Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Table 23. Coal Receipts at Coke Plants by Census Division  

U.S. Energy Information Administration (EIA) Indexed Site

Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 23. Coal Receipts at Coke Plants by Census Division...

2

COKEMASTER: Coke plant management system  

SciTech Connect (OSTI)

To keep coke utilization in ironmaking as competitive as possible, the potential to improve the economics of coke production has to be utilized. As one measure to meet this need of its customers, Krupp Koppers has expanded its existing ECOTROL computer system for battery heating control to a comprehensive Coke Plant Management System. Increased capacity utilization, lower energy consumption, stabilization of plant operation and ease of operation are the main targets.

Johanning, J.; Reinke, M. [Krupp Koppers GmbH, Essen (Germany)

1996-12-31T23:59:59.000Z

3

Design and construction of coke battery 1A at Radlin coke plant, Poland  

SciTech Connect (OSTI)

In the design and construction of coke battery 1A at Radlin coke plant (Poland), coking of rammed coke with a stationary system was employed for the first time. The coke batteries are grouped in blocks. Safety railings are provided on the coke and machine sides of the maintenance areas.

A.M. Kravchenko; D.P. Yarmoshik; V.B. Kamenyuka; G.E. Kos'kova; N.I. Shkol'naya; V.V. Derevich; A.S. Grankin [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

4

How to implement a quality program in a coking plant. The AHMSA experience  

SciTech Connect (OSTI)

AHMSA (Altos Hornos de Mexico) is the largest integrated Steel Plant in Mexico, with its 3.1 MMMT of Liquid Steel production program for 1995. AHMSA operates two coke plants which began operations in 1955 and 1976. Total coke monthly production capacity amounts to as much as 106,000 Metric Tons (MT). The coke plants working philosophy was discussed and established in 1986 as part of the Quality Improvement Program, where its ultimate goal is to give the best possible coke quality to its main client--the blast furnaces. With this goal in mind, a planned joint effort with their own coal mines was initiated. This paper deals with the implementation process of the Quality Program, and the results of this commitment at the coal mines, coke plants and blast furnaces. The coke quality improvement is shown since 1985 to 1994, as well as the impact on the blast furnace operation.

Reyes M, M.A.; Perez, J.L.; Garza, C. de la; Morales, M.

1995-12-01T23:59:59.000Z

5

The waste water free coke plant  

SciTech Connect (OSTI)

Apart from coke which is the actual valuable material a coke oven plant also produces a substantial volume of waste water. These effluent water streams are burdened with organic components (e.g. phenols) and inorganic salts (e.g. NH{sub 4}Cl); due to the concentration of the constituents contained therein these effluent waters must be subjected to a specific treatment before they can be introduced into public waters. For some years a lot of separation tasks have been solved successfully by applying the membrane technology. It was especially the growing number of membrane facilities for cleaning of landfill leakage water whose composition can in fact be compared with that of coking plant waste waters (organic constituents, high salt fright, ammonium compounds) which gave Thyssen Still Otto Anlagentechnik the idea for developing a process for coke plant effluent treatment which contains the membrane technology as an essential component.

Schuepphaus, K.; Brink, N. [Thyssen Still Otto Anlagentechnik GmbH, Bochum (Germany)

1995-12-01T23:59:59.000Z

6

Water protection in coke-plant design  

SciTech Connect (OSTI)

Wastewater generation, water consumption, and water management at coke plants are considered. Measures to create runoff-free water-supply and sewer systems are discussed. Filters for water purification, corrosion inhibitors, and biocides are described. An integrated single-phase technology for the removal of phenols, thiocyanides, and ammoniacal nitrogen is outlined.

G.I. Alekseev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

7

Giprokoks proposals for improvement in air quality at coke battery 1A of Radlin coke plant  

SciTech Connect (OSTI)

Coke battery 1A, which uses rammed batch, has gone into production at Radlin coke plant (Poland), on the basis of Giprokoks designs. Up-to-date dust-trapping methods are used for the first time within the aspiration systems in the coal-preparation shop and in improving dust collection within the production buildings.

T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

8

Unmanned operation of the coke guides at Hoogovens IJmuiden Coke Plant 1  

SciTech Connect (OSTI)

Due to the bad condition of batteries and many ovens under repair, Hoogovens was forced to partially repair and rebuild the Coke plant No. 1. The production of coke at Coke plant No. 1 is realized in 3 production blocks subdivided in 6 batteries. Besides a renovated installation, all coke oven machines were renewed. A total of five identical machine sets are available. Each consists of a pusher machine, larry car, coke guide and quench car with diesel locomotive. A complete automated control system was implemented. The main objectives were a highly regular coking and pushing process, automated traveling and positioning and a centrally coordinated interlocking of machine functions. On each operational machine however an operator performed the supervisory control of the automated machine functions. After years of good experience with the automated system, economical reasons urged further personnel reduction from 1994 on. Totally 375 people were involved, including the maintenance department. To reduce the occupation at coke plant No. 1, the coke guide was the first machine to be fully automated because of the isolated and uncomfortable working place.

Vos, D.; Mannes, N.; Poppema, B. [Hoogovens IJmuiden B.V. (Netherlands)

1995-12-01T23:59:59.000Z

9

Priorities in the design of chemical shops at coke plants  

SciTech Connect (OSTI)

Recent trends in the design of chemical equipment at coke plants are described, through the lens of experience at Giprokoks. The main priorities were to improve the removal of impurities from coke oven gas; to improve equipment design on the basis of new materials; to reduce reagent consumption; to reduce the materials and energy consumed in the construction of new equipment; and to minimize impacts on the environment and worker health. Some technological equipment is briefly characterized.

V.I. Rudyka; Y.E. Zingerman; V.V. Grabko; L.A. Kazak [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

10

Planning for the 400,000 tons/year AISI ironmaking demonstration plant  

SciTech Connect (OSTI)

The American Iron and Steel Institute (AISI) has formulated a four-year program to design, construct, and operate a 400,000 net ton per year ironmaking demonstration plant. The plant will employ the coal-based ironmaking process developed under a 1989 cooperative agreement with DOE. AISI will manage the design and construction to be completed in the first two years and operate the plant for the second two years with a variety or ores, coals, and fluxes. Campaigns of increasing length are planned to optimize operations. After successful operation, the plant will be taken over by the host company. Results of studies to date indicate that, on a commercial scale, the AISI process will use 27% less energy and have variable operating costs $10 per ton lower and capital costs of $160 per annual ton, compared to the $250 per annual ton rebuild cost for the coke oven-blast furnace process it will replace. The process will enable the domestic steel industry to become more competitive by reducing its capital and operating cost. Furthermore, by eliminating the pollution problems associated with coke production and by completely enclosing the smelting reactions, this process represents a major step towards an environmentally friendly steel industry.

Aukrust, E. (LTV Steel Corp., Cleveland, OH (United States). AISI Direct Steelmaking Program)

1993-01-01T23:59:59.000Z

11

Cyanide treatment options in coke plants  

SciTech Connect (OSTI)

The paper discusses the formation of cyanides in coke oven gas and describes and compares waste processing options. These include desulfurization by aqueous ammonia solution, desulfurization using potash solution, desulfurization in oxide boxes, decomposition of NH{sub 3} and HCN for gas scrubbing. Waste water treatment methods include chemical oxidation, precipitation, ion exchange, reverse osmosis, and biological treatment. It is concluded that biological treatment is the most economical process, safe in operation and requires a minimum of manpower.

Minak, H.P.; Lepke, P. [Krupp Uhde GmbH, Dortmund (Germany)

1997-12-31T23:59:59.000Z

12

The new Kaiserstuhl coking plant: The heating system -- Design, construction and initial operating experience  

SciTech Connect (OSTI)

At the end of 1992 the new coke plant Kaiserstuhl in Dortmund/Germany with presently the largest coke ovens world-wide started its production operation in close linkage to the Krupp-Hoesch Metallurgical Works after about 35 months construction time. This plant incorporating comprehensive equipment geared to improve environmental protection is also considered as the most modern coke plant of the world. The heating-system and first results of operation will be presented.

Strunk, J.

1996-12-31T23:59:59.000Z

13

Clean Production of Coke from Carbonaceous Fines  

SciTech Connect (OSTI)

In order to produce steel (a necessary commodity in developed nations) using conventional technologies, you must have metallurgical coke. Current coke-making technology pyrolyzes high-quality coking coals in a slot oven, but prime coking coals are becoming more expensive and slot ovens are being shut-down because of age and environmental problems. The United States typically imports about 4 million tons of coke per year, but because of a world-wide coke scarcity, metallurgical coke costs have risen from about $77 per tonne to more than $225. This coke shortage is a long-term challenge driving up the price of steel and is forcing steel makers to search for alternatives. Combustion Resources (CR) has developed a technology to produce metallurgical coke from alternative feedstocks in an environmentally clean manner. The purpose of the current project was to refine material and process requirements in order to achieve improved economic benefits and to expand upon prior work on the proposed technology through successful prototype testing of coke products. The ultimate objective of this project is commercialization of the proposed technology. During this project period, CR developed coke from over thirty different formulations that meet the strength and reactivity requirements for use as metallurgical coke. The technology has been termed CR Clean Coke because it utilizes waste materials as feedstocks and is produced in a continuous process where pollutant emissions can be significantly reduced compared to current practice. The proposed feed material and operating costs for a CR Clean Coke plant are significantly less than conventional coke plants. Even the capital costs for the proposed coke plant are about half that of current plants. The remaining barrier for CR Clean Coke to overcome prior to commercialization is full-scale testing in a blast furnace. These tests will require a significant quantity of product (tens of thousands of tons) necessitating the construction of a demonstration facility. Talks are currently underway with potential partners and investors to build a demonstration facility that will generate enough coke for meaningful blast furnace evaluation tests. If the testing is successful, CR Clean Coke could potentially eliminate the need for the United States to import any coke, effectively decreasing US Steel industry dependence on foreign nations and reducing the price of domestic steel.

Craig N. Eatough

2004-11-16T23:59:59.000Z

14

Ammonia removal process upgrade to the Acme Steel Coke Plant  

SciTech Connect (OSTI)

The need to upgrade the ammonia removal process at the Acme Steel Coke Plant developed with the installation of the benzene NESHAP (National Emission Standard for Hazardous Air Pollutants) equipment, specifically the replacement of the final cooler. At Acme Steel it was decided to replace the existing open cooling tower type final cooler with a closed loop direct spray tar/water final cooler. This new cooler has greatly reduced the emissions of benzene, ammonia, hydrogen sulfide and hydrogen cyanide to the atmosphere, bringing them into environmental compliance. At the time of its installation it was not fully recognized as to the effect this would have on the coke oven gas composition. In the late seventies the decision had been made at Acme Steel to stop the production of ammonia sulfate salt crystals. The direction chosen was to make a liquid ammonia sulfate solution. This product was used as a pickle liquor at first and then as a liquid fertilizer as more markets were developed. In the fall of 1986 the ammonia still was brought on line. The vapors generated from the operation of the stripping still are directed to the inlet of the ammonia absorber. At that point in time it was decided that an improvement to the cyclical ammonia removal process was needed. The improvements made were minimal yet allowed the circulation of solution through the ammonia absorber on a continuous basis. The paper describes the original batch process and the modifications made which allowed continuous removal.

Harris, J.L. [Acme Steel Co., Chicago, IL (United States). Chicago Coke Plant

1995-12-01T23:59:59.000Z

15

Coke oven gas injection to blast furnaces  

SciTech Connect (OSTI)

U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L. [U.S. Steel, Clairton, PA (United States)

1995-12-01T23:59:59.000Z

16

Gas treatment and by-products recovery of Thailand`s first coke plant  

SciTech Connect (OSTI)

Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

Diemer, P.E.; Seyfferth, W. [Krupp Uhde GmbH, Dortmund (Germany)

1997-12-31T23:59:59.000Z

17

Teamwork in planning and carrying out the first inspection of the coke dry quenching (CDQ) plant of the Kaiserstuhl Coking Facility  

SciTech Connect (OSTI)

The coke plant Kaiserstuhl operates a coke dry quenching (CDQ) plant with a downstream installed waste heat boiler to satisfy statutory pollution control rules and requirements. This CDQ which went on stream in March 1993 cools the whole coke production output from the Kaiserstuhl coke plant in counterflow to an inert cooling gas. This brief overview on the whole CDQ plant should elucidate the complex of problems posed when trying to make an exact plant revision plan. After all it was impossible to evaluate or to assess all the interior process technology relevant components during the planning stage as the plant was in operation. The revision data for the first interior check was determined and fixed by the statutory rule for steam boilers and pressure vessels. The relevant terms for this check are mandatorily prescribed. In liaison with the testing agency (RW TUEV) the date for the first revision was fixed for April 1995, that means two years after the first commissioning.

Burchardt, G.

1996-12-31T23:59:59.000Z

18

Light oil yield improvement project at Granite City Division Coke/By-Product Plant  

SciTech Connect (OSTI)

Light oil removal from coke oven gas is a process that has long been proven and utilized throughout many North American Coke/By-Products Plants. The procedures, processes, and equipment requirements to maximize light oil recovery at the Granite City By-Products Plant will be discussed. The Light Oil Yield Improvement Project initially began in July, 1993 and was well into the final phase by February, 1994. Problem solving techniques, along with utilizing proven theoretical recovery standards were applied in this project. Process equipment improvements and implementation of Operator/Maintenance Standard Practices resulted in an average yield increase of 0.4 Gals./NTDC by the end of 1993.

Holloran, R.A. [National Steel Corp., Granite City, IL (United States). Granite City Div.

1995-12-01T23:59:59.000Z

19

Coal flow aids reduce coke plant operating costs and improve production rates  

SciTech Connect (OSTI)

Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

2005-06-01T23:59:59.000Z

20

Improved wastewater treatment at Wheeling-Pittsburgh Steel Corporations`s Steubenville East Coke Plant  

SciTech Connect (OSTI)

Wheeling-Pittsburgh Steel Corporation recently improved its wastewater treatment at it`s by-products coke plant. This has led to greatly improved effluent quality. Excess ammonia liquor, along with wastewater from the light oil recovery plant, desulfurization facility, and coal pile runoff, must be treated prior to being discharged into the Ohio River. This is accomplished using a biological wastewater treatment plant to remove 99.99% of the organic contaminants and ammonia. Biologically treated, clarified wastewater is now polished in the newly constructed tertiary treatment plant.

Goshe, A.J.; Nodianos, M.J. [Wheeling-Pittsburgh Steel Corp., Follansbee, WV (United States)

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works  

SciTech Connect (OSTI)

Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

Egorov, V.N.; Anikin, G.J. [Magnitogorsk Integrated Iron and Steel Works, (Russian Federation); Gross, M. [Krupp Koppers GmbH, Essen (Germany)

1995-12-01T23:59:59.000Z

22

Cyanide leaching from soil developed from coking plant purifier waste as influenced by citrate  

SciTech Connect (OSTI)

Soils in the vicinity of manufactured gas plants and coal coking plants are often highly contaminated with cyanides in the form of the compound Prussian blue. The objective of this study was to investigate the influence of citrate on the leaching of iron-cyanide complexes from an extremely acidic soil (pH 2.3) developed from gas purifier waste near a former coking plant. The soil contained 63 g kg{sup -1} CN, 148 g kg{sup -1} Fe, 123 g kg{sup -1} S, and 222 g kg{sup -1} total C. Analysis of the soil by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy revealed the presence of Prussian blue, gypsum, elemental sulfur, jarosite, and hematite. For column leaching experiments, air-dried soil was mixed with purified cristabolite sand at a ratio of 1:3 and packed into chromatography columns. The soil was leached with dilute (0.1 or 1 mM) CaCl{sub 2} solutions and the effluent was collected and analyzed for total and dissolved CN, Ca, Fe, SO{sub 4}, pH, and pe. In the absence of citrate, the total dissolved CN concentration in the effluent was always below current drinking water limits (< 1.92 {mu}M), indicating low leaching potential. Adding citrate at a concentration of 1 mM had little effect on the CN concentrations in the column effluent. Addition of 10 or 100 mM citrate to the influent solution resulted in strong increases in dissolved and colloidal CN concentrations in the effluent.

Tim Mansfeldt; Heike Leyer; Kurt Barmettler; Ruben Kretzschmar [Ruhr-University Bochum, Bochum (Germany). Soil Science and Soil Ecology Group, Faculty of Geosciences

2004-07-01T23:59:59.000Z

23

Heating control methodology in coke oven battery at Rourkela Steel Plant  

SciTech Connect (OSTI)

A methodology of heating control was evolved incorporating temperature data generated through infra-red sensor at quenching station and thermocouples specially installed in the gooseneck of coke oven battery No. 3 of RSP. Average temperature of the red-hot coke as pushed helps in diagnosis of the abnormal ovens and in setting the targeted battery temperature. A concept of coke readiness factor (Q) was introduced which on optimization resulted in lowering the specific heat consumption by 30 KCal/Kg.

Bandyopadhyay, S.S.; Parthasarathy, L.; Gupta, A.; Bose, P.R.; Mishra, U.

1996-12-31T23:59:59.000Z

24

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network [OSTI]

In addition, the coking coal market began to deteriorateits permeability. Bituminous, or coking coal, is blended andmerchant coke plants, coking coal is heated in a low-oxygen,

Worrell, Ernst

2011-01-01T23:59:59.000Z

25

New and revised standards for coke production  

SciTech Connect (OSTI)

The need for new and revised standards for coke production in Ukraine and Russia is outlined. Such standards should address improvements in plant operation, working conditions, environmental protection, energy conservation, fire and explosion safety, and economic indices.

G.A. Kotsyuba; M.I. Alpatov; Y.G. Shapoval [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

26

Possibilities of coke manufacture in nonpollutant conditions  

SciTech Connect (OSTI)

The paper presents some possibilities to obtain coke briquettes from anthracite, using as binders petroleum pitch, wheat flour, cement, plaster, ashes from power-plants dried from the electrofilters. Specific thermal post-treatment were proposed for each case, such as: oxidation or heating at low temperatures (under 300 C). As a result the authors obtained coke briquettes to be used in small equipment, with no pollutant pyrogenetic treatment.

Barca, F.; Panaitescu, C.; Vidrighin, C.; Peleanu, I. [Politehnica Univ. Bucharest (Romania); Albastroiu, P. [S.C. ICEM S.A., Bucharest (Romania)

1994-12-31T23:59:59.000Z

27

Blast furnace coke quality in relation to petroleum coke addition  

SciTech Connect (OSTI)

The incorporation of petroleum coke as an additive in industrial coking coal blends is a practice often used by steel companies. A suitable blast furnace coke produced by replacing part of the coking coal blend with a suitable petroleum coke (addition of 5 to 15%), was made by Great Lakes Carbon Corporation and successfully tested at several blast furnaces. This coke had lower reactivity, less ash and slightly higher sulfur content than coke made without the addition of petroleum coke. In contrast with these results, it has been reported in a BCRA study that additions of petroleum coke to a strong coking coal, above 5 wt%, increased coke reactivity. These differences may be explained on the basis of the coal or blend characteristics to which petroleum coke is added. Petroleum coke addition seems to give better results if the coal/blend has high fluidity. The present situation in Spain is favorable for the use of petroleum coke. So, a study of laboratory and semi-industrial scale was made to assess the possibility of using petroleum coke as an additive to the typical industrial coal blend coked by the Spanish Steel Company, ENSIDESA. The influence of the petroleum coke particle size was also studied to semi-industrial scale.

Alvarez, R.; Diez, M.A.; Menendez, J.A.; Barriocanal, C.; Pis, J.J. [CSIC, Oviedo (Spain). Inst. Nacional del Carbon; Sirgado, M. [ENSIDESA, Aviles (Spain)

1995-12-01T23:59:59.000Z

28

Western Canadian coking coals -- Thermal rheology and coking quality  

SciTech Connect (OSTI)

Methods of predicting coke strength developed from the thermal rheological properties of Carboniferous coals frequently indicate that Cretaceous coals would not make high quality coke -- yet both types of coals produce coke suitable for the iron blast furnace. This paper will discuss the reasons why Western Canadian coals exhibit lower rheological values and how to predict the strength of coke produced from them.

Leeder, W.R. [Teck Corp. (Canada); Price, J.T.; Gransden, J.F. [CANMET Energy Technology Centre, Ottawa, Ontario (Canada)

1997-12-31T23:59:59.000Z

29

Factors affecting coking pressures in tall coke ovens  

SciTech Connect (OSTI)

The detrimental effects of excessive coking pressures, resulting in the permanent deformation of coke oven walls, have been recognized for many years. Considerable research has been undertaken worldwide in attempts to define the limits within which a plant may safely operate and to quantify the factors which influence these pressures. Few full scale techniques are available for assessing the potential of a coal blend for causing wall damage. Inference of dangerous swelling pressures may be made however by the measurement of the peak gas pressure which is generated as the plastic layers meet and coalesce at the center of the oven. This pressure is referred to in this report as the carbonizing pressure. At the Dawes Lane cokemaking plant of British Steel`s Scunthorpe Works, a large database has been compiled over several years from the regulator measurement of this pressure. This data has been statistically analyzed to provide a mathematical model for predicting the carbonizing pressure from the properties of the component coals, the results of this analysis are presented in this report.

Grimley, J.J.; Radley, C.E. [British Steel plc, Scunthorpe (United Kingdom). Scunthorpe Works

1995-12-01T23:59:59.000Z

30

Fundamentals of Delayed Coking Joint Industry Project  

SciTech Connect (OSTI)

Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking. The following deliverables are scheduled from the two projects of the three-year JIP: (1) A novel method for enhancing liquid yields from delayed cokers and data that provide insight as to the optimum temperature to remove hydrogen sulfide from furnace gases. (2) An understanding of what causes foaming in c

Michael Volk Jr; Keith Wisecarver

2005-10-01T23:59:59.000Z

31

Met coke world summit 2005  

SciTech Connect (OSTI)

Papers are presented under the following session headings: industry overview and market outlook; coke in the Americas; the global coke industry; and new developments. All the papers (except one) only consist of a copy of the overheads/viewgraphs.

NONE

2005-07-01T23:59:59.000Z

32

Coking and gasification process  

DOE Patents [OSTI]

An improved coking process for normally solid carbonaceous materials wherein the yield of liquid product from the coker is increased by adding ammonia or an ammonia precursor to the coker. The invention is particularly useful in a process wherein coal liquefaction bottoms are coked to produce both a liquid and a gaseous product. Broadly, ammonia or an ammonia precursor is added to the coker ranging from about 1 to about 60 weight percent based on normally solid carbonaceous material and is preferably added in an amount from about 2 to about 15 weight percent.

Billimoria, Rustom M. (Houston, TX); Tao, Frank F. (Baytown, TX)

1986-01-01T23:59:59.000Z

33

VACASULF operation at Citizens Gas and Coke Utility  

SciTech Connect (OSTI)

Citizens Gas and Coke Utility is a Public Charitable Trust which operates as the Department of Utilities of the City of Indianapolis, Indiana. Indianapolis Coke, the trade name for the Manufacturing Division of the Utility, operates a by-products coke plant in Indianapolis, Indiana. The facility produces both foundry and blast furnace coke. Surplus Coke Oven gas, generated by the process, is mixed with Natural Gas for sale to industrial and residential customers. In anticipation of regulatory developments, beginning in 1990, Indianapolis Coke undertook the task to develop an alternate Coke Oven Gas desulfurization technology for its facility. The new system was intended to perform primary desulfurization of the gas, dramatically extending the oxide bed life, thus reducing disposal liabilities. Citizens Gas chose the VACASULF technology for its primary desulfurization system. VACASULF requires a single purchased material, Potassium Hydroxide (KOH). The KOH reacts with Carbon Dioxide in the coke Oven Gas to form Potassium Carbonate (potash) which in turn absorbs the Hydrogen Sulfide. The rich solution releases the absorbed sulfide under strong vacuum in the desorber column. Operating costs are reduced through utilization of an inherent heat source which is transferred indirectly via attendant reboilers. The Hydrogen Sulfide is transported by the vacuum pumps to the Claus Kiln and Reactor for combustion, reaction, and elemental Sulfur recovery. Regenerated potash solution is returned to the Scrubber.

Currey, J.H. [Citizens Gas and Coke Utility, Indianapolis, IN (United States)

1995-12-01T23:59:59.000Z

34

High coking value pitch  

SciTech Connect (OSTI)

A high coking value pitch prepared from coal tar distillate and has a low softening point and a high carbon value while containing substantially no quinoline insolubles is disclosed. The pitch can be used as an impregnant or binder for producing carbon and graphite articles.

Miller, Douglas J.; Chang, Ching-Feng; Lewis, Irwin C.; Lewis, Richard T.

2014-06-10T23:59:59.000Z

35

Coke from coal and petroleum  

DOE Patents [OSTI]

A carbonaceous coke is manufactured by the delayed coking of a slurry mixture of from about 10 to about 30 weight percent of caking or non-caking coal and the remainder a petroleum resid blended at below 50.degree. C.

Wynne, Jr., Francis E. (Allison Park, PA); Lopez, Jaime (Pittsburgh, PA); Zaborowsky, Edward J. (Harwick, PA)

1981-01-01T23:59:59.000Z

36

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only active lithium carbonate plant in the United States was a brine operation in  

E-Print Network [OSTI]

94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only active lithium carbonate plant in the United States was a brine operation in Nevada. Two companies produced a large array of downstream lithium compounds in the United States from domestic or South

37

Producing and controlling of the pollutant in the coal`s coking process  

SciTech Connect (OSTI)

In the process of heating and coke shaping, different pollutants and polluting factors will be produced and lost to the environment due to the different coking methods. The paper analyzes the production mechanism, type, emission, average quantity, and damage to the environment of the major pollutants and polluting factors produced in several kinds of coking processes in China at the present. Then, the paper concludes that an assessment for any coking method should include a comprehensive beneficial assessment of economical benefit, environmental benefit and social benefit. The items in the evaluation should consist of infrastructure investment, which includes production equipment and pollution control equipment, production cost, benefit and profit produced by one ton coal, whether the pollution complies with the environmental requirement, extent of the damage, influence to the social development, and etc.

Li, S. [Shanxi Environmental Protection Bureau (China); Fan, Z. [Shanxi Central Environmental Monitoring Station (China)

1997-12-31T23:59:59.000Z

38

Converting Petroleum Coke to Electricity  

E-Print Network [OSTI]

contributes 80% of this total. As crude oil coke is a cement kiln, where the alkaline quality deteriorates, and the market for residual components in cement will absorb the sulfur oil. becomes less profitable due to increasingly released by the coke during.... The higher value has been amply demonstrated by the Combustion Power Units, and by commercial gasification systems producing syngas for chemicals We do not anticipate a major system availability debit for adding an industrial-scale, base loaded...

Pavone, A.

39

New coke-sorting system at OAO Koks  

SciTech Connect (OSTI)

A new coke-sorting system has been introduced at OAO Koks. It differs from the existing system in that it has no bunkers for all-purpose coke but only bunkers for commercial coke. In using this system with coke from battery 4, the crushing of the coke on conveyer belts, at roller screens, and in the commercial-coke bunkers is studied. After installing braking elements in the coke path, their effectiveness in reducing coke disintegration and improving coke screening is investigated. The granulometric composition and strength of the commercial coke from coke battery 3, with the new coke-sorting system, is evaluated.

B.Kh. Bulaevskii; V.S. Shved; Yu.V. Kalimin; S.D. Filippov [OAO Koks, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

40

Trends in the automation of coke production  

SciTech Connect (OSTI)

Up-to-date mathematical methods, such as correlation analysis and expert systems, are employed in creating a model of the coking process. Automatic coking-control systems developed by Giprokoks rule out human error. At an existing coke battery, after introducing automatic control, the heating-gas consumption is reduced by {>=}5%.

R.I. Rudyka; Y.E. Zingerman; K.G. Lavrov [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Modernization of the iron making plant at SOLLAC FOS  

SciTech Connect (OSTI)

When the blast furnaces at SOLLAC/FOS were relined, the objective being to ensure a worklife of 15 years, it was decided that the iron making plant would be modernized at the same time: the coking plant has been overhauled and renovated and its coking time increased to ensure a worklife of at least 34 years. The surface area of the sinter strand was increased from 400 to 520 m{sup 2}, the burden preparation circuit were simplified, and pig iron production capacity increased from 4.2 to 4.5 million metric tons per year. Coal injection was developed so as to obtain 170 kg/t of pig iron, an expert system was added to ensure more efficient blast furnace operation, and new measures have been carried out for environmental protection. Since these heavy investments have been completed, SOLLAC/FOS is a high-performance iron making plant, allowing it to face new challenges in the future.

Crayelynghe, M. van; Dufour, A.; Soland, J.; Feret, J.; Lebonvallet, J.

1995-12-01T23:59:59.000Z

42

Development of automatic operation system for coke oven machines at Yawata Works of Nippon Steel Corporation  

SciTech Connect (OSTI)

The coke plant is a working environment involving heavy dust emissions, high heat and demanding physical labor. The labor-saving operation of the coke plant is an essential issue from the standpoints of not only improvement in working environment, but also reduction in fixed cost by enhancement of labor productivity. Under these circumstances, Nippon Steel has implemented the automation of coke oven machines. The first automatic operation system for coke oven machinery entered service at Oita Works in 1992, followed by the second system at the No. 5 coke oven battery of the coke plant at Yawata Works. The Yawata automatic operation system is characterized by the installation of coke oven machinery to push as many as 140 ovens per day within a short cycle time, such as a preliminary ascension pipe cap opening car and cycle time simulator by the manned operation of the pusher, which is advantageous from the standpoint of investment efficiency, and by the monitoring of other oven machines by the pusher. These measures helped to reduce the manpower requirement to 2 persons per shift from 4 persons per shift. The system entered commercial operation in March, 1994 and has been smoothly working with an average total automatic rate of 97%. Results from the startup to recent operation of the system are reported below.

Matsunaga, Masao; Uematsu, Hiroshi; Nakagawa, Yoji; Ishiharaguchi, Yuji

1995-12-01T23:59:59.000Z

43

Mathematical modeling of clearance between wall of coke oven and coke cake  

SciTech Connect (OSTI)

A mathematical model was developed for estimating the clearance between the wall of the coke oven and the coke cake. The prediction model is based on the balance between the contractile force and the coking pressure. A clearance forms when the contractile force exceeds the coking pressure in this model. The contractile force is calculated in consideration of the visco-elastic behavior of the thermal shrinkage of the coke. The coking pressure is calculated considering the generation and dispersion of gas in the melting layer. The relaxation time off coke used in this model was obtained with a dilatometer under the load application. The clearance was measured by the laser sensor, and the internal gas pressure was measured in a test oven. The clearance calculated during the coking process were in good agreement with the experimental results, which supported the validity of the mathematical model.

Nushiro, K.; Matsui, T.; Hanaoka, K.; Igawa, K.; Sorimachi, K.

1995-12-01T23:59:59.000Z

44

Coke cake behavior under compressive forces  

SciTech Connect (OSTI)

The deformation of the coke cake and load on the side wall during pushing were studied using an electric furnace equipped with a movable wall. Coke cake was found to deform in three stages under compressive forces. The coke cake was shortened in the pushing direction in the cake deformation stage, and load was generated on the side walls in the high wall load stage. Secondary cracks in the coke cake were found to prevent load transmission on the wall. The maximum load transmission rate was controlled by adjusting the maximum fluidity and mean reflectance of the blended coal.

Watakabe, S.; Takeda, T.; Itaya, H.; Suginobe, H.

1997-12-31T23:59:59.000Z

45

Collector main replacement at Indianapolis Coke  

SciTech Connect (OSTI)

Indianapolis Coke is a merchant coke producer, supplying both foundry and blast furnace coke to the industry. The facility has three coke batteries: two 3 meter batteries, one Wilputte four divided and one Koppers Becker. Both batteries are underjet batteries and are producing 100% foundry coke at a net coking time of 30.6 hours. This paper deals with the No. 1 coke battery, which is a 72 oven, gun fired, 5 meter Still battery. No. 1 battery produces both foundry and blast furnace coke at a net coking rate of 25.4 hours. No. 1 battery was commissioned in 1979. The battery is equipped with a double collector main. Although many renovations have been completed to the battery, oven machinery and heating system, to date no major construction projects have taken place. Deterioration of the collector main was caused in part from elevated levels of chlorides in the flushing liquor, and temperature fluctuations within the collector main. The repair procedures are discussed.

Sickle, R.R. Van

1997-12-31T23:59:59.000Z

46

New designs in the reconstruction of coke-sorting systems  

SciTech Connect (OSTI)

In recent Giprokoks designs for the reconstruction of coke-sorting systems, high-productivity vibrational-inertial screens have been employed. This permits single-stage screening and reduction in capital and especially operating expenditures, without loss of coke quality. In two-stage screening, >80 mm coke (for foundry needs) is additionally separated, with significant improvement in quality of the metallurgical coke (25-80 mm). New designs for the reconstruction of coke-sorting systems employ mechanical treatment of the coke outside the furnace, which offers new scope for stabilization of coke quality and permits considerable improvement in mechanical strength and granulometric composition of the coke by mechanical crushing.

A.S. Larin; V.V. Demenko; V.L. Voitanik [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

47

Simulation of industrial coking -- Phase 1  

SciTech Connect (OSTI)

Two statistically designed experimental programs using an Appalachian and a Western Canadian coal blend were run in CANMET`s 460mm (18 inch) movable wall oven. Factors included coal grind, moisture, oil addition, carbonization rate and final coke temperature. Coke quality parameters including CSR, coal charge characteristics and pressure generation were analyzed.

Todoschuk, T.W.; Price, J.T.; Gransden, J.F.

1997-12-31T23:59:59.000Z

48

An overview of crisis management in the coke industry  

SciTech Connect (OSTI)

Members of the American Coke and Coal Chemicals Institute (ACCCI), as responsible corporate citizens, have embraced the concepts of crisis management and progress down the various paths of planning and preparation, monitoring, media communications, community outreach, emergency response, and recovery. Many of the concepts outlined here reflect elements of crisis management guidelines developed by the Chemical Manufacturers Association (CMA). At a coke plant, crises can take the form of fires, chemical releases, labor strikes, feedstock supply disruptions, and excessive snowfall, just to name a few. The CMA defines a crisis as: ``an unplanned event that has the potential to significantly impact a company`s operability or credibility, or to pose a significant environment, economic or legal liability``; and crisis management as: ``those activities undertaken to anticipate or prevent, prepare for, respond to and recover from any incident that has the potential to greatly affect the way a company conducts its business.

Saunders, D.A.

1995-12-01T23:59:59.000Z

49

Heat treatment of exchangers to remove coke  

SciTech Connect (OSTI)

This patent describes a process for preparing furfural coke for removal from metallic surfaces. It comprises: heating the furfural coke without causing an evolution of heat capable of undesirably altering metallurgical properties of the surfaces in the presence of a gas containing molecular oxygen at a sufficient temperature below 800{degrees}F (427{degrees}C) for a sufficient time to change the crush strength of the coke so as to permit removal with a water jet at a pressure of five thousand pounds per square inch.

Turner, J.D.

1990-02-20T23:59:59.000Z

50

(Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2002, 11 companies operated 16 primary aluminum reduction plants; 6 smelters  

E-Print Network [OSTI]

and Use: In 2002, 11 companies operated 16 primary aluminum reduction plants; 6 smelters were temporarily idled. The 11 smelters east of the Mississippi River accounted for 75% of the production; whereas the remaining 11 smelters, which included the 9 Pacific Northwest smelters, accounted for only 25%. Based upon

51

Delayed coking of decant oil and coal in a laboratory-scale coking unit  

SciTech Connect (OSTI)

In this paper, we describe the development of a laboratory-scale delayed coker and present results of an investigation on the recovered liquid from the coking of decant oil and decant oil/coal mixtures. Using quantitative gas chromatography/mass spectroscopy (GC/MS) and {sup 1}H and {sup 13}C NMR, a study was made of the chemical composition of the distillate liquids isolated from the overheads collected during the coking and co-coking process. {sup 1}H and {sup 13}C NMR analyses of combined liquids from coking and co-coking did not show any substantial differences. These NMR results of coking and co-coking liquids agree with those of GC/MS. In these studies, it was observed that co-coking with coal resulted in a decrease in the paraffins contents of the liquid. The percentage of cycloparaffins, indenes, naphthalenes, and tetralins did not change significantly. In contrast, alkyl benzenes and polycyclic aromatic hydrocarbons in the distillate were higher in the co-coking experiments which may have resulted from the distillation of thermally cracked coal macromolecules and the contribution of these molecules to the overall liquid composition. 40 refs., 3 figs., 13 tabs.

Oemer Guel; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University Park, PA (United States). Energy Institute, C205 Coal Utilization Laboratory

2006-08-15T23:59:59.000Z

52

Mozambique becomes a major coking coal exporter?  

SciTech Connect (OSTI)

In addition to its potential role as a major international supplier of coking coal, Mozambique will also become a major source of power generation for southern Africa. 3 figs.

Ruffini, A.

2008-06-15T23:59:59.000Z

53

Physical, chemical and thermal changes of coals and coal maceral concentrates during coke formation.  

E-Print Network [OSTI]

??Research Doctorate - Doctor of Philosophy (PhD) The measured coke reactivity index (CRI) and coke strength after reaction (CSR) determined in experiments based on coke… (more)

Xie, Wei

2013-01-01T23:59:59.000Z

54

Investigation of bonding mechanism of coking on semi-coke from lignite with pitch and tar  

SciTech Connect (OSTI)

In coking, the bonding ability of inert macerals by reactive macerals is dependent on various parameters and also is related to the wettability of the inert macerals. In this study, the effect of carbonization temperature on the wettability of semi-cokes produced at various temperatures has been investigated. Soma and Yatagan semicokes represent inert macerals, and pitch was used as a reactive structure in the experiments. The briquetted pitch blocks were located on the semi-cokes and heated from the softening temperature of pitch (60{sup o}C) to 140{sup o}C to observe the wettability. In addition, liquid tar was also used to determine the wettability of semi-cokes. From the standpoint of wettability, the temperature of 900{sup o}C was determined to be the critical point for coke produced from sub-bituminous coals. 15 refs., 6 figs., 2 tabs.

Vedat Arslan [Dokuz Eylul University, Izmir (Turkey). Engineering Faculty

2006-10-15T23:59:59.000Z

55

Fundamentals of Delayed Coking Joint Industry Project  

SciTech Connect (OSTI)

The coking test facilities include three reactors (or cokers) and ten utilities. Experiments were conducted using the micro-coker, pilot-coker, and stirred-batch coker. Gas products were analyzed using an on-line gas chromatograph. Liquid properties were analyzed in-house using simulated distillation (HP 5880a), high temperature gas chromatography (6890a), detailed hydrocarbon analysis, and ASTM fractionation. Coke analyses as well as feedstock analyses and some additional liquid analyses (including elemental analyses) were done off-site.

Volk Jr., Michael; Wisecarver, Keith D.; Sheppard, Charles M.

2003-02-07T23:59:59.000Z

56

Health-hazard evaluation report No. HETA-88-377-2120, Armco Coke Oven, Ashland Kentucky  

SciTech Connect (OSTI)

In response to a request from the Oil, Chemical and Atomic Workers International Union, a study was made of possible hazardous working conditions at ARMCO Coke Oven (SIC-3312), Ashland, Kentucky. The facility produces about 1,000,000 tons of coke annually. Of the approximately 400 total employees at the coke oven site, 55 work in the by products area. Air quality sampling results indicated overexposure to both benzene (71432) and coal tar pitch volatiles (CTPVs). Airborne levels of benzene ranged as high as 117 parts per million (ppm) with three of 17 samples being above the OSHA limit of 1ppm. Airborne concentrations of CTPVs ranged as high as 0.38mg/cu m with two of six readings being above OSHA limit of 0.2mg/cu m. Several polynuclear aromatic hydrocarbons were also detected. The authors conclude that by products area workers are potentially overexposed to carcinogens, including benzene, CTPVs, and polynuclear aromatic hydrocarbons. An epidemiologic study is considered unlikely to yield meaningful information at this time, due to the small number of workers and the short follow up period. The authors recommend specific measures for reducing potential employee exposures, including an environmental sampling program, a preventive maintenance program, improved housekeeping procedures, and reducing exposure in operators' booths.

Kinnes, G.M.; Fleeger, A.K.; Baron, S.L.

1991-06-01T23:59:59.000Z

57

Reducing dust emissions at OAO Alchevskkoks coke battery 10A  

SciTech Connect (OSTI)

Coke battery 10A with rammed batch is under construction at OAO Alchevskkoks. The design documentation developed by Giprokoks includes measures for reducing dust emissions to the atmosphere. Aspiration systems with dry dust trapping are employed in the new components of coke battery 10A and in the existing coke-sorting equipment. Two-stage purification of dusty air in cyclones and bag filters is employed for the coke-sorting equipment. This system considerably reduces coke-dust emissions to the atmosphere.

T.F. Trembach; E.N. Lanina [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

58

RESIDUA UPGRADING EFFICIENCY IMPROVEMENT MODELS: COKE FORMATION PREDICTABILITY MAPS  

SciTech Connect (OSTI)

The dispersed particle solution model of petroleum residua structure was used to develop predictors for pyrolytic coke formation. Coking Indexes were developed in prior years that measure how near a pyrolysis system is to coke formation during the coke formation induction period. These have been demonstrated to be universally applicable for residua regardless of the source of the material. Coking onset is coincidental with the destruction of the ordered structure and the formation of a multiphase system. The amount of coke initially formed appears to be a function of the free solvent volume of the original residua. In the current work, three-dimensional coke make predictability maps were developed at 400 C, 450 C, and 500 C (752 F, 842 F, and 932 F). These relate residence time and free solvent volume to the amount of coke formed at a particular pyrolysis temperature. Activation energies for two apparent types of zero-order coke formation reactions were estimated. The results provide a new tool for ranking residua, gauging proximity to coke formation, and predicting initial coke make tendencies.

John F. Schabron; A. Troy Pauli; Joseph F. Rovani Jr.

2002-05-01T23:59:59.000Z

59

REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE  

SciTech Connect (OSTI)

A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance. Although the blending of petroleum coke with coal may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

NONE

1998-09-01T23:59:59.000Z

60

Model based control of a coke battery  

SciTech Connect (OSTI)

This paper describes a model-based strategy for coke battery control at BHP Steel`s operations in Pt Kembla, Australia. The strategy uses several models describing the battery thermal and coking behavior. A prototype controller has been installed on the Pt Kembla No. 6 Battery (PK6CO). In trials, the new controller has been well accepted by operators and has resulted in a clear improvement in battery thermal stability, with a halving of the standard deviation of average battery temperature. Along with other improvements to that battery`s operations, this implementation has contributed to a 10% decrease in specific battery energy consumption. A number of enhancements to the low level control systems on that battery are currently being undertaken in order to realize further benefits.

Stone, P.M.; Srour, J.M.; Zulli, P. [BHP Research, Mulgrave (Australia). Melbourne Labs.; Cunningham, R.; Hockings, K. [BHP Steel, Pt Kembla, New South Wales (Australia). Coal and Coke Technical Development Group

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Use of resin-bearing wastes from coke and coal chemicals production at the Novokuznetsk Metallurgical Combine  

SciTech Connect (OSTI)

The coke and coal chemicals plant at the Novokuznetsk Metallurgical Combine is making trial use of a technology that recycles waste products in 'tar ponds.' Specialists from the Ekomash company have installed a recycling unit in one area of the plant's dump, the unit including an inclined conveyor with a steam heater and a receiving hopper The coal preparation shop receives the wastes in a heated bin, where a screw mixes the wastes with pail of the charge for the coking ovens. The mixture subsequently travels along a moving conveyor belt together with the rest of the charge materials. The addition of up to 2% resin-bearing waste materials to the coal charge has not had any significant effect on the strength properties of the coke.

Kul'kova, T.N.; Yablochkin, N.V.; Gal'chenko, A.I.; Karyakina, E.A.; Litvinova, V.A.; Gorbach, D.A.

2007-03-15T23:59:59.000Z

62

Experience and results of new heating control system of coke oven batteries at Rautaruukki Oy Raahe Steel  

SciTech Connect (OSTI)

The latest development and results of the heating control system at Raahe Steel are presented in this paper. From the beginning of coke production in Rautaruukki Oy Raahe Steel (October 1987) the heating control systems have been developed. During the first stage of development work at the coking plant (from year 1987 to 1992), when only the first coke oven battery consisting of 35 ovens was in production, the main progress was in the field of process monitoring. After commissioning of the second stage of the coking plant (November 1992), the development of the new heating control model was started. Target of the project was to develop a dynamic control system which guides the heating of batteries through the various process conditions. Development work took three years and the heating control system was commissioned in the year 1995. Principle of the second generation system is an energy balance calculation, coke end temperature determination and dynamic oven scheduling system. The control is based on simultaneous feedforward and feedback control. The fuzzy logic components were added after about one year experience.

Swanljung, J.; Palmu, P. [Rautaruukki Oy Raahe Steel (Finland)

1997-12-31T23:59:59.000Z

63

Coking properties of perhydrous low-rank vitrains. Influence of pyrolysis conditions  

E-Print Network [OSTI]

generally lead to increased coking potential of coals characterised in the resulting cokes by large sizes equivalent to natural coking coals, since the cokes from these residues are always made of smaller MOD than those obtained for coking coals. For comparison, a similar characterisation, carried out

Paris-Sud XI, Université de

64

Urinary 1-hydroxypyrene concentrations in Chinese coke oven workers relative to job category, respirator usage, and cigarette smoking  

SciTech Connect (OSTI)

1-Hydroxypyrene (1-OHP) is a biomarker of recent exposure to polycyclic aromatic hydrocarbons (PAHs). We investigated whether urinary 1-OHP concentrations in Chinese coke oven workers (COWs) are modulated by job category, respirator usage, and cigarette smoking. The present cross-sectional study measured urinary 1-OHP concentrations in 197 COWs from Coking plant I and 250 COWs from Coking plant II, as well as 220 unexposed referents from Control plant I and 56 referents from Control plant II. Urinary 1-OHP concentrations (geometric mean, {mu}mol/mol creatinine) were 5.18 and 4.21 in workers from Coking plants I and II, respectively. The highest 1-OHP levels in urine were found among topside workers including lidmen, tar chasers, and whistlers. Benchmen had higher 1-OHP levels than other workers at the sideoven. Above 75% of the COWs exceeded the recommended occupational exposure limit of 2.3 {mu}mol/mol creatinine. Respirator usage and increased body mass index (BMI) slightly reduced 1-OHP levels in COWs. Cigarette smoking significantly increased urinary 1-OHP levels in unexposed referents but had no effect in COWs. Chinese COWs, especially topside workers and benchmen, are exposed to high levels of PAHs. Urinary 1-OHP concentrations appear to be modulated by respirator usage and BMI in COWs, as well as by smoking in unexposed referents.

Bo Chen; Yunping Hu; Lixing Zheng; Qiangyi Wang; Yuanfen Zhou; Taiyi Jin [Fudan University, Shanghai (China). School of Public Health

2007-09-15T23:59:59.000Z

65

A mathematical model for the estimation of flue temperature in a coke oven  

SciTech Connect (OSTI)

The coke plants at the Kwangyang works has adopted an Automatic Battery Control (ABC) system which consists of four main parts, battery heating control, underfiring heat and waste gas oxygen control, pushing and charging schedule and Autotherm-S that measures heating wall temperature during pushing. The measured heating wall temperature is used for calculating Mean Battery Temperature (MBT) which is average temperature of flues for a battery, but the Autotherm-S system can not provide the flue temperatures of an oven. This work attempted to develop mathematical models for the estimation of the flue temperature using the measured heating wall temperature and to examine fitness of the mathematical model for the coke plant operation by analysis of raw gas temperature at the stand pipe. Through this work it is possible to reflect heating wall temperature in calculating MBT for battery heating control without the interruption caused by a maintenance break.

Choi, K.I.; Kim, S.Y.; Suo, J.S.; Hur, N.S.; Kang, I.S.; Lee, W.J.

1997-12-31T23:59:59.000Z

66

Reducing power production costs by utilizing petroleum coke. Annual report  

SciTech Connect (OSTI)

A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

Galbreath, K.C.

1998-07-01T23:59:59.000Z

67

The methods of steam coals usage for coke production  

SciTech Connect (OSTI)

Nowadays, high volatile bituminous coals are broadly used for metallurgical coke production in Russia. The share of such coals in the coking blend is variable from 20 to 40% by weight. There are some large coal deposits in Kuznetskii basin which have coals with low caking tendency. The low caking properties of such coals limit of its application in the coking process. At the same time the usage of low caking coals for coke production would allow flexibility of the feedstock for coke production. Preliminary tests, carried out in COAL-C's lab has shown some differences in coal properties with dependence on the size distribution. That is why the separation of the well-caking fraction from petrographically heterogeneous coals and its further usage in coking process may be promising. Another way for low caking coals application in the coke industry is briquettes production from such coals. This method has been known for a very long time. It may be divided into two possible directions. First is a direct coking of briquettes from the low caking coals. Another way is by adding briquettes to coal blends in defined proportion and combined coking. The possibility of application of coal beneficiation methods mentioned above was investigated in present work.

Korobetskii, I.A.; Ismagilov, M.S.; Nazimov, S.A.; Sladkova, I.L.; Shudrikov, E.S.

1998-07-01T23:59:59.000Z

68

DELAYED COKING OF SOLVENT EXTRACTED COAL FOR PRODUCTION OF ANODE GRADE COKE: CHARACTERIZATION OF SOLID AND LIQUID PRODUCTS.  

E-Print Network [OSTI]

??This study investigates the feasibility of using high temperature solvent extraction of coal to produce feedstock for the production of anode grade coke through delayed… (more)

Karri, Vamsi

2011-01-01T23:59:59.000Z

69

Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination  

Broader source: Energy.gov [DOE]

Coke calcination is a process that involves the heating of green petroleum coke in order to remove volatile material and purify the coke for further processing. Calcined coke is vital to the...

70

Dry purification of aspirational air in coke-sorting systems with wet slaking of coke  

SciTech Connect (OSTI)

Coke transportation after wet slaking is accompanied by the release of dust in the production building and in the surrounding atmosphere. Wet methods are traditionally used to purify very humid air. Giprokoks has developed designs for highly efficient dry dust-removal methods in such conditions.

T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

71

Coke Gasification - A Solution to Excess Coke Capacity and High Energy Costs  

E-Print Network [OSTI]

effectively to produce medium-Btu (300 Btu/scf) gas which, in turn, can fuel the refinery furnaces to replace natural gas. Coke gasification should prove economical with natural gas price decontrol and the average price projected to rise to over $14.0 per...

1982-01-01T23:59:59.000Z

72

Demineralization of petroleum cokes and fly ash samples obtained from the upgrading of Athabasca oil sands bitumen  

SciTech Connect (OSTI)

Today's commercially proved technology to recover oil from the Athabasca oil sands, as practiced by Suncor and Syncrude, involves two major operations, namely: separation of the bitumen from the sand and upgrading of the bitumen to refinery oil. Significant amounts of petroleum coke are produced during the bitumen upgrading process. Suncor burns the bulk of its petroleum coke in boilers to fulfill the energy requirements of the entire operation, still meeting government regulations restricting the amount of sulfur dioxide that can be released to the environment. In contrast, Syncrude is able to burn only 20% of its coke production because of high sulphur dioxide emissions from elsewhere in its operations. The boiler ash (Fly ash) which contains appreciable amounts of metals, such as vanadium, nickel, titianium, iron, aluminum and other elements, is collected in the boiler hoppers and cyclones of the petroleum coke fired steam generation plants. There has been relatively little effort made towards the understanding of the chemical or physical nature of these materials. Knowledge of the physico-chemical properties of these materials will be helpful in assessing their beneficiation and potential use as fuel or metallurigcal coke and the feasibility of extracting some metals, especially Ni and V. In this communication the authors report studies of acid demineralization as a means of reducing ash content of these materials for /sup 13/C NMR spectroscopic investigations.

Majid, A.; Ratcliffe, C.I.; Ripmeester, J.A.

1988-06-01T23:59:59.000Z

73

Innovative coke oven gas cleaning system for retrofit applications. Environmental Monitoring program. Volume 1 - sampling progrom report. Baseline Sampling Program report  

SciTech Connect (OSTI)

Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This innovative coke oven gas cleaning system combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE provided cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct and Environmental Monitoring Plan for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. It also requires the preparation of a final report on the results of the Baseline Compliance and Supplemental Sampling Programs that are part of the EMP and which were conducted prior to the startup of the innovative coke oven gas cleaning system. This report is the Baseline Sampling Program report.

Stuart, L.M.

1994-05-27T23:59:59.000Z

74

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2013 increased by 4% to about 1.22 million tons,  

E-Print Network [OSTI]

manufacturers, foundries, and chemical plants, 11%; ingot makers,10%; and copper smelters and refiners, 548 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2013 increased by 4% to about 1.22 million tons

75

Coke formation during pyrolysis of 1,2-dichloroethane  

SciTech Connect (OSTI)

Most processes involving hydrocarbons or carbon oxides at high temperatures suffer from the disadvantage of coke formation. The formation of coke deposits during pyrolysis of hydrocarbons or chlorinated hydrocarbons is of significant practical importance. Examples of such processes are the steam cracking of alkanes to produce olefins and the thermal decomposition of 1,2-dichloroethane (EDC) for the production of vinyl chloride monomer (VCM). Even id the rate of coke production is low, the cumulative nature of the solid product will result in reactor fouling. The present work deals with the thermal decomposition of EDC. Coke formation has been studied on metal surfaces in a quartz tubular reactor. The rate of coke deposition was measures on metal foils hanging from one arm of a microbalance. A complete analysis of the product gas was accomplished using on-line gas chromatography. The results show that coke deposition during thermal decomposition of EDC depends on the composition of the feed as well as on the nature of the surface of the metal foil. Small amounts of other components (contamination with other chlorinated hydrocarbons as an example) may have a large influence on the rate of coke formation. The results are discussed in terms of surface composition/morphology of the metal foil and the free radical mechanism for thermal decomposition of FDC.

Holmen, A. [Norwegian Institute of Technology, Trondheim (Norway); Lindvag, O.A. [SINTEF Applied Chemistry, Trondheim (Norway)

1995-12-31T23:59:59.000Z

76

Method for removal of furfural coke from metal surfaces  

SciTech Connect (OSTI)

This patent describes a process for preparing furfural coke for removal from metallic surfaces. It comprises: heating ship furfural coke without causing an evolution of heat capable of undesirably altering metallurgical properties of the surfaces in the presence of a gas with a total pressure of less than 100 psig containing molecular oxygen. The gas being at a sufficient temperature below 800{degrees}F. (427{degrees}C.) for a sufficient time to change the crush strength of the coke so as to permit removal with a water jet at a pressure of about 5000 psi.

Turner, J.D.

1990-02-27T23:59:59.000Z

77

RESIDUA UPGRADING EFFICIENCY IMPROVEMENT MODELS: WRI COKING INDEXES  

SciTech Connect (OSTI)

Pyrolysis experiments were conducted with three residua at 400 C (752 F) at various residence times. The wt % coke and gaseous products were measured for the product oils. The Western Research Institute (WRI) Coking Indexes were determined for the product oils. Measurements were made using techniques that might correlate with the Coking Indexes. These included spin-echo proton nuclear magnetic resonance spectroscopy, heat capacity measurements at 280 C (536 F), and ultrasonic attenuation. The two immiscible liquid phases that form once coke formation begins were isolated and characterized for a Boscan residuum pyrolyzed at 400 C (752 F) for 55 minutes. These materials were analyzed for elemental composition (CHNS), porphyrins, and metals (Ni,V) content.

John F. Schabron; Joseph F. Rovani, Jr.; Francis P. Miknis; Thomas F. Turner

2003-06-01T23:59:59.000Z

78

New process to avoid emissions: Constant pressure in coke ovens  

SciTech Connect (OSTI)

A chamber pressure regulation (PROven), especially effective in regard to emission control problems of coke ovens is introduced for the first time. Because of the partial vacuum in the collecting main system, it is possible to keep the oven`s raw gas pressure constant on a low level over the full coking time. The individual pressure control for each chamber is assured directly as a function of the oven pressure by an immersion system controlling the flow resistance of the collecting main valve. The latter is a fixed-position design (system name ``FixCup``). By doing away with the interdependence of collecting main pressure and chamber pressure, a parameter seen as a coking constant could not be made variable. This opens a new way to reduce coke oven emissions and simultaneously to prevent the ovens from damage caused by air ingress into the oven.

Giertz, J.; Huhn, F. [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany). Inst. for Cokemaking and Fuel Technology; Hofherr, K. [Thyssen Stahl AG, Duisburg (Germany)

1995-12-01T23:59:59.000Z

79

The Scale of the Energy Challenge 22,000 gallons of fuel oil 150 tons of coal  

E-Print Network [OSTI]

and rooftops in the United States. The total land area required by nuclear power plants is small! Ã? 20 15The Scale of the Energy Challenge Biomass Wind Nuclear Solar 22,000 gallons of fuel oil 150 tons

Hochberg, Michael

80

Prediction of metallurgical coke strength from the petrographic composition of coal blends  

SciTech Connect (OSTI)

Turkey, especially Zonguldak on the West Coast of Black Sea region, has large reserves of bituminous coal that can be used either directly or in blends with other coals for metallurgical coke production. It is possible to predict the coking properties of these coals by petrographic analysis. In this study, semi- and non-coking coals were blended with coking bituminous coals in varying proportions and an estimation was made as to their stability factors through petrographic techniques. It was established that semi- and non-coking bituminous coals could be used in the production of metallurgical coke.

Sutcu, H.; Toroglu, I.; Piskin, S. [Zonguldak Karaelmas University, Zonguldak (Turkey)

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

2008-01-01T23:59:59.000Z

82

Table 33. Coal Carbonized at Coke Plants by Census Division  

U.S. Energy Information Administration (EIA) Indexed Site

2014 Year to Date Census Division April - June 2014 January - March 2014 April - June 2013 2014 2013 Percent Change Middle Atlantic 1,599 1,503 1,622 3,102 3,178 -2.4 East North...

83

Table 38. Coal Stocks at Coke Plants by Census Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary: ReportedEnergyChanges

84

A coke oven model including thermal decomposition kinetics of tar  

SciTech Connect (OSTI)

A new one-dimensional coke oven model has been developed for simulating the amount and the characteristics of by-products such as tar and gas as well as coke. This model consists of both heat transfer and chemical kinetics including thermal decomposition of coal and tar. The chemical kinetics constants are obtained by estimation based on the results of experiments conducted to investigate the thermal decomposition of both coal and tar. The calculation results using the new model are in good agreement with experimental ones.

Munekane, Fuminori; Yamaguchi, Yukio [Mitsubishi Chemical Corp., Yokohama (Japan); Tanioka, Seiichi [Mitsubishi Chemical Corp., Sakaide (Japan)

1997-12-31T23:59:59.000Z

85

New packing in absorption systems for trapping benzene from coke-oven gas  

SciTech Connect (OSTI)

The efficiency of benzene removal from coke-oven gas in absorption units OAO Alchevskkoks with new packing is assessed.

V.V. Grabko; V.M. Li; T.A. Shevchenko; M.A. Solov'ev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

86

Role of hydrogen in blast furnaces to improve productivity and decrease coke consumption  

SciTech Connect (OSTI)

The hydrogen contained in blast furnace gases exerts a variety of physical, thermochemical, and kinetic effects as the gases pass through the various zones. The hydrogen is derived from two sources: (1) the dissociation of moisture in the blast air (ambient and injected with hot blast), and (2) the release from partial combustion of supplemental fuels (including moisture in atomizing water, steam, or transport air, if any). With each atom of oxygen (or carbon), the molar amounts of hydrogen released are more than six times higher for natural gas than for coal, and two times higher for natural gas than for oil. Injection of natural gas in a blast furnace is not a new process. Small amounts of natural gas--about 50--80 lb or 1,100--1,700 SCF/ton of hot metal--have been injected in many of the North American blast furnaces since the early 1960s, with excellent operating results. What is new, however, is a batter understanding of how natural gas reacts in the blast furnace and how natural gas and appropriate quantities of oxygen can be used to increase the driving rate or combustion rate of carbon (coke) in the blast furnace without causing hanging furnace and operating problems. The paper discusses the factors limiting blast furnace productivity and how H{sub 2} and O{sub 2} can increase productivity.

Agarwal, J.C.; Brown, F.C.; Chin, D.L.; Stevens, G.; Clark, R.; Smith, D.

1995-12-01T23:59:59.000Z

87

Process for converting coal into liquid fuel and metallurgical coke  

DOE Patents [OSTI]

A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

Wolfe, Richard A. (Abingdon, VA); Im, Chang J. (Abingdon, VA); Wright, Robert E. (Bristol, TN)

1994-01-01T23:59:59.000Z

88

Coke profile and effect on methane/ethylene conversion process  

E-Print Network [OSTI]

The objective of this study was to investigate the coke profile with respect to time on stream and the change of product distribution due to catalyst deactivation. A fixed bed reactor was used to conduct this investigation. A series of runs were...

Al-Solami, Bandar

2002-01-01T23:59:59.000Z

89

Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas  

SciTech Connect (OSTI)

The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

90

A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage  

E-Print Network [OSTI]

from combustion and gasification of coal – an equilibriumHolysh, M. 2005. Coke Gasification: Advanced technology forfrom a Coal-Fired Gasification Plant. Final Report, December

Apps, J.A.

2006-01-01T23:59:59.000Z

91

Integrated coke, asphalt and jet fuel production process and apparatus  

DOE Patents [OSTI]

A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

Shang, Jer Y. (McLean, VA)

1991-01-01T23:59:59.000Z

92

New environmental concepts in the chemical and coke industries  

SciTech Connect (OSTI)

We know that environmentally pure technologies do not exist. Coke production is no exception to the rule. The article considers the logic of environmental decision making. Attention focuses on a new bank of ecologically appropriate materials whose release to the biosphere must be considered solely in quantititative terms. Qualitativily all these materials are familiar; they are assimilated by populations of microorganisms and tar thus compatible with the biosphere.

A.Yu. Naletov; V.A. Naletov [Mendeleev Russian Chemical-Engineering University (Russian Federation)

2007-05-15T23:59:59.000Z

93

Development of advanced technology of coke oven gas drainage treatment  

SciTech Connect (OSTI)

In April 1994, commercial-scale application of ozone oxidation to ammonia liquor (which is primarily the water condensing from coke oven gas) to reduce its chemical oxygen demand (COD) was started at the Nagoya Works of Nippon Steel Corporation. This paper deals with the results of technical studies on the optimization of process operating conditions and the enlargement of equipment size and the operating purification system.

Higashi, Tadayuki; Yamaguchi, Akikazu; Ikai, Kyozou; Kamiyama, Hisarou; Muto, Hiroshi

1996-12-31T23:59:59.000Z

94

Low-coke rate operation under high PCI at Kobe No. 3 BF  

SciTech Connect (OSTI)

Kobe No. 3 blast furnace (BF) suffered tremendous damage when the Great Hanshin-Awaji Earthquake rocked the area on January 17, 1995. However, working as quickly as possible to dig out of the burden and rehabilitate various facilities, the company managed to restart the No. 3 BF on April 2. After the restart, which went smoothly, production was shifted into the low coke rate operation which was being promoted before the disaster. In October, 1995, only seven months after the restart, the nation record of 296 kg/t low coke rate could be achieved. Subsequently, in January, 1996, coke rate reached 290 kg/t and the low coke rate operation was renewed. Since that time the same level of coke rate has been maintained. The paper discusses how low coke rate operation was achieved.

Matsuo, Tadasu; Kanazuka, Yasuo; Hoshino, Koichi; Yoshida, Yasuo; Kitayama, Syuji; Ishiwaki, Shiro [Kobe Steel Ltd. (Japan). Kobe Works

1997-12-31T23:59:59.000Z

95

Operational improvements at Jewell Coal and Coke Company`s non-recovery ovens  

SciTech Connect (OSTI)

Operational improvements at Jewell Coal and Coke Company over the past five years includes safety and environmental concerns, product quality, equipment availability, manpower utilization, and productivity. These improvements with Jewell`s unique process has allowed Jewell Coal and Coke Company to be a consistent, high quality coke producer. The paper briefly explains Jewell`s unique ovens, their operating mode, improved process control, their maintenance management program, and their increase in productivity.

Ellis, C.E.; Pruitt, C.W.

1995-12-01T23:59:59.000Z

96

The effects of ash and maceral composition of Azdavay and Kurucasile (Turkey) coals on coking properties  

SciTech Connect (OSTI)

In this study, investigations were made as to the effect of the maceral compositions and mineral matter content of Azdavay and Kurucasile coals on the coking property. Chemical and maceral analyses and coking properties were determined for the products of the float-sink procedure. The coking properties were established on the basis of free swelling index and Ruhr dilatometer tests. Maceral analyses showed that as the ash content of a coal containing both high and medium volatile matter increases, its effective maceral proportion decreases, and the coking property is affected in an unfavorable way.

Toroglu, I. [Zonguldak Karaelmas University, Zonguldak (Turkey). Faculty of Engineering

2006-07-01T23:59:59.000Z

97

Integration of stripping of fines slurry in a coking and gasification process  

DOE Patents [OSTI]

In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.

DeGeorge, Charles W. (Chester, NJ)

1980-01-01T23:59:59.000Z

98

The effect of diabietic acid on the coking of oxidised solvent-extracted coal.  

E-Print Network [OSTI]

??Refcoal is a refined carbon source obtained by extraction of coal with dimethylformamide (DMF). During the coking process, Refcoal goes through a mesophase (fluid) stage… (more)

Ludere, Margaret Tshimangadzo

2008-01-01T23:59:59.000Z

99

Lignin as Both Fuel and Fusing Binder in Briquetted Anthracite Fines for Foundry Coke Substitute.  

E-Print Network [OSTI]

??Lignin that had been extracted from Kraft black liquor was investigated as a fusing binder in briquetted anthracite fines for a foundry coke substitute. Cupola… (more)

Lumadue, Matthew

2012-01-01T23:59:59.000Z

100

Tons of Heavy Metals in Mill Creek Sediments Heather Freeman  

E-Print Network [OSTI]

objectives for this summer research were to: 1.) determine how much heavy metal pollution has accumulatedTons of Heavy Metals in Mill Creek Sediments Heather Freeman 8/30/99 Geology Department Advisors: Dr. Kees DeJong Dr. Barry Manyard Dr. David Nash #12;Tons of heavy metals in Mill Creek sediments

Maynard, J. Barry

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

(Data in metric tons of silver content unless otherwise noted)  

E-Print Network [OSTI]

146 SILVER (Data in metric tons 1 of silver content unless otherwise noted) Domestic Production.S. refiners of commercial-grade silver, with an estimated total output of 6,500 tons from domestic and foreign to minimize odor, electroplating, hardening bearings, inks, mirrors, solar cells, water purification, and wood

102

(Data in metric tons of silver content unless otherwise noted)  

E-Print Network [OSTI]

146 SILVER (Data in metric tons 1 of silver content unless otherwise noted) Domestic Production.S. refiners of commercial-grade silver, with an estimated total output of 6,500 tons from domestic and foreign, hardening bearings, inks, mirrors, solar cells, water purification, and wood treatment to resist mold

103

(Data in metric tons of silver content unless otherwise noted)  

E-Print Network [OSTI]

146 SILVER (Data in metric tons 1 of silver content unless otherwise noted) Domestic Production, with an estimated total output of 2,500 tons from domestic and foreign ores and concentrates, and from old and new, mirrors, solar cells, water purification, and wood treatment. Silver was used for miniature antennas

104

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2008 increased by about 12% to 1.3 million tons and  

E-Print Network [OSTI]

plants, 14%; ingot makers, 9%; and copper smelters and refiners, 5%. Copper in all old and new, refined50 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic--Arizona, Utah, New Mexico, Nevada, and Montana--accounted for more than 99% of domestic production; copper also

105

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2007 declined nominally to 1.19 million tons, but its  

E-Print Network [OSTI]

plants, 11%; ingot makers, 9%; and copper smelters and refiners, 5%. Copper in all old and new, refined54 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic--Arizona, Utah, New Mexico, Nevada, and Montana--accounted for 99% of domestic production; copper was also

106

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2006 rose to more than 1.2 million tons and was  

E-Print Network [OSTI]

manufacturers, foundries, and chemical plants, 12%; ingot makers, 10%; and copper smelters and refiners, 452 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Mexico, Nevada, and Montana--accounted for 99% of domestic production; copper was also recovered at mines

107

CHARACTERIZATION OF COAL- AND PETROLEUM-DERIVED BINDER PITCHES AND THE INTERACTION OF PITCH/COKE MIXTURES IN PRE-BAKED CARBON ANODES.  

E-Print Network [OSTI]

??Carbon anodes are manufactured from calcined petroleum coke (i.e. sponge coke) and recycled anode butts as fillers, and coal tar pitch (SCTP) as the binder.… (more)

Suriyapraphadilok, Uthaiporn

2008-01-01T23:59:59.000Z

108

TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)  

E-Print Network [OSTI]

metal recycled by the titanium industry totaled about 18,000 tons in 2001. Estimated use of titanium as scrap and in the form of ferrotitanium made from scrap by the steel industry was about 6,000 tons; by the superalloy industry, 900 tons; and, in other industries, 700 tons. Old scrap reclaimed totaled about 500 tons

109

Influence of coal on coke properties and blast-furnace operation  

SciTech Connect (OSTI)

With unstable coal supplies and properties and a fluctuating content of coking coal in the batch at OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (ZSMK) and of bituminous coal at Kuznetskaya enrichment facility, it is important to optimize the rank composition of the batch for coke production.

G.R. Gainieva; L.D. Nikitin [OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (Russian Federation)

2007-07-01T23:59:59.000Z

110

Analytical input-output and supply chain study of China's coke and steel sectors  

E-Print Network [OSTI]

I design an input-output model to investigate the energy supply chain of coal-coke-steel in China. To study the demand, supply, and energy-intensity issues for coal and coke from a macroeconomic perspective, I apply the ...

Li, Yu, 1976-

2004-01-01T23:59:59.000Z

111

Further investigation of the impact of the co-combustion of tire-derived fuel and petroleum coke on the petrology and chemistry of coal combustion products  

SciTech Connect (OSTI)

A Kentucky cyclone-fired unit burns coal and tire-derived fuel, sometimes in combination with petroleum coke. A parallel pulverized combustion (pc) unit at the same plant burns the same coal, without the added fuels. The petrology, chemistry, and sulfur isotope distribution in the fuel and resulting combustion products was investigated for several configurations of the fuel blend. Zinc and Cd in the combustion products are primarily contributed from the tire-derived fuel, the V and Ni are primarily from the petroleum coke, and the As and Hg are probably largely from the coal. The sulfur isotope distribution in the cyclone unit is complicated due to the varying fuel sources. The electrostatic precipitator (ESP) array in the pc unit shows a subtle trend towards heavier S isotopic ratios in the cooler end of the ESP.

Hower, J.C.; Robertson, J.D.; Elswick, E.R.; Roberts, J.M.; Brandsteder, K.; Trimble, A.S.; Mardon, S.M. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

2007-07-01T23:59:59.000Z

112

Modelling of a coke oven heating wall M. Landreau, D. Isler, Centre de Pyrolyse de Marienau (CPM)  

E-Print Network [OSTI]

- 1 - Modelling of a coke oven heating wall M. Landreau, D. Isler, Centre de Pyrolyse de Marienau with thermomechanical modelling of a coke oven heating wall. The objective is to define the safe limits of coke oven of walls, roof and larry car, pre-stresses (anchoring system), lateral pressure due to coal pushing A 3D

Boyer, Edmond

113

Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast  

E-Print Network [OSTI]

of coal and coke are consumed for heating and reducing iron oxides [2,3]. As a result, BFs have becomeHydrogen production from steam reforming of coke oven gas and its utility for indirect reduction 2012 Available online 18 June 2012 Keywords: Steam reforming Hydrogen and syngas production Coke oven

Leu, Tzong-Shyng "Jeremy"

114

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production of copper in 2010 declined by about 5% to 1.12 million  

E-Print Network [OSTI]

plants, 14%; ingot makers, 11%; and copper smelters and refiners, 5%. Copper in all old and new, refined48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production of copper in 2010 declined by about 5% to 1.12 million tons

115

Department of Energy Releases New 'Billion-Ton' Study Highlighting...  

Energy Savers [EERE]

The U.S. Department of Energy today released a report - 2011 U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry - detailing U.S. biomass feedstock...

116

Characterization of liquids derived from laboratory coking of decant oil and co-coking of Pittsburgh seam bituminous coal with decant oil  

SciTech Connect (OSTI)

In this study, decant oil and a blend of Pittsburgh seam bituminous coal with decant oil were subjected to coking and co-coking in a laboratory-scale delayed coker. Higher yields of coke and gas were obtained from co-coking than from coking. Coal addition into the feedstock resulted in lighter overhead liquid. GC/MS analyses of gasoline, jet fuel, and diesel show that co-coking of coal/decant oil gave higher quantity aromatic components than that of coking of decant oil alone. Simulated distillation gas chromatography analyses of overhead liquids and GC/MS analyses of vacuum fractions show that when coal was reacted with a decant oil, the coal constituents contributed to the distillable liquids. To address the reproducibility of the liquid products, overhead liquid samples collected at the first, third, and fifth hours of experiments of 6 h duration were evaluated using simulated distillation gas chromatography and {sup 1}H and {sup 13}C NMR. NMR analyses of the liquid products showed that, even though there were slight changes in the {sup 1}H and {sup 13}C spectra, the standard deviation was low for the time-dependent samples. Simulated distillation gas chromatography showed that the yields of refinery boiling range materials (i.e., gasoline, jet fuel, diesel, and fuel oil cuts) were reproducible between runs. Fractionation of the overhead liquids into refinery boiling range materials (gasoline, jet fuel, diesel, fuel oil fractions) showed that the boiling range materials and chemical compositions of fractions were found to be reproducible. 54 refs., 17 tabs.

Omer Gul; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University, University Park, PA (United States)

2009-05-15T23:59:59.000Z

117

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry  

SciTech Connect (OSTI)

The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil pri

Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Graham, Robin Lambert [ORNL; Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Turhollow Jr, Anthony F [ORNL; Stokes, Bryce [Navarro Research & Engineering; Brandt, Craig C [ORNL

2011-08-01T23:59:59.000Z

118

Investigation of the effects of heating rate on coking of shale during retorting  

SciTech Connect (OSTI)

The retorting of oil shale distributes organic carbon among three possible products: the liquid product, the noncondensible product, and the residual carbon (coke). The production of coke is detrimental because of the economic effects caused by the loss of organic carbon to this relatively intractable carbon form. Two reference oil shales, a Mahogany zone, Parachute Creek Member, Green River Formation oil shale from Colorado and a Clegg Creek Member, New Albany oil shale from Kentucky, were studied to evaluate the conditions that affect coke production during retorting. The variable that was studied in these experiments was the heating rate during retorting because heating rate has been indicated to have a direct effect on coke production (Burnham and Clarkson 1980). The six heating rates investigated covered the range from 1 to 650/degree/C/h (1.8 to 1169/degree/F/h). The data collected during these experiments were evaluated statistically in order to identify trends. The data for the eastern reference oil shale indicated a decrease in coke formation with increases in the heating rate. The liquid and noncondensible product yields both increased with increasing heating rate. The distribution of products in relation to retort heating rate follows the model suggested by Burnham and Clarkson (1980). Coke production during the retorting of western reference oil shale was found to be constant in relation to heating rate. The liquid product yield increased with increasing heating rate but the trend could not be verified at the 95% confidence level. The coke production observed in these experiments does not follow the prediction of the model. This may indicate that coke formation occurs early in the retorting process and may be limited by the availability of organic materials that form coke. 6 refs., 10 tabs.

Guffey, F.D.; Hunter, D.E.

1988-02-01T23:59:59.000Z

119

Demineralization of petroleum cokes and fly ash samples obtained from the upgrading of Athabasca oil sands bitumen  

SciTech Connect (OSTI)

Ash reduction of the cokes and fly ash samples derived from the Athabasca oil sands bitumen was attempted by dissolving the mineral matter in acids. The samples used for this investigation included Syncrude fluid coking coke, Suncor delayed coking coke and the two fly ash samples obtained from the combustion of these cokes. All samples were analyzed for C,H,N,O, and S before and after acid demineralization and the analyses results compared. Further, the ash from the samples before and after acid demineralization was analyzed for silica, alumina, iron titanium, nickel and vanadium to assess the acid leaching of these elements. CP/MAS, /sup 13/C NMR spectroscopic study of the demineralized coke and fly ash samples was also attempted.

Majid, A.; Ratcliffe, C.I.; Ripmeester, J.A. (National Research Council of Canada, Ottawa, ON (Canada). Div. of Chemistry)

1989-01-01T23:59:59.000Z

120

Glass-coating and cleaning system to prevent carbon deposition on coke oven walls  

SciTech Connect (OSTI)

The new technology for protecting the coking chamber bricks from damage by hard-pushing is described. The technology consists of the glass coating on the wall bricks and a wall cleaner to blow deposited carbon. For the glass coating, a specially developed glaze is sprayed onto the wall bricks by a spraying device developed to completely spray one coking chamber in a few minutes. The wall cleaner is installed on a pusher ram in the facility to automatically blow air at a sonic speed during coke pushing. The life of the glazed layer is estimated to be over two years.

Takahira, Takuya; Ando, Takeshi; Kasaoka, Shizuki; Yamauchi, Yutaka [Kawasaki Steel Corp., Mizushima, Kurashiki (Japan). Mizushima Works

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Current developments at Giprokoks for coke-battery construction and reconstruction  

SciTech Connect (OSTI)

Approaches developed at Giprokoks for coke-battery construction and reconstruction are considered. Recommendations regarding furnace construction and reconstruction are made on the basis of Ukrainian and world experience.

V.I. Rudyka; Y.E. Zingerman; V.B. Kamenyuka; O.N. Surenskii; G.E. Kos'kova; V.V. Derevich; V.A. Gushchin [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

122

The Videofil probe, a novel instrument to extend the coke oven service life  

SciTech Connect (OSTI)

To prolong the service life of coke oven batteries, the Centre de Pyrolyse de Marienau developed the Videofil probe, a novel instrument to conduct diagnoses and to help repair operations of coke ovens. The Videofil probe is a flexible non-water-cooled endoscope which is used to locate flue wall damage and estimate its importance, to define the oven zones to repair and guide the repair work and to control the quality of the repair work and its durability.

Gaillet, J.P.; Isler, D. [Centre de Pyrolyse de Marienau, Forbach (France)

1997-12-31T23:59:59.000Z

123

Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process  

DOE Patents [OSTI]

In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.

DeGeorge, Charles W. (Chester, NJ)

1981-01-01T23:59:59.000Z

124

Effect of thermal treatment on coke reactivity and catalytic iron mineralogy  

SciTech Connect (OSTI)

Iron minerals in coke can catalyze its gasification and may affect coke behavior in the blast furnace. The catalytic behavior of iron depends largely upon the nature of the iron-bearing minerals. To determine the mineralogical changes that iron could undergo in the blast furnace, cokes made from three coals containing iron present in different mineral forms (clays, carbonates, and pyrite) were examined. All coke samples were heat-treated in a horizontal furnace at 1373, 1573, and 1773 K and then gasified with CO{sub 2} at 1173 K in a fixed bed reactor (FBR). Coke mineralogy was characterized using quantitative X-ray diffraction (XRD) analysis of coke mineral matter prepared by low-temperature ashing (LTA) and field emission scanning electron microscopy combined with energy dispersive X-ray analysis (FESEM/EDS). The mineralogy of the three cokes was most notably distinguished by differing proportions of iron-bearing phases. During heat treatment and subsequent gasification, iron-containing minerals transformed to a range of minerals but predominantly iron-silicides and iron oxides, the relative amounts of which varied with heat treatment temperature and gasification conditions. The relationship between initial apparent reaction rate and the amount of catalytic iron minerals - pyrrhotite, metallic iron, and iron oxides - was linear and independent of heat treatment temperature at total catalyst levels below 1 wt %. The study showed that the coke reactivity decreased with increasing temperature of heat treatment due to decreased levels of catalytic iron minerals (largely due to formation of iron silicides) as well as increased ordering of the carbon structure. The study also showed that the importance of catalytic mineral matter in determining reactivity declines as gasification proceeds. 37 refs., 13 figs., 7 tabs.

Byong-chul Kim; Sushil Gupta; David French; Richard Sakurovs; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). Centre for Sustainable Materials Research and Technology

2009-07-15T23:59:59.000Z

125

Coke gasification: the influence and behavior of inherent catalytic mineral matter  

SciTech Connect (OSTI)

Gasification of coke contributes to its degradation in the blast furnace. In this study, the effect of gasification on the inherent catalytic minerals in cokes and their reciprocal influence on gasification are investigated. The catalytic mineral phases identified in the cokes used in this study were metallic iron, iron sulfides, and iron oxides. Metallic iron and pyrrhotite were rapidly oxidized during gasification to iron oxide. The catalysts had a strong influence on the apparent rates at the initial stages of reaction. As gasification proceeds, their effect on the reaction rate diminishes as a result of reducing the surface contact between catalyst and carbon matrix because of carbon consumption around the catalyst particles; with extended burnout the reactivity of the coke becomes increasingly dependent on surface area. The reaction rate in the initial stages was also influenced by the particle size of the catalytic minerals; for a given catalytic iron level, the cokes whose catalytic minerals were more finely dispersed had a higher apparent reaction rate than cokes containing larger catalytic particles. Iron, sodium, and potassium in the amorphous phase did not appear to affect the reaction rate. 40 refs., 16 figs., 6 tabs.

Mihaela Grigore; Richard Sakurovs; David French; Veena Sahajwalla [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Bangor, NSW (Australia)

2009-04-15T23:59:59.000Z

126

Modification of environmental control of cokemaking plant  

SciTech Connect (OSTI)

Recently, global environmental protection has been a great concern in the world. In the United States of America, the Clean Air Act (CAA) has been revised to control emissions strictly. Especially in the field of cokemaking, the restriction of fume emission from a coke oven is so severe that old coke ovens will stop operation with the application of CAA. In Japan, it is expected that more severe protection measures are going to be requested for keeping environmental quality. In this situation, it is indispensable to strengthen environmental protection measures for cokemaking plants to continue coke production in the 21st century. In Chiba Works, Kawasaki Steep Corp., the Ironmaking Department has been struggling for the improvement of environmental measures for. These activities for coke ovens are described in this report. The paper describes fume emission control from the coke oven door and dust emission control measures, including the dust monitoring system, prevention of secondary dust scattering from coke ovens, replacement of dedusters, and fume and dust control of stack emission.

Katoh, H.; Yasuno, M.; Gotch, T.; Yoshida, F.

1993-01-01T23:59:59.000Z

127

ZIRCONIUM AND HAFNIUM (Data in metric tons, unless otherwise noted)  

E-Print Network [OSTI]

of hafnium metal was insignificant. Import Sources (1997-2000): Zirconium ores and concentrates: South Africa%; Germany, 7%; United Kingdom, 2%; and other, 9%. Tariff: Item Number Normal Trade Relations 12 Stockpile, the U.S. Department of Energy (DOE) held over 500 tons of zirconium in various forms. DOE also

128

ZIRCONIUM AND HAFNIUM (Data in metric tons, unless otherwise noted)  

E-Print Network [OSTI]

. Import Sources (1995-98): Zirconium ores and concentrates: South Africa, 53%; Australia, 45%; and other Kingdom, 4%. Tariff: Item Number Normal Trade Relations 12/31/99 Zirconium ores and concentrates 2615.S. Department of Energy (DOE) held over 500 tons of zirconium in various forms. DOE also maintained a supply

129

ZIRCONIUM AND HAFNIUM (Data in metric tons, unless otherwise noted)  

E-Print Network [OSTI]

of hafnium metal was insignificant. Import Sources (1998-2001): Zirconium ores and concentrates: South Africa%; Germany, 8%; United Kingdom, 3%; and other, 9%. Tariff: Item Number Normal Trade Relations 12,838 short tons) of zirconium ore (baddeleyite) during fiscal year 2002. The U.S. Department of Energy (DOE

130

ZIRCONIUM AND HAFNIUM (Data in metric tons, unless otherwise noted)  

E-Print Network [OSTI]

was insignificant. Import Sources (1996-99): Zirconium ores and concentrates: South Africa, 56%; Australia, 41, 4%; and other, 9%. Tariff: Item Number Normal Trade Relations 12/31/00 Zirconium ores.S. Department of Energy (DOE) held over 500 tons of zirconium in various forms. DOE also maintained a stockpile

131

(Data in metric tons1 of gold content, unless noted)  

E-Print Network [OSTI]

combined production accounted for nearly 80% of the U.S. total. The trend for recent U.S. gold exploration68 GOLD (Data in metric tons1 of gold content, unless noted) Domestic Production and Use: Gold was recovered as a byproduct of processing base metals, chiefly copper. Twenty-five lode mines yielded

132

Effect of coal and coke qualities on blast furnace injection and productivity at Taranto  

SciTech Connect (OSTI)

Injection rates at Taranto blast furnaces Nos. 2 and 4, for more than 16 months, was maintained above 175 kg/thm. Monthly average injection rate for two months stabilized above 190 kg/thm. This performance was possible due to the very high combined availabilities of Taranto blast furnaces and the KST injection system. Based upon this experience the quantitative relationships between coke/coal and blast furnace operational parameters were studied and are shown graphically. During this period due to coke quality changes, injection rate had to be reduced. The effect of using coke breeze in coke/ferrous charge as well as coal blend was also evaluated. Permeability of the furnace was found to be directly affected by O{sub 2} enrichment level, while at a high PCI rate no correlation between actual change in coke quality and permeability could be established. The future of PCI technology lies in better understanding of relationships between material specifications and blast furnace parameters of which permeability is of prime importance.

Salvatore, E.; Calcagni, M. [ILVA, Taranto (Italy); Eichinger, F.; Rafi, M.

1995-12-01T23:59:59.000Z

133

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine in the United States was a brine  

E-Print Network [OSTI]

94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine in the United States was a brine operation in Nevada. The mine's production capacity was expanded in 2012, and a new lithium hydroxide plant opened in North

134

THERMAL MODELING ANALYSIS OF SRS 70 TON CASK  

SciTech Connect (OSTI)

The primary objective of this work was to perform the thermal calculations to evaluate the Material Test Reactor (MTR) fuel assembly temperatures inside the SRS 70-Ton Cask loaded with various bundle powers. MTR fuel consists of HFBR, MURR, MIT, and NIST. The MURR fuel was used to develop a bounding case since it is the fuel with the highest heat load. The results will be provided for technical input for the SRS 70 Ton Cask Onsite Safety Assessment. The calculation results show that for the SRS 70 ton dry cask with 2750 watts total heat source with a maximum bundle heat of 670 watts and 9 bundles of MURR bounding fuel, the highest fuel assembly temperatures are below about 263 C. Maximum top surface temperature of the plastic cover is about 112 C, much lower than its melting temperature 260 C. For 12 bundles of MURR bounding fuel with 2750 watts total heat and a maximum fuel bundle of 482 watts, the highest fuel assembly temperatures are bounded by the 9 bundle case. The component temperatures of the cask were calculated by a three-dimensional computational fluid dynamics approach. The modeling calculations were performed by considering daily-averaged solar heat flux.

Lee, S.; Jordan, J.; Hensel, S.

2011-03-08T23:59:59.000Z

135

1,153-ton Waste Vault Removed from 300 Area - Vault held waste...  

Energy Savers [EERE]

1,153-ton Waste Vault Removed from 300 Area - Vault held waste tanks with contamination from Hanford's former laboratory facilities 1,153-ton Waste Vault Removed from 300 Area -...

136

Automatic coke oven heating control system at Burns Harbor for normal and repair operation  

SciTech Connect (OSTI)

An automatic heating control system for coke oven batteries was developed in 1985 for the Burns Harbor No. 1 battery and reported in the 1989 Ironmaking Conference Proceedings. The original system was designed to maintain a target coke temperature at a given production level under normal operating conditions. Since 1989, enhancements have been made to this control system so that it can also control the battery heating when the battery is under repair. The new control system has improved heating control capability because it adjusts the heat input to the battery in response to anticipated changes in the production schedule. During a recent repair of this 82 oven battery, the pushing schedule changed from 102 ovens/day to 88 ovens/day, then back to 102 ovens/day, then to 107 ovens/day. During this repair, the control system was able to maintain the coke temperature average standard deviation at 44 F, with a maximum 75 F.

Battle, E.T.; Chen, K.L. [Bethlehem Steel Corp., Burns Harbor, IN (United States); [Bethlehem Steel Corp., PA (United States)

1997-12-31T23:59:59.000Z

137

Coking phenomena in the pyrolysis of ethylene dichloride into vinyl chloride  

SciTech Connect (OSTI)

Pyrolysis of ethylene dichloride (EDC) into vinyl chloride (VCM) which is the monomer for polyvinyl chloride, one of the most popular polymers, has been established commercially for quite a time. The process around 500{degrees}C has been proved to give VCM of high purity at very high selectivity about 99% and a reasonable conversion about 50%. However, the coking is a major problem in the long run, requiring decoking treatment every two months. The present paper describes features of carbons produced in the pyrolysis process. Coke of respective features was found in the reactor, the transfer line, the heat exchanger and the rapid quencher. Typical pyrolytic carbon, anisotropic coke produced in the liquid phase, isotropic carbon was produced on the reactor wall as low as 500{degrees}C. The mechanisms for their formation are discussed.

Sotowa, Chiaki; Korai, Yozo; Mochida, Isao [Kyushu Univ., Kasuga, Fukuoka (Japan)] [and others

1995-12-31T23:59:59.000Z

138

TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)  

E-Print Network [OSTI]

E E E E E Recycling: New scrap metal recycled by the titanium industry was about 25,000 tons in 1996 industry was 4,700 tons; by the superalloy industry, 730 tons; and in other industries, 510 tons. Old scrap nation (MFN) Non-MFN3 12/31/96 12/31/96 Waste and scrap metal 8108.10.1000 Free Free. Unwrought metal

139

Cracked lifting lug welds on ten-ton UF{sub 6} cylinders  

SciTech Connect (OSTI)

Ten-ton, Type 48X, UF{sub 6} cylinders are used at the Portsmouth Gaseous Diffusion Plant to withdraw enriched uranium hexafluoride from the cascade, transfer enriched uranium hexafluoride to customer cylinders, and feed enriched product to the cascade. To accomplish these activities, the cylinders are lifted by cranes and straddle carriers which engage the cylinder lifting lugs. In August of 1988, weld cracks on two lifting lugs were discovered during preparation to lift a cylinder. The cylinder was rejected and tagged out, and an investigating committee formed to determine the cause of cracking and recommend remedial actions. Further investigation revealed the problem may be general to this class of cylinder in this use cycle. This paper discusses the actions taken at the Portsmouth site to deal with the cracked lifting lug weld problem. The actions include inspection activities, interim corrective actions, metallurgical evaluation of cracked welds, weld repairs, and current monitoring/inspection program.

Dorning, R.E. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

1991-12-31T23:59:59.000Z

140

KCP relocates 18-ton machine | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApply for Our Jobs / HowSecurityrelocates 18-ton

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Simulation of diffusion and trapping in digitized heterogeneous media David A. Coke@ and Salvatore Torquatob)  

E-Print Network [OSTI]

Simulation of diffusion and trapping in digitized heterogeneous media David A. Coke@ and Salvatore of a Brownian particle diffusing among a, digitized lattice-based domain of traps. Following the first, the inverse of the trapping rate, is obtained for a variety of configurations involving digitized spheres

Torquato, Salvatore

142

GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION  

SciTech Connect (OSTI)

The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a multiple train coal-fueled IGCC powerplant, also based on the Subtaks 1.3 cases. The Subtask 1.6 four gasification train plant has a thermal efficiency of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency of 45.4% (HHV) and a plant cost of 1,096 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to coproduce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. As gasification technology matures, SCOHS and other improvements identified in this study will lead to further cost reductions and efficiency improvements.

Samuel S. Tam

2002-05-01T23:59:59.000Z

143

Coke oven doors: Historical methods of emission control and evaluation of current designs  

SciTech Connect (OSTI)

The containment of oven door leakage has presented challenges to coke producers for many years as the requirements of environmental regulatory agencies have become increasingly stringent. A description and evaluation of past door modifications, leakage control methodologies and luting practices on Armco Steel Company, L.P.'s Ashland No. 4 Battery is detailed to provide a background for recent work, and to expand the industry's technology base. The strict door leakage standards of the 1990 amendments to the USA Clean Air Act has prompted additional technical studies. Both a joint Armco committee's evaluation of successful systems world wide and test door installations at Ashland were incorporated to determine compliance strategy. The eventual installation of Ikio Model II coke oven doors, along with modifications to ancillary equipment, has resulted in door leakage rates approaching zero. Associated methods, problems, results and evaluations are discussed.

Pettrey, J.O.; Greene, D.E. (Armco Steel Co., Middletown, OH (United States))

1993-01-01T23:59:59.000Z

144

Linings with optimum heat-emission surfaces for cars receiving and transporting incandescent coke  

SciTech Connect (OSTI)

The least reliable components of the cars which receive and transport incandescent coke are the lining plates. This applies to both the quenching cars used for wet quenching and the hot-coke cars used in the dry cooling process. Technical advances have been described whereby the life of car linings is prolonged by increasing heat emission from the lining plate surfaces. As the heat emission level is enhanced the mean plate temperature is lowered and the lining life thereby prolonged; moreover, the between-servicings period is prolonged. This involves providing fins on the non-working (outer) plate surfaces. The problem of optimizing the size and shape of the fins with reference to heat emission remains unsolved: the requirement is maximum heat emission from plates of a given weight, or conversely minimum plate weight for a given heat emission level. 6 refs., 3 figs.

Kotlyar, B.D.; Pleshkov, P.I.; Gadyatskii, V.G. [and others

1992-12-31T23:59:59.000Z

145

Operating temperature effects on nozzle coking in a cottonseed oil fueled diesel engine  

E-Print Network [OSTI]

OPERATING TEMPERATURE EFFECTS ON NOZZLE COKING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis CHARLES MICHAEL YARBROUGH Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree cf... MASTER OF SCIENCE December 1984 Major Subject: Agricultural Engineering OPERATING TEMPERATURE EFFECTS ON NOZZLE CORING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis by CHARLES MICHAEL YARBROUGH Approved as to style and content by: ayne A. Le...

Yarbrough, Charles Michael

1984-01-01T23:59:59.000Z

146

Technology for processing ammonium rhodanide of coking plants into high-purity ammonium thiocyanate and thiourea  

SciTech Connect (OSTI)

The regularities of the reversible reaction of isomerization of ammonium thiocyanate (NH{sub 4}NCS) into thiourea (NH{sub 2}){sub 2}CS, and the reverse reaction, were analyzed. An ecologically clean and highly efficient method for the extraction, purification, separation, and production of isomers from the coal byproduct ammonium thiocyanate was developed based on the measured volatilities of NH{sub 4}NCS and (NH{sub 2}){sub 2}CS.

Urakaev, F.K. [Institute of Geology & Mineral SB RAS, Novosibirsk (Russian Federation)

2009-04-15T23:59:59.000Z

147

Process safety management (OSHA) and process risk management (CAA) application. Application to a coke plant  

SciTech Connect (OSTI)

Risk Management Programs for Chemical Accidental Release Prevention is the name of the proposed rule for the RMP Risk Management Program. The RMP was written in response to several catastrophic releases of hazardous substances. The rule is applicable to facilities that store, process or use greater than threshold quantities of 62 listed flammable chemicals and another 100 listed toxic substances. Additionally, a Risk Management Plan is registered with the EPA, Chemical Safety and Hazardous Investigation Board, state governments and the local emergency planning commission. The Clean Air Act Amendments of 1990 (specifically Section 112r) required the EPA to develop a three phase Risk Management Plan for industry: prevention program; hazard assessment; and emergency response program. The Prevention Program closely follows the OSHA`s Process Safety Management Standard. The Hazard Assessment section requires facilities to develop plans for a worst case scenario. The Emergency Response section defines the steps the facility and each employee will take if a release occurs. This section also needs to be coordinated with the Local Emergency Planning Commission. These regulations are described using Clairton Works as an example of compliance.

Graeser, W.C.; Mentzer, W.P.

1995-12-01T23:59:59.000Z

148

An example of alkalization of SiO{sub 2} in a blast furnace coke  

SciTech Connect (OSTI)

Scanning electron microscopy and an electron-microprobe analysis of a sample of blast furnace (BF) coke have revealed alkalization (5.64 wt % Na{sub 2}O + K{sub 2}O) and Al saturation (17.28 wt % Al{sub 2}O{sub 3}) of SiO{sub 2} by BF gases. The K/Na{sub at} value of 1.15 in the new phase (alteration zone) reflects close atomic proportions of the elements and suggests that the abilities to incorporate K and Na during the process are almost equal. This Al saturation and alkalization of SiO{sub 2} indicates an active role for Al along with alkali metals in BF gases. The average width of the altered area in the SiO{sub 2} grain is about 10 m, which suggests that SiO{sub 2} particles of that size can be transformed fully to the new phase, provided that at least one of their faces is open to an external pore (surface of the coke) or internal pore with circulating BF gases. The grains that exceed 10 {mu}m can only be partly altered, which means that smaller SiO{sub 2} grains can incorporate more alkali metals and Al (during their transformation to the Al and alkali-bearing phase) than a similar volume of SiO{sub 2} concentrated in larger grains. Thermodynamic calculations for 100 g{sub solid}/100 g{sub gas} and temperatures 800-1800{sup o}C have shown that the BF gases have very little or no effect on the alkalization of SiO{sub 2}. If the alteration process described in this paper proves to be a generalized phenomenon in blast furnace cokes, then the addition of fine-grained quartz to the surface of the coke before charging a BF can be useful for removing of some of the Al and alkali from the BF gases and reduce coke degradation by alkalis, or at least improve its properties until the temperature reaches approximately 2000{sup o}C. 22 refs., 5 figs., 1 tab.

S.S. Gornostayev; P.A. Tanskanen; E.-P. Heikkinen; O. Kerkkonen; J.J. Haerkki [University of Oulu, Oulu (Finland). Laboratory of Process Metallurgy

2007-09-15T23:59:59.000Z

149

DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin  

Broader source: Energy.gov [DOE]

Building on an initial injection project of 10,000 metric tons of carbon dioxide into a Michigan geologic formation, a U.S. Department of Energy team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change.

150

Characterization of Arsenic Contamination on Rust from Ton Containers  

SciTech Connect (OSTI)

The speciation and spatial distribution of arsenic on rusted steel surfaces affects both measurement and removal approaches. The chemistry of arsenic residing in the rust of ton containers that held the chemical warfare agents bis(2-chloroethyl)sulfide (sulfur mustard) and 2-chlorovinyldichloroarsine (Lewisite) is of particular interest, because while the agents have been decontaminated, residual arsenic could pose a health or environmental risk. The chemistry and distribution of arsenic in rust samples was probed using imaging secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX). Arsenic in the +3 and or +5 oxidation state is homogeneously distributed at the very top-most layer of the rust samples, and is intimately associated with iron. Sputter depth profiling followed by SIMS and XPS shows As at a depth of several nm, in some cases in a reduced form. The SEM/EDX experiments show that As is present at a depth of several microns, but is inhomogeneously distributed; most locations contained oxidized As at concentrations of a few percent, however several locations showed very high As in a metallic form. These results indicate that the rust material must be removed if the steel containers are to be cleared of arsenic.

Gary S. Groenewold; Recep Avci; Robert V. Fox; Muhammedin Deliorman; Jayson Suo; Laura Kellerman

2013-01-01T23:59:59.000Z

151

Initial coke deposition on a NiMo/{gamma}-Al{sub 2}O{sub 3} bitumen hydroprocessing catalyst  

SciTech Connect (OSTI)

Athabasca bitumen was hydrocracked over a commercial NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst in two reactors, a microbatch reactor and a 1-L continuous stirred tank reactor (CSTR). Coke deposition on catalyst was measured as a function of hydrogen pressure, time on stream, and liquid composition by measuring the carbon content of the cleaned spent catalyst. The carbon content ranged from 11.3% to 17.6% over the pressure range 6.9--15.2 MPa in CSTR experiments. Batch and CSTR experiments showed a rapid approach to a constant coke content with increasing oil/catalyst ratio. Coke deposition was independent of product composition for residue concentrations ranging from 8% to 32% by weight. Removal of the coke by tetralin at reaction conditions suggested reversible adsorption of residue components on the catalyst surface. A physical model based on clearance of coke by hydrogen in the vicinity of metal crystallites is presented for the coke deposition behavior during the first several hours of hydrocracking use. This model gives good agreement with experimental data, including the effect of reaction time, the ratio of total feed weight to catalyst weight, hydrogen pressure, and feed composition, and it agrees with general observations from industrial usage. The model implies that except at the highest coke levels, the active surfaces of the metal crystallites remain exposed. Severe mass-transfer limitations are caused by the overall narrowing of the pore structure, which in {gamma}-Al{sub 2}O{sub 3} would give very low effective diffusivity for residuum molecules in micropores.

Richardson, S.M.; Nagaishi, Hiroshi; Gray, M.R. [Univ. of Alberta, Edmonton (Canada). Dept. of Chemical Engineering] [Univ. of Alberta, Edmonton (Canada). Dept. of Chemical Engineering

1996-11-01T23:59:59.000Z

152

Usiing NovoCOS cleaning equipment in repairing the furnace-chamber lining in coke batteries 4 & 5 at OAO Koks  

SciTech Connect (OSTI)

Experience with a new surface-preparation technology for the ceramic resurfacing of the refractory furnace-chamber lining in coke batteries is described.

S.G. Protasov; R. Linden; A. Gross [OAO Koks, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

153

OFFICE WASTE DATA 2010 Recyclable Materials 1680 tons / 62%  

E-Print Network [OSTI]

is used to stabilise temperatures within conventional Energy from Waste incineration plants as well materials and to produce a combustible product. This involves the removal of inert and compostable materials

Guillas, Serge

154

Proposal of a novel multifunctional energy system for cogeneration of coke, hydrogen, and power - article no. 052001  

SciTech Connect (OSTI)

This paper proposes a novel multifunctional energy system (MES), which cogenerates coke, hydrogen, and power, through the use of coal and coke oven gas (COG). In this system, a new type of coke oven, firing coal instead of COG as heating resource for coking, is adopted. The COG rich in H{sub 2} is sent to a pressure swing adsorption (PSA) unit to separate about 80% of hydrogen first, and then the PSA purge gas is fed to a combined cycle as fuel. The new system combines the chemical processes and power generation system, along with the integration of chemical conversion and thermal energy utilization. In this manner, both the chemical energy of fuel and thermal energy can be used more effectively. With the same inputs of fuel and the same output of coking heat, the new system can produce about 65% more hydrogen than that of individual systems. As a result, the thermal efficiency of the new system is about 70%, and the exergy efficiency is about 66%. Compared with individual systems, the primary energy saving ratio can reach as high as 12.5%. Based on the graphical exergy analyses, we disclose that the integration of synthetic utilization of COG and coal plays a significant role in decreasing the exergy destruction of the MES system. The promising results obtained may lead to a clean coal technology that will utilize COG and coal more efficiently and economically.

Jin, H.G.; Sun, S.; Han, W.; Gao, L. [Chinese Academy of Sciences, Beijing (China)

2009-09-15T23:59:59.000Z

155

Theoretical and experimental investigations into the particular features of the process of converting coal gas hydrocarbons on incandescent coke  

SciTech Connect (OSTI)

The prospects of the use of reducing gases in ferrous metallurgy and the possibilities for using them as a basis for coke production have been presented by the authors of the present article in the past. In the present report, the authors present certain results of theoretical and experimental investigations into the process of converting coal gas hydrocarbons on incandescent coke. The modification of the present-day method of thermodynamically calculating stable compositions of coking products, which was developed by the authors, has made it possible to apply it to specific chemical systems and process conditions not met with before, such as the conversion of hydrocarbons in mixtures of actual industrial gases (coal gas and blast furnace gas) in the presence of carbon and considerable amounts of hydrogen.

Zubilin, I.G.; Umanskii, V.E.

1984-01-01T23:59:59.000Z

156

9,248,559 Metric Tons of CO2 Injected as of January 16, 2015  

Broader source: Energy.gov [DOE]

This carbon dioxide (CO2) has been injected in the United States as part of DOE’s Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is equivalent to the...

157

9,981,117 Metric Tons of CO2 Injected as of April 2, 2015 | Department...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

158

9,449,421 Metric Tons of CO2 Injected as of February 12, 2015...  

Office of Environmental Management (EM)

This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

159

Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds  

Broader source: Energy.gov [DOE]

The Moab Uranium Mill Tailings Remedial Action Project reached its primary American Recovery and Reinvestment Act milestone ahead of schedule on Wednesday with the disposal of 2 million tons of...

160

9,805,742 Metric Tons of CO2 Injected as of February 27, 2015...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz  

SciTech Connect (OSTI)

The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

Yuan Zhang; Jin-hu Wu; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

2008-03-15T23:59:59.000Z

162

Methods and results for stress analyses on 14-ton, thin-wall depleted UF{sub 6} cylinders  

SciTech Connect (OSTI)

Uranium enrichment operations at the three US gaseous diffusion plants produce depleted uranium hexafluoride (DUF{sub 6}) as a residential product. At the present time, the inventory of DUF{sub 6} in this country is more than half a million tons. The inventory of DUF{sub 6} is contained in metal storage cylinders, most of which are located at the gaseous diffusion plants. The principal objective of the project is to ensure the integrity of the cylinders to prevent causing an environmental hazard by releasing the contents of the cylinders into the atmosphere. Another objective is to maintain the cylinders in such a manner that the DUF{sub 6} may eventually be converted to a less hazardous material for final disposition. An important task in the DUF{sub 6} cylinders management project is determining how much corrosion of the walls can be tolerated before the cylinders are in danger of being damaged during routine handling and shipping operations. Another task is determining how to handle cylinders that have already been damaged in a manner that will minimize the chance that a breach will occur or that the size of an existing breach will be significantly increased. A number of finite element stress analysis (FESA) calculations have been done to analyze the stresses for three conditions: (1) while the cylinder is being lifted, (2) when a cylinder is resting on two cylinders under it in the customary two-tier stacking array, and (3) when a cylinder is resting on tis chocks on the ground. Various documents describe some of the results and discuss some of the methods whereby they have been obtained. The objective of the present report is to document as many of the FESA cases done at Oak Ridge for 14-ton thin-wall cylinders as possible, giving results and a description of the calculations in some detail.

Kirkpatrick, J.R.; Chung, C.K.; Frazier, J.L.; Kelley, D.K.

1996-10-01T23:59:59.000Z

163

Petroleum Coke  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-MonthCoalbedPricethe PricetheCity Gate Price81,811

164

Petroleum Coke  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper8,170 8,310 8,304PricePriceby81,811 82,516 82,971

165

Microsoft Word - VitPlant_Installs_102Ton_Shield_Door_20110113.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs535:UFC

166

GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION  

SciTech Connect (OSTI)

This project developed optimized designs and cost estimates for several coal and petroleum coke IGCC coproduction projects that produced hydrogen, industrial grade steam, and hydrocarbon liquid fuel precursors in addition to power. The as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project was the starting point for this study that was performed by Bechtel, Global Energy and Nexant under Department of Energy contract DE-AC26-99FT40342. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This non-optimized plant has a thermal efficiency to power of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW.1 This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal- and coke-fueled IGCC power plants. A side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, shows their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a four-train coal-fueled IGCC power plant, also based on the Subtask 1.3 cases. This plant has a thermal efficiency to power of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency to power of 44.5% (HHV) and a plant cost of 1,116 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to co-produce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. Subtask 2.1 developed a petroleum coke IGCC power plant with the coproduction of liquid fuel precursors from the Subtask 1.3 Next Plant by eliminating the export steam and hydrogen production and replacing it with a Fischer-Tropsch hydrocarbon synthesis facility that produced 4,125 bpd of liquid fuel precursors. By maximizing liquids production at the expense of power generation, Subtask 2.2 developed an optimized design that produces 10,450 bpd of liquid fuel precursors and 617 MW of export power from 5,417 tpd of dry petroleum coke. With 27 $/MW-hr power and 30 $/bbl liquids, the Subtask 2.2 plant can have a return on investment of 18%. Subtask 2.3 converted the Subtask 1.6 four-train coal fueled IGCC power plant

Sheldon Kramer

2003-09-01T23:59:59.000Z

167

Evaluation of pitches and cokes from solvent-extracted coal materials  

SciTech Connect (OSTI)

Three initial coal-extracted (C-E) samples were received from the West Virginia University (WVU) Chemical Engineering Department. Two samples had been hydrogenated to obtain pitches that satisfy Theological requirements. One of the hydrogenated (HC-E) samples had been extracted by toluene to remove ash and higher molecular weight aromatic compounds. We were unable to measure the softening point and viscosity of the non-hydro treated solid extract sample, Positive characteristics in the HC-E materials were softening points of 113-119{degrees}C, low sulfur and ash. The oxygen and nitrogen content of the HC-E samples may limit future usage in premium carbon and graphite products. Coking values were similar to petroleum pitches. Laboratory anode testing indicates that in combination with standard coal-tar pitch, the HC-E material can be used as a binder pitch.

McHenry, E.R.

1996-12-01T23:59:59.000Z

168

Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed  

SciTech Connect (OSTI)

Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel petroleum coke calcination process. - Increase the opportunity of heat (chemical and physical) utilization from process off-gases and solid product. - Develop a design of advanced CHP system utilizing off-gases as an “opportunity fuel” for petroleum coke calcinations and sensible heat of calcined coke. A successful accomplishment of the aforementioned objectives will contribute toward the following U.S. DOE programmatic goals: - Drive a 25% reduction in U. S. industrial energy intensity by 2017 in support of EPAct 2005; - Contribute to an 18% reduction in U.S. carbon intensity by 2012 as established by the Administration’s “National Goal to Reduce Emissions Intensity.” 8

Chudnovsky, Yaroslav; Kozlov, Aleksandr

2013-08-15T23:59:59.000Z

169

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified petroleum coke characteristics as a potential technical risk. The composition of petroleum coke varies from one refinery to another. Petroleum coke characteristics are a function of the crude oil slate available at the refinery and the coker operating parameters. The specific petroleum coke characteristics at a refinery affect the design of the Gasification and Acid Gas Removal (AGR) subsystems. Knowing the petroleum coke composition provides the necessary data to proceed to the EECP Phase III engineering design of the gasification process. Based on ChevronTexaco's experience, the EECP team ranked the technical, economic, and overall risks of the petroleum coke composition related to the gasification subsystem as low. In Phase I of the EECP Project, the Motiva Port Arthur Refinery had been identified as the potential EECP site. As a result of the merger between Texaco and Chevron in October 2001, Texaco was required to sell its interest in the Motiva Enterprises LLC joint venture to Shell Oil Company and Saudi Refining Inc. To assess the possible impact of moving the proposed EECP host site to a ChevronTexaco refinery, samples of petroleum coke from two ChevronTexaco refineries were sent to MTC for bench-scale testing. The results of the analysis of these samples were compared to the Phase I EECP Gasification Design Basis developed for Motiva's Port Arthur Refinery. The analysis confirms that if the proposed EECP is moved to a new refinery site, the Phase I EECP Gasification Design Basis would have to be updated. The lower sulfur content of the two samples from the ChevronTexaco refineries indicates that if one of these sites were selected, the Sulfur Recovery Unit (SRU) might be sized smaller than the current EECP design. This would reduce the capital expense of the SRU. Additionally, both ChevronTexaco samples have a higher hydrogen to carbon monoxide ratio than the Motiva Port Arthur petroleum coke. The higher hydrogen to carbon monoxide ratio could give a slightly higher F-T products yield from the F-T Synthesis Reactor. However, the EECP Gasification Design Basis can not be updated until the site for the proposed EECP site is finalized. Until the site is finalized, the feedstock (petroleum coke) characteristics are a low risk to the EECP project.

Abdalla H. Ali; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

2003-04-16T23:59:59.000Z

170

Fertilizer and Nitrogen 1 billion tons of artificial nitrogen fertilizer used annually.  

E-Print Network [OSTI]

Fertilizer and Nitrogen 1 billion tons of artificial nitrogen fertilizer used annually. Emissions. (fertilizers that use nitric acid or ammonium bicarbonate result in emissions of nitrogen oxides, nitrous oxide, ammonia and carbon dioxide into the atmosphere.) ~Indirect: Phosphorus in excess causes eutrophication

Toohey, Darin W.

171

2 million tons per year: A performing biofuels supply chain for  

E-Print Network [OSTI]

1 2 million tons per year: A performing biofuels supply chain for EU aviation NOTE It is understood that in the context of this text the term "biofuel(s) use in aviation" categorically implies "sustainably produced biofuel(s)" according to the EU legislation. June 2011 #12;2 This technical paper was drafted

172

TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)  

E-Print Network [OSTI]

Stockpile Center continued to solicit offers for the sale of titanium sponge held in the Government-grade sponge. For fiscal year 2001, 4,540 tons of titanium sponge is being offered for sale. Stockpile Status for disposal FY 2000 FY 2000 Titanium sponge 19,100 3,390 19,100 4,540 4,240 Ev

173

TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)  

E-Print Network [OSTI]

consumption E E E E E Recycling: New scrap metal recycled by the titanium industry totaled about 29,000 tons and automotive industries led to an increase in global production of TiO2 pigment compared with that in 2009

174

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2012 increased by 4% to about 1.15 million tons,  

E-Print Network [OSTI]

%; and copper smelters and refiners, 5%. Copper in all old and new, refined or remelted scrap contributed about48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2012 increased by 4% to about 1.15 million tons

175

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2011 increased slightly to about 1.1 million tons  

E-Print Network [OSTI]

%; and copper smelters and refiners, 5%. Copper in all old and new, refined or remelted scrap contributed about48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2011 increased slightly to about 1.1 million tons

176

Effects of HyperCoal addition on coke strength and thermoplasticity of coal blends  

SciTech Connect (OSTI)

Ashless coal, also known as HyperCoal (HPC), was produced by thermal extraction of three coals of different ranks (Gregory caking coal, Warkworth steam coal, and Pasir subbituminous coal) with 1-methylnaphthalene (1-MN) at 360, 380, and 400{sup o}C. The effects of blending these HPCs into standard coal blends were investigated. Blending HPCs as 5-10% of a standard blend (Kouryusho:Goonyella:K9) enhanced the thermoplasticity over a wide temperature range. For blends made with the Pasir-HPC, produced from a noncaking coal, increasing the extraction temperature from 360 to 400{sup o}C increased the thermoplasticity significantly. Blends containing Warkworth-HPC, produced from a slightly caking coal, had a higher tensile strength than the standard blend in semicoke strength tests. The addition of 10% Pasir-HPC, extracted at 400{sup o}C, increased the tensile strength of the semicokes to the same degree as those made with Gregory-HPC. Furthermore, all HPC blends had a higher tensile strength and smaller weight loss during carbonization. These results suggest that the HPC became integrated into the coke matrix, interacting strongly with the other raw coals. 14 refs., 11 figs., 1 tab.

Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Energy Technology Research Institute

2008-05-15T23:59:59.000Z

177

A heuristic knowledge base for plant hormone action  

E-Print Network [OSTI]

by the variance in hormone dose response experiments used in the past (Boerjan et. al 1992). Predicting plant growth based on hormone concentration is akin to predicting the price of a ton of wood fiber based exclusively on the number of acres planted...

Finkelstein, David Benjamin

1993-01-01T23:59:59.000Z

178

Advances in Energy Efficiency, Capital Cost, and Installation Schedules for Large Capacity Cooling Applications Using a Packaged Chiller Plant Approach  

E-Print Network [OSTI]

reductions in unit capital costs of installed chiller plant capacity on a dollar per ton basis, 2) marked improvements in total procurement and installation schedules, 3) significantly smaller space requirements, and 4) enhanced control over total system...

Pierson, T. L.; Andrepont, J. S.

179

A Specification Logic for Termination Reasoning Ton-Chanh Le, Cristian Gherghina, Aquinas Hobor, and Wei-Ngan Chin  

E-Print Network [OSTI]

A Specification Logic for Termination Reasoning Ton-Chanh Le, Cristian Gherghina, Aquinas Hobor a logical framework for specifying and proving asser- tions about program termination. Although termination. Here we propose to integrate termination requirements directly into our specification logic

Hobor, Aquinas

180

Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China  

SciTech Connect (OSTI)

A USEPA procedure, ISCLT3 (Industrial Source Complex Long-Term), was applied to model the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) emitted from various sources including coal, petroleum, natural gas, and biomass into the atmosphere of Tianjin, China. Benzo(a)pyrene equivalent concentrations (BaPeq) were calculated for risk assessment. Model results were provisionally validated for concentrations and profiles based on the observed data at two monitoring stations. The dominant emission sources in the area were domestic coal combustion, coke production, and biomass burning. Mainly because of the difference in the emission heights, the contributions of various sources to the average concentrations at receptors differ from proportions emitted. The shares of domestic coal increased from {approximately} 43% at the sources to 56% at the receptors, while the contributions of coking industry decreased from {approximately} 23% at the sources to 7% at the receptors. The spatial distributions of gaseous and particulate PAHs were similar, with higher concentrations occurring within urban districts because of domestic coal combustion. With relatively smaller contributions, the other minor sources had limited influences on the overall spatial distribution. The calculated average BaPeq value in air was 2.54 {+-} 2.87 ng/m{sup 3} on an annual basis. Although only 2.3% of the area in Tianjin exceeded the national standard of 10 ng/m{sup 3}, 41% of the entire population lives within this area. 37 refs., 9 figs.

Shu Tao; Xinrong Li; Yu Yang; Raymond M. Coveney, Jr.; Xiaoxia Lu; Haitao Chen; Weiran Shen [Peking University, Beijing (China). Laboratory for Earth Surface Processes, College of Environmental Sciences

2006-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Design, start up, and three years operating experience of an ammonia scrubbing, distillation, and destruction plant  

SciTech Connect (OSTI)

When the rebuilt Coke Plant started operations in November of 1992, it featured a completely new closed circuit secondary cooler, ammonia scrubbing, ammonia distillation, and ammonia destruction plants. This is the second plant of this type to be built in North America. To remove the ammonia from the gas, it is scrubbed with three liquids: Approximately 185 gallons/minute of cooled stripped liquor from the ammonia stills; Light oil plant condensate; and Optionally, excess flushing liquor. These scrubbers typically reduce ammonia content in the gas from 270 Grains/100 standard cubic feet to 0.2 Grains/100 standard cubic feet.

Gambert, G.

1996-12-31T23:59:59.000Z

182

Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

Perlack, R.D.

2005-12-15T23:59:59.000Z

183

The operation results with the modified charging equipment and ignition furnace at Kwangyang No. 2 sinter plant  

SciTech Connect (OSTI)

There will be another blast furnace, the production capacity of which is 3.0 million tonnes per year in 1999 and mini mill plant, the production capacity of which is 1.8 million tonnes per year in 1996 at Kwangyang Works. Therefore, the coke oven gas and burnt lime will be deficient and more sinter will be needed. To meet with these situations, the authors modified the charging equipment and ignition furnace at Kwangyang No. 2 sinter plant in April 1995. After the modification of the charging equipment and ignition furnace, the consumption of burnt lime and coke oven gas could be decreased and the sinter productivity increased in spite of the reduction of burnt lime consumption. This report describes the operation results with the modification of the charging equipment and ignition furnace in No. 2 sinter plant Kwangyang works.

Lee, K.J.; Pi, Y.J.; Kim, J.R.; Lee, J.N. [POSCO, Kwangyang, Cheonnam (Korea, Republic of)

1996-12-31T23:59:59.000Z

184

Trends in hydrogen plant design  

SciTech Connect (OSTI)

Understanding important design considerations for H{sub 2} production via steam reforming require detailed attention to the many elements that make up the process. This paper discusses design trends focus on improvements to the plant's three principal unit operations: Generation of H{sub 2}/CO syngas, Conversion of CO in the syngas and Separation/purification of H{sub 2} from syngas. Natural gas, LPG, oil, coal and coke are all potential raw materials for H{sub 2} production. For the first step in the process, generation of H{sub 2} syngas, the processes available are: Reforming the steam; Autothermal reforming with oxygen and steam; and Partial oxidation with oxygen (POX). Most syngas is presently produced by steam reforming of natural gas or light hydrocarbons up to naphtha.

Johansen, T.; Raghuraman, K.S.; Hackett, L.A. (KTI, Zoetermeer (NL))

1992-08-01T23:59:59.000Z

185

Study on the effect of heat treatment and gasification on the carbon structure of coal chars and metallurgical cokes using fourier transform Raman spectroscopy  

SciTech Connect (OSTI)

Differences in the development of carbon structures between coal chars and metallurgical cokes during high-temperature reactions have been investigated using Raman spectroscopy. These are important to differentiate between different types of carbons in dust recovered from the top gas of the blast furnace. Coal chars have been prepared from a typical injectant coal under different heat-treatment conditions. These chars reflected the effect of peak temperature, residence time at peak temperature, heating rate and pressure on the evolution of their carbon structures. The independent effect of gasification on the development of the carbon structure of a representative coal char has also been studied. A similar investigation has also been carried out to study the effect of heat-treatment temperature (from 1300 to 2000{sup o}C) and gasification on the carbon structure of a typical metallurgical coke. Two Raman spectral parameters, the intensity ratio of the D band to the G band (I{sub D}/I{sub G}) and the intensity ratio of the valley between D and G bands to the G band (I{sub V}/I{sub G}), have been found useful in assessing changes in carbon structure. An increase in I{sub D}/I{sub G} indicates the growth of basic graphene structural units across the temperature range studied. A decrease in I{sub V}/I{sub G} appears to suggest the elimination of amorphous carbonaceous materials and ordering of the overall carbon structure. The Raman spectral differences observed between coal chars and metallurgical cokes are considered to result from the difference in the time-temperature history between the raw injectant coal and the metallurgical coke and may lay the basis for differentiation between metallurgical coke fines and coal char residues present in the dust carried over the top of the blast furnace. 41 refs., 17 figs., 3 tabs.

S. Dong; P. Alvarez; N. Paterson; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2009-03-15T23:59:59.000Z

186

Materials management in an internationally safeguarded fuels reprocessing plant. [1500 and 210 metric tons heavy metal per year  

SciTech Connect (OSTI)

The second volume describes the requirements and functions of materials measurement and accounting systems (MMAS) and conceptual designs for an MMAS incorporating both conventional and near-real-time (dynamic) measurement and accounting techniques. Effectiveness evaluations, based on recently developed modeling, simulation, and analysis procedures, show that conventional accountability can meet IAEA goal quantities and detection times in these reference facilities only for low-enriched uranium. Dynamic materials accounting may meet IAEA goals for detecting the abrupt (1-3 weeks) diversion of 8 kg of plutonium. Current materials accounting techniques probably cannot meet the 1-y protracted-diversion goal of 8 kg for plutonium.

Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Markin, J.T.; Shipley, J.P.; Barnes, J.W.; Scheinman, L.

1980-04-01T23:59:59.000Z

187

Proposal to Increase the Amount of the Contract about to be Awarded for the Supply of 12 Tons of Heavy Water  

E-Print Network [OSTI]

Proposal to Increase the Amount of the Contract about to be Awarded for the Supply of 12 Tons of Heavy Water

1977-01-01T23:59:59.000Z

188

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2009 declined by about 9% to 1.2 million tons and its  

E-Print Network [OSTI]

makers, 11%; and copper smelters and refiners, 6%. Copper in all old and new, refined or remelted scrap48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic--Arizona, Utah, New Mexico, Nevada, and Montana--accounted for more than 99% of domestic production; copper also

189

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2002 declined to 1.13 million metric tons and was  

E-Print Network [OSTI]

- and nickel-base scrap), brass mills recovered 70%; copper smelters and refiners, 8%; ingot makers, 1156 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic, accounted for 99% of domestic production; copper was also recovered at mines in three other States. Although

190

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2000 declined to 1.45 million metric tons and was  

E-Print Network [OSTI]

scrap, brass mills recovered 67%; copper smelters and refiners,18%; ingot makers, 11%; and miscellaneous52 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic, and Montana, accounted for 99% of domestic production; copper was also recovered at mines in three other

191

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2004 rose to 1.16 million tons and was valued at  

E-Print Network [OSTI]

scrap (including aluminum- and nickel-base scrap), brass mills recovered 71%; copper smelters54 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic% of domestic production; copper was also recovered at mines in four other States. Although copper was recovered

192

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2001 declined to 1.34 million metric tons and was  

E-Print Network [OSTI]

scrap (including aluminum- and nickel-base scrap), brass mills recovered 65%; copper smelters54 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic, accounted for 99% of domestic production; copper was also recovered at mines in three other States. Although

193

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1999 declined to 1.66 million metric tons and was  

E-Print Network [OSTI]

mills. Of the total copper recovered from scrap, brass mills recovered 67%; copper smelters and refiners56 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic, Nevada, and Montana, accounted for 99% of domestic production; copper was also recovered at mines

194

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2003 declined to 1.12 million tons and was valued at  

E-Print Network [OSTI]

- and nickel-base scrap), brass mills recovered 70%; copper smelters and refiners, 6%; ingot makers, 1254 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic% of domestic production; copper was also recovered at mines in three other States. Although copper

195

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1998 declined to 1.85 million metric tons and was  

E-Print Network [OSTI]

, copper smelters and refiners recovered 23%; ingot makers, 10%; brass mills, 63%; and miscellaneous56 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic, Nevada, and Montana, accounted for 99% of domestic production; copper was also recovered at mines

196

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2005 fell nominally to 1.15 million tons and was  

E-Print Network [OSTI]

(including aluminum- and nickel-base scrap), brass mills recovered 73%; copper smelters and refiners, 556 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Mexico, Nevada, and Montana, accounted for 99% of domestic production; copper was also recovered at mines

197

TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)  

E-Print Network [OSTI]

and pigment industries. Global production of titanium mineral concentrates was expected to increase during half of 2015. In Western Australia, the heavy-mineral resource, data for at the Keysbrook project were172 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise

198

ZIRCONIUM AND HAFNIUM (Data in metric tons of zirconium oxide (ZrO ) equivalent, unless otherwise noted)2  

E-Print Network [OSTI]

and concentrates: Australia, 51%; South Africa, 48%; and other, 1%. Zirconium, wrought, unwrought, waste and scrap: France, 69%; Australia, 21%; Germany, 8%; and United Kingdom, 2%. Tariff: Item Number Normal Trade, the U.S. Department of Energy (DOE) held over 500 tons of zirconium in various forms. DOE also

199

26The Frequency of Large Meteor Impacts On February 14, 2013 a 10,000 ton meteor  

E-Print Network [OSTI]

over the town of Chelyabinsk and the explosion caused major damage to the town injuring 1,000 people `discovered' for many decades afterwards, the Chelyabinsk Meteor was extensively videoed by hundreds explodes with an energy of 4.2x109 Joules. How many tons of TNT did the Chelyabinsk Meteor yield

200

A supply chain network design model for biomass co-firing in coal-fired power plants  

SciTech Connect (OSTI)

We propose a framework for designing the supply chain network for biomass co-firing in coal-fired power plants. This framework is inspired by existing practices with products with similar physical characteristics to biomass. We present a hub-and-spoke supply chain network design model for long-haul delivery of biomass. This model is a mixed integer linear program solved using benders decomposition algorithm. Numerical analysis indicates that 100 million tons of biomass are located within 75 miles from a coal plant and could be delivered at $8.53/dry-ton; 60 million tons of biomass are located beyond 75 miles and could be delivered at $36/dry-ton.

Md. S. Roni; Sandra D. Eksioglu; Erin Searcy; Krishna Jha

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Early Entrance Coproduction Plant  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The work performed under Phase II will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

Mushtaq Ahmed; John H. Anderson; Earl R. Berry; Troy Raybold; Lalit S. Shah; Kenneth A. Yackly

2004-01-26T23:59:59.000Z

202

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The work performed under Phase II will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

Mushtaq Ahmed; John H. Anderson; Earl R. Berry; Troy Raybold; Lalit S. Shah; Kenneth A. Yackly

2003-12-16T23:59:59.000Z

203

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three-phase development of an Early Entrance Coproduction Plant (EECP) that produces at least one product from at least two of the following three categories: Electric power (or heat); Fuels; and Chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or some other carbonaceous feedstock, such as petroleum coke. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing (RD and T) Plan for implementation in Phase II. This objective has now been accomplished. A specific site, Motiva Refinery in Port Arthur, Texas, has been selected as the location best suited for the EECP. The accomplishments of Phase I are discussed in detail in this Phase I Concept Report. A RD and T Plan and a preliminary project financing plan have been developed and are submitted separately from this report.

John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; David Mintner; Wendy Moore; Jimmy O. Ong; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Kalapi D. Sheth; Phil J. Shires; Rae Song

2001-05-17T23:59:59.000Z

204

Methane Production: In the United States cattle emit about 5.5 million metric tons of methane per year into the  

E-Print Network [OSTI]

Methane Production: In the United States cattle emit about 5.5 million metric tons of methane per year into the atmosphere. o Accounts for 20% of methane emissions from human sources. Globally cattle produce about 80 million metric tons of methane annually. o Accounts for 28% of global methane emissions

Toohey, Darin W.

205

(Data in metric tons of contained lithium, unless otherwise noted) Domestic Production and Use: The United States was the largest producer and consumer of lithium minerals and  

E-Print Network [OSTI]

,000 tons of the material from the Department of Energy's stockpile, while the remaining 10,000 tons,700 1,800 150,000 160,000e Bolivia -- -- -- 5,400,00 Brazil 32 32 910 NA Canada 660 660 180,000 360

206

Determination of the effect of different additives in coking blends using a combination of in situ high-temperature {sup 1}H NMR and rheometry  

SciTech Connect (OSTI)

High-temperature {sup 1}H NMR and rheometry measurements were carried out on 4:1 wt/wt blends of a medium volatile bituminous coal with two anthracites, two petroleum cokes, charcoal, wood, a low-temperature coke breeze, tyre crumb, and active carbon to determine the effects on fluidity development to identify the parameters responsible for these effects during pyrolysis and to study possible relationships among the parameters derived from these techniques. Positive, negative, and neutral effects were identified on the concentration of fluid material. Small positive effects (ca. 5-6%) were caused by blending the coal with petroleum cokes. Charcoal, wood, and active carbon all exerted negative effects on concentration (18-27% reduction) and mobility (12-25% reduction in T2) of the fluid phase, which have been associated with the inert character and high surface areas of these additives that adsorb the fluid phase of the coal. One of the anthracites and the low-temperature coke breeze caused deleterious effects to a lesser extent on the concentration (7-12%) and mobility (13-17%) of the fluid material, possibly due to the high concentration of metals in these additives (ca. 11% ash). Despite the high fluid character of tyre crumb at the temperature of maximum fluidity of the coal (73%), the mobility of the fluid phase of the blend was lower than expected. The comparison of {sup 1}H NMR and rheometry results indicated that to account for the variations in minimum complex viscosity for all the blends, both the maximum concentration of fluid phase and the maximum mobility of the fluid material had to be considered. For individual blends, two exponential relationships have been found between the complex viscosity and the concentration of solid phase in both the softening and resolidification stages but the parameters are different for each blend. 30 refs., 8 figs., 5 tabs.

Miguel C. Diaz; Karen M. Steel; Trevor C. Drage; John W. Patrick; Colin E. Snape [Nottingham University, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

2005-12-01T23:59:59.000Z

207

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified the integration of the water produced in the F-T synthesis section with the gasification section as an area of potential synergy. By utilizing the F-T water in the petroleum coke slurry for the gasifier, the EECP can eliminate a potential waste stream and reduce capital costs. There is a low technical risk for this synergy, however, the economic risk, particularly in regards to the water, can be high. The economic costs include the costs of treating the water to meet the locally applicable environmental standards. This option may require expensive chemicals and treatment facilities. EECP Phase II included tests conducted to confirm the viability of integrating F-T water in the slurry feed for the gasifier. Testing conducted at ChevronTexaco's Montebello Technology Center (MTC) included preparing slurries made using petroleum coke with F-T water collected at the LaPorte Alternative Fuels Development Unit (AFDU). The work included bench scale tests to determine the slurry ability of the petroleum coke and F-T water. The results of the tests show that F-T water does not adversely affect slurries for the gasifier. There are a few cases where in fact the addition of F-T water caused favorable changes in viscosity of the slurries. This RD&T task was executed in Phase II and results are reported herein.

Abdalla H. Ali; Raj Kamarthi; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

2003-04-16T23:59:59.000Z

208

High temperature experiments on a 4 tons UF6 container TENERIFE program  

SciTech Connect (OSTI)

The paper presents an experimental program (called TENERIFE) whose aim is to investigate the behaviour of a cylinder containing UF{sub 6} when exposed to a high temperature fire for model validation. Taking into account the experiments performed in the past, the modelization needs further information in order to be able to predict the behaviour of a real size cylinder when engulfed in a 800{degrees}C fire, as specified in the regulation. The main unknowns are related to (1) the UF{sub 6} behaviour beyond the critical point, (2) the relationship between temperature field and internal pressure and (3) the equivalent conductivity of the solid UF{sub 6}. In order to investigate these phenomena in a representative way it is foreseen to perform experiments with a cylinder of real diameter, but reduced length, containing 4 tons of UF{sub 6}. This cylinder will be placed in an electrically heated furnace. A confinement vessel prevents any dispersion of UF{sub 6}. The heat flux delivered by the furnace will be calibrated by specific tests. The cylinder will be changed for each test.

Casselman, C.; Duret, B.; Seiler, J.M.; Ringot, C.; Warniez, P.

1991-12-31T23:59:59.000Z

209

1000–ton testing machine for cyclic fatigue tests of materials at liquid nitrogen temperatures  

SciTech Connect (OSTI)

One of the main tasks of superconductive magnets R and D is to determine the mechanical and fatigue properties of structural materials and the critical design elements in the cryogenic temperature range. This paper describes a new facility built based on the industrial 1000-ton (10 MN) testing machine Schenk PC10.0S. Special equipment was developed to provide the mechanical and cyclic tensile fatigue tests of large-scale samples at the liquid nitrogen temperature and in a given load range. The main feature of the developed testing machine is the cryostat, in which the device converting a standard compression force of the testing machine to the tensile force affected at the test object is placed. The control system provides the remote control of the test and obtaining, processing and presentation of test data. As an example of the testing machine operation the test program and test results of the cyclic tensile fatigue tests of fullscale helium inlet sample of the PF1 coil ITER are presented.

Khitruk, A. A.; Klimchenko, Yu. A.; Kovalchuk, O. A.; Marushin, E. L.; Mednikov, A. A.; Nasluzov, S. N.; Privalova, E. K.; Rodin, I. Yu.; Stepanov, D. B.; Sukhanova, M. V. [The D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), 3 Doroga na Metallostroy, Metallostroy, Saint Petersburg 196641 (Russian Federation)

2014-01-29T23:59:59.000Z

210

Effects of polymerization and briquetting parameters on the tensile strength of briquettes formed from coal coke and aniline-formaldehyde resin  

SciTech Connect (OSTI)

In this work, the utilization of aniline (C{sub 6}H{sub 7}N) formaldehyde (HCHO) resins as a binding agent of coke briquetting was investigated. Aniline (AN) formaldehyde (F) resins are a family of thermoplastics synthesized by condensing AN and F in an acid solution exhibiting high dielectric strength. The tensile strength sharply increases as the ratio of F to AN from 0.5 to 1.6, and it reaches the highest values between 1.6 and 2.2 F/AN ratio; it then slightly decreases. The highest tensile strength of F-AN resin-coke briquette (23.66 MN/m{sup 2}) was obtained from the run with 1.5 of F/AN ratio by using (NH4){sub 2}S{sub 2}O{sub 8} catalyst at 310 K briquetting temperature. The tensile strength of F-AN resin-coke briquette slightly decreased with increasing the catalyst percent to 0.10%, and then it sharply decreased to zero with increasing the catalyst percent to 0.2%. The effect of pH on the tensile strength is irregular. As the pH of the mixture increases from 9.0 to 9.2, the tensile strength shows a sharp increase, and the curve reaches a plateau value between pH 9.3 and 9.9; then the tensile strength shows a slight increase after pH = 9.9.

Demirbas, A.; Simsek, T. [Selcuk University, Konya (Turkey)

2006-10-15T23:59:59.000Z

211

Power Plant Power Plant  

E-Print Network [OSTI]

Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

Tingley, Joseph V.

212

Reduction of COD in leachate from a hazardous waste landfill adjacent to a coke-making facility  

SciTech Connect (OSTI)

A hazardous waste landfill adjacent to a coke manufacturing facility was in operation between July 1990 and December 1991. A system was constructed to collect and treat the leachate from the landfill prior to discharge to the river. Occasionally, the discharge from the treatment facility exceeded the permit limitations for Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), and Total Organic Carbon (TOC). The objectives of this study were to determine treatment methods which would enable compliance with the applicable discharge limits; to establish the desired operating conditions of the process; and to investigate the effect of various parameters such as pH, catalyst dosage, and reaction time on the COD destruction efficiency. The characteristics of the landfill leachate in question were significantly variable in terms of chemical composition. A review of the influent quality data suggests that the COD concentration ranges between 80 and 390 mg/l. The oxidation processes using Fenton`s reagent or a combination of UV/hydrogen peroxide/catalyst are capable of reducing the COD concentration of the leachate below the discharge limitation of 35 mg/l. The estimated capital cost associated with the Fenton`s reagent process is approximately $525,000, and the annual operating and maintenance cost is $560,000. The estimated capital cost for the UV/hydrogen peroxide/catalyst treatment system is $565,000. The annual operating and maintenance cost of this process would be approximately $430,000.

Banerjee, K.; O`Toole, T.J. [Chester Environmental, Moon Township, PA (United States)

1995-12-01T23:59:59.000Z

213

The Cylinder: Kinematics of the Nineteenth Century  

E-Print Network [OSTI]

distillation. The coking of coal as well as the productionin coal mines, in steel and paper mills, in coking plants,

Müller-Sievers, Helmut

2012-01-01T23:59:59.000Z

214

Removal of 1,082-Ton Reactor Among Richland Operations Office...  

Office of Environmental Management (EM)

so the plant can be torn down. Nearly 2,000 capsules of highly radioactive cesium and strontium need to be removed from water-filled storage basins and placed in dry storage....

215

Methodology for Estimating ton-Miles of Goods Movements for U.S. Freight Mulitimodal Network System  

SciTech Connect (OSTI)

Ton-miles is a commonly used measure of freight transportation output. Estimation of ton-miles in the U.S. transportation system requires freight flow data at disaggregated level (either by link flow, path flows or origin-destination flows between small geographic areas). However, the sheer magnitude of the freight data system as well as industrial confidentiality concerns in Census survey, limit the freight data which is made available to the public. Through the years, the Center for Transportation Analysis (CTA) of the Oak Ridge National Laboratory (ORNL) has been working in the development of comprehensive national and regional freight databases and network flow models. One of the main products of this effort is the Freight Analysis Framework (FAF), a public database released by the ORNL. FAF provides to the general public a multidimensional matrix of freight flows (weight and dollar value) on the U.S. transportation system between states, major metropolitan areas, and remainder of states. Recently, the CTA research team has developed a methodology to estimate ton-miles by mode of transportation between the 2007 FAF regions. This paper describes the data disaggregation methodology. The method relies on the estimation of disaggregation factors that are related to measures of production, attractiveness and average shipments distances by mode service. Production and attractiveness of counties are captured by the total employment payroll. Likely mileages for shipments between counties are calculated by using a geographic database, i.e. the CTA multimodal network system. Results of validation experiments demonstrate the validity of the method. Moreover, 2007 FAF ton-miles estimates are consistent with the major freight data programs for rail and water movements.

Oliveira Neto, Francisco Moraes [ORNL] [ORNL; Chin, Shih-Miao [ORNL] [ORNL; Hwang, Ho-Ling [ORNL] [ORNL

2013-01-01T23:59:59.000Z

216

Florida CFB demo plant yields low emissions on variety of coals  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has reported results of tests conducted at Jacksonville Electric Authority (JEA)'s Northside power plant using mid-to-low-sulfur coal, which indicate the facility is one of the cleanest burning coal-fired power plants in the world. A part of DOE's Clean Coal Technology Demonstration Program, the JEA project is a repowering demonstration of the operating and environmental performance of Foster Wheeler's utility-scale circulating fluidized bed combustion (CFB) technology on a range of high-sulfur coals and blends of coal and high-sulfur petroleum coke. The 300 MW demonstration unit has a non-demonstration 300 MW twin unit.

NONE

2005-07-01T23:59:59.000Z

217

Development of an advanced continuous mild gasification process for the production of co-products. Final report, September 1987--September 1996  

SciTech Connect (OSTI)

Char, the major co-product of mild coal gasification, represents about 70 percent of the total product yield. The only viable use for the char is in the production of formed coke. Early work to develop formed coke used char from a pilot plant sized mild gasification unit (MGU), which was based on commercial units of the COALITE plant in England. Formed coke was made at a bench-scale production level using MGU chars from different coals. An evolutionary formed coke development process over a two-year period resulted in formed coke production at bench-scale levels that met metallurgical industries` specifications. In an ASTM D5341 reactivity test by a certified lab, the coke tested CRI 30.4 and CSR 67.0 which is excellent. The standard is CRI < 32 and CSR > 55. In 1991, a continuous 1000 pounds per hour coal feed mild coal gasification pilot plant (CMGU) was completed. The gasification unit is a heated unique screw conveyor designed to continuously process plastic coal, vent volatiles generated by pyrolysis of coal, and convert the plastic coal to free flowing char. The screw reactor auxiliary components are basic solids materials handling equipment. The screw reactor will convert coal to char and volatile co-products at a rate greater than 1000 pounds per hour of coal feed. Formed coke from CMGU char is comparable to that from the MGU char. In pilot-plant test runs, up to 20 tons of foundry coke were produced. Three formed coke tests at commercial foundries were successful. In all of the cupola tests, the iron temperature and composition data indicated that the formed coke performed satisfactorily. No negative change in the way the cupola performed was noticed. The last 20-ton test was 100 percent CTC/DOE coke. With conventional coke in this cupola charging rates were 10 charges per hour. The formed coke charges were 11 to 12 charges per hour. This equates to a higher melt rate. A 10 percent increase in cupola production would be a major advantage. 13 figs., 13 tabs.

NONE

1996-12-31T23:59:59.000Z

218

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

As part of the Department of Energy's (DOE) Gasification Technologies and Transportation Fuels and Chemicals programs, DOE and Texaco are partners through Cooperative Agreement DE-FC26-99FT40658 to determine the feasibility of developing, constructing and operating an Early Entrance Coproduction Plant (EECP). The overall objective of the project is the three-phase development of an EECP that produces at least one product from at least two of the following three categories: Electric power (or heat); Fuels; and Chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or some other carbonaceous feedstock, such as petroleum coke. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing (RD and T) Plan for implementation in Phase II. This objective has now been accomplished. A specific site, Motiva Refinery in Port Arthur, Texas, has been selected as the location best suited for the EECP. The specific work requirements of Phase I included: Prepare an EECP Preliminary Concept Report covering Tasks 2-8 specified in the Cooperative Agreement; Develop a Research, Development, and Testing (RD and T) Plan as specified in Task 9 of the Cooperative Agreement for implementation in Phase II; and Develop a Preliminary Project Financing Plan for the EECP Project as specified in Task 10 of the Cooperative Agreement. This document is the Preliminary Project Financing Plan for the design, construction, and operation of the EECP at the Motiva Port Arthur Refinery.

John H. Anderson; William K. Davis; Thomas W. Sloop

2001-03-21T23:59:59.000Z

219

Revamp of Ukraine VCM plant will boost capacity, reduce emissions  

SciTech Connect (OSTI)

Oriana Concern (formerly P.O. Chlorvinyl) is revamping its 250,000 metric ton/year (mty) vinyl chloride monomer (VCM) plant at Kalusch, Ukraine. At the core of the project area new ethylene dichloride (EDC) cracking furnace and direct chlorination unit, and revamp of an oxychlorination unit to use oxygen rather than air. The plant expansion and modernization will boost capacity to 370,000 mty. New facilities for by-product recycling and recovery, waste water treatment, and emissions reduction will improve the plant`s environmental performance. This paper shows expected feedstock and utility consumption for VCM production. Techmashimport and P.O. Chlorvinyl commissioned the Kalusch plant in 1975. The plant was built by Uhde GmbH, Dortmund, Germany. The paper also provides a schematic of the Hoechst/Uhde VCM process being used for the plant revamp. The diagram is divided into processing sections.

NONE

1996-05-13T23:59:59.000Z

220

The interrelationship between environmental goals, productivity improvement, and increased energy efficiency in integrated paper and steel plants  

SciTech Connect (OSTI)

This report presents the results of an investigation into the interrelationships between plant-level productivity, energy efficiency, and environmental improvements for integrated pulp and paper mills and integrated steel mills in the US. Integrated paper and steel plants are defined as those facilities that use some form of onsite raw material to produce final products (for example, paper and paperboard or finished steel). Fully integrated pulp and paper mills produce onsite the pulp used to manufacture paper from virgin wood fiber, secondary fiber, or nonwood fiber. Fully integrated steel mills process steel from coal, iron ore, and scrap inputs and have onsite coke oven facilities.

NONE

1997-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOE Moab Project Safely Removes 7 Million Tons of Mill Tailings |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at MultipleorderNuclear Plants | DepartmentIf you

222

Low cost improvements in air pollution control for ARMCO's Ashland, Kentucky Works Sinter Plant  

SciTech Connect (OSTI)

Particulate emissions from sinter plants can contribute a significant percentage of the total emissions from integrated steelmaking facilities. A well-known sinter plant air pollution phenomenon is called blue haze emissions. These emissions are caused when hydrocarbons introduced by filter cake, coke breeze, and mill scale are not burned in the sintering process and pass through the system as a very finely divided stable dispersed fog. The Sinter Plant at Ashland Works consists of Dravo-Lurgi traveling grate sintering machine which processes a mixture of materials including iron ore, iron pellet fines, blast furnace flue dust, limestone, melt shop slag, coke breeze and sinter return fines. This system is illustrated by the authors. Upon completion of the sintering process, the hot agglomerated sinter product is discharged to the sinter crusher. The sinter is then cooled and screened for use in Ashland Works' Amanda Blast Furnace. This system is illustrated. The Ashland Works Sinter Plant complex consists of a Sintering Machine Building, Sinter Screens Building and Ore Screens Building. For the purposes of this study, the Ore Transfer Tower Building was also included. The general layout of the complex is illustrated.

Felton, S.S. (ARMCO Inc., Ashland, KY (US))

1987-01-01T23:59:59.000Z

223

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified several potential methods to reduce or minimize the environmental impact of the proposed EECP. The EECP Project Team identified F-T catalyst disposal, beneficial gasifier slag usage (other than landfill), and carbon dioxide recovery for the gas turbine exhaust for study under this task. Successfully completing the Task 2.10 RD&T provides additional opportunities for the EECP to meet the goals of DOE's Vision 21 Program. The gasification section offers several opportunities to maximize the environmental benefits of an EECP. The spent F-T catalyst can be sent to landfills or to the gasification section. Testing in Phase II shows that the spent F-T catalyst with a small wax coating can safely meet federal landfill requirements. As an alternative to landfilling, it has been proposed to mix the spent F-T catalyst with the petroleum coke and feed this mixture to the gasification unit. Based on ChevronTexaco's experience with gasification and the characteristics of the spent F-T catalyst this appears to be an excellent opportunity to reduce one potential waste stream. The slag from the gasification unit can be commercially marketed for construction or fuel (such as cement kiln fuel) uses. The technical and economic benefits of these options must be reviewed for the final EECP before incorporating a specific alternative into the design basis. Reducing greenhouse gas emissions, particularly carbon dioxide, is an important goal of the EECP. The Texaco gasification process provides opportunities to capture high purity streams of carbon dioxide. For Phase II, a carbon fiber composite molecular sieve (CFCMS) was tested to determine its potential to remove high purity carbon dioxide from the exhaust of a gas turbine. Testing on with a simulated gas turbine exhaust shows that the CFCMS is able to remove high purity carbon dioxide from the exhaust. However, more development is required to optimize the system.

John H. Anderson; Charles Benham; Earl R. Berry; Ming He; Charles H. Schrader; Lalit S. Shah; O.O. Omatete; T.D. Burchell

2004-01-12T23:59:59.000Z

224

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The 1999 U. S. Department of Energy (DOE) award to Texaco Energy Systems Inc. (presently Texaco Energy Systems LLC, a subsidiary of ChevronTexaco) was made to provide a Preliminary Engineering Design of an Early Entrance Coproduction Plant (EECP). Since the award presentation, work has been undertaken to achieve an economical concept design that makes strides toward the DOE Vision 21 goal. The objective of the EECP is to convert coal and/or petroleum coke to electric power plus transportation fuels, chemicals and useful utilities such as steam. The use of petroleum coke was added as a fuel to reduce the cost of feedstock and also to increase the probability of commercial implementation of the EECP concept. This objective has been pursued in a three phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems LLC and subcontractors General Electric (GE), Praxair, and Kellogg Brown and Root (KBR). ChevronTexaco is providing gasification technology and Rentech's Fischer-Tropsch technology that has been developed for non-natural gas feed sources. GE is providing gas turbine technology for the combustion of low energy content gas. Praxair is providing air separation technology, and KBR is providing engineering to integrate the facility. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. Phase I Preliminary Concept Report was completed in 2000. The Phase I Preliminary Concept Report was prepared based on making assumptions for the basis of design for various technologies that are part of the EECP concept. The Phase I Preliminary Concept Report was approved by the DOE in May 2001. The Phase I work identified technical and economic risks and critical research, development, and testing that would improve the probability of the technical and economic success of the EECP. The Project Management Plan (Task 1) for Phase II was approved by the DOE in 2001. The results of RD&T efforts for Phase II are expected to improve the quality of assumptions made in Phase I for basis of design for the EECP concept. The RD&T work plan (Task 2 and 3) for Phase II has been completed. As the RD&T work conducted during Phase II concluded, it became evident that sufficient, but not necessarily complete, technical information and data would be available to begin Phase III - Basic Engineering Design. Also due to the merger of Chevron and Texaco, the proposed refinery site for the EECP was not available. It became apparent that some additional technical development work would be needed to correctly apply the technology at a specific site. The objective of Task 4 of Phase II is to update the concept basis of design produced during Phase I. As part of this task, items that will require design basis changes and are not site dependent have been identified. The team has qualitatively identified the efforts to incorporate the impacts of changes on EECP concept. The design basis has been modified to incorporate those changes. The design basis changes for those components of EECP that are site and feedstock dependent will be done as part of Phase III, once the site has been selected.

Charles Benham; Mark Bohn; John Anderson; Earl Berry; Fred Brent; Ming He; Randy Roberts; Lalit Shah; Marjan Roos

2003-09-15T23:59:59.000Z

225

In-plant recycling of ironmaking waste materials at Pohang Works  

SciTech Connect (OSTI)

The regulations for pollution control are being strengthened more year by year. Therefore, waste materials containing iron oxides are being increasingly used in the sinter plant. As a result, waste materials recycling in the sintering process not only reduces costs by eliminating waste disposal costs and utilizing Fe bearing by-products to replace iron ores and flux materials, but gives fuel rate benefits to the sintering process through heat of oxidizing of Fe bearing materials and combustion of coke fines carried with Fe Bearing by-products.

Kim, C.H.; Jung, S. [POSCO, Pohang (Korea, Republic of). Ironmaking Dept.

1997-12-31T23:59:59.000Z

226

Hanford Waste Treatment Plant places first complex piping module in Pretreatment Facility  

Broader source: Energy.gov [DOE]

Crews at the Hanford Waste Treatment Plant, also known as the "Vit Plant," placed a 19-ton piping module inside the Pretreatment Facility. The module was lifted over 98-foot-tall walls and lowered into a space that provided less than two inches of clearance on each side and just a few feet on each end. It was set 56 feet above the ground.

227

A FLUKA Study of $\\beta$-delayed Neutron Emission for the Ton-size DarkSide Dark Matter Detector  

E-Print Network [OSTI]

In the published cosmogenic background study for a ton-sized DarkSide dark matter search, only prompt neutron backgrounds coincident with cosmogenic muons or muon induced showers were considered, although observation of the initiating particle(s) was not required. The present paper now reports an initial investigation of the magnitude of cosmogenic background from $\\beta$-delayed neutron emission produced by cosmogenic activity in DarkSide. The study finds a background rate for $\\beta$-delayed neutrons in the fiducial volume of the detector on the order of < 0.1 event/year. However, detailed studies are required to obtain more precise estimates. The result should be compared to a radiogenic background event rate from the PMTs inside the DarkSide liquid scintillator veto of 0.2 events/year.

Empl, Anton

2014-01-01T23:59:59.000Z

228

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

SciTech Connect (OSTI)

China's 11th Five-Year Plan (FYP) sets an ambitious target for energy-efficiency improvement: energy intensity of the country's gross domestic product (GDP) should be reduced by 20% from 2005 to 2010 (NDRC, 2006). This is the first time that a quantitative and binding target has been set for energy efficiency, and signals a major shift in China's strategic thinking about its long-term economic and energy development. The 20% energy intensity target also translates into an annual reduction of over 1.5 billion tons of CO2 by 2010, making the Chinese effort one of most significant carbon mitigation effort in the world today. While it is still too early to tell whether China will achieve this target, this paper attempts to understand the trend in energy intensity in China and to explore a variety of options toward meeting the 20% target using a detailed end-use energy model.

Zhou, Nan; Lin, Jiang; Zhou, Nan; Levine, Mark; Fridley, David

2007-07-01T23:59:59.000Z

229

Laser ultrasonic furnace tube coke monitor. Quarterly technical progress report. Report No. 5 for reporting period May 1, 1999 through August 1, 1999  

SciTech Connect (OSTI)

The overall aim of the project is to demonstrate the performance and practical use of a probe for measuring the thickness of coke deposits located within the high-temperature tubes of a thermal cracking furnace. The objective of work during this period was to enhance the sensitivity and signal-to-noise ratio of the probe measurement. Testing identified that the primary source of signal noise was traced to imperfections in the sacrificial stand-off, which was formed using a casting procedure. Laminations, voids, and impurities contained in the casting result in attenuation and dispersion of the ultrasonic signal. This report describes the work performed to optimize the signal conductance of the sacrificial stand-off.

NONE

1999-08-15T23:59:59.000Z

230

EIS-0071: Memphis Light, Gas and Water Division Industrial Fuels Gas Demonstration Plant, Memphis, Shelby County, Tennessee  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this EIS to assesses the potential environmental impacts associated with the construction and operation of a 3,155-ton-per-day capacity facility, which will demonstrate the technical operability, economic viability, and environmental acceptability of the Memphis Division of Light, Gas and Water coal gasification plant at Memphis, Tennessee.

231

(Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,  

E-Print Network [OSTI]

100 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China, Russia, and the United States were large producers also. Australia, Canada, and Zimbabwe were major producers of lithium

232

(Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,  

E-Print Network [OSTI]

98 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China, Russia, and the United States were large producers also. Australia, Canada, and Zimbabwe were major producers of lithium

233

(Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,  

E-Print Network [OSTI]

96 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China, Russia, and the United States were large producers also. Australia, Canada, and Zimbabwe were major producers of lithium

234

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine operating in the United States was a  

E-Print Network [OSTI]

94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine operating in the United States was a brine operation in Nevada. Two companies produced a large array of downstream lithium compounds in the United States from

235

(Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2009, clay and shale production was reported in 41 States. About 190 companies  

E-Print Network [OSTI]

44 CLAYS (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2009, clay and shale production was reported in 41 States. About 190 companies operated approximately 830% drilling mud, 17% foundry sand bond, 14% iron ore pelletizing, and 20% other uses; common clay--57% brick

236

(Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2008, clay and shale production was reported in 41 States. About 190 companies  

E-Print Network [OSTI]

46 CLAYS (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2008, clay and shale production was reported in 41 States. About 190 companies operated approximately 830% drilling mud, 17% foundry sand bond, 14% iron ore pelletizing, and 20% other uses; common clay--57% brick

237

(Data in metric tons of contained lithium, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world, followed by China,  

E-Print Network [OSTI]

, but growing through the recycling of lithium batteries. Import Sources (1994-97): Chile, 96%; and other, 4 lithium salts from battery recycling and lithium hydroxide monohydrate from former Department of Energy102 LITHIUM (Data in metric tons of contained lithium, unless otherwise noted) Domestic Production

238

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2013, 5 companies operated 10 primary aluminum smelters; 3 smelters were  

E-Print Network [OSTI]

and Use: In 2013, 5 companies operated 10 primary aluminum smelters; 3 smelters were closed temporarily, and Issues: In February 2013, the owner of the 270,000-ton-per-year Hannibal, OH, smelter filed for chapter in October. In June, the Sebree, KY, smelter was sold as part of a corporate restructuring. Expansion

239

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: Limited shipments of tungsten concentrates were made from a California mine in  

E-Print Network [OSTI]

178 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and primary products, wrought and unwrought tungsten, and waste and scrap: China, 43%; Germany, 11%; Canada,630 1,450 Events, Trends, and Issues: World tungsten supply was dominated by Chinese production

240

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: A tungsten mine in California produced concentrates in 2012. Approximately eight  

E-Print Network [OSTI]

176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and concentrates, intermediate and primary products, wrought and unwrought tungsten, and waste and scrap: China, 45,200 3,630 1,610 Events, Trends, and Issues: World tungsten supply was dominated by Chinese production

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: One mine in California produced tungsten concentrates in 2010. Approximately  

E-Print Network [OSTI]

176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production. Import Sources (2006­09): Tungsten contained in ores and concentrates, intermediate and primary products, Trends, and Issues: World tungsten supply is dominated by Chinese production and exports. China

242

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: A mine in California produced tungsten concentrates in 2009. Approximately eight  

E-Print Network [OSTI]

176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production. Import Sources (2005-08): Tungsten contained in ores and concentrates, intermediate and primary products, and Issues: World tungsten supply was dominated by Chinese production and exports. China's Government limited

243

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: A tungsten mine in California produced concentrates in 2013. Approximately eight  

E-Print Network [OSTI]

174 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and concentrates, intermediate and primary products, wrought and unwrought tungsten, and waste and scrap: China, 45,100 2,300 2,240 Events, Trends, and Issues: World tungsten supply was dominated by Chinese production

244

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: One mine in California produced tungsten concentrates in 2011. Approximately  

E-Print Network [OSTI]

176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production (2007­10): Tungsten contained in ores and concentrates, intermediate and primary products, wrought: World tungsten supply is dominated by Chinese production and exports. China's Government regulates its

245

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production, which had remained unchanged in 1995, resumed the  

E-Print Network [OSTI]

recovered from scrap, copper smelters and refiners recovered 26%; ingot makers, 10%; brass mills, 5752 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic% of domestic production; copper was also recovered at mines in six other States. While copper was recovered

246

(Data in thousand metric tons of copper content, unless noted) Domestic Production and Use: Domestic mine production in 1995 continued its upward trend, begun in 1984, rising  

E-Print Network [OSTI]

in new scrap was consumed at brass mills. Of the total copper recovered from scrap, copper smelters50 COPPER (Data in thousand metric tons of copper content, unless noted) Domestic Production, Arizona, Utah, New Mexico, Montana, and Michigan, accounted for 97% of domestic production; copper

247

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). The potential technical and economic risks to the EECP from Task 2.5 can be mitigated by demonstrating that the end-use products derived from the upgrading of the F-T synthesis total liquid product can meet or exceed current specifications for the manufacture of ethylene and propylene chemicals from F-T naphtha, for the generation of hydrogen from F-T naphtha to power fuel cells, for direct blending of F-T diesels into transportation fuels, for the conversion of F-T heavy product wax to transportation fuels, and the conversion of F-T Heavy product wax to a valuable high melting point food-grade specialty wax product. Product evaluations conducted under Task 2.5 of Phase II successfully mitigated the above technical and economic risks to the EECP with the development of product yields and product qualities for the production of chemicals, transportation fuels, and specialty food-grade waxes from the F-T synthesis products.

Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; Ming He; James F. Stevens; Centha A. Davis; Michael Henley; Jerome Mayer; Harry Tsang; Jimell Erwin; Jennifer Adams; Michael Tillman; Chris Taylor; Marjan J. Roos; Robert F. Earhart

2004-01-27T23:59:59.000Z

248

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc., GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I, a design basis for the Fischer-Tropsch Synthesis section was developed based on limited experience with the specified feed gas and operating conditions. The objective of this Task in Phase II RD&T work was to confirm the performance of the F-T reactor at the set design conditions. Although much of the research, development, and testing work were done by TES outside of this project, several important issues were addressed in this phase of the project. They included Rejuvenation/Regeneration of the Fischer-Tropsch Catalyst, online Catalyst Withdrawal and Addition from the synthesis reactor, and the Fischer-Tropsch Design Basis Confirmation. In Phase III the results from these RD&T work will be incorporated in developing the engineering design package. This Topical Report documents the Phase II RD&T work that was completed for this task.

David Storm; Govanon Nongbri; Steve Decanio; Ming He; Lalit Shah; Charles Schrader; Earl Berry; Peter Ricci; Belma Demirel; Charles Benham; Mark Bohn

2004-01-12T23:59:59.000Z

249

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

In 1999, the U. S. Department of Energy (DOE) awarded a Cooperative Agreement to Texaco Energy Systems Inc. to provide a preliminary engineering design of an Early Entrance Coproduction Plant (EECP). Since the award, continuous and diligent work has been undertaken to achieve the design of an economical facility that makes strides toward attaining the goal of DOE's Vision 21 Program. The objective of the EECP is to convert coal and/or petroleum coke to power while coproducing transportation fuels, chemicals, and useful utilities such as steam. This objective is being pursued in a three-phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems, LLC. (TES), the successor to Texaco Energy Systems, Inc. The key subcontractors to TES include General Electric (GE), Praxair, and Kellogg Brown and Root. ChevronTexaco provided gasification technology and Rentech Inc.'s Fischer-Tropsch (F-T) technology that has been developed for non-natural gas sources. GE provided gas turbine technology for the combustion of low energy content gas. Praxair provided air separation technology and KBR provided engineering to integrate the facility. A conceptual design was completed in Phase I and the report was accepted by the DOE in May 2001. The Phase I work identified risks and critical research, development, and testing that would improve the probability of technical success of the EECP. The objective of Phase II was to mitigate the risks by executing research, development, and testing. Results from the Phase II work are the subject of this report. As the work of Phase II concluded, it became evident that sufficient, but not necessarily complete, technical information and data would be available to begin Phase III - Preliminary Engineering Design. Work in Phase II requires additional technical development work to correctly apply technology at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The decision to proceed with Phase III centers on locating a new site and favorable commercial and economic factors.

John Anderson; Charles Schrader

2004-01-26T23:59:59.000Z

250

Chemical reactions of UF{sub 6} with water on ingress to damaged model 48X 10 ton cylinder  

SciTech Connect (OSTI)

Chemistry studies of the effects of water flooding in Model 48X 10-ton UF{sub 6} storage cylinders, as a result of impact fractures, were conducted to support the Safety Analysis Report for Packaging (SARP) review of the Paducah Tiger Overpack for transportation of those cylinders. The objectives of the study were to determine the maximum amount of water that could be admitted to the interior of such a damaged cylinder, the resulting geometries and chemical compositions from reactions of water with the UF{sub 6} contents of the cylinder, and the end-state water moderated and reflected configurations for input to nuclear criticality safety analyses. The case identified for analysis was the flooding of the inside of a cylinder, submerged horizontally in 3 ft of water. The flooding was driven by an initial pressure drop of 13 psig, through an assumed fracture (1/32 in. wide {times} 1/2 in. deep {times} 18 in. long) in the barrel of the cylinder. During the initial addition of water, transient back pressures occur from the effects of the heats of reaction and solution at the water/UF{sub 6} interface, with some chugging as more water is added to alternately coot the reaction surface and then heat it again as the added water reacts with more UF{sub 6}.

Rothman, A.B.

1996-02-01T23:59:59.000Z

251

Blast-furnace ironmaking -- Existing capital and continued improvements are a winning formula for a bright future  

SciTech Connect (OSTI)

Throughout the years the blast-furnace process has been improved upon significantly. Increases to the hot-blast temperature, improvements to the physical, chemical, and metallurgical properties of coke and burden materials, the use of more fuel injectants, and improvements to the design of the furnace facilities have led to significant decreases in furnace coke rate, increases in productivity, and increases in furnace campaign life. As a result, many of the alternative cokeless reduction processes have not replaced blast-furnace hot-metal production in North America. In the future, these continued blast-furnace improvements will potentially result in coke rates decreasing to 400 pounds per net ton of hot metal (lb/NTHM) as more pulverized coal is injected. These improvements, coupled with the fact that existing blast furnaces and coke plants can be refurbished for approximately $110 per annual ton of hot metal [$100 per annual net ton of hot metal (NTHM)], will result in extending the life of the North American blast furnaces well into the twenty-first century.

Oshnock, T.W.; Colinear, J.A. [U.S. Steel, Monroeville, PA (United States)

1995-12-01T23:59:59.000Z

252

Developer Installed Treatment Plants  

E-Print Network [OSTI]

-installed treatment plants. These treatment plants are more commonly known as package wastewater treatment plants. 1

unknown authors

2008-01-01T23:59:59.000Z

253

(Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2000, 12 companies operated 23 primary aluminum reduction plants. Montana,  

E-Print Network [OSTI]

, and Issues: Domestic primary aluminum production decreased owing in large part to the smelter production cutbacks caused by increased energy costs, particularly in the Pacific Northwest. Domestic smelters aluminum smelter in Hawesville, KY. The acquisition was subject to the completion of a labor agreement

254

Review of corrosion in 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders  

SciTech Connect (OSTI)

A literature review was conducted to determine the type, extent and severity of corrosion found in the 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders. Also discussed in this review is corrosion found in the valves and plugs used in the cylinders. Corrosion of the cylinders is a gradual process which occurs slowly over time. Understanding corrosion of the cylinders is an important concern for long term storage of the UF{sub 6} in the cylinder yards, as well as the final disposition of the depleted UF{sub 6} tails inventory in the future. The following conclusions are made from the literature review: (1) The general external corrosion rate of the cylinders is about 1 to 2 mils per year (1 mil = 0.001{double_prime}). The highest general external corrosion rate was over 5 mpy on the 48G type cylinders. (2) General internal corrosion from the depleted UF{sub 6} is negligible under normal storage conditions. Crevice corrosion can occur at the cylinder/saddle interface from the retention of water in this area. Crevice corrosion can occur at the cylinder/skirt interface on the older skirted cylinders due to the lack of water drainage in this area. Crevice corrosion can occur on cylinders that have been in ground contact. Crevice corrosion and galvanic corrosion can occur where the stainless steel I.D. nameplates are attached to the cylinder. The packing nuts on the bronze one-inch valves used in the cylinders are susceptible to stress corrosion cracking (SCC). Mechanical damage from routine handling can lead to a breach in a cylinder with subsequent accelerated corrosion of the mild steel due to attack from HF and other UF{sub 6} hydrolysis by-products.

Lykins, M.L.

1995-08-01T23:59:59.000Z

255

Alaska has 4. 0 trillion tons of low-sulfur coal: Is there a future for this resource  

SciTech Connect (OSTI)

The demand for and use of low-sulfur coal may increase because of concern with acid rain. Alaska's low-sulfur coal resources can only be described as enormous: 4.0 trillion tons of hypothetical onshore coal. Mean total sulfur content is 0.34% (range 0.06-6.6%, n = 262) with a mean apparent rank of subbituminous B. There are 50 coal fields in Alaska; the bulk of the resources are in six major fields or regions: Nenana, Cook Inlet, Matanuska, Chignik-Herendeen Bay, North Slope, and Bering River. For comparison, Carboniferous coals in the Appalachian region and Interior Province have a mean total sulfur content of 2.3% (range 0.1-19.0%, n = 5,497) with a mean apparent rank of high-volatile A bituminous coal, and Rocky Mountain and northern Great Plains Cretaceous and Tertiary coals have a mean total sulfur content of 0.86% (range 0.02-19.0%, n = 2,754) with a mean apparent rank of subbituminous B. Alaskan coal has two-fifths the total sulfur of western US coals and one-sixth that of Carboniferous US coals. Even though Alaska has large resources of low-sulfur coal, these resources have not been developed because of (1) remote locations and little infrastructure, (2) inhospitable climate, and (3) long distances to potential markets. These resources will not be used in the near future unless there are some major, and probably violent, changes in the world energy picture.

Stricker, G.D. (Geological Survey, Denver, CO (USA))

1990-05-01T23:59:59.000Z

256

XAX: a multi-ton, multi-target detection system for dark matter, double beta decay and pp solar neutrinos  

E-Print Network [OSTI]

A multi-target detection system XAX, comprising concentric 10 ton targets of 136Xe and 129/131Xe, together with a geometrically similar or larger target of liquid Ar, is described. Each is configured as a two-phase scintillation/ionization TPC detector, enhanced by a full 4pi array of ultra-low radioactivity Quartz Photon Intensifying Detectors (QUPIDs) replacing the conventional photomultipliers for detection of scintillation light. It is shown that background levels in XAX can be reduced to the level required for dark matter particle (WIMP) mass measurement at a 10^-10 pb WIMP-nucleon cross section, with single-event sensitivity below 10^-11 pb. The use of multiple target elements allows for confirmation of the A^2 dependence of a coherent cross section, and the different Xe isotopes provide information on the spin-dependence of the dark matter interaction. The event rates observed by Xe and Ar would modulate annually with opposite phases from each other for WIMP mass >~100 GeV/c^2. The large target mass of 136Xe and high degree of background reduction allow neutrinoless double beta decay to be observed with lifetimes of 10^27-10^28 years, corresponding to the Majorana neutrino mass range 0.01-0.1 eV, the most likely range from observed neutrino mass differences. The use of a 136Xe-depleted 129/131Xe target will also allow measurement of the pp solar neutrino spectrum to a precision of 1-2%.

K. Arisaka; H. Wang; P. F. Smith; D. Cline; A. Teymourian; E. Brown; W. Ooi; D. Aharoni; C. W. Lam; K. Lung; S. Davies; M. Price

2009-01-07T23:59:59.000Z

257

Demonstration and evaluation of the 20-ton-capacity load-cell-based weighing system, Eldorado Resources, Ltd. , Port Hope, Ontario, September 3-4, 1986  

SciTech Connect (OSTI)

On September 3 and 4, 1986, the prototype 20-ton-capacity load-cell-based weighing system (LCBWS) developed by the US Enrichment Safeguards Program (ESP) at Martin Marietta Energy Systems, Inc., was field tested at the Eldorado Resources, Ltd., (ERL) facility in Port Hope, Ontario. The 20-ton-capacity LCBWS has been designed and fabricated for use by the International Atomic Energy Agency (IAEA) for verifying the masses of large-capacity UF/sub 6/ cylinders during IAEA safeguards inspections at UF/sub 6/ handling facilities. The purpose of the Canadian field test was to demonstrate and to evaluate with IAEA inspectorates and with UF/sub 6/ bulk handling facility operators at Eldorado the principles, procedures, and hardware associated with using the 20-ton-capacity LCBWS as a portable means for verifying the masses of 10- and 14-ton UF/sub 6/ cylinders. Session participants included representatives from the IAEA, Martin Marietta Energy Systems, Inc., Eldorado Resources, Ltd., the Atomic Energy Control Board (AECB), and the International Safeguards Project Office (ISPO) at Brookhaven National Laboratory (BNL). Appendix A presents the list of participants and their organization affiliation. The two-day field test involved a formal briefing by ESP staff, two cylinder weighing sessions, IAEA critiques of the LCBWS hardware and software, and concluding discussions on the field performance of the system. Appendix B cites the meeting agenda. Summarized in this report are (1) the technical information presented by the system developers, (2) results from the weighing sessions, and (3) observations, suggestions, and concluding statements from meeting participants.

Cooley, J.N.; Huxford, T.J.

1986-10-01T23:59:59.000Z

258

(Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1999, clays were produced in most States except Alaska, Delaware, Hawaii,  

E-Print Network [OSTI]

, and 32% other uses; bentonite--26% foundry sand bond, 23% pet waste absorbent, 20% drilling mud, 16% iron,710 Total3 43,000 43,100 41,800 41,600 42,200 Imports for consumption 35 45 64 86 97 Exports 4,680 4,830 5,080 5,230 4,700 Consumption, apparent 38,500 38,300 36,800 36,500 37,600 Price, average, dollars per ton

259

(Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1998, clays were produced in most States except Alaska, Delaware, Hawaii, Idaho,  

E-Print Network [OSTI]

% foundry sand bond, 23% drilling mud, 17% pet waste absorbent, 15% iron ore pelletizing, and 9% other uses,100 43,100 42,000 43,0003 Imports for consumption 36 35 45 64 75 Exports 4,620 4,680 4,830 5,080 5,100 Consumption, apparent 37,600 38,500 38,300 37,000 38,000 Price, average, dollars per ton: Ball clay 43 46 44

260

(Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2003, clay and shale production was reported in all States except Alaska,  

E-Print Network [OSTI]

; bentonite-- 25% pet waste absorbent, 21% drilling mud, 21% foundry sand bond, 15% iron ore pelletizing,300 Imports for consumption: Artificially activated clay and earth 17 18 21 27 20 Kaolin 57 63 114 158 275,980 Consumption, apparent 37,500 35,600 34,800 34,600 34,600 Price, average, dollars per ton: Ball clay 40 42 42

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Status of the PEATGAS Pilot Plant Development Program  

SciTech Connect (OSTI)

Minnesota peat has been successfully processed in a 2 ton/h, continuous, fully integrated pilot plant since April 1981 at the Institute of Gas Technology (IGT) Energy Development Center in Chicago. The reactor system is based on the PEATGAS process for the production of substitute natural gas (SNG) developed by IGT. Three tests have been conducted in the pilot plant at a 500-psig pressure and gasification temperatures up to 1650/sup 0/F. Peat conversions consistently averaged over 90% at the upper temperature levels. These tests were conducted using a slurry feeding system to inject peat, which contained about 10% moisture, into the gasifier. The facility is currently being modified to accept dry peat feed using a two-stage lockhopper system. When this modification is completed, testing will begin with peat containing 30% to 50% moisture. Results of the successful test series using slurry feed and the progress made on the pilot plant lockhopper modification are summarized.

Biljetina, R.; Punwani, D.V.

1981-01-01T23:59:59.000Z

262

Real-time optimization boosts capacity of Korean olefins plant  

SciTech Connect (OSTI)

Real-time optimization (RTO) of Hyundai Petrochemical Co. Ltd.`s olefins complex at Daesan, South Korea, increased ethylene capacity 4% and revenues 12%, and decreased feedstock and energy usage 2.5%, with no changes in operating conditions. The project comprised RTO and advanced process control (APC) systems for the 350,000 metric ton/year (mty) ethylene plant. A similar system was implemented in the hydrotreating and benzene recovery sections of the plant`s pyrolysis-gasoline treating unit. Hyundai Petrochemical started up its olefins complex on Korea`s western seaboard in late 1991. The Daesan complex comprises 10 plants, including naphtha cracking, monomer, and polymer units. Additional support facilities include: industrial water treatment plants; electric generators; automatic storage systems; a jetty with capacity to berth 100,000 dwt and 10,000 dwt ships simultaneously; a research and development center. The plant`s capacity is 350,000 mty ethylene and 175,000 mty propylene, based on 7,200 operating hr/year. Since start-up, naphtha has been the primary feed, but the plant was designed with flexibility to process C{sub 3}/C{sub 4} (LPG) and gas oil feeds. This paper reviews the project management and decision making process along with the computerized control system design.

Yoon, S. [Hyundai Petrochemical Co. Ltd., Daesan (Korea, Republic of); Dasgupta, S.; Mijares, G. [M.W. Kellogg Co., Houston, TX (United States)

1996-06-17T23:59:59.000Z

263

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES), a subsidiary of ChevronTexaco, General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc. GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP, Phase II RD&T included tests of an alternative (to Rentech's Dynamic Settler) primary catalyst/wax separation device and secondary catalyst/wax separation systems. The team evaluated multiple technologies for both primary and secondary catalyst/wax separation. Based on successful testing at Rentech (outside of DOE funding) and difficulties in finalizing a contract to demonstrate alternative primary catalyst/wax separation technology (using magnetic separation technology), ChevronTexaco has selected the Rentech Dynamic Settler for primary catalyst/wax separation. Testing has shown the Dynamic Settler is capable of producing filtrate exceeding the proposed EECP primary catalyst/wax separation goal of less than 0.1 wt%. The LCI Scepter{reg_sign} Microfiltration system appeared to be best suited for producing a filtrate that met the EECP secondary catalyst/wax separation standards of 10 parts per million (weight) [ppmw]. The other technologies, magnetic separation and electrostatic separation, were promising and able to reduce the solids concentrations in the filtrate. Additional RD&T will be needed for magnetic separation and electrostatic separation technologies to obtain 10 ppmw filtrate required for the proposed EECP. The Phase II testing reduces the technical and economic risks and provides the information necessary to proceed with the development of an engineering design for the EECP Fischer-Tropsch catalyst/wax separation system.

John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Roko Bujas; Ming He; Ken Kwik; Charles H. Schrader; Lalit Shah; Dennis Slater; Donald Todd; Don Wall

2003-08-21T23:59:59.000Z

264

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to its detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES) (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR). The work was under cooperative agreements with the U.S. Department of Energy (DOE). TES is providing the gasification technology and the Fischer-Tropsch (F-T) technology developed by Rentech Inc., GE is providing the combustion turbine technology, Praxair is providing the air separation technology, and KBR is providing overall engineering. Each of the EECP's subsystems was assessed for technical risks and barriers in Phase I. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP concept, Phase II RD&T included tests for secondary catalyst/wax separation systems as part of Task 2.3--Catalyst/Wax Separation. The LCI Scepter{reg_sign} Microfiltration system was determined to be best suited for producing a filtrate that met the EECP secondary catalyst/wax separation standards of producing F-T wax containing less than10 ppmw solids. As part of task 2.3, micro-filtration removal efficiencies and production rates for two FT feeds, Rentech Inc. bubble column reactor (BCR) product and LaPorte Alternative Fuels Development Unit (AFDU) product, were evaluated. Based on comparisons between the performances of these two materials, the more readily available LaPorte AFDU material was judged an acceptable analog to the BCR material that would be produced in a larger-scale F-T synthesis. The present test was initiated to obtain data in an extended range of concentration for use in the scale-up design of the secondary catalyst/wax separation system that would be operating at the EECP capacity.

John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Ming He; Charles H. Schrader; Lalit Shah; Donald Todd; Robert Schavey

2004-01-12T23:59:59.000Z

265

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using petroleum coke and ChevronTexaco's proprietary gasification technology. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC. (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). ChevronTexaco is providing gasification technology and Fischer-Tropsch technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified F-T reactor scale-up as a potential technical risk. The objective of Task 2.3 was to confirm engineering models that allow scale-up to commercial slurry phase bubble column (SPBC) reactors operating in the churn-turbulent flow regime. In developmental work outside the scope of this project, historical data, literature references, and a scale-up from a 1 1/2-in. (3.8 cm) to 6-ft (1.8 m) SPBC reactor have been reviewed. This review formed the background for developing scale-up models for a SPBC reactor operating in the churn-turbulent flow regime. The necessary fundamental physical parameters have been measured and incorporated into the mathematical catalyst/kinetic model developed from the SPBC and CSTR work outside the scope of this EECP project. The mathematical catalyst/kinetic model was used to compare to experimental data obtained at Rentech during the EECP Fischer-Tropsch Confirmation Run (Task 2.1; reported separately). The prediction of carbon monoxide (CO) conversion as a function of days on stream compares quite closely to the experimental data.

Randy Roberts

2003-04-25T23:59:59.000Z

266

A nuclear criticality safety assessment of the loss of moderation control in 2 1/2 and 10-ton cylinders containing enriched UF{sub 6}  

SciTech Connect (OSTI)

Moderation control for maintaining nuclear criticality safety in 2 {1/2}-ton, 10-ton, and 14-ton cylinders containing enriched uranium hexafluoride (UF{sub 6}) has been used safely within the nuclear industry for over thirty years, and is dependent on cylinder integrity and containment. This assessment evaluates the loss of moderation control by the breaching of containment and entry of water into the cylinders. The first objective of this study was to estimate the required amounts of water entering these large UF{sub 6} cylinders to react with, and to moderate the uranium compounds sufficiently to cause criticality. Hypothetical accident situations were modeled as a uranyl fluoride (UO{sub 2}F{sub 2}) slab above a UF{sub 6} hemicylinder, and a UO{sub 2}F{sub 2} sphere centered within a UF{sub 6} hemicylinder. These situations were investigated by computational analyses utilizing the KENO V.a Monte Carlo Computer Code. The results were used to estimate both the masses of water required for criticality, and the limiting masses of water that could be considered safe. The second objective of the assessment was to calculate the time available for emergency control actions before a criticality would occur, i.e., a {open_quotes}safetime{close_quotes}, for various sources of water and different size openings in a breached cylinder. In the situations considered, except the case for a fire hose, the safetime appears adequate for emergency control actions. The assessment shows that current practices for handling moderation controlled cylinders of low enriched UF{sub 6}, along with the continuation of established personnel training programs, ensure nuclear criticality safety for routine and emergency operations.

Newvahner, R.L. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States); Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

267

Authorized Limits for the Release of a 25 Ton Locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly Facility, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This document contains process knowledge and radiological data and analysis to support approval for release of the 25-ton locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly (EMAD) Facility, located on the Nevada Test Site (NTS). The 25-ton locomotive is a small, one-of-a-kind locomotive used to move railcars in support of the Nuclear Engine for Rocket Vehicle Application project. This locomotive was identified as having significant historical value by the Nevada State Railroad Museum in Boulder City, Nevada, where it will be used as a display piece. A substantial effort to characterize the radiological conditions of the locomotive was undertaken by the NTS Management and Operations Contractor, National Security Technologies, LLC (NSTec). During this characterization process, seven small areas on the locomotive had contamination levels that exceeded the NTS release criteria (limits consistent with U.S. Department of Energy [DOE] Order DOE O 5400.5, “Radiation Protection of the Public and the Environment”). The decision was made to perform radiological decontamination of these known accessible impacted areas to further the release process. On February 9, 2010, NSTec personnel completed decontamination of these seven areas to within the NTS release criteria. Although all accessible areas of the locomotive had been successfully decontaminated to within NTS release criteria, it was plausible that inaccessible areas of the locomotive (i.e., those areas on the locomotive where it was not possible to perform radiological surveys) could potentially have contamination above unrestricted release limits. To access the majority of these inaccessible areas, the locomotive would have to be disassembled. A complete disassembly for a full radiological survey could have permanently destroyed parts and would have ruined the historical value of the locomotive. Complete disassembly would also add an unreasonable financial burden for the contractor. A decision was reached between the NTS regulator and NSTec, opting for alternative authorized limits from DOE Headquarters. In doing so, NSTec personnel performed a dose model using the DOE-approved modeling code RESRAD-BUILD v3.5 to evaluate scenarios. The parameters used in the dose model were conservative. NSTec’s Radiological Engineering Calculation, REC-2010-001, “Public Dose Estimate from the EMAD 25 Ton Locomotive,” concluded that the four scenarios evaluated were below the 25-millirem per year limit, the “likely” dose scenarios met the “few millirem in a year” criteria, and that the EMAD 25-ton locomotive met the radiological requirements to be released with residual radioactivity to the public.

Jeremy Gwin and Douglas Frenette

2010-04-08T23:59:59.000Z

268

Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual  

SciTech Connect (OSTI)

In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

Not Available

1981-06-25T23:59:59.000Z

269

Plants & Animals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Los Alamos, NM 87545 (505) 667-0216 Email We sample many plants and animals, including wild and domestic crops, game animals, fish, and food products from animals, as well as...

270

Pilot plant used to develop load and pressure controller  

SciTech Connect (OSTI)

Viewed from the perspective of the power-generation mixture in Japan, nuclear power plants will continue to be operated to meet the base load. Meanwhile, integrated coal gasification combined cycle (IGCC) power plants will be required to serve as thermal power plants to cover the middle load, as is the case with conventional thermal power plants. In terms of operational performance, therefore, IGCC power plants will need to have a capability of following a wide range of load demand at high speed. For this purpose, a load and pressure controller was developed and tested during the operational research on a 200 tons/day entrained flow IGCC pilot plant at the Nakoso Power Station by the Engineering Research Association for IGCC Power Systems (IGC Association). This article reports on the development of the load and pressure controller and the results of the control test carried out to check the load follow capability of the pilot plant, while touching upon the simulation study also being conducted.

Nagata, Kazue; Yamada, Toshihiro; Hiza, Tomoyuki

1997-02-01T23:59:59.000Z

271

Coking Coal Import Costs - EIA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil andMCKEESPORTfor the

272

ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS  

SciTech Connect (OSTI)

This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2004 through August 2004. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. Results highlighted in this report include evaluation of the performance of PMCAMx+ for an air pollution episode in the Eastern US, an emission profile for a coke production facility, ultrafine particle composition during a nucleation event, and a new hybrid approach for source apportionment. An agreement was reached with a utility to characterize fine particle and mercury emissions from a commercial coal fired power. Research in the next project period will include source testing of a coal fired power plant, source apportionment analysis, emission scenario modeling with PMCAMx+, and writing up results for submission as journal articles.

Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

2004-12-01T23:59:59.000Z

273

Scale-up of mild gasification to be a process development unit mildgas 24 ton/day PDU design report. Final report, November 1991--July 1996  

SciTech Connect (OSTI)

From November 1991 to April 1996, Kerr McGee Coal Corporation (K-M Coal) led a project to develop the Institute of Gas Technology (IGT) Mild Gasification (MILDGAS) process for near-term commercialization. The specific objectives of the program were to: design, construct, and operate a 24-tons/day adiabatic process development unit (PDU) to obtain process performance data suitable for further design scale-up; obtain large batches of coal-derived co-products for industrial evaluation; prepare a detailed design of a demonstration unit; and develop technical and economic plans for commercialization of the MILDGAS process. The project team for the PDU development program consisted of: K-M Coal, IGT, Bechtel Corporation, Southern Illinois University at Carbondale (SIUC), General Motors (GM), Pellet Technology Corporation (PTC), LTV Steel, Armco Steel, Reilly Industries, and Auto Research.

NONE

1996-03-01T23:59:59.000Z

274

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). Phase II RD&T Task 2.6 identified as potential technical risks to the EECP the fuel/engine performance and emissions of the F-T diesel fuel products. Hydrotreating the neat F-T diesel product reduces potentially reactive olefins, oxygenates, and acids levels and alleviates corrosion and fuel stability concerns. Future coproduction plants can maximize valuable transportation diesel by hydrocracking the F-T Synthesis wax product to diesel and naphtha. The upgraded neat F-T diesel, hydrotreater F-T diesel, and hydrocracker F-T diesel products would be final blending components in transportation diesel fuel. Phase II RD&T Task 2.6 successfully carried out fuel lubricity property testing, fuel response to lubricity additives, and hot-start transient emission tests on a neat F-T diesel product, a hydrocracker F-T diesel product, a blend of hydrotreater and hydrocracker F-T diesel products, and a Tier II California Air Resources Board (CARB)-like diesel reference fuel. Only the neat F-T diesel passed lubricity inspection without additive while the remaining three fuel candidates passed with conventional additive treatment. Hot-start transient emission tests were conducted on the four fuels in accordance with the U.S. Environmental Protection Agency (EPA) Federal Test Procedure (FTP) specified in Code of Federal Regulations, Title 40, Part 86, and Subpart N on a rebuilt 1991 Detroit Diesel Corporation Series 60 heavy-duty diesel engine. Neat F-T diesel fuel reduced oxides of nitrogen (NO{sub x}), total particulate (PM), hydrocarbons (HC), carbon monoxide (CO), and the Soluble Organic Fraction (SOF) by 4.5%, 31%, 50%, 29%, and 35%, respectively, compared to the Tier II CARB-like diesel. The hydrocracker F-T diesel product and a blend of hydrocracker and hydrotreater F-T diesel products also reduced NO{sub x}, PM, HC, CO and SOF by 13%, 16% to 17%, 38% to 63%, 17% to 21% and 21% to 39% compared to the Tier II CARB-like diesel. The fuel/engine performance and emissions of the three F-T diesel fuels exceed the performance of a Tier II CARB-like diesel. Phase II RD&T Task 2.6 successfully met the lubricity property testing and F-T diesel fuel hot-start transient emissions test objectives. The results of the testing help mitigate potential economic risks on obtaining a premium price for the F-T diesel fuel

Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; J. Erwin; Matthew G. Banks; Terry L. Ullman

2004-01-12T23:59:59.000Z

275

Illinois State Geological Survey Evaluation of CO2 Capture Options from Ethanol Plants  

SciTech Connect (OSTI)

The Illinois State Geological Survey and the Midwest Geological Sequestration Consortium are conducting CO{sub 2} sequestration and enhanced oil recovery testing at six different sites in the Illinois Basin. The capital and operating costs for equipment to capture and liquefy CO{sub 2} from ethanol plants in the Illinois area were evaluated so that ethanol plants could be considered as an alternate source for CO{sub 2} in the event that successful enhanced oil recovery tests create the need for additional sources of CO{sub 2} in the area. Estimated equipment and operating costs needed to capture and liquefy 68 metric tonnes/day (75 tons/day) and 272 tonnes/day (300 tons/day) of CO{sub 2} for truck delivery from an ethanol plant are provided. Estimated costs are provided for food/beverage grade CO{sub 2} and also for less purified CO{sub 2} suitable for enhanced oil recovery or sequestration. The report includes preliminary plant and equipment designs and estimates major capital and operating costs for each of the recovery options. Availability of used equipment was assessed.

Robert Finley

2006-09-30T23:59:59.000Z

276

(Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S.  

E-Print Network [OSTI]

176 TIN (Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms used about 92% of the primary tin consumed

277

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

170 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 90% of the primary tin consumed domestically in 2012. The major uses were as follows

278

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S.  

E-Print Network [OSTI]

174 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms used about 80% of the primary tin consumed

279

(Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1998, there was no domestic tin mine production. Production of tin at the only U.S.  

E-Print Network [OSTI]

180 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1998, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 85% of the primary tin. The major uses

280

(Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1997, there was no domestic tin mine production. Production of tin at the only  

E-Print Network [OSTI]

178 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1997, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 85% of the primary tin. The major uses

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

172 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 81% of the primary tin consumed domestically in 2006. The major uses were as follows

282

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

172 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 86% of the primary tin consumed domestically in 2008. The major uses were as follows

283

(Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1999, there was no domestic tin mine production. Production of tin at the only  

E-Print Network [OSTI]

176 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1999, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 97% of the primary tin. The major uses

284

(Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S.  

E-Print Network [OSTI]

174 TIN (Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms used about 77% of the primary tin consumed

285

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

176 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 81% of the primary tin consumed domestically in 2005. The major uses were as follows

286

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

170 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 84% of the primary tin consumed domestically in 2009. The major uses were as follows

287

(Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1996, there was no domestic tin mine production. Production of tin at the only U.S.  

E-Print Network [OSTI]

178 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1996, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 85% of the primary tin. The major uses

288

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

168 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms accounted for about 90% of the primary tin consumed domestically in 2013. The major uses for tin

289

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

170 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 91% of the primary tin consumed domestically in 2010. The major uses were as follows

290

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

176 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 84% of the primary tin consumed domestically in 2007. The major uses were as follows

291

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1997 was essentially unchanged at 1.9 million metric  

E-Print Network [OSTI]

52 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Mexico, Nevada, and Montana, accounted for 98% of domestic production; copper was also recovered at mines in six other States. While copper was recovered at about 35 mines operating in the United States, 15

292

Bagdad Plant  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid- EngineB2Bagdad Plant 585 Silicon

293

Synthetic Biology and reshaping plant form Jim Haseloff  

E-Print Network [OSTI]

Industrial Revolution: based on innovations in coal, iron, steam and mechanical engineering #12; Steam power machines.This enabled rapid development of e cient semi-automated factories Iron founding - Coke replaced

Rosso, Lula

294

Plant Operational Status - Pantex Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews & Blog »Physics PhysicsWeek »Plant

295

Economic analysis of coal-fired cogeneration plants for Air Force bases  

SciTech Connect (OSTI)

The Defense Appropriations Act of 1986 requires the Department of Defense to use an additional 1,600,000 tons/year of coal at their US facilities by 1995 and also states that the most economical fuel should be used at each facility. In a previous study of Air Force heating plants burning gas or oil, Oak Ridge National Laboratory found that only a small fraction of this target 1,600,000 tons/year could be achieved by converting the plants where coal is economically viable. To identify projects that would use greater amounts of coal, the economic benefits of installing coal-fired cogeneration plants at 7 candidate Air Force bases were examined in this study. A life-cycle cost analysis was performed that included two types of financing (Air Force and private) and three levels of energy escalation for a total of six economic scenarios. Hill, McGuire, and Plattsburgh Air Force Bases were identified as the facilities with the best potential for coal-fired cogeneration, but the actual cost savings will depend strongly on how the projects are financed and to a lesser extent on future energy escalation rates. 10 refs., 11 figs., 27 tabs.

Holcomb, R.S.; Griffin, F.P.

1990-10-01T23:59:59.000Z

296

CORROSION OF ALUMINUM CLAD SPENT NUCLEAR FUEL IN THE 70 TON CASK DURING TRANSFER FROM L AREA TO H-CANYON  

SciTech Connect (OSTI)

Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material with the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33 % was found after 1 year in the cask with a maximum temperature of 260 {degrees}C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 {degrees}C. These losses are not expected to impact the overall confinement function of the aluminum cladding.

Mickalonis, J.

2014-06-01T23:59:59.000Z

297

Black Bear Prep plant replaces high-frequency screens with fine wire sieves  

SciTech Connect (OSTI)

At the Black Bear prep plant (near Wharncliffe, WV, USA) the clean coal from the spirals traditionally reported to high-frequency screens, which removed high-ash clay fines. Screens have inherent inefficiencies that allow clean coal to report to the screen underflow. The goal of this project was to capture the maximum amount of spiral clean coal while still removing the high-ash clay material found in the spiral product. The reduction of the circulating load and plant downtime for unscheduled maintenance were projected as additional benefits. After the plant upgrade, the maintenance related to the high frequency screens was eliminated and an additional 2.27 tons per hour (tph) of fine coal was recovered, which resulted in a payback period of less than one year. The article was adapted from a paper presented at Coal Prep 2007 in April 2007, Lexington, KY, USA. 1 ref., 1 fig., 1 tab.

Barbee, C.J.; Nottingham, J.

2007-12-15T23:59:59.000Z

298

The start-up of the DIOS pilot plant (DIOS Project)  

SciTech Connect (OSTI)

The DIOS process has been successfully developed as an 8-year project commenced in April 1988. Based on the results of the element studies reported at the previous conference and at other meetings, the pilot plant, with a designed capacity of 500 t/d, was constructed and started up in october 1993. After the starting operation with the single smelting reduction furnace in the beginning of the first campaign, the pilot plant has been principally operated in integration, that is, with the smelting reduction furnace connected with the preheating and prereduction furnaces. So far five campaigns have been successfully conducted on schedule. The operation has been improved gradually and the designed performance has been achieved. New processes are targeted at the direct use of coal and iron ore fines to eliminate not only the problematic coke ovens but also pellet and sinter plants. The direct smelting reduction processes currently at the most advanced stage of development are the DIOS in Japan, the AISI in the USA and the HIsmelt in Australia.

Sawada, Terutoshi

1995-12-01T23:59:59.000Z

299

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect (OSTI)

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

Unknown

2003-01-01T23:59:59.000Z

300

Development of an advanced, continuous mild gasification process for the production of co-products  

SciTech Connect (OSTI)

The principal finding of this study was the high capital cost and poor financial performance predicted for the size and configuration of the plant design presented. The XBi financial assessment gave a disappointingly low base-case discounted cash flow rate of return (DCFRR) of only 8.1% based on a unit capital cost of $900 per ton year (tpy) for their 129,000 tpy design. This plant cost is in reasonable agreement with the preliminary estimates developed by J.E. Sinor Associates for a 117,000 tpy plant based on the FMC process with similar auxiliaries (Sinor, 1989), for which a unit capital costs of $938 tpy was predicted for a design that included char beneficiation and coal liquids upgrading--or about $779 tpy without the liquid upgrading facilities. The XBi assessment points out that a unit plant cost of $900 tpy is about three times the cost for a conventional coke oven, and therefore, outside the competitive range for commercialization. Modifications to improve process economics could involve increasing plant size, expanding the product slate that XBi has restricted to form coke and electricity, and simplifying the plant flow sheet by eliminating marginally effective cleaning steps and changing other key design parameters. Improving the financial performance of the proposed formed coke design to the level of a 20% DCFRR based on increased plant size alone would require a twenty-fold increase to a coal input of 20,000 tpd and a coke production of about 2.6 minion tpy--a scaling exponent of 0.70 to correct plant cost in relation to plant size.

Cohen, L.R. (Xytel-Bechtel, Inc. (United States)); Hogsett, R.F. (AMAX Research and Development Center, Golden, CO (United States)); Sinor, J.E. (Sinor (J.E.) Consultants, Inc., Niwot, CO (United States)); Ness, R.O. Jr.; Runge, B.D. (North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center)

1992-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Development of an advanced, continuous mild gasification process for the production of co-products. Task 4.6, Economic evaluation  

SciTech Connect (OSTI)

The principal finding of this study was the high capital cost and poor financial performance predicted for the size and configuration of the plant design presented. The XBi financial assessment gave a disappointingly low base-case discounted cash flow rate of return (DCFRR) of only 8.1% based on a unit capital cost of $900 per ton year (tpy) for their 129,000 tpy design. This plant cost is in reasonable agreement with the preliminary estimates developed by J.E. Sinor Associates for a 117,000 tpy plant based on the FMC process with similar auxiliaries (Sinor, 1989), for which a unit capital costs of $938 tpy was predicted for a design that included char beneficiation and coal liquids upgrading--or about $779 tpy without the liquid upgrading facilities. The XBi assessment points out that a unit plant cost of $900 tpy is about three times the cost for a conventional coke oven, and therefore, outside the competitive range for commercialization. Modifications to improve process economics could involve increasing plant size, expanding the product slate that XBi has restricted to form coke and electricity, and simplifying the plant flow sheet by eliminating marginally effective cleaning steps and changing other key design parameters. Improving the financial performance of the proposed formed coke design to the level of a 20% DCFRR based on increased plant size alone would require a twenty-fold increase to a coal input of 20,000 tpd and a coke production of about 2.6 minion tpy--a scaling exponent of 0.70 to correct plant cost in relation to plant size.

Cohen, L.R. [Xytel-Bechtel, Inc. (United States); Hogsett, R.F. [AMAX Research and Development Center, Golden, CO (United States); Sinor, J.E. [Sinor (J.E.) Consultants, Inc., Niwot, CO (United States); Ness, R.O. Jr.; Runge, B.D. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

1992-10-01T23:59:59.000Z

302

CONSOL Energy invests in West Virginia CTL plant  

SciTech Connect (OSTI)

Working with Synthesis Energy Systems (SES), America's leading bituminous coal producer assists with the engineering design package for a coal gasification and liquefaction plant to be located near Benwood in West Virginia. Coal will be converted to syngas using SES's proprietary U-GAS technology. The syngas is expected to be used to produce about 720,000 metric tons per year of methanol. The U-GAS technology is licensed from the Gas Technology Institute (GTI). The article explains how the GTI gasification process works. It is based on a surge-stage fluidised bed for production of low-to-medium calorific value synthesis gas from a variety of feedstocks, including coal. 2 figs.

NONE

2008-10-15T23:59:59.000Z

303

Waste Treatment Plant Overview  

Office of Environmental Management (EM)

contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the...

304

MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS  

SciTech Connect (OSTI)

The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

2009-03-31T23:59:59.000Z

305

Feasibility study for a demonstration plant for liquefaction and coprocessing of waste plastics and tires  

SciTech Connect (OSTI)

The results of a feasibility study for a demonstration plant for the liquefaction of waste polymers and the coprocessing of waste polymers with coal are presented. The study was carried out by a committee of participants from five universities, the US DOE Federal Energy Technology Center, and Burns & Roe Corporation. The study included an assessment of current recycling practices, a review of pertinent research, and a survey of feedstock availability. A conceptual design for a demonstration plant was developed and a preliminary economic analysis for various feedstock mixes was carried out. The base case for feedstock scenarios was chosen to be 200 tons per day of waste plastic and 100 tons per day of waste tires. For this base case, the return on investment (ROI) was found to range from 8% to 16% as tipping fees for waste plastic and tires increased over a range comparable to that existing in the US. A number of additional feedstock scenarios that were both more and less profitable were also considered and are briefly discussed.

Huffman, G.P.; Shah, N. [Univ. of Kentucky, Lexington, KY (United States); Shelley, M. [Auburn Univ., AL (United States)] [and others

1998-04-01T23:59:59.000Z

306

NUCLEAR PLANT OPERATIONS AND  

E-Print Network [OSTI]

NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: neutron flux, cur- rent noise, vibration diagnostics: Swedish Nuclear Powe

Pázsit, Imre

307

Ethylene insensitive plants  

SciTech Connect (OSTI)

Nucleic acid and polypeptide sequences are described which relate to an EIN6 gene, a gene involved in the plant ethylene response. Plant transformation vectors and transgenic plants are described which display an altered ethylene-dependent phenotype due to altered expression of EIN6 in transformed plants.

Ecker, Joseph R. (Carlsbad, CA); Nehring, Ramlah (La Jolla, CA); McGrath, Robert B. (Philadelphia, PA)

2007-05-22T23:59:59.000Z

308

Plant fatty acid hydroxylases  

DOE Patents [OSTI]

This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

Somerville, Chris (Portola Valley, CA); Broun, Pierre (Burlingame, CA); van de Loo, Frank (Lexington, KY)

2001-01-01T23:59:59.000Z

309

(Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: In 2000, the United States consumed about 13% of world chromite ore production in  

E-Print Network [OSTI]

--United States:1 1996 1997 1998 1999 2000e Production: Mine -- -- -- -- -- Secondary 98 120 104 118 110 Imports Consumption: Reported2 (excludes secondary) 275 333 277 298 280 Apparent3 (includes secondary) 467 490 531 558 was then expanded through the addition of furnaces and plant enhancements that improved recovery and reduced cost

310

Purex Plant gaseous iodine-129 control capability and process development requirements  

SciTech Connect (OSTI)

This report describes the ability of the Purex Plant to effectively control iodine-129 emissions. Based on historical evidence, the current Purex Plant iodine control system appears capable of meeting the goal of limiting gaseous iodine-129 emissions at the point of discharge to levels stipulated by the Department of Energy (DOE) for an uncontrolled area. Expected decontamination factors (DF`s) with the current system will average about 100 and will be above the calculated DF`s of 2.2 and 87 required to meet DOE yearly average concentration limits for controlled and uncontrolled areas respectively, but below the calculated DF of 352 required for meeting the proposed Environmental Protection Agency (EPA) mass emission limit. Chemical costs for maintaining compliance with the DOE limits will be approximately $166 per metric ton of fuel processed (based on a silver nitrate price of $12.38/oz). Costs will increase in proportion to increases in silver prices.

Evoniuk, C.J.

1981-01-01T23:59:59.000Z

311

Investigation of coal stockpiles of Tuncbilek thermal power plant with respect to time under atmospheric conditions  

SciTech Connect (OSTI)

Thermal power plants have delayed the coal that they will use at stockpiles mandatorily. If these coal stockpiles remain at the stockyards over a certain period of time, a spontaneous combustion can be started itself. Coal stocks under combustion threat can cost too much economically to coal companies. Therefore, it is important to take some precautions for saving the stockpiles from the spontaneous combustion. In this research a coal stockpile at Tuncbilek Thermal Power Plant which was formed in 5 m wide, 10 m long, and 3 m height with a weight of 120 tons to observe internal temperature changes with respect to time under normal atmospheric conditions. Later, internal temperature measurements were obtained at 20 points distributed all over two layers in the stockpile. The parameters, such as air temperature, humidity, atmosphere pressure, wind speed and direction, which are effective on the stockpiles, were measured and used to obtain the graphs of stockpiles' internal temperature.

Ozdeniz, A.H. [Selcuk University, Konya (Turkey). Dept. of Mining Engineering

2009-07-01T23:59:59.000Z

312

Peat-Gasification Pilot-Plant Program. Final report, April 9, 1980-March 31, 1983  

SciTech Connect (OSTI)

The objective of this program was twofold: (1) to modify an existing pilot plant and (2) to operate the pilot plant with peat to produce substitute natural gas (SNG). Activities included the design, procurement, and installation of peat drying, grinding, screening, and lockhopper feed systems. Equipment installed for the program complements the existing pilot plant facility. After shakedown of the new feed preparation equipment (drying, screening, and crushing) was successfully completed, the first integrated pilot plant test was conducted in April 1981 to provide solids flow data and operating experience with the new PEATGAS gasifier configuration. Three gasification tests were subsequently conducted using the existing slurry feed system. The lockhopper feed system, capable of providing a continuous, measured flow of 1 to 4 tons of dry feed at pressures up to 500 psig, was then successfully integrated with the gasifier. Two gasification tests were conducted, expanding the data to more economical operating conditions. The operation of the PEATGAS pilot plant has confirmed that peat is an excellent raw material for SNG production. Peat conversions over 90% were consistently achieved at moderate gasification temperatures and at sinter-free conditions. A large data base was established for Minnesota peat at pressure 1.0. The technical feasibility of the PEATGAS process has been successfully demonstrated. However, an economic assessment of the peat gasification process indicates that the cost of the peat feedstock delivered to a plant site has a significant effect on the cost of the product SNG. 28 figures, 36 tables.

Not Available

1983-03-01T23:59:59.000Z

313

EARLY ENTRANCE CO-PRODUCTION PLANT-DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect (OSTI)

Waste Processors Management, Inc. (WMPI), along with its subcontractors entered into a Cooperative Agreement with the US Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from April 1, 2002 through June 30, 2002.

Unknown

2002-07-01T23:59:59.000Z

314

Integrated coal preparation and CWF processing plant: Conceptual design and costing  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), Pittsburgh Energy Technology Center, a study was conducted to provide DOE with a reliable, documented estimate of the cost of producing coal-water fuel (CWF). The approach to the project was to specify a plant capacity and location, identify and analyze a suitable coal, and develop a conceptual design for an integrated coal preparation and CWF processing plant. Using this information, a definitive costing study was then conducted, on the basis of which an economic and sensitivity analysis was performed utilizing a financial evaluation model to determine a price for CWF in 1992. The design output of the integrated plant is 200 tons of coal (dry basis) per hour. Operating at a capacity factor of 83 percent, the baseline design yields approximately 1.5 million tons per year of coal on a dry basis. This is approximately equivalent to the fuel required to continuously generate 500 MW of electric power. The CWF produced by the plant is intended as a replacement for heavy oil or gas in electric utility and large industrial boilers. The particle size distribution, particularly the top size, and the ash content of the coal in the CWF are specified at significantly lower levels than is commonly found in typical pulverized coal grinds. The particle top size is 125 microns (vs typically 300m[mu] for pulverized coal) and the coal ash content is 3.8 percent. The lower top size is intended to promote complete carbon burnout at less derating in boilers that are not designed for coal firing. The reduced mineral matter content will produce ash of very fine particle size during combustion, which leads to less impaction and reduced fouling of tubes in convective passages.

McHale, E.T.; Paul, A.D.; Bartis, J.T. (Science Applications International Corp., McLean, VA (United States)); Korkmaz, M. (Roberts and Schaefer Co., Salt Lake City, UT (United States))

1992-12-01T23:59:59.000Z

315

Integrated coal preparation and CWF processing plant: Conceptual design and costing. Final technical report  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), Pittsburgh Energy Technology Center, a study was conducted to provide DOE with a reliable, documented estimate of the cost of producing coal-water fuel (CWF). The approach to the project was to specify a plant capacity and location, identify and analyze a suitable coal, and develop a conceptual design for an integrated coal preparation and CWF processing plant. Using this information, a definitive costing study was then conducted, on the basis of which an economic and sensitivity analysis was performed utilizing a financial evaluation model to determine a price for CWF in 1992. The design output of the integrated plant is 200 tons of coal (dry basis) per hour. Operating at a capacity factor of 83 percent, the baseline design yields approximately 1.5 million tons per year of coal on a dry basis. This is approximately equivalent to the fuel required to continuously generate 500 MW of electric power. The CWF produced by the plant is intended as a replacement for heavy oil or gas in electric utility and large industrial boilers. The particle size distribution, particularly the top size, and the ash content of the coal in the CWF are specified at significantly lower levels than is commonly found in typical pulverized coal grinds. The particle top size is 125 microns (vs typically 300m{mu} for pulverized coal) and the coal ash content is 3.8 percent. The lower top size is intended to promote complete carbon burnout at less derating in boilers that are not designed for coal firing. The reduced mineral matter content will produce ash of very fine particle size during combustion, which leads to less impaction and reduced fouling of tubes in convective passages.

McHale, E.T.; Paul, A.D.; Bartis, J.T. [Science Applications International Corp., McLean, VA (United States); Korkmaz, M. [Roberts and Schaefer Co., Salt Lake City, UT (United States)

1992-12-01T23:59:59.000Z

316

Tracking Progress Last updated 6/2/2014 Current and Expected Energy From Coal for California 1  

E-Print Network [OSTI]

2007 to 2012, energy from in-state coal and petroleum (pet) coke plants declined by 62 percent. These trends are shown in Figure 1. Eight in-state coal and pet coke plants retired or stopped operating in 2011 and 2012. Of the 16 in-state coal and pet coke plants that once operated in California, only two

317

Technology Data for Energy Plants June 2010  

E-Print Network [OSTI]

............................................................................................... 79 13 Centralised Biogas Plants

318

Plant Phenotype Characterization System  

SciTech Connect (OSTI)

This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

Daniel W McDonald; Ronald B Michaels

2005-09-09T23:59:59.000Z

319

Energy and materials savings from gases and solid waste recovery in the iron and steel industry in Brazil: An industrial ecology approach  

SciTech Connect (OSTI)

This paper attempts to investigate, from an entropic point of view, the role of selected technologies in the production, transformation, consumption and release of energy and materials in the Iron and Steel Industry in Brazil. In a quantitative analysis, the potential for energy and materials savings with recovery of heat, gases and tar are evaluated for the Iron and Steel Industry in Brazil. The technologies for heat recovery of gases include Coke Dry Quenching (CDQ), applied only in one of the five Brazilian coke integrated steel plants, Top Gas Pressure Recovery Turbines (TPRT), recovery of Coke Oven Gas (COG), recovery of Blast Furnace Gas (BFG), recovery of BOF gas, recovery of tar, and thermal plant. Results indicate that, in a technical scenario, some 5.1 TWh of electricity can be generated if these technologies are applied to recover these remaining secondary fuels in the Iron and Steel Industry in Brazil, which is equivalent to some 45% of current total electricity consumption in the integrated plants in the country. Finally, solid waste control technologies, including options available for collection and treatment, are discussed. Estimates using the best practice methodology show that solid waste generation in the Iron and Steel Industry in Brazil reached approximately 18 million metric tons in 1994, of which 28% can be recirculated if the best practice available in the country is applied thoroughly.

Costa, M.M.; Schaeffer, R.

1997-07-01T23:59:59.000Z

320

Plant centromere compositions  

DOE Patents [OSTI]

The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

Mach, Jennifer M. (Chicago, IL); Zieler, Helge (Del Mar, CA); Jin, RongGuan (Chesterfield, MO); Keith, Kevin (Three Forks, MT); Copenhaver, Gregory P. (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

2011-08-02T23:59:59.000Z

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Plant centromere compositions  

DOE Patents [OSTI]

The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

Mach, Jennifer (Chicago, IL); Zieler, Helge (Chicago, IL); Jin, RongGuan (Chicago, IL); Keith, Kevin (Chicago, IL); Copenhaver, Gregory (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

2007-06-05T23:59:59.000Z

322

Plant centromere compositions  

DOE Patents [OSTI]

The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

Keith, Kevin; Copenhaver, Gregory; Preuss, Daphne

2006-10-10T23:59:59.000Z

323

Plant centromere compositions  

DOE Patents [OSTI]

The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

Mach, Jennifer (Chicago, IL); Zieler, Helge (Chicago, IL); Jin, James (Chicago, IL); Keith, Kevin (Chicago, IL); Copenhaver, Gregory (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

2006-06-26T23:59:59.000Z

324

Plant centromere compositions  

DOE Patents [OSTI]

The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

Mach; Jennifer M. (Chicago, IL), Zieler; Helge (Del Mar, CA), Jin; RongGuan (Chesterfield, MO), Keith; Kevin (Three Forks, MT), Copenhaver; Gregory P. (Chapel Hill, NC), Preuss; Daphne (Chicago, IL)

2011-11-22T23:59:59.000Z

325

Poisonous Plant Management.  

E-Print Network [OSTI]

. Carefully examine plants being grazed. Generally, a Significant quantity of toxic plant must be consumed to be lethaL Many times these plants are readily identified in the field by evidence of grazing. Also helpful at this time is a rumen sample... poisonous plants were most severe at heavy stocking rates, while few losses occurred at light stocking levels. Death ? losses were also directly related to kinds or combinations of livestock being grazed. When combinations of cattle, sheep and goats...

McGinty, Allan

1985-01-01T23:59:59.000Z

326

Plant design: Integrating Plant and Equipment Models  

SciTech Connect (OSTI)

Like power plant engineers, process plant engineers must design generating units to operate efficiently, cleanly, and profitably despite fluctuating costs for raw materials and fuels. To do so, they increasingly create virtual plants to enable evaluation of design concepts without the expense of building pilot-scale or demonstration facilities. Existing computational models describe an entire plant either as a network of simplified equipment models or as a single, very detailed equipment model. The Advanced Process Engineering Co-Simulator (APECS) project (Figure 5) sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) seeks to bridge the gap between models by integrating plant modeling and equipment modeling software. The goal of the effort is to provide greater insight into the performance of proposed plant designs. The software integration was done using the process-industry standard CAPE-OPEN (Computer Aided Process Engineering–Open), or CO interface. Several demonstration cases based on operating power plants confirm the viability of this co-simulation approach.

Sloan, David (Alstrom Power); Fiveland, Woody (Alstrom Power); Zitney, S.E.; Osawe, Maxwell (Ansys, Inc.)

2007-08-01T23:59:59.000Z

327

Power Plant Cycling Costs  

SciTech Connect (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

328

NUCLEAR PLANT AND CONTROL  

E-Print Network [OSTI]

NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: software require- ments, safety analysis, formal for the digital protection systems of a nuclear power plant. When spec- ifying requirements for software and CRSA processes are described using shutdown system 2 of the Wolsong nuclear power plants as the digital

329

Arizona Public Service - Alternative Fuel (Hydrogen) Pilot Plant Design Report  

SciTech Connect (OSTI)

Hydrogen has promise to be the fuel of the future. Its use as a chemical reagent and as a rocket propellant has grown to over eight million metric tons per year in the United States. Although use of hydrogen is abundant, it has not been used extensively as a transportation fuel. To assess the viability of hydrogen as a transportation fuel and the viability of producing hydrogen using off-peak electric energy, Pinnacle West Capital Corporation (PNW) and its electric utility subsidiary, Arizona Public Service (APS) designed, constructed, and operates a hydrogen and compressed natural gas fueling station—the APS Alternative Fuel Pilot Plant. This report summarizes the design of the APS Alternative Fuel Pilot Plant and presents lessons learned from its design and construction. Electric Transportation Applications prepared this report under contract to the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Idaho National Engineering and Environmental Laboratory manages these activities for the Advanced Vehicle Testing Activity.

James E. Francfort

2003-12-01T23:59:59.000Z

330

Steam/fuel system optimization report: 6000-tpd SRC-I Demonstration Plant  

SciTech Connect (OSTI)

The design and configuration of the steam and fuel system for the 6000-ton-per-day (tpd) SRC-I Demonstration plant have been optimized, based on requirements for each area of the plant that were detailed in Area Baseline Designs of December 1982. The system was optimized primarily for the two most likely modes of plant operation, that is, when the expanded-bed hydrocracker (EBH) is operating at either high or low conversion, with all other units operating. However, the design, as such, is also operable under four other anticipated operating modes. The plant is self-sufficient in fuel except when the coker/calciner unit is not operating; then the required fuel oil import ranges from 80 to 125 MM Btu/h, lower heating value (LHV). The system affords stable operation under varying fuel gas availability and is reliable, flexible, and efficient. The optimization was based on maximizing overall efficiency of the steam system. The system was optimized to operate at five different steam-pressure levels, which are justifiable based on the plant's team requirements for process, heat duty, and power. All identified critical equipment drives will be run by steam turbines. Also part of the optimization was elimination of the steam evaporator in the wastewater treatment area. This minimized the impact on the steam system of operating in either the discharge of zero-discharge mode; the steam system remains essentially the same for either mode. Any further optimization efforts should be based on overall cost-effectiveness.

Vakil, T.D.

1983-07-01T23:59:59.000Z

331

IMPROVING ENERGY EFFICIENCY VIA OPTIMIZED CHARGE MOTION AND SLURRY FLOW IN PLANT SCALE SAG MILLS  

SciTech Connect (OSTI)

The U.S. mining industry operates approximately 80 semi-autogenesis grinding mills (SAG) throughout the United States. Depending on the mill size the SAG mills draws between 2 MW and 17 MW. The product from the SAG mill is further reduced in size using pebble crushers and ball mills. Hence, typical gold or copper ore requires between 2.0 and 7.5 kWh per ton of energy to reduce the particle size. Considering a typical mining operation processes 10,000 to 100,000 tons per day the energy expenditure in grinding is 50 percent of the cost of production of the metal. A research team from the University of Utah is working to make inroads into saving energy in these SAG mills. In 2003, Industries of the Future Program of the Department of Energy tasked the University of Utah team to build a partnership between the University and the mining industry for the specific purpose of reducing energy consumption in SAG mills. A partnership was formed with Cortez Gold Mines, Kennecott Utah Copper Corporation, Process Engineering Resources Inc. and others. In the current project, Cortez Gold Mines played a key role in facilitating the 26-ft SAG mill at Cortez as a test mill for this study. According to plant personnel, there were a number of unscheduled shut downs to repair broken liners and the mill throughput fluctuated depending on ore type. The University team had two softwares, Millsoft and FlowMod to tackle the problem. Millsoft is capable of simulating the motion of charge in the mill. FlowMod calculates the slurry flow through the grate and pulp lifters. Based on this data the two models were fine-tuned to fit the Cortez SAG will. In the summer of 2004 a new design of shell lifters were presented to Cortez and in September 2004 these lifters were installed in the SAG mill. By December 2004 Cortez Mines realized that the SAG mill is drawing approximately 236-kW less power than before while maintaining the same level of production. In the first month there was extreme cycling and operators had to learn more. Now the power consumption is 0.3-1.3 kWh/ton lower than before. The actual SAG mill power draw is 230-370 kW lower. Mill runs 1 rpm lesser in speed on the average. The re-circulation to the cone crusher is reduced by 1-10%, which means more efficient grinding of critical size material is taking place in the mill. All of the savings have resulted in reduction of operating cost be about $0.023-$0.048/ ton.

Raj K. Rajamani; Sanjeeva Latchireddi; Sravan K. Prathy; Trilokyanath Patra

2005-12-01T23:59:59.000Z

332

Recovery of iron, carbon and zinc from steel plant waste oxides using the AISI-DOE postcombustion smelting technology  

SciTech Connect (OSTI)

This report describes a process to recover steel plant waste oxides to be used in the production of hot metal. The process flowsheet used at the pilot plant. Coal/coke breeze and iron ore pellets/waste oxides are charged into the smelting reactor. The waste oxides are either agglomerated into briquettes (1 inch) using a binder or micro-agglomerated into pellets (1/4 inch) without the use of a binder. The iron oxides dissolve in the slag and are reduced by carbon to produce molten iron. The gangue oxides present in the raw materials report to the slag. Coal charged to the smelter is both the fuel as well as the reductant. Carbon present in the waste oxides is also used as the fuel/reductant resulting in a decrease in the coal requirement. Oxygen is top blown through a central, water-cooled, dual circuit lance. Nitrogen is injected through tuyeres at the bottom of the reactor for stirring purposes. The hot metal and slag produced in the smelting reactor are tapped at regular intervals through a single taphole using a mudgun and drill system. The energy requirements of the process are provided by (i) the combustion of carbon to carbon monoxide, referred to as primary combustion and (ii) the combustion of CO and H{sub 2} to CO{sub 2} and H{sub 2}O, known as postcombustion.

Sarma, B. [Praxair, Inc., Tarrytown, NY (United States); Downing, K.B. [Fluor Daniel, Greenville, SC (United States); Aukrust, E.

1996-09-01T23:59:59.000Z

333

Conditional sterility in plants  

DOE Patents [OSTI]

The present disclosure provides methods, recombinant DNA molecules, recombinant host cells containing the DNA molecules, and transgenic plant cells, plant tissue and plants which contain and express at least one antisense or interference RNA specific for a thiamine biosynthetic coding sequence or a thiamine binding protein or a thiamine-degrading protein, wherein the RNA or thiamine binding protein is expressed under the regulatory control of a transcription regulatory sequence which directs expression in male and/or female reproductive tissue. These transgenic plants are conditionally sterile; i.e., they are fertile only in the presence of exogenous thiamine. Such plants are especially appropriate for use in the seed industry or in the environment, for example, for use in revegetation of contaminated soils or phytoremediation, especially when those transgenic plants also contain and express one or more chimeric genes which confer resistance to contaminants.

Meagher, Richard B. (Athens, GA); McKinney, Elizabeth (Athens, GA); Kim, Tehryung (Taejeon, KR)

2010-02-23T23:59:59.000Z

334

U.S. DOE Industrial Technologies Program – Technology Delivery Plant-Wide Assessment at PPG Industries, Natrium, WV  

SciTech Connect (OSTI)

PPG and West Virginia University performed a plantwide energy assessment at the PPG’s Natrium, WV chemical plant, an energy-intensive manufacturing facility producing chlor-alkali and related products. Implementation of all the assessment recommendations contained in this report could reduce plant energy consumption by 8.7%, saving an estimated 10,023,192 kWh/yr in electricity, 6,113 MM Btu/yr in Natural Gas, 401,156 M lb/yr in steam and 23,494 tons/yr in coal and reduce carbon dioxide emissions by 241 mm lb/yr. The total cost savings would amount to approximately $2.9 mm/yr. Projects being actively implemented will save $1.7 mm/yr; the remainder are undergoing more detailed engineering study.

Lester, Stephen R.; Wiethe, Jeff; Green, Russell; Guice, Christina; Gopalakrishnan, Bhaskaran; Turton, Richard

2007-09-28T23:59:59.000Z

335

Results of gas-fired flash-smelting tests. Phase 1-3. Topical technical report, November 1987-April 1989  

SciTech Connect (OSTI)

A natural gas-fired burner for the HRD FLAME REACTOR Process was designed and successfully tested on over 450 tons of Electric Arc Furnace (EAF) dust, and over a wide range of operating conditions. The coal/coke-fired FLAME REACTOR Process has already been demonstrated as an efficient and economic means of recovering zinc from EAF dust as a salable oxide product, and a salable nonhazardous, iron-rich slag product. The results of the work indicate that the natural gas-fired process has a higher zinc capacity for a given reactor size, with zinc recoveries 5-10 percentage points higher than coal/coke processing at high throughputs. Gas-fired capital costs are about 15% less than coal for a 20,000 STPY EAF dust plant. Smaller plants show even higher break-even costs. Net processing costs are about $100/ton of EAF dust, which is extremely competitive with land-filling and other recycling options.

Pusateri, J.F.

1990-06-01T23:59:59.000Z

336

7, 14791506, 2007 apportionment of the  

E-Print Network [OSTI]

, coal residential, coke oven, coal power plant, biomass burning, natural gas (NG) combustion. The major showed distinct seasonal variations. High contributions of biomass burning and coal (residential and coke is the world's largest coal consumption region (IEA, 2006). Thu

Paris-Sud XI, Université de

337

Development of technology in the production of fertilizers in ammoniation-granulation plants. Progress report No. 12, September 1980. Final report  

SciTech Connect (OSTI)

Work conducted to demonstrate procedures and equipment to conserve about 83% of fuel oil used for drying and generating steam in the ammoniation-granulation plants is reported. The general mechanism of granulation is examined. Conventional ammoniation-granulation plants are described and the new pipe-cross reactor system is described and schematics of their design are presented. Results of some demonstration tests reveal that an average of 785,000 Btu's per ton of production is eliminated with the installation of the TVA pipe-cross reactor process. It also reduces atmospheric emissions. Data on investment cost and payback period of the installation of a pipe-cross reactor in an existing TVA granulation fertilizer plant are presented.

Not Available

1980-09-01T23:59:59.000Z

338

Petroleum Coke: A Viable Fuel for Cogeneration  

E-Print Network [OSTI]

; buy sulfur dioxide credits on the open market; install FGD; or switch to clean coal technology such as circulating fluidized bed combustion and gasification. Current trends in utility modernization are to utilize new clean coal technologies...

Dymond, R. E.

339

Coking Coal Prices for Industry - EIA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil andMCKEESPORTfor thePrices for Industry

340

Table 16. U.S. Coke Exports  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328AdministrationReleaseMetallurgical Coal Exports by

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Table 21. U.S. Coke Imports  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328AdministrationReleaseMetallurgical Coal ExportsPrice

342

Advanced Multi-Product Coal Utilization By-Product Processing Plant  

SciTech Connect (OSTI)

The overall objective of this project is to design, construct, and operate an ash beneficiation facility that will generate several products from coal combustion ash stored in a utility ash pond. The site selected is LG&E's Ghent Station located in Carroll County, Kentucky. The specific site under consideration is the lower ash pond at Ghent, a closed landfill encompassing over 100 acres. Coring activities revealed that the pond contains over 7 million tons of ash, including over 1.5 million tons of coarse carbon and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. These potential products are primarily concentrated in the lower end of the pond adjacent to the outlet. A representative bulk sample was excavated for conducting laboratory-scale process testing while a composite 150 ton sample was also excavated for demonstration-scale testing at the Ghent site. A mobile demonstration plant with a design feed rate of 2.5 tph was constructed and hauled to the Ghent site to evaluate unit processes (i.e. primary classification, froth flotation, spiral concentration, secondary classification, etc.) on a continuous basis to determine appropriate scale-up data. Unit processes were configured into four different flowsheets and operated at a feed rate of 2.5 tph to verify continuous operating performance and generate bulk (1 to 2 tons) products for product testing. Cementitious products were evaluated for performance in mortar and concrete as well as cement manufacture process addition. All relevant data from the four flowsheets was compiled to compare product yields and quality while preliminary flowsheet designs were generated to determine throughputs, equipment size specifications and capital cost summaries. A detailed market study was completed to evaluate the potential markets for cementitious products. Results of the study revealed that the Ghent local fly ash market is currently oversupplied by more than 500,000 tpy and distant markets (i.e. Florida) are oversupplied as well. While the total US demand for ultrafine pozzolan is currently equal to demand, there is no reason to expect a significant increase in demand. Despite the technical merits identified in the pilot plant work with regard to beneficiating the entire pond ash stream, market developments in the Ohio River Valley area during 2006-2007 were not conducive to demonstrating the project at the scale proposed in the Cooperative Agreement. As a result, Cemex withdrew from the project in 2006 citing unfavorable local market conditions in the foreseeable future at the demonstration site. During the Budget Period 1 extensions provided by the DOE, CAER has contacted several other companies, including cement producers and ash marketing concerns for private cost share. Based on the prevailing demand-supply situation, these companies had expressed interest only in limited product lines, rather than the entire ash beneficiation product stream. Although CAER had generated interest in the technology, a financial commitment to proceed to Budget Period 2 could not be obtained from private companies. Furthermore, the prospects of any decisions being reached within a reasonable time frame were dim. Thus, CAER concurred with the DOE to conclude the project at the end of Budget Period 1, March 31, 2007. The activities presented in this report were carried out during the Cooperative Agreement period 08 November 2004 through 31 March 2007.

Thomas Robl; John Groppo

2009-06-30T23:59:59.000Z

343

Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation  

SciTech Connect (OSTI)

During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft{sup 2} of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL.

NONE

1994-09-01T23:59:59.000Z

344

PHYSICAL PLANT POLICY & PROCEDURE  

E-Print Network [OSTI]

PHYSICAL PLANT POLICY & PROCEDURE TITLE PHYSICAL PLANT HIGH VOLTAGE PREVENTIVE MAINTENANCE OBJECTIVE AND PURPOSE To establish a consistent policy of performing Preventive Maintenance on high voltage by the G.S.A. Preventive Maintenance sections E- 29 (high voltage oil circuit breaker), E-32 (high voltage

Fernandez, Eduardo

345

Plant fatty acid hydroxylase  

DOE Patents [OSTI]

The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

Somerville, Chris (Portola Valley, CA); van de Loo, Frank (Lexington, KY)

2000-01-01T23:59:59.000Z

346

Modulating lignin in plants  

DOE Patents [OSTI]

Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

2013-01-29T23:59:59.000Z

347

Plant Ecology An Introduction  

E-Print Network [OSTI]

1 Plant Ecology An Introduction Ecology as a Science Study of the relationships between living and causes of the abundance and distribution of organisms Ecology as a Science We'll use the perspective of terrestrial plants Basic ecology - ecological principles Applied ecology - application of principles

Cochran-Stafira, D. Liane

348

RESEARCH ARTICLE PLANT GENETICS  

E-Print Network [OSTI]

relative) in the Brassicaceae plant family is determined by the genotype of the plant at the self-incompatibility-locus phenotype in a self-incompatible Arabidopsis species. Selection has created a dynamic repertoire of s of regulation among alleles. S porophytic self-incompatibility (SI) is a genetic system that evolved in hermaph

Napp, Nils

349

NUCLEAR PLANT OPERATIONS AND  

E-Print Network [OSTI]

NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: moderator temper ature coefficient, reactivity co reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed absorption cross-section behavior. Consequently, if NUCLEAR TECHNOLOGY VOL. 140 NOV. 2002 147 #12;Demazière

Demazière, Christophe

350

NUCLEAR PLANT OPERATIONS AND  

E-Print Network [OSTI]

NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: moderator temper- ature coefficient, reactivity co reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed. Consequently, if*E-mail: demaz@nephy.chalmers.se NUCLEAR TECHNOLOGY VOL. 140 NOV. 2002 147 #12;high-burnup fuel

Pázsit, Imre

351

Top 10 plant pathogenic bacteria in molecular plant pathology.  

E-Print Network [OSTI]

plants are being closely grouped together, for example pv.oryzae pv. oryzae AvrXa21 and implications for plant innatePseudomonas syringae pv. tomato in Tanzania. Plant Dis. 91,

2012-01-01T23:59:59.000Z

352

Calibration of Cotton Planting Mechanisms.  

E-Print Network [OSTI]

per foot. To obtain a perfect stand of one plant to Foot, a minimum of 1 to a maximum of 11 plants per foot wonld have to be thinned out. The number for picker wheel- drop planting mechanisms ranged from a minimum of 2 to a maxi- mum of 27 plants... per foot, requiring the removal of from 1 to 26 nlants per foot to leave one plant per foot. CONTENTS Introduction History of cotton planter development ------------.---------------------------------- Cottonseed planting mechanisms Requirements...

Smith, H. P. (Harris Pearson); Byrom, Mills H. (Mills Herbert)

1936-01-01T23:59:59.000Z

353

E-Print Network 3.0 - abandoned coal mines Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

78 Economic Impact of Standard Reference Materials Summary: . Although many mines, coking plants, coal preparation plants, utilities, and refineries have their own... -4 2.2...

354

Virginia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

355

Ohio Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

356

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

357

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

358

California Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

359

Alabama Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

360

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Pennsylvania Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

362

Tennessee Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

363

Georgia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

364

Nebraska Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

365

Arizona Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

366

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

367

Maryland Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

368

Illinois Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

369

Florida Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

370

Wisconsin Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

371

Minnesota Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

372

Nuclear Power Plant Design Project  

E-Print Network [OSTI]

Nuclear Power Plant Design Project A Response to the Environmental and Economic Challenge Of Global.............................................................................................................. 4 3. Assessment of the Issues and Needs for a New Plant

373

Peat gasification pilot plant program. Project 70105 quarterly report No. 1, October 1, 1980-August 31, 1981  

SciTech Connect (OSTI)

Over 200 peat gasification tests were conducted in laboratory-scale and PDU-scale (process development unit) equipment since 1976. A kinetic model for peat gasification was developed from laboratory and PDU data. The encouraging results of these tests and the model projections show that on the basis of its chemistry and kinetics, peat is an excellent raw material for commercial synthetic natural gas (SNG) production. To further advance peat gasification technology, DOE and GRI initiated a pilot-plant-scale program using an existing coal gasification pilot plant. This facility was adapted to peat processing and can convert 50 tons of peat to about 0.5 million standard cubic feet of SNG daily. The pilot plant is described in Appendix A. Only three major pieces of equipment - a peat dryer, a grinder, and a screener - were required to prepare the pilot plant for peat processing. This modification phase was completed in the winter of 1980-1981. After a number of drying, grinding, and screening tests, peat was first fed to the gasifier in April 1981, initiating the pilot plant studies to develop the PEATGAS process. Since that time, the gasification of Minnesota peat by the PEATGAS process has been successfully demonstrated in a series of gasification tests. This report covers the work done between October 1, 1980, and August 31, 1981, under DOE Contract No. AC01-80ET14688.

Not Available

1982-09-01T23:59:59.000Z

374

Plant Vascular Biology 2010  

SciTech Connect (OSTI)

This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

Ding, Biao

2014-11-17T23:59:59.000Z

375

Geothermal Demonstration Plant  

Office of Scientific and Technical Information (OSTI)

a 50 W e binary conversion plant at Heber was initiated and is presented herein. Chevron Oil Company (the field operator) predicts that the reservoir i ill decline from an initial...

376

Plant Operations Executive Director  

E-Print Network [OSTI]

Campus North Campus Recycling Operations Materials Human Resources Payroll Misc Svs Special Projects Planning Spray Shop Glass Shop Upholstery Shop Plant IT Painting Services G. Weincouff Human Resources Business Services Estimating Shutdown Coordination Scheduling L. Rastique Human Resources 67398 M

Awtar, Shorya

377

B Plant facility description  

SciTech Connect (OSTI)

Buildings 225B, 272B, 282B, 282BA, and 294B were removed from the B Plant facility description. Minor corrections were made for tank sizes and hazardous and toxic inventories.

Chalk, S.E.

1996-10-04T23:59:59.000Z

378

Plant Site Refrigeration Upgrade  

E-Print Network [OSTI]

Bayer Corporation operates a multi-division manufacturing facility in Bushy Park, South Carolina. Low temperature refrigeration (-4°F) is required by many of the chemical manufacturing areas and is provided by a Plant Site Refrigeration System...

Zdrojewski, R.; Healy, M.; Ramsey, J.

379

Peat gasification pilot plant program. Project 70105 quarterly report No. 2, September 1-November 30, 1981  

SciTech Connect (OSTI)

The objective of this program is twofold: (1) to modify an existing pilot plant; and (2) to operate the pilot plant with peat to produce substitute natural gas (SNG). Activities include the design, procurement, and installation of peat drying, grinding, screening, and lockhopper feed systems. Equipment installed for the program complements the existing pilot plant facility. Drying, grinding, and screening equipment for peat was installed and operated during the previous reporting periods. Three gasification tests (PT-1 through PT-3) had also been conducted using the toluene slurry feed system. Installation of the lockhopper dry feed system was completed on schedule. Shakedown of the system has begun. Operation of the modified 400-ton storage and transport system was successfully demonstrated with peat containing 10% moisture. Preparations for Test PT-4 are currently underway. Data analyses for Test PT-2 were completed and are presented. The low-pressure Plexiglas unit was modified to investigate the use of a downflowing pneumatic feed system for the dryer bed. Initial testing was begun.

Not Available

1982-09-01T23:59:59.000Z

380

Aging assessment of essential HVAC chillers used in nuclear power plants. Phase 1, Volume 1  

SciTech Connect (OSTI)

The Pacific Northwest Laboratory conducted a Phase I aging assessment of chillers used in the essential safety air-conditioning systems of nuclear power plants. Centrifugal chillers in the 75- to 750-ton refrigeration capacity range are the predominant type used. The chillers used, and air-conditioning systems served, vary in design from plant-to-plant. It is crucial to keep chiller internals very clean and to prevent the leakage of water, air, and other contaminants into the refrigerant containment system. Periodic operation on a weekly or monthly basis is necessary to remove moisture and noncondensable gases that gradually build up inside the chiller. This is especially desirable if a chiller is required to operate only as an emergency standby unit. The primary stressors and aging mechanisms that affect chillers include vibration, excessive temperatures and pressures, thermal cycling, chemical attack, and poor quality cooling water. Aging is accelerated by moisture, non-condensable gases (e.g., air), dirt, and other contamination within the refrigerant containment system, excessive start/stop cycling, and operating below the rated capacity. Aging is also accelerated by corrosion and fouling of the condenser and evaporator tubes. The principal cause of chiller failures is lack of adequate monitoring. Lack of performing scheduled maintenance and human errors also contribute to failures.

Blahnik, D.E.; Klein, R.F. [Pacific Northwest Lab., Richland, WA (United States)

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect (OSTI)

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

382

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network [OSTI]

Plant - without coking (lb/hr) Feed Coal* Hydrogen YieldsCoking Summary Cost Estimates for Solvent Refining of Five U.S. CoalsCoal Handling and Preparation Preheaters and Dissolvers Mineral Separation (Filters) Solvent Recovery Gas Recovery Mineral Residue Processing and Storage Coking

Ferrell, G.C.

2010-01-01T23:59:59.000Z

383

ANT Automation, LLC is an American company dedicated to provide high quality Automation Ser-  

E-Print Network [OSTI]

to be accepted before releasing it to production. COBOP: Coal Blend Optimization for Coke Plants. Predict the coke quality. Help to the process Engineer in decision making for the coal's purchasing. Minimize coal / Carbon, Scrap Consumption, Coke, Additives & Refractories among others. Minimizes overall cost in seconds

Maguitman, Ana Gabriela

384

Pinellas Plant facts  

SciTech Connect (OSTI)

The Pinellas Plant, near St. Petersburg, Florida, is wholly owned by the United States Government. It is operated for the Department of Energy (DOE) by GE Aerospace, Neutron Devices (GEND). This plant was built in 1956 to manufacture neutron generators, a principal component in nuclear weapons. The neutron generators built at Neutron Devices consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. Production of these devices has necessitated the development of several uniquely specialized areas of competence and supporting facilities. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology; hermetic seals between glass, ceramic, glass-ceramic, and metal materials; plus high voltage generation and measurement technology. The existence of these capabilities at Neutron Devices has led directly to the assignment of other weapon application products: the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Other product assignments such as active and reserve batteries and the radioisotopically-powered thermoelectric generator evolved from the plant`s materials measurement and controls technologies which are required to ensure neutron generator life.

NONE

1990-11-01T23:59:59.000Z

385

Native Vegetation Planting Guidelines  

E-Print Network [OSTI]

1 Native Vegetation Planting Guidelines Based on Sustainability Goals for the Macquarie Campus #12.................................................................................................................................10 4.2.5 Shale-Sandstone soil transition...................................................................................................................................11 #12;3 1. Purpose This document provides a guideline for specific grounds management procedures

Wang, Yan

386

Alex Benson Cement Plants  

E-Print Network [OSTI]

with steel balls which grind mix into a fine powder -> Final Cement Product Associated Air Pollution: o From health effects Relative News; o "EPA Clamps down on Cement Plant Pollution" http.4 million dollars for violating the Clean Air Act and 2 million dollars for pollution controls #12

Toohey, Darin W.

387

B Plant hazards assessment  

SciTech Connect (OSTI)

This document establishes the technical basis in support of Emergency Planning Activities for B Plant on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE Order 5500.3A. Through this document, the technical basis for the development of facility specific , Emergency Action Levels and the Emergency Planning Zone is demonstrated.

Broz, R.E.

1994-09-23T23:59:59.000Z

388

Steam Plant, 6% Irrigation,  

E-Print Network [OSTI]

of Rainwater Storage Cisterns on Campus 150,000 gallons* Total Acres of Campus (Modeled for Stormwater Analysis% Chilled Water Plant, 26% Academics, 16% Washington Duke Inn, 3% Water & Stormwater Management Sustainability Facts Overview Existing Sustainability Initiatives Stormwater Regulation Duke University obtains

Zhou, Pei

389

Proposed sale of radioactively contaminated nickel ingots located at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) proposes to sell 8,500 radioactively contaminated nickel ingots (9.350 short tons), currently in open storage at the Paducah Gaseous Diffusion Plant (PGDP), to Scientific Ecology Group, Inc. (SEG) for decontamination and resale on the international market. SEG would take ownership of the ingots when they are loaded for transport by truck to its facility in Oak Ridge, Tennessee. SEG would receive approximately 200 short tons per month over approximately 48 months (an average of 180 ingots per month). The nickel decontamination process specified in SEG`s technical proposal is considered the best available technology and has been demonstrated in prototype at SEG. The resultant metal for resale would have contamination levels between 0.3 and 20 becquerel per gram (Bq/g). The health hazards associated with release of the decontaminated nickel are minimal. The activity concentration of the end product would be further reduced when the nickel is combined with other metals to make stainless steel. Low-level radioactive waste from the SEG decontamination process, estimated to be approximately 382 m{sup 3} (12,730 ft), would be shipped to a licensed commercial or DOE disposal facility. If the waste were packaged in 0.23 m{sup 3}-(7.5 ft{sup 3}-) capacity drums, approximately 1,500 to 1,900 drums would be transported over the 48-month contract period. Impacts from the construction of decontamination facilities and the selected site are minimal.

NONE

1995-10-01T23:59:59.000Z

390

Technology Data for Electricity and Heat Generating Plants  

E-Print Network [OSTI]

.................................................................................63 13 Centralised Biogas Plants

391

Advanced virtual energy simulation training and research: IGCC with CO2 capture power plant  

SciTech Connect (OSTI)

In this presentation, we highlight the deployment of a real-time dynamic simulator of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture at the Department of Energy's (DOE) National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTARTM) Center. The Center was established as part of the DOE's accelerating initiative to advance new clean coal technology for power generation. IGCC systems are an attractive technology option, generating low-cost electricity by converting coal and/or other fuels into a clean synthesis gas mixture in a process that is efficient and environmentally superior to conventional power plants. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Fueled with coal, petroleum coke, and/or biomass, the gasification island of the simulated IGCC plant consists of two oxygen-blown, downward-fired, entrained-flow, slagging gasifiers with radiant syngas coolers and two-stage sour shift reactors, followed by a dual-stage acid gas removal process for CO{sub 2} capture. The combined cycle island consists of two F-class gas turbines, steam turbine, and a heat recovery steam generator with three-pressure levels. The dynamic simulator can be used for normal base-load operation, as well as plant start-up and shut down. The real-time dynamic simulator also responds satisfactorily to process disturbances, feedstock blending and switchovers, fluctuations in ambient conditions, and power demand load shedding. In addition, the full-scope simulator handles a wide range of abnormal situations, including equipment malfunctions and failures, together with changes initiated through actions from plant field operators. By providing a comprehensive IGCC operator training system, the AVESTAR Center is poised to develop a workforce well-prepared to operate and control commercial-scale gasification-based power plants capable of 90% pre-combustion CO{sub 2} capture and compression, as well as low sulfur, mercury, and NOx emissions. With additional support from the NETL-Regional University Alliance (NETL-RUA), the Center will educate and train engineering students and researchers by providing hands-on 'learning by operating' experience The AVESTAR Center also offers unique collaborative R&D opportunities in high-fidelity dynamic modeling, advanced process control, real-time optimization, and virtual plant simulation. Objectives and goals are aimed at safe and effective management of power generation systems for optimal efficiency, while protecting the environment. To add another dimension of realism to the AVESTAR experience, NETL will introduce an immersive training system with innovative three-dimensional virtual reality technology. Wearing a stereoscopic headset or eyewear, trainees will enter an interactive virtual environment that will allow them to move freely throughout the simulated 3-D facility to study and learn various aspects of IGCC plant operation, control, and safety. Such combined operator and immersive training systems go beyond traditional simulation and include more realistic scenarios, improved communication, and collaboration among co-workers.

Zitney, S.; Liese, E.; Mahapatra, P.; Bhattacharyya, D.; Provost, G.

2011-01-01T23:59:59.000Z

392

H-Coal Pilot Plant. Volume I. 1. 0 - executive summary and general project description, 2. 0 - general reference section. Final report. [Contains titles and abstracts of 42 topical reports and titles of relevant reports issued by associated organizations (Chevron, Conoco, EPRI, HRI, Mobil, and ORNL)  

SciTech Connect (OSTI)

This Final Report documents the Phase III operations of the H-Coal direct liquefaction Pilot Plant at Catlettsburg, Kentucky, by Ashland Synthetic Fuels, Inc. The project was initiated in 1965 under the Office of Coal Research, US Department of Interior Contract No. 14-32-0002-154 with Hydrocarbon Research, Inc., and was completed under US Department of Energy Contract No. DE-AC05-76ET10143 with Ashland Synthetic Fuels, Inc. Data generated by HRI's Bench Scale and 3-ton per day Process Development Units were used as the design basis for the Pilot Plant. Subsequent Pilot Plant operations confirmed the validity of the data base. This report contains process, mechanical and environmental assessments of the Pilot Plant germane to commercial scale-up.

Not Available

1984-04-01T23:59:59.000Z

393

Ecology of Plants and Light CAM plants have thick,  

E-Print Network [OSTI]

orientation to maximize light exposure. Species Adaptations-Sun Solar tracking by leaves increases light1 Ecology of Plants and Light CAM plants have thick, succulent tissues to allow for organic acid and Light Some CAM plants not obligated to just CAM Can use C3 photosynthesis during day if conditions

Cochran-Stafira, D. Liane

394

The Colorado Rare Plant Technical Committee Rare Plant Symposium  

E-Print Network [OSTI]

The Colorado Rare Plant Technical Committee presents: 4th Annual Rare Plant Symposium Sponsored by: Colorado Native Plant Society University of Colorado Herbarium US Fish and Wildlife Service Colorado: G2G3/S2S3 Global distribution: Colorado (Larimer and Boulder counties). Possibly extending

395

The BosTon College STOKES HALL  

E-Print Network [OSTI]

's enduring commit- ment to the liberal arts," said Col- lege of Arts & Sciences Dean Da- vid Quigley. "The David Quigley September 30, 2010 Publi

Huang, Jianyu

396

Louisiana Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

397

Belgrade Lot Steam Plant Lot  

E-Print Network [OSTI]

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Chadbourne Merrill Aubert Hannibal Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N

Thomas, Andrew

398

Belgrade Lot Steam Plant Lot  

E-Print Network [OSTI]

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N S Estabrooke Memorial Gym Stevens

Thomas, Andrew

399

Belgrade Lot Steam Plant Lot  

E-Print Network [OSTI]

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Oceanographic Operations 1 2 8 5 3 4 7 6 AMC Chadbourne Merrill Aubert Hannibal Hamlin Steam Plant Crosby

Thomas, Andrew

400

Gene encoding plant asparagine synthetase  

DOE Patents [OSTI]

The identification and cloning of the gene(s) for plant asparagine synthetase (AS), an important enzyme involved in the formation of asparagine, a major nitrogen transport compound of higher plants is described. Expression vectors constructed with the AS coding sequence may be utilized to produce plant AS; to engineer herbicide resistant plants, salt/drought tolerant plants or pathogen resistant plants; as a dominant selectable marker; or to select for novel herbicides or compounds useful as agents that synchronize plant cells in culture. The promoter for plant AS, which directs high levels of gene expression and is induced in an organ specific manner and by darkness, is also described. The AS promoter may be used to direct the expression of heterologous coding sequences in appropriate hosts.

Coruzzi, Gloria M. (New York, NY); Tsai, Fong-Ying (New York, NY)

1993-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS  

SciTech Connect (OSTI)

This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2003 through August 2003. Significant progress was made this project period on the source characterization, source apportionment, and deterministic modeling activities. Major accomplishments included: Development of an emission profile for an integrated coke production facility and simulations using PMCAMx for a two week period during July 2001. The emissions from the coke facility are dominated by carbonaceous compounds. Forty seven percent of the organic carbon mass was identified on a compound level basis. Polycyclic aromatic hydrocarbons were the dominant organic compound class in the coke emissions. Initial comparisons with the data collected in Pittsburgh suggest good agreement between the model predictions and observations. Single particle composition data appear useful for identifying primary sources. An example of this unique approach is illustrated using the Fe and Ce particle class with appear associated with steel production.

Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

2003-11-01T23:59:59.000Z

402

Pellet property requirements for future blast-furnace operations and other new ironmaking processes  

SciTech Connect (OSTI)

The requirements for the physical, chemical and metallurgical properties of pellets have continued to become more stringent as blast-furnace productivity and coke rate have been rapidly improved during the last decade. In addition, the age and deterioration of the North American coke batteries, the lack of capital to sufficiently rebuild them, and the threat of increasingly more stringent environmental controls for the coke batteries has forced North American ironmakers to begin implementing pulverized coal injection to minimize the coke requirements for the blast furnace and to seriously investigate developing other ironmaking processes that use coal instead of coke. Therefore, the next major step in North American ironmaking has included injecting pulverized coal (PC) at 200 kilograms per ton of hot metal (kg/ton) [400 pounds per net ton of hot metal (lb/NTHM)] or greater which will result in the coke rate decreasing to less than 300 kg/ton (600 lb/NTHM) or less. As a result, the pellets will spend more time in the furnace and will be required to support more total weight. Pellets can also be a major iron unit source for other cokeless ironmaking processes such as the COREX process or the AISI direct ironmaking process. This paper will explore the pellet property requirements for future blast-furnace operations and cokeless ironmaking processes.

Agrawal, A.K.; Oshnock, T.W. [U.S. Steel, Monroeville, PA (United States)

1995-12-01T23:59:59.000Z

403

Regulating nutrient allocation in plants  

DOE Patents [OSTI]

The invention provides coding and promoter sequences for a VS-1 and AP-2 gene, which affects the developmental process of senescence in plants. Vectors, transgenic plants, seeds, and host cells comprising heterologous VS-1 and AP-2 genes are also provided. Additionally provided are methods of altering nutrient allocation and composition in a plant using the VS-1 and AP-2 genes.

Udvardi, Michael; Yang, Jiading; Worley, Eric

2014-12-09T23:59:59.000Z

404

CONSTRUCTION OF NUCLEAR POWER PLANTS  

E-Print Network [OSTI]

CONSTRUCTION OF NUCLEAR POWER PLANTS A Workshop on "NUCLEAR ENERGY RENAISSANCE" Addressing WAS DEEPLY INVOLVED IN ALMOST EVERY ASPECT OF BUILDING THE PLANTS THROUGH · Quality Assurance · Nuclear IN CONSTRUCTION OF ST. LUCIE-2 #12;LESSONS LEARNED FROM St. Lucie-2 NUCLEAR POWER PLANTS CAN BE BUILT

405

Integrated turbomachine oxygen plant  

SciTech Connect (OSTI)

An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

2014-06-17T23:59:59.000Z

406

Jennings Demonstration PLant  

SciTech Connect (OSTI)

Verenium operated a demonstration plant with a capacity to produce 1.4 million gallons of cellulosic ethanol from agricultural resiues for about two years. During this time, the plant was able to evaluate the technical issues in producing ethanol from three different cellulosic feedstocks, sugar cane bagasse, energy cane, and sorghum. The project was intended to develop a better understanding of the operating parameters that would inform a commercial sized operation. Issues related to feedstock variability, use of hydrolytic enzymes, and the viability of fermentative organisms were evaluated. Considerable success was achieved with pretreatment processes and use of enzymes but challenges were encountered with feedstock variability and fermentation systems. Limited amounts of cellulosic ethanol were produced.

Russ Heissner

2010-08-31T23:59:59.000Z

407

Advanced Multi-Product Coal Utilization By-Product Processing Plant  

SciTech Connect (OSTI)

The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes an investigation of the secondary classification characteristics of the ash feedstock excavated from the lower ash pond at Ghent Station. The market study for the products of the processing plant (Subtask 1.6), conducted by Cemex, is reported herein. The study incorporated simplifying assumptions and focused only on pozzolan and ultra fine fly ash (UFFA). It found that the market for pozzolan in the Ghent area was oversupplied, with resultant poor pricing structure. Reachable export markets for the Ghent pozzolan market were mostly locally served with the exception of Florida. It was concluded that a beneficiated material for that market may be at a long term disadvantage. The market for the UFFA was more complex as this material would compete with other beneficiated ash and potential metakaolin and silica fume as well. The study concluded that this market represented about 100,000 tons of sales per year and, although lucrative, represented a widely dispersed niche market.

Andrew Jackura; John Groppo; Thomas Robl

2006-12-31T23:59:59.000Z

408

Significant Improvement in Energy Efficiency in Manufacturing at Rohm and Haas’ Kankakee, Illinois, Plant  

E-Print Network [OSTI]

was reached compared to 2004. That amounts to $270,000 in savings in 2005 with 1000 fewer tons of CO2 emitted to the environment....

Brinkley, T.

2007-01-01T23:59:59.000Z

409

Photo of the Week: Mapping the Link between Invasive Plants and...  

Office of Environmental Management (EM)

study the interaction of wind energy, electric vehicle charging and grid technology. The turbine is also estimated to offset more than 10 metric tons of greenhouse gas emissions...

410

Pinellas Plant Environmental Baseline Report  

SciTech Connect (OSTI)

The Pinellas Plant has been part of the Department of Energy`s (DOE) nuclear weapons complex since the plant opened in 1957. In March 1995, the DOE sold the Pinellas Plant to the Pinellas County Industry Council (PCIC). DOE has leased back a large portion of the plant site to facilitate transition to alternate use and safe shutdown. The current mission is to achieve a safe transition of the facility from defense production and prepare the site for alternative uses as a community resource for economic development. Toward that effort, the Pinellas Plant Environmental Baseline Report (EBR) discusses the current and past environmental conditions of the plant site. Information for the EBR is obtained from plant records. Historical process and chemical usage information for each area is reviewed during area characterizations.

Not Available

1997-06-01T23:59:59.000Z

411

Captive power plants and industrial sector in the developing countries  

SciTech Connect (OSTI)

The electrical power and energy is essential for the industrial sector of the countries which are transferring its social structure to the industry oriented one from the agrarian society. In Asian countries, this kind of transformation has actively been achieved in this century starting from Japan and followed by Korea, Taiwan, and it is more actively achieved in the countries of Malaysia, Indonesia, Thailand, Philippine, India and China(PRC) in these days. It is valuable to review the effective utilizing of Power and Energy in the industrial sector of the developing countries. In this paper, it is therefore focussed to the captive power plants comparing those of utility companies such as government owned electrical power company and independent power company. It is noticed that major contribution to the electrical power generation in these days is largely dependent on the fossil fuel such as coal, oil and gas which are limited in source. Fossil energy reserves are assumed 1,194 trillion cubic meters or about 1,182 billion barrels of oil equivalent for natural gas 1,009 billion barrels for oil and at least 930 billion tons for coal in the world. According to the statistic data prepared by the World Energy Council, the fossil fuel contribution to electrical power generation records 92.3% in 1970 and 83.3% in 1990 in the world wide. Primary energy source for electrical power generation is shown in figure 1. It is therefore one of the most essential task of human being on how to utilize the limited fossil energy effectively and how to maximize the thermal efficiency in transferring the fossil fuel to usable energy either electrical power and energy or thermal energy of steam or hot/chilled water.

Lee, Rim-Taig [Hyundai Engineering Co. (Korea, Republic of)

1996-12-31T23:59:59.000Z

412

Control of SO{sub 2} and NOx emissions from fossil fuel-fired power plants: Research and practice of TPRI  

SciTech Connect (OSTI)

The generation of electric power in China has been dominated by coal for many years. By the end of 1990, total installed generating capacity reached 135 GW, of which fossil fuel-fired plants accounted for 74 percent. The total electricity generated reached 615 TWh, with fossil fuels accounting for 80.5 percent. About 276 million tons of raw coal are consumed in these fossil fuel-burning units per year, accounting for about 25 percent of the total output of the country. According to the government, by the year 2000, the total installed capacity of Chinese power systems should be at least 240 GW, of which fossil fuels will account for about 77 percent. The coal required for power generation will increase to about 530 million tons per year, accounting for about 38 percent of the total coal output. So, it is obvious that coal consumed in coal-fired power plants occupies a very important place in the national fuel balance. The current environmental protection standards, which are based on ground-level concentrations of pollutants, do not effectively lead to the control of pollution emission concentrations or total SO{sub 2} emissions. Due to the practical limitations of the Chinese economy, there is a limited capability to introduce advanced sulfur emission control technologies. Thus, except for the two 360 MW units imported from Japan for the Luohuang Power Plant in Shichuan province, all the other fossil fuel-fired units have not yet adopted any kind of SO{sub 2} removal measures. The Luohuang units are equipped with Mitsubishi limestone flue gas desulfurization systems. Because of the lack of effective pollution control technologies, large areas of the country have been seriously polluted by SO{sub 2}, and some of them even by acid rain.

Ming-Chuan Zhang

1993-12-31T23:59:59.000Z

413

Texas Plant Diseases Handbook.  

E-Print Network [OSTI]

of the lesion turns brown. With age, 1 es ions en 1 arge and coa 1 esce. The ent i re 1 eaf fi na 11 y drops. Stem lesions appear as long, reddish colored spots. When the plant begins to set fruit, lesions are formed at the nodes \\'Jhich girdle the stem... gi v i ng the 1 eaf a "shot-ho 1 e" appearance, simi 1 ar to those caused by anthracnose. Spots on fruit are usua lly sma 11 er and circul ar in shape. Bacteria overwinter in crop residue and on seed. Hard rains splash the bacteria to stems...

Horne, C. Wendell; Amador, Jose M.; Johnson, Jerral D.; McCoy, Norman L.; Philley, George L.; Lee, Thomas A. Jr.; Kaufman, Harold W.; Jones, Roger K.; Barnes, Larry W.; Black, Mark C.

1988-01-01T23:59:59.000Z

414

Propagation of Ornamental Plants.  

E-Print Network [OSTI]

is well filled with roots. In the other types of layering, select shooi 1 of young growth that bend easily. It usuall: is advisable to wound the stem where it is covered with soil. This cut limits free movemen: ! of food materials and induces root... cuttings. lecent research findings have taken much of uesswork out of this type of propagation t now can be done for many plants with rlrative ease by the home gardener. Some alants remain difficult to propagate by any ' method, but most...

DeWerth, A. F.

1955-01-01T23:59:59.000Z

415

Plants & Animals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic Theory and ModelingPinkand Results Plans,Plants &

416

B Plant - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDearTechnicalAwards recognizeStatutes i TableAugustPlant

417

T Plant - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout »LabSustainabilitySynthetic fuelT Plant Projects

418

Peat gasification pilot plant program. Project 70105 quarterly report No. 3, December 1, 1981-February 28, 1982  

SciTech Connect (OSTI)

The objective of this program is twofold: (1) to modify an existing pilot plant; and (2) to operate the pilot plant with peat to produce substitute natural gas (SNG). Activities include the design, procurement, and installation of peat drying, grinding, screening, and lockhopper feed systems. Equipment installed for the program complements the existing pilot plant facility. The lockhopper system was successfully integrated with the gasifier, and shakedown of the newly installed unit was completed. Test PT-4, the first test using this system, was completed during January. Results far exceeded the objectives set for this test. One hundred fifty tons of Minnesota peat containing up to 25-weight-percent moisture were fed to the gasifier at a pressure of 300 psig. Peat conversions averaged more than 90%. Over 57 hours of steady operating time were selected for data analysis. Post-run inspection following Test PT-4 was completed. Peat dried to 10 and 20-weight-percent moisture is currently being stored in preparation for Test PT-5, scheduled to begin in March.

Not Available

1982-09-01T23:59:59.000Z

419

Nuclear Plant/Hydrogen Plant Safety: Issues and Approaches  

SciTech Connect (OSTI)

The U.S. Department of Energy, through its agents the Next Generation Nuclear Plant Project and the Nuclear Hydrogen Initiative, is working on developing the technologies to enable the large scale production of hydrogen using nuclear power. A very important consideration in the design of a co-located and connected nuclear plant/hydrogen plant facility is safety. This study provides an overview of the safety issues associated with a combined plant and discusses approaches for categorizing, quantifying, and addressing the safety risks.

Steven R. Sherman

2007-06-01T23:59:59.000Z

420

Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit  

SciTech Connect (OSTI)

During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

Zaltash, Abdolreza [ORNL; Petrov, Andrei Y [ORNL; Linkous, Randall Lee [ORNL; Vineyard, Edward Allan [ORNL

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EA-0404: Finding of No Significant Impact  

Broader source: Energy.gov [DOE]

Innovative Clean Coal Technology Program - Coke Oven Gas Cleaning Demonstration Project at the Bethlehem Steel Corp. Sparrows Point Plant, Baltimore County, Maryland

422

January 2013 Most Viewed Documents for Environmental Sciences...  

Office of Scientific and Technical Information (OSTI)

Karlsruhe GmbH, Institut fuer Neutronenphysik und Reaktortechnik, Karlsruhe (Germany) Microbial rehabilitation of soils in the vicinity of former coking plants;...

423

Issues for New Nuclear Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to produce heavy components and nuclear-grade equipment - Transportation of heavy components - Constructionoperation workforce - Cost of new plants Cooling Technology...

424

Pantex Plant Emergency Response Exercise  

Broader source: Energy.gov (indexed) [DOE]

Joint Information Center Emergency Manager Offsite Interface Coordinator DOE Technical Advisor Emergency Press Center Radiation Safety Figure 1. Pantex Plant Emergency Response...

425

Owners of nuclear power plants  

SciTech Connect (OSTI)

Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

Hudson, C.R.; White, V.S.

1996-11-01T23:59:59.000Z

426

Power Plant Modeling and Simulation  

ScienceCinema (OSTI)

The National Energy Technology Laboratory's Office of Research and Development provides open source tools and expetise for modeling and simulating power plants and carbon sequestration technologies.

None

2010-01-08T23:59:59.000Z

427

Recycling of cleach plant filtrates by electrodialysis removal of inorganic non-process elements.  

SciTech Connect (OSTI)

Water use in the pulp and paper industry is very significant, and the U.S. pulp and paper industries as well as other processing industries are actively pursuing water conservation and pollution prevention by in-process recycling of water. Bleach plant effluent is a large portion of the water discharged from a typical bleached kraft pulp mill. The recycling of bleach plant effluents to the kraft recovery cycle is widely regarded as an approach to low effluent bleached kraft pulp production. The focus of this work has been on developing an electrodialysis process for recycling the acidic bleach plant effluent of bleached Kraft pulp mills. Electrodialysis is uniquely suited as a selective kidney to remove non-process elements (NPEs) from bleach plant effluent before they reach the chemical recovery cycle. Using electrodialysis for selective NPE removal can prevent the problems caused by accumulation of inorganic NPEs in the pulping cycle and recovery boiler. In this work, acidic bleach plant filtrates from three mills using different bleaching sequences based on chlorine dioxide were characterized. The analyses showed no fundamental differences in the inorganic NPE composition or other characteristics among these filtrates. The majority of total dissolved solids in the effluents were found to be inorganic NPEs. Chloride and nitrate were present at significant levels in all effluent samples. Sodium was the predominant metal ion, while calcium and magnesium were also present at considerable levels. The feasibility of using electrodialysis to selectively remove inorganic NPEs from the acidic bleach effluent was successfully demonstrated in laboratory experiments with effluents from all these three mills. Although there were some variations in these effluents, chloride and potentially harmful cations, such as potassium, calcium, and magnesium, were removed efficiently from the bleach effluents into a small-volume, concentrated purge stream. This effective removal of inorganic NPEs can enable the mills to recycle bleach effluents to reduce water consumption. The electrodialysis process also effectively retained up to 98% of the organics and can reduce the organic discharge in the mill wastewater. By using suitable commercially available electrodialysis membranes, there were no indications of rapid or irreversible membrane fouling or scale formation, even in extended laboratory scale operations up to 100 hours. Results of laboratory experiments also showed that commercially available membranes properly selected for this process would have good stability to withstand the potentially oxidative conditions of the filtrate. A pilot-scale field demonstration was also conducted at a southern mill, using the D0 filtrate from the bleach plant. During the field demonstration we found serious membrane 2 stack clogging problems, which apparently were caused by fine fibers that escaped through the 5-micron pre-filters, although such a pre-filtration method had been satisfactory in the laboratory tests. Additional R&D is recommended to address this pre-filtration or clogging issue with systems approaches integrating pre-filtration, other separation methods, and stack design. After the pre-filtration/clogging issue is overcome, laboratory development and pilot demonstration are recommended to optimize the process parameters and to evaluate the long-term process parameters. The key technical issues here include membrane lives, control and mitigation of fouling and scaling, and cleaning-in-place protocols. From the data collected in this work, a preliminary process design and economic evaluations were performed for a model mill with 1,000-ton/day pulp production that uses a bleaching sequence based on chlorine dioxide. Assuming 3 m{sup 3} acidic effluents to be treated per ton of pulp produced, the electrodialysis process would require a membrane area of about 361 m{sup 2} for this model mill. The energy consumption of the electrodialytic stack for separation is estimated to be about $160/day, and the estimated capital cost of the electrodia

Tsai, S. P.; Pfromm, P.; Henry, M. P.; Fracaro, A. T.; Swanstrom, C. P.; Moon, P.; Energy Systems; Inst. of Paper Science and Tech.

2000-11-01T23:59:59.000Z

428

Plant Importation Importing "Plant Material" From Outside Canada  

E-Print Network [OSTI]

Plant Importation Importing "Plant Material" From Outside Canada 1) Determine whether) If a permit is required from the CFIA* (a division of Agriculture Canada), please go to the CFIA website Agency Canada (PHAC) or the Canadian Food Inspection Agency (CFIA). #12;

429

Managing plant symbiosis: fungal endophyte genotype alters plant community composition  

E-Print Network [OSTI]

Managing plant symbiosis: fungal endophyte genotype alters plant community composition Jennifer A hosts the foliar endophytic fungus, Neotypho- dium coenophialum. We quantified vegetation development of the endophyte (KY-31, AR-542) in two tall fescue cultivars (Georgia-5, Jesup). The KY-31 endophyte produces

Rudgers, Jennifer

430

(Photosynthesis in intact plants)  

SciTech Connect (OSTI)

Progress in the two years since the last renewal application has been excellent. We have made substantial contributions on both main fronts of the projects, and are particularly happy with the progress of our research on intact plants. The approach of basing our field work on a sound foundation of laboratory studies has enabled is to use methods which provide unambiguous assays of well characterized reactions. We have also made excellent progress in several laboratory studies which will have direct applications in future field work, and have introduced to the laboratory a range of molecular genetics techniques which will allow us to explore new options in the attempt to understand function at the level of molecular structure.

Not Available

1990-01-01T23:59:59.000Z

431

Next Generation Geothermal Power Plants  

SciTech Connect (OSTI)

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

432

Quarterly Coal Report, July--September 1994  

SciTech Connect (OSTI)

The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1994 and aggregated quarterly historical data for 1986 through the second quarter of 1994. Appendix A displays, from 1986 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the United States, historical information has been integrated in this report. Additional historical data can also be found in the following EIA publications : Annual Energy Review 1993 (DOE/EIA-0384(93)), Monthly Energy Review (DOE/EIA-0035), and Coal Data: A Reference (DOE/EIA-0064(90)). The historical data in this report are collected by the EIA in three quarterly coal surveys (coal consumption at manufacturing plants, coal distribution, and coal consumption at coke plants), one annual coal production survey, and two monthly surveys of electric utilities. All data shown for 1993 and previous years are final. Data for 1994 are preliminary.

Not Available

1995-02-01T23:59:59.000Z

433

Developing Engineered Fuel (Briquettes) Using Fly Ash from the Aquila Coal-Fired Power Plant in Canon City and Locally Available Biomass Waste  

SciTech Connect (OSTI)

The objective of this research is to explore the feasibility of producing engineered fuels from a combination of renewable and non renewable energy sources. The components are flyash (containing coal fines) and locally available biomass waste. The constraints were such that no other binder additives were to be added. Listed below are the main accomplishments of the project: (1) Determination of the carbon content of the flyash sample from the Aquila plant. It was found to be around 43%. (2) Experiments were carried out using a model which simulates the press process of a wood pellet machine, i.e. a bench press machine with a close chamber, to find out the ideal ratio of wood and fly ash to be mixed to get the desired briquette. The ideal ratio was found to have 60% wood and 40% flyash. (3) The moisture content required to produce the briquettes was found to be anything below 5.8%. (4) The most suitable pressure required to extract the lignin form the wood and cause the binding of the mixture was determined to be 3000psi. At this pressure, the briquettes withstood an average of 150psi on its lateral side. (5) An energy content analysis was performed and the BTU content was determined to be approximately 8912 BTU/lb. (6) The environmental analysis was carried out and no abnormalities were noted. (7) Industrial visits were made to pellet manufacturing plants to investigate the most suitable manufacturing process for the briquettes. (8) A simulation model of extrusion process was developed to explore the possibility of using a cattle feed plant operating on extrusion process to produce briquettes. (9) Attempt to produce 2 tons of briquettes was not successful. The research team conducted a trial production run at a Feed Mill in La Junta, CO to produce two (2) tons of briquettes using the extrusion process in place. The goal was to, immediately after producing the briquettes; send them through Aquila's current system to test the ability of the briquettes to flow through the system without requiring any equipment or process changes. (10) Although the above attempt failed, the plant is still interested in producing briquettes. (11) An economic analysis of investing in a production facility manufacturing such briquettes was conducted to determine the economic viability of the project. Such a project is estimated to have an internal rate of return of 14% and net present value of about $400,000. (12) An engineering independent study class (4 students) is now working on selecting a site near the power plant and determining the layout of the future plant that will produce briquettes.

H. Carrasco; H. Sarper

2006-06-30T23:59:59.000Z

434

Refinery, petrochemical plant injuries decline  

SciTech Connect (OSTI)

The National Petroleum Refiners Association (NPRA) reports a 7% reduction in workplace injury and illness incidence rates for refineries in 1993, and a 21% decrease for petrochemical plants. The report summarizes data from 135 of the 162 US member refineries, and 117 of the 172 US member petrochemical plants. This paper summarizes the report findings.

Not Available

1994-07-25T23:59:59.000Z

435

Do Plants Sweat? Core Content  

E-Print Network [OSTI]

in the bright sun and others are grouped together and are regularly sprinkled with water. You begin to wonder plant distribution where you see this principle in action? -Can you predict the effect of seasons data/graph] Three plants are grown in the same greenhouse with the same air temperature, amount

Kessler, Bruce

436

Dramatic change at T Plant  

SciTech Connect (OSTI)

T Plant (221-T) was the first and largest of the early chemical separations plants at the Hanford Engineer Works (HEW), the name for the Hanford Site during World War II. Officially designated as a Cell Building by the Manhattan Engineer District (MED) of the Army Corps of Engineers (agency responsible for HEW), T Plant served as the headquarters of chemical processing operations at Hanford from its construction until the opening of the Reduction-Oxidation (REDOX) Plant in January 1952. T Plant performed the third step in plutonium production operations, following the steps of uranium fuel manufacture and then irradiation in defense production reactors. The fissionable core (plutonium) used in the world`s first atomic explosion, the Trinity bomb test held at Alamogordo, New Mexico, on July 16, 1945, was processed in T Plant. Likewise, the fissionable core of the weapon dropped over Nagasaki, Japan, on August 9, 1945, was processed in T Plant. Because it formed a crucial link in the first full-scale plutonium production operations in world history, T Plant meets criteria established in the National Historic Preservation Act of 19661 as a Historic Place.

Gerber, M.S.

1994-04-01T23:59:59.000Z

437

Plant maintenance and plant life extension issue, 2007  

SciTech Connect (OSTI)

The focus of the March-April issue is on plant maintenance and plant life extension. Major articles/reports in this issue include: Three proposed COLs expected in 2007, by Dale E. Klein, U.S. Nuclear Regulatory Commission; Delivering behaviors that our customers value, by Jack Allen, Westinghouse Electric Company; Facilitating high-level and fuel waste disposal technologies, by Malcolm Gray, IAEA, Austria; Plant life management and long-term operation, by Pal Kovacs, OECD-NEA, France; Measuring control rod position, by R. Taymanov, K. Sapozhnikova, I. Druzhinin, D.I. Mendeleyev, Institue for Metrology, Russia; and, 'Modernization' means higher safety, by Svetlana Genova, Kozluduy NPP plc, Bulgaria.

Agnihotri, Newal (ed.)

2007-03-15T23:59:59.000Z

438

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstock. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing Plan (RD and T) for implementation in Phase II. The objective of Phase II is to implement the RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and other feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; Jimmy O. Ong; Sarah J. Patel; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Phil J. Shires; Rae Song

2000-10-26T23:59:59.000Z

439

Aquatic plant control research  

SciTech Connect (OSTI)

The Northwest region of the United States contains extensive canal systems that transport water for hydropower generation. Nuisance plants, including algae, that grow in these systems reduce their hydraulic capacity through water displacement and increased surface friction. Most control methods are applied in an ad hoc fashion. The goal of this work is to develop cost-effective, environmentally sound, long-term management strategies to prevent and control nuisance algal growth. This paper reports on a multi-year study, performed in collaboration with the Pacific Gas & Electric Company, to investigate algal growth in their canal systems, and to evaluate various control methodologies. Three types of controls, including mechanical, biological and chemical treatment, were selected for testing and evaluation. As part of this study, water quality data were collected and algal communities were sampled from numerous stations throughout the distribution system at regular intervals. This study resulted in a more comprehensive understanding of conditions leading to the development of nuisance algal growth, a better informed selection of treatment plans, and improved evaluation of the effectiveness for the control strategies selected for testing.

Pryfogle, P.A.; Rinehart, B.N. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Ghio, E.G. [Pacific Gas & Electric Company, San Francisco, CA (United States). Hydro Generation Engineering

1997-05-01T23:59:59.000Z

440

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing Plan (RD and T) for implementation in Phase II. The objective of Phase II is to implement the RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; Jimmy O. Ong; Sarah J. Patel; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Phil J. Shires; Rae Song

2001-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network [OSTI]

Coal Washed Coal Coke Coke Oven Gas Other Gas Other CokingTJ) Coal Coke Coke Oven Gas Other Gas Other Coking Products

Lu, Hongyou

2013-01-01T23:59:59.000Z

442

Plant Energy Cost Optimization Program (PECOP)  

E-Print Network [OSTI]

The Plant Energy Cost Optimization Program (PECOP) is a Management System designed to reduce operating cost in a continuous operating multi product plant by reviewing all cost factors and selecting plant wide production schedules which are most...

Robinson, A. M.

1980-01-01T23:59:59.000Z

443

Fate of Radionuclides in Wastewater Treatment Plants  

E-Print Network [OSTI]

due to the Fukushima nuclear plant accident. Journal of21 3. NUCLEAR POWER PLANTS……………………………………………….. 23 3.1-25 3.2- WASTES FROM NUCLEAR POWER PLANTS………………………… 28 4.

Shabani Samgh Abadi, Farzaneh

2013-01-01T23:59:59.000Z

444

ASSESSING PLANTING STOCK QUALITY Comprehensive assessments of planting stock  

E-Print Network [OSTI]

for cold storage, and to evaluate effects of traditional and proposed nursery cultural practices on field and Jenkinson 1970, 1971) just after lifting and after cold storage to spring planting time · Field survival

Standiford, Richard B.

445

EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect (OSTI)

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from January 1, 2003 through March 31, 2003. Phase I Task 6 activities of Preliminary Site Analysis were documented and reported as a separate Topical Report on February 2003. Most of the other technical activities were on hold pending on DOE's announcement of the Clean Coal Power Initiative (CCPI) awards. WMPI was awarded one of the CCPI projects in late January 2003 to engineer, construct and operate a first-of-kind gasification/liquefaction facility in the U.S. as a continued effort for the current WMPI EECP engineering feasibility study. Since then, project technical activities were focused on: (1) planning/revising the existing EECP work scope for transition into CCPI, and (2) ''jump starting'' all environmentally related work in pursue of NEPA and PA DEP permitting approval.

John W. Rich

2003-06-01T23:59:59.000Z

446

Forest land application of sewage sludge on the Savannah River Plant  

SciTech Connect (OSTI)

In 1980, a sewage sludge application study was initiated on the Savannah River Plant to evaluate the effects of sludge additions on nutrient cycling processes in loblolly pine (Pinus taeda L.) forest ecosystems and to determine whether or not such additions beneficially enhance forest productivity. Sewage sludge, either as a liquid anaerobic sludge at 0, 402, or 804 kg N/ha (360 and 720 lb/ac) containing approximately 7% N (oven dry) or a solid aerobic material at 632 kg N/ha (560 lb/ac) with approximately 1.3% N (oven dry), was applied to 1-, 3-, 8-, and 28-year-old loblolly pine stands on sandy and clayey upper coastal plain soils. A total of 525,000 gallons of liquid sludge and 560 tons of solid sludge was applied on 11.6 hectares (28.7 acres) of loblolly pine forest plots. Sludge additions were monitored to determine availability and movement so that potential impacts could be evaluated on water quality, nutrient and heavy metal cycling, soil and forest floor, understory vegetation, tree foliage, stand growth, biomass production, and wood quality. This study concluded that using liquid sludge at rates of 400 kg N/ha or less as a silvicultural treatment to fertilize pulp and sawtimber loblolly pine stands resulted in increased forest productivity without environmental or wood quality degradation. Application recommendations for stand age and loading rates for management purposes are addressed.

Davis, C.E. (comp.)

1989-05-31T23:59:59.000Z

447

Solid Waste Energy Conversion Project, Reedy Creek Utilities Demonstration Plant: Environmental assessment  

SciTech Connect (OSTI)

The Solid Waste Energy Conversion (SWEC) facility proposed would produce high-temperature hot water from urban refuse and would also provide a demonstration pilot-plant for the proposed Transuranic Waste Treatment Facility (TWTF) in Idaho. The SWEC project would involve the construction of an incinerator facility capable of incinerating an average of 91 metric tons per day of municipal solid waste and generating high-temperature hot water using the off-gas heat. The facility is based on the Andco-Torrax slagging pyrolysis incineration process. The proposed action is described, as well as the existing environment at the site and identified potential environmental impacts. Coordination with federal, state, regional, or local plans and programs was examined, and no conflicts were identified. Programmatic alternatives to the proposed project were identified and their advantages, disadvantages, and environmental impacts were examined. It is found that the proposed action poses no significant environmental impacts, other than the short term effects of construction activities. (LEW)

Not Available

1980-06-01T23:59:59.000Z

448

North Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

449

New Jersey Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

450

South Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

451

New York Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

452

GEOTHERMAL POWER GENERATION PLANT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

POWER GENERATION PLANT GEOTHERMAL POWER GENERATION PLANT Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls,...

453

Independent Oversight Inspection, Waste Isolation Pilot Plant...  

Energy Savers [EERE]

Independent Oversight Inspection, Waste Isolation Pilot Plant, Summary Report - August 2002 Independent Oversight Inspection, Waste Isolation Pilot Plant, Summary Report - August...

454

Natural Gas Processing Plant- Sulfur (New Mexico)  

Broader source: Energy.gov [DOE]

This regulation establishes sulfur emission standards for natural gas processing plants. Standards are stated for both existing and new plants. There are also rules for stack height requirements,...

455

Oversight Reports - Pantex Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2012 Independent Oversight Assessment, Pantex Plant - November 2012 Assessment of Nuclear Safety Culture at the Pantex Plant August 8, 2012 Independent Activity Report, Pantex...

456

Oversight Reports - Waste Isolation Pilot Plant | Department...  

Broader source: Energy.gov (indexed) [DOE]

Waste Isolation Pilot Plant - December 2007 Inspection of Emergency Management at the Carlsbad Field Office and Waste Isolation Pilot Plant October 2, 2002 Independent Oversight...

457

Independent Activity Report, Hanford Plutonium Finishing Plant...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plutonium Finishing Plant - May 2012 Independent Activity Report, Hanford Plutonium Finishing Plant - May 2012 May 2012 Criticality Safety Information Meeting for the Hanford...

458

Study of Pu consumption in Advanced Light Water Reactors. Evaluation of GE Advanced Boiling Water Reactor plants  

SciTech Connect (OSTI)

Timely disposal of the weapons plutonium is of paramount importance to permanently safeguarding this material. GE`s 1300 MWe Advanced Boiling Water Reactor (ABWR) has been designed to utilize fill] core loading of mixed uranium-plutonium oxide fuel. Because of its large core size, a single ABWR reactor is capable of disposing 100 metric tons of plutonium within 15 years of project inception in the spiking mode. The same amount of material could be disposed of in 25 years after the start of the project as spent fuel, again using a single reactor, while operating at 75 percent capacity factor. In either case, the design permits reuse of the stored spent fuel assemblies for electrical energy generation for the remaining life of the plant for another 40 years. Up to 40 percent of the initial plutonium can also be completely destroyed using ABWRS, without reprocessing, either by utilizing six ABWRs over 25 years or by expanding the disposition time to 60 years, the design life of the plants and using two ABWRS. More complete destruction would require the development and testing of a plutonium-base fuel with a non-fertile matrix for an ABWR or use of an Advanced Liquid Metal Reactor (ALMR). The ABWR, in addition, is fully capable of meeting the tritium target production goals with already developed target technology.

Not Available

1993-05-13T23:59:59.000Z

459

Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Specific fuel and electricity consumption per ton of cementin specific fuel and electricity consumption. Theincrease in specific electricity consumption, which is due

Worrell, Ernst

2008-01-01T23:59:59.000Z

460

Kansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear net generation (percent)","Owner" "Wolf Creek Generating Station Unit 1","1,160","9,556",100.0,"Wolf Creek Nuclear Optg Corp" "1 Plant 1 Reactor","1,160","9,556",100.0...

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

mwh)","Share of State nuclear net generation (percent)","Owner" "Vermont Yankee Unit 1",620,"4,782",100.0,"Entergy Nuclear Vermont Yankee" "1 Plant 1 Reactor",620,"4,782",100.0...

462

Massachusetts Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

(percent)","Owner" "Pilgrim Nuclear Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal...

463

Plant salt-tolerance mechanisms  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

2014-06-01T23:59:59.000Z

464

Fiberglass plastics in power plants  

SciTech Connect (OSTI)

Fiberglass reinforced plastics (FRPs) are replacing metal in FGDs, stacks, tanks, cooling towers, piping and other plant components. The article documents the use of FRP in power plants since the 1970s. The largest volume of FRP in North American power plants is for stack liners and ductwork. Absorber vessel shells and internal components comprise the third largest use. The most common FRP absorber vessels are known as jet bubbling reactors (JBRs). One of the largest JBRs at a plant on the Ohio River removes 99% of sulphur dioxide from high sulphur coal flue gas. FRPs last twice as long as wood structures when used for cooling towers and require less maintenance. 1 tab., 2 photos.

Kelley, D. [Ashland Performance Materials (United States)

2007-08-15T23:59:59.000Z

465

Description Plants ESIS ESD FSGD  

E-Print Network [OSTI]

Ecological Site Description Plants ESIS ESD FSGD ESI Forestland ESI Rangeland Data Access > Return CHARACTERISTICS Site Type: Rangeland Site Name: Red Sandy Loam 25-32" PZ Site ID: R082AY369TX Major Land Resource

466

Issues for New Nuclear Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Explore * Idaho's energy picture * Nuclear power in the U.S. * Potential for a nuclear power plant in Idaho 0 5 10 15 20 25 1960 1970 1980 1990 2000 Million Megawatt-Hours Total...

467

Foote Hydroelectric Plant spillway rehabilitation  

SciTech Connect (OSTI)

In 1993 the spillway of the 9 MW Foote Hydroelectric Plant located on the AuSable River, near Oscoda, Michigan was rehabilitated. The Foote Plant, built in 1917, is owned and operated by Consumers Power Company. In the 76 years of continuous operation the spillway had deteriorated such that much of the concrete and associated structure needed to be replaced to assure safety of the structure. The hydro station includes an earth embankment with concrete corewall, a concrete spillway with three tainter gates and a log chute, a penstock structure and a steel and masonry powerhouse. The electric generation is by three vertical shaft units of 3,000 KW each. A plan of the plant with spillway and an elevation of the spillway section is shown. This paper describes the evaluation and repair of the plant spillway and associated structure.

Sowers, D.L. [Consumers Power Co., Jackson, MI (United States); Hasan, N.; Gertler, L.R. [Raytheon Infrastructures Services, New York, NY (United States)

1996-10-01T23:59:59.000Z

468

Next Generation Nuclear Plant Phenomena  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the U.S. Department of Energy (DOE) to develop jointly a licensing strategy for the Next Generation Nuclear plant (NGNP), a very high temperature gas-cooled reactor (VHTR) for...

469

Next Generation Nuclear Plant Phenomena  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Should that prove to be impractical (e.g. due to excessive heat loss in the intermediate heat transfer loop), an earthen berm separating the two plants may be a suitable...

470

Water Filtration Using Plant Xylem  

E-Print Network [OSTI]

Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees – a readily available, ...

Boutilier, Michael Stephen Ha

471

Mixtec plant nomenclature and classification  

E-Print Network [OSTI]

Capsicum pubescens L. , SOLANACEAE yutu tuya’a kuán: la matade chile amarillo (PIN) tuya’a: chili plants (JAM) chá’a:nika’ndi ya’a: chilar (CAB) tuya’a (COI) Clethra mexicana

de Avila, Alejandro

2010-01-01T23:59:59.000Z

472

AQUATIC PLANT CONTROL RESEARCH PROGRAM  

E-Print Network [OSTI]

of these organisms to environmental factors (e .g. , temperature and solar radiation). Actual field data have been compared with simulation output with encouraging results. Starting biomass of the plants and numbers

US Army Corps of Engineers

473

A neighborhood alternative energy plant  

E-Print Network [OSTI]

A design that proposes the redefinition of the role of a power plant facility within a community by creating a humane environment for recreation, education, community gathering, living, and energy production; rather than ...

Brooks, Douglas James

1982-01-01T23:59:59.000Z

474

Belgrade Lot Steam Plant Lot  

E-Print Network [OSTI]

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Gym Lot Corbett Lot Greenhouse Patch Oceanographic Operations 1 2 8 5 3 4 7 6 AMC Chadbourne Merrill Aubert Hannibal Hamlin Steam

Thomas, Andrew

475

Computer Control of Unattended Plants  

E-Print Network [OSTI]

COMPUTER CONTROL OF UNATTENDED PLANTS David R. Vinson, Nirma1 Chatterjee ? Ai r Products and Chemi ca 1s, Inc. Allentown, Pennsylvania Providing a cost-effective and reliable computer monitori ng, control, and optimization package is a greater... the last decade, energy costs in some air separation plants are now more than half the total product cost. Starting in 1975, Air Products and Chemicals, Inc. began implementing a program to retrofit existing major energy consuming facili ties...

Vinson, D. R.; Chatterjee, N.

1984-01-01T23:59:59.000Z

476

Researching power plant water recovery  

SciTech Connect (OSTI)

A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

NONE

2008-04-01T23:59:59.000Z

477

SYMPOSIUM ON PLANT PROTEIN PHOSPHORYLATION  

SciTech Connect (OSTI)

Protein phosphorylation and dephosphorylation play key roles in many aspects of plant biology, including control of cell division, pathways of carbon and nitrogen metabolism, pattern formation, hormonal responses, and abiotic and biotic responses to environmental signals. A Symposium on Plant Protein Phosphorylation was hosted on the Columbia campus of the University of Missouri from May 26-28, 2010. The symposium provided an interdisciplinary venue at which scholars studying protein modification, as it relates to a broad range of biological questions and using a variety of plant species, presented their research. It also provided a forum where current international challenges in studies related to protein phosphorylation could be examined. The symposium also stimulated research collaborations through interactions and networking among those in the research community and engaged students and early career investigators in studying issues in plant biology from an interdisciplinary perspective. The proposed symposium, which drew 165 researchers from 13 countries and 21 States, facilitated a rapid dissemination of acquired knowledge and technical expertise regarding protein phosphorylation in plants to a broad range of plant biologists worldwide.

JOHN C WALKER

2011-11-01T23:59:59.000Z

478

Waste Treatment Plant - 12508  

SciTech Connect (OSTI)

The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

Harp, Benton; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

479

Method of identifying plant pathogen tolerance  

DOE Patents [OSTI]

A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described. 7 figs.

Ecker, J.R.; Staskawicz, B.J.; Bent, A.F.; Innes, R.W.

1997-10-07T23:59:59.000Z

480

Biochemical Conversion Pilot Plant (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

Not Available

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "ton coke plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Pilot Plant Options for the MFE Roadmap  

E-Print Network [OSTI]

Pilot Plant Options for the MFE Roadmap Hutch Neilson Princeton Plasma Physics Laboratory International Workshop MFE Roadmapping for the ITER Era Princeton, NJ 10 September 2011 #12;Outline 2 · Pilot plant ­ mission, motivation, and description. · Role of pilot plants on the Roadmap to Demo. Pilot Plant

482

PHYSICAL PLANT OPERATING POLICY AND PROCEDURE  

E-Print Network [OSTI]

in this technology. REVIEW This Physical Plant Operating Policy/Procedure (PP/OP) will be reviewed in March of each Plant. Physical Plant's intention is to provide each employee reasonable access to the technology Plant technology will be a prime consideration. Requests for non-standard products will not be approved

Gelfond, Michael

483

HYDROCARBONS FROM PLANTS: ANALYTICAL METHODS AND OBSERVATIONS  

E-Print Network [OSTI]

petrochemical industry,· The methanol residue is substantially all fermentable to ethanol. There are other plants

Calvin, Melvin

2013-01-01T23:59:59.000Z

484

The Water Circuit of the Plants - Do Plants have Hearts ?  

E-Print Network [OSTI]

There is a correspondence between the circulation of blood in all higher animals and the circulation of sap in all higher plants - up to heights h of 140 m - through the xylem and phloem vessels. Plants suck in water from the soil, osmotically through the roothair zone, and subsequently lift it osmotically again, and by capillary suction (via their buds, leaves, and fruits) into their crowns. In between happens a r