no-cost extension which has been granted. The extra time has permitted completion of additional experiments in solvent extraction. During this period we have also completed characterization of THF extracts by HPLC, and characterization of coals, coal extraction residues and selected extracts by FTIR. 13 references, 25 tables.

Lloyd, W.G.; Reasoner, J.W.; Hower, J.C.; Yates, L.P.; Clark, C.P.; Davis, E.; Fitzpatrick, A.; Reagles, C.L.; Whitt, J.M.

1983-09-01T23:59:59.000Z

449

Predictors of plasticity in bituminous coals. Technical progress report No. 6  

SciTech Connect (OSTI)

We have completed the pyrolysis/gas chromatographic analysis of all 40 coals in the present study, at two temperatures, 450/sup 0/ and 650/sup 0/C. We have also completed triplicate quantitative extraction analyses of all 40 coals, using tetrahydrofuran as the extractant solvent, and have completed a parallel set of extractions using N,N-dimethylformamide as the extractant solvent. In addition, we have completed analysis of over 100 additional isothermal Gieseler plastometer runs, and have made the first series of quantitative estimates of H(aromatic)/H(aliphatic) ratios from Fourier Transform Infrared Spectroscopy data. Exploratory work has begun on the petrographic characterization of the semi-coke residues from Gieseler plastometer runs, and also in characterizing THF extracts by thin layer chromatography and by column chromatography (quantitative group separations). Proximate, ultimate and petrographic characterization of the 40 coals has been completed previously. We are now prepared to start a study, using freshly re-sampled coals, of the effects of varying pressure upon the several parameters of fluidity.

Lloyd, W.G.; Reasoner, J.W.; Hower, J.C.; Yates, L.P.; Bowling, C.C.; Davis, E.; Fitzpatrick, A.; Whitt, J.M.

1983-03-01T23:59:59.000Z

450

Thermo-Viscoelastic-Viscoplastic-Viscodamage-Healing Modeling of Bituminous Materials: Theory and Computation  

E-Print Network [OSTI]

……………… ……… 341 9.6. Extrapolation of the Rutting in 3D.……....………… 348 9.7. Comparison with Experimental Results.….………… 351 9.8. Conclusions………………………………………… 354 xviii CHAPTER Page X CONCLUSIONS AND RECOMMENDATIONS..…………… 356 10... prediction using viscoelastic- viscoplastic model and experimental data for the cyclic stress control test at 19oC when the stress amplitude is 750kPa. (a) Loading cycles 1-30; (b) Loading cycles 970-980……………….. 268 7.36 Comparison of the VE...

Darabi Konartakhteh, Masoud

2012-10-19T23:59:59.000Z

451

THE EFFECTS OF SOLVENTS ON SUB-BITUMINOUS COAL BELOW ITS PYROLYSIS TEMPERATURE  

E-Print Network [OSTI]

not hexane-solubles ("asphaltenes"), and pyridine- but notfractionated into oils, asphaltenes, and preasphaltenes, alltE;! nded to be largely asphaltenes and preasphaltenes, and

Grens III., Edward A.

2013-01-01T23:59:59.000Z

452

HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS  

E-Print Network [OSTI]

molecular-weight ranges of asphaltenes and preasphaltenes.consecutive reactions: coal asphaltenes oil Since the firstfirst being con- verted to asphaltenes. Recently, Sternberg,

Holten, R.R.

2010-01-01T23:59:59.000Z

453

Calendar Year 1997 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

May 1, 1997 Audit Report: CR-FS-97-02 Audit of the Department of Energy's Consolidated Financial Statements for Fiscal Year 1996 April 24, 1997 Audit Report: WR-FS-97-04 Report on...

454

Calendar Year 2009 | Department of Energy  

Office of Environmental Management (EM)

of the Stockpile Surveillance Program August 20, 2009 Inspection Report: INS-O-09-04 Yucca Mountain Project Purchase Card Programs previous 1 2 3 next Calendar Year Reports...

455

Cognitive Neuropsychology twenty years on Alfonso Caramazza  

E-Print Network [OSTI]

Cognitive Neuropsychology twenty years on Alfonso Caramazza Cognitive Neuropsychology Laboratory, Harvard University, Cambridge, MA, USA Max Coltheart Macquarie Centre for Cognitive Science, Macquarie University, Sydney, NSW, Australia Cognitive neuropsychology began in the second half of the nineteenth

Caramazza, Alfonso

456

500 Year Documentation Francis T. Marchese  

E-Print Network [OSTI]

Documentation, Design, Management. Keywords Digital art, conservation, requirements engineering. 1. THE PROBLEM500 Year Documentation Francis T. Marchese Pace University Computer Science Department New York, NY the requirements for creating documentation that will support an artwork's adaptation to future technology

Marchese, Francis

457

Fiscal Year 1997 (Summer 1996-Spring 1997)  

E-Print Network [OSTI]

Fiscal Year 1997 (Summer 1996-Spring 1997) A total of 517 students studied abroad; an additional 62) N Am: 36 (10) #12;Oceania: 39 (1) S Am: 100 (2) July, 1997 #12;

Willson, Stephen J.

458

New Years Revolutions | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CFLs, energy-saving incandescents, and LEDs - and upgrading 15 of the inefficient incandescent light bulbs in your home could save you about 50 per year. And if you haven't...

459

By Christopher Parker Class year? Hometown?  

E-Print Network [OSTI]

By Christopher Parker Class year? Hometown? - I'm class of 2010, Chemical Engineering major the opening for a tournament assistant. I'm al- ways in Keith or Jessica's office being the treasurer

460

Calendar Year 2009 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

on the Audit of National Security Technologies, LLC Costs Claimed under Department of Energy Contract No. DE-AC52-06NA25946 for Fiscal Year 2007 May 6, 2009 Audit Report: IG-0815...

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Profiling 1366 Technologies: One Year Later  

Broader source: Energy.gov [DOE]

Last January, we took a look at how ARPA-E performer, 1366 Technologies is working to dramatically reduce the cost of solar energy. A year later, we revisited their headquarters in Lexington, MA to...

462

Instructionally Related Activities Fiscal Year 20142015 Budget  

E-Print Network [OSTI]

#12; Instructionally Related Activities Fiscal Year 20142015 Budget California State University, Fullerton This budget has been approved by the President ......................................................................................................... ix Budget Policy Statements, Procedures, and Guidelines Role of the Chair, IRA Committee

de Lijser, Peter

463

Titan Student Centers Fiscal Year 20142015 Budget  

E-Print Network [OSTI]

#12; Titan Student Centers Fiscal Year 20142015 Budget California State University, Fullerton This budget has been approved by the ASI Board of Directors, the ASI% Budgeted # of Paying Students 7,500 37,250 34

de Lijser, Peter

464

1st Year Orientation Farid N. Najm  

E-Print Network [OSTI]

mobile, internet, sensors, HCI, energy, biology, medicine ... § Engineering can change the world § You and Program Advising � Counselling and Referrals § Contact: � Jennifer Fabro, First Year Counsellor � Curtis

Prodiæ, Aleksandar

465

Residential Refrigerator Recycling Ninth Year Retention Study  

E-Print Network [OSTI]

Residential Refrigerator Recycling Ninth Year Retention Study Study ID Nos. 546B, 563 Prepared RECYCLING PROGRAMS Study ID Nos. 546B and 563 Prepared for Southern California Edison Rosemead, California

466

Budget estimates fiscal year 1995: Volume 10  

SciTech Connect (OSTI)

This report contains the Nuclear Regulatory Commission (NRC) fiscal year budget justification to Congress. The budget provides estimates for salaries and expenses and for the Office of the Inspector General for fiscal year 1995. The NRC 1995 budget request is $546,497,000. This is an increase of $11,497,000 above the proposed level for FY 1994. The NRC FY 1995 budget request is 3,218 FTEs. This is a decrease of 75 FTEs below the 1994 proposed level.

Not Available

1994-02-01T23:59:59.000Z

467

Adams, JM (Dr) TUTORIAL (YEAR 2) -UG  

E-Print Network [OSTI]

(YEA JMA 48 AZ 04 TUTX-PH00-GM1 Sem1: 01-06,08-14 SGT-Grp A1 TUTORIAL (YEAR 3) - UG SP, AL, JLK, PJM BB 03 Sem1: 09,11,13 UCAS JSA, JA, DB, WNC, AD, OH, JLK, PJM, BNM, PHR, RPS, PDS, JAT, PMW, AL, SP LTL EXAMPHY1022mm Sem1: 07, 15 Test TUTORIAL (YEAR 3) SP, AL, JLK, PJM, BNM, JM Room to be advised

Stevenson, Paul

468

Five year rollover hedges for agricultural lenders  

E-Print Network [OSTI]

FIVE YEAR ROLLOVER HEDGES FOR AGRICULTURAL LEADERS A Professional Paper by John Christopher Floyd. Jr. Submitted to the College of Agriculture of Texas ARM University In Partial Fulfillment of the Requirements for the Degree of Master... of Agriculture May, 19BB Advisor Or. David J. Leatham Major Subject: Agricultural Economics FIVE YEAR ROLLOVER HEDGE FOR AGRICULTURAL LEMDERS A Professional Paper by John Christopher Floyd, Jr. Approved as to style and content by: an. Advis ry C...

Floyd, John Christopher

1988-01-01T23:59:59.000Z

469

architecture 2-year master of architecture option deadlinesmaster of architecture 3-year master of architecture option  

E-Print Network [OSTI]

credits) 1 environmental technology course (3 credits) 2 architectural history courses (6 credits) 3master of architecture (M.Arch.) #12;2-year master of architecture option deadlinesmaster of architecture 3-year master of architecture option Taubman College's 2-year master of architecture option

Papalambros, Panos

470

Photovoltaic energy: Contract list, fiscal year 1990  

SciTech Connect (OSTI)

The federal government has conducted the National Photovoltaics Program since 1975. Its purpose is to provide focus, direction, and funding for the development of terrestrial photovoltaic technology as an energy option for the United States. In the past, a summary was prepared each year to provide an overview of the government-funded activities within the National Photovoltaics Program. Tasks conducted in-house by participating national laboratories or under contract by industrial, academic, and other research institutes were highlighted. This year's document is more concise than the summaries of previous years. The FY 1990 contract overview comprises a list of all subcontracts begun, ongoing, or completed by Sandia National Laboratory or the Solar Energy Research Institute during FY 1990 (October 1, 1989, through September 30, 1990). Under each managing laboratory, projects are listed alphabetically by project area and then by subcontractor name.

Not Available

1991-07-01T23:59:59.000Z

471

Calendar Year Reports | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy,MUSEUM DISPLAY STATUS4 Calendar ReservationCalendar Year

472

Calendar Year 1995 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of EnergyLANDSCAPE OF131:770:9 Categorical75 Calendar Year

473

Calendar Year 1996 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of EnergyLANDSCAPE OF131:770:9 Categorical75 Calendar Year6

474

Calendar Year 1997 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of EnergyLANDSCAPE OF131:770:9 Categorical75 Calendar Year67

475

Year of Soils Seminar Series | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL Home SRNLSecurityNationalComplex ersYanshanYear

476

Fiscal Year 2013 Budget Request Briefing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review:Department ofDistributionFire Protection ProgramDepartment ofFiscal Year 2010Program

477

ALS History: The First 20 Years  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smartHistory: The First 20 Years Print

478

Tropical Western Pacific: A Year in Darwin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2TopoPortalBRDF EffectsPacific: A Year in Darwin C.

479

Three Year Rolling Timeline | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe Sun and Its EnergyMetalof EnergyGridThree Year

480

Natural Gas Year-in-Review  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough Monthly2. Average8 2009 2010 20118 20090

Note: This page contains sample records for the topic "ton year bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Publications by Year | Photosynthetic Antenna Research Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedlesAdvancedJanuary 13, 2011 DirectedPublications by Year

482

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal...  

Broader source: Energy.gov (indexed) [DOE]

River. ERDF receives contaminated soil, demolition debris, and solid waste from cleanup operations across the 586-square-mile Hanford Site in southeast Washington state. On...

483

OFFICE WASTE DATA 2010 Recyclable Materials 1680 tons / 62%  

E-Print Network [OSTI]

is used to stabilise temperatures within conventional Energy from Waste incineration plants as well materials and to produce a combustible product. This involves the removal of inert and compostable materials

Guillas, Serge

484

ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)  

E-Print Network [OSTI]

%; South Africa, 37%; China, 3%; Canada, 1%; and other, 2%. Zirconium, unwrought, including powder: France coatings, and sandblasting. The leading consumers of zirconium and hafnium metal are the nuclear energy Kingdom, 5%; and other, 9%. Tariff: Item Number Normal Trade Relations 12-31-08 Zirconium ores

485

ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)  

E-Print Network [OSTI]

Sources (2002-05): Zirconium ores and concentrates: Australia, 57%; South Africa, 35%; China, 4%; Canada consumers of zirconium and hafnium metal are the nuclear energy and chemical process industries. Salient%; Japan, 4%; and other, 2%. Tariff: Item Number Normal Trade Relations 12-31-06 Zirconium ores

486

ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)  

E-Print Network [OSTI]

concentrates: South Africa, 52%; Australia, 43%; and other, 5%. Zirconium, unwrought, including powder: Japan. The leading consumers of zirconium metal and hafnium metal are the nuclear energy and chemical process, 58%; Australia, 24%; Germany, 11%; other, 7%. Tariff: Item Number Normal Trade Relations 12

487

ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)  

E-Print Network [OSTI]

%; South Africa, 46%; China, 3%; Russia, 1%; and other, 1%. Zirconium, unwrought, including powder: France coatings, and sandblasting. The leading consumers of zirconium and hafnium metal are the nuclear energy, 21%; Canada, 8%; United Kingdom, 6%; and other, 5%. Tariff: Item Number Normal Trade Relations 12

488

ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)  

E-Print Network [OSTI]

was insignificant. Import Sources (2008­11): Zirconium mineral concentrates: Australia, 52%; South Africa, 42. The leading consumers of zirconium metal and hafnium metal are the nuclear energy and chemical process: Item Number Normal Trade Relations 12­31­12 Zirconium ores and concentrates 2615.10.0000 Free

489

ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)  

E-Print Network [OSTI]

concentrates: Australia, 49%; South Africa, 44%; and other, 7%. Zirconium, unwrought, including powder: Germany. The leading consumers of zirconium metal and hafnium metal are the nuclear energy and chemical process, 17%; United Kingdom, 5%; and other, 9%. Tariff: Item Number Normal Trade Relations 12-31-11 Zirconium

490

ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)  

E-Print Network [OSTI]

%; South Africa, 32%; China, 4%; Canada, 2%; and other, 1%. Zirconium, unwrought, including powder: France coatings, and sandblasting. The leading consumers of zirconium and hafnium metal are the nuclear energy, 2%; Austria, 1%; and other, 1%. Tariff: Item Number Normal Trade Relations 12-31-07 Zirconium ores

491

Coolerado 5 Ton RTU Performance: Western Cooling Challenge Results (Revised)  

SciTech Connect (OSTI)

The Western Cooling Efficiency Center (WCEC) developed a set of criteria for test conditions, minimum energy, and water use performance for prototype cooling equipment and identified these conditions as indicative of western state climates.

Kozubal, E.; Slayzak, S.

2010-11-01T23:59:59.000Z

492

(Data in metric tons of silver content unless otherwise noted)  

E-Print Network [OSTI]

odor, electronics and circuit boards, electroplating, hardening bearings, inks, mirrors, solar cells,250 1,250 1,280 Refinery: Primary 2,210 791 779 796 800 Secondary (new and old scrap) 1,110 1,220 1

493

Disposal Facility Reaches 15-Million-Ton Milestone | Department...  

Office of Environmental Management (EM)

and hundreds of support structures. McCormick and Washington Closure President Carol Johnson praised a large group of Hanford workers. "We have an exceptional workforce committed...

494

150 g-ton Capacity Centrifuge Renssealer Polytechnic Institute  

E-Print Network [OSTI]

comprised of periodic, aperiodic, random, or scaled earthquake signals. The large 1D shaker is a servo, the adjacent cyclic soils, laboratory and computers for small soil sample, soil characterization to the study of the effects of liquefaction during lateral spreading near pile foundation. #12;NEES

Salama, Khaled

495

The BosTon College Chronicle summer 2009 edition  

E-Print Network [OSTI]

halls to enable BC to meet 100 percent of demand for undergraduate hous- ing. In addition provided advice and sup- port during the various phases of the IMP process," said University President of time, energy and resources will result in a stronger Boston College and an enhanced neighborhood." Jack

Huang, Jianyu

496

Linear Extrusion 400 Tons/Day Dry Solids Pump  

SciTech Connect (OSTI)

Pratt & Whitney Rocketdyne (PWR) has developed an innovative gasifier concept that uses rocket engine experience to significantly improve gasifier performance, life, and cost compared to current state-of-the-art systems. The PWR gasifier concept uses a compact and highly efficient (>50%) dry solids pump that has excellent availability (>99.5%). PWR is currently developing this dry solids pump under a U.S. Department of Energy (DOE) cooperative agreement. The conceptual design on two dry solids pumps were completed under this agreement and one pump concept was selected for preliminary design. A preliminary design review (PDR) of the selected pump was presented on September 20, 2007 to PWR management and numerous technical specialists. Feedback from the PDR review team has been factored into the design and a Delta-PDR was held on April 9, 2008.

Kenneth Sprouse; David Matthews

2008-04-30T23:59:59.000Z

497

WithcoteWistow Skef'tonSomerbyStap'ford  

E-Print Network [OSTI]

Rocklands House OldCourt The Coppice Spinneys Howard House Ashcroft House John Foster Facilities Building

Jensen, Max

498

Fiscal Year 2010 Greenhouse Gas Inventory  

E-Print Network [OSTI]

Fiscal Year 2010 Greenhouse Gas Inventory OREGON STATE UNIVERSITY #12;OREGON STATE UNIVERSITYGHG UNIVERSITYGHG Report - FY10 3 Acknowledgments Due to the broad scope of this inventory, a large number of people Oil: Amber Sams · Enterprise Rent-A-Car: Davion Reese · First Student: Brian Maxwell · Good Company

Escher, Christine

499

Fiscal Year 2009 Greenhouse Gas Inventory  

E-Print Network [OSTI]

Fiscal Year 2009 Greenhouse Gas Inventory Oregon State University Greg Smith Sustainability Program #12;Acknowledgments Due to the broad scope of this inventory, a large number of people from many - First Student: Brian Maxwell - Carson Oil: Gena Conner Government Organizations - Baker County: Jason

Escher, Christine

500

UIC Honors College This year represents the  

E-Print Network [OSTI]

. They are due February 15th. For all the important in- formation, check out the Ball website: http:// uichcab. The sessions cover the process of searching for internal and external awards, highlight upcoming deadlines scholarships (some are in preparation for applying next year). Please visit the OSSP website for more

Ben-Arie, Jezekiel