Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

How do I convert between short tons and metric tons? - FAQ - U ...  

U.S. Energy Information Administration (EIA)

Other FAQs about Conversion & Equivalents. How do I convert between short tons and metric tons? How do I compare heating fuels?

2

Table 7.1 Coal Overview, 1949-2011 (Million Short Tons)  

U.S. Energy Information Administration (EIA)

Table 7.1 Coal Overview, 1949-2011 (Million Short Tons) Year: Production 1: Waste Coal Supplied 2: Trade: Stock Change 4,5: Losses and

3

Saving Tons at the Register  

SciTech Connect

Duct losses have a significant effect on the efficiency of delivering space cooling to U.S. homes. This effect is especially dramatic during peak demand periods where half of the cooling equipment's output can be wasted. Improving the efficiency of a duct system can save energy, but can also allow for downsizing of cooling equipment without sacrificing comfort conditions. Comfort, and hence occupant acceptability, is determined not only by steady-state temperatures, but by how long it takes to pull down the temperature during cooling start-up, such as when the occupants come home on a hot summer afternoon. Thus the delivered tons of cooling at the register during start-up conditions are critical to customer acceptance of equipment downsizing strategies. We have developed a simulation technique which takes into account such things as weather, heat-transfer (including hot attic conditions), airflow, duct tightness, duct location and insulation, and cooling equipment performance to determine the net tons of cooling delivered to occupied space. Capacity at the register has been developed as an improvement over equipment tonnage as a system sizing measure. We use this concept to demonstrate that improved ducts and better system installation is as important as equipment size, with analysis of pull-down capability as a proxy for comfort. The simulations indicate that an improved system installation including tight ducts can eliminate the need for almost a ton of rated equipment capacity in a typical new 2,000 square foot house in Sacramento, California. Our results have also shown that a good duct system can reduce capacity requirements and still provide equivalent cooling at start-up and at peak conditions.

Brown, Karl; Seigel, Jeff; Sherman, Max; Walker, Iain

1998-05-01T23:59:59.000Z

4

Table 7.8 Coke Overview, 1949-2011 (Million Short Tons)  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook › Annual Energy Outlook ... 1984: 30.4.6: 1.0-.5.2: 29.7: 1985: 28.4.6: 1.1-.5-1.2: 29.1: 1986: 24.9.3: 1.0-.7-.5: 24.7: 1987:

5

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success...

6

KCP relocates 18-ton machine | National Nuclear Security Administratio...  

NLE Websites -- All DOE Office Websites (Extended Search)

relocates 18-ton machine | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

7

Ton père et autre débris ; suivi de Entretien.  

E-Print Network (OSTI)

??Ce mémoire en création littéraire est constitué de deux parties. La première, Ton père et autres débris, est un récit composé de vingt-quatre tableaux divisés… (more)

Grenier, Jacques

2006-01-01T23:59:59.000Z

8

Tons of Heavy Metals in Mill Creek Sediments Heather Freeman  

E-Print Network (OSTI)

with industries. Paper, woolen, flour, and cotton mills, starch factories, slaughterhouses, distilleriesTons of Heavy Metals in Mill Creek Sediments Heather Freeman 8/30/99 Geology Department Advisors: Dr. Kees DeJong Dr. Barry Manyard Dr. David Nash #12;Tons of heavy metals in Mill Creek sediments

Maynard, J. Barry

9

Department of Energy Releases New 'Billion-Ton' Study Highlighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'Billion-Ton' Study 'Billion-Ton' Study Highlighting Opportunities for Growth in Bioenergy Resources Department of Energy Releases New 'Billion-Ton' Study Highlighting Opportunities for Growth in Bioenergy Resources August 10, 2011 - 3:41pm Addthis Washington, D.C. - The U.S. Department of Energy today released a report - 2011 U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry - detailing U.S. biomass feedstock potential nationwide. The report examines the nation's capacity to produce a billion dry tons of biomass resources annually for energy uses without impacting other vital U.S. farm and forest products, such as food, feed, and fiber crops. The study provides industry, policymakers, and the agricultural community with county-level data and includes analyses of

10

Department of Energy Releases New 'Billion-Ton' Study Highlighting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

report supports the conclusion of the original 2005 Billion-Ton Study with added in-depth production and costs analyses and sustainability studies. The 2011 report uses more...

11

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Reaches 15 Million Tons Disposed - Waste Disposal Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor July 9, 2013 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE, (509) 376-5365 Cameron.Hardy@rl.doe.gov Mark McKenna, WCH, (509) 372-9032 media@wch-rcc.com RICHLAND, Wash. - The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996. Removing contaminated material and providing for its safe disposal prevents contaminants from reaching the groundwater and the Columbia River. ERDF receives contaminated soil, demolition debris, and solid waste from

12

THERMAL MODELING ANALYSIS OF SRS 70 TON CASK  

SciTech Connect

The primary objective of this work was to perform the thermal calculations to evaluate the Material Test Reactor (MTR) fuel assembly temperatures inside the SRS 70-Ton Cask loaded with various bundle powers. MTR fuel consists of HFBR, MURR, MIT, and NIST. The MURR fuel was used to develop a bounding case since it is the fuel with the highest heat load. The results will be provided for technical input for the SRS 70 Ton Cask Onsite Safety Assessment. The calculation results show that for the SRS 70 ton dry cask with 2750 watts total heat source with a maximum bundle heat of 670 watts and 9 bundles of MURR bounding fuel, the highest fuel assembly temperatures are below about 263 C. Maximum top surface temperature of the plastic cover is about 112 C, much lower than its melting temperature 260 C. For 12 bundles of MURR bounding fuel with 2750 watts total heat and a maximum fuel bundle of 482 watts, the highest fuel assembly temperatures are bounded by the 9 bundle case. The component temperatures of the cask were calculated by a three-dimensional computational fluid dynamics approach. The modeling calculations were performed by considering daily-averaged solar heat flux.

Lee, S.; Jordan, J.; Hensel, S.

2011-03-08T23:59:59.000Z

13

DOE to Remove 200 Metric Tons of Highly Enriched Uranium from...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile DOE to Remove 200 Metric Tons of Highly...

14

DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it...  

National Nuclear Security Administration (NNSA)

Metric Tons of Plutonium by Turning it into Fuel for Civilian Reactors January 23, 2002 Washington, DC DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for...

15

Dilution Refrigeration of Multi-Ton Cold Masses  

E-Print Network (OSTI)

Dilution refrigeration is the only means to provide continuous cooling at temperatures below 250 mK. Future experiments featuring multi-ton cold masses require a new generation of dilution refrigeration systems, capable of providing a heat sink below 10 mK at cooling powers which exceed the performance of present systems considerably. This thesis presents some advances towards dilution refrigeration of multi-ton masses in this temperature range. A new method using numerical simulation to predict the cooling power of a dilution refrigerator of a given design has been developed in the framework of this thesis project. This method does not only allow to take into account the differences between an actual and an ideal continuous heat exchanger, but also to quantify the impact of an additional heat load on an intermediate section of the dilute stream. In addition, transient behavior can be simulated. The numerical model has been experimentally verified with a dilution refrigeration system which has been designed, ...

Wikus, P; CERN. Geneva

2007-01-01T23:59:59.000Z

16

Acceptance test report for the Westinghouse 100 ton hydraulic trailer  

DOE Green Energy (OSTI)

The SY-101 Equipment Removal System 100 Ton Hydraulic Trailer was designed and built by KAMP Systems, Inc. Performance of the Acceptance Test Procedure at KAMP`s facility in Ontario, California (termed Phase 1 in this report) was interrupted by discrepancies noted with the main hydraulic cylinder. The main cylinder was removed and sent to REMCO for repair while the trailer was sent to Lampson`s facility in Pasco, Washington. The Acceptance Test Procedure was modified and performance resumed at Lampson (termed Phase 2 in this report) after receipt of the repaired cylinder. At the successful conclusion of Phase 2 testing the trailer was accepted as meeting all the performance criteria specified.

Barrett, R.A.

1995-03-06T23:59:59.000Z

17

Transportation system benefits of early deployment of a 75-ton multipurpose canister system  

SciTech Connect

In 1993 the US Civilian Radioactive Waste Management System (CRWMS) began developing two multipurpose canister (MPC) systems to provide a standardized method for interim storage and transportation of spent nuclear fuel (SNF) at commercial nuclear power plants. One is a 75-ton concept with an estimated payload of about 6 metric tons (t) of SNF, and the other is a 125-ton concept with an estimated payload of nearly 11 t of SNF. These payloads are two to three times the payloads of the largest currently certified US rail transport casks, the IF-300. Although is it recognized that a fully developed 125-ton MPC system is likely to provide a greater cost benefit, and radiation exposure benefit than the lower-capacity 75-ton MPC, the authors of this paper suggest that development and deployment of the 75-ton MPC prior to developing and deploying a 125-ton MPC is a desirable strategy. Reasons that support this are discussed in this paper.

Wankerl, M.W. [Oak Ridge National Lab., TN (United States); Schmid, S.P. [Science Applications International Corp., Oak Ridge, TN (United States)

1995-12-31T23:59:59.000Z

18

Application guide for 25-ton solar system (unitized)  

DOE Green Energy (OSTI)

Arkla has developed a unitary solar system for air conditioning, heating and service hot water loads in commercial buildings of up to 25 tons cooling requirement. A semi-exploded view shows the basic elements of the Arkla system. These elements, listed below, are described in individual sections of the guide in sufficient detail to enable a competent designer to duplicate the Arkla unitary system in a site built system. The elements are: (1) collectors with summary procedure guide; (2) storage/receiver; (3) pumps/piping/valves; (4) controls; (5) chiller; (6) cooling tower; (7) gas boiler back-up; (8) central air handling unit; and (9) service and DHW. Any successful solar HVAC system requires careful analysis of the integration of the elements. This is particularly true due to the large year-round variation in the temperature of the solar HW available. Several items of this nature are discussed in the element sections. Consequently, the designer should review this entire guide before proceeding to individual elements particularly A and B. This guide presumes that the monthly (and design) hot water loads have been determined for the heating, cooling, and service-DHW water Btu requirements. In addition to these normal calculations, an hourly profile for a typical day each month should be made. The hourly profile is necessary to maximize the solar fraction for a given amount of collector surface in conjunction with the size of the storage system; that is, the coincidence, or lack of, sunshine to the instantaneous demands.

Not Available

1983-01-01T23:59:59.000Z

19

Characterization of Arsenic Contamination on Rust from Ton Containers  

Science Conference Proceedings (OSTI)

The speciation and spatial distribution of arsenic on rusted steel surfaces affects both measurement and removal approaches. The chemistry of arsenic residing in the rust of ton containers that held the chemical warfare agents bis(2-chloroethyl)sulfide (sulfur mustard) and 2-chlorovinyldichloroarsine (Lewisite) is of particular interest, because while the agents have been decontaminated, residual arsenic could pose a health or environmental risk. The chemistry and distribution of arsenic in rust samples was probed using imaging secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX). Arsenic in the +3 and or +5 oxidation state is homogeneously distributed at the very top-most layer of the rust samples, and is intimately associated with iron. Sputter depth profiling followed by SIMS and XPS shows As at a depth of several nm, in some cases in a reduced form. The SEM/EDX experiments show that As is present at a depth of several microns, but is inhomogeneously distributed; most locations contained oxidized As at concentrations of a few percent, however several locations showed very high As in a metallic form. These results indicate that the rust material must be removed if the steel containers are to be cleared of arsenic.

Gary S. Groenewold; Recep Avci; Robert V. Fox; Muhammedin Deliorman; Jayson Suo; Laura Kellerman

2013-01-01T23:59:59.000Z

20

Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds The Moab Uranium Mill Tailings Remedial Action Project reached its primary American Recovery and Reinvestment Act milestone ahead of schedule on Wednesday with the disposal of 2 million tons of uranium mill tailings. The project had originally planned to ship 2 million tons of tailings with Recovery Act funds. Now, Recovery Act workers are surpassing that goal. Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds More Documents & Publications EIS-0355: Record of Decision EIS-0355: Draft Environmental Impact Statement EIS-0355: Final Environmental Impact Statement

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps (5.4 >=< 20 Tons) Heat Pumps (5.4 >=< 20 Tons) Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) October 8, 2013 - 2:22pm Addthis Vary equipment size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Project Type New Installation Replacement New Installation Condenser Type Air Source Water Source Air Source Existing Capacity * ton - Existing Cooling Efficiency * EER - Existing Heating Efficiency * COP - Existing IPLV Efficiency * IPLV - New Capacity ton 10 tons New Cooling Efficiency EER 10.1 EER New Heating Efficiency COP 3.2 COP New IPLV Efficiency IPLV 10.4 IPLV Energy Cost $ per kWh $0.06 per kWh

22

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry  

SciTech Connect

The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil pri

Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Graham, Robin Lambert [ORNL; Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Turhollow Jr, Anthony F [ORNL; Stokes, Bryce [Navarro Research & Engineering; Brandt, Craig C [ORNL

2011-08-01T23:59:59.000Z

23

Disposal Facility Reaches 15-Million-Ton Milestone | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Facility Reaches 15-Million-Ton Milestone Disposal Facility Reaches 15-Million-Ton Milestone Disposal Facility Reaches 15-Million-Ton Milestone July 30, 2013 - 12:00pm Addthis Matt McCormick, manager of the Richland Operations Office, commends a large group of Hanford workers for the 15-million-ton milestone at a public event at the Environmental Restoration Disposal Facility. Matt McCormick, manager of the Richland Operations Office, commends a large group of Hanford workers for the 15-million-ton milestone at a public event at the Environmental Restoration Disposal Facility. RICHLAND, Wash. - EM's Environmental Restoration Disposal Facility (ERDF) - a massive landfill for low-level radioactive and hazardous waste at the Hanford site - has achieved a major cleanup milestone. Since beginning operations in 1996, workers supporting the Richland

24

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Removes Nine Metric Tons of Plutonium From Nuclear Weapons Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S. nuclear weapons, signifying the Bush Administration's ongoing commitment to nonproliferation. Nine metric tons of plutonium is enough material to make over 1,000 nuclear weapons. The Secretary made today's announcement while speaking before the International Atomic Energy Agency's annual general conference.

25

Billion-Ton Update: Home-Grown Energy Resources Across the Nation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Billion-Ton Update: Home-Grown Energy Resources Across the Nation Billion-Ton Update: Home-Grown Energy Resources Across the Nation Billion-Ton Update: Home-Grown Energy Resources Across the Nation August 11, 2011 - 3:59pm Addthis Total potential biomass resources by county in the contiguous U.S. from the baseline scenario of the Update (Figure 6.4, page 159) | Map from Billion-Ton Update Total potential biomass resources by county in the contiguous U.S. from the baseline scenario of the Update (Figure 6.4, page 159) | Map from Billion-Ton Update Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy What does this mean for me? With continued developments in biorefinery capacity and technology, the feedstock resources identified in the report could produce about 85 billion gallons of biofuels -- enough to replace approximately 30 percent

26

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S. nuclear weapons, signifying the Bush Administration's ongoing commitment to nonproliferation. Nine metric tons of plutonium is enough material to make over 1,000 nuclear weapons. The Secretary made today's announcement while speaking before the International Atomic Energy Agency's annual general conference.

27

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site June 18, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager (970) 257-2145 (Grand Junction, CO) - Today, the Department of Energy (DOE) announced that 6 million tons of uranium mill tailings have been shipped from Moab, Utah, under the Uranium Mill Tailings Remedial Action Project to an engineered disposal cell near Crescent Junction, Utah. The shipments mark continued progress toward relocating the 16-million-ton uranium mill tailings pile away from the Colorado River. "The federal budget continues to be stretched thin, and I am proud this

28

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site June 18, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager (970) 257-2145 (Grand Junction, CO) - Today, the Department of Energy (DOE) announced that 6 million tons of uranium mill tailings have been shipped from Moab, Utah, under the Uranium Mill Tailings Remedial Action Project to an engineered disposal cell near Crescent Junction, Utah. The shipments mark continued progress toward relocating the 16-million-ton uranium mill tailings pile away from the Colorado River. "The federal budget continues to be stretched thin, and I am proud this

29

Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely February 27, 2012 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director, (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager, (970) 257-2145 Grand Junction, CO- The U.S. Department of Energy (DOE) reached another milestone today for the Uranium Mill Tailings Remedial Action Project, having shipped 5 million tons of tailings from the massive pile located in Moab, Utah, to the engineered disposal cell near Crescent Junction, Utah. The pile comprised an estimated 16 million tons total when DOE's Remedial

30

DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mississippi Project Hits 1-Million-Ton Milestone for Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2 DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2 November 5, 2009 - 12:00pm Addthis Washington, DC - A large-scale carbon dioxide (CO2) storage project in Mississippi has become the fifth worldwide to reach the important milestone of more than 1 million tons injected. As a result, it is helping to both further carbon capture and storage (CCS) as a mitigation strategy for global climate change and move forward G-8 recommendations for launching 20 projects of this type internationally by 2010. The project, sponsored by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE), is located at the Cranfield site in Southwestern Mississippi. It is led by the Southeast Regional Carbon Sequestration

31

Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Moab Uranium Mill Tailings Remedial Action The Moab Uranium Mill Tailings Remedial Action Project reached its primary American Recovery and Reinvestment Act milestone ahead of schedule on Wednesday with the disposal of 2 million tons of uranium mill tailings. The project had originally planned to ship 2 million tons of tailings with Recovery Act funds. Now, Recovery Act workers are surpass- ing that goal. "Although shipping 2 million tons was the original Recovery Act goal, we are planning to exceed this goal by shipping about 300,000 tons more using savings resulting from efficiencies we've gained in our first 2 years of moving tailings," Moab Federal Project Director Donald Metzler said. The project is using $108 million from the Recovery Act to move the tailings from the banks of the Colorado River by rail to a permanent

32

Moab Marks 6-Million-Ton Cleanup Milestone | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Marks 6-Million-Ton Cleanup Milestone Moab Marks 6-Million-Ton Cleanup Milestone Moab Marks 6-Million-Ton Cleanup Milestone June 20, 2013 - 12:00pm Addthis At Tuesday's Grand County Council meeting in Utah, Moab Federal Project Director Donald Metzler, center, moves a piece from a plaque representing Moab’s uranium mill tailings pile to a plaque representing the disposal cell in recognition of the site achieving a milestone by shipping 6 million tons of the tailings. Grand County Council Chair Gene Ciarus is on the left and Grand County Council Vice Chair Lynn Jackson is on the right. At Tuesday's Grand County Council meeting in Utah, Moab Federal Project Director Donald Metzler, center, moves a piece from a plaque representing Moab's uranium mill tailings pile to a plaque representing the disposal

33

DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile November 7, 2005 - 12:38pm Addthis Will Be Redirected to Naval Reactors, Down-blended or Used for Space Programs WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's (DOE) National Nuclear Security Administration (NNSA) will remove up to 200 metric tons (MT) of Highly Enriched Uranium (HEU), in the coming decades, from further use as fissile material in U.S. nuclear weapons and prepare this material for other uses. Secretary Bodman made this announcement while addressing the 2005 Carnegie International Nonproliferation Conference in Washington, DC.

34

A Concept for a Scalable 2 kTon Liquid Argon TPC Detector for Astroparticle Physics  

E-Print Network (OSTI)

-module configuration and to its large liquid nitrogen consumption (~1 liquid m3 /hour), the 300-ton geometry purity (UHP) liquefied noble gas and for coping with the engineering and safety issues related

McDonald, Kirk

35

DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin February 27, 2009 - 12:00pm Addthis Washington, D.C. -- Building on an initial injection project of 10,000 metric tons of carbon dioxide (CO2) into a Michigan geologic formation, a U.S. Department of Energy (DOE) team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change. DOE's Midwest Regional Carbon Sequestration Partnership (MRCSP), led by Battelle of Columbus, Ohio, began injecting the CO2 this week in the Michigan Basin near Gaylord, Mich., in a deep saline formation, the Silurian-age Bass Island dolomite. The MRCSP is one of seven partnerships

36

NNSA's Global Threat Reduction Initiative Removes More Than One Ton of  

NLE Websites -- All DOE Office Websites (Extended Search)

Removes More Than One Ton of Removes More Than One Ton of Food | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA's Global Threat Reduction Initiative Removes More ... NNSA's Global Threat Reduction Initiative Removes More Than One Ton of Food Posted By Office of Public Affairs Contributing to DOE/NNSA's efforts to support the Office of Personnel

37

NETL: News Release - DOE Regional Partnerships Find Up To 3.5 Billion Tons  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2007 7, 2007 DOE Regional Partnerships Find More Than 3,500 Billion Tons of Possible CO2 Storage Capacity Atlas Details Stationary Sources and Geologic Reservoirs in U.S. and Canada WASHINGTON, DC - The Department of Energy's Regional Carbon Sequestration Partnerships have identified the powerplant and other stationary sources of more than 3.8 billion tons a year of the greenhouse gas CO2 in the United States and Canada and companion candidate storage capacity for more than 3,500 billion tons. The results are detailed in the new Carbon Sequestration Atlas of the United States and Canada which became available online today. MORE INFO Link to NETL's Carbon Sequestration Atlas web page Link to the Interactive Carbon Sequestration Atlas Learn more about DOE's Regional Carbon Sequestration Partnership program

38

NETL: News Release - DOE Partner Begins Injecting 50,000 Tons of Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

February 27, 2009 February 27, 2009 DOE Partner Begins Injecting 50,000 Tons of Carbon Dioxide in Michigan Basin Project Expected to Advance National Carbon Sequestration Program, Create Jobs Washington, DC-Building on an initial injection project of 10,000 metric tons of carbon dioxide (CO2) into a Michigan geologic formation, a U.S. Department of Energy (DOE) team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change. MORE INFO Learn more about DOE's Regional Carbon Sequestration Partnership Program DOE's Midwest Regional Carbon Sequestration Partnership (MRCSP), led by Battelle of Columbus, Ohio, began injecting the CO2 this week in the

39

Photo of the Week: An Incredible Journey -- Transporting a 50-ton Magnet |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Incredible Journey -- Transporting a 50-ton An Incredible Journey -- Transporting a 50-ton Magnet Photo of the Week: An Incredible Journey -- Transporting a 50-ton Magnet July 11, 2013 - 4:38pm Addthis The Muon g-2 (pronounced gee minus two) is an experiment that will use the Fermilab accelerator complex to create an intense beam of muons -- a type of subatomic particle -- traveling at the speed of light. The experiment is picking up after a previous muon experiment at Brookhaven National Laboratory, which concluded in 2001. In this photo, the massive electromagnet is beginning its 3,200-mile journey from the woods of Long Island to the plains near Chicago, where scientists at Fermilab will refill its storage ring with muons created at Fermilab’s Antiproton Source. The 50-foot-diameter ring is made of steel, aluminum and superconducting wire. It will travel down the East Coast, around the tip of Florida, and up the Mississippi River to Fermilab in Illinois. Transporting the 50-ton device by truck requires meticulous precision -- just a tilt or a twist of a few degrees could leave the internal wiring irreparably damaged.

40

The Arabidopsis TRM1TON1 Interaction Reveals a Recruitment Network Common to Plant Cortical  

E-Print Network (OSTI)

microtubules via its C-terminal TON1 interaction motif. Interestingly, three motifs of TRMs are found in CAP350, a human centrosomal protein interacting with FOP, and the C-terminal M2 motif of CAP350 is responsible., 2006). CAP350 has also been proposed to specifically stabilize Golgi-associated microtubules

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

2 million tons per year: A performing biofuels supply chain for  

E-Print Network (OSTI)

1 2 million tons per year: A performing biofuels supply chain for EU aviation NOTE It is understood that in the context of this text the term "biofuel(s) use in aviation" categorically implies "sustainably produced biofuel(s)" according to the EU legislation. June 2011 #12;2 This technical paper was drafted

42

How do I convert between short tons and metric tons? - FAQ - U.S ...  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies ... What are the sources of energy-related carbon dioxide emissions by type of fuel ...

43

How do I convert between short tons and metric tons? - FAQ - U ...  

U.S. Energy Information Administration (EIA)

Energy Conversion Calculators. Metric and Other Physical Conversion Factors. Last reviewed: September 13, 2013. Other FAQs about Coal.

44

How do I convert between short tons and metric tons? - FAQ - U ...  

U.S. Energy Information Administration (EIA)

Energy Conversion Calculators. Metric and Other Physical Conversion Factors. Last reviewed: September 13, 2013. Other FAQs about Prices.

45

Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of soil and debris disposed of from D, H Reactor Areas Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of soil and debris disposed of from D, H Reactor Areas January 11, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE (509) 376-5365, Cameron.Hardy@rl.doe.gov Dieter Bohrmann, Ecology (509) 372-7954, Dieter.Bohrmann@ecy.wa.gov Emerald Laija, EPA (509) 376-4919, Laija.Emerald@epamail.epa.gov RICHLAND, WASH. - Department of Energy (DOE) contractor, Washington Closure Hanford, recently cleaned up 77 waste sites at Hanford to meet two Tri-Party Agreement (TPA) milestones before the end of 2011. The waste sites were located in the D and H Reactor Areas at Hanford along

46

NETL: News Release - DOE-Sponsored Mississippi Project Hits 1-Million-Ton  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2009 5, 2009 DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2 Project Helping Further CCS Technology and Meeting G-8 Goals for Deployment Washington, D.C. -A large-scale carbon dioxide (CO2) storage project in Mississippi has become the fifth worldwide to reach the important milestone of more than 1 million tons injected. As a result, it is helping to both further carbon capture and storage (CCS) as a mitigation strategy for global climate change and move forward G-8 recommendations for launching 20 projects of this type internationally by 2010. MORE INFO Learn more about DOE's Regional Carbon Sequestration Partnership Program Link to SECARB web site The project, sponsored by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE), is located at the Cranfield site in Southwestern

47

Great Plains Coal Gasification Project will make 17. 5 tons/day of methanol  

SciTech Connect

The Great Plains Coal Gasification Project will make 17.5 tons/day of methanol in addition to 125 million cu ft/day of pipeline-quality substitute natural gas (SNG), making the facility the first commercial producer of methanol-from-coal in the United States, according to the consortium building the $1.5 billion facility in Beulah, North Dakota. As originally conceived, the plant would have used 17 tons/day of purchased methanol to clean the raw-gas product stream of impurities, primarily sulfur. But based on the cost of transporting methanol to the plant site and storing it for use, the consortium decided it was more economical to produce its own methanol from lignite. The construction started in July 1980, and the facility is to come on stream in 1984.

Not Available

1980-11-17T23:59:59.000Z

48

U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments September 25, 2013 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Underscoring the Obama Administration's efforts to double energy productivity by 2030 and help businesses save money and energy, the Energy Department today recognized more than 120 manufacturers that are making smart investments to save on energy costs, cut greenhouse gas emissions and improve their bottom lines. Through the Department's Better Buildings, Better Plants Program (Better Plants), over 1,750 plants across the United States have saved about $1 billion in energy costs and

49

LANNDD -A line of liquid argon TPC detectors scalable in mass from 200 Tons to 100 KTons  

E-Print Network (OSTI)

and to its large liquid nitrogen consumption (~1 liquid m3/hour), the 300-ton geometry and construction required for a detector based on an ultra high purity (UHP) liquefied noble gas and for coping

McDonald, Kirk

50

Questions and Answers - How many atoms would it take to create a ton?  

NLE Websites -- All DOE Office Websites (Extended Search)

there in the world? there in the world? Previous Question (How many atoms are there in the world?) Questions and Answers Main Index Next Question (Could you please explain density?) Could you please explain density? How many atoms would it take to create a ton? There's a lot more to this question than first appears. There are many types of atoms and each of them has its own mass, so the answer varies depending on which atom you are talking about. Since even a tiny bit of matter has many atoms, it has become customary to use the unit "mole" to signify a standard number of atoms, namely, it is Avogadro's number which (almost) equals 6*1023, or 600,000 billion billon. If you look up the periodic table of elements, one of the numbers usually listed is the atomic mass which is the mass (in grams) of one mole of those atoms. Let's use

51

Dynamic performance testing of prototype 3 ton air-cooled carrier absorption chiller  

SciTech Connect

The performance of a prototype 3 ton cooling capacity air-cooled lithium bromide/water absorption chiller was tested using an absorption chiller test facility which was modified to expand its testing capabilities to include air-cooled chillers in addition to water-cooled chillers. Temperatures of the three externally supplied fluid loops: hot water, chilled water, and cooling air, were varied in order to determine the effects this would have on the two principal measures of chiller performance: cooling capacity and thermal coefficient of performance (COP). A number of interrelated factors were identified as contributing to less than expected performance. For comparison, experimental correlations of other investigators for this and other similar absorption chillers are presented. These have been plotted as both contour and three-dimensional performance maps in order to more clearly show the functional dependence of the chiller performance on the fluid loop temperatures.

Borst, R.R.; Wood, B.D.

1985-05-01T23:59:59.000Z

52

Background studies for a ton-scale argon dark matter detector (ArDM)  

E-Print Network (OSTI)

The ArDM project aims at operating a large noble liquid detector to search for direct evidence of Weakly Interacting Massive Particles (WIMP) as Dark Matter in the universe. Background sources relevant to ton-scale liquid and gaseous argon detectors, such as neutrons from detector components, muon-induced neutrons and neutrons caused by radioactivity of rock, as well as the internal $^{39}Ar$ background, are studied with simulations. These background radiations are addressed with the design of an appropriate shielding as well as with different background rejection potentialities. Among them the project relies on event topology recognition, event localization, density ionization discrimination and pulse shape discrimination. Background rates, energy spectra, characteristics of the background-induced nuclear recoils in liquid argon, as well as the shielding performance and rejection performance of the detector are described.

L. Kaufmann; A. Rubbia

2006-12-05T23:59:59.000Z

53

Methodology for Estimating ton-Miles of Goods Movements for U.S. Freight Mulitimodal Network System  

SciTech Connect

Ton-miles is a commonly used measure of freight transportation output. Estimation of ton-miles in the U.S. transportation system requires freight flow data at disaggregated level (either by link flow, path flows or origin-destination flows between small geographic areas). However, the sheer magnitude of the freight data system as well as industrial confidentiality concerns in Census survey, limit the freight data which is made available to the public. Through the years, the Center for Transportation Analysis (CTA) of the Oak Ridge National Laboratory (ORNL) has been working in the development of comprehensive national and regional freight databases and network flow models. One of the main products of this effort is the Freight Analysis Framework (FAF), a public database released by the ORNL. FAF provides to the general public a multidimensional matrix of freight flows (weight and dollar value) on the U.S. transportation system between states, major metropolitan areas, and remainder of states. Recently, the CTA research team has developed a methodology to estimate ton-miles by mode of transportation between the 2007 FAF regions. This paper describes the data disaggregation methodology. The method relies on the estimation of disaggregation factors that are related to measures of production, attractiveness and average shipments distances by mode service. Production and attractiveness of counties are captured by the total employment payroll. Likely mileages for shipments between counties are calculated by using a geographic database, i.e. the CTA multimodal network system. Results of validation experiments demonstrate the validity of the method. Moreover, 2007 FAF ton-miles estimates are consistent with the major freight data programs for rail and water movements.

Oliveira Neto, Francisco Moraes [ORNL; Chin, Shih-Miao [ORNL; Hwang, Ho-Ling [ORNL

2013-01-01T23:59:59.000Z

54

Conceptual design study on incorporating a 25-ton/day pyrolysis unit into an operating total energy system. Final report  

DOE Green Energy (OSTI)

The results of a conceptual design study on incorporating a pyrolysis unit into an existing total energy plant are presented. The objectives of this study were to examine the institutional, technical and economic factors affecting the incorporation of a 25-ton/day pyrolysis unit into the Indian Creek Total Energy Plant. The Indian Creek total energy plant is described. Results of the conceptual design are presented. A survey of the availability of waste materials and a review of health and safety ordinances are included. The technical aspects of the pyrolysis system are discussed, including the results of the review of facilities requirements for the pyrolysis unit, the analysis of necessary system modification, and an estimate of the useful energy contribution by the pyrolysis unit. Results of the life-cycle cost analysis of the pyrolysis unit are presented. The major conclusions are that: there appears to be no institutional or technical barriers to constructing a waste pyrolysis unit at the Indian Creek Total Energy Plant; pyrolysis gas can be consumed in the engines and the boilers by utilizing venturi mixing devices; the engines can consume only 5% of the output of the 25-ton/day pyrolysis unit; Therefore, consumption of pyrolysis gas will be controlled by boiler energy demand patterns; a waste pyrolysis unit is not cost effective at the current natural gas price of $0.90/10/sup 6/ Btu; and pyrolysis is economically attractive at natural gas prices above $3.00/10/sup 6/ Btu.

None

1976-12-13T23:59:59.000Z

55

Table 11.3 Methane Emissions, 1980-2009 (Million Metric Tons of ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook › Annual Energy Outlook ... 1984 forward, industrial and domestic wastewater. Sources: U.S. Energy Information Administration ...

56

Methods and results for stress analyses on 14-ton, thin-wall depleted UF{sub 6} cylinders  

Science Conference Proceedings (OSTI)

Uranium enrichment operations at the three US gaseous diffusion plants produce depleted uranium hexafluoride (DUF{sub 6}) as a residential product. At the present time, the inventory of DUF{sub 6} in this country is more than half a million tons. The inventory of DUF{sub 6} is contained in metal storage cylinders, most of which are located at the gaseous diffusion plants. The principal objective of the project is to ensure the integrity of the cylinders to prevent causing an environmental hazard by releasing the contents of the cylinders into the atmosphere. Another objective is to maintain the cylinders in such a manner that the DUF{sub 6} may eventually be converted to a less hazardous material for final disposition. An important task in the DUF{sub 6} cylinders management project is determining how much corrosion of the walls can be tolerated before the cylinders are in danger of being damaged during routine handling and shipping operations. Another task is determining how to handle cylinders that have already been damaged in a manner that will minimize the chance that a breach will occur or that the size of an existing breach will be significantly increased. A number of finite element stress analysis (FESA) calculations have been done to analyze the stresses for three conditions: (1) while the cylinder is being lifted, (2) when a cylinder is resting on two cylinders under it in the customary two-tier stacking array, and (3) when a cylinder is resting on tis chocks on the ground. Various documents describe some of the results and discuss some of the methods whereby they have been obtained. The objective of the present report is to document as many of the FESA cases done at Oak Ridge for 14-ton thin-wall cylinders as possible, giving results and a description of the calculations in some detail.

Kirkpatrick, J.R.; Chung, C.K.; Frazier, J.L.; Kelley, D.K.

1996-10-01T23:59:59.000Z

57

Chemical reactions of UF{sub 6} with water on ingress to damaged model 48X 10 ton cylinder  

Science Conference Proceedings (OSTI)

Chemistry studies of the effects of water flooding in Model 48X 10-ton UF{sub 6} storage cylinders, as a result of impact fractures, were conducted to support the Safety Analysis Report for Packaging (SARP) review of the Paducah Tiger Overpack for transportation of those cylinders. The objectives of the study were to determine the maximum amount of water that could be admitted to the interior of such a damaged cylinder, the resulting geometries and chemical compositions from reactions of water with the UF{sub 6} contents of the cylinder, and the end-state water moderated and reflected configurations for input to nuclear criticality safety analyses. The case identified for analysis was the flooding of the inside of a cylinder, submerged horizontally in 3 ft of water. The flooding was driven by an initial pressure drop of 13 psig, through an assumed fracture (1/32 in. wide {times} 1/2 in. deep {times} 18 in. long) in the barrel of the cylinder. During the initial addition of water, transient back pressures occur from the effects of the heats of reaction and solution at the water/UF{sub 6} interface, with some chugging as more water is added to alternately coot the reaction surface and then heat it again as the added water reacts with more UF{sub 6}.

Rothman, A.B.

1996-02-01T23:59:59.000Z

58

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

SciTech Connect

China's 11th Five-Year Plan (FYP) sets an ambitious target for energy-efficiency improvement: energy intensity of the country's gross domestic product (GDP) should be reduced by 20% from 2005 to 2010 (NDRC, 2006). This is the first time that a quantitative and binding target has been set for energy efficiency, and signals a major shift in China's strategic thinking about its long-term economic and energy development. The 20% energy intensity target also translates into an annual reduction of over 1.5 billion tons of CO2 by 2010, making the Chinese effort one of most significant carbon mitigation effort in the world today. While it is still too early to tell whether China will achieve this target, this paper attempts to understand the trend in energy intensity in China and to explore a variety of options toward meeting the 20% target using a detailed end-use energy model.

Zhou, Nan; Lin, Jiang; Zhou, Nan; Levine, Mark; Fridley, David

2007-07-01T23:59:59.000Z

59

By Thomas S. Jones Manganese (Mn) is essential to iron and silicomanganese increased about 7%. consisted of, in tons, natural battery-grade ore,  

E-Print Network (OSTI)

about 7%. consisted of, in tons, natural battery-grade ore, steel production by virtue of its sulfur aluminum alloys and is used in oxide form in dry cell batteries. The overall level and nature of manganese consumption in batteries was denoted by the expansion on schedule of domestic capacity for production

Torgersen, Christian

60

Review of corrosion in 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders  

Science Conference Proceedings (OSTI)

A literature review was conducted to determine the type, extent and severity of corrosion found in the 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders. Also discussed in this review is corrosion found in the valves and plugs used in the cylinders. Corrosion of the cylinders is a gradual process which occurs slowly over time. Understanding corrosion of the cylinders is an important concern for long term storage of the UF{sub 6} in the cylinder yards, as well as the final disposition of the depleted UF{sub 6} tails inventory in the future. The following conclusions are made from the literature review: (1) The general external corrosion rate of the cylinders is about 1 to 2 mils per year (1 mil = 0.001{double_prime}). The highest general external corrosion rate was over 5 mpy on the 48G type cylinders. (2) General internal corrosion from the depleted UF{sub 6} is negligible under normal storage conditions. Crevice corrosion can occur at the cylinder/saddle interface from the retention of water in this area. Crevice corrosion can occur at the cylinder/skirt interface on the older skirted cylinders due to the lack of water drainage in this area. Crevice corrosion can occur on cylinders that have been in ground contact. Crevice corrosion and galvanic corrosion can occur where the stainless steel I.D. nameplates are attached to the cylinder. The packing nuts on the bronze one-inch valves used in the cylinders are susceptible to stress corrosion cracking (SCC). Mechanical damage from routine handling can lead to a breach in a cylinder with subsequent accelerated corrosion of the mild steel due to attack from HF and other UF{sub 6} hydrolysis by-products.

Lykins, M.L.

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply  

SciTech Connect

The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

Perlack, R.D.

2005-12-15T23:59:59.000Z

62

Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

Perlack, R.D.

2005-12-15T23:59:59.000Z

63

DOE Hydrogen and Fuel Cells Program Record 11002: Number of Cars Equivalent to 100 Metric Tons of Avoided Greenhouse Gases per Year  

NLE Websites -- All DOE Office Websites (Extended Search)

02 Date: January 5, 2011 02 Date: January 5, 2011 Title: Number of Cars Equivalent to 100 Metric Tons of Avoided Greenhouse Gases per Year Originator: Andrea Chew & Tien Nguyen Approved by: Sunita Satyapal Date: January 25, 2011 A conventional mid-size gasoline car emits 0.45 kg of greenhouse gases (GHG) per mile. 1 One hundred (100) metric tons (t) of GHG per year are equivalent to emissions from 17 conventional gasoline cars. Item: The GHG emissions cited above are from an analysis record prepared by the Department of Energy's Fuel Cell Technologies and Vehicle Technologies Programs on life-cycle emissions of greenhouse gases and petroleum use for several light-duty vehicles. 1 For cars that are between 1 and 5 years old, the average mileage is approximately 13,000,

64

Investigations on catalyzed steam gasification of biomass: feasibility study of methanol production via catalytic gasification of 200 tons of wood per day  

DOE Green Energy (OSTI)

This report is a result of an additional study made of the economic feasibility of producing fuel grade methanol from wood via catalytic gasification with steam. The report has as its basis the original 2000 tons of wood per day study generated from process development unit testing performed by the Pacific Northwest Laboratory (PNL). The goal of this additional work was to determine the feasibility of a smaller scale plant one tenth the size of the original or 200 tons of dry wood feed per day. Plant production based on this wood feed is 100 tons per day of methanol with a HHV of 9784 Btu per pound. All process and support facilities necessary to convert wood to methanol are included in this study. The plant location is Newport, Oregon. The capital cost for the plant is $34,830,000 - September 1980 basis. Methanol production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. These wood costs include delivery to the plant. For utility financing, the methanol production costs are, respectively, $1.20, $1.23, $1.30, and $1.44 per gallon for wood costs of $5, $10, $20, and $40 per dry ton. For private investor financing, the corresponding product costs are $1.60, $1.63, $1.70, and $1.84 per gallon for the corresponding wood costs. The costs calculated by the utility financing method include a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency of the plant is 52.0%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

65

Investigations on catalyzed steam gasification of biomass. Appendix B: feasibility study of methanol production via catalytic gasification of 2000 tons of wood per day  

SciTech Connect

A study has been made of the economic feasibility of producing fuel grade methanol from wood via catalytic gasification with steam. The plant design in this study was developed from information on gasifier operation supplied by the Pacific Northwest Laboratory (PNL), operated by Battelle. PNL obtained this information from laboratory and process development unit testing. The plant is designed to process 2000 tons per day of dry wood to methanol. Plant production is 997 tons per day of methanol with a HHV of 9784 Btu per pound. All process and support facilities necessary to convert wood to methanol are included in this study. The plant location is Newport, Oregon. The capital cost for the plant is $120,830,000 - September 1980 basis. Methanol production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. These wood costs include delivery to the plant. For utility financing, the methanol production costs are respectively $.45, $.48, $.55, and $.69 per gallon for wood costs of $5, $10, $20, and $40 per dry ton. For private investor financing, the corresponding product costs are $.59, $.62, $.69, and $.83 per gallon for the corresponding wood costs. Both calculation methods include a return on equity capital in the costs. The thermal efficiency of the plant is 52.9%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

66

A nuclear criticality safety assessment of the loss of moderation control in 2 1/2 and 10-ton cylinders containing enriched UF sub 6  

Science Conference Proceedings (OSTI)

Moderation control for maintaining nuclear criticality safety in 2-1/2-ton, 10-ton, and 14-ton cylinders containing enriched uranium hexafluoride (UF{sub 6}) has been used safely within the nuclear industry for over thirty years, and is dependent on cylinder integrity and containment. This assessment evaluates the loss of moderation control by the breaching of containment and entry of water into the cylinders. The first objective of this study was to estimate the required amounts of water entering these large UF{sub 6} cylinders to react with, and to moderate the uranium compounds sufficiently to cause criticality. Hypothetical accident situations were modeled as a uranyl fluoride (UO{sub 2}F{sub 2}) slab above a UF{sub 6} hemicylinder, and a UO{sub 2} sphere centered within a UF{sub 6} hemicylinder. These situations were investigated by computational analyses utilizing the KENO V.a Monte Carlo Computer Code. The results were used to estimate both the masses of water required for criticality, and the limiting masses of water that could be considered safe. The second objective of the assessment was to calculate the time available for emergency control actions before a criticality would occur, i.e., a safetime,'' for various sources of water and different size openings in a breached cylinder. In the situations considered, except the case for a fire hose, the safetime appears adequate for emergency control actions. The assessment shows that current practices for handling moderation controlled cylinders of low enriched UF{sub 6}, along with the continuation of established personnel training programs, ensure nuclear criticality safety for routine and emergency operations. 2 refs., 5 figs., 1 tab.

Newvahner, R.L. (Portsmouth Gaseous Diffusion Plant, OH (United States)); Pryor, W.A. (PAI Corp., Oak Ridge, TN (United States))

1991-08-16T23:59:59.000Z

67

Investigations on catalyzed steam gasification of biomass: feasibility study of methane production via catalytic gasification of 200 tons of wood per day  

DOE Green Energy (OSTI)

This report is a result of an additional study made of the economic feasibility of producing substitute natural gas (SNG) from wood via catalytic gasification with steam. The report has as its basis the original 2000 tons of wood per day study generated from process development unit testing performed by the Pacific Northwest Laboratory. The goal of this additional work was to determine the feasibility of a smaller scale plant one-tenth the size of the original or 200 tons of dry wood feed per day. Plant production based on this wood feed is 2.16 MM Scfd of SNG with a HHV of 956 Btu per Scf. All process and support facilities necessary to convert wood to SNG are included in this study. The plant location is Newport, Oregon. The capital cost for the plant is $26,680,000 - September 1980 basis. Gas production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. These wood prices represent the cost of unchipped wood delivered to the plant site. For utility financing, the gas production costs are, respectively, $14.34, $14.83, $15.86, and $17.84 per MM Btu for wood costs of $5, $10, $20, and $40 per dry ton. For private investor financing, the corresponding product costs are $18.76, $19.26, $20.28, and $22.31 per MM Btu for the corresponding wood costs. The costs calculated by the utility financing method includes a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency without taking an energy credit for char is 57.4%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

68

Authorized Limits for the Release of a 25 Ton Locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly Facility, Nevada Test Site, Nevada  

SciTech Connect

This document contains process knowledge and radiological data and analysis to support approval for release of the 25-ton locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly (EMAD) Facility, located on the Nevada Test Site (NTS). The 25-ton locomotive is a small, one-of-a-kind locomotive used to move railcars in support of the Nuclear Engine for Rocket Vehicle Application project. This locomotive was identified as having significant historical value by the Nevada State Railroad Museum in Boulder City, Nevada, where it will be used as a display piece. A substantial effort to characterize the radiological conditions of the locomotive was undertaken by the NTS Management and Operations Contractor, National Security Technologies, LLC (NSTec). During this characterization process, seven small areas on the locomotive had contamination levels that exceeded the NTS release criteria (limits consistent with U.S. Department of Energy [DOE] Order DOE O 5400.5, “Radiation Protection of the Public and the Environment”). The decision was made to perform radiological decontamination of these known accessible impacted areas to further the release process. On February 9, 2010, NSTec personnel completed decontamination of these seven areas to within the NTS release criteria. Although all accessible areas of the locomotive had been successfully decontaminated to within NTS release criteria, it was plausible that inaccessible areas of the locomotive (i.e., those areas on the locomotive where it was not possible to perform radiological surveys) could potentially have contamination above unrestricted release limits. To access the majority of these inaccessible areas, the locomotive would have to be disassembled. A complete disassembly for a full radiological survey could have permanently destroyed parts and would have ruined the historical value of the locomotive. Complete disassembly would also add an unreasonable financial burden for the contractor. A decision was reached between the NTS regulator and NSTec, opting for alternative authorized limits from DOE Headquarters. In doing so, NSTec personnel performed a dose model using the DOE-approved modeling code RESRAD-BUILD v3.5 to evaluate scenarios. The parameters used in the dose model were conservative. NSTec’s Radiological Engineering Calculation, REC-2010-001, “Public Dose Estimate from the EMAD 25 Ton Locomotive,” concluded that the four scenarios evaluated were below the 25-millirem per year limit, the “likely” dose scenarios met the “few millirem in a year” criteria, and that the EMAD 25-ton locomotive met the radiological requirements to be released with residual radioactivity to the public.

Jeremy Gwin and Douglas Frenette

2010-04-08T23:59:59.000Z

69

SOLERAS - Solar Cooling Engineering Field Tests Project: Arizona State University. Prototype carrier 10 ton air-cooled solar absorption chiller. Final evaluation report  

DOE Green Energy (OSTI)

A prototype air-cooled 10 ton solar absorption chiller was disassembled and inspected after having been field-tested for three consecutive cooling seasons. Included in the inspection were some flow visualization experiments which revealed some problems in the absorber header design. The objectives of this evaluation project were to determine possible causes for the frequent crystallization and generally below-design performance of the chiller during the testing period. The major conclusions reached were that a combination of leaks and of poor (50%) flow distribution in the absorber could account for most of the chiller's poor performance.

Not Available

1982-01-01T23:59:59.000Z

70

Table 7.3 Coal Consumption by Sector, 1949-2011 (Short Tons)  

U.S. Energy Information Administration (EIA)

1954. 35,229,270 [7] 33,847,730 : 33,847,730 : 85,620,000 [8] 98,248,000 : 98,248,000 : 183,868,000 : 18,614,000 : 118,384,671 : na : 118,384,671 : ...

71

Table 7.1 Coal Overview, 1949-2011 (Short Tons)  

U.S. Energy Information Administration (EIA)

1954. 420,789,000 : na : 205,000: 33,892,000-33,687,000-10,922,816 [r] 8,081,145 [r] 389,943,671 : 1955. 490,838,000 : na : 337,000: ...

72

Table 7.9 Coal Prices, 1949-2011 (Dollars per Short Ton)  

U.S. Energy Information Administration (EIA)

1954. 4.54 [4] 27.82 [4,r] [4] [4] 2.43 : 14.89 [r] 8.76 : 53.67 [r] 4.81 : 29.47 [r] 1955. 4.51 [4] 27.17 [4,r] [4] [4] 2.38 : 14.34 [r] 8.00 : 48.19 ...

73

Table 7.8 Coke Overview, 1949-2011 (Thousand Short Tons)  

U.S. Energy Information Administration (EIA)

1954. 59,662: 116: 388-272: 269: 59,121: 1955. 75,302: 126: 531-405-1,248: 76,145: 1956. 74,483: 131: 656-525: 634: 73,324: 1957. 75,951: 118: ...

74

Table 7.2 Coal Production, 1949-2011 (Short Tons)  

U.S. Energy Information Administration (EIA)

1954. 391,706,000 [2] [2] 29,083,000 : 305,964,000 : 114,825,000 : 395,413,000 : 25,376,000 : 420,789,000 : 1955. 464,633,000 [2] [2] 26,205,000 : ...

75

Table 7.2 Coal Production, 1949-2011 (Million Short Tons)  

U.S. Energy Information Administration (EIA)

Natural Gas. Exploration and reserves, storage, imports and exports, production, prices, sales. ... 1 Beginning in 2001, includes a small amount of refuse recovery.

76

Table 7.9 Coal Prices, 1949-2011 (Dollars per Short Ton)  

U.S. Energy Information Administration (EIA)

R=Revised. E=Estimate. 2 See "Nominal Dollars" in Glossary. Note: Prices are free-on-board (F.O.B.) rail/barge prices, which are the F.O.B. prices of coal at the point

77

Table 7.7 Coal Mining Productivity, 1949-2011 (Short Tons per ...  

U.S. Energy Information Administration (EIA)

dividing total production by total labor hours worked by all mine employees except office workers; beginning in ... 1978 and Coal—Pennsylvania Anthracite 1977; ...

78

Table 7.7 Coal Mining Productivity, 1949-2011 (Short Tons per ...  

U.S. Energy Information Administration (EIA)

anthracite, were originally ... in 1998, the calculation also includes office workers. R=Revised. P=Preliminary. NA=Not available. 2 Beginning in 2001, ...

79

Table 7.8 Coke Overview, 1949-2011 (Million Short Tons)  

U.S. Energy Information Administration (EIA)

1 Net imports equal imports minus exports. Minus sign indicates exports are greater than imports. Note: Totals may not equal sum of components due to ...

80

Scale-up of mild gasification to be a process development unit mildgas 24 ton/day PDU design report. Final report, November 1991--July 1996  

Science Conference Proceedings (OSTI)

From November 1991 to April 1996, Kerr McGee Coal Corporation (K-M Coal) led a project to develop the Institute of Gas Technology (IGT) Mild Gasification (MILDGAS) process for near-term commercialization. The specific objectives of the program were to: design, construct, and operate a 24-tons/day adiabatic process development unit (PDU) to obtain process performance data suitable for further design scale-up; obtain large batches of coal-derived co-products for industrial evaluation; prepare a detailed design of a demonstration unit; and develop technical and economic plans for commercialization of the MILDGAS process. The project team for the PDU development program consisted of: K-M Coal, IGT, Bechtel Corporation, Southern Illinois University at Carbondale (SIUC), General Motors (GM), Pellet Technology Corporation (PTC), LTV Steel, Armco Steel, Reilly Industries, and Auto Research.

NONE

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Investigations on catalyzed steam gasification of biomass. Appendix A. Feasibility study of methane production via catalytic gasification of 2000 tons of wood per day  

DOE Green Energy (OSTI)

A study has been made of the economic feasibility of producing substitute natural gas (SNG) from wood via catalytic gasification with steam. The plant design in this study was developed from information on gasifier operation supplied by the Pacific Northwest Laboratory (PNL). The plant is designed to process 2000 tons per day of dry wood to SNG. Plant production is 21.6 MM scfd of SNG with a HHV of 956 Btu per scf. All process and support facilities necessary to convert wood to SNG are included. The plant location is Newport, Oregon. The capital cost for the plant is $95,115,000 - September, 1980 basis. Gas production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. For utility financing, the gas production costs are respectively $5.09, $5.56, $6.50, and $8.34 per MM Btu for wood costs of $5, $10, $20, and $40 per dry ton delivered to the plant at a moisture content of 49.50 wt %. For private investor financing, the corresponding product costs are $6.62, $7.11, $8.10, and $10.06 per MM Btu. The cost calculated by the utility financing method includes a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency without taking an energy credit for by-product char is 58.3%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

82

Saving Tons at the Register  

NLE Websites -- All DOE Office Websites (Extended Search)

Brown, and Max H. Sherman Conference Name Proceedings of the 1998 ACEEE Summer Study on Energy Effciency in Buildings, Pacific Grove, CA Volume 1 Pagination 367-383 Publisher...

83

SO2907, A Putative TonB-dependent Receptor, Is Involved in Dissimilatory Iron Reduction by Shewanella oneidensis Strain MR-1  

Science Conference Proceedings (OSTI)

Shewanella oneidensis strain MR-1 utilizes soluble and insoluble ferric ions as terminal electron acceptors during anaerobic respiration. The components of respiratory metabolism are localized in the membrane fractions which include the outer membrane and cytoplasmic membrane. Many of the biological components that interact with the various iron forms are proposed to be localized in these membrane fractions. To identify the iron-binding proteins acting either as an iron transporter or as a terminal iron reductase, we used metal-catalyzed oxidation reactions. This system catalyzed the oxidation of amino acids in close proximity to the iron binding site. The carbonyl groups formed from this oxidation can then be labeled with fluoresceinamine (FLNH2). The peptide harboring the FLNH2 can then be proteolytically digested, purified by HPLC and then identified by MALDI-TOF tandem MS. A predominant peptide was identified to be part of SO2907 that encodes a putative TonB-dependent receptor. Compared to wild type (wt), the so2097 gene deletion (?SO2907) mutant has impaired ability to reduce soluble Fe(III), but retains the same ability to respire oxygen or fumarate as the wt. The ?SO2907 mutant was also impacted in reduction of insoluble iron. Iron binding assays using isothermal titration calorimetry and fluorescence tryptophan quenching demonstrated that a truncated form of heterologous-expressed SO2907 that contains the Fe(III) binding site, is capable of binding soluble Fe(III) forms with Kd of approximate 50 ?M. To the best of our knowledge, this is the first report of the physiological role of SO2907 in Fe(III) reduction by MR-1.

Qian, Yufeng; Shi, Liang; Tien, Ming

2011-09-30T23:59:59.000Z

84

Short-Term Energy Outlook - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

a: Petroleum coke consumption converted from short tons to barrels by multiplying by five. b: Other petroleum liquids include jet fuel, kerosene, and waste oil.

85

Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit  

Science Conference Proceedings (OSTI)

During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

Zaltash, Abdolreza [ORNL; Petrov, Andrei Y [ORNL; Linkous, Randall Lee [ORNL; Vineyard, Edward Allan [ORNL

2007-01-01T23:59:59.000Z

86

Two (2) 175 Ton (350 Tons total) Chiller Geothermal Heat Pumps...  

Open Energy Info (EERE)

pump system is fully automated. The details of its optimized sequence of operation in all weather and building load conditions will be documented and shared. - Data Collection: The...

87

Coolerado 5 Ton RTU Performance: Western Cooling Challenge Results (Revised)  

Science Conference Proceedings (OSTI)

The Western Cooling Efficiency Center (WCEC) developed a set of criteria for test conditions, minimum energy, and water use performance for prototype cooling equipment and identified these conditions as indicative of western state climates.

Kozubal, E.; Slayzak, S.

2010-11-01T23:59:59.000Z

88

OFFICE WASTE DATA 2010 Recyclable Materials 1680 tons / 62%  

E-Print Network (OSTI)

is used to stabilise temperatures within conventional Energy from Waste incineration plants as well waste from high temperature incineration (Clinical waste) to incineration with energy recovery (Offensive and hygiene waste). Benefits include: Lower CO2 emissions. Energy recovered in process. Direct

Gannarelli, Ché

89

308 BILLION TON-HOURS OF REFUSE POWER EXPERIENCE  

E-Print Network (OSTI)

the special tarrif al ready granted by the utility to its large energy users. The output data are grouped

Columbia University

90

Numerical Simulation of Macrosegregation in 570-ton Low-alloyed ...  

Science Conference Proceedings (OSTI)

P-18: Phosphorus Partitioning During EAF Refining of DRI Based Steel · P-1: Mechanisms of Calcium Oxide Dissolution in CaO-Al2O3-SiO2-based Slags.

91

Bioenergy Technologies Office: U.S. Billion-Ton Update  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Update on AddThis.com... Publications Key Publications Newsletter Project Fact Sheets Biomass Basics Multimedia Webinars Databases Analytical Tools Glossary Student & Educator...

92

Disposal Facility Reaches 15-Million-Ton Milestone  

Energy.gov (U.S. Department of Energy (DOE))

RICHLAND, Wash. – EM’s Environmental Restoration Disposal Facility (ERDF) — a massive landfill for low-level radioactive and hazardous waste at the Hanford site — has achieved a major cleanup milestone.

93

KCP relocates 18-ton machine | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

8 a.m. and by lunchtime that day, it was in place at the NSC. The machine will undergo laser alignment and build test parts around mid-June. It will be ready for production again...

94

Linear Extrusion 400 Tons/Day Dry Solids Pump  

Science Conference Proceedings (OSTI)

Pratt & Whitney Rocketdyne (PWR) has developed an innovative gasifier concept that uses rocket engine experience to significantly improve gasifier performance, life, and cost compared to current state-of-the-art systems. The PWR gasifier concept uses a compact and highly efficient (>50%) dry solids pump that has excellent availability (>99.5%). PWR is currently developing this dry solids pump under a U.S. Department of Energy (DOE) cooperative agreement. The conceptual design on two dry solids pumps were completed under this agreement and one pump concept was selected for preliminary design. A preliminary design review (PDR) of the selected pump was presented on September 20, 2007 to PWR management and numerous technical specialists. Feedback from the PDR review team has been factored into the design and a Delta-PDR was held on April 9, 2008.

Kenneth Sprouse; David Matthews

2008-04-30T23:59:59.000Z

95

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Metric Unit Mass Short Tons Short Tons Uranium Oxide (U 3 0 8 ) Short Tons Uranium Fluoride (UF 6 ) Long Tons Pounds(lb) Pounds Uranium Oxide(lb U 3 O 8 ) Ounces,...

96

PV-TONS: A photovoltaic technology ontology system for the design of PV-systems  

Science Conference Proceedings (OSTI)

The impacts of climate change, the increasing demand for energy and the diminishing fossil fuel resources have resulted in the development and use of a large number of renewable energy technologies in building development. These technologies are generating ... Keywords: Climate change, Ontology, PV-system, Renewable energy, Semantic Web

F. H. Abanda; J. H. M. Tah; D. Duce

2013-04-01T23:59:59.000Z

97

The BosTon College Chronicle april 12, 2007-vol. 15 no. 15  

E-Print Network (OSTI)

. 1999; Hoinka and Castro 2003), Saudi Arabia (Ackermann and Cox 1982; Blake et al. 1983; Smith 1986a peak. Because of the dryness of the land, a large fraction of the incoming solar radiation is available on local weather. A good example is the `west- coast trough' over Australia. The coastal areas of Western

Huang, Jianyu

98

DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it...  

NLE Websites -- All DOE Office Websites (Extended Search)

in nuclear reactors. The decision follows an exhaustive Administration review of non-proliferation programs, including alternative technologies to dispose of surplus plutonium to...

99

U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Underscoring the Obama Administration's efforts to double energy productivity by 2030 and help businesses save money and energy, the Energy Department today recognized more...

100

Table 11.3 Methane Emissions, 1980-2009 (Million Metric Tons ...  

U.S. Energy Information Administration (EIA)

Climate Change's Guidelines for National Greenhouse Gas Inventories (2006 and revised 1996 guidelines)—see http://www.ipcc-nggip.iges.or.jp/public/gl/invs6.html; ...

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Table 11.3 Methane Emissions, 1980-2009 (Million Metric Tons ...  

U.S. Energy Information Administration (EIA)

Burning: Total 5: 1980. 3.06: 4.42: NA: 0.28: 0.45: 8.20: 10.52: 0.52: 11.04: 5.47: 2.87: 0.48: 0.04: 8.86: ... 4 Consumption of coal, petroleum, natural gas, and ...

102

Delivering tons to the register: Energy efficient design and operation of residential cooling systems  

E-Print Network (OSTI)

and sealing the attic. Introduction Residential central airsealing, refrigerant charge addition, and correction of reduced airsealing the attic and insulating the roof) is a practical way to improve air

Siegel, Jeffrey; Walker, Iain; Sherman, Max

2000-01-01T23:59:59.000Z

103

Delivering Tons to the Register: Energy Efficient Design and Operation of Residential Cooling Systems  

E-Print Network (OSTI)

................................................................................................. 125 4.5. Parameter Estimation Procedure ................................................................................................. 166 5.6. Parameter Estimation Procedure.................................. 119 4.3. Pressure-enthalpy diagram for the refrigeration cycle

104

Saving Tons at the Register Iain Walker, Lawrence Berkeley National Laboratory  

E-Print Network (OSTI)

years. Does not remediate contaminated media. Cryogenic Barrier (In-situ process - material disposal than 1X10-6 cm/sec. Does not remediate contaminated media. Chemical Solidification/ Stabilization (In-situ, but does not include buildings and structures. The liquid media includes groundwater, surface water

105

Hybrid 240 Ton Off Highway Haul Truck: Quarterly Technical Status Report 18  

DOE Green Energy (OSTI)

This eighteenth quarterly status report for the Hybrid Off Highway Vehicle (OHV) project, DOE Award DE-FC04-02AL68080 presents the project status at the end of March 2007, and covers activities in the eighteenth project quarter, January 2007 – March 2007.

Tim Richter

2007-03-31T23:59:59.000Z

106

Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 13  

DOE Green Energy (OSTI)

This thirteenth quarterly status report for the Hybrid Off Highway Vehicle (OHV) project, DOE Award DE-FC04-02AL68080 presents the project status at the end of December 2005, and covers activities in the thirteenth project quarter, October 2005 ? December 2005.

Tim Richter

2006-03-23T23:59:59.000Z

107

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

3 3 Table G1. Heat contents Fuel Units Approximate heat content Coal 1 Production .................................................. million Btu per short ton 20.136 Consumption .............................................. million Btu per short ton 19.810 Coke plants ............................................. million Btu per short ton 26.304 Industrial .................................................. million Btu per short ton 23.651 Residential and commercial .................... million Btu per short ton 20.698 Electric power sector ............................... million Btu per short ton 19.370

108

www.eia.gov  

U.S. Energy Information Administration (EIA)

Table 32 Table 32. Average sales price of coal by mine production range and mine type, 2011 (dollars per short ton) Mine Production Range (thousand short tons)

109

Table 8.5a Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

Wood 8: Waste 9: Short Tons: Barrels: Short Tons: Barrels: Thousand Cubic Feet: ... For 1949–1979, data are for gas turbine and internal combustion plant use of ...

110

Table 8.5b Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

Wood 8: Waste 9: Thousand Short Tons: Thousand Barrels: Thousand Short Tons: ... For 1949-1979, data are for gas turbine and internal combustion plant use of petroleum.

111

Table 8.5a Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

Wood 8: Waste 9: Thousand Short Tons: Thousand Barrels: Thousand Short Tons: ... For 1949-1979, data are for gas turbine and internal combustion plant use of petroleum.

112

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

in the Powder River Basin" "comparison of EIA and STB data" ,"Transportation cost per short ton (nominal)",,,"Transportation cost per short ton (real)",,,"Percent...

113

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

originating in the Illinois Basin" "comparison of EIA and STB data" ,"Transportation cost per short ton (nominal)",,,"Transportation cost per short ton (real)",,,"Percent...

114

What are Ccf, Mcf, Btu, and therms? How do I convert prices in ...  

U.S. Energy Information Administration (EIA)

Natural Gas Conversion Calculator. Last updated: March 20, 2013. Other FAQs about Conversion & Equivalents. How do I convert between short tons and metric tons?

115

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

E-Print Network (OSTI)

the Energy Conservation Center, Japan The World Bank, 2001.Energy Efficiency In Buildings. Washington DC:World Bank The

Lin, Jiang

2008-01-01T23:59:59.000Z

116

Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 11, DOE/AL68080-TSR11  

DOE Green Energy (OSTI)

This eleventh quarterly status report for the Hybrid Off Highway Vehicle (OHV) project, DOE Award DE-FC04-02AL68080 presents the project status at the end of June 2005, and covers activities in the eleventh project quarter, April 2005-June 2005.

Tim Richter

2005-09-26T23:59:59.000Z

117

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

E-Print Network (OSTI)

boiler boiler stove district heating heat pump conditionerSmall cogen Stove District heating Heat pump Centralized AC

Lin, Jiang

2008-01-01T23:59:59.000Z

118

Effect of CNG start-gasoline run on emissions from a 3/4 ton pick-up truck  

Science Conference Proceedings (OSTI)

This paper describes experiments to determine the effect on exhaust emissions of starting on compressed natural gas (CNG) and then switching to gasoline once the catalyst reaches operating temperature. Carbon monoxide, oxides of nitrogen, and detailed exhaust hydrocarbon speciation data were obtained for dedicated CNG, then unleaded gasoline, and finally CNG start-gasoline run using the Federal Test Procedure at 24{degree}C and at -7{degree}C. The result was a reduction in emissions from the gasoline baseline, especially at -7{degree}C. It was estimated that CNG start - gasoline run resulted in a 71 percent reduction in potential ozone formation per mile. 3 refs., 6 figs., 11 tabs.

Springer, K.J.; Smith, L.R.; Dickinson, A.G.

1994-10-01T23:59:59.000Z

119

Effect of CNG start - gasoline run on emissions from a 3/4 ton pick-up truck  

SciTech Connect

This paper describes experiments to determine the effect on exhaust emissions of starting on compressed natural gas (CNG) and then switching to gasoline once the catalyst reaches operating temperature. Carbon monoxide, oxides of nitrogen, and detailed exhaust hydrocarbon speciation data were obtained for dedicated CNG, then unleaded gasoline, and finally CNG start - gasoline run using the Federal Test Procedure at 24{degree}C and at -7{degree}C. The results was a reductiopn in emissions from the gasoline baseline, especially at -7{degree}C. It was estimated that CNG start - gasoline run resulted in a 71 percent reduction in potential ozone formation per mile. 3 refs., 6 figs., 11 tabs.

Springer, K.J.; Smith, L.R.; Dickinson, A.G.

1994-10-01T23:59:59.000Z

120

O R N L/Sub-80/24706/ 1 Phase II Brayton/Rankine 10-Ton  

E-Print Network (OSTI)

Biocombustiveis, Table 3'2' http://www.anp.eov.br/conheca/anuarig-2008.asjl ^ tl4l p. C. Vasconcellos, L- Rfru

Oak Ridge National Laboratory

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

E-Print Network (OSTI)

space heating, space conditioning, water heating, lighting,broken out into space heating, air conditioning, appliances,Conditioning Appliances Cooking Lighting Other Uses Space

Lin, Jiang

2008-01-01T23:59:59.000Z

122

Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks  

DOE Green Energy (OSTI)

The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

2008-12-31T23:59:59.000Z

123

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

E-Print Network (OSTI)

Y. , 2003. China’s Sustainable Energy Future, Scenarios ofZhu,Y. , 2003. China’s Sustainable Energy Scenarios in 2020,and to move toward a sustainable energy future. Maintaining

Lin, Jiang

2008-01-01T23:59:59.000Z

124

Hybrid 240 Ton Off Highway Haul Truck: Quarterly Technical Status Report 19, DOE/AL68080-TSR19  

DOE Green Energy (OSTI)

This nineteenth quarterly status report for the Hybrid Off Highway Vehicle (OHV) project, DOE Award DE-FC04-02AL68080 presents the project status at the end of June 2007, and covers activities in the nineteenth project quarter, April 2007 – June 2007.

Tim Richter

2007-06-30T23:59:59.000Z

125

Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 7, DOE/AL68080-TSR07  

DOE Green Energy (OSTI)

Analysis and results show hybrid system weight and efficiency affect productivity and fuel usage. Analysis shows equivalent hybrid benefits for adjacent size classes of mine truck. Preparations are ongoing for full power test. The battery cycling test protocol was modified.

Lembit Salasoo

2004-08-25T23:59:59.000Z

126

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

E-Print Network (OSTI)

Coal, oil and oil product, crude oil, other Coal, oiland oil product, crude oil, other Steam, diesel, electricityDomestic Internation al Crude oil, oil products, NG, other

Lin, Jiang

2008-01-01T23:59:59.000Z

127

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

E-Print Network (OSTI)

considering that energy consumption has grown more rapidlyof China’s energy consumption by major international2. Recent Trends in Energy Consumption in China Between 1980

Lin, Jiang

2008-01-01T23:59:59.000Z

128

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

E-Print Network (OSTI)

Pilot Project with the Steel Industry in Shandong Province,scenario and the iron and steel industry could achieve anand iron & steel) and other industries could provide a

Lin, Jiang

2008-01-01T23:59:59.000Z

129

Helium-Based Soundwave Chiller: Trillium: A Helium-Based Sonic Chiller- Tons of Freezing with 0 GWP Refrigerants  

SciTech Connect

BEETIT Project: Penn State is designing a freezer that substitutes the use of sound waves and environmentally benign refrigerant for synthetic refrigerants found in conventional freezers. Called a thermoacoustic chiller, the technology is based on the fact that the pressure oscillations in a sound wave result in temperature changes. Areas of higher pressure raise temperatures and areas of low pressure decrease temperatures. By carefully arranging a series of heat exchangers in a sound field, the chiller is able to isolate the hot and cold regions of the sound waves. Penn State’s chiller uses helium gas to replace synthetic refrigerants. Because helium does not burn, explode or combine with other chemicals, it is an environmentally-friendly alternative to other polluting refrigerants. Penn State is working to apply this technology on a large scale.

None

2010-09-01T23:59:59.000Z

130

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

E-Print Network (OSTI)

target to • +1% in coal fired plant efficiency • -1% in T&Dincludes increasing coal-fired power plant efficiency by 1

Lin, Jiang

2008-01-01T23:59:59.000Z

131

Final Technical Report for DUSEL Research and Development on Sub-Kelvin Germanium Detectors for Ton Scale Dark Matter Search  

SciTech Connect

We have supported one graduate student and a small percentage of fabrication staff on $135k per year for three years plus one no cost extension year on this DUSEL R&D grant. � There were three themes within our research program: (1) how to improve the radial sensitivity for single sided phonon readout with four equal area sensors of which three form a central circle and fourth a surrounding ring; (2) how to instrument double sided phonon readouts which will give us better surface event rejection and increased fiducial volume for future CDMS style detectors; and (3) can we manufacture much larger Ge detectors using six inch diameter material which is not suitable for standard gamma ray spectroscopy.

Prof. Blas Cabrera

2012-09-10T23:59:59.000Z

132

Analyses of sweep-up, ejecta, and fallback material from the 4250 metric ton high explosive test ''MISTY PICTURE'  

SciTech Connect

The MISTY PICTURE surface burst was detonated at the White Sands Missle range in May of 1987. The Los Alamos National Laboratory dust characterization program was expanded to help correlate and interrelate aspects of the overall MISTY PICTURE dust and ejecta characterization program. Pre-shot sampling of the test bed included composite samples from 15 to 75 m distance from Surface Ground Zero (SGZ) representing depths down to 2.5 m, interval samples from 15 to 25 m from SGZ representing depths down to 3m, and samples of surface material (top 0.5 cm) out to distances of 190 m from SGZ. Sweep-up samples were collected in GREG/SNOB gages located within the DPR. All samples were dry-sieved between 8.0 mm and 0.045 mm (16 size fractures); selected samples were analyzed for fines by a contrifugal settling technique. The size distributions were analyzed using spectral decomposition based upon a sequential fragmentation model. Results suggest that the same particle size subpopulations are present in the ejecta, fallout, and sweep-up samples as are present in the pre-shot test bed. The particle size distribution in post-shot environments apparently can be modelled taking into account heterogeneities in the pre-shot test bed and dominant wind direction during and following the shot. 13 refs., 12 figs., 2 tabs.

Wohletz, K.H.; Raymond, R. Jr.; Rawson, G.; Mazzola, T.

1988-01-01T23:59:59.000Z

133

Materials management in an internationally safeguarded fuels reprocessing plant. [1500 and 210 metric tons heavy metal per year  

SciTech Connect

The second volume describes the requirements and functions of materials measurement and accounting systems (MMAS) and conceptual designs for an MMAS incorporating both conventional and near-real-time (dynamic) measurement and accounting techniques. Effectiveness evaluations, based on recently developed modeling, simulation, and analysis procedures, show that conventional accountability can meet IAEA goal quantities and detection times in these reference facilities only for low-enriched uranium. Dynamic materials accounting may meet IAEA goals for detecting the abrupt (1-3 weeks) diversion of 8 kg of plutonium. Current materials accounting techniques probably cannot meet the 1-y protracted-diversion goal of 8 kg for plutonium.

Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Markin, J.T.; Shipley, J.P.; Barnes, J.W.; Scheinman, L.

1980-04-01T23:59:59.000Z

134

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

E-Print Network (OSTI)

Intercity Trucks Coal, oil, coke, other Freight water localmetal min prod petroleum, coke, & nuke smelting & rolling ofElectricity heat Coal and coke Coal Electr icity heat

Lin, Jiang

2008-01-01T23:59:59.000Z

135

Annual Energy Outlook 2011: With Projections to 2035  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2011 Annual Energy Outlook 2011 Table G1. Heat Rates Fuel Units Approximate Heat Content Coal 1 Production . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 19.933 Consumption . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 19.800 Coke Plants . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 26.327 Industrial . . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 21.911 Residential and Commercial . . . . . . . . . . million Btu per short ton 21.284 Electric Power Sector . . . . . . . . . . . . . . . million Btu per short ton 19.536 Imports . . . . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton

136

Short-range tests of the equivalence principle  

SciTech Connect

We tested the equivalence principle at short length scales by rotating a 3 ton {sup 238}U attractor around a compact torsion balance containing Cu and Pb test bodies. The observed differential acceleration of the test bodies toward the attractor, a{sub Cu}-a{sub Pb}=(1.0{+-}2.8)x10{sup -13} cm/s{sup 2}, should be compared to the corresponding gravitational acceleration of 9.2x10{sup -5} cm/s{sup 2}. Our results set new constraints on equivalence-principle violating interactions with Yukawa ranges down to 1 cm, and improve by substantial factors existing limits for ranges between 10 km and 1000 km. Our data also set strong constraints on certain power-law potentials that can arise from two-boson exchange processes. (c) 1999 The American Physical Society.

Smith, G. L. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Hoyle, C. D. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Gundlach, J. H. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Adelberger, E. G. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Heckel, B. R. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Swanson, H. E. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States)

2000-01-15T23:59:59.000Z

137

The development of short sea shipping in the United States : a dynamic alternative  

E-Print Network (OSTI)

Current projections show that U.S. international trade is expected to reach nearly two billion tons by 2020, approximately double today's level. With such a large forecasted growth in trade coming through the United States ...

Connor, Peter H. (Peter Harold)

2004-01-01T23:59:59.000Z

138

Annual Energy Outlook 2012  

Annual Energy Outlook 2012 (EIA)

case Other projections (million short tons) (quadrillion Btu) EVA a IHSGI INFORUM IEA b Exxon- Mobil c BP b (million short tons) (quadrillion Btu) 2015 Production 1,084 993 20.24...

139

U.S. Energy Information Administration | Quarterly Coal Report...  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Imports by Origin, 2007 - 2013 (thousand short tons and dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 6....

140

Coal - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

Coal Stocks. Total coal stocks at the end of 2010 were 224.3 million short tons, a decrease of 8.7 million short tons from 2009 when end-of-year ...

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Wyoming produces almost as much coal as the next seven states ...  

U.S. Energy Information Administration (EIA)

Black Thunder Mine led production with a total of 116.2 million short tons, followed by the North Antelope Rochelle Mine, with production of 105.8 million short tons.

142

Word Pro - Untitled1  

Annual Energy Outlook 2012 (EIA)

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 0 10 20 30 40 Million Short Tons Indonesia 10% Canada 9% Total 13.1 million short tons Canada 13% Colombia 73% Venezuela 6%...

143

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Open Market Sales and Average Price of Coke and Breeze" "(thousand short tons and dollars per short ton)" ,,,,"Year to Date" "Commodity","April - June","January - March","April -...

144

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Total Recoverable Coal (Million Short Tons) Loading... Units Conversion Download Excel: 2008 North America 269,343 Bermuda ...

145

www.eia.gov  

U.S. Energy Information Administration (EIA)

Supply (million short tons) ... natural gas plant liquids, biofuels, other ... finished aviation gasoline, kerosene, petrochemical feedstocks, special naphthas ...

146

The Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada, was the site for a 12-kiloton-ton nuclear test  

Office of Legacy Management (LM)

NV/13609-53 NV/13609-53 Development of a Groundwater Management Model for the Project Shoal Area prepared by Gregg Lamorey, Scott Bassett, Rina Schumer, Douglas P. Boyle, Greg Pohll, and Jenny Chapman submitted to Nevada Site Office National Nuclear Security Administration U.S. Department of Energy Las Vegas, Nevada September 2006 Publication No. 45223 Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. Available for sale to the public, in paper, from: U.S. Department of Commerce

147

RESEARCH AND DEVELOPMENT IN THE FIELD OF THORIUM CHEMISTRY AND METALLURGY. VOLUME III. COST ESTIMATE FOR 1,000 TON YR. THORIUM METAL PRODUCTION PLANT. Final Report  

SciTech Connect

The described plant will produce reactor grade Th at a price of 07 per pound. The plant operation is based on the preparation of electrolytic cell feed by fused salt chlorination techniques and converting the feed to high quality metal by high temperature electrolysis. (D.E.B.)

Wyatt, J.L.

1956-06-30T23:59:59.000Z

148

Coal resources of the Southwestern District, Kentucky: Bell, Clay, Clinton, Estill, Jackson, Knox, Laurel, Lee, Madison, McCreary, Owsley, Pulaski, Rockcastle, Wayne, and Whitley counties  

SciTech Connect

The Southwestern District contains an estimated 7.43 billion short tons of original coal resources. Remaining coal resources total an estimated 6.85 billion short tons as of January 1, 1981. The coal resources are tabulated by standard U. S. Geological Survey resource classes for 25 of the coal beds that occur in the district. Clay County contains an estimated 1.54 billion tons, or 21 percent of the district total, followed by Knox, which contains 1.38 billion tons, or 19 percent of the district total. Bell County contains an estimated 1.03 billion tons, or 14 percent, and Whitley County contains 975 million tons, or 13 percent of the district total. Remaining coal resources in the other 11 counties range from 70 thousand tons in Madison County to nearly 574 million tons in Owsley County.

Brant, R.A.; Smith, G.E.

1983-05-01T23:59:59.000Z

149

Coal - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Production Production Figure DataU.S. coal production increased slightly in 2010 by 1.0 percent to a level of 1,085.3 million short tons (Figure 1 and (Table 1), 10.4 million short tons more than the 2009 production total. Exclusive of refuse production, the Interior and Western Regions had increases in their production levels in 2010 of 7.4 percent and 1.1 percent respectively, while the Appalachian Region had a decrease of 2.1 percent (Figure 2 and (Table 2). The increase in Interior production was anchored by a 6.5 million short ton increase in Texas production. The decrease in the Appalachian Region production was 7.1 million short tons, while the increases in Interior Region and Western Region production in 2010 was 10.8 million short tons and 6.6 million short tons, respectively.

150

Short run effects of a price on carbon dioxide emissions from U.S. electric generators  

Science Conference Proceedings (OSTI)

The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO{sub 2} emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO{sub 2} emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO{sub 2} emissions would lead to a 10% reduction in CO{sub 2} emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO{sub 2} emissions that has been shown in earlier work to stimulate investment in new generation technology also provides significant CO{sub 2} reductions before new technology is deployed at large scale. 39 refs., 4 figs., 2 tabs.

Adam Newcomer; Seth A. Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan [Carnegie Mellon University, Pittsburgh, PA (United States). Carnegie Mellon Electricity Industry Center

2008-05-01T23:59:59.000Z

151

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

. Estimated transportation rates for coal delivered to electric power plants by barge and truck, U.S. averages" . Estimated transportation rates for coal delivered to electric power plants by barge and truck, U.S. averages" ,,,,"Barge",,,,,,,,,"Truck" ,"Transportation cost per short ton",,,"Total delivered cost per short ton",,"Percent transportation cost is of total delivered cost",,"Shipments with transportation rates over total shipments",,"Transportation cost per short ton",,,"Total delivered cost per short ton",,"Percent transportation cost is of total delivered cost","Shipments with transportation rates over total shipments" "Year ","(nominal)","(real)",,"(real)",,,,"(percent)",,"(nominal)","(real)",,"(real)",,,"(percent)"

152

www.eia.gov  

U.S. Energy Information Administration (EIA)

Mercury (short tons) 3/ Includes electricity generation from fuel cells. 4/ Includes non-biogenic municipal waste. The U.S. Energy Information Administration ...

153

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Electricity. Sales, revenue and ... The State Energy Profile maps continue to access the ... New layer of 196 ports that process at least 200 short tons per year of ...

154

U.S. Energy Information Administration - EIA - Independent ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, ... Ports in the 50 States and the District of Columbia that handled 200 or more short tons per year in ...

155

U.S. coal exports set monthly record - Today in Energy - U.S ...  

U.S. Energy Information Administration (EIA)

This Week in Petroleum › Weekly Petroleum Status Report ... Coal exports from the United States in March 2013 totaled 13.6 million short tons, ...

156

"Weekly U.S. Coal Production Overview"  

U.S. Energy Information Administration (EIA) Indexed Site

2" "Report Released: August 15, 2013" "Next Release Date: August 22, 2013" "Weekly U.S. Coal Production Overview" "(thousand short tons)" "Coal-Producing","Week...

157

EIA projects little change in U.S. coal production in 2013 - Today ...  

U.S. Energy Information Administration (EIA)

This Week in Petroleum › Weekly Petroleum Status Report ... Coal production for the first three quarters (January-September) of 2012 was 46 million short tons ...

158

Annual Energy Outlook 2012  

Annual Energy Outlook 2012 (EIA)

Annual Energy Outlook 2012 Table G1. Heat rates Fuel Units Approximate heat content Coal 1 Production . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton...

159

Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Thermal conversion factor: A factor for converting data between physical units of measure (such as barrels, cubic feet, or short tons) ...

160

U.S. Energy Information Administration | Annual Coal Report 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Productive capacity of coal mines by State, 2011, 2010 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2011 Table 11. Productive capacity of coal...

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

U.S. Energy Information Administration | Annual Coal Report 2011  

U.S. Energy Information Administration (EIA) Indexed Site

and number of mines by State, County, and mine type, 2011 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2011 Table 2. Coal production...

162

Table 6. Coal production and number of mines by State and coal...  

U.S. Energy Information Administration (EIA) Indexed Site

Coal production and number of mines by State and coal rank, 2011" "(thousand short tons)" ,"Bituminous",,"Subbituminous",,"Lignite",,"Anthracite",,"Total" "Coal-Producing State and...

163

U.S. Energy Information Administration | Annual Coal Distribution...  

Gasoline and Diesel Fuel Update (EIA)

State, 2012 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke)...

164

U.S. Energy Information Administration | Annual Coal Distribution...  

U.S. Energy Information Administration (EIA) Indexed Site

by Origin State, 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke)...

165

U.S. Energy Information Administration | Quarterly Coal Distribution...  

U.S. Energy Information Administration (EIA) Indexed Site

3rd Quarter 2013 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke)...

166

Table 7.6 Coal Stocks by Sector, End of Year 1949-2011 ...  

U.S. Energy Information Administration (EIA)

Table 7.6 Coal Stocks by Sector, End of Year 1949-2011 (Million Short Tons) Year: Producers and Distributors: Consumers: Total: Residential

167

Illinois coal production pushes Illinois Basin production ...  

U.S. Energy Information Administration (EIA)

Coal production in the Illinois Basin during the first half of 2012 (64.4 million short tons) was 13% higher than the same period in 2011. This ...

168

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, 2012" "(million short tons)" ,"Underground - Minable...

169

Technology Commercialization Showcase 2008: Solar Energy ...  

Coal Market Pricing $ per short ton. Coal prices have nearly tripled over the past five years Coal power plants face increasing project uncertainty ...

170

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Productivity by State and Mine Type, 2012 and 2011" ,"Number of Mining Operations2",,,"Number of Employees3",,,"Average Production per Employee Hour" ,,,"(short tons)4"...

171

www.eia.gov  

U.S. Energy Information Administration (EIA)

"MSN","YYYYMM","Value","Column_Order","Description","Unit" "CLPRKUS",197313,23.376,1,"Coal Production Heat Content","Million Btu per Short Ton" ...

172

Word Pro - Untitled1  

Annual Energy Outlook 2012 (EIA)

(Million Short Tons) Year Australia New Zealand Canada Mexico Colombia Venezuela China India Indonesia Europe South Africa Other Total Norway Poland Russia Ukraine United...

173

Asia leads growth in global coal production since 1980 - Today in ...  

U.S. Energy Information Administration (EIA)

Global coal production was up about 3.8 billion short tons (91%) from 1980 through 2010. China spearheaded overall growth in coal production, increasing 415% over the ...

174

Table 4.8 Coal Demonstrated Reserve Base, January 1, 2011 ...  

U.S. Energy Information Administration (EIA)

1 Lignite resources are not mined underground in the United States. (s)=Less than 0.05 billion short tons. 2 Georgia, Maryland, North Carolina, and ...

175

Real values derived using the GDP Chain-type Price Index, 2005 = 100.  

U.S. Energy Information Administration (EIA)

Table 8. Estimated average rail transportation rates for coal originating in the Uinta Basin Transportation cost per short ton (nominal) Transportation

176

Most U.S. coal exports went to European and Asian markets in 2011 ...  

U.S. Energy Information Administration (EIA)

South Korea (10 million short tons) ranked in the top 10 destinations for both U.S. metallurgical coal exports and steam coal exports. In fact, ...

177

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

0 Coal Flow, 2011 (Million Short Tons) U.S. Energy Information Administration Annual Energy Review 2011 197 Notes: * Production categories are estimated; all data are...

178

Table 7.9 Coal Prices, Selected Years, 1949-2011  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Annual Energy Review 2011 215 Table 7.9 Coal Prices, Selected Years, 1949-2011 (Dollars per Short Ton)

179

Malaysia Overview - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Indonesia, have doubled in the last five years to about 24 million short tons to fuel greater coal-fired generation. Hydroelectric capacity, ...

180

www.eia.gov  

U.S. Energy Information Administration (EIA)

Average rail transport cost of coal to the power sector by major coal basin real 2005 dollars per short ton Source: U.S. Energy Information Administration.

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Btu per Short Ton) Year Coal Coal Coke Production 1 Waste Coal Supplied 2 Consumption Imports Exports Imports and Exports Residential and Commercial Sectors Industrial...

182

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Exports by Customs District" "(short tons)" ,,,,"Year to Date" "Customs District","April - June","January - March","April - June",2013,2012,"Percent"...

183

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

in Thousand Short Tons) SIC Code a Industry Groups and Industry Coal Alternative Types of Energy b RSE Row Factors Total Consumed c Switchable Not Switchable Electricity...

184

www.eia.gov  

U.S. Energy Information Administration (EIA)

Monthly U.S. coal stockpile levels at electric power plants ,,,,, million short tons ,,,,, ,2006,2007,2008,2009,2010,2011,2012 Jan,105400657,136376784,146972684 ...

185

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Receipts at Coke Plants by Census Division" "(thousand short tons)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent"...

186

Short Courses  

Science Conference Proceedings (OSTI)

The materials presented in this short course are based on the Summer School for Integrated Computational Materials Education, held at the University of ...

187

 

Gasoline and Diesel Fuel Update (EIA)

International Energy Statistics - Units Close Window Energy Equivalent Conversions Million Btu (British thermal units) Giga (10^9) Joules TOE (Metric Tons of Oil Equivalent) TCE (Metric Tons of Coal Equivalent) Million Btu (British thermal units) 1.00000 0.94782 39.68320 27.77824 Giga (10^9) Joules 1.05506 1.00000 41.86800 29.30760 TOE (Metric Tons of Oil Equivalent) 0.02520 0.02388 1.00000 0.70000 TCE (Metric Tons of Coal Equivalent) 0.03600 0.03412 1.42857 1.00000 Mass Equivalent Conversions Short Tons Kilograms Metric Tons Long Tons Pounds Short Tons 1.00000 0.00110 1.10231 1.12000 0.00050 Kilograms 907.18470 1.00000 1000.00000 1016.04700 0.45359 Metric Tons 0.90718 0.00100 1.00000 1.01605 0.00045 Long Tons 0.89286 0.00098 0.98421 1.00000

188

Riverland Energy Cooperative - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

80ton Air Source Heat Pump: 150ton Geothermal Heat Pump: 300ton Central Electric Thermal Storage Units: 500 Electric Thermal Storage Room Storage: 20% Electric Boiler: 100...

189

Allocating Municipal Solid Waste to Renewable and Non-renewable Energy  

U.S. Energy Information Administration (EIA)

Plastic. MillionBtus to total. Heat Content. Btus. Total Btus/Total Tons. ... Containers & Packaging. Material Group (million tons)a (million Btu per ton) b. Heat ...

190

Minnesota Valley Electric Cooperative - Commercial and Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps: 118ton, plus bonus of 5ton for each 0.1 above base requirement Condenser: 18ton, plus bonus of 5ton for each 0.1 above base requirement RTU Economizers:...

191

AEP Appalachian Power - Commercial and Industrial Rebate Programs...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pumps: 40ton Packaged Terminal AC: 30ton WaterAir Cooled Chillers: 30ton Ground Source Heat Pump: 50ton VFDs: 40HP Programmable Thermostat: 25unit T8 and T5...

192

Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels  

E-Print Network (OSTI)

and combustion. High Low Estimate Estimate Assumed (million (million Moisture tons) tons) Content Paper and Paperboard Wood

Jones, Andrew; O'Hare, Michael; Farrell, Alexander

2007-01-01T23:59:59.000Z

193

Economic and environmental benefits of reducing standby power loss in DVD/VCD players and copiers in China  

E-Print Network (OSTI)

from 2003 to 2020. NOx reduction ? thousand tons ? Carbonlabeling, 2003-2020 NOx reduction ? thousand tons ? Annual

Lin, Jiang; Li, Tienan; Li, Aizhen; Zhang, Guoqing

2004-01-01T23:59:59.000Z

194

U.S. Coal Supply and Demand: 2010 Year in Review - Energy Information...  

Gasoline and Diesel Fuel Update (EIA)

to a level of 1,085.3 million short tons according to preliminary data from the U.S. Energy Information Administration (EIA), an increase of 1.0 percent, or 10.4 million short...

195

" Level: National Data and Regional Totals...  

U.S. Energy Information Administration (EIA) Indexed Site

(million","Other(e)","Row" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short...

196

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

0. Estimated rail transportation rates for coal, state to state, 2009" 0. Estimated rail transportation rates for coal, state to state, 2009" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin State","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Alabama","Alabama"," W"," $13.59",," W",," $63.63"," 21.4%"," 3,612"," W"," 100.0%"

197

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

1. Estimated rail transportation rates for coal, basin to state, 2008" 1. Estimated rail transportation rates for coal, basin to state, 2008" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin Basin","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Northern Appalachian Basin","Delaware"," W"," $28.49",," W",," $131.87"," 21.6%", 59," W"," 100.0%"

198

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

9. Estimated rail transportation rates for coal, state to state, 2008" 9. Estimated rail transportation rates for coal, state to state, 2008" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin State","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Alabama","Alabama"," W"," $14.43",," W",," $65.38"," 22.1%"," 4,509"," W"," 81.8%"

199

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

2. Estimated rail transportation rates for coal, basin to state, 2009" 2. Estimated rail transportation rates for coal, basin to state, 2009" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin Basin","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Northern Appalachian Basin","Florida"," W"," $38.51",," W",," $140.84"," 27.3%", 134," W"," 100.0%"

200

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

8. Estimated average rail transportation rates for coal originating in the Uinta Basin" 8. Estimated average rail transportation rates for coal originating in the Uinta Basin" "comparison of EIA and STB data" ,"Transportation cost per short ton (nominal)",,,"Transportation cost per short ton (real)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton",,"Percent transportation cost is of total delivered cost EIA",,"Shipments with transportation rates over total shipments (percent)" "Year "," STB","EIA",,"STB","EIA",,,,"(nominal) EIA ","(real) EIA ",,,"STB ","EIA " 2001," $14.32"," -",," $15.78"," -",," - ",," - "," - "," - ",," 23.5%"," - "

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

3. Estimated average rail transportation rates for coal originating in the Northern Appalachian Basin" 3. Estimated average rail transportation rates for coal originating in the Northern Appalachian Basin" "comparison of EIA and STB data" ,"Transportation cost per short ton (nominal)",,,"Transportation cost per short ton (real)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton",,"Percent transportation cost is of total delivered cost EIA",,"Shipments with transportation rates over total shipments (percent)" "Year "," STB","EIA",,"STB","EIA",,,,"(nominal) EIA ","(real) EIA ",,,"STB ","EIA " 2001," $11.15"," -",," $12.29"," -",," - ",," - "," - "," - ",," 35.5%"," - "

202

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

4. Estimated average rail transportation rates for coal originating in the Central Appalachian Basin" 4. Estimated average rail transportation rates for coal originating in the Central Appalachian Basin" "comparison of EIA and STB data" ,"Transportation cost per short ton (nominal)",,,"Transportation cost per short ton (real)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton",,"Percent transportation cost is of total delivered cost EIA",,"Shipments with transportation rates over total shipments (percent)" "Year "," STB","EIA",,"STB","EIA",,,,"(nominal) EIA ","(real) EIA ",,,"STB ","EIA " 2001," $12.94"," -",," $14.26"," -",," - ",," - "," - "," - ",," 38.0%"," - "

203

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

5. Estimated average rail transportation rates for coal originating in the Southern Appalachian Basin" 5. Estimated average rail transportation rates for coal originating in the Southern Appalachian Basin" "comparison of EIA and STB data" ,"Transportation cost per short ton (nominal)",,,"Transportation cost per short ton (real)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton",,"Percent transportation cost is of total delivered cost EIA",,"Shipments with transportation rates over total shipments (percent)" "Year "," STB","EIA",,"STB","EIA",,,,"(nominal) EIA ","(real) EIA ",,,"STB ","EIA " 2001," $5.20"," -",," $5.73"," -",," - ",," - "," - "," - ",," 39.5%"," - "

204

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

. Estimated rail transportation rates for coal, U.S. averages" . Estimated rail transportation rates for coal, U.S. averages" "comparison of EIA and STB data" ,"Transportation cost per short ton (nominal)",,,"Transportation cost per short ton (real)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton",,"Percent transportation cost is of total delivered cost EIA",,"Shipments with transportation rates over total shipments (percent)" "Year "," STB","EIA",,"STB","EIA",,,,"(nominal) EIA ","(real) EIA ",,,"STB ","EIA " 2001," $11.83"," -",," $13.04"," - ",," - ",," - "," - "," - ",," 33.0%"," - "

205

Short Course Agricultural Microscopy  

Science Conference Proceedings (OSTI)

Short Course in Agricultural Microscopy. Fargo North Dakota held June 13-16 2011. Sponsored by the Agricultural Microscopy Division of AOCS and the Great Plains Institute of Food Safety. Short Course Agricultural Microscopy Short Courses ...

206

U  

Gasoline and Diesel Fuel Update (EIA)

4 Review 4 Review by Fred Freme U.S. Energy Information Administration Overview Coal production in the United States increased in 2004 by 39.7 million short tons to end the year at 1,111.5 million short tons (3.7 percent higher than the 2003 level of 1,071.8 million short tons), according to preliminary data from the Energy Information Administration (Table 1). (Note: All percentage change calculations are done at the short-tons level.) Although total U.S. coal consumption rose in 2004, not all coal-consuming sectors had increased consumption for the year. Coal consumption increased in the electric power sector by 1.0 percent and declined slightly in the other industrial sector, while coking coal consumption dropped by 2.4 percent. U.S. coal exports rose for the

207

U  

Gasoline and Diesel Fuel Update (EIA)

5 Review 5 Review by Fred Freme U.S. Energy Information Administration Overview Coal production in the United States reached a record level in 2005, ending the year at 1,133.3 million short tons according to preliminary data from the Energy Information Administration (Table 1). Production in 2005 was 21.2 million short tons higher than the 2004 level of 1,112.1 million short tons, and surpassed the prior record set in 2001 by 5.6 million short tons. Although total U.S. coal consumption rose in 2005, not all coal-consuming sectors had increased consumption for the year. Coal consumption increased in the electric power sector by 2.2 percent and declined in the other industrial sector, while coking coal consumption decreased slightly. (Note: All unit and percentage change calculations

208

Microsoft Word - article_dc.doc  

Gasoline and Diesel Fuel Update (EIA)

of 15 of 15 U.S. Coal Supply and Demand: 2007 Review by Fred Freme U.S. Energy Information Administration Overview Coal production in the United States in 2007 totaled 1,145.6 million short tons according to preliminary data from the Energy Information Administration (Table 1), a decrease of 1.5 percent, or 17.2 million short tons from the 2006 record level of 1,162.7 million short tons. Although coal production declined in 2007, U.S. total coal consumption increased for the year. Coal consumption in 2007 in the electric power sector was higher by 1.9 percent, while coking coal consumption decreased by 1.1 percent and the other industrial sector declined by 5.0 percent. (Note: All percentage change calculations are done at the short- tons level.) U.S. coal exports were significantly

209

U.S. Coal Supply and Demand: 2003 Review  

Gasoline and Diesel Fuel Update (EIA)

3 Review 3 Review 1 U.S. Coal Supply and Demand: 2003 Review by Fred Freme U.S. Energy Information Administration Overview U.S. coal production fell for the second year in a row in 2003, declining by 24.8 million short tons to end the year at 1,069.5 million short tons according to preliminary data from the Energy Information Administration (Table 1), down 2.3 percent from the 2002 level of 1,094.3 million short tons. (Note: All percentage change calculations are done at the short ton level.) Total U.S. coal consumption rose in 2003, with all coal-consuming sectors increasing or remaining stable for the year. Coal consumption in the electric power sector increased by 2.4 percent. However, there were only slight gains in consumption by the other sectors. U.S. coal exports rose in 2003 for the first time in

210

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

2011 1 Fuel oil nos. 1, 2, and 4. 2 Fuel oil nos. 5 and 6. 3 Jet fuel and kerosene. 4 Petroleum coke, which is reported in short tons, is converted at a rate of 5 barrels per...

211

U  

U.S. Energy Information Administration (EIA) Indexed Site

(Street) (City) (State) (Zip Code) All data should be reported for the previous week. VI. Coal Supplies (Report in short tons) A. Coal Stocks, First of Week (first collection...

212

EA-1626: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

underground and closely monitor the flow of approximately 1.1 million short tons of supercritical carbon dioxide into the brine-bearing Mount Simon Formation over a period of three...

213

Wyoming dominates sales of coal produced from federal and Indian ...  

U.S. Energy Information Administration (EIA)

Annual sales of coal produced from federal and Indian lands in the United States ranged between 458 million and 509 million short tons from fiscal year (FY) 2003 to ...

214

U.S. Energy Information Administration | Annual Coal Report 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Average sales price of U.S. coal by State and disposition, 2011 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2011 Table 33. Average sales...

215

U.S. Energy Information Administration | Quarterly Coal Report...  

U.S. Energy Information Administration (EIA) Indexed Site

1. U.S. Coal Summary Statistics, 2007 - 2013 (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table ES-1. U.S. Coal Summary...

216

U.S. Energy Information Administration | Annual Coal Report 2011  

U.S. Energy Information Administration (EIA) Indexed Site

stocks by sector, by census division and State, 2011, 2010 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2011 Table 27. Year-end coal stocks...

217

U.S. Energy Information Administration | Annual Coal Report 2011  

U.S. Energy Information Administration (EIA) Indexed Site

production and number of mines by State and coal rank, 2011 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2011 Table 6. Coal production and...

218

U.S. Energy Information Administration | Annual Coal Report 2011  

U.S. Energy Information Administration (EIA) Indexed Site

at producing U.S. mines by mine production range and mine type, 2011 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2011 Table 17. Recoverable...

219

Weekly Coal Production by State - Energy Information Administration  

U.S. Energy Information Administration (EIA)

For the week ended October 12, 2013: U.S. coal production totaled approximately 18.9 million short tons (mmst) This production estimate is 6.7 percent higher than ...

220

Which states produce the most coal? - FAQ - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Which states produce the most coal? The five largest coal producing states, with production in million short tons, and share of total U.S. coal production, for 2012:

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Table 13. Coal Production, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 999...

222

Power Technologies Energy Data Book: Fourth Edition, Chapter...  

NLE Websites -- All DOE Office Websites (Extended Search)

Table 5.4 - Consumption of Fossil Fuels by Electric Generators 1980 1990 2000 2001 2002 2003 2004 8 2010 2015 2020 2025 2030 Coal (million short tons) 1 569 781 983 962 975 1,003...

223

Power Technologies Energy Data Book: Fourth Edition, Chapter...  

NLE Websites -- All DOE Office Websites (Extended Search)

Table 11.1 - Emissions from Electricity Generators (Thousand short tons of gas) 1990 2000 2001 2002 2003 2004 2010 2015 2020 2025 2030 Coal Fired Carbon Dioxide 1,674,521 2,090,644...

224

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

1 Table 7.2 Coal Production, Selected Years, 1949-2011 (Million Short Tons) Year Rank Mining Method Location Total 1 Bituminous Coal 1 Subbituminous Coal Lignite Anthracite 1...

225

www.eia.gov  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL Brazil BR ... World Total ww 1.4 World Coal Consumption, 1980-2007 (Million Short Tons) - - NA

226

www.eia.gov  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL Brazil BR Cayman Islands CJ ... Table 8.2 World Estimated Recoverable Coal (Million Short Tons)

227

Figure 7.5 Coal Exports by Country of Destination  

U.S. Energy Information Administration (EIA)

Nether- Brazil United Japan Canada Italy Germany 0 2 4 6 8 10 12 Million Short Tons Kingdom Total Europe 1960 1965 1970 1975 1980 1985 1990 1995 2000 ...

228

Market trends in the U.S. ESCO industry: Results from the NAESCO database project  

E-Print Network (OSTI)

state/province Industrial Coal Prices ($/short ton) by yeargas, fuel oil, coal and water prices at the time that thePrices (1982-2001) Geographic Type Specificity Year Coal

Goldman, Charles A.; Osborn, Julie G.; Hopper, Nicole C.; Singer, Terry E.

2002-01-01T23:59:59.000Z

229

U.S. monthly coal production increases  

Annual Energy Outlook 2012 (EIA)

U.S. coal production in July totaled 88.9 million short tons, the highest level since August 2012, according to preliminary data from the U.S. Energy Information...

230

Released: May 2013  

U.S. Energy Information Administration (EIA) Indexed Site

Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu ft)","(gallons)","(short tons)" ,"Total United...

231

"Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu ft)","(gallons)","(short tons)...

232

Released: February 2010  

U.S. Energy Information Administration (EIA) Indexed Site

"(billion","NGL(e)","(million","Other(f)" "Code(a)","End Use","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","(trillion Btu...

233

,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion"...  

U.S. Energy Information Administration (EIA) Indexed Site

,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million" "End Use","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons...

234

Weekly Coal Production by State - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

For the week ended November 02, 2013: U.S. coal production totaled approximately 19.3 million short tons (mmst) This production estimate is 0.1 percent higher than ...

235

www.eia.gov  

U.S. Energy Information Administration (EIA)

U.S. average rail transport cost of coal to electric generating plants Source: U.S. Energy Information Administration. dollars per short ton 2001.00 2002.00 2003.00

236

Coal - U.S. Energy Information Administration (EIA) - U.S. Energy...  

Annual Energy Outlook 2012 (EIA)

8. U.S. coal export and imports, 2000-2010 (million short tons) Figure 8. U.S. Coal Export and Imports, 2000-2009 Sources: U.S. Department of Commerce, Bureau of the Census,...

237

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

7 Table 7.5 Coal Exports by Country of Destination, Selected Years, 1960-2011 (Million Short Tons) Year Canada Brazil Europe Japan Other 3 Total Belgium 1 Denmark France Germany 2...

238

Table 13. U.S. Coal Exports by Customs District  

Annual Energy Outlook 2012 (EIA)

Coal Exports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 13. U.S. Coal Exports by Customs District...

239

" Electricity Generation by Census Region, Industry Group, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," "," ","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

240

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

(83/3Q) (83/3Q) Short-Term Energy Outlook iuarterly Projections August 1983 Energy Information Administration Washington, D.C. 20585 t rt jrt- .ort- iort- iort- iort- nort- lort- '.ort- ort- Tt- .-m .erm -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term Term .-Term -Term xrm Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy -OJ.UUK Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term

242

Short rotation woody crop trials for energy production in north central U.S.  

DOE Green Energy (OSTI)

Tree plantations at several sites have numerous clones with heights greater than 45 feet and diameters of 6+ inches in eight years. The fastest growth rates have been attained in a plantation on a wet site at Milaca, MN, a plantation at Granite Falls, WI, and a plantation at Mondovi, WI, where the largest trees are up to 8 inches DBH at age 8. Mean annual production ranges from 4 to 5+ dry tons per acre in the best clonal blocks, and up to 8.1 tons per acre for the best new hybrids. Reduced growth at some sites was related primarily to insufficient soil water during the growing season, and susceptibility to the disease Septoria musiva. Most tree mortality (36 percent) occurred during the establishment year with only an additional 2 percent mortality over the next 7 years. Leaf tissue nitrogen (N) levels decreased as trees aged and approached the hypothesized 3 percent critical level as trees reached 5- and 6-years old. Fertilization at 75 and 150 lbs/acre N resulted in significant increases in leaf tissue. However, no significant increase in tree growth has been detected. There are significant clonal differences in leaf tissue nitrogen. Hybrid poplar plantations planted on agricultural fields produce significant increases in soil carbon, although there may be carbon loss during the early years of plantation establishment. Septoria musiva is the major pathogen affecting survival and growth of hybrid poplar plantations. A collection of 859 Septoria musiva and Septoria populicola isolates has shown considerably variability in the microorganism. Tissue culture techniques are being used to increase resistance to Septoria in clone NE-308. Over 200 generation 2 plants are ready for field testing in 1995.

Hansen, E.; Netzer, D.; Ostry, M.; Tolsted, D.; Ward, K

1994-12-31T23:59:59.000Z

243

Energy efficient data centers  

E-Print Network (OSTI)

Efficiency kW/ton Fan Coil Unit Design Efficiency CFM/kWEfficiency kW/ton Fan Coil Unit Design Efficiency CFM/kWEfficiency kW/ton Fan Coil Unit Design Efficiency CFM/kW

Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

2004-01-01T23:59:59.000Z

244

PECO Energy (Electric) - Non-Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Source Heat Pumps: 25-45ton Chillers: 10-40ton Ground Source Heat Pumps: 40ton Hotel Occupancy Sensors: 20-40 Energy Management Control System: 0.10sq. ft. or 0.21...

245

Pollution Prevention Performance Summaries, Attachment 3  

NLE Websites -- All DOE Office Websites (Extended Search)

drawdown: - 77,000 tons of VOCs - 283 tons of hydrogen sulfide - 210 tons of benzene - 144 million Highlights: SPR avoided 238,000 in labor and material costs by...

246

Case Study of the California Cement Industry  

E-Print Network (OSTI)

tons of coal, 0.25 tons of coke, and smaller amounts oftons of coal, 0.25 tons of coke, and smaller amounts ofWaste Solid Waste Tires Coke Coal Source: Hendrick van Oss,

Coito, Fred; Powell, Frank; Worrell, Ernst; Price, Lynn; Friedmann, Rafael

2005-01-01T23:59:59.000Z

247

NIST Radiation Thermometry Short Course  

Science Conference Proceedings (OSTI)

NIST Radiation Thermometry Short Course. ... 2012 NIST Radiation Thermometry Short Course October 15-19, 2012 NIST Gaithersburg, Maryland. ...

2012-10-01T23:59:59.000Z

248

Word Pro - Untitled1  

Gasoline and Diesel Fuel Update (EIA)

5 5 a Exact conversion. b Calculated by the U.S. Energy Information Administration. Web Page: For related information, see http://www.eia.gov/totalenergy/data/annual/#appendices. Source: U.S. Department of Commerce, National Institute of Standards and Technology, Specifications, Tolerances, and Other Techni- cal Requirements for Weighing and Measuring Devices, NIST Handbook 44, 1994 Edition (Washington, DC, October 1993), pp. B-10, C-17 and C-21. cubic feet (ft 3 ) 128 a = 1 cord (cd) shorts tons 1.25 b = 1 cord (cd) Wood kilograms (kg) 1,000 a = 1 metric ton (t) pounds (lb) 2,240 a = 1 long ton pounds (lb) 2,000 a = 1 short ton Coal U.S. gallons (gal) 42 a = 1 barrel (bbl) Petroleum alent in Final Units Equiv

249

Energy Calculator- Common Units and Conversions  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Calculator - Common Units and Conversions Energy Calculator - Common Units and Conversions Calculators for Energy Used in the United States: Coal Electricity Natural Gas Crude Oil Gasoline Diesel & Heating Oil Coal Conversion Calculator Short Tons Btu Megajoules Metric Tons Clear Calculate 1 Short Ton = 20,169,000 Btu (based on U.S. consumption, 2007) Electricity Conversion Calculator KilowattHours Btu Megajoules million Calories Clear Calculate 1 KilowattHour = 3,412 Btu Natural Gas Conversion Calculator Cubic Feet Btu Megajoules Cubic Meters Clear Calculate 1 Cubic Foot = 1,028 Btu (based on U.S. consumption, 2007); 1 therm = 100,000 Btu; 1 terajoule = 1,000,000 megajoules Crude Oil Conversion Calculator Barrels Btu Megajoules Metric Tons* Clear Calculate 1 Barrel = 42 U.S. gallons = 5,800,000 Btu (based on U.S. consumption,

250

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

85 85 a Exact conversion. b Calculated by the U.S. Energy Information Administration. Web Page: http://www.eia.gov/totalenergy/data/monthly/#appendices. Source: U.S. Department of Commerce, National Institute of Standards and Technology, Specifications, Tolerances, and Other Techni- cal Requirements for Weighing and Measuring Devices, NIST Handbook 44, 1994 Edition (Washington, DC, October 1993), pp. B-10, C-17 and C-21. cubic feet (ft 3 ) 128 a = 1 cord (cd) shorts tons 1.25 b = 1 cord (cd) Wood kilograms (kg) 1,000 a = 1 metric ton (t) pounds (lb) 2,240 a = 1 long ton pounds (lb) 2,000 a = 1 short ton Coal U.S. gallons (gal) 42 a = 1 barrel (bbl) Petroleum alent in Final Units Equiv Original Unit Energy Source

251

ConsumTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

E E Metric and Other Physical Conversion Factors Data presented in the State Energy Data System (SEDS) are expressed pre- dominately in units that historically have been used in the United States, such as British thermal units, barrels, cubic feet, and short tons. However, because U.S. commerce involves other nations, most of which use metric units of measure, the U.S. Government is committed to the transition to the metric system, as stated in the Metric Conversion Act of 1975 (Public Law 94-168), amended by the Omnibus Trade and Competitiveness Act of 1988 (Public Law 100-418), and Executive Order 12770 of July 25, 1991. The metric conversion factors presented in Table E1 can be used to calcu- late the metric-unit equivalents of values expressed in U.S. customary units. For example, 500 short tons are the equivalent of 453.6 metric tons (500 short tons x 0.9071847 metric tons/short ton

252

PriceTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

Metric Metric and Other Physical Conversion Factors Data presented in the State Energy Data System are expressed predomi- nately in units that historically have been used in the United States, such as British thermal units, barrels, cubic feet, and short tons. However, be- cause U.S. commerce involves other nations, most of which use metric units of measure, the U.S. Government is committed to the transition to the metric system, as stated in the Metric Conversion Act of 1975 (Public Law 94-168), amended by the Omnibus Trade and Competitiveness Act of 1988 (Public Law 100-418), and Executive Order 12770 of July 25, 1991. The metric conversion factors presented in Table C1 can be used to calcu- late the metric-unit equivalents of values expressed in U.S. customary units. For example, 500 short tons are the equivalent of 453.6 metric tons (500 short tons x 0.9071847 metric tons/short ton = 453.6

253

NIST Manuscript Publication Search  

Science Conference Proceedings (OSTI)

... ton and a 1-ton truck run on ... by suing the alternate fuels (CNG or LPG ... Keywords: motor vehicles; gasoline; natural gas; propane; exhaust emissions ...

1974-11-17T23:59:59.000Z

254

Publications Portal  

Science Conference Proceedings (OSTI)

... exhaust emission characteristics of a 1/2-ton and a 1-ton truck run on three different fuels gasoline, compressed natural gas (CNG) and liquefied ...

2012-09-17T23:59:59.000Z

255

Monthly Energy Review - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Year: Coal Transportation Sector CO2 Emissions (Million Metric Tons of Carbon Dioxide) Natural Gas Transportation Sector CO2 Emissions (Million Metric Tons of Carbon ...

256

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... a 1/2-ton and a 1-ton truck run on three different fuels gasoline, compressed natural gas (CNG) and liquefied petroleum gas or propane (LPG) were ...

257

Table 11.5a Emissions From Energy Consumption for ...  

U.S. Energy Information Administration (EIA)

1 Metric tons of carbon dioxide can be converted to metric tons of carbon equivalent by multiplying by 12/44. 7 Blast furnace gas, propane gas, and ...

258

Table 11.1 Carbon Dioxide Emissions From Energy Consumption by ...  

U.S. Energy Information Administration (EIA)

1 Metric tons of carbon dioxide can be converted to metric tons of carbon equivalent by multiplying by 12/44. 9 Includes electric power sector use of ...

259

Table 11.2d Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

1 Metric tons of carbon dioxide can be converted to metric tons of carbon equivalent by multiplying by 12/44. 8 Fuel ethanol minus denaturant. 2 Carbo ...

260

Energy Department Employee Recognized for Eliminating One Million...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Employee Recognized for Eliminating One Million Tons of Greenhouse Gas Emissions Energy Department Employee Recognized for Eliminating One Million Tons of Greenhouse Gas Emissions...

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy Department Employee Recognized for Eliminating One Million...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Employee Recognized for Eliminating One Million Tons of Greenhouse Gas Emissions Energy Department Employee Recognized for Eliminating One Million Tons of...

262

Performance metrics and life-cycle information management for building performance assurance  

E-Print Network (OSTI)

is influenced by chiller and cooling tower efficiencies andyr) Chiller (kW/ton) Cooling Tower (kW/ton) Cooling Load (

Hitchcock, R.J.; Piette, M.A.; Selkowitz, S.E.

1998-01-01T23:59:59.000Z

263

2.1E Supplement  

E-Print Network (OSTI)

is to be heated using wood pellets. The pellets are boughtUNIT—NAME = OTHER-FUEL = WOOD-PELLETS = TONS = TONS/HR In

Winkelmann, F.C.

2010-01-01T23:59:59.000Z

264

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pineville, NC Commercial Industrial and Large Profit- Keller Cresent Chiller Replacement Project is to install two 250 ton chillers to replace abandoned 40-year old 500 ton...

265

Fuel and Famine: Rural Energy Crisis in the Democratic People's Republic of Korea  

E-Print Network (OSTI)

SUPPLY OIL SUPPLY COAL SUPPLY BIOMASS USE FIGURE 1. DeclinesTONS ELECTRICITY SUPPLY MILLION TONS BILLION KWH BIOMASS USEdeclined. Biomass energy use increased. COAL SUPPLY MILLION

Williams, James H.; von Hippel, David; Hayes, Peter

2000-01-01T23:59:59.000Z

266

Rapid selection and identification of Miscanthus genotypes with enhanced glucan and xylan yields from hydrothermal pretreatment followed by enzymatic hydrolysis  

E-Print Network (OSTI)

U.S. billion-ton update: biomass supply for a bioenergy andU. S. Billion Ton update: Biomass Supply for Bioenergy and

Zhang, Taiying; Wyman, Charles E; Jakob, Katrin; Yang, Bin

2012-01-01T23:59:59.000Z

267

ShortShort--Term Energy Outlook Term Energy Outlook  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics & Analysis ShortShort--Term Energy Outlook Term Energy Outlook Chart Gallery for Chart Gallery for ...

268

Meeting and Short Course Proposal  

Science Conference Proceedings (OSTI)

Share your knowledge and propose an AOCS Meeting or Short Course. Meeting and Short Course Proposal Meetings, Conferences and Short Courses aocs AOCS Annual Meeting & Expo Call for Papers Conferences Congress control dispersions edible exhibit exp

269

C. Alan Short  

NLE Websites -- All DOE Office Websites (Extended Search)

Alan Short Alan Short Professor of Architecture University of Cambridge cas64@cam.ac.uk This speaker was a visiting speaker who delivered a talk or talks on the date(s) shown at the links below. This speaker is not otherwise associated with Lawrence Berkeley National Laboratory, unless specifically identified as a Berkeley Lab staff member. C. Alan Short's practice has also won the first 'High Architecture, Low Energy Award' (Architecture Today) 1995; 'Green Building of the Year' (The Independent) 1995; H.J. Dyos Award 1996, 'Building of the Year Award' (Building Magazine) 2000, Society of College, National and University Librarians (SCONUL) 'Best Academic Library Award' 1998-2003 and also in 2008; CIBSE 'Project of the Year' 2003 & 2004; RIBA Awards 1996, 2000.

270

Short-Term Energy Outlook  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Energy Information Administration Independent Statistics & Analysis Short Short- -Term Energy Outlook Term Energy Outlook Chart Gallery for Chart Gallery for November...

271

Short wavelength laser  

DOE Patents (OSTI)

A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

Hagelstein, P.L.

1984-06-25T23:59:59.000Z

272

Molecular Cell Short Article  

E-Print Network (OSTI)

Molecular Cell Short Article Nucleosome Organization Affects the Sensitivity of Gene Expression to Promoter Mutations Gil Hornung,1 Moshe Oren,2 and Naama Barkai1,* 1Department of Molecular Genetics 2Department of Molecular Cell Biology Weizmann Institute of Science, Rehovot, Israel *Correspondence: naama

Barkai, Naama

273

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

7 Coal Mining Productivity 7 Coal Mining Productivity Total, 1949-2011 By Mining Method, 2011 By Location, 2011 By Mining Method, 1 1949-2011 By Region and Mining Method, 2011 210 U.S. Energy Information Administration / Annual Energy Review 2011 Mississippi 1 For 1979 forward, includes all coal; prior to 1979, excludes anthracite. Note: Beginning in 2001, surface mining includes a small amount of refuse recovery. Source: Table 7.7. 2.68 15.98 East of the West of the 0 5 10 15 20 Short Tons per Employee Hour 1950 1960 1970 1980 1990 2000 2010 0 2 4 6 8 Short Tons per Employee Hour Mississippi 2.76 8.86 Underground Surface 0 3 6 9 12 Short Tons per Employee Hour 1950 1960 1970 1980 1990 2000 2010 0 3 6 9 12 Short Tons per Employee Hour 2.52 3.03 5.54 19.34 Underground Surface Underground Surface 0 6 12 18 24 Short Tons

274

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

Table 14. Comparisons of coal projections, 2011-2040 (million short tons, except where noted) Projection 2011 AEO2013 Reference case Other projections (million short tons) (quadrillion Btu) EVA a ICF b IHSGI INFORUM IEA Exxon- Mobil c (million short tons) (quadrillion Btu) 2025 Production 1,096 1,113 22.54 958 1,104 1,107 1,061 -- -- East of the Mississippi 456 447 -- 402 445 -- -- -- -- West of the Mississippi 639 666 -- 556 659 -- -- -- -- Consumption Electric power 929 929 17.66 786 939 864 -- -- 13 Coke plants 21 22 0.58 22 15 19 -- -- -- Coal-to-liquids -- 6 -- -- 36 -- -- -- -- Other industrial/buildings 49 53 1.69 d 29 72 44 1.96 d -- -- Total consumption (quadrillion Btu) 19.66 -- 19.35 -- -- 18.34 -- -- 13 Total consumption (million short tons) 999 1,010 -- 836 1,061 927 1,015 e -- -- Net coal exports (million short tons) 96 124 -- 118 43 181 46 -- --

275

Short-Term Energy Outlook  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration | Short-Term Energy Outlook July 2013 1 July 2013 Short-Term Energy Outlook (STEO) Highlights The U.S. Energy Information ...

276

"JUST THE MATHS" UNIT NUMBER  

E-Print Network (OSTI)

inequalities x 0, y 0, 3x + 2y 6 and x + y 4. 4. A mine manager has contracts to supply, weekly, 100 tons of grade 1 coal, 700 tons of grade 2 coal, 2000 tons of grade 3 coal, 4500 tons of grade 4 coal. Two seams

Davies, Christopher

277

November 15.2012 CENTER eXpress  

E-Print Network (OSTI)

. The medical center IT's weekend crew included Mark Miltenberger (right). TONS Does not include boxes

Albertini, David

278

DOE/NETL's Phase II Plans for Full-Scale Mercury Removal Technology Field-Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase II Plans for Full-Scale Phase II Plans for Full-Scale Mercury Removal Technology Field-Testing Air Quality III September 12, 2002 Arlington, Va Scott Renninger, Project Manager for Mercury Control Technology Enviromental Projects Division Presentation Outline * Hg Program goals & objectives * Focus on Future Hg control R&D * Q&As President Bush's Clear Skies Initiative Current Mid-Term 2008-2010 2018 SO 2 11 million tons 4.5 million tons 3 million tons NOx 5 million tons 2.1 million tons 1.7 million tons Mercury 48 tons 26 tons 15 tons Annual U.S. Power Plant Emissions Mercury Control * Developing technologies ready for commercial demonstration: - By 2005, reduce emissions 50-70% - By 2010, reduce emissions by 90% - Cost 25-50% less than current estimates 2000 Year 48 Tons $2 - 5 Billion @ 90% Removal w/Activated

279

YEAR","MONTH","STATE","TYPE OF PRODUCER","ENERGY SOURCE (UNITS)","C  

U.S. Energy Information Administration (EIA) Indexed Site

TYPE OF PRODUCER","ENERGY SOURCE (UNITS)","CONSUMPTION" TYPE OF PRODUCER","ENERGY SOURCE (UNITS)","CONSUMPTION" 2001,1,"AK","Total Electric Power Industry","Coal (Short Tons)",47615 2001,1,"AK","Total Electric Power Industry","Petroleum (Barrels)",124998 2001,1,"AK","Total Electric Power Industry","Natural Gas (Mcf)",3941267 2001,1,"AK","Electric Generators, Electric Utilities","Coal (Short Tons)",16535 2001,1,"AK","Electric Generators, Electric Utilities","Petroleum (Barrels)",114198 2001,1,"AK","Electric Generators, Electric Utilities","Natural Gas (Mcf)",3189447 2001,1,"AK","Combined Heat and Power, Electric Power","Coal (Short Tons)",22890

280

U.S. Coal Supply and Demand: 2010 Year in Review - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

U.S. Coal Supply and Demand: 2010 Year in Review U.S. Coal Supply and Demand: 2010 Year in Review Release Date: June 1, 2011 | Next Release Date: Periodically | full report Introduction Coal production in the United States in 2010 increased to a level of 1,085.3 million short tons according to preliminary data from the U.S. Energy Information Administration (EIA), an increase of 1.0 percent, or 10.4 million short tons above the 2009 level of 1,074.9 million short tons (Table 1). In 2010 U.S. coal consumption increased in all sectors except commercial and institutional while total coal stocks fell slightly for the year. Coal consumption in the electric power sector in 2010 was higher by 4.5 percent, while coking coal consumption increased by 37.9 percent and the other industrial sector increased by 7.1 percent. The commercial and

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Microsoft Word - article_dc.doc  

Gasoline and Diesel Fuel Update (EIA)

15 15 U.S. Coal Supply and Demand: 2009 Review By Fred Freme U.S. Energy Information Administration Overview Coal production in the United States in 2009 decreased to a level of 1,072.8 million short tons according to preliminary data from the U.S. Energy Information Administration (EIA), a decline of 8.5 percent, or 99.1 million short tons below the 2008 record level of 1,171.8 million short tons (Table 1). In 2009 U.S. coal consumption decreased in all sectors while total coal stocks increased for the year. Coal consumption in the electric power sector in 2009 was lower by 10.0 percent, while coking coal consumption decreased by 30.6 percent and the other industrial sector declined by 16.6 percent. The commercial and institutional sector (which prior to

282

U  

Gasoline and Diesel Fuel Update (EIA)

U.S. Coal Supply and Demand: 2010 Year in Review U.S. Coal Supply and Demand: 2010 Year in Review by William Watson, Nicholas Paduano, Tejasvi Raghuveer and Sundar Thapa U.S. Energy Information Administration Overview Coal production in the United States in 2010 increased to a level of 1,085.3 million short tons according to preliminary data from the U.S. Energy Information Administration (EIA), an increase of 1.0 percent, or 10.4 million short tons above the 2009 level of 1,074.9 million short tons (Table 1). In 2010 U.S. coal consumption increased in all sectors except commercial and institutional while total coal stocks fell slightly for the year. Coal consumption in the electric power sector in 2010 was higher by 4.5 percent, while coking coal consumption increased by 37.9 percent and the other industrial sector increased

283

U  

Gasoline and Diesel Fuel Update (EIA)

8 Review 8 Review by Fred Freme U.S. Energy Information Administration Overview Coal production in the United States in 2008 reached a record level of 1,171.5 million short tons according to preliminary data from the Energy Information Administration (Table 1), an increase of 2.2 percent, or 24.8 million short tons above the 2007 level and 8.7 million short tons above the prior record level set in 2006. Although coal production was higher in 2008, U.S. total coal consumption decreased in all sectors for the year. Coal consumption in the electric power sector in 2008 was lower by 0.3 percent, while coking coal consumption decreased by 2.8 percent and the other industrial sector declined by 3.7 percent. The commercial and institutional sector (which prior to 2008 had been called 'residential and

284

"Table A32. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region," Quantity of Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Group and Industry","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","(trillion Btu)","Factors"

285

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2006;" 1 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,,,,"Coke" ,,,,"Net",,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze" "NAICS",,"Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","(billion",,"NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)",,"(million kWh)",,"(million bbl)","(million bbl)","cu ft)",,"(million bbl)","short tons)","short tons)","(trillion Btu)"

286

Next Update: November 2014"  

U.S. Energy Information Administration (EIA) Indexed Site

12 12 Released: December 2013 Next Update: November 2014" "YEAR","STATE","TYPE OF PRODUCER","ENERGY SOURCE (UNITS)","CONSUMPTION for ELECTRICITY" 1990,"AK","Total Electric Power Industry","Coal (Short Tons)",404871 1990,"AK","Total Electric Power Industry","Petroleum (Barrels)",961837 1990,"AK","Total Electric Power Industry","Natural Gas (Mcf)",42764948 1990,"AK","Electric Generators, Electric Utilities","Coal (Short Tons)",290182 1990,"AK","Electric Generators, Electric Utilities","Petroleum (Barrels)",657706 1990,"AK","Electric Generators, Electric Utilities","Natural Gas (Mcf)",34366142

287

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Average Sales Price of Coal by State, County, and Number of Mines, 2012" Average Sales Price of Coal by State, County, and Number of Mines, 2012" "Coal-Producing State and County","Number of Mines","Sales","Average Sales Price" ,,"(thousand short tons)","(dollars per short ton)" "Alabama",39,19021,106.57 " Bibb",1,"w","w" " Blount",2,"w","w" " Fayette",1,"w","w" " Franklin",1,"w","w" " Jackson",2,"w","w" " Jefferson",11,4298,146.04 " Marion",1,"w","w" " Tuscaloosa",7,8599,111.55 " Walker",11,2370,81.88

288

Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 4.1, 2006;" 1 Relative Standard Errors for Table 4.1, 2006;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

289

Year","Quarter","Destination State","Origin State","Consumer Type","Transportati  

U.S. Energy Information Administration (EIA) Indexed Site

Destination State","Origin State","Consumer Type","Transportation Mode","Coal Volume (short tons)" Destination State","Origin State","Consumer Type","Transportation Mode","Coal Volume (short tons)" 2012,3,"Alabama","Alabama","Coke Plant","Railroad",25445 2012,3,"Alabama","Alabama","Coke Plant","Truck",141202 2012,3,"Alabama","Alabama","Electric Power Sector","Railroad",1051202 2012,3,"Alabama","Alabama","Electric Power Sector","River",729969 2012,3,"Alabama","Alabama","Electric Power Sector","Truck",56130 2012,3,"Alabama","Alabama","Industrial Plants Excluding Coke","Railroad",10029

290

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010;" 1 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze" "NAICS",,"Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

291

Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 3.1, 2006;" 1 Relative Standard Errors for Table 3.1, 2006;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

292

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" 1 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(c)",,"LPG and",,"Coal","and Breeze" "NAICS",,"Total",,"Fuel Oil","Fuel Oil(b)","(billion",,"NGL(d)",,"(million","(million","Other(e)" "Code(a)","Subsector and Industry","(trillion Btu)",,"(million bbl)","(million bbl)","cu ft)",,"(million bbl)",,"short tons)","short tons)","(trillion Btu)"

293

Table A9. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

A9. Total Primary Consumption of Energy for All Purposes by Census" A9. Total Primary Consumption of Energy for All Purposes by Census" " Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke" " "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" " ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Economic Characteristics(a)","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

294

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

6 Relative Standard Errors for Table 7.6;" 6 Relative Standard Errors for Table 7.6;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

295

"Table A22. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Quantity of Purchased Energy Sources by Census Region," 2. Total Quantity of Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Groups and Industry","Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

296

"Table A33. Total Quantity of Purchased Energy Sources by Census Region, Census Division,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region, Census Division," Quantity of Purchased Energy Sources by Census Region, Census Division," " and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,"Natural",,,"Coke" " ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000 ","(1000","(trillion","Row" "Economic Characteristics(a)","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","Btu)","Factors"

297

2010 Short Course Lipid Oxidation and Health Short Course: From Chemistry to Nutrition  

Science Conference Proceedings (OSTI)

Lipid Oxidation and Health Short Course: From Chemistry to Nutrition Short Course held at the 101st AOCS Annual Meeting and Expo. 2010 Short Course Lipid Oxidation and Health Short Course: From Chemistry to Nutrition Lipid Oxidation and Health Short

298

EIA - Annual Energy Outlook 2009 - Emissions from Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Emissions from Energy Use Emissions from Energy Use Annual Energy Outlook 2009 with Projections to 2030 Emissions from Energy Use Figure 81. Carbon diioxide emissions by sector and fuel, 2007 and 2030 (million metric tons). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 82. Sulfur dioxide emissions from electricity generation, 1995-2030 (million short tons). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 83. Nitrogen oxide emissions from electricity generation, 1995-2030 (million short tons). Need help, contact the National Energy Information Center at 202-586-8800. figure data Rate of Increase in Carbon Dioxide Emissions Slows in the Projections Even with rising energy prices, growth in energy use leads to increasing

299

Coal Survey Frequently Asked Questions  

U.S. Energy Information Administration (EIA) Indexed Site

Survey FAQ Survey FAQ Available FAQ: Q. Whom do I contact if I need assistance completing a survey form? Q. Whom do I contact if I require assistance with the registration process, log-in process, instructions pertaining to JavaScript or cookies? Q. What unit of measurement should be used to calculate Btu? Q. How do I update the information that appears under Item I on IDC? Q. Under "Item II: Coal Receipts, Consumption and Stocks," can a value be negative? Q. How do I convert between short tons and metric tons? Vice Versa. Q. How do I convert between pounds to short tons? Vice Versa. Q. How do I correct a mistake on the Survey Form once I have submitted the data? Q. How do I log in if forgot my password? Q. If I accidently deleted the registration letters, how can I get my Mail ID and Code?

300

Minimize Boiler Short Cycling Losses  

SciTech Connect

This revised ITP tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Short-Term Energy Outlook  

U.S. Energy Information Administration (EIA)

DOE/EIA-0202(98/3Q) Distribution Category UC-950 Short-Term Energy Outlook July 1998 Energy Information Administration Office of Energy Markets and End Use

302

Magnet Coil Shorted Turn Detector  

Science Conference Proceedings (OSTI)

The Magnet Coil Shorted Turn Detector has been developed to facilitate the location of shorted turns in magnet coils. Finding these shorted turns is necessary to determine failure modes that are a necessary step in developing future production techniques. Up to this point, coils with shorted turns had the insulation burned off without the fault having been located. This disassembly process destroyed any chance of being able to find the fault. In order to maintain a flux balance in a coupled system such as a magnet coil, the current in a shorted turn must be opposed to the incident current. If the direction of the current in each conductor can be measured relative to the incident current, then the exact location of the short can be determined. In this device, an AC voltage is applied to the magnet under test. A small hand held B-dot pickup coil monitors the magnetic field produced by current in the individual magnet conductors. The relative phase of this pickup coil voltage is compared to a reference signal derived from the input current to detect a current reversal as the B-dot pickup coil is swept over the conductors of the coil under test. This technique however, is limited to only those conductors that are accessible to the hand held probe.

Dinkel, J.A.; Biggs, J.E.

1994-03-01T23:59:59.000Z

303

Production of sugarcane and tropical grasses as a renewable energy source. Third quarterly report, December 1, 1980-February 28, 1981  

DOE Green Energy (OSTI)

Research continued on tropical grasses from Saccharum and related genera as sources of intensively-propagated fiber and fermentable solids. Greenhouse-level screening for short- and intermediate-rotation grasses included further trials with legume species as potential nitrogen sources for the tropical grasses. Yields from four indigenous legumes were appreciably higher when planted in spring (May) than when planted in autumn (November). Initial data were recorded from second generation energy cane studies established during 1980. Controlled variables include varieties, harvest interval, and nitrogen input. Yield data at 6 months indicate high but essentially equal growth rates among all varieties and N-variables. This is attributed to the use of a land rotavator during seedbed preparation - the first such application of this implement on Lajas Valley soils. Total green weights were in the order of 50 to 60 tons/acre, and millable stem weights ranged from 33 to 37 tons/acre, at the 6-months harvest. Dry matter yields ranged from 8 to 11 tons/acre. Juice quality values indicated a minimal sugar content at this stage of maturity. Fiber values ranged from 7 to 14%. Field-scale studies were continued at the Hatillo demonstration site on the humid north coast and in the semi-arid Lajas Valley. For the 6-months harvest at Hatillo, total green weights for all treatments averaged 38.4 tons/acre. Variety US 67-22-2 produced 50.2 tons/acre. Millable cane yields averaged 25.3 tons/acre for all treatments and 34.7 tons/acre for variety US 67-22.2.

Alexander, A.G.

1981-01-01T23:59:59.000Z

304

European waste-to-energy systems: case study of Geneva-Cheneviers (Switzerland)  

DOE Green Energy (OSTI)

The City of Geneva, population 159,000 is the administrative center of the Canton of Geneva, population 340,000. The Canton owns a number of facilities for the treatment of waste. Geneva's chief waste treatment facility is the Cheneviers Incinerator. Two Von Roll integrated boiler incinerator furnaces have a rated capacity of 200 metric tons (220 short tons) per day each. Superheated steam at 360/sup 0/C and 32.4 bars (32 atm) powers a 6200 kW turbo-generator unit. The electricity is sold to the cantonal grid. Total incinerable waste in the Canton of Geneva has varied from 120,000 to 130,000 metric tons (132,000 to 144,000 short tons) annually during the last five years. For the last two years, total per capita tonnage have been declining. Per capita incinerable waste was 363 kilograms (800 lbs) in the year 1975, of which 257 kilograms (606 lbs) were household waste. Eighty-seven thousand, five hundred metric tons (96,386 short tons) of this waste was burned in the Cheneviers Incinerator in 1975. The remainder was landfilled, due to the lack of capacity at the incinerators. The system which began operating in 1966, cost approximately 40 million Swiss Francs ($9.3 million; 1965 or $23 million; 1976). Three-quarters of this sum was for land, buildings, construction, and equipment. A large station and dock for the transfer of waste accounted for the remainder. The Von Roll design ofthis plant is now out of date. Extensive modifications were made to correct corrosion problems in the furnace.

None

1977-05-01T23:59:59.000Z

305

Short Order Macromedia Dreamweaver 3  

Science Conference Proceedings (OSTI)

From the Publisher:Short Order Dreamweaver 3 teaches you Dreamweaver in a step-by-step progression of the complete Web site creation process. Presented in a comprehensive yet streamlined format, examples based on real-life projects cover all phases of ...

Steven Moniz

2000-04-01T23:59:59.000Z

306

Lecithin-Short-Course-Biographies  

Science Conference Proceedings (OSTI)

Lecithin Functions in Technology and Nutrition Short Course Saturday and Sunday, April 27–28, 2013 · Palais des congrès de Montréal, Montréal, Québec, Canada Co-organized by AOCS and ILPS · Held prior to the 104th AOCS Annual Meeting & Expo · AnnualMee

307

Portsmouth DUF6 Conversion Final EIS - Chapter 1: Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS 1 INTRODUCTION Over the last five decades, the U.S. Department of Energy (DOE) has enriched large quantities of uranium for nuclear applications by means of gaseous diffusion. This enrichment has taken place at three DOE sites located at Paducah, Kentucky; Portsmouth, Ohio; and the East Tennessee Technology Park (ETTP, formerly known as the K-25 site) in Oak Ridge, Tennessee (Figure 1-1). "Depleted" uranium hexafluoride (commonly referred to as DUF 6 ) is a product of this process. It is being stored at the three sites. The total DUF 6 inventory at the three sites weighs approximately 700,000 metric tons (t) (770,000 short tons [tons]) 1 and is stored in about 60,000 steel cylinders. This document is a site-specific

308

Annual Energy Outlook 2006 with Projections to 2030 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal Annual Energy Outlook 2006 with Projections to 2030 Market Share of Western Coal Continues To Increase U.S. coal production has remained near 1,100 million tons annually since 1996. In the AEO2006 reference case, increasing coal use for electricity generation at existing plants and construction of a few new coal-fired plants lead to annual production increases that average 1.1 percent per year from 2004 to 2015, when total production is 1,272 million tons. The growth in coal production is even stronger thereafter, averaging 2.0 percent per year from 2015 to 2030, as substantial amounts of new coal-fired generating capacity are added, and several CTL plants are brought on line. Figure 97. Coal production by region, 1970-2030 (million short tons). Need help, contact the National Energy Information Center at 202-586-8800 for help.

309

U.S. Energy Information Administration | Annual Coal Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Average Sales Price of Coal by Mine Production Range and Mine Type, 2012 Average Sales Price of Coal by Mine Production Range and Mine Type, 2012 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2012 Table 32. Average Sales Price of Coal by Mine Production Range and Mine Type, 2012 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2012 Mine Production Range (thousand short tons) Underground Surface Total Over 1,000 58.86 19.50 31.70 Over 500 to 1,000 84.65 66.80 74.74 Over 200 to 500 95.31 73.29 84.14 Over 100 to 200 98.00 68.97 82.69 Over 50 to 100 81.53 75.99 78.61 50 or Under 92.87 63.12 73.78 U.S. Total 66.56 26.43 39.95 Note: An average sales price is calculated by dividing the total free on board (f.o.b) rail/barge value of the coal sold by the total coal sold. Excludes mines producing less than 25,000 short tons, which are not

310

U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013  

U.S. Energy Information Administration (EIA) Indexed Site

Open Market Sales and Average Price of Coke and Breeze Open Market Sales and Average Price of Coke and Breeze (thousand short tons and dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 25. Open Market Sales and Average Price of Coke and Breeze (thousand short tons and dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Commodity April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change Coke - - - - - - Sales 1,969 1,936 1,996 3,905 3,987 -2.1 Average Price 331.26 364.97 388.87 347.97 395.78 -12.1 Breeze - - - - - - Sales 89 110 158 199 309 -35.7 Average Price 196.05 145.86 103.62 168.27 101.14 66.4 Note: Total may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration (EIA), Form EIA-5, 'Quarterly Coal Consumption and Quality Report -

311

u.s. Tuna Trade Summary, 1983 SAMUEL F. HERRICK, Jr. and STEVEN KOPLIN  

E-Print Network (OSTI)

u.s. Tuna Trade Summary, 1983 SAMUEL F. HERRICK, Jr. and STEVEN KOPLIN 'In short tons: Includes imports and domestically caught tuna. 'Thousands of standard cases. A standard case consists of 48 6.5-0unce cans of light meat tuna and 48 7-ounce cans of albacore or white meat tuna. Source: Statistics

312

UPDATE AND ENHANCEMENT OF ODOT'S CRASH REDUCTION FACTORS  

E-Print Network (OSTI)

systems, Research, Traffic engineering, Crash Reduction Factors 18. Distribution Statement Copies.454 kilograms kg TEMPERATURE (exact) T short tons (2000 lb) 0.907 megagrams Mg °C Celsius temperature 1.8 + 32................................................................18 3.1.6 Add two-way left-turn lane

Bertini, Robert L.

313

Coal distribution, January-September 1986  

Science Conference Proceedings (OSTI)

US coal producers and distributors shipped 665.3 million short tons of coal to domestic and foreign destinations from January through September 1986, 2.8 million short tons more than the amount shipped during the same time period of 1985. Nearly all (99.9%) of the coal that was produced and purchased during the first 9 months of 1986 was shipped. In contrast, shipments exceeded production and purchases by 1.6 million short tons during the comparable period of 1985 as producers and distributors drew from their stockpiles to help meet the demand. During January through September 1986: (1) Coal production was 0.7% higher and coal shipments were 0.4% higher than during the same time period of 1985. (2) Producers and distributors held stockpiles of 33.7 million short tons on September 30, 1986, 1.8% more than their stocks at the end of 1985. (3) Shipments for export were 7.8% less than they were 1 year earlier. (4) Domestic shipments to electric utilities and other industrial plants were higher while those to coke plants were lower, compared to the same time period of 1985. This issue contained a review article on Pennsylvania anthracite. 6 figs., 33 tabs.

Not Available

1987-01-06T23:59:59.000Z

314

Table 39. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2003  

U.S. Energy Information Administration (EIA) Indexed Site

State/Refiner/Location Alkylates Aromatics State/Refiner/Location Alkylates Aromatics Isobutane Lubricants Isomers Isopentane and Isohexane Asphalt and Road Oil Marketable Petroleum Coke Hydrogen (MMcfd) Sulfur (short tons per day) Table 4. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2013 (Barrels per Stream Day, Except Where Noted) Isooctane a

315

Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Destination  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 (Thousand Short Tons) " " Coal-Exporting State and Destination ",,"Metallurgical ","Steam ","Total "," " "Alabama ",,3977,"-",3977," " ," Argentina ",225,"-",225," " ," Belgium ",437,"-",437," " ," Brazil ",1468,"-",1468," " ," Bulgaria ",75,"-",75," " ," Egypt ",363,"-",363," " ," Germany ",71,"-",71," " ," Italy ",61,"-",61," " ," Netherlands ",219,"-",219," " ," Spain ",415,"-",415," " ," Turkey ",362,"-",362," "

316

XAS Short Course March 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

Location Location Application Registration Visitor Information Transportation Tourism & Dining XAS Short Course March 2007 March 13-16 The Structural Molecular Biology BioXAS group will host an X-ray Absorption Spectroscopy (XAS) Short Course at SSRL from March 13-16. The training will include two days of lectures which will cover basic theory, experimental considerations, and applications. The lectures will be followed by two days of rotating practical sessions, which will include hands-on data collection at the beam line and data analysis. Participants are encouraged to bring their own samples to test feasibility for future data collection. Space will be limited to 16 participants, so early application is encouraged and will be available soon through the SSRL website. For more information,

317

Ultra-short pulse generator  

DOE Patents (OSTI)

An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shock wave diode, which increases and sharpens the pulse even more. 5 figures.

McEwan, T.E.

1993-12-28T23:59:59.000Z

318

Short rotation Wood Crops Program  

DOE Green Energy (OSTI)

This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

Wright, L.L.; Ehrenshaft, A.R.

1990-08-01T23:59:59.000Z

319

City of San Marcos - Energy Efficient Home Rebate Program (Texas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of San Marcos - Energy Efficient Home Rebate Program (Texas) City of San Marcos - Energy Efficient Home Rebate Program (Texas) City of San Marcos - Energy Efficient Home Rebate Program (Texas) < Back Eligibility Residential Savings Category Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Texas Program Type Utility Rebate Program Rebate Amount Air Conditioner SEER 14.5: $75/ton Air Conditioner SEER 15.0: $100/ton Air Conditioner SEER 16.0: $125/ton Air Conditioner SEER 17.0: $150/ton Heat Pump SEER 14.5: $100/ton Heat Pump SEER 15.0: $125/ton Heat Pump SEER 16.0: $150/ton Heat Pump SEER 17.0: $175/ton Attic Floor Insulation: (square feet of application area)x(R-value added)x(0.0075) Attic Spray Foam Insulation: (square feet of application area)x(R-value

320

NETL: Development of an Energy Efficient, Environmentally Friendly...  

NLE Websites -- All DOE Office Websites (Extended Search)

solvent durability. B&W 7 TonDay Pilot Facility B&W 7 TonDay Pilot Facility Related Papers and Publications: Optimized Solvent for Energy-Efficient, Environmentally-Friendly...

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Detroit Public Lighting Department - Commercial and Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC Equipment: 10-30ton Programmable Thermostat: 80 Window Glazing: 0.30square foot Window Film: 0.20 Chillers: 7 - 40ton Variable Frequency Drives: 70-180...

322

Vehicle Technologies Office: Fact #419: April 10, 2006 Freight...  

NLE Websites -- All DOE Office Websites (Extended Search)

9: April 10, 2006 Freight Ton-Mile Trends by Mode to someone by E-mail Share Vehicle Technologies Office: Fact 419: April 10, 2006 Freight Ton-Mile Trends by Mode on Facebook...

323

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

E-Print Network (OSTI)

microturbines,150 ton absorption chiller and CHP $3,900,000(low interest loan absorption chiller and heat exchangermicroturbines,150 ton absorption chiller and CHP $3,900,000(

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-01-01T23:59:59.000Z

324

EIA - AEO2013 Early Release Energy-Related Carbon Dioxide Emissions  

U.S. Energy Information Administration (EIA)

In AEO2013, the 2030 values have fallen to 5,523 million metric tons for total energy-related CO 2 emissions, with 1,874 million metric tons (34 percent) ...

325

MATH 158 Assignment 2, Spring 2013 - CECM  

E-Print Network (OSTI)

Feb 4, 2013 ... For exercise 60, the current yearly production rate is 20 million tons per year and they want to increase it by 2te-0.05t tons per year. The way I ...

326

Click to Edit Master Title Style  

U.S. Energy Information Administration (EIA) Indexed Site

30 million metric tons of CO2 metric ton of CO2 Landfill Gas 25% Reduction in Building Energy Use Solar PV >700 (>250 with tax Incentives) Exelon's Supply Curve of CO2...

327

Gas Mileage of 1991 Vehicles by Toyota  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Toyota Vehicles EPA MPG MODEL City Comb Hwy 1991 Toyota 1-Ton Truck 2WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1991 Toyota 1-Ton Truck 2WD 16 City 18 Combined 21...

328

Gas Mileage of 1992 Vehicles by Toyota  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Toyota Vehicles EPA MPG MODEL City Comb Hwy 1992 Toyota 1-Ton Truck 2WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1992 Toyota 1-Ton Truck 2WD 16 City 18 Combined 21...

329

Automated Continuous Commissioning of Commercial Buildings  

E-Print Network (OSTI)

kW/ton) AHU (kW/ton) Sub-metering data for HVAC equipment >consumption (over baseline) Sub-metering data for lightingenergy consumption (kW) Sub-metering data for HVAC equipment

Bailey, Trevor

2013-01-01T23:59:59.000Z

330

Microsoft Word - B5D7DEEC.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Three types of 19 percent aqueous NH 3 spills were simulated: a 400-pound (181-kilograms) leak from a valve, an uncontained 23.1-ton (21-metric ton) (6,000-gallon...

331

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

data were converted at 8.162674 barrels per metric ton. One metric ton equals 1,000 kilograms. bFor INFORUM, liquids demand data were converted from quadrillion Btus to barrels...

332

STEO December 2012 - coal demand  

U.S. Energy Information Administration (EIA) Indexed Site

coal demand seen below 1 billion tons in 2012 for fourth year in a row Coal consumption by U.S. power plants to generate electricity is expected to fall below 1 billion tons in...

333

Coal Mining Tax Credit (Arkansas)  

Energy.gov (U.S. Department of Energy (DOE))

The Coal Mining Tax Credit provides an income or insurance premium tax credit of $2.00 per ton of coal mined, produced or extracted on each ton of coal mined in Arkansas in a tax year. An...

334

World Carbon Emissions by Region, 1990-2020  

U.S. Energy Information Administration (EIA)

•World carbon emissions are expected to reach 8.0 billion metric tons by 2010 and 9.8 billion metric tons by 2020 according to the IEO99 reference case projection ...

335

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

at a sufficient high price and coal price keeps sufficientMWh electricity, 12% IRR Coal Price, $/metric ton BreakevenCERT-3B 42 $/metric ton coal price Electricity Sale Price,

Lu, Xiaoming

2012-01-01T23:59:59.000Z

336

Waste Hoist  

NLE Websites -- All DOE Office Websites (Extended Search)

45-ton Rope-Guide Friction Hoist Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides. With a 45-ton capacity, it...

337

Climate Actions in EU and Globally  

NLE Websites -- All DOE Office Websites (Extended Search)

largest stationary source of direct emissions at 2,324 million metric tons CO 2 e * Refineries are second at 183 million metric tons CO 2 e * 100 facilities reported over 7...

338

Data Center Energy Benchmarking: Part 4 - Case Study on a Computer-testing Center (No. 21)  

E-Print Network (OSTI)

gpm/ton) and 1,500 gpm of condenser flow (3 gpm/ton) with anwater temperature (condenser water supply temperature).and controlled by the condenser water return temperature.

Xu, Tengfang; Greenberg, Steve

2007-01-01T23:59:59.000Z

339

Engine placement for manned descent at Mars considering single engine failures  

E-Print Network (OSTI)

Previous missions to Mars have landed masses of approximately I metric ton on the surface. Vehicles large enough to support humans on the flight to Mars and land them safely on the surface are closer to 100 metric tons, a ...

York, Stephen P. (Stephen Patrick)

2006-01-01T23:59:59.000Z

340

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network (OSTI)

Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual SupplyBiomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply”,

Eggert, Anthony

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network (OSTI)

Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual SupplyBiomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply”,

Eggert, Anthony

2007-01-01T23:59:59.000Z

342

Austin Utilities (Gas and Electric) - Commercial and Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

each 0.1 SEEREER above minimum efficiency Air Source Heat Pumps (ductless): 200 Ground Source Heat Pumps: 200ton plus 25ton for each 1.0 EER point over the minimum...

343

Residential Energy Efficiency Rebate (Offered by Members of Associated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Type Utility Rebate Program Rebate Amount Room AC: 50 Electric Water Heaters: 50 New Ground-Source Heat Pump: up to 750ton Replacement Ground-Source Heat Pump: 150ton...

344

Duke Energy - Non-Residential Energy Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Controls and Sensors: 0.04connected watt AC and Heat Pump Units: 20-40ton Ground Source Heat Pumps: 30ton Variable Frequency Drives: 40hp Pumps: 165-400pump, varies...

345

CX-005997: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of State Energy Program funds to Joan Rutt for the installation of two residential ground source heat pumps (GSHP). A 3-ton and a 5-ton vertical closed-loop GSHP would be...

346

FirstEnergy (MetEdison, Penelec, Penn Power) - Commercial and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps: 150unit Water Source Heat Pumps: 150ton Ground SourceGround Water Source Heat Pumps: 250unit Chillers: 12.50-25ton Custom: 0.05kWh saved annually...

347

Renewable Fuels Module of the National Energy Modeling System ...  

U.S. Energy Information Administration (EIA)

6 a 1 =0.02523713 [10 ton/10 9 $]) a 2 = regression coef. representing the impact of change in 6population (a 2 =0.159544 [10 ton/10 6 capita]) ...

348

Supplement Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

tons (300 dry metric tons) per day Unchanged Water make-up from Pontotoc WWTP (cooling tower) 450,000 gallons (1.7 million liters) per day* 800,000 gallons (3.0 million liters)...

349

Award Recipient of the ENERGY STAR Challenge for Industry CalPortland  

NLE Websites -- All DOE Office Websites (Extended Search)

5 th 1999 with three small silos and enough track to hold thirty-two 100 ton cement rail cars. The terminal now has 5 silos and 2 sets of loop track to hold 9600 tons of cement...

350

The life cycle assessment of concrete manufacturing in Kuwait  

E-Print Network (OSTI)

Concrete is the second most widely used material in the world after water. Annually 9,120 million tons of concrete are produced, which is an equivalent of 1.3 tons of concrete per individual. As the world's primary ...

El Mostafa, Mayce (Mayce A.)

2013-01-01T23:59:59.000Z

351

Text Analysis Conference (TAC) 2012 Agenda  

Science Conference Proceedings (OSTI)

... 10:20–10:40, JVN-TDT Entity Linking Systems at TAC-KBP2012 [paper] Hien T. Nguyen (Ton Duc Thang University) Huy H. Minh (Ton Duc Thang ...

352

Microsoft Word - JAS-Fort Nelson.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Test Name Fort Nelson Demonstration Test Test Location British Columbia, Canada Amount and Source of CO 2 Tons Approximately 1.2 million tons of CO 2 per year Source...

353

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

3 3 1 Short-Term Energy Outlook April 2003 Overview World Oil Markets. Crude oil prices fell sharply at the onset of war in Iraq, but the initial declines probably overshot levels that we consider to be generally consistent with fundamental factors in the world oil market. Thus, while near-term price averages are likely to be below our previous projections, the baseline outlook for crude oil prices (while generally lower) is not drastically different and includes an average for spot West Texas Intermediate (WTI) that is close to $30 per barrel in 2003 (Figure 1). The mix of uncertainties related to key oil production areas has changed since last month, as Venezuelan production has accelerated beyond previous estimates while Nigerian output has been reduced due to internal conflict.

354

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network (OSTI)

a single-stage 145 ton absorption chiller that runs entirelybeing cooled by the absorption chiller is approximately

Brush, Adrian

2012-01-01T23:59:59.000Z

355

Assessment of Distributed Energy Adoption in Commercial Buildings: Part 1: An Analysis of Policy, Building Loads, Tariff Design, and Technology Development  

E-Print Network (OSTI)

microturbines,150 ton absorption chiller and CHP SELFGEN,funding) $184,522 for absorption chiller and heat exchanger

Zhou, Nan; Nishida, Masaru; Gao, Weijun; Marnay, Chris

2005-01-01T23:59:59.000Z

356

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

a single-stage 145 ton absorption chiller that runs entirelybeing cooled by the absorption chiller is approximately

Masanet, Eric

2008-01-01T23:59:59.000Z

357

Energy Policy 36 (2008) 20632073 Implications of carbon cap-and-trade for US voluntary  

E-Print Network (OSTI)

converted to $/metric ton assuming average regional CO2 emissions rate from eGRID (US EPA, 2004). 6 Data

358

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Per Capita Carbon Dioxide Emissions from the Consumption of Energy (Metric Tons of Carbon Dioxide per Person) Loading...

359

Microsoft Word - EHS 210.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment, Health, & Safety Training Program EHS 0210 CraneHoist Operator-2 Tons (4,000 lbs) or less Course...

360

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Carbon Intensity using Market Exchange Rates (Metric Tons of Carbon Dioxide per Thousand Year 2005 U.S. Dollars) Loading...

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Frost & Sullivan's Study on Potential Market for Carbon ...  

Science Conference Proceedings (OSTI)

... 100 CNT Demand (Tons) Growth Rate ... segment over the forecast period (through 2015). ... Segment Market Analysis and Forecasts - Nanotechnology ...

2012-10-25T23:59:59.000Z

362

Carbon Intensity, - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Carbon Intensity using Market Exchange Rates (Metric Tons of Carbon Dioxide per Thousand Year 2005 U.S. Dollars) Loading...

363

www.eia.gov  

U.S. Energy Information Administration (EIA)

Annual energy-related carbon emissions (metric tons of carbon dioxide),,,, Year,coal,natural gas,petroleum,total ...

364

Portugal - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Carbon Dioxide Emissions (Million Metric Tons of CO?) Previous Year . Latest Year : History Portugal Europe World. Rank . Portugal: Total from ...

365

The requirement to dredge our navigable waterways to in-sure proper. channel depths for shipping, and the resul-  

E-Print Network (OSTI)

the least consumptive-using less than 500 British Thermal Units of energy per ton-mile. About 1/3 of total per year. The amount of tonnage that can be moved in a single tow has increased from 5,000 to 50 tons per year-over 350 billion ton-miles-or about 7 tons per capita. This cargo is carried

US Army Corps of Engineers

366

Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass  

E-Print Network (OSTI)

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy andpotential annual supply of cellulosic biomass is estimated

McKenzie, Heather Lorelei

2012-01-01T23:59:59.000Z

367

Techno-Economic Analysis of Hydrogen Production by Gasification of Biomass  

E-Print Network (OSTI)

was the design and operation of a gasifier processing 100 tons/day of bagasse utilizing the RENUGAS® pro

368

The Future of Nuclear Energy: Facts and Fiction: An update using 2009/2010 Data  

E-Print Network (OSTI)

An update of our 2009 study, "The Future of Nuclear Energy, Facts and Fiction" using the 2009 and the available 2010 data, including a critical look at the just published 2009 edition of the Red Book, is presented. Since January 2009, eight reactors with a capacity of 4.9 GWe have been connected to the electric grid and four older reactors, with a combined capacity of 2.64 GWe have been terminated. Furthermore, 27 reactor constructions, dominated by China (18) and Russia (4), have been initiated. The nuclear fission produced electric energy in 2009 followed the slow decline, observed since 2007, with a total production of 2560 TWhe, 41 TWhe (1.6%) less than in 2008 and roughly 100 TWhe less than in the record year 2006. The preliminary data from the first 10 months of 2010 in the OECD countries indicate that nuclear power production in North-America remained at the 2009 levels, while one observes a recovery in Europe with an increase of 2.5% and a strong rise of 5% in the OECD Asia-Pacific area compared to the same period in 2009. Worldwide uranium mining has increased during 2009 by about 7000 tons to almost 51000 tons. Still roughly 18000 tons of the 2010 world uranium requirements need to be provided from the civilian and military reserves. Perhaps the most remarkable new data from the just published 2009 edition of the Red Book, are that (1) the best understood RAR (reasonable assured) and IR (inferred) resources, with a price tag of less than 40 US dollars/Kg, have been inconsistently absorbed in the two to three times higher price categories and (2) uranium mining in Kazakhstan is presented with a short lifetime. The presented mining capacity numbers indicate an uranium extraction peak of 28000 tons during the years 2015-2020, from which it will decline quickly to 14000 tons by 2025 and to only 5000-6000 tons by 2035.

Michael Dittmar

2011-01-21T23:59:59.000Z

369

Pulping lignocellulose in continuous pressurized batch digesters  

Science Conference Proceedings (OSTI)

A batch process to produce kraft pulp is described, in which a combination of black and white liquor is used for cooking of wood chips. In the process, the steam consumption to produce 357 tons/day pulp at 50% yield was approximately 1600 lb/ton pulp, compared with 4000 lb/ton for a batch digester of conventional type.

Green, F.B.

1980-12-02T23:59:59.000Z

370

Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance  

E-Print Network (OSTI)

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy andU.S. Billion-Ton Update: Biomass Supply for a Bioenergy andBiomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply.

DeMartini, Jaclyn Diana

2011-01-01T23:59:59.000Z

371

The Solvent Mediated Thermodynamics of Cellulose Deconstruction  

E-Print Network (OSTI)

Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion- Ton Annual Supply;Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply;Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply;

Gross, Adam S

2012-01-01T23:59:59.000Z

372

User's Guide Short-Term Energy Model  

Reports and Publications (EIA)

The personal computer version of the Energy Information Administration's (EIA) Short Term Energy Outlook, known simply as the Short-Term Energy Model, is a modeling system used to forecast future values for key energy variables. It replicates in a Windows environment most features of EIA's mainframe-based short-term modeling system, and adds capabilities that allow the user substitute assumptions to calculate alternative projections.

Information Center

1995-05-01T23:59:59.000Z

373

Physics Out Loud - Short-range Correlations  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantum Chromodynamics (QCD) Previous Video (Quantum Chromodynamics (QCD)) Physics Out Loud Main Index Next Video (SRF Accelerator Cavities) SRF Accelerator Cavities Short-range...

374

EIA Short -Term and Winter Fuels Outlook  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook, October 2008 NASEO 2008/09 Winter Fuels Outlook Conference October 7, 2008 Washington, DC Howard Gruenspecht Acting ...

375

Short Term Energy Outlook - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Projections: EIA, Short-Term Integrated Forecasting System database, and Office of Coal, Nuclear, Electric and Alternate Fuels (hydroelectric and nuclear).

376

Short Term Energy Outlook - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration/Short-Term Energy Outlook—February 2008 2 Global Petroleum OPEC left production targets unchanged at its February 1st ...

377

Short Term Energy Outlook - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration/Short-Term Energy Outlook—March 2008 2 Diesel prices are projected to show larger gains in 2008, averaging $3.45 per

378

Short Term Energy Outlook - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration/Short-Term Energy Outlook—January 2009 2 Global Petroleum Overview. The downward trend in oil prices continued in ...

379

Short Term Energy Outlook - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration/Short-Term Energy Outlook—December 2008 2 Global Petroleum Overview The increasing likelihood of a prolonged global ...

380

Short-Distance Structure of Nuclei  

Science Conference Proceedings (OSTI)

One of Jefferson Lab's original missions was to further our understanding of the short-distance structure of nuclei. In particular, to understand what happens when two or more nucleons within a nucleus have strongly overlapping wave-functions; a phenomena commonly referred to as short-range correlations. Herein, we review the results of the (e,e'), (e,e'p) and (e,e'pN) reactions that have been used at Jefferson Lab to probe this short-distance structure as well as provide an outlook for future experiments.

Douglas Higinbotham, Eliazer Piasetzky, Stephen Wood

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Farber Merlin expands Thai oil shale and tin interests  

SciTech Connect

The Hong Kong-based Farber Merlin group is negotiating with Australian mining interests to form a joint venture to develop Thailand's extensive oil shale deposits as an energy source. Thailand's Department of Mineral Resources estimates oil shale reserves in the northern provinces of Lanphun and Tak at 2515 million metric tons, of which 15 million metric tons in Lanphun is termed high-grade or capable of producing 15 gal/metric ton. The 2500 million metric tons in Tak is low-grade, capable of producing about 1.5 gal/metric ton.

1974-02-01T23:59:59.000Z

382

Short-Term Energy Outlook January 2014  

Gasoline and Diesel Fuel Update (EIA)

Chart Gallery for January 2014 Short-Term Energy Outlook U.S. Energy Information Administration Independent Statistics & Analysis 40 60 80 100 120 140 160 180 200 220 West Texas...

383

Gravitational waves and short gamma ray bursts.  

E-Print Network (OSTI)

??Short hard gamma-ray bursts (GRB) are believed to be produced by compact binary coalescences (CBC) { either double neutron stars or neutron star{black hole binaries.… (more)

Predoi, Valeriu

2012-01-01T23:59:59.000Z

384

Compilation techniques for short-vector instructions  

E-Print Network (OSTI)

Multimedia extensions are nearly ubiquitous in today's general-purpose processors. These extensions consist primarily of a set of short-vector instructions that apply the same opcode to a vector of operands. This design ...

Larsen, Samuel (Samuel Barton), 1975-

2006-01-01T23:59:59.000Z

385

The Conservation Reserve Program as a Means to Subsidize Bioenergy Crop Prices  

DOE Green Energy (OSTI)

The Conservation Reserve Program (CRP), enacted in the 1985 Farm Bill, removes environmentally sensitive cropland from production in exchange for annual rental payments from the federal government. To reduce the cost of the program, economic use of CRP acres in exchange for reduced rental payments were proposed, but not implemented in the 1995 Farm Bill. This paper examines the potential impact an economic use policy would have on the market prices of bioenergy crops if they were permitted to be harvested from CRP acres. The analysis shows that at average yields of 11.25 dry Mg/ha/yr (5 dry tons/ac/yr) and total production of 9.1 million dry Mg (10 million dry tons) subsidized farmgate prices of as low as $16.5/dry Mg ($15/dry ton) for switchgrass and $24.2/dry Mg ($22/dry ton) for short-rotation woody crops can be achieved. Furthermore, the government can reduce the cost of the CRP resulting in a potential win-win situation.

Walsh, M.E.; Becker, D.; Graham, R.L.

1996-09-15T23:59:59.000Z

386

Comparison of coal and iron requirements between bituminous coal hydrogenation and low temperature carbonization (L. T. C. ) followed by hydrogenation  

SciTech Connect

Plants producing 100,000 tons/yr aviation gasoline and 25,000 tons/yr of liquid petroleum gasoline (L.P.G.) by hydrogenation of coal and 100,000 tons/yr of aviation gasoline, 15,000 tons/yr L.P.G., and 912,000 tons/yr of excess L.T.C. coke by L.T.C. followed by hydrogenation of the L.T.C. tar are considered. Specific data are included on L.T.C., specific data for L.T.C. tar hydrogenation, and total coal requirement for L.T.C. of coal and hydrogenation of the L.T.C. tar. Information is also included on hydrogenation of bituminous coal and iron requirements. Three charts show differences between various bituminous coal conversion processes. The iron requirements for L.T.C. and tar hydrogenation was 100,500 tons and for bituminous coal hydrogenation it was 123,300 tons. An input of 1,480,000 tons of L.T.C. coal was calculated. The power coal requirement for L.T.C. and hydrogenation was 1,612,000 tons. The coal requirement for tar hydrogenation was 482,000 tons and 1,130,000 tons for surplus coke and gas. Therefore about 30% of the total coal was used for aviation gasoline and L.P.G. and about 70% for surplus coke and gas.

1943-04-21T23:59:59.000Z

387

RG&E (Electric) - Commercial and Industrial Efficiency Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RG&E (Electric) - Commercial and Industrial Efficiency Program RG&E (Electric) - Commercial and Industrial Efficiency Program RG&E (Electric) - Commercial and Industrial Efficiency Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate No maximum per customer rebate; however, NYSEG/RG&E reserve the right to cap the rebate to any one customer Program Info State New York Program Type Utility Rebate Program Rebate Amount HVAC: Prescriptive incentives vary A/C or Heat Pump A/C or Heat Pump > 63 tons: $25/ton + $5/ton for each 0.1 EER above 9.7 Water Cooled Chillers: $6/ton or $15/ton + $2-$8/ton for each 0.01 kW/ton

388

NYSEG (Electric) - Commercial and Industrial Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Efficiency Program Commercial and Industrial Efficiency Program NYSEG (Electric) - Commercial and Industrial Efficiency Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate No maximum per customer rebate; however, NYSEG/RG&E reserve the right to cap the rebate to any one customer. Program Info State New York Program Type Utility Rebate Program Rebate Amount Lighting, HVAC: Prescriptive incentives vary A/C or Heat Pump A/C or Heat Pump > 63 tons: $25/ton + $5/ton for each 0.1 EER above 9.7 Water Cooled Chillers: $6/ton or $15/ton + $2-$8/ton for each 0.01 kW/ton

389

White River Valley Electric Cooperative - Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

White River Valley Electric Cooperative - Energy Efficiency Rebate White River Valley Electric Cooperative - Energy Efficiency Rebate Program White River Valley Electric Cooperative - Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Geothermal Heat Pump: 10 tons for Residential, 50 tons for Commercial Dual Fuel Heat Pump: 10 tons for Residential, 50 tons for Commercial Air Source Heat Pump: 10 tons Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Residential Sector Only: Refrigerator: $75 Electric Water Heater: $50 Room AC: $50 Both Commercial and Residential: Ground Source Heat Pump (New Installation): $750/ton Ground Source Heat Pump (Replacement) : $150/ton

390

Short-term energy outlook: Quarterly projections  

SciTech Connect

The Energy Information Administration (EIA) quarterly forecasts of short-term energy supply, demand, and prices are revised in January, April, July, and October for publication in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes previous forecast errors, compares recent projections by other forecasters, and discusses current topics of the short-term energy markets (see Short- Term Energy Outlook: Annual Supplement, DOE/EIA-0202). The principal users of the Outlook are managers and energy analysts in private industry and government. The projections in this volume extend through the fourth quarter of 1990. The forecasts are produced using the Short-term Integrated Forecasting System (STIFS). The STIFS model uses two principal driving variables: a macroeconomic forecast and world oil price assumptions. Macroeconomic forecasts produced by data Resources, Inc., (DRI), are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic forecast. EIA's Oil Market Simulation Model is used to project world oil prices. 20 refs., 17 figs., 16 tabs.

1989-07-01T23:59:59.000Z

391

Means for limiting and ameliorating electrode shorting  

SciTech Connect

A fuse and filter arrangement is described for limiting and ameliorating electrode shorting in capacitive deionization water purification systems utilizing carbon aerogel, for example. This arrangement limits and ameliorates the effects of conducting particles or debonded carbon aerogel in shorting the electrodes of a system such as a capacitive deionization water purification system. This is important because of the small interelectrode spacing and the finite possibility of debonding or fragmentation of carbon aerogel in a large system. The fuse and filter arrangement electrically protect the entire system from shutting down if a single pair of electrodes is shorted and mechanically prevents a conducting particle from migrating through the electrode stack, shorting a series of electrode pairs in sequence. It also limits the amount of energy released in a shorting event. The arrangement consists of a set of circuit breakers or fuses with one fuse or breaker in the power line connected to one electrode of each electrode pair and a set of screens of filters in the water flow channels between each set of electrode pairs.

Konynenburg, R.A. van; Farmer, J.C.

1999-11-09T23:59:59.000Z

392

Means for limiting and ameliorating electrode shorting  

Science Conference Proceedings (OSTI)

A fuse and filter arrangement for limiting and ameliorating electrode shorting in capacitive deionization water purification systems utilizing carbon aerogel, for example. This arrangement limits and ameliorates the effects of conducting particles or debonded carbon aerogel in shorting the electrodes of a system such as a capacitive deionization water purification system. This is important because of the small interelectrode spacing and the finite possibility of debonding or fragmentation of carbon aerogel in a large system. The fuse and filter arrangement electrically protect the entire system from shutting down if a single pair of electrodes is shorted and mechanically prevents a conducting particle from migrating through the electrode stack, shorting a series of electrode pairs in sequence. It also limits the amount of energy released in a shorting event. The arrangement consists of a set of circuit breakers or fuses with one fuse or breaker in the power line connected to one electrode of each electrode pair and a set of screens of filters in the water flow channels between each set of electrode pairs.

Van Konynenburg, Richard A. (Livermore, CA); Farmer, Joseph C. (Tracy, CA)

1999-01-01T23:59:59.000Z

393

DOE/EIA-0202(87/3Q) Energy Information Administration Short-Term  

Gasoline and Diesel Fuel Update (EIA)

3Q) 3Q) Energy Information Administration Short-Term Energy Outlook Quarterly Projections July 1987 aergy i . Energy ' Energy Energy Energy i Energy i . Energy . Energy Energy Energy . Energy . Energy Energy Energy Energy i Energy . Energy . Energy Energy Energy Energy . Energy "nergy ; Short-Term : Short-Term . Short-Term : Short-Term : Short-Term ; Short-Term : Short-Term ; Short-Term : Short-Term : Short-Term ; Short-Term ; Short-Term ; Short-Term : Short-Term : Short-Term ; Short-Term ; Short-Term ; Short-Term ; Short-Term : Short-Term : Short-Term ; Short-Term : Short-Term ; Short-Term ; Short-Term ; Short-T'- Ent. Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energv Ene1" F- Ou Out, Outlc Outloc.

394

2010 Short Course Basics of Edible Oil Processing and Refining  

Science Conference Proceedings (OSTI)

Basics of Edible Oil Processing and Refining Short Course held at the 101st AOCS Annual Meeting and Expo. 2010 Short Course Basics of Edible Oil Processing and Refining Basics of Edible Oil Processing and Refining Short Course Saturday, M

395

Property:ShortName | Open Energy Information  

Open Energy Info (EERE)

ShortName ShortName Jump to: navigation, search This is a property of type String. Pages using the property "ShortName" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 2008-04 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 2008-08 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 2008-12 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 2008-02 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 2009-02 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 2008-01 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2009 + 2009-01 +

396

Archives and History Office: Short Features  

NLE Websites -- All DOE Office Websites (Extended Search)

Features > Short Features Features > Short Features Short Features in SLAC History 40th SLAC celebrated its 40th Anniversary in 2002 with a series of events and a photo book. 50th SLAC celebrated its 50th Anniversary in 2012 with a series of events and a special anniversary website: Celebrating 50 Years of Discovery. APS Burton Richter, Sid Drell , Martin Perl , and Herman Winick made presentations at the American Physical Society (APS) Centennial Celebration and Meeting ( March 20-26 1999). Angiogram The first synchrotron radiation coronary angiogram recorded on a human subject occurred in May 1986 at the Stanford Synchrotron Radiation Laboratory (SSRL). BaBar BaBar was dedicated on August 13, 1999. Beam Trees Beam trees are not actually beams or trees. Blue Book The Blue Book is a SLAC classic written to document for posterity the design and building of SLAC's two-mile accelerator. Available in full-text from the SLAC Library.

397

Short Gamma-Ray Bursts Are Different  

E-Print Network (OSTI)

We analyze BATSE time-tagged event (TTE) data for short gamma-ray bursts (T90 duration burst. Performing the cross-correlation between two energy bands, we measure an average lag ~ 20-40 x shorter than for long bursts, and a lag distribution close to symmetric about zero - unlike long bursts. Using a "Bayesian Block" method to identify significantly distinct pulse peaks, we find an order of magnitude fewer pulses than found in studies of long bursts. The disparity in lag magnitude is discontinuous across the ~ 2-s valley between long and short bursts. Thus, short bursts do not appear to be representable as a continuation of long bursts' temporal characteristics.

J. P. Norris; J. D. Scargle; J. T. Bonnell

2001-05-07T23:59:59.000Z

398

Catalysts for synthesizing various short chain hydrocarbons  

DOE Green Energy (OSTI)

Method and apparatus (10), including novel photocatalysts, are disclosed for the synthesis of various short chain hydrocarbons. Light-transparent SiO.sub.2 aerogels doped with photochemically active uranyl ions (18) are fluidized in a fluidized-bed reactor (12) having a transparent window (16), by hydrogen and CO, C.sub.2 H.sub.4 or C.sub.2 H.sub.6 gas mixtures (20), and exposed to radiation (34) from a light source (32) external to the reactor (12), to produce the short chain hydrocarbons (36).

Colmenares, Carlos (Alamo, CA)

1991-01-01T23:59:59.000Z

399

Ultra-short pulse compression using photonic crystal fibre  

Science Conference Proceedings (OSTI)

ABSTRACT A short section of photonic crystal fibre has been used for ultra-short pulse compression. The unique optical prop- erties of this novel medium in ...

400

Electricity storage for short term power system service (Smart...  

Open Energy Info (EERE)

storage for short term power system service (Smart Grid Project) Jump to: navigation, search Project Name Electricity storage for short term power system service Country Denmark...

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Implications of Wide-Area Geographic Diversity for Short- Term...  

NLE Websites -- All DOE Office Websites (Extended Search)

Implications of Wide-Area Geographic Diversity for Short- Term Variability of Solar Power Title Implications of Wide-Area Geographic Diversity for Short- Term Variability of Solar...

402

DOE/EIA-0202(88/2Q) Energy Information Administration Short-Term  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Energy Information Administration Short-Term Energy Outlook Quarterly Projections April 1988 aergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy E nergy Energy Energy Energy Energy '? nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook '"""look Short-Terni Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term

403

DOE/EIA-0202(88/3Q) Energy Information Administration Short-Term  

Gasoline and Diesel Fuel Update (EIA)

3Q) 3Q) Energy Information Administration Short-Term Energy Outlook Quarterly Projections July 1988 Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy . oi Lor L- . ; Short-Term : Short-Term : Short-Term : Short-Term : Short-Term : Short-Term ; Short-Term . Short-Term : Short-Term : Short-Term . Short-Term : Short-Term : Short-Term ; Short-Term : Short-Term . Short-Term : Short-Term : Short-Term : Short-Term : Short-Term . Short-Term : Short-Term : Short-Term ; Short-Term . Short-Term Ent, Energ,, Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Ene r F- Ou Out, Outlc Outloc Outloo. Outlook Outlook Outlook Outlool Outlook Outlook Outlook Outlool

404

Short-term energy outlook. Quarterly projections  

SciTech Connect

Energy Information Administration (EIA) quarterly forecasts of short-term energy supply, demand, and prices are revised in February, May, August, and November for publication in the Short-Term Energy Outlook, quarterly projections. Methodology volumes, which are published with the May and November issues, contain descriptions of the forecasting system and detailed analyses of the current issues that affect EIA's short-term energy forecasts. The forecasts are produced using the Short-Term Integrated Forecasting System (STIFS). Two principal driving variables are used in the STIFS model: the macroeconomic forecast and the world oil price assumptions. The macroeconomic forecasts, which are produced by Data Resources, Inc., (DRI), are adjusted by EIA in cases where EIA projections of the world price of crude oil differ from DRI estimates. EIA's Oil Market Simulation Model is used to project the world oil prices. The three projections for petroleum supply and demand are based on low, medium, and high economic growth scenarios which incorporate high, medium, and low crude oil price trajectories. In general, the following discussion of the forecast refers to the medium, or base case, scenario. Total petroleum consumption sensitivities, using varying assumptions about the level of price, weather, and economic activity are tabulated.

1983-08-01T23:59:59.000Z

405

LE JOURNAL DE PHYSIQUE Short Communication  

E-Print Network (OSTI)

2307 LE JOURNAL DE PHYSIQUE Short Communication Cold fusion in a dense electron gas R. Balian, J in metallic palladiun are required in order to bring the cold fusion rate to an observable value. 'Ibme 50 N are known to yield observable rates for "cold fusion" in ddp-molecules [1-3]. One may also notice

Paris-Sud XI, Université de

406

Short Term Energy Outlook - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The forecasts were generated by simulation of the Short-Term Integrated Forecasting System. 02-03 03-04 04-05 05-06 06-07 Avg.02-07 07-08 08-09 % Change Natural Gas

407

Electricity and short wavelength radiation generator  

DOE Patents (OSTI)

Methods and associated apparati for use of collisions of high energy atoms and ions of He, Ne, or Ar with themselves or with high energy neutrons to produce short wavelength radiation (lambda approx. = 840-1300 A) that may be utilized to produce cathode-anode currents or photovoltaic currents.

George, E.V.

1985-08-26T23:59:59.000Z

408

Table 15. Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method,  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Table 15. Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Underground - Minable Coal Surface - Minable Coal Total Coal-Resource State Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base

409

Domestic Coal Distribution 2009 Q1 by Origin State: Alabama  

U.S. Energy Information Administration (EIA) Indexed Site

Q1 by Origin State: Alabama Q1 by Origin State: Alabama (1000 Short Tons) 1 / 58 Domestic Coal Distribution 2009 Q1 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity Generation Coke Plants Industrial Plants Excluding Coke Commercial & Institutional Total Alabama Railroad 950 4 84 - 1,038 Alabama River 1,110 - - - 1,110 Alabama Truck 37 170 249 - 456 Alabama Total 2,096 174 333 - 2,603 Florida Railroad - - 22 - 22 Georgia Railroad 45 - - - 45 Georgia Truck s - 20 - 21 Georgia Total 45 - 20 - 65 Hawaii Ocean Vessel s - - - s Indiana Railroad - 78 - - 78 Indiana Truck - 32 - - 32 Indiana Total - 110 - - 110 South Carolina Truck - - 2 - 2 Tennessee Truck - - 1 - 1 Texas Railroad 72 - - - 72 Origin State Total 2,213 284 378 - 2,875 Ocean Vessel s - - - s Railroad 1,066 82 106 - 1,255 River 1,110 - - - 1,110 Truck 37 202 272 - 511 2 / 58

410

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2006 1 Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 3 0 * 2 * 0 * * 3112 Grain and Oilseed Milling 3 0 * 2 * 0 0 * 311221 Wet Corn Milling * 0 0 0 0 0 0 * 31131 Sugar Manufacturing * 0 * 0 * 0 * 0 3114 Fruit and Vegetable Preserving and Specialty Food * 0 0 0 * 0 0 0 3115 Dairy Product * 0 * * 0 0 0 * 3116 Animal Slaughtering and Processing

411

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2025. Coal continues to dominate many national fuel markets in developing Asia. World coal consumption has been in a period of generally slow growth since the late 1980s, a trend that is projected to continue. Although total world consumption of coal in 2001, at 5.26 billion short tons,12 was more than 27 percent higher than the total in 1980, it was 1 percent below the 1989 peak of 5.31 billion short tons (Figure 56). The International Energy Outlook 2003 (IEO2003) reference case projects some growth in coal use between 2001 and 2025, at an average annual rate of 1.5 percent (on a tonnage basis), but with considerable variation among regions.

412

ConsumTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption Physical Units Coal in the United States is mostly consumed by the electric power sector. Data are collected by the U.S. Energy Information Administration (EIA) on Form EIA-923, "Power Plant Operations Report," and predecessor forms. "ZZ" in the variable name is used to represent the two-letter state code: CLEIPZZ = coal consumed by the electric power sector in each state, in thousand short tons. CLEIPUS = SCLEIPZZ Seven data series are used to estimate state coal consumption for the other sectors. They are derived from various coal consumption and distribution surveys conducted by EIA. Four are U.S.-level consumption data series, available in thousands of short tons: CLACPUS = coal consumed by the transportation sector in the United States; CLHCPUS = coal consumed by the commercial sector (residential and commercial sector prior to 2008) in

413

U.S. Coal Supply and Demand: 1997 Review  

Gasoline and Diesel Fuel Update (EIA)

Western Western Interior Appalachian Energy Information Administration/ U.S. Coal Supply and Demand: 1997 Review 1 Figure 1. Coal-Producing Regions Source: Energy Information Administration, Coal Industry Annual 1996, DOE/EIA-0584(96) (Washington, DC, November 1997). U.S. Coal Supply and Demand: 1997 Review by B.D. Hong Energy Information Administration U.S. Department of Energy Overview U.S. coal production totaled a record high of 1,088.6 million short tons in 1997, up by 2.3 percent over the 1996 production level, according to preliminary data from the Energy Information Administration (Table 1). The electric power industry (utilities and independent power producers)-the dominant coal consumer-used a record 922.0 million short tons, up by 2.8 percent over 1996. The increase in coal use for

414

Table 16. Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method,  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Table 16. Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Continuous 1 Conventional and Other 2 Longwall 3 Total Coal-Producing State Recoverable Coal Reserves at Producing Mines Average Recovery Percentage Recoverable Coal Reserves at Producing Mines Average Recovery Percentage Recoverable Coal Reserves at Producing Mines Average Recovery Percentage Recoverable Coal Reserves at Producing Mines Average Recovery Percentage

415

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Note 1. Coal Production. Preliminary monthly estimates of national coal production are the sum of weekly estimates developed by the U.S. Energy Information Administration (EIA) and published in the Weekly Coal Production report. When a week extends into a new month, production is allo- cated on a daily basis and added to the appropriate month. Weekly estimates are based on Association of American Railroads (AAR) data showing the number of railcars loaded with coal during the week by Class I and certain other railroads. Through 2001, the weekly coal production model converted AAR data into short tons of coal by using the average number of short tons of coal per railcar loaded reported in the "Quarterly Freight Commodity Statistics" from the Surface Transportation Board. If an average coal tonnage

416

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 Table 7.5 Stocks of Coal and Petroleum: Electric Power Sector Coal a Petroleum Distillate Fuel Oil b Residual Fuel Oil c Other Liquids d Petroleum Coke e Total e,f Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels 1950 Year ............................. 31,842 NA NA NA NA 10,201 1955 Year ............................. 41,391 NA NA NA NA 13,671 1960 Year ............................. 51,735 NA NA NA NA 19,572 1965 Year ............................. 54,525 NA NA NA NA 25,647 1970 Year ............................. 71,908 NA NA NA 239 39,151 1975 Year ............................. 110,724 16,432 108,825 NA 31 125,413 1980 Year ............................. 183,010 30,023 105,351 NA 52 135,635 1985 Year .............................

417

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves and Average Recovery Percentage at Producing U.S. Mines by Mine Production Range and Mine Type, 2012" Recoverable Coal Reserves and Average Recovery Percentage at Producing U.S. Mines by Mine Production Range and Mine Type, 2012" "(million short tons)" ,"Underground",,"Surface",,"Total" "Mine Production Range","Recoverable Coal","Average Recovery","Recoverable Coal","Average Recovery","Recoverable Coal","Average Recovery" "(thousand short tons)","Reserves","Percentage","Reserves","Percentage","Reserves","Percentage" "Over 1,000",4874,57.96,11153,91.28,16028,81.15 "Over 500 to 1,000",531,47.14,226,81.9,757,57.49 "Over 200 to 500",604,52.72,333,69.16,938,58.57

418

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity and Average Price of U.S. Coal Imports by Origin, 2007 - 2013" Quantity and Average Price of U.S. Coal Imports by Origin, 2007 - 2013" "(thousand short tons and dollars per short ton)" "Year and Quarter","Australia","Canada","Colombia","Indonesia","China","Venezuela","Other","Total" ,,,,,,,"Countries" 2007,66,1967,26864,3663,50,3425,311,36347 2008,149,2027,26262,3374,45,2312,39,34208 2009,152,1288,17787,2084,9,1297,21,22639 2010,380,1767,14584,1904,53,582,83,19353 2011,62,1680,9500,856,22,779,188,13088 2012 " January - March","-",260,1594,59,7,80,22,2022 " April - June","-",281,1728,49,21,170,80,2329 " July - September","-",297,1762,266,39,"-",51,2415

419

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Summary Statistics for Coal Refining Plants, 2012 - 2013" 3. Summary Statistics for Coal Refining Plants, 2012 - 2013" "(thousand short tons)" "Year and","Coal Receipts","Average Price of Coal Receipts","Coal Used","Coal Stocks1" "Quarter",,"(dollars per short ton)" 2012 " January - March",2151,27.47,1756,771 " April - June",3844,25.42,3688,825 " July - September",5399,24.32,5286,812 " October - December",4919,24.55,4680,787 " Total",16313,25.06,15410 2013 " January - March",5067,24.6,4989,793 " April - June",4015,25.24,3754,756 " Total",9082,24.88,8744 "1 Reported as of the last day of the quarter." "Note: Average price is based on the cost, insurance, and freight (c.i.f. value). Total may not equal sum of components because of independent rounding."

420

Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; 1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States 311 Food 1,162 75,407 2 4 567 2 8 * 96 * 3112 Grain and Oilseed Milling 355 16,479 * * 119 Q 6 0 47 * 311221 Wet Corn Milling 215 7,467 * * 51 * 5 0 26 0 31131 Sugar Manufacturing

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Table 3.1 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010; 1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99 3112 Grain and Oilseed Milling 350 16,479 * * 118 * 6 0 45 311221 Wet Corn Milling 214 7,467 * * 51 * 5 0 25 31131 Sugar Manufacturing 107 1,218 * * 15 * 2 * 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 9,203

422

I~  

Office of Legacy Management (LM)

__, I,- __.j .^,, ~~.,l~, _I.x__ . ,,,,, ,_^_ ,,_xx,. ,~.__~_x -,-.. _1 ,.,., __, I,- __.j .^,, ~~.,l~, _I.x__ . ,,,,, ,_^_ ,,_xx,. ,~.__~_x -,-.. _1 ,.,., - I~ .c \ -- - g-' . @ ~--~Z~, Ls-u &. 0 -*,- hiK ,,-& b TO FILE ' = .-. r. AUG 2 9 1945 A~TPPHC~~~ METALS COPUDOP~TIO~ '* ~,ci~ly~1~~ 41 BROAD STREET (In duplicate) November 6, 1942 The District Engineer, u. s . Zngineer Office, Zanhattarn District, P. 0. 30x 4.2, Station P., i?C:: York, X.Y. Attention: Idajo- Thomas T. Crenshav:. Gentlemen: Classification Cancc!!A ZG? ;~yp~~ Follo~5.nS our conversation of yesterday, P;e here*oy confirm gi-ang you optior., vslid up to tine erd of Xcver.ssr 19LZ2, for the purchase cf: - :fbmm.I;1T,: _, ..I-- ASout 42 short tons of Sodi- Uranate Cranze, holding about 83-l/2$ of U30 ; packed in ooxes. . About 64 short tons of Sodium Uranate Yello:,

423

 

Gasoline and Diesel Fuel Update (EIA)

Coal Supply and Demand: 1998 Review Coal Supply and Demand: 1998 Review by Frederick L. Freme and B.D. Hong Energy Information Administration Overview Responding to increased coal demand in the electric power industry, U.S. coal production rose to a record high of 1,118.7 million short tons in 1998, a 2.6-percent increase from the 1997 production level, according to preliminary data from the Energy Information Administration (Table 1). The electric power industry (utilities and independent power producers)--the dominant coal consumer--used a record 941.6 million short tons, 2.1 percent higher than in 1997. The increase in coal use for electricity generation was attributable primarily to a decline in hydroelectric generation. Growth in electricity demand was also a contributing factor. Coal consumption in

424

Domestic Coal Distribution 2009 Q2 by Origin State: Alabama  

U.S. Energy Information Administration (EIA) Indexed Site

Q2 by Origin State: Alabama Q2 by Origin State: Alabama (1000 Short Tons) 1 / 58 Domestic Coal Distribution 2009 Q2 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity Generation Coke Plants Industrial Plants Excluding Coke Commercial & Institutional Total Alabama Railroad 875 12 33 - 920 Alabama River 855 - - - 855 Alabama Truck 155 84 230 - 469 Alabama Total 1,885 96 263 - 2,244 Florida Railroad - - 8 - 8 Georgia Railroad 118 - - - 118 Georgia Truck s - 15 - 15 Georgia Total 118 - 15 - 133 Indiana Railroad - 83 - - 83 Indiana Truck 17 34 - - 50 Indiana Total 17 116 - - 133 Kentucky Railroad 83 - - - 83 Pennsylvania Railroad 95 - - - 95 Origin State Total 2,197 212 285 - 2,695 Railroad 1,171 95 40 - 1,305 River 855 - - - 855 Truck 171 118 245 - 534 2 / 58 Domestic Coal Distribution 2009 Q2 by Origin State: Alaska

425

Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code 0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 NAICS Code June 30, 2013 March 31, 2013 June 30, 2012 Percent Change (June 30) 2013 versus 2012 311 Food Manufacturing 875 926 1,015 -13.9 312 Beverage and Tobacco Product Mfg. 26 17 19 35.8 313 Textile Mills 22 22 25 -13.9 315 Apparel Manufacturing w w w w 321 Wood Product Manufacturing w w w w 322 Paper Manufacturing 570 583

426

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Table 7.4a Consumption of Combustible Fuels for Electricity Generation and Useful Thermal Output: Total (All Sectors) (Sum of Tables 7.4b and 7.4c) Coal a Petroleum Natural Gas f Other Gases g Biomass Other j Distillate Fuel Oil b Residual Fuel Oil c Other Liquids d Petroleum Coke e Total e Wood h Waste i Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1950 Total .................... 91,871 5,423 69,998 NA NA 75,421 629 NA 5 NA NA 1955 Total .................... 143,759 5,412 69,862 NA NA 75,274 1,153 NA 3 NA NA 1960 Total .................... 176,685 3,824 84,371 NA NA 88,195 1,725 NA 2 NA NA 1965 Total ....................

427

Domestic Coal Distribution 2009 Q1 by Destination State: Alabama  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons) 1 / 64 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons) Origin State Transportation Mode Electricity Generation Coke Plants Industrial Plants Excluding Coke Commercial & Institutional Total Alabama Railroad 950 4 84 - 1,038 Alabama River 1,110 - - - 1,110 Alabama Truck 37 170 249 - 456 Alabama Total 2,096 174 333 - 2,603 Arkansas Railroad - 6 - - 6 Colorado Railroad 279 - - - 279 Illinois Railroad 11 - - - 11 Illinois River 109 - - - 109 Illinois Total 119 - - - 119 Indiana River 197 - - - 197 Kentucky Railroad 442 - 28 - 471 Kentucky Truck - - 2 - 2 Kentucky Total 442 - 31 - 473 Kentucky (East) Railroad 357 - 28 - 385 Kentucky (East) Truck - - 2 - 2 Kentucky (East)

428

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

4.1 Offsite-Produced Fuel Consumption, 2006; 4.1 Offsite-Produced Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,124 73,551 4 3 618 1 7 * 45 3112 Grain and Oilseed Milling 316 15,536 * * 115 * 5 0 28 311221 Wet Corn Milling 179 6,801 * * 51 * 4 0 8 31131 Sugar Manufacturing 67 974 1 * 17 * 1 * 4 3114 Fruit and Vegetable Preserving and Specialty Food 168 9,721

429

Domestic Coal Distribution 2009 Q2 by Destination State: Alabama  

U.S. Energy Information Administration (EIA) Indexed Site

61 61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons) 1 / 61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons) Origin State Transportation Mode Electricity Generation Coke Plants Industrial Plants Excluding Coke Commercial & Institutional Total Alabama Railroad 875 12 33 - 920 Alabama River 855 - - - 855 Alabama Truck 155 84 230 - 469 Alabama Total 1,885 96 263 - 2,244 Colorado Railroad 123 - - - 123 Illinois River 145 - - - 145 Indiana River 246 - - - 246 Indiana Truck 37 - - - 37 Indiana Total 283 - - - 283 Kentucky Railroad 426 - 30 - 457 Kentucky (East) Railroad 172 - 30 - 202 Kentucky (West) Railroad 255 - - - 255 Oklahoma Railroad - 6 - - 6 Utah Railroad 30 - - - 30 Virginia Railroad - 14 - - 14 West Virginia Railroad - 75 - -

430

Table 38. Coal Stocks at Coke Plants by Census Division  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Stocks at Coke Plants by Census Division Coal Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 38. Coal Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Census Division June 30, 2013 March 31, 2013 June 30, 2012 Percent Change (June 30) 2013 versus 2012 Middle Atlantic w w w w East North Central 1,313 1,177 1,326 -1.0 South Atlantic w w w w East South Central w w w w U.S. Total 2,500 2,207 2,295 8.9 w = Data withheld to avoid disclosure. Note: Total may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration (EIA), Form EIA-5, 'Quarterly Coal Consumption and Quality Report - Coke Plants.'

431

Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 2,256 2,561 1,864 4,817 4,343 10.9 312 Beverage and Tobacco Product Mfg. 38 50 48 88 95 -7.7 313 Textile Mills 31 29 21 60 59 2.2 315 Apparel Manufacturing w w w w w w 321 Wood Product Manufacturing w w w

432

Coal - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Analysis & Projections Analysis & Projections ‹ See all Coal Reports U.S. Coal Supply and Demand: 2010 Year in Review Release Date: June 1, 2011 | Next Release Date: Periodically | full report Consumption Preliminary data shows that total coal consumption rebounded in 2010, increasing by 5.1 percent from the 2009 level. Total U.S. coal consumption was 1,048.3 million short tons, an increase of 50.8 million short tons, with all coal-consuming sectors, except commercial and institutional users, having higher consumption for the year. The 2010 increase in consumption, over 2009, restored about 40 percent of the previous drop in consumption in 2009 from 2008 levels. The electric power sector (electric utilities and independent power producers), which consumes about 93 percent of all coal

433

International Energy Outlook 2006 - World Coal Markets  

Gasoline and Diesel Fuel Update (EIA)

Coal Markets Coal Markets International Energy Outlook 2006 Chapter 5: World Coal Markets In the IEO2006 reference case, world coal consumption nearly doubles from 2003 to 2030, with the non-OECD countries accounting for 81 percent of the increase. CoalÂ’s share of total world energy consumption increases from 24 percent in 2003 to 27 percent in 2030. Figure 48. World Coal Consumption by Region, 1980-2030 (Billion Short Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 49. Coal Share of World energy Consumption by Sector 2003, 2015, and 2030 (Percent). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Table 10. World Recoverable Coal Reserves (Billion Short Tons) Printer friendly version

434

Table 2.1 Nonfuel (Feedstock) Use of Combustible Energy, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2010; 1 Nonfuel (Feedstock) Use of Combustible Energy, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 10 * * 4 Q 0 0 2 3112 Grain and Oilseed Milling 6 0 * 1 Q 0 0 2 311221 Wet Corn Milling 2 0 0 0 0 0 0 2 31131 Sugar Manufacturing * 0 * 0 * 0 0 * 3114 Fruit and Vegetable Preserving and Specialty Foods 1 * * 1 * 0 0 * 3115 Dairy Products Q 0 * * * 0 0 * 3116 Animal Slaughtering and Processing

435

table2.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2002; 1 Nonfuel (Feedstock) Use of Combustible Energy, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) Gas(c) NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States RSE Column Factors: 1.4 0.4 1.6 1.2 1.2 1.1 0.7 1.2 311 Food 8 * * 7 0 0 * * 311221 Wet Corn Milling * 0 * 0 0 0 0 * 31131 Sugar * 0 * * 0 0 * * 311421 Fruit and Vegetable Canning * * * 0 0 0 0 * 312 Beverage and Tobacco Products 1 * * * 0 0 0 1 3121 Beverages * * * 0 0 0 0 *

436

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2012" 3. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2012" "(short tons produced per employee hour)" ,"Mine Production Range (thousand short tons)" "Coal-Producing State, Region1","Above 1,000","Above 500","Above 200","Above 100","Above 50","Above 10","10 or Under","Total2" "and Mine Type",,"to 1,000","to 500","to 200","to 100","to 50" "Alabama",1.69,2.5,1.95,1.72,1.83,0.69,0.55,1.68 " Underground",1.73,"-","-","-",1.08,0.31,"-",1.64 " Surface",1.36,2.5,1.95,1.72,2.11,1.19,0.55,1.75

437

U.S. Energy Information Administration | Annual Coal Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Productive Capacity and Capacity Utilization of Underground Coal Mines by State and Mining Method, 2012 Productive Capacity and Capacity Utilization of Underground Coal Mines by State and Mining Method, 2012 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Table 13. Productive Capacity and Capacity Utilization of Underground Coal Mines by State and Mining Method, 2012 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Continuous 1 Conventional and Other 2 Longwall 3 Total Coal-Producing State Productive Capacity Capacity Utilization Percent Productive Capacity Capacity Utilization Percent Productive Capacity Capacity Utilization Percent Productive Capacity Capacity Utilization Percent Alabama w w - - w w 14,594 85.99 Arkansas w w - - - - w w Colorado w w - - w w w w Illinois 24,811 76.45 - - 35,506 67.22 60,317 71.02 Indiana 16,445 94.65 - - - -

438

Table 4.1 Offsite-Produced Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010; 1 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,113 75,673 2 4 563 1 8 * 54 3112 Grain and Oilseed Milling 346 16,620 * * 118 * 6 0 41 311221 Wet Corn Milling 214 7,481 * * 51 * 5 0 25 31131 Sugar Manufacturing 72 1,264 * * 15 * 2 * * 3114 Fruit and Vegetable Preserving and Specialty Foods 142 9,258 * Q 97

439

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration / Monthly Energy Review November 2013 Selected years of data from 1949 through 1972 have been added to this table. For all years of data from 1949 through 2013, see the "Web Page" cited above. Table 7.3b Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector (Subset of Table 7.3a) Coal a Petroleum Natural Gas f Other Gases g Biomass Other j Distillate Fuel Oil b Residual Fuel Oil c Other Liquids d Petroleum Coke e Total e Wood h Waste i Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1950 Total .................... 91,871 5,423 69,998 NA NA 75,421 629 NA 5 NA NA 1955 Total .................... 143,759

440

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2006; 1 Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 618 1 7 * 107 3112 Grain and Oilseed Milling 317 15,464 * * 115 * 5 0 30 311221 Wet Corn Milling 179 6,746 * * 51 * 4 0 9 31131 Sugar Manufacturing 82 968 1 * 17 * 1 * 20 3114 Fruit and Vegetable Preserving and Specialty Food 169 9,708 * * 123 * * 0 4 3115 Dairy Product

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

HETEROGENEITY IN SHORT GAMMA-RAY BURSTS  

SciTech Connect

We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample is comprised of 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales-durations, pulse structure widths, and peak intervals-for EE bursts are factors of {approx}2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts-the anti-correlation of pulse intensity and width-continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition, we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/X-Ray Telescope (XRT). The median flux of the initial XRT detections for EE bursts ({approx}6x10{sup -10} erg cm{sup -2} s{sup -1}) is {approx}>20x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts ({approx}60,000 s) is {approx}30x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into denser environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

Norris, Jay P. [Physics and Astronomy Department, University of Denver, Denver, CO 80208 (United States); Gehrels, Neil [Astroparticle Physics Laboratory, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Scargle, Jeffrey D. [Space Science and Astrobiology Division, NASA/Ames Research Center, Moffett Field, CA 94035-1000 (United States)

2011-07-01T23:59:59.000Z

442

DOBEIA-0202(83/4Q) Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

DOBEIA-0202(83/4Q) DOBEIA-0202(83/4Q) Short-Term Energy Outlook Quarterly Projections November 1983 Energy Information Administration Washington, D.C. t rt jrt .ort lort .lort lort lort lort <.ort ort Tt- .-m .erm -Term -Term Term Term Term Term Term Term Term Term Term Term Term Term Term Nrm ,iergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short Short Short Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short Short Short Short Short-

443

DOE/EIA-0202(85/1Q) Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Short-Term Energy Outlook Quarterly Projections January 1985 Published: February 1985 Energy Information Administration Washington, D.C. t rt jrt .ort lort lort lort nort lort *.ort ort Tt .m .erm -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term uergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short

444

Are Refiners Entering a Golden Age or a Short Cycle?  

U.S. Energy Information Administration (EIA)

Are Refiners Entering a Golden Age or a Short Cycle? Global Refining Strategies 2007 Barcelona, Spain

445

Advanced Mitigating Measures for the Cell Internal Short Risk (Presentation)  

DOE Green Energy (OSTI)

This presentation describes mitigation measures for internal short circuits in lithium-ion battery cells.

Darcy, E.; Smith, K.

2010-04-01T23:59:59.000Z

446

U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013  

U.S. Energy Information Administration (EIA) Indexed Site

Destination Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 1st Quarter 2013 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 807 158 282 - 1,247 Alabama Railroad 449 71 14 - 534 Alabama River 358 - - - 358 Alabama Truck - 87 267 - 354 Colorado Total 204 - - - 204 Colorado Railroad

447

Released: March 2010  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 5.3;" 3 Relative Standard Errors for Table 5.3;" " Unit: Percents." " "," ",," ","Distillate"," "," ","Coal" " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net Demand","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million" "Code(a)","End Use","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons

448

Table A57. Capability to Switch from Coal to Alternative Energy Sources by  

U.S. Energy Information Administration (EIA) Indexed Site

7. Capability to Switch from Coal to Alternative Energy Sources by" 7. Capability to Switch from Coal to Alternative Energy Sources by" " Industry Group, Selected Industries, and Selected Characteristics, 1991 " " (Estimates in Thousand Short Tons)" " "," "," ", " "," "," Coal",,," Alternative Types of Energy(b)" " "," ","-","-","-------------","-","-","-","-","-","-","RSE" ,,"Total"," ","Not","Electricity","Natural","Distillate","Residual",,,"Row" ,,"Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","LPG","Other","Factors"

449

"Table A25. Average Prices of Selected Purchased Energy Sources by Census"  

U.S. Energy Information Administration (EIA) Indexed Site

. Average Prices of Selected Purchased Energy Sources by Census" . Average Prices of Selected Purchased Energy Sources by Census" " Region, Industry Group, and Selected Industries, 1991: Part 1" " (Estimates in Dollars per Physical Unit)" ,,,,," " " "," "," ","Residual","Distillate","Natural Gas(c)"," "," ","RSE" "SIC"," ","Electricity","Fuel Oil","Fuel Oil(b)","(1000","LPG","Coal","Row" "Code(a)","Industry Groups and Industry","(kWh)","(gallon)","(gallon)","cu ft)","(gallon)","(short ton)","Factors"

450

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(billion cu ft)","(1000 bbls)","(1000 short tons)","(trillion Btu)","Factors" ,,,,,,,,,,, ,"Total United States"

451

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Productive Capacity of Coal Mines by State, 2012 and 2011" Productive Capacity of Coal Mines by State, 2012 and 2011" "(thousand short tons)" ,2012,,,2011,,,"Percent Change" "Coal-Producing","Underground","Surface","Total","Underground","Surface","Total","Underground","Surface","Total" "State" "Alabama",14594,7967,22561,16102,8911,25013,-9.4,-10.6,-9.8 "Alaska","-","w","w","-","w","w","-","w","w" "Arizona","-","w","w","-","w","w","-","w","w" "Arkansas","w","-","w","w","-","w","w","-","w"

452

 

U.S. Energy Information Administration (EIA) Indexed Site

Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2009 Final February 2011 Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2009 (Thousand Short Tons) State / Region Domestic Foreign Total Alabama 10,560 8,029 18,589 Alaska 880 886 1,766 Arizona 7,487 - 7,487 Arkansas 6 - 6 Colorado 24,498 850 25,347 Illinois

453

Table A38. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)",,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,"Net Demand",,"Fuel Oil",,,"Coal Coke" ,,"for","Residual","and","Natural Gas(d)",,"and Breeze)","RSE" "SIC",,"Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","LPG","(1000 short","Row" "Code(a)","End-Use Categories","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","Factors" "20-39","ALL INDUSTRY GROUPS"

454

Released: June 20109  

U.S. Energy Information Administration (EIA) Indexed Site

9" 9" "Next MECS will be conducted in 2010" "Table 7.4 Average Prices of Selected Purchased Energy Sources, 2006;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Physical Units." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu ft)","(gallons)","(short tons)"

455

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

,,,,,,,,"Coal" ,,,,,,,,"Coal" " Part 1",,,,,,,,"(excluding" " (Estimates in Btu or Physical Units)",,,,,"Distillate",,,"Coal Coke" ,,,,,"Fuel Oil",,,"and" ,,,"Net","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel","(billion","LPG","(1000 Short","Other","Row" "Code(a)","End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors",

456

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Reasons that Made Coal Unswitchable, 2006;" 2 Reasons that Made Coal Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million short tons." ,,,,"Reasons that Made Coal Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Coal Consumed ","Unswitchable","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, "

457

Table 7.4 Average Prices of Selected Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

4 Average Prices of Selected Purchased Energy Sources, 2002;" 4 Average Prices of Selected Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Physical Units." " ",," "," ",," "," " ,,"Residual","Distillate","Natural ","LPG and",,"RSE" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","Row" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu ft)","(gallons)","(short tons)","Factors"

458

Table A12. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Type and End Use," Type and End Use," " 1994: Part 1" " (Estimates in Btu or Physical Units)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,"Net Demand",,"Fuel Oil",,,"Coal Coke" ,,"for","Residual","and","Natural Gas(d)",,"and Breeze)","RSE" "SIC",,"Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","LPG","(1000 short","Row" "Code(a)","End-Use Categories","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","Factors"

459

Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Destination  

U.S. Energy Information Administration (EIA) Indexed Site

3" 3" "(Thousand Short Tons)" "Coal-Exporting State and Destination ",,"Metallurgical ","Steam ","Total " "Alabama ",,5156,"-",5156 ,"Argentina ",345,"-",345 ,"Belgium ",387,"-",387 ,"Brazil ",1825,"-",1825 ,"Bulgaria ",363,"-",363 ,"Egypt ",477,"-",477 ,"Germany ",167,"-",167 ,"Italy ",87,"-",87 ,"Netherlands ",399,"-",399 ,"Spain ",198,"-",198 ,"Turkey ",551,"-",551 ,"United Kingdom ",359,"-",359 "Kentucky ",,1449,"-",1449 ,"Canada ",566,"-",566

460

Coal sector profile  

SciTech Connect

Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

1990-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Coal distribution, January-March 1985. [By district; 1981 to 1985  

Science Conference Proceedings (OSTI)

US coal distribution to domestic and foreign markets totaled 210.8 million short tons in the first quarter of 1985. This was 5.1% below coal shipments in the first quarter of 1984, but 10.7% above the depressed levels of the comparable period in 1983. Coal shipments to various regions of the United States and abroad showed mixed trends during the first 3 months of 1985. This is attributable primarily to large inventory buildups by eastern and midwestern consumers during the first 9 months of 1984 in preparation for a possible strike by the United Mine Workers of America in October of last year. Coal inventories at producers and distributors rose by 3.1% during the first quarter of 1985, reaching 35.2 million short tons on March 31, 1985, compared to 34.1 million short tons on December 31, 1984. Compared with the first quarter of 1984: Coal shipments from mines in Appalachia were 12.6% lower, while shipments from western mines were up by 9.7%, reaching another record first-quarter high. Export shipments moved ahead of their 1984 pace by 9.9% despite a 30.0% decline in shipments to Canada. Major markets in the West continued to enlarge their coal requirements as eastern markets curtailed shipments while working off excess stocks. Texas expanded its lead as the Nation's top state to receive coal, and North Dakota experienced an upsurge in coal receipts due to the startup of the Great Plains coal gasification project. Coal production and purchases were 211.5 million short tons, 5.0% below last year's level. The reduction in shipments reflected a substantial decline in coal originating in the Appalachian Region, notably District 8, and to a lesser extent in the Interior Region. In contrast, shipments of coal from the Western Region reached another first-quarter high. 5 figs., 33 tabs.

McNair, M.B.

1985-07-01T23:59:59.000Z

462

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Apr. 2008, p. 24242432 Vol. 74, No. 8 0099-2240/08/$08.00 0 doi:10.1128/AEM.02341-07  

E-Print Network (OSTI)

. In addition, CO2 can be used as a flush gas to extract coal-bed methane, while at the same time trapping Mercury (Hg) Content (ppm, whole coal basis) of Indiana Coal Beds 3-4 3.1.4. Indiana Coal Characteristics-7 3.2.3. Indiana's Coal Resources by Coal Bed (Billion short tons) 3-8 3.2.4. Coal Reserves, by County

Macalady, Jenn

463

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Productive Capacity and Capacity Utilization of Underground Coal Mines by State and Mining Method, 2012" Productive Capacity and Capacity Utilization of Underground Coal Mines by State and Mining Method, 2012" "(thousand short tons)" ,"Continuous1",,"Conventional and Other2",,"Longwall3",,"Total" "Coal-Producing","Productive","Capacity","Productive","Capacity","Productive","Capacity","Productive","Capacity" "State","Capacity","Utilization","Capacity","Utilization","Capacity","Utilization","Capacity","Utilization" ,,"Percent",,"Percent",,"Percent",,"Percent" "Alabama","w","w","-","-","w","w",14594,85.99

464

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

1",,,,,,,"Coal" 1",,,,,,,"Coal" " (Estimates in Btu or Physical Units)",,,,,,,"(excluding" ,,,,"Distillate",,,"Coal Coke" ,,"Net",,"Fuel Oil",,,"and" ,,"Electricity(a)","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" ,"Total","(million","Fuel Oil","Fuel","(billion","LPG","(1000 short","Other","Row" "End-Use Categories","(trillion Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors"

465

"Table E8.1. Average Prices of Selected Purchased Energy Sources, 1998;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Average Prices of Selected Purchased Energy Sources, 1998;" 1. Average Prices of Selected Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Physical Units." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and",,"RSE" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Row" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu ft)","(gallons)","(short tons)","Factors"

466

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Average Sales Price of Coal by State and Coal Rank, 2012" 1. Average Sales Price of Coal by State and Coal Rank, 2012" "(dollars per short ton)" "Coal-Producing State","Bituminous","Subbituminous","Lignite","Anthracite","Total" "Alabama",106.57,"-","-","-",106.57 "Alaska","-","w","-","-","w" "Arizona","w","-","-","-","w" "Arkansas","w","-","-","-","w" "Colorado","w","w","-","-",37.54 "Illinois",53.08,"-","-","-",53.08 "Indiana",52.01,"-","-","-",52.01

467

Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2004  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 (Thousand Short Tons) " "State / Region ","Domestic ","Foreign ","Total "," " "Alabama",18367,3744,22111," " "Alaska",957,546,1502," " "Arizona",13041,"-",13041," " "Colorado",37396,1239,38635," " "Illinois ",30611,440,31051," " "Indiana",34630,227,34857," " "Kansas",72,"-",72," " "Kentucky Total ",109413,3004,112417," " " Eastern ",87402,2816,90218," " " Western ",22011,188,22199," " "Louisiana",3889,"-",3889," " "Maryland",4502,1068,5571," "

468

Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 (Thousand Short Tons)" " State / Region"," Domestic"," Foreign"," Total " "Alabama ",15552,3425,18977," " "Alaska ",847,311,1158," " "Arizona ",12971,"-",12971," " "Arkansas ",12,"-",12," " "Colorado ",33904,843,34748," " "Illinois ",32719,21,32740," " "Indiana ",35391,"-",35391," " "Kansas ",205,"-",205," " "Kentucky Total ",123129,791,123920," " " East ",98492,791,99284," " " West ",24636,"-",24636," " "Louisiana ",3810,"-",3810," "

469

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production by State, Mine Type, and Union Status, 2012" Coal Production by State, Mine Type, and Union Status, 2012" "(thousand short tons)" ,"Union",,"Nonunion",,"Total" "Coal-Producing","Underground","Surface","Underground","Surface","Underground","Surface" "State and Region1" "Alabama",12410,"-",139,6669,12549,6669 "Alaska","-",2052,"-","-","-",2052 "Arizona","-",7493,"-","-","-",7493 "Arkansas","-","-",96,"-",96,"-" "Colorado",1673,2655,21955,2265,23628,4920 "Illinois",2897,"-",39939,5649,42837,5649

470

Short pulse free electron laser amplifier  

DOE Patents (OSTI)

Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

Schlitt, Leland G. (Livermore, CA); Szoke, Abraham (Fremont, CA)

1985-01-01T23:59:59.000Z

471

Transient nanobubbles in short-time electrolysis  

E-Print Network (OSTI)

Water electrolysis in a microsystem is observed and analyzed on a short-time scale ~10 us. Very unusual properties of the process are stressed. An extremely high current density is observed because the process is not limited by the diffusion of electroactive species. The high current is accompanied by a high relative supersaturation S>1000 that results in homogeneous nucleation of bubbles. On the short-time scale only nanobubbles can be formed. These nanobubbles densely cover the electrodes and aggregate at a later time to microbubbles. The effect is significantly intensified with a small increase of temperature. Application of alternating polarity voltage pulses produces bubbles containing a mixture of hydrogen and oxygen. Spontaneous reaction between gases is observed for stoichiometric bubbles with the size smallaer than 150 nm. Such bubbles disintegrate violently affecting the surface of electrodes.

Vitaly B. Svetovoy; Remco G. P. Sanders; Miko C. Elwenspoek

2013-01-12T23:59:59.000Z

472

Short bunch research at Brookhaven National Laboratory  

SciTech Connect

Research into the production and utilization of short electron bunches at Brookhaven National Laboratory is underway at the Source Development Laboratory (SDL) and Accelerator Test Facility (ATF). Projects planned for the SDL facility include a 210 MeV electron linac with a dipole chicane that is designed to produce 100 {mu}m long bunches and a compact electron storage ring that will use superconducting RF to produce sub-millimeter bunches.The ATF has a 30-70 MeV linac that will serve as the injector for laser accelerators that will bunch the beam into to micron-length bunches. Coherent transition and synchrotron radiation from the short bunches will be used for beam diagnostics and infrared experiments.

Blum, E.B.

1995-12-31T23:59:59.000Z

473

Source of coherent short wavelength radiation  

DOE Patents (OSTI)

An apparatus for producing coherent radiation ranging from X-rays to the far ultraviolet (i.e., 1 Kev to 10 eV) utilizing the Compton scattering effect. A photon beam from a laser is scattered on a high energy electron bunch from a pulse power linac. The short wavelength radiation produced by such scattering has sufficient intensity and spatial coherence for use in high resolution applications such as microscopy.

Villa, Francesco (Alameda, CA)

1990-01-01T23:59:59.000Z

474

Why Do Emerging Economies Borrow Short Term?  

E-Print Network (OSTI)

We argue that emerging economies borrow short term due to the high risk premium charged by international capital markets on long-term debt. First, we present a model where the debt maturity structure is the outcome of a risk sharing problem between the government and bondholders. By issuing long-term debt, the government lowers the probability of a liquidity crisis, transferring risk to bondholders. In equilibrium, this risk is reflected in a higher risk premium and borrowing cost. Therefore, the government faces a trade-off between safer long-term borrowing and cheaper short-term debt. Second, we construct a new database of sovereign bond prices and issuance. We show that emerging economies pay a positive term premium (a higher risk premium on long-term bonds than on short-term bonds). During crises, the term premium increases, with issuance shifting toward shorter maturities. This suggests that changes in bondholders ’ risk aversion are important to understand emerging market crises.

unknown authors

2004-01-01T23:59:59.000Z

475

U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013  

U.S. Energy Information Administration (EIA) Indexed Site

3. Summary Statistics for Coal Refining Plants, 2012 - 2013 3. Summary Statistics for Coal Refining Plants, 2012 - 2013 (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table ES-3. Summary Statistics for Coal Refining Plants, 2012 - 2013 (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year and Quarter Coal Receipts Average Price of Coal Receipts (dollars per short ton) Coal Used Coal Stocks 1 2012 January - March 2,151 27.47 1,756 771 April - June 3,844 25.42 3,688 825 July - September 5,399 24.32 5,286 812 October - December 4,919 24.55 4,680 787 Total 16,313 25.06 15,410 2013 January - March 5,067 24.60 4,989 793 April - June 4,015 25.24 3,754 756 Total 9,082 24.88 8,744 1 Reported as of the last day of the quarter.

476

Table 7.1 Average Prices of Purchased Energy Sources, 2010  

U.S. Energy Information Administration (EIA) Indexed Site

Average Prices of Purchased Energy Sources, 2010; Average Prices of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Coal NAICS TOTAL Acetylene Breeze Total Anthracite Code(a) Subsector and Industry (million Btu) (cu ft) (short tons) (short tons) (short tons) Total United States 311 Food 9.12 0.26 0.00 53.43 90.85 3112 Grain and Oilseed Milling 6.30 0.29 0.00 51.34 50.47 311221 Wet Corn Milling 4.87 0.48 0.00 47.74 50.47 31131 Sugar Manufacturing 5.02 0.31 0.00 53.34 236.66 3114 Fruit and Vegetable Preserving and Specialty Foods 9.78 0.27 0.00 90.59 0.00 3115 Dairy Products 11.21 0.10 0.00 103.12 0.00 3116 Animal Slaughtering and Processing

477

Table 23. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Mining Productivity by State, Mine Type, and Mine Production Range, 2012 Mining Productivity by State, Mine Type, and Mine Production Range, 2012 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2012 Table 23. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2012 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2012 Mine Production Range (thousand short tons) Coal-Producing State, Region 1 and Mine Type Above 1,000 Above 500 to 1,000 Above 200 to 500 Above 100 to 200 Above 50 to 100 Above 10 to 50 10 or Under Total 2 Alabama 1.69 2.50 1.95 1.72 1.83 0.69 0.55 1.68 Underground 1.73 - - - 1.08 0.31 - 1.64 Surface 1.36 2.50 1.95 1.72 2.11 1.19 0.55 1.75 Alaska 5.98 - - - - - - 5.98 Surface 5.98 - - - - - - 5.98 Arizona 7.38 - - - - - - 7.38 Surface

478

DOE/EIA-0202(84/4Q) Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

4Q) 4Q) Short-Term Energy Outlook Quarterly Projections October 1984 Published: November 1984 Energy Information Administration Washington, D.C. t rt jrt .ort lort iort lort iort lort \ort ort Tt .erm Term Term Term Term Term Term Term Term Term Term Term Term Term -Term -Term xrm nergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short Short- Short- Short Short Short Short Short Short

479

Short-Term Energy Outlook Figures  

U.S. Energy Information Administration (EIA) Indexed Site

Independent Statistics & Analysis" Independent Statistics & Analysis" ,"U.S. Energy Information Administration" ,"Short-Term Energy Outlook Figures, December 2013" ,"U.S. Prices" ,,"West Texas Intermediate (WTI) Crude Oil Price" ,,"U.S. Gasoline and Crude Oil Prices" ,,"U.S. Diesel Fuel and Crude Oil Prices" ,,"Henry Hub Natural Gas Price" ,,"U.S. Natural Gas Prices" ,"World Liquid Fuels" ,,"World Liquid Fuels Production and Consumption Balance" ,,"Estimated Unplanned Crude Oil Production Outages Among OPEC Producers" ,,"Estimated Unplanned Crude Oil Production Disruptions Among non-OPEC Producers" ,,"World Liquid Fuels Consumption" ,,"World Liquid Fuels Consumption Growth"

480

Short rise time intense electron beam generator  

DOE Patents (OSTI)

A generator for producing an intense relativistic electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

Olson, Craig L. (Albuquerque, NM)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ton short ton" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Short wavelength ion temperature gradient turbulence  

Science Conference Proceedings (OSTI)

The ion temperature gradient (ITG) mode in the high wavenumber regime (k{sub y}{rho}{sub s}>1), referred to as short wavelength ion temperature gradient mode (SWITG) is studied using the nonlinear gyrokinetic electromagnetic code GENE. It is shown that, although the SWITG mode may be linearly more unstable than the standard long wavelength (k{sub y}{rho}{sub s}<1) ITG mode, nonlinearly its contribution to the total thermal ion heat transport is found to be low. We interpret this as resulting from an increased zonal flow shearing effect on the SWITG mode suppression.

Chowdhury, J.; Ganesh, R. [Institute for Plasma Research, Bhat, Gandhinagar (India); Brunner, S.; Lapillonne, X.; Villard, L. [CRPP, Association EURATOM-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Jenko, F. [Max-Planck-Institut fuer Plasmaphysik Boltzmannstr. 2, D-85748 Garching (Germany)

2012-10-15T23:59:59.000Z

482

Thomson scattering in short pulse laser experiments  

SciTech Connect

Thomson scattering is well used as a diagnostic in many areas of high energy density physics. In this paper, we quantitatively demonstrate the practicality of using Thomson scattering as a diagnostic of short-pulse laser-plasma experiments in the regime, where the plasmas probed are at solid density and have temperatures of many hundreds of eV using a backlighter produced with an optical laser. This method allows a diagnosis both spatially and temporally of the density and temperature distributions in high energy density laser-plasma interactions which is independent from, and would act as a useful complement to, the existing spectroscopic methods.

Hill, E. G.; Rose, S. J. [Plasma Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

2012-08-15T23:59:59.000Z

483

Short-term energy outlook, July 1998  

Science Conference Proceedings (OSTI)

The Energy Information Administration (EIA) prepares The Short-Term Energy Outlook (energy supply, demand, and price projections) monthly for distribution on the internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. In addition, printed versions of the report are available to subscribers in January, April, July and October. The forecast period for this issue of the Outlook extends from July 1998 through December 1999. Values for second quarter of 1998 data, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the July 1998 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. 28 figs., 19 tabs.

NONE

1998-07-01T23:59:59.000Z

484

Short-term energy outlook, January 1999  

SciTech Connect

The Energy Information Administration (EIA) prepares the Short-Term Energy Outlook (energy supply, demand, and price projections) monthly. The forecast period for this issue of the Outlook extends from January 1999 through December 2000. Data values for the fourth quarter 1998, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the January 1999 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 28 figs., 19 tabs.

NONE

1999-01-01T23:59:59.000Z

485

21W.755 Writing and Reading Short Stories, Fall 2006  

E-Print Network (OSTI)

This class will focus on the craft of the short story, which we will explore through reading great short stories, writers speaking about writing, writing exercises and conducting workshops on original stories.

Lewitt, Shariann

486

Short-Range Ensemble Forecasts of Precipitation Type  

Science Conference Proceedings (OSTI)

Short-range ensemble forecasting is extended to a critical winter weather problem: forecasting precipitation type. Forecast soundings from the operational NCEP Short-Range Ensemble Forecast system are combined with five precipitation-type ...

Matthew S. Wandishin; Michael E. Baldwin; Steven L. Mullen; John V. Cortinas Jr.

2005-08-01T23:59:59.000Z

487

Natural Gas Summary from the Short-Term Energy Outlook  

Annual Energy Outlook 2012 (EIA)

Short-Term Energy Outlook Natural Gas Summary from the Short-Term Energy Outlook: EIA projects that natural gas prices will remain relatively high through the rest of 2003, with...

488

2013 Short Course Lecithin Functions in Technology and Nutrition  

Science Conference Proceedings (OSTI)

Lecithin Functions in Technology and Nutrition Short Course held at the 104th AOCS Annual Meeting and Expo. 2013 Short Course Lecithin Functions in Technology and Nutrition Lecithin Functions in Technology and Nutrition Saturday and

489

Short-Term Energy Carbon Dioxide Emissions Forecasts August 2009  

Reports and Publications (EIA)

Supplement to the Short-Term Energy Outlook. Short-term projections for U.S. carbon dioxide emissions of the three fossil fuels: coal, natural gas, and petroleum.

Information Center

2009-08-11T23:59:59.000Z

490

201/span>3 Short Course Applied Fundamentals in Interfacial Phenomena  

Science Conference Proceedings (OSTI)

Applied Fundamentals in Interfacial Phenomena Short Course held at the 104th AOCS Annual Meeting and Expo. 201/span>3 Short Course Applied Fundamentals in Interfacial Phenomena Applied Fundamentals in Interfacial Phenomena Saturday •

491

2011 Short Course Basics of Edible Oil Processing and Refining  

Science Conference Proceedings (OSTI)

Basics of Edible Oil Processing and Refining held at the 102nd AOCS Annual Meeting and Expo. 2011 Short Course Basics of Edible Oil Processing and Refining Basics of Edible Oil Processing and Refining Short Course Saturday April 30,

492

2013 Short Course Fundamentals of Edible Oil Processing and Refining  

Science Conference Proceedings (OSTI)

Fundamentals of Edible Oil Processing and Refining Short Course held at the 104th AOCS Annual Meeting and Expo. 2013 Short Course Fundamentals of Edible Oil Processing and Refining Fundamentals of Edible Oil Processing and Refining S

493

North American Short Line and Regional Railroads Industry Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Short Line and American Short Line and Short Line and American Short Line and Regional Railroad Association Regional Railroad Association " " The Voice of America The Voice of America ' ' s Independent Railroads s Independent Railroads " " 4/27/2005 2 ASLRRA Membership ASLRRA Membership 0 100 200 300 400 500 600 700 800 Total Number of Member Companies 1943 1953 1963 1973 1983 1993 2003 Year ASLRRA Member History (1943 - 2003) Associate Railroad

494

Short-term energy outlook quarterly projections. First quarter 1994  

SciTech Connect

The Energy Information Administration (EIA) prepares quarterly, short- term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets.

Not Available

1994-02-07T23:59:59.000Z

495

August 2012 Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

August 2012 1 August 2012 1 August 2012 Short-Term Energy Outlook Highlights ï‚· EIA projects that the Brent crude oil spot price will average about $103 per barrel during the second half of 2012, about $3.50 per barrel higher than in last month's Outlook. The forecast Brent crude oil spot price falls to an average of $100 per barrel in 2013. The projected West Texas Intermediate (WTI) crude oil spot price discount to Brent crude oil narrows from about $14 in the third quarter of 2012 to $9 by late 2013. These price forecasts assume that world oil-consumption-weighted real gross domestic product (GDP), which increased by 3.0 percent in 2011, grows by 2.8 percent in 2012 and 2.9

496

Short-Term Energy Outlook June 2013  

Gasoline and Diesel Fuel Update (EIA)

1 1 June 2013 Short-Term Energy Outlook (STEO) Highlights * After increasing to $119 per barrel in early February 2013, the Brent crude oil spot price fell to a low of $97 per barrel in mid-April and then recovered to an average of $103 per barrel in May. EIA expects that the Brent crude oil spot price will average $102 per barrel over the second half of 2013, and $100 per barrel in 2014. * EIA expects the price of regular gasoline will average $3.53 per gallon over the summer driving season (April through September). The annual average regular gasoline retail price is projected to decline from $3.63 per gallon in 2012 to $3.49 per gallon in 2013 and to $3.37 per gallon in 2014. Energy price forecasts are highly uncertain, and the current values of

497

Short Term Energy Outlook, February 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 1 Short-Term Energy Outlook February 2003 Overview World Oil Markets. World oil markets will likely remain tight through most of 2003, as petroleum inventories and global spare production capacity continue to dwindle amid blasts of cold weather and constrained output from Venezuela. OPEC efforts to increase output to make up for lower Venezuela output has reduced global spare production capacity to only 2 million barrels per day, leaving little room to make up for unexpected supply or demand surprises. Meanwhile, the average West Texas Intermediate (WTI) crude oil price increased by $3.50 to $33 per barrel from December to January (Figure 1). For the year 2003, WTI oil prices are expected to remain over $30 per barrel, even though Venezuelan output appears to be moving toward normal sooner than expected. Also,

498

Berkeley Lab: Nearby Short-Term Accommodations  

NLE Websites -- All DOE Office Websites (Extended Search)

Accommodations Accommodations Visitor Information Maps and Directions to the Lab Offsite Shuttle Bus Service Bay Area Mass Transit Information Site Access Parking Permits and Gate Passes UC Berkeley Campus Map Nearby Short-Term Accommodations Guest House Berkeley Lab Guest House - The Berkeley Lab guest house is conveniently located on the Lawrence Berkeley National Laboratory campus and features 57 tastefully appointed guest rooms, many with spectacular views of the San Francisco bay, skyline, and City of Berkeley. The guest house is only a few minutes away from the University of California Berkeley Campus and the dynamic Berkeley community itself. It is available to visiting researchers and those conducting business with the University. The Faculty Club * U.C. Campus

499

Short Term Energy Outlook ,November 2002  

Gasoline and Diesel Fuel Update (EIA)

November 2002 November 2002 1 Short-Term Energy Outlook November 2002 Overview World Oil Markets: During the past 3-4 months, OPEC 10 production has risen more quickly than projected, thus reducing upward pressure on prices. More specifically, while the West Texas Intermediate (WTI) crude oil spot price averaged $28.84 in October, about $6.70 per barrel above the year-ago level (Figure 1), the WTI average price for fourth quarter 2002 is now projected to soften to $28.20, which is about $2 per barrel below our fourth-quarter projection from last month. Meanwhile, OECD inventory levels, which are now approaching 5 -year lows, should begin to rise over the next few months as additional supplies reach markets, and return to the middle of their observed range by spring.

500

Short-Term Energy Outlook July 2013  

Gasoline and Diesel Fuel Update (EIA)

1 1 July 2013 Short-Term Energy Outlook (STEO) Highlights ï‚· The U.S. Energy Information Administration (EIA) expects that the Brent crude oil spot price will average $102 per barrel over the second half of 2013, and $100 per barrel in 2014. This forecast assumes there are no disruptions to energy markets arising from the recent unrest in Egypt. After increasing to $119 per barrel in early February 2013, the Brent crude oil spot price fell to a low of $97 per barrel in mid-April and then recovered to an average of $103 per barrel in May and June, about the same as its average over the same two-month period last year. ï‚· The discount of West Texas Intermediate (WTI) crude oil to Brent crude oil, which averaged $18 per barrel in 2012 and increased to a monthly average of more than $20 per barrel in