National Library of Energy BETA

Sample records for tomography muon tomography

  1. Discussion - Next Step for Fukushima Daiichi Muon Tomography

    SciTech Connect (OSTI)

    Miyadera, Haruo

    2012-08-13

    Specification of Fukushima Daiichi Muon Tomography (FMT): (1) 18-feet (5.5-m) drift tube, 2-inch (5-cm) diameter; (2) 108 tubes per layer; (3) Unit layer = 2 layer (detection efficiency: 0.96 x 0.96 = 92%); (4) 12 or 16 layer per module; (5) 16 layers allows momentum analysis at 30% level; (6) 2 module per super module (5.5 x 11 m{sup 2}); and (7) FMT = 2 super module. By deploying MMT next to a research reactor, we will be able to measure the impact of low level radiation fields on muon tomography and reconstruction processes. Radiation level during reactor operation is {approx}50 {micro}Sv/h which provides similar radiation environment of inside the FMT radiation shield at Fukushima Daiichi. We will implement coincidence algorithm on the FPGA board.

  2. Our Next Two Steps for Fukushima Daiichi Muon Tomography

    SciTech Connect (OSTI)

    Miyadera, Haruo

    2012-04-11

    After the vast disasters caused by the great earthquake and tsunami in eastern Japan, we proposed applying our Muon Tomography (MT) technique to help and improve the emergency situation at Fukushima Daiichi using cosmic-ray muons. A reactor-tomography team was formed at LANL which was supported by the Laboratory as a response to a request by the former Japanese Prime Minister, Naoto Kan. Our goal is to help the Japanese people and support remediation of the reactors. At LANL, we have carried out a proof-of-principle technical demonstration and simulation studies that established the feasibility of MT to image a reactor core. This proposal covers the next two critical steps for Fukushima Daiichi Muon Imaging: (1) undertake case study mock-up experiments of Fukushima Daiichi, and (2) system optimization. We requested funding to the US and Japanese government to assess damage of reactors at Fukushima Daiichi. The two steps will bring our project to the 'ready-to-go' level.

  3. The cosmic ray muon tomography facility based on large scale MRPC detector

    E-Print Network [OSTI]

    Xuewu Wang; Ming Zeng; Zhi Zeng; Yi Wang; Ziran Zhao; Xiaoguang Yue; Zhifei Luo; Hengguan Yi; Baihui Yu; Jianping Cheng

    2015-04-18

    Cosmic ray muon tomography is a novel technology to detect high-Z material. A prototype of TUMUTY with 73.6 cm x 73.6 cm large scale position sensitive MRPC detectors has been developed and is introduced in this paper. Three test kits have been tested and image is reconstructed using MAP algorithm. The reconstruction results show that the prototype is working well and the objects with complex structure and small size (20 mm) can be imaged on it, while the high-Z material is distinguishable from the low-Z one. This prototype provides a good platform for our further studies of the physical characteristics and the performances of cosmic ray muon tomography.

  4. Nuclear Waste Imaging and Spent Fuel Verification by Muon Tomography

    E-Print Network [OSTI]

    Jonkmans, G; Jewett, C; Thompson, M

    2012-01-01

    This paper explores the use of cosmic ray muons to image the contents of shielded containers and detect high-Z special nuclear materials inside them. Cosmic ray muons are a naturally occurring form of radiation, are highly penetrating and exhibit large scattering angles on high Z materials. Specifically, we investigated how radiographic and tomographic techniques can be effective for non-invasive nuclear waste characterization and for nuclear material accountancy of spent fuel inside dry storage containers. We show that the tracking of individual muons, as they enter and exit a structure, can potentially improve the accuracy and availability of data on nuclear waste and the contents of Dry Storage Containers (DSC) used for spent fuel storage at CANDU plants. This could be achieved in near real time, with the potential for unattended and remotely monitored operations. We show that the expected sensitivity, in the case of the DSC, exceeds the IAEA detection target for nuclear material accountancy.

  5. Characterising encapsulated nuclear waste using cosmic-ray muon tomography

    E-Print Network [OSTI]

    Clarkson, Anthony; Hoek, Matthias; Ireland, David G; Johnstone, John R; Kaiser, Ralf; Keri, Tibor; Lumsden, Scott; Mahon, David F; McKinnon, Bryan; Murray, Morgan; Nutbeam-Tuffs, Siân; Shearer, Craig; Yang, Guangliang; Zimmerman, Colin

    2014-01-01

    Tomographic imaging techniques using the Coulomb scattering of cosmic-ray muons have been shown previously to successfully identify and characterise low- and high-Z materials within an air matrix using a prototype scintillating-fibre tracker system. Those studies were performed as the first in a series to assess the feasibility of this technology and image reconstruction techniques in characterising the potential high-Z contents of legacy nuclear waste containers for the UK Nuclear Industry. The present work continues the feasibility study and presents the first images reconstructed from experimental data collected using this small-scale prototype system of low- and high-Z materials encapsulated within a concrete-filled stainless-steel container. Clear discrimination is observed between the thick steel casing, the concrete matrix and the sample materials assayed. These reconstructed objects are presented and discussed in detail alongside the implications for future industrial scenarios.

  6. Characterising encapsulated nuclear waste using cosmic-ray muon tomography

    E-Print Network [OSTI]

    Anthony Clarkson; David J. Hamilton; Matthias Hoek; David G. Ireland; John R. Johnstone; Ralf Kaiser; Tibor Keri; Scott Lumsden; David F. Mahon; Bryan McKinnon; Morgan Murray; Siân Nutbeam-Tuffs; Craig Shearer; Guangliang Yang; Colin Zimmerman

    2014-10-27

    Tomographic imaging techniques using the Coulomb scattering of cosmic-ray muons have been shown previously to successfully identify and characterise low- and high-Z materials within an air matrix using a prototype scintillating-fibre tracker system. Those studies were performed as the first in a series to assess the feasibility of this technology and image reconstruction techniques in characterising the potential high-Z contents of legacy nuclear waste containers for the UK Nuclear Industry. The present work continues the feasibility study and presents the first images reconstructed from experimental data collected using this small-scale prototype system of low- and high-Z materials encapsulated within a concrete-filled stainless-steel container. Clear discrimination is observed between the thick steel casing, the concrete matrix and the sample materials assayed. These reconstructed objects are presented and discussed in detail alongside the implications for future industrial scenarios.

  7. Monitoring temporal opacity fluctuations of large structures with muon tomography : a calibration experiment using a water tower tank

    E-Print Network [OSTI]

    Kevin Jourde; Dominique Gibert; Jacques Marteau; Jean de Bremond d'Ars; Serge Gardien; Claude Girerd; Jean-Christophe Ianigro

    2015-04-09

    The idea of using secondary cosmic muons to scan the internal structure of a given body has known significant developments since the first archaeological application by Alvarez and collaborators on the Gizah pyramids. Recent applications cover the fields of volcanology, hydrology, civil engineering, mining, archaeology etc. Muon radiography features are essentially identical to those of medical X-ray imaging techniques. It is a contrast densitometry method using the screening effect of the body under study on the natural flux of cosmic muons. This technique is non-invasive and complements the standard geophysical techniques, e.g. electrical tomography or gravimetry. It may be applied to a large variety of geological targets, among which the domes of active volcanoes. In this context muon tomography presents the noticeable advantage to perform measurements of large volumes, with a large aperture, from a distant point, far from the potentially dangerous zones. The same conclusions apply regarding the monitoring of the volcano's activity since muon tomography provides continuous data taking, provided the muon detectors are sufficiently well designed and autonomous. Recent measurements on La Soufri\\`ere of Guadeloupe (Lesser Antilles, France) show, over a one year period, large modulations of the crossing muon flux, correlated with an increase of the activity in the dome. In order to firmly establish the sensitivity of the method and of our detectors and to disentangle the effects on the muon flux modulations induced by the volcano's hydrothermal system from those induced by other sources, e.g. atmospheric temperature and pressure, we perform a dedicated calibration experiment inside a water tower tank. We show how the method is fully capable of dynamically following fast variations in the density.

  8. Performance of a Drift Chamber Candidate for a Cosmic Muon Tomography System

    SciTech Connect (OSTI)

    Anghel, V.; Jewett, C.; Jonkmans, G.; Thompson, M.; Armitage, J.; Botte, J.; Boudjemline, K.; Erlandson, A.; Oakham, G.; Bueno, J.; Bryman, D.; Liu, Z.; Charles, E.; Gallant, G.; Cousins, T.; Noel, S.; Drouin, P.-L.; Waller, D.; Stocki, T. J.

    2011-12-13

    In the last decade, many groups around the world have been exploring different ways to probe transport containers which may contain illicit Special Nuclear Materials such as uranium. The muon tomography technique has been proposed as a cost effective system with an acceptable accuracy. A group of Canadian institutions (see above), funded by Defence Research and Development Canada, is testing different technologies to track the cosmic muons. One candidate is the single wire Drift Chamber. With the capability of a 2D impact position measurement, two detectors will be placed above and two below the object to be probed. In order to achieve a good 3D image quality of the cargo content, a good angular resolution is required. The simulation showed that 1mrad was required implying the spatial resolution of the trackers must be in the range of 1 to 2 mm for 1 m separation. A tracking system using three prototypes has been built and tested. The spatial resolution obtained is 1.7 mm perpendicular to the wire and 3 mm along the wire.

  9. Neutron Tomography and Space

    E-Print Network [OSTI]

    Egbert, Hal; Walker, Ronald; Flocchini, R.

    2007-01-01

    Kevin Shields, “Optimization of neutron tomography for rapidNEUTRON TOMOGRAPHY AND SPACE Hal Egbert, Ronald Walker, R.industrial applications[1]. Neutron Computed Tomography was

  10. Pseudolocal tomography

    DOE Patents [OSTI]

    Katsevich, A.J.; Ramm, A.G.

    1996-07-23

    Local tomographic data is used to determine the location and value of a discontinuity between a first internal density of an object and a second density of a region within the object. A beam of radiation is directed in a predetermined pattern through the region of the object containing the discontinuity. Relative attenuation data of the beam is determined within the predetermined pattern having a first data component that includes attenuation data through the region. The relative attenuation data is input to a pseudo-local tomography function, where the difference between the internal density and the pseudo-local tomography function is computed across the discontinuity. The pseudo-local tomography function outputs the location of the discontinuity and the difference in density between the first density and the second density. 7 figs.

  11. Doppler Tomography

    E-Print Network [OSTI]

    T. R. Marsh

    2000-11-01

    I review the method of Doppler tomography which translates binary-star line profiles taken at a series of orbital phases into a distribution of emission over the binary. I begin with a discussion of the basic principles behind Doppler tomography, including a comparison of the relative merits of maximum entropy regularisation versus filtered back-projection for implementing the inversion. Following this I discuss the issue of noise in Doppler images and possible methods for coping with it. Then I move on to look at the results of Doppler Tomography applied to cataclysmic variable stars. Outstanding successes to date are the discovery of two-arm spiral shocks in cataclysmic variable accretion discs and the probing of the stream/magnetospheric interaction in magnetic cataclysmic variable stars. Doppler tomography has also told us much about the stream/disc interaction in non-magnetic systems and the irradiation of the secondary star in all systems. The latter indirectly reveals such effects as shadowing by the accretion disc or stream. I discuss all of these and finish with some musings on possible future directions for the method. At the end I include a tabulation of Doppler maps published in refereed journals.

  12. The Design and Performance of a Scintillating-Fibre Tracker for the Cosmic-ray Muon Tomography of Legacy Nuclear Waste Containers

    E-Print Network [OSTI]

    Clarkson, Anthony; Hoek, Matthias; Ireland, David G; Johnstone, Russell; Kaiser, Ralf; Keri, Tibor; Lumsden, Scott; Mahon, David F; McKinnon, Bryan; Murray, Morgan; Nutbeam-Tuffs, Sian; Shearer, Craig; Staines, Cassie; Yang, Guangliang; Zimmerman, Colin

    2013-01-01

    Tomographic imaging techniques using the Coulomb scattering of cosmic-ray muons are increasingly being exploited for the non-destructive assay of shielded containers in a wide range of applications. One such application is the characterisation of legacy nuclear waste materials stored within industrial containers. The design, assembly and performance of a prototype muon tomography system developed for this purpose are detailed in this work. This muon tracker comprises four detection modules, each containing orthogonal layers of Saint-Gobain BCF-10 2mm-pitch plastic scintillating fibres. Identification of the two struck fibres per module allows the reconstruction of the incoming and Coulomb-scattered muon trajectories. These allow the container content, with respect to the atomic number Z of the scattering material, to be determined through reconstruction of the scattering location and magnitude. On each detection layer, the light emitted by the fibre is detected by a single Hamamatsu H8500 MAPMT with two fibre...

  13. Mathematics of thermoacoustic tomography

    E-Print Network [OSTI]

    Peter Kuchment; Leonid Kunyansky

    2007-10-21

    The paper presents a survey of mathematical problems, techniques, and challenges arising in the Thermoacoustic and Photoacoustic Tomography.

  14. GEANT4 Simulation of a Scintillating-Fibre Tracker for the Cosmic-ray Muon Tomography of Legacy Nuclear Waste Containers

    E-Print Network [OSTI]

    Clarkson, Anthony; Hoek, Matthias; Ireland, David G; Johnstone, Russell; Kaiser, Ralf; Keri, Tibor; Lumsden, Scott; Mahon, David F; McKinnon, Bryan; Murray, Morgan; Nutbeam-Tuffs, Sian; Shearer, Craig; Staines, Cassie; Yang, Guangliang; Zimmerman, Colin

    2013-01-01

    Cosmic-ray muons are highly penetrative charged particles that are observed at sea level with a flux of approximately one per square centimetre per minute. They interact with matter primarily through Coulomb scattering, which is exploited in the field of muon tomography to image shielded objects in a wide range of applications. In this paper, simulation studies are presented that assess the feasibility of a scintillating-fibre tracker system for use in the identification and characterisation of nuclear materials stored within industrial legacy waste containers. A system consisting of a pair of tracking modules above and a pair below the volume to be assayed is simulated within the GEANT4 framework using a range of potential fibre pitches and module separations. Each module comprises two orthogonal planes of fibres that allow the reconstruction of the initial and Coulomb-scattered muon trajectories. A likelihood-based image reconstruction algorithm has been developed that allows the container content to be det...

  15. Turbocharging Quantum Tomography.

    SciTech Connect (OSTI)

    Blume-Kohout, Robin J; Gamble, John King,; Nielsen, Erik; Maunz, Peter Lukas Wilhelm; Scholten, Travis L.; Rudinger, Kenneth Michael

    2015-01-01

    Quantum tomography is used to characterize quantum operations implemented in quantum information processing (QIP) hardware. Traditionally, state tomography has been used to characterize the quantum state prepared in an initialization procedure, while quantum process tomography is used to characterize dynamical operations on a QIP system. As such, tomography is critical to the development of QIP hardware (since it is necessary both for debugging and validating as-built devices, and its results are used to influence the next generation of devices). But tomography su %7C ers from several critical drawbacks. In this report, we present new research that resolves several of these flaws. We describe a new form of tomography called gate set tomography (GST), which unifies state and process tomography, avoids prior methods critical reliance on precalibrated operations that are not generally available, and can achieve unprecedented accuracies. We report on theory and experimental development of adaptive tomography protocols that achieve far higher fidelity in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and experimental analysis of process tomography on multispin systems, and demonstrate how to more e %7C ectively detect and characterize quantum noise using carefully tailored ensembles of input states.

  16. THERMOACOUSTIC TOMOGRAPHY WITH VARIABLE SOUND ...

    E-Print Network [OSTI]

    2009-10-26

    We study the mathematical model of thermoacoustic tomography in media with a ... In thermoacoustic tomography, a short electro-magnetic pulse is sent through ...

  17. Quantum Tomography twenty years later

    E-Print Network [OSTI]

    M. Asorey; A. Ibort; G. Marmo; F. Ventriglia

    2015-10-28

    A sample of some relevant developments that have taken place during the last twenty years in classical and quantum tomography are displayed. We will present a general conceptual framework that provides a simple unifying mathematical picture for all of them and, as an effective use of it, three subjects have been chosen that offer a wide panorama of the scope of classical and quantum tomography: tomography along lines and submanifolds, coherent state tomography and tomography in the abstract algebraic setting of quantum systems.

  18. GEANT4 Simulation of a Scintillating-Fibre Tracker for the Cosmic-ray Muon Tomography of Legacy Nuclear Waste Containers

    E-Print Network [OSTI]

    Anthony Clarkson; David J. Hamilton; Matthias Hoek; David G. Ireland; Russell Johnstone; Ralf Kaiser; Tibor Keri; Scott Lumsden; David F. Mahon; Bryan McKinnon; Morgan Murray; Sian Nutbeam-Tuffs; Craig Shearer; Cassie Staines; Guangliang Yang; Colin Zimmerman

    2013-09-13

    Cosmic-ray muons are highly penetrative charged particles that are observed at sea level with a flux of approximately one per square centimetre per minute. They interact with matter primarily through Coulomb scattering, which is exploited in the field of muon tomography to image shielded objects in a wide range of applications. In this paper, simulation studies are presented that assess the feasibility of a scintillating-fibre tracker system for use in the identification and characterisation of nuclear materials stored within industrial legacy waste containers. A system consisting of a pair of tracking modules above and a pair below the volume to be assayed is simulated within the GEANT4 framework using a range of potential fibre pitches and module separations. Each module comprises two orthogonal planes of fibres that allow the reconstruction of the initial and Coulomb-scattered muon trajectories. A likelihood-based image reconstruction algorithm has been developed that allows the container content to be determined with respect to the atomic number Z of the scattering material. Images reconstructed from this simulation are presented for a range of anticipated scenarios that highlight the expected image resolution and the potential of this system for the identification of high-Z materials within a shielded, concrete-filled container. First results from a constructed prototype system are presented in comparison with those from a detailed simulation. Excellent agreement between experimental data and simulation is observed showing clear discrimination between the different materials assayed throughout.

  19. Introduction to Positron Emission Tomography

    E-Print Network [OSTI]

    Oakes, Terry

    range: 1-10 mm Gamma-Ray range: 10 mm - 8 positron annihilation #12;Positron Emission TomographyIntroduction to Positron Emission Tomography Positron Annihilation 180 o #1 #2 with your host detector #2 detector #1 #2 #1 detector ring #12;Positron Emission Tomography detector #2 detector #1 #2

  20. Finite quantum tomography via semidefinite programming

    E-Print Network [OSTI]

    M. A. Jafarizadeh; M. Mirzaee; M. Rezaee

    2007-07-26

    Using the the convex semidefinite programming method and superoperator formalism we obtain the finite quantum tomography of some mixed quantum states such as: qudit tomography, N-qubit tomography, phase tomography and coherent spin state tomography, where that obtained results are in agreement with those of References \\cite{schack,Pegg,Barnett,Buzek,Weigert}.

  1. Thermoacoustic tomography, variable sound speed

    E-Print Network [OSTI]

    Plamen Stefanov

    2009-10-26

    In thermoacoustic tomography, a short electro-magnetic pulse is sent through a patient's body. The tissue reacts and emits an ultrasound wave form any point, ...

  2. Positron Emission Tomography (PET)

    DOE R&D Accomplishments [OSTI]

    Welch, M. J.

    1990-01-00

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  3. Radial reflection diffraction tomography

    DOE Patents [OSTI]

    Lehman, Sean K.

    2012-12-18

    A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.

  4. Introduction to Positron Emission Tomography

    E-Print Network [OSTI]

    Oakes, Terry

    Introduction to Positron Emission Tomography with your host, Terry Oakes Positron Annihilation #1 neighboring atom Positron range: 1-10 mm Gamma-Ray range: 10 mm - 8 positron annihilation #2 #1 T.R.Oakes Univ. WI-Madison #12;Positron Emission Tomography detector #2 detector #1 #2 #1 detector ring T

  5. Electrical Impedance Tomography Liliana Borcea

    E-Print Network [OSTI]

    Borcea, Liliana

    Electrical Impedance Tomography Liliana Borcea #3; September 3, 2002 Abstract We review theoretical and numerical studies of the inverse problem of electrical impedance tomography which seeks the electrical conductivity and permittivity inside a body, given simul- taneous measurements of electrical currents

  6. THERMOACOUSTIC TOMOGRAPHY ARISING IN BRAIN IMAGING ...

    E-Print Network [OSTI]

    2011-02-21

    THERMOACOUSTIC TOMOGRAPHY ARISING IN BRAIN IMAGING. PLAMEN STEFANOV AND GUNTHER UHLMANN. ABSTRACT. We study the mathematical ...

  7. Mathematical Problems of Thermoacoustic Tomography 

    E-Print Network [OSTI]

    Nguyen, Linh V.

    2010-10-12

    Thermoacoustic tomography (TAT) is a newly emerging modality in biomedical imaging. It combines the good contrast of electromagnetic and good resolution of ultrasound imaging. The mathematical model of TAT is the observability problem for the wave...

  8. Quantum field tomography

    E-Print Network [OSTI]

    A. Steffens; C. A. Riofrío; R. Hübener; J. Eisert

    2014-11-06

    We introduce the concept of quantum field tomography, the efficient and reliable reconstruction of unknown quantum fields based on data of correlation functions. At the basis of the analysis is the concept of continuous matrix product states, a complete set of variational states grasping states in quantum field theory. We innovate a practical method, making use of and developing tools in estimation theory used in the context of compressed sensing such as Prony methods and matrix pencils, allowing us to faithfully reconstruct quantum field states based on low-order correlation functions. In the absence of a phase reference, we highlight how specific higher order correlation functions can still be predicted. We exemplify the functioning of the approach by reconstructing randomised continuous matrix product states from their correlation data and study the robustness of the reconstruction for different noise models. We also apply the method to data generated by simulations based on continuous matrix product states and using the time-dependent variational principle. The presented approach is expected to open up a new window into experimentally studying continuous quantum systems, such as encountered in experiments with ultra-cold atoms on top of atom chips. By virtue of the analogy with the input-output formalism in quantum optics, it also allows for studying open quantum systems.

  9. Reconstruction in tomography with diffracting sources 

    E-Print Network [OSTI]

    Xu, Yuan

    2005-02-17

    In this dissertation, we ?rst derive exact reconstuction algorithms for thermoacoustic tomography (TAT) and broadband di?raction tomography (a linearized inverse scattering problem) using derived time-reversal formulas. Then we focus...

  10. Thermoacoustic and Photoacoustic Tomography with a variable ...

    E-Print Network [OSTI]

    Plamen Stefanov

    2010-11-09

    ... a joint work with. Jianliang Qian, Gunther Uhlmann and Hongkai Zhao. Plamen Stefanov (Purdue University ). Thermoacoustic Tomography, Variable Speed.

  11. Mathematics of Thermoacoustic and Photoacoustic Tomography

    E-Print Network [OSTI]

    Kuchment, Peter

    2007-01-01

    The paper presents a survey of mathematical problems, techniques, and challenges arising in the Thermoacoustic and Photoacoustic Tomography.

  12. MULTIWAVE TOMOGRAPHY IN A CLOSED DOMAIN: AVERAGED ...

    E-Print Network [OSTI]

    2015-05-03

    Mathematics of photoacoustic and thermoacoustic tomography. In O. Scherzer, editor ... An efficient Neumann series-based algorithm for thermoacoustic.

  13. Hybrid tomography for conductivity imaging

    E-Print Network [OSTI]

    T. Widlak; O. Scherzer

    2012-03-20

    Hybrid imaging techniques utilize couplings of physical modalities -- they are called hybrid, because, typically, the excitation and measurement quantities belong to different modalities. Recently there has been an enormous research interest in this area because these methods promise very high resolution. In this paper we give a review on hybrid tomography methods for \\emph{electrical conductivity} imaging. The reviewed imaging methods utilize couplings between electric, magnetic and ultrasound modalities. By this it is possible to perform high-resolution electrical impedance imaging and to overcome the low-resolution problem of electric impedance tomography.

  14. Mathematics of thermoacoustic and photoacoustic tomography

    E-Print Network [OSTI]

    Mathematics of thermoacoustic and photoacoustic tomography Peter Kuchment and Leonid Kunyansky in the Thermoacoustic and Photoacoustic To- mography. 1 Introduction Medical tomography has had a huge impact on medical succesfull example of such a combination is the Thermoacoustic Tomography (TAT) (also abbreviated as TCT) [50

  15. FMTOMOFMTOMO Fast Marching Tomography Package

    E-Print Network [OSTI]

    Rawlinson, Nick

    FMTOMOFMTOMO Fast Marching Tomography Package: Instruction Manual by Nick Rawlinson Research School;1 Introduction This document describes how to use the Fortran software package FMTOMO to perform 3-D traveltime to be reconciled. The long term goal of the FMTOMO project is to produce a comprehensive package for carrying out

  16. Earthquake Forecast via Neutrino Tomography

    E-Print Network [OSTI]

    Bin Wang; Ya-Zheng Chen; Xue-Qian Li

    2011-03-29

    We discuss the possibility of forecasting earthquakes by means of (anti)neutrino tomography. Antineutrinos emitted from reactors are used as a probe. As the antineutrinos traverse through a region prone to earthquakes, observable variations in the matter effect on the antineutrino oscillation would provide a tomography of the vicinity of the region. In this preliminary work, we adopt a simplified model for the geometrical profile and matter density in a fault zone. We calculate the survival probability of electron antineutrinos for cases without and with an anomalous accumulation of electrons which can be considered as a clear signal of the coming earthquake, at the geological region with a fault zone, and find that the variation may reach as much as 3% for $\\bar \

  17. Metal Artifact Reduction in Computed Tomography /

    E-Print Network [OSTI]

    Karimi, Seemeen

    2014-01-01

    Monoenergetic imaging of dual-energy CT reduces artifactsartifact reduction by dual energy computed tomography usingimage re- construction for dual energy X-ray transmission

  18. Algorithm for Rapid Tomography of Gas Concentrations

    E-Print Network [OSTI]

    Price, P.N.

    2008-01-01

    sensing and computed tomography in industrial hygiene.American Industrial Hygiene Association Journal 51: 1165-indoor air. American Industrial Hygiene Association Journal

  19. On reconstruction and time reversal in thermoacoustic tomography in acoustically

    E-Print Network [OSTI]

    Kuchment, Peter

    On reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous of recent approaches to the reconstruction in thermoacoustic/photoacoustic tomography: backprojection of the problem of sound speed recovery is also provided. Keywords: Tomography, thermoacoustic, wave equation. AMS

  20. Fourier Transform Quantum State Tomography

    E-Print Network [OSTI]

    Mohammadreza Mohammadi; Agata M. Branczyk; Daniel F. V. James

    2013-01-17

    We propose a technique for performing quantum state tomography of photonic polarization-encoded multi-qubit states. Our method uses a single rotating wave plate, a polarizing beam splitter and two photon-counting detectors per photon mode. As the wave plate rotates, the photon counters measure a pseudo-continuous signal which is then Fourier transformed. The density matrix of the state is reconstructed using the relationship between the Fourier coefficients of the signal and the Stokes' parameters that represent the state. The experimental complexity, i.e. different wave plate rotation frequencies, scales linearly with the number of qubits.

  1. Thermoacoustic Tomography in Elastic Media

    E-Print Network [OSTI]

    Justin Tittelfitz

    2011-10-11

    We investigate the problem of recovering the initial displacement f for a solution u of a linear, isotropic, non-homogeneous elastic wave equation, given measurements of u on [0,T] x \\partial \\Omega, where \\Omega\\subset\\R^3 is some bounded domain containing the support of f. For the acoustic wave equation, this problem is known as thermoacoustic tomography (TAT), and has been well-studied; for the elastic wave equation, the situation is somewhat more subtle, and we give sufficient conditions on the Lam\\'e parameters to ensure that recovery is possible.

  2. NEUTRON IMAGING, RADIOGRAPHY AND TOMOGRAPHY.

    SciTech Connect (OSTI)

    SMITH,G.C.

    2002-03-01

    Neutrons are an invaluable probe in a wide range of scientific, medical and commercial endeavors. Many of these applications require the recording of an image of the neutron signal, either in one-dimension or in two-dimensions. We summarize the reactions of neutrons with the most important elements that are used for their detection. A description is then given of the major techniques used in neutron imaging, with emphasis on the detection media and position readout principle. Important characteristics such as position resolution, linearity, counting rate capability and sensitivity to gamma-background are discussed. Finally, the application of a subset of these instruments in radiology and tomography is described.

  3. ADAPTIVE AND ROBUST TECHNIQUES (ART) FOR THERMOACOUSTIC TOMOGRAPHY

    E-Print Network [OSTI]

    Xie, Yao

    ADAPTIVE AND ROBUST TECHNIQUES (ART) FOR THERMOACOUSTIC TOMOGRAPHY By YAO XIE A DISSERTATION.1 Thermoacoustic Tomography . . . . . . . . . . . . . . . . . . . . . 1 1.2 Image Reconstruction Algorithms for TAT

  4. Efficiency of quantum state tomography for qubits

    E-Print Network [OSTI]

    Koichi Yamagata

    2011-05-19

    The efficiency of quantum state tomography is discussed from the point of view of quantum parameter estimation theory, in which the trace of the weighted covariance is to be minimized. It is shown that tomography is optimal only when a special weight is adopted.

  5. Wireless Tomography, Part II: A System Engineering Approach

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    Wireless Tomography, Part II: A System Engineering Approach R. C. Qiu, Z. Hu, M. C. Wicks, S. J.Wicks@rl.af.mil Abstract--This is the second paper in a series on a new initiative of wireless tomography. The goal is to combine two areas: wireless communication and radio tomography. This paper studies wireless tomography

  6. Diffraction tomography with Fourier ptychography

    E-Print Network [OSTI]

    Horstmeyer, Roarke

    2015-01-01

    This article presents a method to perform diffraction tomography in a standard microscope that includes an LED array for illumination. After acquiring a sequence of intensity-only images of a thick sample, a ptychography-based reconstruction algorithm solves for its unknown complex index of refraction across three dimensions. The experimental microscope demonstrates a spatial resolution of 0.39 $\\mu$m and an axial resolution of 3.7 $\\mu$m at the Nyquist-Shannon sampling limit (0.54 $\\mu$m and 5.0 $\\mu$m at the Sparrow limit, respectively), across a total imaging volume of 2.2 mm $\\times$ 2.2 mm $\\times$ 110 $\\mu$m. Unlike competing methods, the 3D tomograms presented in this article are continuous, quantitative, and formed without the need for interferometry or any moving parts. Wide field-of-view reconstructions of thick biological specimens demonstrate potential applications in pathology and developmental biology.

  7. Collimator-free photon tomography

    DOE Patents [OSTI]

    Dilmanian, F. Avraham (Yaphank, NY); Barbour, Randall L. (Westbury, NY)

    1998-10-06

    A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image.

  8. Collimator-free photon tomography

    DOE Patents [OSTI]

    Dilmanian, F.A.; Barbour, R.L.

    1998-10-06

    A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image. 6 figs.

  9. Positron emission tomography wrist detector

    DOE Patents [OSTI]

    Schlyer, David J. (Bellport, NY); O'Connor, Paul (Bellport, NY); Woody, Craig (Setauket, NY); Junnarkar, Sachin Shrirang (Sound Beach, NY); Radeka, Veljko (Bellport, NY); Vaska, Paul (Sound Beach, NY); Pratte, Jean-Francois (Stony Brook, NY)

    2006-08-15

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.

  10. Tomography of lensing cross power spectra

    E-Print Network [OSTI]

    Masahiro Takada; Martin White

    2004-09-14

    By obtaining photometric redshift information, tomography allows us to cross-correlate galaxy ellipticities in different source redshift bins. The cross-correlation is non-vanishing because the different bins share much of the foreground mass distribution from which, over Gpc scales, the lensing signal is built. If the redshift bins are thick enough however, the cross-correlations are insensitive to contamination from the intrinsic alignments of galaxies since these fall off rapidly on scales larger than a few tens of Mpc. We forecast how lensing tomography using only the cross-power spectra can constrain cosmological parameters compared to tomography including the auto-spectra. It is shown that the parameter errors are degraded by only O(10%) for 5 or more source redshift bins. Thus, the cross-power spectrum tomography can be a simple, model-independent means of reducing the intrinsic alignment contamination while retaining most of the constraints on cosmology.

  11. Quantile tomography: using quantiles with multivariate data,

    E-Print Network [OSTI]

    Jin, Jiashun

    Quantile tomography: using quantiles with multivariate data, with applications to multivariate at smooth boundary points. They can be viewed as a natural, nonparametric extension of "multivariate quantiles" yielded by fitted multivariate normal distribution, and, as illustrated on data examples

  12. Seismic interferometry and non-linear tomography 

    E-Print Network [OSTI]

    Galetti, Erica

    2015-06-30

    Seismic records contain information that allows geoscientists to make inferences about the structure and properties of the Earth’s interior. Traditionally, seismic imaging and tomography methods require wavefields to be ...

  13. Economical standard quantum process tomography

    E-Print Network [OSTI]

    Xiaohua Wu; Ke Xu

    2011-05-12

    Recently, Bendersky \\emph{et al.} developed a method to complete the task of characterizing an arbitrary $\\chi$ matrix element in a scalable way, Phys. Rev. Lett. Vol. \\textbf{100}, 190403(2008), where an auxiliary system was needed. In present work, we shall show that the same task can also be completed within the scheme of standard quantum process tomography (SQPT) where there is no requirement for ancilla. Our method depends on two observations: With the elaborately chosen operators basis, the SQPT may have an economical form where a single run of experiment, in which we measure the expectation value of a chosen operator in the outport of the quantum channel with a known input, is sufficient to characterize a selected $\\chi$ matrix element; With the progress recently achieved in quantum entanglement detection, we also find that the number of the experimental settings to realize the experiment for the selected $\\chi$ matrix element does not exceed 2N for the N-qubits system. For practice, our scheme can be applied for the cases where the controlled two-body interaction is neither available nor desirable.

  14. Photoacoustic and thermoacoustic tomography: system development for biomedical applications 

    E-Print Network [OSTI]

    Ku, Geng

    2006-04-12

    Photoacoustic tomography (PAT), as well as thermoacoustic tomography (TAT), utilize electromagnetic radiation in its visible, near infrared, microwave, and radiofrequency forms, respectively, to induce acoustic waves in biological tissues...

  15. Scanning microwave-induced thermoacoustic tomography: Signal, resolution, and contrast

    E-Print Network [OSTI]

    Wang, Lihong

    Scanning microwave-induced thermoacoustic tomography: Signal, resolution, and contrast Geng Ku Scanning thermoacoustic tomography was explored in the microwave region of the electromagnetic spectrum ultrasonic transducer detected the time-resolved thermoacoustic signals. Based on the microwave

  16. Microlocal Analysis of Thermoacoustic (or Multiwave) Tomography, III

    E-Print Network [OSTI]

    Plamen Stefanov

    2012-07-20

    Microlocal Analysis of Thermoacoustic (or Multiwave). Tomography, III. Plamen Stefanov. Purdue University. TAT of brain imaging (discontinuous wave speed).

  17. Microlocal Analysis of Thermoacoustic (or Multiwave) Tomography, I

    E-Print Network [OSTI]

    Stefanov, Plamen

    Microlocal Analysis of Thermoacoustic (or Multiwave) Tomography, I Plamen Stefanov Purdue. They are available at my web page. Thermoacoustic tomography with variable sound speed (with Gunther Uhlmann), Inverse Prob. 25(2009), 075011. Thermoacoustic tomography arising in brain imaging (with Gunther Uhlmann

  18. THERMOACOUSTIC TOMOGRAPHY WITH AN ARBITRARY ELLIPTIC OPERATOR MICHAEL V. KLIBANOV

    E-Print Network [OSTI]

    1 THERMOACOUSTIC TOMOGRAPHY WITH AN ARBITRARY ELLIPTIC OPERATOR MICHAEL V. KLIBANOV Abstract. Thermoacoustic tomography is a term for the inverse problem of determining of one of initial conditions. In thermoacoustic tomography (TAT) a short radio frequency pulse is sent in a biological tissue [1, 9]. Some energy

  19. PHOTOACOUSTIC AND THERMOACOUSTIC TOMOGRAPHY WITH AN UNCERTAIN WAVE SPEED

    E-Print Network [OSTI]

    Uhlmann, Gunther

    PHOTOACOUSTIC AND THERMOACOUSTIC TOMOGRAPHY WITH AN UNCERTAIN WAVE SPEED LAURI OKSANEN AND GUNTHER UHLMANN Abstract. We consider the mathematical model of photoacoustic and thermoacoustic tomography. In Thermoacoustic tomography (TAT), see e.g. [8], low frequency microwaves, with wavelengths on the order of 1m

  20. Wireless Tomography, Part I: A Novel Approach to Remote Sensing

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    Wireless Tomography, Part I: A Novel Approach to Remote Sensing R. C. Qiu, M. C. Wicks, L. Li, Z. Browning.12@us.af.mil Abstract--Wireless tomography, a novel approach to remote sensing, is proposed--radio frequency tomography, remote sensing, cognitive radar, cognitive radio. I. INTRODUCTION The ever increasing

  1. Application of a nudging technique to thermoacoustic tomography

    E-Print Network [OSTI]

    Boyer, Edmond

    Application of a nudging technique to thermoacoustic tomography Xavier Bonnefond and Sébastien Marinesque December 3, 2011 Abstract ThermoAcoustic Tomography (TAT) is a promising, non invasive, medical inversion method. 1 Introduction ThermoAcoustic Tomography (TAT) is a hybrid imaging technique that uses

  2. Seismic Tomography: Definitions Lapo Boschi (lapo@erdw.ethz.ch)

    E-Print Network [OSTI]

    Boschi, Lapo

    Seismic Tomography: Definitions Lapo Boschi (lapo@erdw.ethz.ch) September 14, 2009 Seismic Tomography Seismic tomography is the science of interpreting seismic measurements (seismograms) to derive information about the structure of the Earth. This course does not cover the techniques of seismic observation

  3. Positron Emission Tomography Physics, Instrumentation, Data Analysis

    E-Print Network [OSTI]

    Liu, Thomas T.

    1 Positron Emission Tomography Physics, Instrumentation, Data Analysis Carl K. Hoh, MD Department PET Scanner Design · Smaller individual crystal size = better spatial resolution · Physical limit HR scanner = 24 elements in axial FOV.Axial FOV = 15 cm 2D and 3D Detector Configurations · 2D mode

  4. Three-dimensional fluorescence lifetime tomography

    SciTech Connect (OSTI)

    Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J. [327 Votey Building, Department of Computer Science, University of Vermont, Burlington, Vermont 05405 (United States); 1011 Richardson Building, Photon Migration Laboratories, Texas A and M University, College Station, Texas 77843 (United States); 327 Votey Building, Department of Computer Science, University of Vermont, Burlington, Vermont 05405 (United States)

    2005-04-01

    Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores.

  5. Process tomography for unitary quantum channels

    SciTech Connect (OSTI)

    Gutoski, Gus; Johnston, Nathaniel

    2014-03-15

    We study the number of measurements required for quantum process tomography under prior information, such as a promise that the unknown channel is unitary. We introduce the notion of an interactive observable and we show that any unitary channel acting on a d-level quantum system can be uniquely identified among all other channels (unitary or otherwise) with only O(d{sup 2}) interactive observables, as opposed to the O(d{sup 4}) required for tomography of arbitrary channels. This result generalizes to the problem of identifying channels with at most q Kraus operators, and slight improvements can be obtained if we wish to identify such a channel only among unital channels or among other channels with q Kraus operators. These results are proven via explicit construction of large subspaces of Hermitian matrices with various conditions on rank, eigenvalues, and partial trace. Our constructions are built upon various forms of totally nonsingular matrices.

  6. Thermoacoustic tomography arising in brain imaging

    E-Print Network [OSTI]

    Plamen Stefanov; Gunther Uhlmann

    2010-09-09

    We study the mathematical model of thermoacoustic and photoacoustic tomography when the sound speed has a jump across a smooth surface. This models the change of the sound speed in the skull when trying to image the human brain. We derive an explicit inversion formula in the form of a convergent Neumann series under the assumptions that all singularities from the support of the source reach the boundary.

  7. Thermoacoustic tomography arising in brain imaging

    E-Print Network [OSTI]

    Stefanov, Plamen

    2010-01-01

    We study the mathematical model of thermoacoustic and photoacoustic tomography when the sound speed has a jump across a smooth surface. This models the change of the sound speed in the skull when trying to image the human brain. We derive an explicit inversion formula in the form of a convergent Neumann series under the assumptions that all singularities from the support of the source reach the boundary.

  8. Thermoacoustic tomography with variable sound speed

    E-Print Network [OSTI]

    Plamen Stefanov; Gunther Uhlmann

    2009-05-30

    We study the mathematical model of thermoacoustic tomography in media with a variable speed for a fixed time interval, greater than the diameter of the domain. In case of measurements on the whole boundary, we give an explicit solution in terms of a Neumann series expansion. We give necessary and sufficient conditions for uniqueness and stability when the measurements are taken on a part of the boundary.

  9. Thermoacoustic tomography with variable sound speed

    E-Print Network [OSTI]

    Stefanov, Plamen

    2009-01-01

    We study the mathematical model of thermoacoustic tomography in media with a variable speed for a fixed time interval, greater than the diameter of the domain. In case of measurements on the whole boundary, we give an explicit solution in terms of a Neumann series expansion. We give necessary and sufficient conditions for uniqueness and stability when the measurements are taken on a part of the boundary.

  10. Functional photoacoustic tomography of animal brains 

    E-Print Network [OSTI]

    Wang, Xueding

    2005-11-01

    by the ultrasonic signals. In other words, these techniques combine the high-contrast advantage of optical imaging while also utilizing the high-resolution advantage of ultrasonic imaging. PAT (also referred to as optoacoustic tomography or thermoacoustic... pulse is very short, as in our experiments, the time required for thermal diffusion is much greater than the time for the thermoacoustic transition. Consequently, the effect of heat conduction in the thermoacoustic wave equations can be ignored. 38...

  11. Lung Nodule Detection in Screening Computed Tomography

    E-Print Network [OSTI]

    Gori, I; Cerello, P; Cheran, S C; De Nunzio, G; Fantacci, M E; Kasae, P; Masala, G L; Pérez-Martínez, A; Retico, A

    2007-01-01

    A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector helical Computed Tomography (CT) images with 1.25 mm slice thickness is presented. The basic modules of our lung-CAD system, a dot-enhancement filter for nodule candidate selection and a neural classifier for false-positive finding reduction, are described. The results obtained on the collected database of lung CT scans are discussed.

  12. Modeling and simulation results on a new Compton scattering tomography modality

    E-Print Network [OSTI]

    Nguyen-Verger, Maï K.

    (X-ray scanner, Single Photon Emission Computed Tomography, Positron Emission Tomography, etcModeling and simulation results on a new Compton scattering tomography modality Gaël Rigaud a Biomedical imaging Compton scattering tomography Image reconstruction a b s t r a c t Conventional tomography

  13. Compressed Sensing Quantum Process Tomography for Superconducting Quantum Gates

    E-Print Network [OSTI]

    Rodionov, Andrey

    2014-01-01

    2.2 Review of superconducting qubits . . . . . .State Tomography for superconducting qubits 3.1 The idea ofPossible new effects in superconductive tunnelling”, Physics

  14. Probabilistic electrical resistivity tomography of a CO2 sequestration analog

    E-Print Network [OSTI]

    Lochbühler, T; Breen, SJ; Detwiler, RL; Vrugt, JA; Linde, N

    2014-01-01

    Archie, G.E. , 1942. The electrical resistivity log as anexperiments to evaluate electrical resistivity tomography asmodel- ing and inversion of electrical resistance and gas

  15. Three-Dimensional Thermal Tomography Advances Cancer Treatment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Three-Dimensional Thermal Tomography Advances Cancer Treatment Technology available for licensing: A 3D technique to detect early skin changes due to radiation treatment in breast...

  16. Body Wave Tomography For Regional Scale Assessment Of Geothermal...

    Open Energy Info (EERE)

    wave tomography are two of the primary methods for estimation of regional scale seismic velocity variations. Seismic velocity is affected by temperature and rock composition...

  17. Minimally invasive diagnostic imaging using high resolution Optical Coherence Tomography

    E-Print Network [OSTI]

    Herz, Paul Richard, 1972-

    2004-01-01

    Advances in medical imaging have given researchers unprecedented capabilities to visualize, characterize and understand biological systems. Optical Coherence Tomography (OCT) is a high speed, high resolution imaging technique ...

  18. A New Numerical Algorithm for Thermoacoustic and Photoacoustic Tomography with Variable Sound Speed

    E-Print Network [OSTI]

    Ferguson, Thomas S.

    A New Numerical Algorithm for Thermoacoustic and Photoacoustic Tomography with Variable Sound Speed algorithm for reconstructing an unknown source in Thermoacoustic and Photoacoustic Tomography based Thermoacoustic (TAT) and Photoacoustic (PAT) Tomography are emerging medical imaging modal- ities [32, 30

  19. Electrical impedance tomography using level set representation and total variational regularization

    E-Print Network [OSTI]

    Tai, Xue-Cheng

    Electrical impedance tomography using level set representation and total variational regularization electrical impedance tomography. The key feature of the scheme is the use of level set method. Introduction Electrical impedance tomography is a widely investigated problem with many applications

  20. Mathematics of Photoacoustic and Thermoacoustic Tomography

    E-Print Network [OSTI]

    Peter Kuchment; Leonid Kunyansky

    2009-12-10

    This is the manuscript of the chapter for a planned Handbook of Mathematical Methods in Imaging that surveys the mathematical models, problems, and algorithms of the Thermoacoustic (TAT) and Photoacoustic (PAT) Tomography. TAT and PAT represent probably the most developed of the several novel ``hybrid'' methods of medical imaging. These new modalities combine different physical types of waves (electromagnetic and acoustic in case of TAT and PAT) in such a way that the resolution and contrast of the resulting method are much higher than those achievable using only acoustic or electromagnetic measurements.

  1. Mathematics of Photoacoustic and Thermoacoustic Tomography

    E-Print Network [OSTI]

    Kuchment, Peter

    2009-01-01

    This is the manuscript of the chapter for a planned Handbook of Mathematical Methods in Imaging that surveys the mathematical models, problems, and algorithms of the Thermoacoustic (TAT) and Photoacoustic (PAT) Tomography. TAT and PAT represent probably the most developed of the several novel ``hybrid'' methods of medical imaging. These new modalities combine different physical types of waves (electromagnetic and acoustic in case of TAT and PAT) in such a way that the resolution and contrast of the resulting method are much higher than those achievable using only acoustic or electromagnetic measurements.

  2. Thermoacoustic tomography with an arbitrary elliptic operator

    E-Print Network [OSTI]

    Michael V. Klibanov

    2012-08-26

    Thermoacoustic tomography is a term for the inverse problem of determining of one of initial conditions of a hyperbolic equation from boundary measurements. In the past publications both stability estimates and convergent numerical methods for this problem were obtained only under some restrictive conditions imposed on the principal part of the elliptic operator. In this paper logarithmic stability estimates are obatined for an arbitrary variable principal part of that operator. Convergence of the Quasi-Reversibility Method to the exact solution is also established for this case. Both complete and incomplete data collection cases are considered.

  3. High energy neutron Computed Tomography developed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energy neutron Computed Tomography developed High energy

  4. Measuring the Kuroshio Current with ocean acoustic tomography Naokazu Taniguchia)

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Measuring the Kuroshio Current with ocean acoustic tomography Naokazu Taniguchia) Graduate School 29 April 2013) Ocean current profiling using ocean acoustic tomography (OAT) was conducted proportional to temperature) and current in the ocean (Munk et al., 1995). Other than coastal sea studies (e

  5. Volumetric Reconstruction in the MicroCAT Tomography System

    E-Print Network [OSTI]

    Cates, Josh

    Volumetric Reconstruction in the MicroCAT Tomography System A Thesis Presented for the Master sustained me my entire academic career. ii #12; Abstract A new system for x­ray cone­beam micro­tomography that is based on two­dimensional (fan­beam) reconstruction techniques. The disparity between the actual scanner

  6. An interactive Bayesian geostatistical inverse protocol for hydraulic tomography

    E-Print Network [OSTI]

    Barrash, Warren

    An interactive Bayesian geostatistical inverse protocol for hydraulic tomography Michael N. Fienen April 2008; published 25 July 2008. [1] Hydraulic tomography is a powerful technique for characterizing, necessitate subdivision into zones across which there is no correlation among hydraulic parameters. We propose

  7. ELECTRICAL IMPEDANCE TOMOGRAPHY Margaret Cheney, David Isaacson, and Jonathan Newell

    E-Print Network [OSTI]

    Cheney, Margaret

    ELECTRICAL IMPEDANCE TOMOGRAPHY Margaret Cheney, David Isaacson, and Jonathan Newell Rensselaer in electrical impedance tomography. 1. INTRODUCTION There are a variety of medical problems for which it would be useful to know the time­varying distribution of electrical properties inside the body. By ``electrical

  8. USING OPTICAL COHERENCE TOMOGRAPHY TO EXAMINE THE SUBSURFACE MORPHOLOGY OF

    E-Print Network [OSTI]

    Barton, Jennifer K.

    ), a new method for ceramics research, is a non-destructive, three-dimensional tomography system, which;However, optical coherence tomography (OCT) provides a non-destructive, three-dimensional technique and atmosphere controlled, cooling rates modified, additive experimental testing and other parameters measured

  9. Optimal control techniques for thermo-acoustic tomography Maitine Bergounioux

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . These hybrid systems use an electromagnetic pulse as an input and record ultrasound waves as an output-acoustic tomography (TAT) when the heating is realized by means of microwaves, and of photo-acoustic tomography (PAT) when optical heating is used. While in TAT waves of radio frequency range are used to trigger

  10. Waveform tomography at a groundwater contamination site: Surface reflection data

    E-Print Network [OSTI]

    Pratt, R. Gerhard

    acoustic-waveform tomography to 45 2D seismic profiles to image the 3D geometry of a buried pale- ochannel the shallowest groundwater system in the study area. The 2D profiles were extracted from a 3D surface reflection the channel showed marked vertical and lat- eral velocity heterogeneity. Traveltime tomography and waveform

  11. Signal processing in scanning thermoacoustic tomography in biological tissues

    E-Print Network [OSTI]

    Wang, Lihong

    Signal processing in scanning thermoacoustic tomography in biological tissues Yuan Xu and Lihong V Microwave-induced thermoacoustic tomography was explored to image biological tissues. Short microwave pulses-induced thermoacoustic waves were detected with a focused ultrasonic transducer to obtain two-dimensional tomographic

  12. Microwave-induced thermoacoustic tomography: Reconstruction by synthetic aperture

    E-Print Network [OSTI]

    Wang, Lihong

    Microwave-induced thermoacoustic tomography: Reconstruction by synthetic aperture Dazi Feng, Yuan thermoacoustic signals, to which the delay-and-sum algorithm was applied for image reconstruc- tion. We greatly-induced thermoacoustic tomography based on focused transducers. Two mi- crowave sources, which had frequencies of 9 and 3

  13. RESOLUTION IN DYNAMIC EMISSION TOMOGRAPHY JEAN MAEGHT AND DOMINIKUS NOLL

    E-Print Network [OSTI]

    Noll, Dominikus

    . Introduction. Current state-of-the-art medical imaging technologies provide extremely detailed and accurate. It is not possible, as yet, to measure absolute metabolic rates from the different bio- logical processes, nor, in positron emission tomography (PET), and in computed tomography (CT), where an elaborate Fourier analysis

  14. Double-Difference Tomography for Sequestration MVA

    SciTech Connect (OSTI)

    Westman, Erik

    2008-12-31

    Analysis of synthetic data was performed to determine the most cost-effective tomographic monitoring system for a geologic carbon sequestration injection site. Double-difference tomographic inversion was performed on 125 synthetic data sets: five stages of CO2 plume growth, five seismic event regions, and five geophone arrays. Each resulting velocity model was compared quantitatively to its respective synthetic velocity model to determine an accuracy value. The results were examined to determine a relationship between cost and accuracy in monitoring, verification, and accounting applications using double-difference tomography. The geophone arrays with widely-varying geophone locations, both laterally and vertically, performed best. Additionally, double difference seismic tomography was performed using travel time data from a carbon sequestration site at the Aneth oil field in southeast Utah as part of a Department of Energy initiative on monitoring, verification, and accounting (MVA) of sequestered CO2. A total of 1,211 seismic events were recorded from a borehole array consisting of 22 geophones. Artificial velocity models were created to determine the ease with which different CO2 plume locations and sizes can be detected. Most likely because of the poor geophone arrangement, a low velocity zone in the Desert Creek reservoir can only be detected when regions of test site containing the highest ray path coverage are considered. MVA accuracy and precision may be improved through the use of a receiver array that provides more comprehensive ray path coverage.

  15. Use of spheroidal models in gravitational tomography

    E-Print Network [OSTI]

    Sizikov, Valery

    2015-01-01

    The direct gravimetry problem is solved using the subdivision of each body of a deposit into a set of vertical adjoining bars, and in the inverse problem each body of a deposit is modeled by a uniform ellipsoid of revolution (spheroid). Well-known formulas for z-component of gravitational intensity of a spheroid are transformed to a convenient form. Parameters of a spheroid are determined by minimizing the Tikhonov smoothing functional using constraints on the parameters. This makes the ill-posed inverse problem by unique and stable. The Bulakh algorithm for initial estimating the depth and mass of a deposit is modified. The technique is illustrated by numerical model examples of deposits in the form of two and five bodies. The inverse gravimetry problem is interpreted as a gravitational tomography problem or the intravision of the Earth's crust and mantle.

  16. Compact conscious animal positron emission tomography scanner

    DOE Patents [OSTI]

    Schyler, David J. (Bellport, NY); O'Connor, Paul (Bellport, NY); Woody, Craig (Setauket, NY); Junnarkar, Sachin Shrirang (Sound Beach, NY); Radeka, Veljko (Bellport, NY); Vaska, Paul (Sound Beach, NY); Pratte, Jean-Francois (Stony Brook, NY); Volkow, Nora (Chevy Chase, MD)

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  17. Magnified Weak Lensing Cross Correlation Tomography

    SciTech Connect (OSTI)

    Ulmer, Melville P., Clowe, Douglas I.

    2010-11-30

    This project carried out a weak lensing tomography (WLT) measurement around rich clusters of galaxies. This project used ground based photometric redshift data combined with HST archived cluster images that provide the WLT and cluster mass modeling. The technique has already produced interesting results (Guennou et al, 2010,Astronomy & Astrophysics Vol 523, page 21, and Clowe et al, 2011 to be submitted). Guennou et al have validated that the necessary accuracy can be achieved with photometric redshifts for our purposes. Clowe et al titled "The DAFT/FADA survey. II. Tomographic weak lensing signal from 10 high redshift clusters," have shown that for the **first time** via this purely geometrical technique, which does not assume a standard rod or candle, that a cosmological constant is **required** for flat cosmologies. The intent of this project is not to produce the best constraint on the value of the dark energy equation of state, w. Rather, this project is to carry out a sustained effort of weak lensing tomography that will naturally feed into the near term Dark Energy Survey (DES) and to provide invaluable mass calibration for that project. These results will greatly advance a key cosmological method which will be applied to the top-rated ground-based project in the Astro2020 decadal survey, LSST. Weak lensing tomography is one of the key science drivers behind LSST. CO-I Clowe is on the weak lensing LSST committee, and senior scientist on this project, at FNAL James Annis, plays a leading role in the DES. This project has built on successful proposals to obtain ground-based imaging for the cluster sample. By 1 Jan, it is anticipated the project will have accumulated complete 5-color photometry on 30 (or about 1/3) of the targeted cluster sample (public webpage for the survey is available at http://cencos.oamp.fr/DAFT/ and has a current summary of the observational status of various clusters). In all, the project has now been awarded the equivalent of over 60 nights on 4-m class telescopes, which gives concrete evidence of strong community support for this project. The WLT technique is based on the dependence of the gravitational shear signal on the angular diameter distances between the observer, the lens, and the lensed galaxy to measure cosmological parameters. By taking the ratio of measured shears of galaxies with different redshifts around the same lens, one obtains a measurement of the ratios of the angular diameter distances involved. Making these observations over a large range of lenses and background galaxy redshifts will measure the history of the expansion rate of the universe. Because this is a purely geometric measurement, it is insensitive to any form of evolution of objects or the necessity to understand the physics in the early universe. Thus, WLT was identified by the Dark Energy Task Force as perhaps the best method to measure the evolution of DE. To date, however, the conjecture of the DETF has not been experimentally verified, but will be by the proposed project. The primary reason for the lack of tomography measurements is that one must have an exceptional data-set to attempt the measurement. One needs both extremely good seeing (or space observations) in order to minimize the point spread function smearing corrections on weak lensing shear measurements and deep, multi-color data, from B to z, to measure reliable photometric redshifts of the background galaxies being lensed (which are typically too faint to obtain spectroscopic redshifts). Because the entire process from multi-drizzling the HST images, and then creating shear maps, to gathering the necessary ground based observations, to generating photo-zs and then carrying out the tomography is a complicated task, until the creation of our team, nobody has taken the time to connect all the levels of expertise necessary to carry out this project based on HST archival data. Our data are being used in 2 Ph.D. theses. Kellen Murphy, at Ohio University, is using the tomography data along with simulations in a thesis expected to be completed in Jun

  18. Ultrahigh speed optical coherence tomography for ophthalmic imaging applications

    E-Print Network [OSTI]

    Liu, Jonathan Jaoshin

    2014-01-01

    Optical coherence tomography (OCT) is a non-contact, non-invasive, micron-scale optical imaging technology that has become a standard clinical tool in ophthalmology. Fourier domain OCT detection methods have enabled higher ...

  19. High speed handheld instrument for ophthalmic optical coherence tomography

    E-Print Network [OSTI]

    Lu, Chen David

    2013-01-01

    Optical coherence tomography (OCT) is a non-contact, high resolution biomedical imaging technique that uses low coherence interferometry to generate cross-sectional images of tissue. OCT has become a standard tool in ...

  20. Spherical radon transforms and mathematical problems of thermoacoustic tomography 

    E-Print Network [OSTI]

    Ambartsoumian, Gaik

    2009-06-02

    including approximation theory, integral geometry, inverse problems for PDEs, etc. In Chapter I we give a brief description of thermoacoustic tomography (TAT or TCT) and introduce the SRT. In Chapter II we consider the injectivity problem for SRT. A major...

  1. Iron oxide nanoparticles as a contrast agent for thermoacoustic tomography 

    E-Print Network [OSTI]

    Keho, Aaron Lopez

    2009-06-02

    An exogenous contrast agent has been developed to enhance the contrast achievable in Thermoacoustic Tomography (TAT). TAT utilizes the penetration depth of microwave energy while producing high resolution images through acoustic waves. A sample...

  2. Microwave-induced thermoacoustic tomography: reconstruction by synthetic aperture 

    E-Print Network [OSTI]

    Feng, Dazi

    2001-01-01

    We have applied the synthetic-aperture method to linear-scanning microwave-induced thermoacoustic tomography in biological tissues. A non-focused ultrasonic transducer was used to receive thermoacoustic signals, to which the delay-and-sum algorithm...

  3. 3D optical tomography in the presence of void regions

    E-Print Network [OSTI]

    Lorenzo, Jorge Ripoll

    reconstruction scheme for optical tomography based on the equation of radiative transfer," Med. Phys. 26 1698 and F. W¨ubbeling, Mathematical Methods in Image Reconstruction (SIAM, Philadel- phia, 2001). 15. J. Sch

  4. Functional lung imaging in humans using Positron Emission Tomography

    E-Print Network [OSTI]

    Layfield, Dominick, 1971-

    2003-01-01

    This thesis deals with a method of functional lung imaging using Positron Emission Tomography (PET). In this technique, a radioactive tracer, nitrogen-13, is dissolved in saline solution, and injected into a peripheral ...

  5. Development of a proton Computed Tomography Detector System

    E-Print Network [OSTI]

    Naimuddin, Md; Blazey, G; Boi, S; Dyshkant, A; Erdelyi, B; Hedin, D; Johnson, E; Krider, J; Rukalin, V; Uzunyan, S A; Zutshi, V; Fordt, R; Sellberg, G; Rauch, J E; Roman, M; Rubinov, P; Wilson, P

    2015-01-01

    Computer tomography is one of the most promising new methods to image abnormal tissues inside the human body. Tomography is also used to position the patient accurately before radiation therapy. Hadron therapy for treating cancer has become one of the most advantageous and safe options. In order to fully utilize the advantages of hadron therapy, there is a necessity of performing radiography with hadrons as well. In this paper we present the development of a proton computed tomography system. Our second-generation proton tomography system consists of two upstream and two downstream trackers made up of fibers as active material and a range detector consisting of plastic scintillators. We present details of the detector system, readout electronics, and data acquisition system as well as the commissioning of the entire system. We also present preliminary results from the test beam of the range detector.

  6. Applicability of moire deflection tomography for diagnosing arc plasmas

    SciTech Connect (OSTI)

    Chen Yunyun; Song Yang; He Anzhi; Li Zhenhua

    2009-01-20

    The argon arc plasma whose central temperature, 1.90x10{sup 4} K, is used as a practical example for an experiment to research the applicability of moire deflection tomography in arc plasma flow-field diagnosis. The experimental result indicates that moire deflection of the measured argon arc plasma is very small, even smaller than that of a common flame with the maximal temperature of nearly 1.80x10{sup 3} K. The refractive-index gradient in moire deflection tomography mainly contributes to the temperature gradient in essence when the probe wavelength and pressure are certain in plasma diagnosis. The applicable temperature ranges of moire deflection tomography in the argon arc plasma diagnosis are given with the probe wavelength 532 nm at 1 atm in certain measuring error requirements. In a word, the applicable temperature range of moire deflection tomography for arc plasma diagnosis is intimately related to the probe wavelength and the practical measuring requirements.

  7. Nitride semiconductors studied by atom probe tomography and correlative techniques

    E-Print Network [OSTI]

    Bennett, Samantha

    2011-02-08

    , as well as atom probe tomography (APT), a technique more usually applied to metals that provides three-dimensional (3D) compositional information at the atomic scale. By using both APT and correlative microscopy techniques, a more complete understanding...

  8. Quantum-optical coherence tomography with collinear entangled photons

    E-Print Network [OSTI]

    Novotny, Lukas

    Quantum-optical coherence tomography with collinear entangled photons Dorilian Lopez-Mago1 Photonics and Mathematical Optics Group, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, Mexico 3 ETH Zürich, Photonics Laboratory, 8093 Zürich, Switzerland *Corresponding author: novotny

  9. Ultrasound-modulated optical tomography for biomedical applications 

    E-Print Network [OSTI]

    Li, Jun

    2004-11-15

    I experimentally studied ultrasound-modulated optical tomography, which holds the promise for biomedical diagnosis. I measured the degree of polarization of laser speckles generated by scattered light transmitted through ...

  10. Time-dependent seismic tomography and its application to the...

    Open Energy Info (EERE)

    Time-dependent seismic tomography and its application to the Coso geothermal area, 1996-2006 Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  11. Advances in Inverse Transport Methods and Applications to Neutron Tomography 

    E-Print Network [OSTI]

    Wu, Zeyun

    2011-02-22

    ) tomography method [5?7], which mainly involves the following principles: (1) Radon transform and inverse Radon transform, which maps and anti-maps a transmission line set to a projected point set; (2) Fourier projection-slice theorem (also referred... of the Radon Transform [5,6,59], e.g., line integrals along projection trajectories. With some in- version techniques such as filtered back projection (FBP) applied to the projections, analytic tomography methods are capable of reconstructing material...

  12. Amorphous silicon detectors in positron emission tomography

    SciTech Connect (OSTI)

    Conti, M. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy) Lawrence Berkeley Lab., CA (USA)); Perez-Mendez, V. (Lawrence Berkeley Lab., CA (USA))

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  13. A Detector for Proton Computed Tomography

    SciTech Connect (OSTI)

    Blazey, G.; et al.,

    2013-12-06

    Radiation therapy is a widely recognized treatment for cancer. Energetic protons have distinct features that set them apart from photons and make them desirable for cancer therapy as well as medical imaging. The clinical interest in heavy ion therapy is due to the fact that ions deposit almost all of their energy in a sharp peak – the Bragg peak- at the very end of their path. Proton beams can be used to precisely localize a tumor and deliver an exact dose to the tumor with small doses to the surrounding tissue. Proton computed tomography (pCT) provides direct information on the location on the target tumor, and avoids position uncertainty caused by treatment planning based on imaging with X-ray CT. The pCT project goal is to measure and reconstruct the proton relative stopping power distribution directly in situ. To ensure the full advantage of cancer treatment with 200 MeV proton beams, pCT must be realized.

  14. State Waste Discharge Permit Application: Electric resistance tomography testing

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the areal extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks.

  15. GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking

    E-Print Network [OSTI]

    Xie, Tuqiang; Guo, Shuguang; Chen, Zhongping; Mukai, David; Brenner, Matthew

    2006-01-01

    tomography based on a microelectromechanical mirror,” Opt.tomography based on a microelectromechanical mirror,” Opt.of a rotational microelectromechanical system probe,” Opt.

  16. An Efficient Neumann-Series Based Algorithm for Thermoacoustic and Photoacoustic Tomography with Variable Sound Speed

    E-Print Network [OSTI]

    Stefanov, Plamen

    An Efficient Neumann-Series Based Algorithm for Thermoacoustic and Photoacoustic Tomography present an efficient algorithm for reconstructing an unknown source in Thermoacoustic and Photoacoustic of the Neumann-series based algorithm. 1 Introduction Thermoacoustic (TAT) and Photoacoustic (PAT) Tomography

  17. Microwave-induced thermoacoustic tomography: applications and corrections for the effects of acoustic heterogeneities 

    E-Print Network [OSTI]

    Jin, Xing

    2009-05-15

    This research is primarily focused on developing potential applications for microwaveinduced thermoacoustic tomography and correcting for image degradations caused by acoustic heterogeneities. Microwave-induced thermoacoustic tomography was first...

  18. Relationship of computed tomography perfusion and positron emission tomography to tumour progression in malignant glioma

    SciTech Connect (OSTI)

    Yeung, Timothy P C; Yartsev, Slav; Lee, Ting-Yim; Wong, Eugene; He, Wenqing; Fisher, Barbara; VanderSpek, Lauren L; Macdonald, David; Bauman, Glenn

    2014-02-15

    Introduction: This study aimed to explore the potential for computed tomography (CT) perfusion and 18-Fluorodeoxyglucose positron emission tomography (FDG-PET) in predicting sites of future progressive tumour on a voxel-by-voxel basis after radiotherapy and chemotherapy. Methods: Ten patients underwent pre-radiotherapy magnetic resonance (MR), FDG-PET and CT perfusion near the end of radiotherapy and repeated post-radiotherapy follow-up MR scans. The relationships between these images and tumour progression were assessed using logistic regression. Cross-validation with receiver operating characteristic (ROC) analysis was used to assess the value of these images in predicting sites of tumour progression. Results: Pre-radiotherapy MR-defined gross tumour; near-end-of-radiotherapy CT-defined enhancing lesion; CT perfusion blood flow (BF), blood volume (BV) and permeability-surface area (PS) product; FDG-PET standard uptake value (SUV); and SUV:BF showed significant associations with tumour progression on follow-up MR imaging (P < 0.0001). The mean sensitivity (±standard deviation), specificity and area under the ROC curve (AUC) of PS were 0.64 ± 0.15, 0.74 ± 0.07 and 0.72 ± 0.12 respectively. This mean AUC was higher than that of the pre-radiotherapy MR-defined gross tumour and near-end-of-radiotherapy CT-defined enhancing lesion (both AUCs = 0.6 ± 0.1, P ? 0.03). The multivariate model using BF, BV, PS and SUV had a mean AUC of 0.8 ± 0.1, but this was not significantly higher than the PS only model. Conclusion: PS is the single best predictor of tumour progression when compared to other parameters, but voxel-based prediction based on logistic regression had modest sensitivity and specificity.

  19. Reconstructions for continuous-wave diffuse optical tomography by a globally convergent

    E-Print Network [OSTI]

    approximation and analysis; (110.6960) Tomography; (110.7050) Turbid media; (170.3880) Medical and biological

  20. Computer tomography of large dust clouds in complex plasmas

    SciTech Connect (OSTI)

    Killer, Carsten; Himpel, Michael; Melzer, André

    2014-10-15

    The dust density is a central parameter of a dusty plasma. Here, a tomography setup for the determination of the three-dimensionally resolved density distribution of spatially extended dust clouds is presented. The dust clouds consist of micron-sized particles confined in a radio frequency argon plasma, where they fill almost the entire discharge volume. First, a line-of-sight integrated dust density is obtained from extinction measurements, where the incident light from an LED panel is scattered and absorbed by the dust. Performing these extinction measurements from many different angles allows the reconstruction of the 3D dust density distribution, analogous to a computer tomography in medical applications.

  1. Some Remarks on Quantum Tomography in Laser Cooling

    E-Print Network [OSTI]

    Artur Czerwi?ski

    2015-04-16

    In this article we take into consideration the evolution model of 3-level quantum systems known as \\textit{laser cooling}. The evolution in this model is given by an equation which is a special case of the general Kossakowski-Lindblad master equation. The explicit knowledge about the evolution makes it possible to apply the stroboscopic tomography to laser cooling. In this article we present some remarks concerning the minimal number of observables and moments of measurement for quantum tomography in laser cooling.

  2. THERMOACOUSTIC TOMOGRAPHY WITH VARIABLE SOUND SPEED PLAMEN STEFANOV AND GUNTHER UHLMANN

    E-Print Network [OSTI]

    Uhlmann, Gunther

    THERMOACOUSTIC TOMOGRAPHY WITH VARIABLE SOUND SPEED PLAMEN STEFANOV AND GUNTHER UHLMANN ABSTRACT. We study the mathematical model of thermoacoustic tomography in media with a variable speed are taken on a part of the boundary. 1. INTRODUCTION In thermoacoustic tomography, a short electro

  3. THERMOACOUSTIC TOMOGRAPHY ARISING IN BRAIN IMAGING PLAMEN STEFANOV AND GUNTHER UHLMANN

    E-Print Network [OSTI]

    Uhlmann, Gunther

    THERMOACOUSTIC TOMOGRAPHY ARISING IN BRAIN IMAGING PLAMEN STEFANOV AND GUNTHER UHLMANN Abstract. We study the mathematical model of thermoacoustic and photoacoustic tomography when the sound speed has. Introduction In this paper, we study the mathematical model of thermoacoustic and photoacoustic tomography

  4. Reconstructions in limited-view thermoacoustic tomography Yuan Xu and Lihong V. Wanga)

    E-Print Network [OSTI]

    Kuchment, Peter

    Reconstructions in limited-view thermoacoustic tomography Yuan Xu and Lihong V. Wanga) Optical for publication 9 December 2003; published 11 March 2004 The limited-view problem is studied for thermoacoustic of Physicists in Medicine. DOI: 10.1118/1.1644531 Key words: thermoacoustic tomography, photoacoustic tomography

  5. Gradual time reversal in thermo-and photo-acoustic tomography within a resonant

    E-Print Network [OSTI]

    Kunyansky, Leonid

    , thermoacoustic tomography, time reversal, resonant cavity, reflecting walls, wave equation 1. Introduction Thermoacoustic tomography (TAT) [23, 44] and photoacoustic (or optoacoustic) tomography (PAT/OAT) [9, 22, 33] are based on the thermoacoustic effect: when a material is heated it expands. To perform measurements

  6. THERMOACOUSTIC TOMOGRAPHY ARISING IN BRAIN IMAGING PLAMEN STEFANOV AND GUNTHER UHLMANN

    E-Print Network [OSTI]

    Stefanov, Plamen

    THERMOACOUSTIC TOMOGRAPHY ARISING IN BRAIN IMAGING PLAMEN STEFANOV AND GUNTHER UHLMANN ABSTRACT. We study the mathematical model of thermoacoustic and photoacoustic tomography when the sound speed has. INTRODUCTION In this paper, we study the mathematical model of thermoacoustic and photoacoustic tomography

  7. Radio Science, Volume ???, Number , Pages 131, Radio tomography of the ionosphere: Analysis

    E-Print Network [OSTI]

    Garcia, Raphaël

    Radio Science, Volume ???, Number , Pages 1­31, Radio tomography of the ionosphere: Analysis AND CRESPON: 4D IONOSPHERE TOMOGRAPHY After analysing the forward and inverse problems of radio tomography, the development of Faraday rotation measurements on-board satellites opens the way to magnetospheric radio

  8. LEVEL SET REGULARIZATION IN POSITRON EMISSION TOMOGRAPHY 1 Level Set Method for Positron Emission

    E-Print Network [OSTI]

    Ferguson, Thomas S.

    LEVEL SET REGULARIZATION IN POSITRON EMISSION TOMOGRAPHY 1 Level Set Method for Positron Emission for integrated Petroleum Research). #12;LEVEL SET REGULARIZATION IN POSITRON EMISSION TOMOGRAPHY 2 Abstract In positron emission tomography (PET) a radioactive compound is injected into the body to promote a tissue

  9. Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography

    E-Print Network [OSTI]

    Wang, Lihong

    -induced thermoacoustic tomography Xing Jin Department of Biomedical Engineering, Texas A&M University, 3120 TAMU, College: thermoacoustic tomography, transcranial brain imaging, acoustic heterogeneities I. INTRODUCTION Microwave-induced thermoacoustic tomography TAT is a noninvasive and nonionizing imaging modality that can dif- ferentiate

  10. Image distortion in thermoacoustic tomography caused by microwave diffraction Changhui Li,* Manojit Pramanik,

    E-Print Network [OSTI]

    Wang, Lihong

    Image distortion in thermoacoustic tomography caused by microwave diffraction Changhui Li,* Manojit-induced thermoacoustic tomography. The distortion, due to microwave diffraction in the object to be imaged, leads Thermoacoustic TA tomography TAT in biological tis- sue reconstructs the TA source distribution from the acoustic

  11. Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative

    E-Print Network [OSTI]

    Wang, Lihong

    Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative improve- ment of the tangential resolution in both thermoacoustic and photoa- coustic tomography. In both thermoacoustic and photoacoustic tomography, for a given transducer bandwidth, the aperture size of the detector

  12. Tomography of high harmonic generation in a cluster jet

    E-Print Network [OSTI]

    . In this Letter, we present a tomographic tech- nique for studying high harmonic generation in cluster jetsTomography of high harmonic generation in a cluster jet Chih-Hao Pai Department of Physics; accepted December 21, 2005; posted January 4, 2006 (Doc. ID 66558) Tomographic measurement of high harmonic

  13. Neutron Stimulated Emission Computed Tomography of Stable Isotopes

    E-Print Network [OSTI]

    on the development of a new molecular imaging technique using inelastic scattering of fast neutrons. Earlier studies characteristic gamma photons through inelastic scattering of an external neutron beam. These stable isotopes canNeutron Stimulated Emission Computed Tomography of Stable Isotopes Carey E. Floyd Jr.*ab , Calvin

  14. Electrical Impedance Tomography in geophysics, application of EIDORS

    E-Print Network [OSTI]

    Adler, Andy

    Electrical Impedance Tomography in geophysics, application of EIDORS Lesparre N., Adler A., Gibert to adapt EIDORS for applications in geophysics. In geophysics, we apply EIT in order to image inner. The spatial resolution of the method in geophysics is of the order of meters and the penetration depth can

  15. Time reversal in thermoacoustic tomography - an error estimate

    E-Print Network [OSTI]

    Hristova, Yulia

    2008-01-01

    The time reversal method in thermoacoustic tomography is used for approximating the initial pressure inside a biological object using measurements of the pressure wave made outside the object. This article presents error estimates for the time reversal method in the cases of variable, non-trapping sound speeds.

  16. A family of inversion formulas in Thermoacoustic Tomography

    E-Print Network [OSTI]

    Nguyen, Linh V

    2009-01-01

    We present a family of closed form inversion formulas in thermoacoustic tomography in the case of a constant sound speed. The formulas are presented in both time-domain and frequency-domain versions. As special cases, they imply most of the previously known filtered backprojection type formulas.

  17. rf testbed for thermoacoustic tomography D. Fallon,1

    E-Print Network [OSTI]

    Hanson, George

    rf testbed for thermoacoustic tomography D. Fallon,1 L. Yan,2 G. W. Hanson,3 and S. K. Patch4,a 1 Received 28 October 2008; accepted 22 April 2009; published online 9 June 2009 Thermoacoustic signal is a preferred acoustic coupling medium for thermoacoustics because acoustic and electromagnetic waves propagate

  18. On singularities and instability of reconstruction in thermoacoustic tomography

    E-Print Network [OSTI]

    Nguyen, Linh V

    2009-01-01

    We consider the problem of thermoacoustic tomography (TAT), in which one needs to reconstruct the initial value of a solution of the wave equation from its value on an observation surface. We show that if some geometric rays for the equation do not intersect the observation surface, the reconstruction in TAT is not H\\"{o}lder stable.

  19. Adaptive optics enhanced simultaneous en-face optical coherence tomography

    E-Print Network [OSTI]

    Dainty, Chris

    Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy David Merino and Chris Dainty Applied Optics Group, Department of Experimental Physics, National and Adrian Gh. Podoleanu Applied Optics Group, School of Physical Sciences, University of Kent at Canterbury

  20. Development of ultrafast computed tomography of highly transient fuel sprays

    E-Print Network [OSTI]

    Gruner, Sol M.

    Development of ultrafast computed tomography of highly transient fuel sprays Xin Liu, Jinyuan Liu University, Ithaca, NY, USA 14853 ABSTRACT The detailed analysis of the fuel sprays has been well recognized emissions. However, the structure and dynamics of highly transient fuel sprays have never been visualized

  1. Cardiac Computed Tomography Radiation Dose Reduction Using Interior Reconstruction Algorithm

    E-Print Network [OSTI]

    Wang, Ge

    recommendations are to use radiation dose as low as possible while satisfying the diagnosis requirement. ThereforeCardiac Computed Tomography Radiation Dose Reduction Using Interior Reconstruction Algorithm. Jeffrey Carr, MD,§¶ and Ge Wang, PhD,*Þþ Abstract: High x-ray radiation dose is a major public concern

  2. Parallel Adaptive Mesh Coarsening for Seismic Tomography Marc Grunberg

    E-Print Network [OSTI]

    Genaud, Stéphane

    . For instance, our case study process the seismic data set ac- quired by the ISC for year 1999 which represents the seismic ray, can be com- puted. Computing the ray paths from the records is called the ray-tracing process. Seismic tomography is a three-phases process : · The space of study (either the whole globe or just a re

  3. Plane-wave fluorescence tomography with adaptive finite elements

    E-Print Network [OSTI]

    Bangerth, Wolfgang

    Plane-wave fluorescence tomography with adaptive finite elements Amit Joshi Photon Migration reflectance imaging setup. The method employs planar illumination with modulated light and frequency domain fluo- rescence measurements made on the illumination plane. An adaptive finite-element algorithm

  4. Wireless Tomography in Noisy Environments using Machine Learning

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    1 Wireless Tomography in Noisy Environments using Machine Learning Z. Hu, S. J. Hou, M. C. Wicks, and R. C. Qiu Cognitive Radio Insitute Department of Electrical and Computer Engineering Center. Noise reduction, modified standard phase reconstruction, and imaging are exploited sequentially

  5. Automated robust test framework for electrical impedance tomography

    E-Print Network [OSTI]

    Adler, Andy

    impedance tomography (EIT) devices. The system is designed to calculate reliable, repeatable and accurate system by testing the overall effect of design changes. Test object Saline tank 9 g NaCl per liter H2 O 6. An automated test system and procedure is proposed, designed to enable systematic testing of electrical

  6. Internet Tomography Mark Coates Alfred Hero Robert Nowak Bin Yu

    E-Print Network [OSTI]

    Yu, Bin

    Internet Tomography Mark Coates Alfred Hero Robert Nowak Bin Yu January, 2002 ABSTRACT Today's Internet is a massive, distributed network which continues to explode in size as e- commerce and related activities grow. The heterogeneous and largely unregulated structure of the Internet renders tasks

  7. Asymmetries in Electrical Impedance Tomography Lung Images Bartlomiej Grychtol1

    E-Print Network [OSTI]

    Adler, Andy

    Asymmetries in Electrical Impedance Tomography Lung Images Bartlomiej Grychtol1 and Andy Adler2 1, it has been used to image the thorax, to monitor the movement of blood and gas in the heart and lungs. One key application of EIT is to determine the distribution of ventilation within the lungs

  8. OPTICAL COHERENCE TOMOGRAPHY PRINCIPLES, INSTRUMENTATION, AND BIOLOGICAL APPLICATONS

    E-Print Network [OSTI]

    Boppart, Stephen

    OPTICAL COHERENCE TOMOGRAPHY PRINCIPLES, INSTRUMENTATION, AND BIOLOGICAL APPLICATONS E.A. SW ANSON powerful medical diagnostic techniques,they are invasive and can be time consuming and costly. Furthermore. MIT has designed,developed,and fielded a clinical instrument that is now operating at the New England

  9. Digital optical tomography system for dynamic breast imaging

    E-Print Network [OSTI]

    Hielscher, Andreas

    Columbia University, Department of Electrical Engineering, 1300 S.W. Mudd, 500 West 120th Street, New York, New York be used to detect tumors. We present a new digital continuous-wave optical tomography system designed imaging (MRI) has proven to be a powerful tool in monitoring high-risk women; but its high cost

  10. FPGA-Based Pulse Parameter Discovery for Positron Emission Tomography.

    E-Print Network [OSTI]

    Hauck, Scott

    technology for a data acquisition system for a positron emission tomography (PET) scanner. The University Programmable Gate Arrays (FPGAs) are capable of performing complex digital signal processing algorithms of Washington is producing a series of high-resolution, small-animal PET scanners that utilize FPGAs as the core

  11. Robust statistical reconstruction for charged particle tomography

    DOE Patents [OSTI]

    2013-10-08

    Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.

  12. 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester 1417 April 1999. Eddy Current Tomography for Metal

    E-Print Network [OSTI]

    Hua, Yingbo

    . 451 Eddy Current Tomography for Metal Solidification Imaging Minh H. Pham* , Yingbo Hua* , Neil B of molten metal inside a pipe by eddy currents. A complete mathematical model is developed which reveals computation, solidification 1. INTRODUCTION Electronic control system of molten metal flow is currently

  13. Quantum tomography meets dynamical systems and bifurcations theory

    SciTech Connect (OSTI)

    Goyeneche, D.; Torre, A. C. de la

    2014-06-01

    A powerful tool for studying geometrical problems in Hilbert spaces is developed. We demonstrate the convergence and robustness of our method in every dimension by considering dynamical systems theory. This method provides numerical solutions to hard problems involving many coupled nonlinear equations in low and high dimensions (e.g., quantum tomography problem, existence and classification of Pauli partners, mutually unbiased bases, complex Hadamard matrices, equiangular tight frames, etc.). Additionally, this tool can be used to find analytical solutions and also to implicitly prove the existence of solutions. Here, we develop the theory for the quantum pure state tomography problem in finite dimensions but this approach is straightforwardly extended to the rest of the problems. We prove that solutions are always attractive fixed points of a nonlinear operator explicitly given. As an application, we show that the statistics collected from three random orthonormal bases is enough to reconstruct pure states from experimental (noisy) data in every dimension d ? 32.

  14. Development of neutron tomography and phase contrast imaging technique

    SciTech Connect (OSTI)

    Kashyap, Y. S.; Agrawal, Ashish; Sarkar, P. S.; Shukla, Mayank; Sinha, Amar

    2013-02-05

    This paper presents design and development of a state of art neutron imaging technique at CIRUS reactor with special reference for techniques adopted for tomography and phase contrast imaging applications. Different components of the beamline such as collimator, shielding, sample manipulator, digital imaging system were designed keeping in mind the requirements of data acquisition time and resolution. The collimator was designed in such a way that conventional and phase contrast imaging can be done using same collimator housing. We have done characterization of fuel pins, study of hydride blisters in pressure tubes hydrogen based cells, two phase flow visualization, and online study of locomotive parts etc. using neutron tomography and radiography technique. We have also done some studies using neutron phase contrast imaging technique on this beamline.

  15. Demonstration of Robust Quantum Gate Tomography via Randomized Benchmarking

    E-Print Network [OSTI]

    Blake R. Johnson; Marcus P. da Silva; Colm A. Ryan; Shelby Kimmel; Jerry M. Chow; Thomas A. Ohki

    2015-05-25

    Typical quantum gate tomography protocols struggle with a self-consistency problem: the gate operation cannot be reconstructed without knowledge of the initial state and final measurement, but such knowledge cannot be obtained without well-characterized gates. A recently proposed technique, known as randomized benchmarking tomography (RBT), sidesteps this self-consistency problem by designing experiments to be insensitive to preparation and measurement imperfections. We implement this proposal in a superconducting qubit system, using a number of experimental improvements including implementing each of the elements of the Clifford group in single `atomic' pulses and custom control hardware to enable large overhead protocols. We show a robust reconstruction of several single-qubit quantum gates, including a unitary outside the Clifford group. We demonstrate that RBT yields physical gate reconstructions that are consistent with fidelities obtained by randomized benchmarking.

  16. Using electrical impedance tomography to map subsurface hydraulic conductivity

    DOE Patents [OSTI]

    Berryman, James G. (Danville, CA); Daily, William D. (Livermore, CA); Ramirez, Abelardo L. (Pleasanton, CA); Roberts, Jeffery J. (Livermore, CA)

    2000-01-01

    The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.

  17. Tomography of photon-number resolving continuous-output detectors

    E-Print Network [OSTI]

    Peter C. Humphreys; Benjamin J. Metcalf; Thomas Gerrits; Thomas Hiemstra; Adriana E. Lita; Joshua Nunn; Sae Woo Nam; Animesh Datta; W. Steven Kolthammer; Ian A. Walmsley

    2015-02-26

    We report a comprehensive approach to analysing continuous-output photon detectors. We employ principal component analysis to maximise the information extracted, followed by a novel noise-tolerant parameterised approach to the tomography of PNRDs. We further propose a measure for rigorously quantifying a detector's photon-number-resolving capability. Our approach applies to all detectors with continuous-output signals. We illustrate our methods by applying them to experimental data obtained from a transition-edge sensor (TES) detector.

  18. Cosmological parameters from lensing power spectrum and bispectrum tomography

    E-Print Network [OSTI]

    Masahiro Takada; Bhuvnesh Jain

    2005-07-20

    We examine how lensing tomography with the bispectrum and power spectrum can constrain cosmological parameters and the equation of state of dark energy. Our analysis uses the full information at the two- and three-point level from angular scales of a few degrees to 5 arcminutes (50 < l < 3000), which will be probed by lensing surveys. We use all triangle configurations, cross-power spectra and bispectra constructed from up to three redshift bins with photometric redshifts, and relevant covariances in our analysis. We find that the parameter constraints from bispectrum tomography are comparable to those from power spectrum tomography. Combining the two improves parameter accuracies by a factor of three due to their complementarity. For the dark energy parameterization w(a) = w0 + wa(1-a), the marginalized errors from lensing alone are sigma(w0) = 0.03 fsky^{-1/2} and sigma(wa) = 0.1 fsky^{-1/2}. We show that these constraints can be further improved when combined with measurements of the cosmic microwave background or Type Ia supernovae. The amplitude and shape of the mass power spectrum are also shown to be precisely constrained. We use hyper-extended perturbation theory to compute the nonlinear lensing bispectrum for dark energy models. Accurate model predictions of the bispectrum in the moderately nonlinear regime, calibrated with numerical simulations, will be needed to realize the parameter accuracy we have estimated. Finally, we estimate how well the lensing bispectrum can constrain a model with primordial non-Gaussianity.

  19. Improved fluorescence-enhanced optical imaging and tomography by enhanced excitation light rejection 

    E-Print Network [OSTI]

    Hwang, Kil Dong

    2009-05-15

    Fluorescence enhanced optical imaging and tomography studies involve the detection of weak fluorescent signals emanating from nano- to picomolar concentrations of exogenous or endogenously produced fluorophore concurrent ...

  20. A Bayesian Approach to Assess the Importance of Crustal Corrections in Global Anisotropic Surface Wave Tomography

    E-Print Network [OSTI]

    Xing, Z; Beghein, C

    2015-01-01

    from measurements of surface wave phase velocity anomalies,boundary from surface wave dispersion data, J. Geophys.radially anisotropic surface wave tomography, J. Geophys.

  1. Software-defined Radio Based Wireless Tomography: Experimental Demonstration and Verification

    SciTech Connect (OSTI)

    Bonior, Jason D [ORNL; Hu, Zhen [Tennessee Technological University; Guo, Terry N. [Tennessee Technological University; Qiu, Robert C. [Tennessee Technological University; Browning, James P. [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Wicks, Michael C. [University of Dayton Research Institute

    2015-01-01

    This letter presents an experimental demonstration of software-defined-radio-based wireless tomography using computer-hosted radio devices called Universal Software Radio Peripheral (USRP). This experimental brief follows our vision and previous theoretical study of wireless tomography that combines wireless communication and RF tomography to provide a novel approach to remote sensing. Automatic data acquisition is performed inside an RF anechoic chamber. Semidefinite relaxation is used for phase retrieval, and the Born iterative method is utilized for imaging the target. Experimental results are presented, validating our vision of wireless tomography.

  2. Continuous Measurement Quantum State Tomography of Atomic Ensembles

    E-Print Network [OSTI]

    Carlos A. Riofrío

    2011-11-23

    Quantum state tomography is a fundamental tool in quantum information processing. It allows us to estimate the state of a quantum system by measuring different observables on many identically prepared copies of the system. This is, in general, a very time-consuming task that requires a large number of measurements. There are, however, systems in which the data acquisition can be done more efficiently. In fact, an ensemble of quantum systems can be prepared and manipulated by external fields while being continuously and collectively probed, producing enough information to estimate its state. This provides a basis for continuous measurement quantum tomography. In this protocol, an ensemble of identically prepared systems is collectively probed and controlled in a time-dependent manner to create an informationally complete continuous measurement record. The measurement history is then inverted to determine the state at the initial time. We use two different estimation methods: maximum likelihood and compressed sensing. The general formalism is applied to the case of reconstruction of the quantum state encoded in the magnetic sub-levels of a large-spin alkali atom, ${}^{133}$Cs. We apply this protocol to the case of reconstruction of states in the full 16-dimensional electronic-ground subspace ($F=3 \\oplus F=4$), controlled by microwaves and radio-frequency magnetic fields. We present an experimental demonstration of continuous measurement quantum tomography in an ensemble of cold cesium atoms with full control of its 16-dimensional Hilbert space. We show the exquisite level of control achieved in the lab and the excellent agreement between the theory discussed in this dissertation and the experimental results. This allows us to achieve fidelities >95% for low complexity quantum states, and >92% for arbitrary random states, which is a formidable accomplishment for a space of this size.

  3. Spectral thresholding quantum tomography for low rank states

    E-Print Network [OSTI]

    Cristina Butucea; Madalin Guta; Theodore Kypraios

    2015-04-30

    The estimation of high dimensional quantum states is an important statistical problem arising in current quantum technology applications. A key example is the tomography of multiple ions states, employed in the validation of state preparation in ion trap experiments \\cite{Haffner2005}. Since full tomography becomes unfeasible even for a small number of ions, there is a need to investigate lower dimensional statistical models which capture prior information about the state, and to devise estimation methods tailored to such models. In this paper we propose several new methods aimed at the efficient estimation of low rank states in multiple ions tomography. All methods consist in first computing the least squares estimator, followed by its truncation to an appropriately chosen smaller rank. The latter is done by setting eigenvalues below a certain "noise level" to zero, while keeping the rest unchanged, or normalising them appropriately. We show that (up to logarithmic factors in the space dimension) the mean square error of the resulting estimators scales as $r\\cdot d/N$ where $r$ is the rank, $d=2^k$ is the dimension of the Hilbert space, and $N$ is the number of quantum samples. Furthermore we establish a lower bound for the asymptotic minimax risk which shows that the above scaling is optimal. The performance of the estimators is analysed in an extensive simulations study, with emphasis on the dependence on the state rank, and the number of measurement repetitions. We find that all estimators perform significantly better that the least squares, with the "physical estimator" (which is a bona fide density matrix) slightly outperforming the other estimators.

  4. Evaluation of Biomaterials Using Micro-Computerized Tomography

    SciTech Connect (OSTI)

    Torris, A. T. Arun; Columbus, K. C. Soumya; Saaj, U. S.; Krishnan, Kalliyana V. [Dental Products Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala-695012 (India); Nair, Manitha B. [Transmission Electron Microscopy Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala-695012 (India)

    2008-09-26

    Micro-computed tomography or Micro-CT is a high resolution, non-invasive, x-ray scanning technique that allows precise three-dimensional imaging and quantification of micro-architectural and structural parameters of objects. Tomographic reconstruction is based on a cone-beam convolution-back-projection algorithm. Micro-architectural and structural parameters such as porosity, surface area to volume ratio, interconnectivity, pore size, wall thickness, anisotropy and cross-section area of biomaterials and bio-specimens such as trabecular bone, polymer scaffold, bio-ceramics and dental restorative were evaluated through imaging and computer aided manipulation of the object scan data sets.

  5. Multi-scale analysis of lung computed tomography images

    E-Print Network [OSTI]

    Gori, I; Fantacci, M E; Martinez, A Preite; Retico, A; De Mitri, I; Donadio, S; Fulcheri, C; Gargano, G; Magro, R; Santoro, M; Stumbo, S; 10.1088/1748-0221/2/09/P09007

    2009-01-01

    A computer-aided detection (CAD) system for the identification of lung internal nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 project. The three modules of our lung CAD system, a segmentation algorithm for lung internal region identification, a multi-scale dot-enhancement filter for nodule candidate selection and a multi-scale neural technique for false positive finding reduction, are described. The results obtained on a dataset of low-dose and thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.

  6. Relation between quantum tomography and optical Fresnel transform

    E-Print Network [OSTI]

    Hong-yi Fan; Li-yun Hu

    2008-01-13

    Corresponding to optical Fresnel transformation characteristic of ray transfer matrix elements (A;B;C;D); AD-BC = 1, there exists Fresnel operator F(A;B;C;D) in quantum optics, we show that under the Fresnel transformation the pure position density |x>_rs,rs__rs,rs_Fresnel quadrature phase is the tomography (Radon transform of Wigner function), and the tomogram of a state |phi> is just the wave function of its Fresnel transformed state F|phi>, i.e. rs_= . Similarly, we find F|p>_rs,rs_

  7. Fiber optic based optical coherence tomography (OCT) for dental applications

    SciTech Connect (OSTI)

    Everett, M. J., LLNL

    1998-06-02

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity We have produced, using this scanning device, in viva cross-sectional images of hard and soft dental tissues in human volunteers Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento-enamel junction, were visible in all the images The dento-enamel junction and the alveolar bone were identifiable in approximately two thirds of the images These images represent, to our knowledge, the first in viva OCT images of human dental tissue.

  8. Electrical impedance tomography and Calderon's Department of Mathematics, University of Washington, Seattle, WA 98195, USA

    E-Print Network [OSTI]

    Uhlmann, Gunther

    Electrical impedance tomography and Calder´on's problem G Uhlmann Department of Mathematics, University of Washington, Seattle, WA 98195, USA E-mail: gunther@math.washington.edu Abstract. We survey mathematical developments in the inverse method of Electrical Impedance Tomography which consists

  9. Analysis of hydraulic tomography using temporal moments of drawdown recovery data

    E-Print Network [OSTI]

    Daniels, Jeffrey J.

    Analysis of hydraulic tomography using temporal moments of drawdown recovery data Junfeng Zhu 2006. [1] Transient hydraulic tomography (THT) is a potentially cost-effective and high- resolution technique for mapping spatial distributions of the hydraulic conductivity and specific storage in aquifers

  10. Seismic tomography constraints on reconstructing the Philippine Sea Plate and its margin 

    E-Print Network [OSTI]

    Handayani, Lina

    2005-02-17

    ............................................................. 42 Mariana Subduction Zone.............................................................. 43 Philippine Subduction Zone........................................................... 43 Java Subduction Zone.................................. 38 3.5 P-wave seismic tomography cross sections across Japan (C), Izu-Bonin(D), Mariana (E) and Java (F)......................................... 39 3.6 Tomography cross sections 1 to 5...

  11. Investigating the stratigraphy of an alluvial aquifer using crosswell seismic traveltime tomography

    E-Print Network [OSTI]

    Barrash, Warren

    Investigating the stratigraphy of an alluvial aquifer using crosswell seismic traveltime tomography In this study, we investigate the use of crosswell P-wave seismic tomography to obtain spatially extensive collected cross- well and borehole-to-surface seismic data in wells 17.1 m apart. We carefully considered

  12. Determining both sound speed and internal source in thermo- and photo-acoustic tomography

    E-Print Network [OSTI]

    Hongyu Liu; Gunther Uhlmann

    2015-02-04

    This paper concerns thermoacoustic tomography and photoacoustic tomography, two couple-physics imaging modalities that attempt to combine the high resolution of ultrasound and the high contrast capabilities of electromagnetic waves. We give sufficient conditions to recover both the sound speed of the medium being probed and the source.

  13. INSTABILITY OF THE LINEARIZED PROBLEM IN MULTIWAVE TOMOGRAPHY OF RECOVERY BOTH THE SOURCE AND THE SPEED

    E-Print Network [OSTI]

    Uhlmann, Gunther

    of recovering both the sound speed and the thermal absorption arising in thermoacoustic and photoacoustic tomography, one sends one type of wave to the body of a patient, most often electromag- netic (thermoacoustic] in thermoacoustic tomography. The travel time problem is stable under some geometric assumptions on c (c 2dx2 being

  14. (to appear in 1998 IEEE MIC) Joint-MAP Reconstruction/Segmentation for Transmission Tomography

    E-Print Network [OSTI]

    . In addition, the geometry of fan beam scanners for transmission tomography in SPECT with line sources can(to appear in 1998 IEEE MIC) Joint-MAP Reconstruction/Segmentation for Transmission Tomography A Bayesian method, including a pointwise prior comprising mixtures of gamma distributions, is applied

  15. An Exact Modeling of Signal Statistics in Energy-integrating X-ray Computed Tomography

    E-Print Network [OSTI]

    used by modern computed tomography (CT) scanners and has been an interesting research topicAn Exact Modeling of Signal Statistics in Energy-integrating X-ray Computed Tomography Yi Fan1.i.d.), such as Gamma, Gaussian, etc, would be valid. A comparison study was performed to estimate the introduced errors

  16. Using computerized tomography to determine ionospheric structures. Part 1, Notivation and basic approaches

    SciTech Connect (OSTI)

    Vittitoe, C.N.

    1993-08-01

    Properties of the ionosphere are reviewed along with its correlations with other geophysical phenomena and with applications of ionospheric studies to communication, navigation, and surveillance systems. Computer tomography is identified as a method to determine the detailed, three-dimensional distribution of electron density within the ionosphere. Several tomography methods are described, with a basic approach illustrated by an example. Limitations are identified.

  17. MAGNETIC RESONANCE ELECTRICAL IMPEDANCE TOMOGRAPHY (MR-EIT): A new technique for high resolution conductivity imaging

    E-Print Network [OSTI]

    Eyüboðlu, Murat

    MAGNETIC RESONANCE ELECTRICAL IMPEDANCE TOMOGRAPHY (MR-EIT): A new technique for high resolution are measured by using conventional electrical impedance tomography techniques and high resolution magnetic and the point spread function is not space invariant. On the other hand, magnetic field and electrical current

  18. Photoacoustic tomography of biological tissues with high cross-section resolution: Reconstruction and experiment

    E-Print Network [OSTI]

    Wang, Lihong

    27 November 2002 A modified back-projection approach deduced from an exact reconstruction solution was applied to our photoacoustic tomography of the optical absorption in biological tissues. Pulses from a Ti:sap a spatial resolution around 10 m.8 All of the above photoacoustic tomography systems can be categorized

  19. Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities

    E-Print Network [OSTI]

    Barrash, Warren

    Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping August 2013; accepted 7 September 2013; published 13 November 2013. [1] 3-D Hydraulic tomography (3-D HT (primarily hydraulic conductivity, K) is estimated by joint inversion of head change data from multiple

  20. Radiologic Sciences BS, Computed Tomography Emphasis, 2015-2016 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Radiologic Sciences BS, Computed Tomography Emphasis, 2015-2016 Name ID# Date Course Number with Computers 3 DLS PSYC 101 or SOC 101 3 DLS Social Sciences course in a second field 3 MATH 143 or MATH 170 Imaging 3 RADSCI 431 CT Radiation Dose and Risk Analysis 1 RADSCI 450 Principles of Computed Tomography 3

  1. Data-driven classification of ventilated lung tissues using electrical impedance tomography

    E-Print Network [OSTI]

    Adler, Andy

    Data-driven classification of ventilated lung tissues using electrical impedance tomography Camille for identifying ventilated lung regions utilizing electrical impedance tomography (EIT) images rely on dividing of a data-driven classification method to identify ventilated lung ROI based on forming k clusters from

  2. Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle

    E-Print Network [OSTI]

    Allen, Richard M.

    Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle G. R of Iceland, Bustadavegi 9, Reykjavik, Iceland 5 National Energy Authority, Grensasvegi 9, Reykjavik, Iceland of the highest-resolution teleseismic tomography study yet performed of the upper mantle beneath Iceland

  3. Product measurements and fully symmetric measurements in qubit-pair tomography: A numerical study

    E-Print Network [OSTI]

    Yong Siah Teo; Huangjun Zhu; Berthold-Georg Englert

    2009-07-24

    State tomography on qubit pairs is routinely carried out by measuring the two qubits separately, while one expects a higher efficiency from tomography with highly symmetric joint measurements of both qubits. Our numerical study of simulated experiments does not support such expectations.

  4. Scanning thermoacoustic tomography in biological tissue Geng Ku and Lihong V. Wanga)

    E-Print Network [OSTI]

    Wang, Lihong

    Scanning thermoacoustic tomography in biological tissue Geng Ku and Lihong V. Wanga) Optical-induced thermoacoustic tomography was explored to image biological tissue. Short microwave pulses irradiated tissue to generate acoustic waves by thermoelastic expansion. The microwave-induced thermoacoustic waves were

  5. Pulsed-microwave-induced thermoacoustic tomography: Filtered backprojection in a circular measurement configuration

    E-Print Network [OSTI]

    Wang, Lihong

    Pulsed-microwave-induced thermoacoustic tomography: Filtered backprojection in a circular-microwave-induced thermoacoustic tomography in biological tissues is pre- sented. A filtered backprojection algorithm based on rigorous theory is used to reconstruct the cross-sectional image from a thermoacoustic measurement

  6. WIND TOMOGRAPHY IN BINARY SYSTEMS O.Knill, R.Dgani and M.Vogel

    E-Print Network [OSTI]

    Knill, Oliver

    WIND TOMOGRAPHY IN BINARY SYSTEMS O.Knill, R.Dgani and M.Vogel ETH-Zurich, CH-8092, Switzerland method is particularly suitable for determining the velocity laws of stellar winds. 1. WIND TOMOGRAPHY AND ABEL'S INTEGRAL Binary systems in which a compact, point-like radiation source shines through the wind

  7. Knowledge-Based Dynamic Volumetric Cardiac Computed Tomography With Saddle Curve Trajectory

    E-Print Network [OSTI]

    Wang, Ge

    Knowledge-Based Dynamic Volumetric Cardiac Computed Tomography With Saddle Curve Trajectory Deepak simulations with the dynamic thorax phantom. Key Words: X-ray computed tomography, dynamic volumetric cardiac. In 2002, Wang et al10 proposed a dynamic knowledge-based cardiac volumetric CT for the circular trajectory

  8. AUTOMATED DETECTION OF STABLE FRACTURE POINTS IN COMPUTED TOMOGRAPHY IMAGE SEQUENCES

    E-Print Network [OSTI]

    Bhandarkar, Suchendra "Suchi" M.

    AUTOMATED DETECTION OF STABLE FRACTURE POINTS IN COMPUTED TOMOGRAPHY IMAGE SEQUENCES A.S. Chowdhury fracture points in a sequence of Computed Tomography (CT) images is found to be a challenging task. In this paper, an innovative scheme for automatic fracture detection in CT images is presented. The input

  9. THREE-DIMENSIONAL CLOUD STRUCTURE OBSERVED DURING DOE ARM'S 2009 CLOUD TOMOGRAPHY FIELD EXPERIMENT

    E-Print Network [OSTI]

    THREE-DIMENSIONAL CLOUD STRUCTURE OBSERVED DURING DOE ARM'S 2009 CLOUD TOMOGRAPHY FIELD EXPERIMENT on Cloud Physics, Portland, OR June 28-July 2, 2010 Environmental Sciences Department/Atmospheric Sciences Atmospheric Radiation Measurement (ARM)'s cloud tomography Intensive Observation Period (IOP

  10. Cloud tomography: Role of constraints and a new algorithm Dong Huang,1

    E-Print Network [OSTI]

    Cloud tomography: Role of constraints and a new algorithm Dong Huang,1 Yangang Liu,1 and Warren 2008. [1] Retrieving spatial distributions of cloud liquid water content from limited-angle emission data (passive microwave cloud tomography) is ill-posed, and a small inaccuracy in the data and

  11. Determination of cloud liquid water distribution using 3D cloud tomography

    E-Print Network [OSTI]

    Determination of cloud liquid water distribution using 3D cloud tomography Dong Huang,1 Yangang Liu; published 2 July 2008. [1] The cloud microwave tomography method for remotely retrieving 3D distributions of cloud Liquid Water Content (LWC) was originally proposed by Warner et al. in the 1980s but has lain

  12. Introducing Minimum Fisher Regularisation Tomography to Bolometric and Soft X-ray Diagnostic Systems of the COMPASS Tokamak

    E-Print Network [OSTI]

    Introducing Minimum Fisher Regularisation Tomography to Bolometric and Soft X-ray Diagnostic Systems of the COMPASS Tokamak

  13. Statistical analysis of sampling methods in quantum tomography

    E-Print Network [OSTI]

    Thomas Kiesel

    2012-06-07

    In quantum physics, all measured observables are subject to statistical uncertainties, which arise from the quantum nature as well as the experimental technique. We consider the statistical uncertainty of the so-called sampling method, in which one estimates the expectation value of a given observable by empirical means of suitable pattern functions. We show that if the observable can be written as a function of a single directly measurable operator, the variance of the estimate from the sampling method equals to the quantum mechanical one. In this sense, we say that the estimate is on the quantum mechanical level of uncertainty. In contrast, if the observable depends on non-commuting operators, e.g. different quadratures, the quantum mechanical level of uncertainty is not achieved. The impact of the results on quantum tomography is discussed, and different approaches to quantum tomographic measurements are compared. It is shown explicitly for the estimation of quasiprobabilities of a quantum state, that balanced homodyne tomography does not operate on the quantum mechanical level of uncertainty, while the unbalanced homodyne detection does.

  14. Wavelength-encoded tomography based on optical temporal Fourier transform

    SciTech Connect (OSTI)

    Zhang, Chi; Wong, Kenneth K. Y.

    2014-09-01

    We propose and demonstrate a technique called wavelength-encoded tomography (WET) for non-invasive optical cross-sectional imaging, particularly beneficial in biological system. The WET utilizes time-lens to perform the optical Fourier transform, and the time-to-wavelength conversion generates a wavelength-encoded image of optical scattering from internal microstructures, analogous to the interferometery-based imaging such as optical coherence tomography. Optical Fourier transform, in principle, comes with twice as good axial resolution over the electrical Fourier transform, and will greatly simplify the digital signal processing after the data acquisition. As a proof-of-principle demonstration, a 150?-?m (ideally 36??m) resolution is achieved based on a 7.5-nm bandwidth swept-pump, using a conventional optical spectrum analyzer. This approach can potentially achieve up to 100-MHz or even higher frame rate with some proven ultrafast spectrum analyzer. We believe that this technique is innovative towards the next-generation ultrafast optical tomographic imaging application.

  15. Physically motivated global alignment method for electron tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sanders, Toby; Prange, Micah; Akatay, Cem; Binev, Peter

    2015-04-08

    Electron tomography is widely used for nanoscale determination of 3-D structures in many areas of science. Determining the 3-D structure of a sample from electron tomography involves three major steps: acquisition of sequence of 2-D projection images of the sample with the electron microscope, alignment of the images to a common coordinate system, and 3-D reconstruction and segmentation of the sample from the aligned image data. The resolution of the 3-D reconstruction is directly influenced by the accuracy of the alignment, and therefore, it is crucial to have a robust and dependable alignment method. In this paper, we develop amore »new alignment method which avoids the use of markers and instead traces the computed paths of many identifiable ‘local’ center-of-mass points as the sample is rotated. Compared with traditional correlation schemes, the alignment method presented here is resistant to cumulative error observed from correlation techniques, has very rigorous mathematical justification, and is very robust since many points and paths are used, all of which inevitably improves the quality of the reconstruction and confidence in the scientific results.« less

  16. A SYNERGY OF MICROWAVE CLOUD TOMOGRAPHY AND SCANNING RADAR: MOVING TOWARD A 3D VIEW OF CLOUDS

    E-Print Network [OSTI]

    A SYNERGY OF MICROWAVE CLOUD TOMOGRAPHY AND SCANNING RADAR: MOVING TOWARD A 3D VIEW OF CLOUDS D complementary techniques, i.e., cloud microwave tomography and scanning radar, to retrieve 3D cloud properties the sixth moment of cloud droplets, while cloud tomography, by remotely probing cloud microwave emission

  17. Abstract-A novel imaging method for electrical impedance tomography is implemented. In this method, the magnetic flux

    E-Print Network [OSTI]

    Eyüboðlu, Murat

    - electrical impedance tomography, magnetic resonance imaging. I. INTRODUCTION Electrical impedance tomography conductivity images [11]. Both of these techniques can be named as magnetic resonance-electrical impedanceAbstract- A novel imaging method for electrical impedance tomography is implemented. In this method

  18. Microwave-induced thermoacoustic tomography using multi-sector Minghua Xu, Geng Ku, and Lihong V. Wanga)

    E-Print Network [OSTI]

    Wang, Lihong

    Microwave-induced thermoacoustic tomography using multi-sector scanning Minghua Xu, Geng Ku A study of microwave-induced thermoacoustic tomography of inhomogeneous tissues using multi- sector of Physicists in Medicine. DOI: 10.1118/1.1395037 Key words: microwave, thermoacoustics, tomography, imaging

  19. Phase Tomography Using X-ray Talbot Interferometer

    SciTech Connect (OSTI)

    Momose, A.; Yashiro, W.; Moritake, M. [Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Takeda, Y. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Uesugi, K.; Suzuki, Y. [SPring-8/JASRI, 1-1-1 Kouto, Mikazuki, Hyogo 679-5198 (Japan); Hattori, T. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori, Hyogo 678-1205 (Japan)

    2007-01-19

    A biological tomography result obtained with an X-ray Talbot interferometer is reported. An X-ray Talbot interferometer was constructed using an amplitude grating fabricated by X-ray lithography at the LIGA beamline of NewSUBARU and gold electroplating. The pitch and pattern thickness of the grating were 8 {mu}m and 30 {mu}m, respectively. The effective area was 20 x 20 mm2, which was entirely illuminated with a wide beam available at the medium-length beamline 20B2 of SPring-8, allowing the acquisition of a three-dimensional tomogram of almost the whole body of a fish. The resulting image obtained with 17.7 keV X-rays revealed organs with bones in the same view.

  20. Iterative methods for dose reduction and image enhancement in tomography

    DOE Patents [OSTI]

    Miao, Jianwei; Fahimian, Benjamin Pooya

    2012-09-18

    A system and method for creating a three dimensional cross sectional image of an object by the reconstruction of its projections that have been iteratively refined through modification in object space and Fourier space is disclosed. The invention provides systems and methods for use with any tomographic imaging system that reconstructs an object from its projections. In one embodiment, the invention presents a method to eliminate interpolations present in conventional tomography. The method has been experimentally shown to provide higher resolution and improved image quality parameters over existing approaches. A primary benefit of the method is radiation dose reduction since the invention can produce an image of a desired quality with a fewer number projections than seen with conventional methods.

  1. Application of a nudging technique to thermoacoustic tomography

    E-Print Network [OSTI]

    Bonnefond, Xavier

    2011-01-01

    ThermoAcoustic Tomography (TAT) is a promising, non invasive, medical imaging technique whose inverse problem can be formulated as an initial condition reconstruction. In this paper, we introduce a new algorithm originally designed to correct the state of an evolution model, the \\emph{back and forth nudging} (BFN), for the TAT inverse problem. We show that the flexibility of this algorithm enables to consider a quite general framework for TAT. The backward nudging algorithm is studied and a proof of the geometrical convergence rate of the BFN is given. A method based on Conjugate Gradient (CG) is also introduced. Finally, numerical experiments validate the theoretical results with a better BFN convergence rate for more realistic setups and a comparison is established between BFN, CG and a usual inversion method.

  2. Fourier-based magnetic induction tomography for mapping resistivity

    SciTech Connect (OSTI)

    Puwal, Steffan; Roth, Bradley J. [Department of Physics, Oakland University, Rochester, Michigan 48309 (United States)

    2011-01-01

    Magnetic induction tomography is used as an experimental tool for mapping the passive electromagnetic properties of conductors, with the potential for imaging biological tissues. Our numerical approach to solving the inverse problem is to obtain a Fourier expansion of the resistivity and the stream functions of the magnetic fields and eddy current density. Thus, we are able to solve the inverse problem of determining the resistivity from the applied and measured magnetic fields for a two-dimensional conducting plane. When we add noise to the measured magnetic field, we find the fidelity of the measured to the true resistivity is quite robust for increasing levels of noise and increasing distances of the applied and measured field coils from the conducting plane, when properly filtered. We conclude that Fourier methods provide a reliable alternative for solving the inverse problem.

  3. Characterizing and Quantifying Quantum Chaos with Quantum Tomography

    E-Print Network [OSTI]

    Vaibhav Madhok; Carlos A. Riofrío; Ivan H. Deutsch

    2015-06-08

    We explore quantum signatures of classical chaos by studying the rate of information gain in quantum tomography. The tomographic record consists of a time series of expectation values of a Hermitian operator evolving under application of the Floquet operator of a quantum map that possesses (or lacks) time reversal symmetry. We find that the rate of information gain, and hence the fidelity of quantum state reconstruction, depends on the symmetry class of the quantum map involved. Moreover, we find an increase in information gain and hence higher reconstruction fidelities when the Floquet maps employed increase in chaoticity. We make predictions for the information gain and show that these results are well described by random matrix theory in the fully chaotic regime. We derive analytical expressions for bounds on information gain using random matrix theory for different class of maps and show that these bounds are realized by fully chaotic quantum systems.

  4. Hyperspectral image reconstruction for x-ray fluorescence tomography

    SciTech Connect (OSTI)

    Gürsoy, Do?a; Biçer, Tekin; Lanzirotti, Antonio; Newville, Matthew G.; De Carlo, Francesco

    2015-01-01

    A penalized maximum-likelihood estimation is proposed to perform hyperspectral (spatio-spectral) image reconstruction for X-ray fluorescence tomography. The approach minimizes a Poisson-based negative log-likelihood of the observed photon counts, and uses a penalty term that has the effect of encouraging local continuity of model parameter estimates in both spatial and spectral dimensions simultaneously. The performance of the reconstruction method is demonstrated with experimental data acquired from a seed of arabidopsis thaliana collected at the 13-ID-E microprobe beamline at the Advanced Photon Source. The resulting element distribution estimates with the proposed approach show significantly better reconstruction quality than the conventional analytical inversion approaches, and allows for a high data compression factor which can reduce data acquisition times remarkably. In particular, this technique provides the capability to tomographically reconstruct full energy dispersive spectra without compromising reconstruction artifacts that impact the interpretation of results.

  5. Hyperspectral image reconstruction for x-ray fluorescence tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gürsoy, Do?a; Biçer, Tekin; Lanzirotti, Antonio; Newville, Matthew G.; De Carlo, Francesco

    2015-01-01

    A penalized maximum-likelihood estimation is proposed to perform hyperspectral (spatio-spectral) image reconstruction for X-ray fluorescence tomography. The approach minimizes a Poisson-based negative log-likelihood of the observed photon counts, and uses a penalty term that has the effect of encouraging local continuity of model parameter estimates in both spatial and spectral dimensions simultaneously. The performance of the reconstruction method is demonstrated with experimental data acquired from a seed of arabidopsis thaliana collected at the 13-ID-E microprobe beamline at the Advanced Photon Source. The resulting element distribution estimates with the proposed approach show significantly better reconstruction quality than the conventional analytical inversionmore »approaches, and allows for a high data compression factor which can reduce data acquisition times remarkably. In particular, this technique provides the capability to tomographically reconstruct full energy dispersive spectra without compromising reconstruction artifacts that impact the interpretation of results.« less

  6. Data fusion in neutron and X-ray computed tomography

    SciTech Connect (OSTI)

    Schrapp, Michael J.; Goldammer, Matthias; Schulz, Michael; Issani, Siraj; Bhamidipati, Suryanarayana; Böni, Peter

    2014-10-28

    We present a fusion methodology between neutron and X-ray computed tomography (CT). On the one hand, the inspection by X-ray CT of a wide class of multimaterials in non-destructive testing applications suffers from limited information of object features. On the other hand, neutron imaging can provide complementary data in such a way that the combination of both data sets fully characterizes the object. In this contribution, a novel data fusion procedure, called Fusion Regularized Simultaneous Algebraic Reconstruction Technique, is developed where the X-ray reconstruction is modified to fulfill the available data from the imaging with neutrons. The experiments, which were obtained from an aluminum profile containing a steel screw, and attached carbon fiber plates demonstrate that the image quality in CT can be significantly improved when the proposed fusion method is used.

  7. Atomic Scale Characterization of Compound Semiconductors Using Atom Probe Tomography

    SciTech Connect (OSTI)

    Gorman, B. P.; Norman, A. G.; Lawrence, D.; Prosa, T.; Guthrey, H.; Al-Jassim, M.

    2011-01-01

    Internal interfaces are critical in determining the performance of III-V multijunction solar cells. Studying these interfaces with atomic resolution using a combination of transmission electron microscopy (TEM), atom probe tomography (APT), and density functional calculations enables a more fundamental understanding of carrier dynamics in photovoltaic (PV) device structures. To achieve full atomic scale spatial and chemical resolution, data acquisition parameters in laser pulsed APT must be carefully studied to eliminate surface diffusion. Atom probe data with minimized group V ion clustering and expected stoichiometry can be achieved by adjusting laser pulse power, pulse repetition rate, and specimen preparation parameters such that heat flow away from the evaporating surface is maximized. Applying these improved analysis conditions to III-V based PV gives an atomic scale understanding of compositional and dopant profiles across interfaces and tunnel junctions and the initial stages of alloy clustering and dopant accumulation. Details on APT experimental methods and future in-situ instrumentation developments are illustrated.

  8. Statistical analysis of motion contrast in optical coherence tomography angiography

    E-Print Network [OSTI]

    Cheng, Yuxuan; Pan, Cong; Lu, Tongtong; Hong, Tianyu; Ding, Zhihua; Li, Peng

    2015-01-01

    Optical coherence tomography angiography (Angio-OCT), mainly based on the temporal dynamics of OCT scattering signals, has found a range of potential applications in clinical and scientific researches. In this work, based on the model of random phasor sums, temporal statistics of the complex-valued OCT signals are mathematically described. Statistical distributions of the amplitude differential (AD) and complex differential (CD) Angio-OCT signals are derived. The theories are validated through the flow phantom and live animal experiments. Using the model developed in this work, the origin of the motion contrast in Angio-OCT is mathematically explained, and the implications in the improvement of motion contrast are further discussed, including threshold determination and its residual classification error, averaging method, and scanning protocol. The proposed mathematical model of Angio-OCT signals can aid in the optimal design of the system and associated algorithms.

  9. Thermal stability of curved ray tomography for corrosion monitoring

    SciTech Connect (OSTI)

    Willey, C. L.; Simonetti, F.; Nagy, P. B.; Instanes, G.

    2014-02-18

    Guided wave tomography is being developed as an effective tool for continuous monitoring of corrosion and erosion depth in pipelines. A pair of transmit- and receive-ring arrays of ultrasonic transducers encircles the pipe and delimits the section to be monitored. In curved ray tomography (CRT), the depth profile is estimated from the time delay matrix, ??, whose ij-th entry is the phase traveltime difference between the current and baseline signals measured between transducers i and j of the transmit and receive-ring arrays, respectively. Under perfectly stable experimental conditions, the non-zero entries of ?? are only due to the occurrence of damage and provide a reliable input to CRT. However, during field operation, ?? can develop non-zero entries due to a number of environmental changes ranging from temperature variations to degradation of transducer-pipe coupling and transducer intrinsic performance. Here, we demonstrate that these sources of instability can be eliminated by exploiting the spatial diversity of array measurements in conjunction with EMAT transducer technology which is intrinsically stable owing to its non-contact nature. The study is based on a full-scale experiment performed on a schedule 40, 8’ diameter, 3 m length steel pipe, monitored with two EMAT ring arrays. It is shown that for an irregularly shaped defect the proposed method yields maximum depth estimations that are as accurate as single point ultrasonic thickness gaging measurements and over a wide temperature range up to 175°C. The results indicate that advanced inversion schemes in combination with EMAT transduction offer great potential for continuously monitoring the progression of corrosion or erosion damage in the oil and gas industry.

  10. Spectral/ Fourier domain Doppler Optical Coherence Tomography in the rodent retina

    E-Print Network [OSTI]

    Liu, Jonathan Jaoshin

    2008-01-01

    Optical Coherence Tomography (OCT) is an emerging imaging technique based on low-coherence interferometry for noninvasive, high- resolution, cross-sectional imaging in a variety of biomedical fields. In ophthalmology, OCT ...

  11. Feasibility study on bonding quality inspection of microfluidic devices by optical coherence tomography

    E-Print Network [OSTI]

    Li, Shiguang

    This paper reports the feasibility of optical coherence tomography (OCT) technology for inspection of bonding quality of microfluidic devices in manufacturing environments. A compact optical-fiber–based OCT is developed ...

  12. Advances in Optical Coherence Tomography and Microscopy for endoscopic applications and functional neuroimaging

    E-Print Network [OSTI]

    Aguirre, Aaron Dominic, 1977-

    2008-01-01

    Optical Coherence Tomography (OCT) is a developing medical imaging technology that generates micron resolution cross-sectional images of subsurface internal tissue structure in situ and in real time, without the need to ...

  13. High-speed Fourier domain Optical Coherence Tomography for structural and functional imaging of the retina

    E-Print Network [OSTI]

    Srinivasan, Vivek Jay

    2008-01-01

    Optical Coherence Tomography (OCT) is an emerging optical biomedical imaging technology that enables cross-sectional imaging of scattering tissue with high sensitivity and micron-scale resolution. In conventional OCT, the ...

  14. High-resolution three-dimensional optical coherence tomography imaging of kidney microanatomy ex vivo

    E-Print Network [OSTI]

    Chen, Yu

    Optical coherence tomography (OCT) is an emerging medical imaging technology that enables high-resolution, noninvasive, cross-sectional imaging of microstructure in biological tissues in situ and in real time. When combined ...

  15. HFSS code for Thermoacoustic Tomography Testbed Liping Yan, co-investigator (sherryyan05@gmail.com)

    E-Print Network [OSTI]

    Patch, Sarah

    HFSS code for Thermoacoustic Tomography Testbed Liping Yan, co-investigator (sherryyan05@gmail to design the UW-Milwaukee Thermoacoustic Testbed. "Testbed.hfss" can be run material, testbed length, etc. The UWM thermoacoustic testbed is essentially

  16. Endoscopic optical coherence tomography for clinical studies in the gastrointestinal tract

    E-Print Network [OSTI]

    Tsai, Tsung-Han, Ph. D. Massachusetts Institute of Technology

    2013-01-01

    Optical coherence tomography (OCT) performs micrometer-scale, cross-sectional and three dimensional imaging by measuring the echo time delay of backscattered light. OCT imaging is performed using low-coherence interferometry. ...

  17. Experimental Fluorescence Optical Tomography using Adaptive Finite Elements and Planar Illumination with

    E-Print Network [OSTI]

    Bangerth, Wolfgang

    Experimental Fluorescence Optical Tomography using Adaptive Finite Elements and Planar Illumination with Modulated Excitation Light Amit Joshia , Wolfgang Bangerthb , Alan B. Thompsona , and Eva M. Sevick adaptive discretization strategies. To date, the efficacy of adaptive mesh refinement techniques has yet

  18. P- and S- wave tomography of the crust and uppermost mantle in China and surrounding areas

    E-Print Network [OSTI]

    Sun, Youshun, 1970-

    2005-01-01

    This thesis involves inverting the seismic structure of the crust and uppermost mantle in China from the P- and S-wave travel-time tomography. The main contributions of this research are: 1) introducing the adaptive moving ...

  19. Optical coherence tomography based on intensity correlations of quasi-thermal light

    E-Print Network [OSTI]

    Zerom, Petros

    We show theoretically that the longitudinal resolution of conventional optical coherence tomography can be improved by a factor of radic2 when a two-photon (as opposed to a single-photon) sensitive detector is used, and ...

  20. Imaging the Soultz Enhanced Geothermal Reservoir using double-difference tomography and microseismic data

    E-Print Network [OSTI]

    Piñeros Concha, Diego Alvaro

    2010-01-01

    We applied the double-difference tomography method to image the P and S-wave velocity structure of the European Hot Dry Rock geothermal reservoir (also known as the Soultz Enhanced Geothermal System) at Soultz-sous-Forets, ...

  1. Digital signal processing techniques for optical coherence tomography : OCT and OCT image enhancement

    E-Print Network [OSTI]

    Adler, Desmond Christopher, 1978-

    2004-01-01

    Digital signal processing (DSP) techniques were developed to improve the flexibility, functionality, and image quality of ultrahigh resolution optical coherence tomography (OCT) systems. To reduce the dependence of OCT ...

  2. Review paper Seismic interferometry and ambient noise tomography in the British Isles

    E-Print Network [OSTI]

    Review paper Seismic interferometry and ambient noise tomography in the British Isles Heather. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 2. Theory and method of seismic interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2. Seismic interferometry across the Scottish Highlands

  3. Barium Titanate Nanoparticles as Exogenous Contrast Agents in Second Harmonic Optical Coherence Tomography 

    E-Print Network [OSTI]

    Pearson, Jeremy T

    2013-05-06

    I propose and demonstrate a method by which barium titanate nanoparticle clusters can be used as exogenous contrast agents in Second Harmonic Optical Coherence Tomography imaging systems to localize and highlight desired ...

  4. A microwave tomography system using a tunable mirror for beam steering

    SciTech Connect (OSTI)

    Tayebi, A. [Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824 (United States); Non-Destructive Evaluation Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physic (United States); Tang, J. [Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824 (United States); Paladhi, P. Roy; Udpa, L.; Udpa, S. [Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824 (United States); Non-Destructive Evaluation Laboratory, Michigan State University, East Lansing, MI 48824 (United States)

    2014-02-18

    Microwave tomography is a fast-growing technique in the fields of NDE and medical industry. This paper presents a new microwave tomography system which reduces the complexities of conventional microwave imaging systems by utilizing a reconfigurable mirror, a tunable reflectarray antenna. In order to build a tunable reflectarray with beam steering capabilities, the unit cell characteristics should dynamically alter. Modelling and experimental results of a single unit cell are presented in this work.

  5. Digital Radiography and Computed Tomography (DRCT) Product Improvement Plan (PIP)

    SciTech Connect (OSTI)

    Tim Roney; Bob Pink; Karen Wendt; Robert Seifert; Mike Smith

    2010-12-01

    The Idaho National Laboratory (INL) has been developing and deploying x-ray inspection systems for chemical weapons containers for the past 12 years under the direction of the Project Manager for Non-Stockpile Chemical Materiel (PMNSCM). In FY-10 funding was provided to advance the capabilities of these systems through the DRCT (Digital Radiography and Computed Tomography) Product Improvement Plan (PIP), funded by the PMNSCM. The DRCT PIP identified three research tasks; end user study, detector evaluation and DRCT/PINS integration. Work commenced in February, 2010. Due to the late start and the schedule for field inspection of munitions at various sites, it was not possible to spend sufficient field time with operators to develop a complete end user study. We were able to interact with several operators, principally Mr. Mike Rowan who provided substantial useful input through several discussions and development of a set of field notes from the Pueblo, CO field mission. We will be pursuing ongoing interactions with field personnel as opportunities arise in FY-11.

  6. Measurement strategy for rectangular electrical capacitance tomography sensor

    SciTech Connect (OSTI)

    Ye, Jiamin; Ge, Ruihuan; Qiu, Guizhi; Wang, Haigang [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, 100190 (China)

    2014-04-11

    To investigate the influence of the measurement strategy for the rectangular electrical capacitance tomography (ECT) sensor, a Finite Element Method (FEM) is utilized to create the model for simulation. The simulation was carried out using COMSOL Multiphysics(trade mark, serif) and Matlab(trade mark, serif). The length-width ratio of the rectangular sensing area is 5. Twelve electrodes are evenly arranged surrounding the pipe. The covering ratio of the electrodes is 90%. The capacitances between different electrode pairs are calculated for a bar distribution. The air of the relative permittivity 1.0 and the material of the permittivity 3.0 are used for the calibration. The relative permittivity of the second phase is 3.0. The noise free and noise data are used for the image reconstruction using the Linear Back Projection (LBP). The measurement strategies with 1-, 2- and 4- electrode excitation are compared using the correlation coefficient. Preliminary results show that the measurement strategy with 2-electrode excitation outperforms other measurement strategies with 1- or 4-electrode excitation.

  7. Using electrical resistance tomography to map subsurface temperatures

    DOE Patents [OSTI]

    Ramirez, A.L.; Chesnut, D.A.; Daily, W.D.

    1994-09-13

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations. 1 fig.

  8. Using electrical resistance tomography to map subsurface temperatures

    DOE Patents [OSTI]

    Ramirez, Abelardo L. (Pleasanton, CA); Chesnut, Dwayne A. (San Francisco, CA); Daily, William D. (Livermore, CA)

    1994-01-01

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations.

  9. Fuzzy Modeling of Electrical Impedance Tomography Image of the Lungs

    E-Print Network [OSTI]

    Tanaka, Harki; Galizia, Mauricio Stanzione; Sobrinho, Joao Batista Borges; Amato, Marcelo Britto Passos

    2007-01-01

    Electrical Impedance Tomography (EIT) is a functional imaging method that is being developed for bedside use in critical care medicine. Aiming at improving the chest anatomical resolution of EIT images we developed a fuzzy model based on EIT high temporal resolution and the functional information contained in the pulmonary perfusion and ventilation signals. EIT data from an experimental animal model were collected during normal ventilation and apnea while an injection of hypertonic saline was used as a reference . The fuzzy model was elaborated in three parts: a modeling of the heart, a pulmonary map from ventilation images and, a pulmonary map from perfusion images. Image segmentation was performed using a threshold method and a ventilation/perfusion map was generated. EIT images treated by the fuzzy model were compared with the hypertonic saline injection method and CT-scan images, presenting good results in both qualitative (the image obtained by the model was very similar to that of the CT-scan) and quant...

  10. Artifact reduction in industrial computed tomography via data fusion

    SciTech Connect (OSTI)

    Schrapp, Michael; Goldammer, Matthias; Stephan, Jürgen

    2014-02-18

    As the most stressed part of a gas turbine the first row of turbine blades is not only a challenge for the materials used. Also the testing of these parts have to meet the highest standards. Computed tomography (CT) as the technique which could reveal the most details also provides the biggest challenges [1]: A full penetration of large sized turbine blades is often only possible at high X-ray voltages causing disproportional high costs. A reduction of the X-ray voltage is able to reduce these arising costs but yields non penetration artifacts in the reconstructed CT image. In most instances, these artifacts manifests itself as blurred and smeared regions at concave edges due to a reduced signal to noise ratio. In order to complement the missing information and to increase the overall image quality of our reconstruction, we use further imaging modalities such as a 3-D Scanner and ultrasonic imaging. A 3-D scanner is easy and cost effective to implement and is able to acquire all relevant data simultaneously with the CT projections. If, however, the interior structure is of supplemental interest, an ultrasonic imaging method is additionally used. We consider this data as a priori knowledge to employ them in an iterative reconstruction. To do so, standard iterative reconstruction methods are modified to incorporate the a priori data in a regularization approach in combination with minimizing the total variation of our image. Applying this procedure on turbine blades, we are able to reduce the apparent artifacts almost completely.

  11. Pretreatment Staging Positron Emission Tomography/Computed Tomography in Patients With Inflammatory Breast Cancer Influences Radiation Treatment Field Designs

    SciTech Connect (OSTI)

    Walker, Gary V.; Niikura, Naoki; Yang Wei; Rohren, Eric; Valero, Vicente; Woodward, Wendy A.; Alvarez, Ricardo H.; Lucci, Anthony; Ueno, Naoto T.; Buchholz, Thomas A.

    2012-08-01

    Purpose: Positron emission tomography/computed tomography (PET/CT) is increasingly being utilized for staging of inflammatory breast cancer (IBC). The purpose of this study was to define how pretreatment PET/CT studies affected postmastectomy radiation treatment (PMRT) planning decisions for IBC. Methods and Materials: We performed a retrospective analysis of 62 patients diagnosed with IBC between 2004 and 2009, who were treated with PMRT in our institution and who had a staging PET/CT within 3 months of diagnosis. Patients received a baseline physical examination, staging mammography, ultrasonographic examination of breast and draining lymphatics, and chest radiography; most patients also had a bone scan (55 patients), liver imaging (52 patients), breast MRI (46 patients), and chest CT (25 patients). We compared how PET/CT findings affected PMRT, assuming that standard PMRT would target the chest wall, level III axilla, supraclavicular fossa, and internal mammary chain (IMC). Any modification of target volumes, field borders, or dose prescriptions was considered a change. Results: PET/CT detected new areas of disease in 27 of the 62 patients (44%). The areas of additional disease included the breast (1 patient), ipsilateral axilla (1 patient), ipsilateral supraclavicular (4 patients), ipsilateral infraclavicular (1 patient), ipsilateral IMC (5 patients), ipsilateral subpectoral (3 patients), mediastinal (8 patients), other distant/contralateral lymph nodes (15 patients), or bone (6 patients). One patient was found to have a non-breast second primary tumor. The findings of the PET/CT led to changes in PMRT in 11 of 62 patients (17.7%). These changes included additional fields in 5 patients, adjustment of fields in 2 patients, and higher doses to the supraclavicular fossa (2 patients) and IMC (5 patients). Conclusions: For patients with newly diagnosed IBC, pretreatment PET/CT provides important information concerning involvement of locoregional lymph nodes, mediastinal lymph nodes, and unsuspected sites of distant metastasis. This information is important in the design of radiotherapy treatment fields and, therefore, we recommend that PET/CT be a component of initial staging for IBC.

  12. Imaging and modeling of flow in porous media using clinical nuclear emission tomography systems and computational fluid dynamics

    E-Print Network [OSTI]

    Boutchko, R.

    2014-01-01

    emission tomography systems and computational fluid dynamicsa computational ?uid dynamics (CFD) model of the systemthe computational domain. A Cartesian coordinate system was

  13. Semi-resonant operation of a fiber-cantilever piezotube scanner for stable optical coherence tomography endoscope imaging

    E-Print Network [OSTI]

    Moon, Sucbei; Lee, Sang-Won; Rubinstein, Marc; Wong, Brian J. F; Chen, Zhongping

    2010-01-01

    of a rotational microelectromechanical system probe,” Opt.tomography based on a microelectromechanical mirror,” Opt.with a modified microelectromechanical systems mirror for

  14. X-ray Computed Tomography of coal: Final report

    SciTech Connect (OSTI)

    Maylotte, D.H.; Spiro, C.L.; Kosky, P.G.; Lamby, E.J.

    1986-12-01

    X-ray Computed Tomography (CT) is a method of mapping with x-rays the internal structures of coal. The technique normally produces 2-D images of the internal structures of an object. These images can be recast to create pseudo 3-D representations. CT of coal has been explored for a variety of different applications to coal and coal processing technology. In a comparison of CT data with conventional coal analyses and petrography, CT was found to offer a good indication of the total ash content of the coal. The spatial distribution of the coal mineral matter as seen with CT has been suggested as an indicator of coal washability. Studies of gas flow through coal using xenon gas as a tracer have shown the extremely complicated nature of the modes of penetration of gas through coal, with significant differences in the rates at which the gas can pass along and across the bedding planes of coal. In a special furnace designed to allow CT images to be taken while the coal was being heated, the pyrolysis and gasification of coal have been studied. Gasification rates with steam and CO/sub 2/ for a range of coal ranks have been obtained, and the location of the gasification reactions within the piece of coal can be seen. Coal drying and the progress of the pyrolysis wave into coal have been examined when the coal was subjected to the kind of sudden temperature jump that it might experience in fixed bed gasifier applications. CT has also been used to examine stable flow structures within model fluidized beds and the accessibility of lump coal to microbial desulfurization. 53 refs., 242 figs., 26 tabs.

  15. Tomography of the Reionization Epoch with Multifrequency CMB Observations

    E-Print Network [OSTI]

    Carlos Hernandez-Monteagudo; Licia Verde; Raul Jimenez

    2006-04-14

    We study the constraints that future multifrequency Cosmic Microwave Background (CMB) experiments will be able to set on the metal enrichment history of the Inter Galactic Medium at the epoch of reionisation. We forecast the signal to noise ratio for the detection of the signal introduced in the CMB by resonant scattering off metals at the end of the Dark Ages. We take into account systematics associated to inter-channel calibration, PSF reconstruction errors and innacurate foreground removal. We develop an algorithm to optimally extract the signal generated by metals during reionisation and to remove accurately the contamination due to the thermal Sunyaev-Zel'dovich effect. Although demanding levels of foreground characterisation and control of systematics are required, they are very distinct from those encountered in HI-21cm studies and CMB polarization, and this fact encourages the study of resonant scattering off metals as an alternative way of conducting tomography of the reionisation epoch. An ACT-like experiment with optimistic assumtions on systematic effects, and looking at clean regions of the sky, can detect changes of 3%-12% (95% c.l.) of the OIII abundance (with respect its solar value) in the redshift range $z\\in$ [12,22], for reionization redshift $z_{\\rm re}>10$. However, for $z_{\\rm re} <10$, it can only set upper limits on NII abundance increments of $\\sim$ 60% its solar value in the redshift range $z\\in$ [5.5,9], (95% c.l.). These constraints assume that inter-channel calibration is accurate down to one part in $10^{4}$, which constitutes the most critical technical requirement of this method, but still achievable with current technology.

  16. Simulation et analyse par tomographie X de la dformation l'chelle msoscopique de renforts textiles de composites en cours de mise en forme

    E-Print Network [OSTI]

    Boyer, Edmond

    like permeability evaluations. A mechanical analysis of the reinforcement at meso-scale is proposed mésoscopique, Hypo-élasticité, Tomographie Keywords : Composite Forming, Finite Element, X-Ray tomography, Meso-scale

  17. First local seismic tomography for Red River shear zone, northern Vietnam: Stepwise inversion employing crustal P and Pn waves

    E-Print Network [OSTI]

    Wu, Yih-Min

    First local seismic tomography for Red River shear zone, northern Vietnam: Stepwise inversion shear zone Northern Vietnam Local seismic tomography Pn wave Moho depth The 900-km-long Red River shear of southeastern Asia, but has been challenged by many of views, as some new records mainly from northern Vietnam

  18. Compensator models for fluence field modulated computed tomography

    SciTech Connect (OSTI)

    Bartolac, Steven; Jaffray, David; Radiation Medicine Program, Princess Margaret Hospital Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9

    2013-12-15

    Purpose: Fluence field modulated computed tomography (FFMCT) presents a novel approach for acquiring CT images, whereby a patient model guides dynamically changing fluence patterns in an attempt to achieve task-based, user-prescribed, regional variations in image quality, while also controlling dose to the patient. This work aims to compare the relative effectiveness of FFMCT applied to different thoracic imaging tasks (routine diagnostic CT, lung cancer screening, and cardiac CT) when the modulator is subject to limiting constraints, such as might be present in realistic implementations.Methods: An image quality plan was defined for a simulated anthropomorphic chest slice, including regions of high and low image quality, for each of the thoracic imaging tasks. Modulated fluence patterns were generated using a simulated annealing optimization script, which attempts to achieve the image quality plan under a global dosimetric constraint. Optimization was repeated under different types of modulation constraints (e.g., fixed or gantry angle dependent patterns, continuous or comprised of discrete apertures) with the most limiting case being a fixed conventional bowtie filter. For each thoracic imaging task, an image quality map (IQM{sub sd}) representing the regionally varying standard deviation is predicted for each modulation method and compared to the prescribed image quality plan as well as against results from uniform fluence fields. Relative integral dose measures were also compared.Results: Each IQM{sub sd} resulting from FFMCT showed improved agreement with planned objectives compared to those from uniform fluence fields for all cases. Dynamically changing modulation patterns yielded better uniformity, improved image quality, and lower dose compared to fixed filter patterns with optimized tube current. For the latter fixed filter cases, the optimal choice of tube current modulation was found to depend heavily on the task. Average integral dose reduction compared to a uniform fluence field ranged from 10% using a bowtie filter to 40% or greater using an idealized modulator.Conclusions: The results support that FFMCT may achieve regionally varying image quality distributions in good agreement with user-prescribed values, while limiting dose. The imposition of constraints inhibits dose reduction capacity and agreement with image quality plans but still yields significant improvement over what is afforded by conventional dose minimization techniques. These results suggest that FFMCT can be implemented effectively even when the modulator has limited modulation capabilities.

  19. Relation between Optical Fresnel transformation and quantum tomography in two-mode entangled case

    E-Print Network [OSTI]

    Hong-yi Fan; Li-yun Hu

    2009-11-09

    Similar in spirit to the preceding work [Opt. Commun. 282 (2009) 3734] where the relation between optical Fresnel transformation and quantum tomography is revealed, we study this kind of relationship in the two-mode entangled case. We show that under the two-mode Fresnel transformation the bipartite entangled state density |eta>_{r,s}Fresnel operator in quantum optics, and s,r are the complex-value expression of (A, B, C,D). So the probability distribution for the Fresnel quadrature phase is the {tomography (Radon transform of the two-mode Wigner function), correspondingly, {s,r}_=. Similarly, we find a simial conclusion in the `frequency` domain.

  20. Electrical Impedance Tomography of a Seafloor Volcano R.V. Revelle shiptime proposal submitted by David Myer, Steven Constable, and Kerry Key

    E-Print Network [OSTI]

    Key, Kerry

    Electrical Impedance Tomography of a Seafloor Volcano R.V. Revelle shiptime proposal submitted Seamount). Electrical Resistance Tomography (or ERT), also known as electrical impedance tomography will allow us to build an electrical conductivity image of a horizontal slice through the volcano at a depth

  1. To cite this document: Haine, Ghislain An observer-based approach for thermoacoustic tomography. (2014) In: The 21st International Symposium on Mathematical Theory of

    E-Print Network [OSTI]

    Mailhes, Corinne

    2014-01-01

    To cite this document: Haine, Ghislain An observer-based approach for thermoacoustic tomography administrator: staff-oatao@inp-toulouse.fr #12;An observer-based approach for thermoacoustic tomography Ghislain will consider in this paper, the algorithm studied in [29]. In thermoacoustic tomography, the problem

  2. To cite this document: Haine, Ghislain Solving Thermoacoustic Tomography with an observer-based algorithm. (2014) In: Journes Ondes du Sud-Ouest, 05 February 2014 -

    E-Print Network [OSTI]

    Mailhes, Corinne

    2014-01-01

    To cite this document: Haine, Ghislain Solving Thermoacoustic Tomography with an observer-oatao@inp-toulouse.fr #12;Solving Thermoacoustic Tomography with an observer-based algorithm Ghislain Haine Department] and finally, the one we will consider, the algorithm studied in [20]. In thermoacoustic tomography

  3. Velocity structure of the uppermost mantle beneath East Asia from Pn tomography and its dynamic implications

    E-Print Network [OSTI]

    Niu, Fenglin

    regions on Earth's surface due to the collision from the India plate and the suctions induced seismicity of the area, we conducted a Pn traveltime tomography to estimate the compressive wave speed. In each region, stable blocks tend to have high Pn velocity while the boundary regions, which show a high

  4. ProteinTomographyTM--answering prevailing scientific questions in therapeutic-antibody research and

    E-Print Network [OSTI]

    Cai, Long

    ;APPLICATION NOTES A low electron dose is used during this process to minimize radiation damage and preserveProteinTomographyTM--answering prevailing scientific questions in therapeutic-antibody research the researcher to obtain visual evidence of protein interactions both in situ and in vitro, and effectively gives

  5. 4-D Seismic Tomography for the Complex System of Strong Earthquakes: Formulation

    E-Print Network [OSTI]

    Bjarnason, Ingi

    4-D Seismic Tomography for the Complex System of Strong Earthquakes: Formulation of a Problem in clusters. Sometimes it happens that before strong earthquakes there is a seismic quiescence that is characterized by the absence of significant seismic events. This may indicate that Earth's geological system

  6. Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon

    E-Print Network [OSTI]

    Zhou, Chongwu

    Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon, United States *S Supporting Information ABSTRACT: Recently, silicon-based lithium-ion battery anodes have for the next-generation lithium-ion batteries with enhanced capacity and energy density. KEYWORDS: Cost

  7. World Congress on Industrial Process Tomography, Aizu, Japan Modelling and predicting flow regimes using wavelet

    E-Print Network [OSTI]

    Barber, Stuart

    4 th World Congress on Industrial Process Tomography, Aizu, Japan Modelling and predicting flow of Statistics, University of Leeds, Leeds, LS2 9JT, UK, robert@maths.leeds.ac.uk ABSTRACT The aim of industrial without intruding into the industrial process, but produce highly correlated and noisy data, and hence

  8. Geophys. J. Int. () , 1?? Cross-section electrical resistance tomography of La Soufri`ere of

    E-Print Network [OSTI]

    Adler, Andy

    Geophys. J. Int. () , 1­?? Cross-section electrical resistance tomography of La Soufri spanning the whole range of azimuths, and the electrical potential is measured along a cable covering`ere lava dome is located in the horseshoe-shaped Amic crater formed 3100 B.P. by a Now at: PRP

  9. Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography

    E-Print Network [OSTI]

    Mark Agranovsky; Peter Kuchment

    2007-06-05

    The paper contains a simple approach to reconstruction in Thermoacoustic and Photoacoustic Tomography. The technique works for any geometry of point detectors placement and for variable sound speed satisfying a non-trapping condition. A uniqueness of reconstruction result is also obtained.

  10. Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography

    E-Print Network [OSTI]

    Agranovsky, Mark

    2007-01-01

    The paper contains a simple approach to reconstruction in Thermoacoustic and Photoacoustic Tomography. The technique works for any geometry of point detectors placement and for variable sound speed satisfying a non-trapping condition. A uniqueness of reconstruction result is also obtained.

  11. A Reconstruction Procedure for Thermoacoustic Tomography in the Case of Limited Boundary Data

    E-Print Network [OSTI]

    Steinhauer, Dustin

    2009-01-01

    We derive an explicit method for reconstructing singularities of the initial data in a thermoacoustic tomography problem, in the case of variable sound speed and limited boundary data. In order to obtain this explicit formula we assume the metric induced by the sound speed does not have conjugate points inside the region to be observed.

  12. On reconstruction formulas and algorithms for the thermoacoustic and photoacoustic tomography

    E-Print Network [OSTI]

    Agranovsky, M; Kunyansky, L

    2007-01-01

    The paper surveys recent progress in establishing uniqueness and developing inversion formulas and algorithms for the thermoacoustic tomography. In mathematical terms, one deals with a rather special inverse problem for the wave equation. In the case of constant sound speed, it can also be interpreted as a problem concerning the spherical mean transform.

  13. A Uniqueness Theorem for Thermoacoustic Tomography in the Case of Limited Boundary Data

    E-Print Network [OSTI]

    Steinhauer, Dustin

    2009-01-01

    We prove a uniqueness theorem for compactly supported initial data for the variable speed wave equation arising in models of thermoacoustic tomography, given measurements on a part of the boundary. The proof is based on domain of dependence arguments and D. Tataru's unique continuation theorem.

  14. Eddy Current Tomography Using a Binary Markov Mila Nikolova and Ali MohammadDjafari

    E-Print Network [OSTI]

    Nikolova, Mila

    Eddy Current Tomography Using a Binary Markov Model Mila Nikolova and Ali Mohammad and notches. The medium is illuminated with a monochromatic electric field; the anomalies induce eddy currents in various fields such as nuclear power plants and aerospace engineering. 1 #12; The objective of eddy

  15. 4D Computed Tomography Reconstruction from Few-Projection Data via Temporal Non-local

    E-Print Network [OSTI]

    Zakharov, Vladimir

    4D Computed Tomography Reconstruction from Few-Projection Data via Temporal Non, University of California, Los Angeles, Los Angeles, CA 90095-1555, USA 3 Department of Mathematics be reconstructed simultaneously based on extremely under-sampled x-ray projections. Our algorithm is validated

  16. Advanced fuel assembly characterization capabilities based on gamma tomography at the Halden boiling water reactor

    SciTech Connect (OSTI)

    Holcombe, S.; Eitrheim, K.; Svaerd, S. J.; Hallstadius, L.; Willman, C.

    2012-07-01

    Characterization of individual fuel rods using gamma spectroscopy is a standard part of the Post Irradiation Examinations performed on experimental fuel at the Halden Boiling Water Reactor. However, due to handling and radiological safety concerns, these measurements are presently carried out only at the end of life of the fuel, and not earlier than several days or weeks after its removal from the reactor core. In order to enhance the fuel characterization capabilities at the Halden facilities, a gamma tomography measurement system is now being constructed, capable of characterizing fuel assemblies on a rod-by-rod basis in a more timely and efficient manner. Gamma tomography for measuring nuclear fuel is based on gamma spectroscopy measurements and tomographic reconstruction techniques. The technique, previously demonstrated on irradiated commercial fuel assemblies, is capable of determining rod-by-rod information without the need to dismantle the fuel. The new gamma tomography system will be stationed close to the Halden reactor in order to limit the need for fuel transport, and it will significantly reduce the time required to perform fuel characterization measurements. Furthermore, it will allow rod-by-rod fuel characterization to occur between irradiation cycles, thus allowing for measurement of experimental fuel repeatedly during its irradiation lifetime. The development of the gamma tomography measurement system is a joint project between the Inst. for Energy Technology - OECD Halden Reactor Project, Westinghouse (Sweden), and Uppsala Univ.. (authors)

  17. Radiation dose reduction and image enhancement in biological imaging through equally-sloped tomography

    E-Print Network [OSTI]

    Miao, Jianwei "John"

    Radiation dose reduction and image enhancement in biological imaging through equally Iterative reconstruction algorithm Radiation dose reduction Image enhancement Computed tomography a b s t r, 1974; Dubochet et al., 1998). The use of electronic detec- tors and the implementation of automated low-dose

  18. Radiation dose reduction in computed tomography perfusion using spatial-temporal Bayesian methods

    E-Print Network [OSTI]

    Chen, Tsuhan

    in mean-square-error (MSE) of 40% at low dose radiation of 43mA. Keywords: spatial-temporal, BayesianRadiation dose reduction in computed tomography perfusion using spatial-temporal Bayesian methods-ray radiation dose is of significant concern to patients and operators, especially CT perfusion (CTP) imaging

  19. High-resolution frequency-domain second-harmonic optical coherence tomography

    E-Print Network [OSTI]

    Chen, Zhongping

    capability for high-resolution optical 3D sec- tioning of samples because signals only arise from the focal structure of the specimen and its orientation relative to the laser beam. In biological materials, collagenHigh-resolution frequency-domain second-harmonic optical coherence tomography Jianping Su, Ivan V

  20. Quantum Process Tomography of a Universal Entangling Gate Implemented with Josephson Phase Qubits

    E-Print Network [OSTI]

    Martinis, John M.

    . Experiments using superconducting qubits have validated the truth table for particular implementations of e the performance of a universal entangling gate between two superconducting quantum bits. Process tomography . The SQiSW is a "natural" two-qubit gate as it directly results from capacitive coupling of superconducting

  1. Plastic scintillators for positron emission tomography obtained by the bulk polymerization method

    E-Print Network [OSTI]

    Kap?on, ?ukasz; Molenda, Marcin; Moskal, Pawe?; Wieczorek, Anna; Bednarski, Tomasz; Bia?as, Piotr; Czerwi?ski, Eryk; Korcyl, Grzegorz; Kowal, Jakub; Kowalski, Pawe?; Kozik, Tomasz; Krzemie?, Wojciech; Nied?wiecki, Szymon; Pa?ka, Marek; Pawlik, Monika; Raczy?ski, Lech; Rudy, Zbigniew; Salabura, Piotr; Gupta-Sharma, Neha; Silarski, Micha?; S?omski, Artur; Smyrski, Jerzy; Strzelecki, Adam; Wi?licki, Wojciech; Zieli?ski, Marcin; Zo?, Natalia

    2015-01-01

    This paper describes three methods regarding the production of plastic scintillators. One method appears to be suitable for the manufacturing of plastic scintillator, revealing properties which fulfill the requirements of novel positron emission tomography scanners based on plastic scintillators. The key parameters of the manufacturing process are determined and discussed.

  2. Use of optical coherence tomography to monitor biological tissue freezing during cryosurgery

    E-Print Network [OSTI]

    Aguilar, Guillermo

    Use of optical coherence tomography to monitor biological tissue freezing during cryosurgery were acquired during freezing of water, IntralipidTM, and in vivo hamster skin. Sub- surface morphological changes were evident only during freezing of Intralipid and skin. A simple thermal model

  3. Reconciling the geological history of western Turkey with plate circuits and mantle tomography

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Reconciling the geological history of western Turkey with plate circuits and mantle tomography Engineering, Middle East Technical University, 06531 Ankara, Turkey c Paleomagnetic Laboratory `Fort Hoofddijk the geological history since Cretaceous times in western Turkey in a context of convergence, subduction

  4. Update on Electron Tomography Analysis of Plant Golgi Stacks Nanoscale Architecture of Endoplasmic Reticulum Export

    E-Print Network [OSTI]

    Pace, Norman

    Reticulum Export Sites and of Golgi Membranes as Determined by Electron Tomography1[W] L. Andrew Staehelin) export sites, Golgi stacks, trans-Golgi network (TGN) cisternae, and associated vesicles and scaffolds at different rates, it is easy to imagine how a given Golgi stack that was close to an ER export site

  5. Nondestructive evaluation of Polymer Coating Structures on Pharmaceutical Pellets using Full Field Optical Coherence Tomography

    E-Print Network [OSTI]

    Li, C; Zeitler, J. A; Dong, Y; Shen, Y.-C

    Full field optical coherence tomography (FF-OCT) using a conventional LED light source and a CMOS camera has been developed for characterising coatings on small pellet samples. A set of en-face images covering an area of 700µm x 700µm were taken...

  6. STATISTICAL MODELING OF THE LUNG NODULES IN LOW DOSE COMPUTED TOMOGRAPHY SCANS OF THE CHEST

    E-Print Network [OSTI]

    Louisville, University of

    STATISTICAL MODELING OF THE LUNG NODULES IN LOW DOSE COMPUTED TOMOGRAPHY SCANS OF THE CHEST Amal in automatic detection of the lung nodules and is compared with respect to parametric nodule models in terms appearing in low dose CT (LDCT) scans of the human chest. Four types of common lung nodules are analyzed

  7. Optimizing magnetomotive contrast of SPIO-labeled platelets for thrombosis imaging in optical coherence tomography

    E-Print Network [OSTI]

    Oldenburg, Amy

    and monitoring the formation of blood clots using infused SPIO-platelets. Keywords: Magnetomotive Optical recently reported a new method for thrombosis imaging based on the use of infusible, rehydratable using magnetomotive optical coherence tomography (MMOCT) [5]. RL platelets are infusion agent

  8. Time-lapse electrical resistivity tomography applied to cave sustainability (Barbados) and groundwater exploration (Saint Lucia)

    E-Print Network [OSTI]

    Agramakova, Yulia

    2011-01-01

    In this work we apply the method of two-dimensional time-lapse electrical resistivity tomography (2D time-lapse ERT) for two different problems. In the first problem, we monitor the structural stability of the roof of the ...

  9. SEI 01 Peru Seismic Experiment Tomography and Gravity Inversion SEI 01.1 Overview

    E-Print Network [OSTI]

    Soatto, Stefano

    SEI 01 Peru Seismic Experiment Tomography and Gravity Inversion SEI 01.1 Overview The Peru geophysical models of the Andean Orogenic Belt and to image the subduction process in Southern Peru. One area in the summer of 2008, consists of a linear array of 50 broadband seismic stations that are evenly spaced about

  10. From: Advances in Geophysics, 46, 81-197. 1 SEISMIC TRAVELTIME TOMOGRAPHY OF THE

    E-Print Network [OSTI]

    Rawlinson, Nick

    to describe a similar process using seismic waves to map earth structure. Seismologists now routinely useFrom: Advances in Geophysics, 46, 81-197. 1 SEISMIC TRAVELTIME TOMOGRAPHY OF THE CRUST, Canberra ACT 0200, Australia 1 Introduction 1.1 Motivation Seismic data represent one of the most valuable

  11. Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination

    E-Print Network [OSTI]

    Bangerth, Wolfgang

    Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area fluorescence absorption map with an adaptive finite element based scheme. The tissue phantom consisted 785 nm diode laser light and a gain modulated image intensified charge coupled device camera

  12. ADAPTIVE FINITE ELEMENT METHODS FOR FLUORESCENCE ENHANCED FREQUENCY DOMAIN OPTICAL TOMOGRAPHY: FORWARD IMAGING PROBLEM

    E-Print Network [OSTI]

    Bangerth, Wolfgang

    error estimates for adaptive mesh refinement to optimally model the strongly graded light distributionADAPTIVE FINITE ELEMENT METHODS FOR FLUORESCENCE ENHANCED FREQUENCY DOMAIN OPTICAL TOMOGRAPHY Modeling, ICES, University of Texas at Austin, TX ABSTRACT In this contribution we introduce adaptive

  13. How state preparation can affect a quantum experiment: Quantum process tomography for open systems

    SciTech Connect (OSTI)

    Kuah, Aik-meng; Modi, Kavan; Rodriguez-Rosario, Cesar A.; Sudarshan, E. C. G. [Center for Complex Quantum Systems, University of Texas at Austin, Austin, Texas 78712 (United States)

    2007-10-15

    We study the effects of the preparation of input states in a quantum tomography experiment. We show that maps arising from a quantum process tomography experiment (called process maps) differ from the well-known dynamical maps. The difference between the two is due to the preparation procedure that is necessary for any quantum experiment. We study two preparation procedures: stochastic preparation and preparation by measurements. The stochastic preparation procedure yields process maps that are linear, while the preparations using von Neumann measurements lead to nonlinear processes and can only be consistently described by a bilinear process map. A process tomography recipe is derived for preparation by measurement for qubits. The difference between the two methods is analyzed in terms of a quantum process tomography experiment. A verification protocol is proposed to differentiate between linear processes and bilinear processes. We also emphasize that the preparation procedure will have a nontrivial effect for any quantum experiment in which the system of interest interacts with its environment.

  14. Surface-to-tunnel seismic tomography studies at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Korneev, Valeri A.

    Surface-to-tunnel seismic tomography studies at Yucca Mountain, Nevada Roland Gritto, Valeri A in the proposed nuclear waste repository area at Yucca Mountain, Nevada. A 5-km-long source line and a 3-km-long receiver line were located on top of Yucca Mountain ridge and inside the Exploratory Study Facility (ESF

  15. Is ambient noise tomography across ocean basins possible? Fan-Chi Lin,1

    E-Print Network [OSTI]

    Shapiro, Nikolai

    stations located near the Pacific Rim. We concentrate on the period band between 10 sec and 150 sec where-six stations within or adjacent to the Pacific Basin, we show that broad-band ambient noise is observed, which establishes the physical basis for ambient noise tomography across the Pacific. Similar trends

  16. Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations

    E-Print Network [OSTI]

    Wu, Yih-Min

    Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations. [1] In this study, a large collection of 41,141 S-P times from the untapped records of the Taiwan from the Taiwan Central Weather Bureau Seismic Network (CWBSN) to image the Vp and Vp/Vs structures

  17. Reduction of Metal Artifacts in Computed Tomographies for the Planning and Simulation of Radiation Therapy

    E-Print Network [OSTI]

    Zerfowski, Detlef

    Reduction of Metal Artifacts in Computed Tomographies for the Planning and Simulation of Radiation ABSTRACT Subject was to evaluate techniques for the reduction of metal artifacts in X-ray com- puted in image quality. Neither could metal artifacts be eliminated completely, nor was there a significant gain

  18. Application of a single step temporal imaging of magnetic induction tomography for metal flow visualization

    E-Print Network [OSTI]

    Adler, Andy

    and sensing coils. MIT has potential in visualization of metal flow for continuous casting mainly because of spatio-temporal resolution using the real metal flow in continuous casting. Results are comparedApplication of a single step temporal imaging of magnetic induction tomography for metal flow

  19. Bachelor of Science, Radiologic Sciences, Computed Tomography Emphasis, 2012-2013 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Radiologic Sciences, Computed Tomography Emphasis, 2012-2013 Name ID# Date Interprofessional Capstone 1 HLTHST 431 Quality Issues in Healthcare 3 Successful completion of the COBE Computer 254 Applied Statistics with Computers 3 DLS PSYC 101 General Psychology or SOC 101 Intro to Sociology

  20. Alfven wave tomography for cold magnetohydrodynamic plasmas I. Y. Dodin and N. J. Fisch

    E-Print Network [OSTI]

    ARTICLES Alfve´n wave tomography for cold magnetohydrodynamic plasmas I. Y. Dodin and N. J. Fisch; accepted 12 December 2001 Alfve´n wave propagation in slightly nonuniform cold plasmas is studied by means of quasistatic plasma density perturbations. The Alfve´n waves are shown not to affect the plasma density

  1. Time-dependent seismic tomography and its Application to the Coso geothermal area, 1996-2006

    E-Print Network [OSTI]

    Foulger, G. R.

    Time-dependent seismic tomography and its Application to the Coso geothermal area, 1996-2006 Bruce Geothermal Program Office, U. S. Navy, China Lake, CA 93555-6001, francis.monastero@navy.mil Measurements geothermal area, California. The permanent network operated there by the US Navy, supplemented by temporary

  2. Fresnel tomography: a novel approach to the wave function reconstruction based on Fresnel representation of tomograms

    E-Print Network [OSTI]

    S. De Nicola; R. Fedele; M. A. Man'ko; V. I. Man'ko

    2005-03-03

    New type of tomographic probability distribution, which contains complete information on the density matrix (wave function) related to the Fresnel transform of the complex wave function, is introduced. Relation to symplectic tomographic probability distribution is elucidated. Multimode generalization of the Fresnel tomography is presented. Examples of applications of the present approach are given.

  3. Figure 5 : Inversed attenuation tomography The Fresnel volume thus defined, also called Frchet kernel

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Figure 5 : Inversed attenuation tomography The Fresnel volume thus defined, also called Fréchet system with the LSQR algorithm : Because the size of the Fresnel volume thus defined is dependent propose to compute the Fresnel weights for a monochromatic wave, increasing its frequency at each step

  4. FPGA-Based Front-End Electronics for Positron Emission Tomography

    E-Print Network [OSTI]

    Hauck, Scott

    technology for a data acquisition system for positron emission tomography (PET) scanners. Our laboratory, Design, Verification Keywords PET, FPGA, Digital Signal Processing, Pulse Timing, Event Localization 1 to process the incoming data without the complexity of an application-specific circuit. Technology advances

  5. Use of Physical Models to Facilitate Transfer of Physics Learning to Understand Positron Emission Tomography*

    E-Print Network [OSTI]

    Zollman, Dean

    in order to understand the image construction process in PET. For this purpose we conduct teaching of learning from the models of the activities to the PET image construction process. #12;METHODOLOGY Sixteen of the physical models in transferring physics ideas to understanding positron emission tomography technology

  6. SYNTHESIS OF DIVERSE TRACERS ON EWOD MICRODEVICE FOR POSITRON EMISSION TOMOGRAPHY (PET)

    E-Print Network [OSTI]

    , spatial, and temporal measurement of biochemical processes. Applications of PET include studying disease-labeled PET tracers with electrowetting-on-dielectric (EWOD) technology [3],[4], the digital microfluidicSYNTHESIS OF DIVERSE TRACERS ON EWOD MICRODEVICE FOR POSITRON EMISSION TOMOGRAPHY (PET) S. Chen1

  7. FPGA-Based Data Acquisition System for a Positron Emission Tomography (PET) Scanner

    E-Print Network [OSTI]

    Hauck, Scott

    FPGA-Based Data Acquisition System for a Positron Emission Tomography (PET) Scanner Michael of performing complex discrete signal processing algorithms with clock rates of above 100MHz. This combined with FPGAs low expense, ease of use, and selected dedicated hardware make them an ideal technology for a data

  8. Novel Nonlinear Optics and Quantum Optics Approaches for Ultrasound-Modulated Optical Tomography in Soft Biological Tissue 

    E-Print Network [OSTI]

    Zhang, Huiliang

    2012-02-14

    the advantages of optical imaging deep into highly scattering tissue. However lack of efficient tagged light detection techniques has so far prevented ultrasound-modulated optical tomography from achieving maturity. The signal-to-noise ratio (SNR) and imaging...

  9. Application of reconstructive tomography to the measurement of density distribution in two-phase flow

    SciTech Connect (OSTI)

    Fincke, J.R.; Berggren, M.J.; Johnson, S.A.

    1980-01-01

    The technique of reconstructive tomography has been applied to the measurement of average density and density distribution in multiphase flows. The technique of reconstructive tomography provides a model independent method of obtaining flow field density information. The unique features of interest in application of a practical tomographic densitometer system are the limited number of data values and the correspondingly coarse reconstruction grid (0.5 by 0.5 cm). These features were studied both experimentally, through the use of prototype hardware on a 3-in. pipe, and analytically, through computer generation of simulated data. Prototypical data were taken on phantoms constructed of Plexiglas and laminated Plexiglas, wood, and polyurethane foam. Reconstructions obtained from prototype data were compared with reconstructions from the simulated data.

  10. Postmortem analysis of sand grain crushing from pile interface using X-ray tomography

    SciTech Connect (OSTI)

    Silva, I. Matias; Combe, Gaeel; Foray, Pierre; Flin, Frederic; Lesaffre, Bernard [Universite de Grenoble, 3SR Lab, UMR 5521 Grenoble-INP, UJF-Grenoble 1, CNRS, Grenoble, France CEN, CNRM-GAME UMR 3589, Meteo France - CNRS, Grenoble (France)

    2013-06-18

    Pile foundations of offshore platforms, wind and water turbines are typically subjected to a variety of cyclic loading paths due to their complex environment. While many studies focus on global pile behaviour, the soil-pile interface is explored here by a micromechanical study of the soil layer in contact with the pile surface. This work is devoted to the analysis of frozen post-mortem silica sand samples recovered at the pile interface following installation and cyclic loading tests in a calibration chamber using x-ray tomography. An experimental procedure developed for three dimensional (3D) snow imaging was adapted for the recovery of the in-situ sand samples to preserve their structure during tomography scans. 3D images at a pixel size of 7 {mu}m were then obtained using a cryogenic cell. Results confirm the presence of a shear band at the pile surface as well as void ratios changes in the direction of the pile's radius.

  11. High Resolution Neutron Radiography and Tomography of Hydrided Zircaloy-4 Cladding Materials

    SciTech Connect (OSTI)

    Smith, Tyler S; Bilheux, Hassina Z; Ray, Holly B; Bilheux, Jean-Christophe; Yan, Yong

    2015-01-01

    Neutron radiography for hydrogen analysis was performed with several Zircaloy-4 cladding samples with controlled hydrogen concentrations up to 1100 ppm. Hydrogen charging was performed in a process tube that was heated to facilitate hydrogen absorption by the metal. A correlation between the hydrogen concentration in the hydrided tubes and the neutron intensity was established, by which hydrogen content can be determined precisely in a small area (55 m x 55 m). Radiography analysis was also performed to evaluate the heating rate and its correlation with the hydrogen distribution through hydrided materials. In addition to radiography analysis, tomography experiments were performed on Zircaloy-4 tube samples to study the local hydrogen distribution. Through tomography analysis a 3D reconstruction of the tube was evaluated in which an uneven hydrogen distribution in the circumferential direction can be observed.

  12. Neutron Computed Tomography of Freeze/thaw Phenomena in Polymer Electrolyte Fuel Cells

    SciTech Connect (OSTI)

    Matthew M. Mech; Jack Brenizer; Kenan Unlu; A.K. Heller

    2008-12-12

    This report summarizes the final year's progress of the three-year NEER program. The overall objectives of this program were to 1) design and construct a sophisticated hight-resolution neutron computed tomography (NCT) facility, 2) develop novel and sophisticated liquid water and ice quantification analysis software for computed tomography, and 3) apply the advanced software and NCT capability to study liquid and ice distribution in polymer electrolyte fuel cells (PEFCs) under cold-start conditions. These objectives have been accomplished by the research team, enabling a new capability for advanced 3D image quantification with neutron imaging for fuel cell and other applications. The NCT water quantification methodology and software will greatly add to the capabilities of the neutron imaging community, and the quantified liquid water and ice distribution provided by its application to PEFCs will enhance understanding and guide design in the fuel cell community.

  13. X-Ray Digital Radiography and Computed Tomography Characterization of Targets

    SciTech Connect (OSTI)

    Sain, J D; Brown, W D; Chinn, D J; Martz Jr., H E; Morales, K E; Schneberk, D J; Updike, E O

    2008-04-16

    The summary of this report is: (1) The Xradia Micro XCT and LLNL CCAT x-ray systems are used to nondestructively characterize a variety of materials, assemblies, and reference standard components; (2) The digital radiograph (DR) and computed tomography (CT) image data may be used for metrology, quality control, and defect detection; and (3) The ability to detect and characterize imperfections leads to improvements in the manufacturing processes for assemblies.

  14. The Quasi-Reversibility Method for the Thermoacoustic Tomography and a Coefficient Inverse Problem

    E-Print Network [OSTI]

    Klibanov, Michael V; Nechaev, Dmitriy V; Kuzhuget, Andrey V

    2007-01-01

    An inverse problem of the determination of an initial condition in a hyperbolic equation from the lateral Cauchy data is considered. This problem has applications to the thermoacoustic tomography, as well as to linearized coefficient inverse problems of acoustics and electromagnetics. A new version of the quasi-reversibility method is described. This version requires a new Lipschitz stability estimate, which is obtained via the Carleman estimate. Numerical results are presented.

  15. The Quasi-Reversibility Method for the Thermoacoustic Tomography and a Coefficient Inverse Problem

    E-Print Network [OSTI]

    Michael V Klibanov; Sergey I Kabanikhin; Dmitriy V Nechaev; Andrey V Kuzhuget

    2007-12-02

    An inverse problem of the determination of an initial condition in a hyperbolic equation from the lateral Cauchy data is considered. This problem has applications to the thermoacoustic tomography, as well as to linearized coefficient inverse problems of acoustics and electromagnetics. A new version of the quasi-reversibility method is described. This version requires a new Lipschitz stability estimate, which is obtained via the Carleman estimate. Numerical results are presented.

  16. A simple setup for neutron tomography at the Portuguese Nuclear Research Reactor

    E-Print Network [OSTI]

    M. A. Stanojev Pereira; J. G. Marques; R. Pugliesi

    2012-05-15

    A simple setup for neutron radiography and tomography was recently installed at the Portuguese Research Reactor. The objective of this work was to determine the operational characteristics of the installed setup, namely the irradiation time to obtain the best dynamic range for individual images and the spatial resolution. The performance of the equipment was demonstrated by imaging a fragment of a 17th century decorative tile.

  17. Global convergence of diluted iterations in maximum-likelihood quantum tomography

    E-Print Network [OSTI]

    D. S. Gonçalves; M. A. Gomes-Ruggiero; C. Lavor

    2013-06-13

    In this paper we present an inexact stepsize selection for the Diluted R\\rho R algorithm, used to obtain the maximum likelihood estimate to the density matrix in quantum state tomography. We give a new interpretation for the diluted R\\rho R iterations that allows us to prove the global convergence under weaker assumptions. Thus, we propose a new algorithm which is globally convergent and suitable for practical implementation.

  18. Application of computed tomography to enhanced oil recovery studies in naturally fractured reservoirs 

    E-Print Network [OSTI]

    Fineout, James Mark

    1992-01-01

    , they developed both a single matrix block model and a dual matrix block model with variable fracture width. These tests related imbibition theory with regard to matrix block size, permeability and fluid viscosity affects on oil recovery. They also determined... in naturally fractured reservoirs have relied upon material balance calculations to determine saturation changes. Through the use of Computed Tomography scanning, we have developed a technique not only to determine saturation changes but also positional...

  19. 3D and 4D magnetic susceptibility tomography based on complex MR images

    DOE Patents [OSTI]

    Chen, Zikuan; Calhoun, Vince D

    2014-11-11

    Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.

  20. Computer assisted gamma and X-ray tomography: Applications to multiphase flow systems

    SciTech Connect (OSTI)

    Kumar, S.B.; Dudukovic, M.

    1998-01-01

    In process vessels, involving two or three phases it is often important not only to know the volume fraction (holdup) of each phase but also the spatial distribution of such holdups. This information is needed in control, trouble shooting and assessment of flow patterns and can be observed noninvasively by the application of Computed Tomography (CT). This report presents a complete overview of X-ray and gamma ray transmission tomography principles, equipment design to specific tasks and application in process industry. The fundamental principles of tomography, the algorithms for image reconstruction, the measurement method and the possible sources of error are discussed in detail. A case study highlights the methodology involved in designing a scanning system for the study of a given process unit, e.g., reactor, separations column etc. Results obtained in the authors` laboratory for the gas holdup distribution in bubble columns are also presented. Recommendations are made for the Advanced Fuels Development Unit (AFDU) in LaPorte, TX.

  1. Quantification of airway thickness changes in smoke-inhalation injury using in-vivo 3-D endoscopic frequency-domain optical coherence tomography

    E-Print Network [OSTI]

    2011-01-01

    tomography based on a microelectromechanical mirror,” Opt.human airway using a microelectromechanical system endoscopeof a rotational microelectromechanical system probe,” Opt.

  2. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - II. Crustal and upper-mantle structure

    E-Print Network [OSTI]

    Yao, H; Beghein, C; Van Der Hilst, RD

    2008-01-01

    M.N. , 2006. Constraining P-wave velocity variations in2005. High- resolution surface wave tomography from ambienterror (? v ) of the shear wave speed along five vertical

  3. Ultralow dose computed tomography attenuation correction for pediatric PET CT using adaptive statistical iterative reconstruction

    SciTech Connect (OSTI)

    Brady, Samuel L.; Shulkin, Barry L.

    2015-02-15

    Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (10–35 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV{sub bw}) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV{sub bw}, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.3–0.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake.

  4. Measurement of bubble sizes in fluidised beds using electrical capacitance tomography

    E-Print Network [OSTI]

    Chandrasekera, T. C.; Li, Y.; Moody, D.; Schnellmann, M. A.; Dennis, J. S.; Holland, D. J.

    2015-01-13

    to identify all of the small bubbles present in this system or to coalescence of bubbles occurring between the pressure sensor and the ECT sensor. However, overall the agreement between the frequency measurements is good, indicating that the ECT measurements... , 161–169. http://dx.doi.org/10.1016/j.partic.2011.10.005. Reinecke, N., Mewes, D., 1996. Recent developments and industrial/research applications of capacitance tomography. Meas. Sci. Technol. 7, 233–246. Rowe, P.N., 1976. Prediction of bubble size in a...

  5. Detection of foreign body using fast thermoacoustic tomography with a multielement linear transducer array

    SciTech Connect (OSTI)

    Nie Liming; Xing Da; Yang Diwu; Zeng Lvming; Zhou Quan

    2007-04-23

    Current imaging modalities face challenges in clinical applications due to limitations in resolution or contrast. Microwave-induced thermoacoustic imaging may provide a complementary modality for medical imaging, particularly for detecting foreign objects due to their different absorption of electromagnetic radiation at specific frequencies. A thermoacoustic tomography system with a multielement linear transducer array was developed and used to detect foreign objects in tissue. Radiography and thermoacoustic images of objects with different electromagnetic properties, including glass, sand, and iron, were compared. The authors' results demonstrate that thermoacoustic imaging has the potential to become a fast method for surgical localization of occult foreign objects.

  6. On the injectivity of the circular Radon transform arising in thermoacoustic tomography

    E-Print Network [OSTI]

    Gaik Ambartsoumian; Peter Kuchment

    2004-12-25

    The circular Radon transform integrates a function over the set of all spheres with a given set of centers. The problem of injectivity of this transform (as well as inversion formulas, range descriptions, etc.) arises in many fields from approximation theory to integral geometry, to inverse problems for PDEs, and recently to newly developing types of tomography. The article discusses known and provides new results that one can obtain by methods that essentially involve only the finite speed of propagation and domain dependence for the wave equation.

  7. A New Numerical Algorithm for Thermoacoustic and Photoacoustic Tomography with Variable Sound Speed

    E-Print Network [OSTI]

    Qian, Jianliang; Uhlmann, Gunther; Zhao, Hongkai

    2011-01-01

    We present a new algorithm for reconstructing an unknown source in Thermoacoustic and Photoacoustic Tomography based on the recent advances in understanding the theoretical nature of the problem. We work with variable sound speeds that might be also discontinuous across some surface. The latter problem arises in brain imaging. The new algorithm is based on an explicit formula in the form of a Neumann series. We present numerical examples with non-trapping, trapping and piecewise smooth speeds, as well as examples with data on a part of the boundary. These numerical examples demonstrate the robust performance of the new algorithm.

  8. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    DOE Patents [OSTI]

    Olivier, Scot S. (Livermore, CA); Werner, John S. (Davis, CA); Zawadzki, Robert J. (Sacramento, CA); Laut, Sophie P. (Pasedena, CA); Jones, Steven M. (Livermore, CA)

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  9. Development of a compact tomography camera system using a multianode photomultiplier tube for compact torus experiments

    SciTech Connect (OSTI)

    Tomuro, H.; Asai, T.; Iguchi, K.; Takahashi, Ts.; Hirano, Y. [Department of Physics, College of Science and Technology, Nihon University, Tokyo 101-8308 (Japan)

    2010-10-15

    A compact tomography camera system consisting of a photomultiplier tube, a multislit optical system, and a band-pass interference filter has been developed. The viewing area and spatial resolution can be configured by the arrangement of the slit system. The camera system has been specially designed for self-organized compact torus experiments having strong magnetohydrodynamics events with a submicrosecond time-scale. The developed system has been tested on a field-reversed configuration formed by the field-reversed theta-pinch. Performance evaluation of the system has been performed by comparison to the former optical system.

  10. Transhepatic Approach for Percutaneous Computed-Tomography-Guided Radiofrequency Ablation of Renal Cell Carcinoma

    SciTech Connect (OSTI)

    Iguchi, Toshihiro, E-mail: iguchi@cc.okayama-u.ac.jp; Hiraki, Takao; Gobara, Hideo; Mukai, Takashi; Hase, Soichiro; Fujiwara, Hiroyasu; Tajiri, Nobuhisa; Sakurai, Jun; Mimura, Hidefumi [Okayama University Medical School, Department of Radiology (Japan); Saika, Takashi; Kumon, Hiromi [Okayama University Medical School, Department of Urology (Japan); Kanazawa, Susumu [Okayama University Medical School, Department of Radiology (Japan)

    2007-07-15

    We performed percutaneously radiofrequency (RF) ablation of 5 renal cell carcinomas (mean diameter 26 {+-} 15 mm) with computed-tomography (CT) fluoroscopic guidance using the transhepatic route. The RF electrode was successfully advanced into all tumors. RF ablation caused one minor complication (small asymptomatic perirenal hematoma); no major complications occurred. The follow-up contrast-enhanced CT images showed no local tumor progression of any tumors in a median period of 10 months (range 3-14 months). In conclusion, it seems that this transhepatic approach is safe and can be an alternative method for electrode insertion during RF ablation of selected renal tumors.

  11. Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography

    SciTech Connect (OSTI)

    Colston, Bill W.; Everett, Mathew J.; Da Silva, Luiz B. Otis, Linda L. Stroeve, Pieter Nathel, Howard

    1998-06-01

    We have developed a prototype optical coherent tomography (OCT) system for the imaging of hard and soft tissue in the oral cavity. High-resolution images of {ital in vitro} porcine periodontal tissues have been obtained with this system. The images clearly show the enamel{endash}cementum and the gingiva{endash}tooth interfaces, indicating OCT is a potentially useful technique for diagnosis of periodontal diseases. To our knowledge, this is the first application of OCT for imaging biologic hard tissue. {copyright} 1998 Optical Society of America

  12. Synchrotron-based X-ray computed tomography during compression loading of cellular materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; Williams, Jason J.; Xiao, Xianghui; Robinson, Mathew W. C.; Schaedler, Tobias A.; Chawla, Nikhilesh; Patterson, Brian M.

    2015-04-29

    Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.

  13. Dose uncertainty due to computed tomography ,,CT... slice thickness in CT-based high dose rate brachytherapy of the prostate cancer

    E-Print Network [OSTI]

    Pouliot, Jean

    brachytherapy of the prostate cancer Yongbok Kim,a) I-Chow Joe Hsu, Etienne Lessard, and Jean Pouliot Department tomography CT -based high dose rate HDR brachytherapy, the uncertainty in the localization in Medicine. DOI: 10.1118/1.1785454 Key words: high dose rate brachytherapy, computed tomography, prostate

  14. Double-Difference Tomography for Sequestration MVA [monitoring, verification, and accounting

    SciTech Connect (OSTI)

    Westman, Erik

    2012-12-31

    Analysis of synthetic data was performed to determine the most cost-effective tomographic monitoring system for a geologic carbon sequestration injection site. Double-difference tomographic inversion was performed on 125 synthetic data sets: five stages of CO2 plume growth, five seismic event regions, and five geophone arrays. Each resulting velocity model was compared quantitatively to its respective synthetic velocity model to determine an accuracy value. The results were examined to determine a relationship between cost and accuracy in monitoring, verification, and accounting applications using double-difference tomography. The geophone arrays with widely-varying geophone locations, both laterally and vertically, performed best. Additionally, double difference seismic tomography was performed using travel time data from a carbon sequestration site at the Aneth oil field in southeast Utah as part of a Department of Energy initiative on monitoring, verification, and accounting (MVA) of sequestered CO2. A total of 1,211 seismic events were recorded from a borehole array consisting of 22 geophones. Artificial velocity models were created to determine the ease with which different CO2 plume locations and sizes can be detected. Most likely because of the poor geophone arrangement, a low velocity zone in the Desert Creek reservoir can only be detected when regions of test site containing the highest ray path coverage are considered. MVA accuracy and precision may be improved through the use of a receiver array that provides more comprehensive ray path coverage.

  15. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xi'an Jiaotong Univ., Xi'an, Shaanxi (China); Zhang, Lei [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tong, Huimin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Peng, Bo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rames, Matthew J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Shengli [Xi'an Jiaotong Univ., Xi'an, Shaanxi (China); Ren, Gang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, we derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.

  16. Quantum Process Tomography of an Optically-Controlled Kerr Non-linearity

    E-Print Network [OSTI]

    Connor Kupchak; Samuel Rind; Bertus Jordaan; Eden Figueroa

    2015-05-14

    Any optical quantum information processing machine would be comprised of fully-characterized constituent devices for both single state manipulations and tasks involving the interaction between multiple quantum optical states. Ideally for the latter, would be an apparatus capable of deterministic optical phase shifts that operate on input quantum states with the action mediated solely by auxiliary signal fields. Here we present the complete experimental characterization of a system designed for optically controlled phase shifts acting on single-photon level probe coherent states. Our setup is based on a warm vapor of rubidium atoms under the conditions of electromagnetically induced transparency with its dispersion properties modified through the use of an optically triggered N-type Kerr non-linearity. We fully characterize the performance of our device by sending in a set of input probe states and measuring the corresponding output via balanced homodyne tomography and subsequently performing the technique of coherent state quantum process tomography. This method provides us with the precise knowledge of how our optical phase shift will modify any arbitrary input quantum state engineered in the mode of the reconstruction.

  17. SUPER-RESOLUTION ULTRASOUND TOMOGRAPHY: A PRELIMINARY STUDY WITH A RING ARRAY

    SciTech Connect (OSTI)

    HUANG, LIANJIE; SIMONETTI, FRANCESCO; DURIC, NEBOJSA; RAMA, OLSI

    2007-01-18

    Ultrasound tomography attempts to retrieve the structure of an objective by exploiting the interaction of acoustic waves with the object. A fundamental limit of ultrasound tomography is that features cannot be resolved if they are spaced less than {lambda}/2 apart, where {lambda} is wavelength of the probing wave, regardless of the degree of accuracy of the measurements. Therefore, since the attenuation of the probing wave with propagation distance increases as {lambda} decreases, resolution has to be traded against imaging depth. Recently, it has been shown that the {lambda}/2 limit is a consequence of the Born approximation (implicit in the imaging algorithms currently employed) which neglects the distortion of the probing wavefield as it travels through the medium to be imaged. On the other hand, such a distortion, which is due to the multiple scattering phenomenon, can encode unlimited resolution in the radiating component of the scattered field. Previously, a resolution better than {lambda}/3 has been reported in these proceedings [F. Simonetti, pp. 126 (2006)] in the case of elastic wave probing. In this paper, they demonstrate experimentally a resolution better than {lambda}/4 for objects immersed in a water bth probed by means of a ring array which excites and detects pressure waves in a full view configuration.

  18. Compact cold stage for micro-computerized tomography imaging of chilled or frozen samples

    SciTech Connect (OSTI)

    Hullar, Ted; Anastasio, Cort; Paige, David F.; Rowland, Douglas J.

    2014-04-15

    High resolution X-ray microCT (computerized tomography) can be used to image a variety of objects, including temperature-sensitive materials. In cases where the sample must be chilled or frozen to maintain sample integrity, either the microCT machine itself must be placed in a refrigerated chamber, or a relatively expensive commercial cold stage must be purchased. We describe here the design and construction of a low-cost custom cold stage suitable for use in a microCT imaging system. Our device uses a boron nitride sample holder, two-stage Peltier cooler, fan-cooled heat sink, and electronic controller to maintain sample temperatures as low as ?25?°C ± 0.2?°C for the duration of a tomography acquisition. The design does not require modification to the microCT machine, and is easily installed and removed. Our custom cold stage represents a cost-effective solution for refrigerating CT samples for imaging, and is especially useful for shared equipment or machines unsuitable for cold room use.

  19. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, wemore »derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.« less

  20. Abstract-Proton Computed Tomography (CT) has important implications for both image-guided diagnosis and radiation

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Abstract- Proton Computed Tomography (CT) has important implications for both image-guided diagnosis and radiation therapy. For diagnosis, the fact that the patient dose committed by proton CT and contrast, may be exploited in dose-critical clinical settings. Proton CT is also the most appropriate

  1. Abstract--Proton computed tomography (pCT) has the potential to improve the accuracy of dose calculations for proton

    E-Print Network [OSTI]

    Mueller, Klaus

    Abstract--Proton computed tomography (pCT) has the potential to improve the accuracy of dose calculations for proton treatment planning, and will also be useful for pretreatment verification of patient positioning relative to the proton beam. A design study was performed to define the optimal approach to a p

  2. 4 th World Congress on Industrial Process Tomography, Aizu, Japan Modelling and predicting flow regimes using wavelet

    E-Print Network [OSTI]

    Aykroyd, Robert G.

    4 th World Congress on Industrial Process Tomography, Aizu, Japan Modelling and predicting flow of Statistics, University of Leeds, Leeds, LS2 9JT, UK, robert@maths.leeds.ac.uk ABSTRACT The aim of industrial without intruding into the industrial process, but produce highly correlated and noisy data, and hence

  3. High-resolution, low-dose phase contrast X-ray tomography for 3D diagnosis of human breast cancers

    E-Print Network [OSTI]

    Miao, Jianwei "John"

    High-resolution, low-dose phase contrast X-ray tomography for 3D diagnosis of human breast cancers% of biopsied lesions are malignant. Here we report a high-resolution, low-dose phase contrast X-ray tomographic dimensions and identified a malignant cancer with a pixel size of 92 m and a radiation dose less than

  4. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    SciTech Connect (OSTI)

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  5. The Welfare Analysis of Product Innovations, with an Application to Computed Tomography Author(s): Manuel Trajtenberg

    E-Print Network [OSTI]

    Crowther, Paul

    The Welfare Analysis of Product Innovations, with an Application to Computed Tomography Scanners to The Journal of Political Economy. http://www.jstor.org #12;The Welfare Analysis of Product Innovations is to put forward a methodology for the measurement of product innovations using a value metric, that is

  6. Neutron tomography of axisymmetric flow fields in porous media A.J. Gilbert, M.R. Deinert

    E-Print Network [OSTI]

    Deinert, Mark

    Neutron tomography of axisymmetric flow fields in porous media A.J. Gilbert, M.R. Deinert February 2013 Keywords: Preferential flow Wetting front Neutron radiography Image analysis Fingered flow axisymmetric preferential flow fields using neutron radiography. Flow fields such as these are surprisingly

  7. BRUCE HOWE Chair and Professor , PhD 1986, UC San Diego. Ocean observatories, ocean acoustic tomography, sensor webs

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Faculty BRUCE HOWE Chair and Professor , PhD 1986, UC San Diego. Ocean observatories, ocean in the ocean, atmospheric and ionospheric tomography. KWOK FAI CHEUNG Professor , PhD 1991, British Columbia transport. R. CENGIZ ERTEKIN Professor, PhD 1984, UC Berkeley. Hydrodynamics/elasticity, computational

  8. Rayleigh wave tomography in the North Atlantic: high resolution images of the Iceland, Azores and Eifel mantle plumes

    E-Print Network [OSTI]

    Rayleigh wave tomography in the North Atlantic: high resolution images of the Iceland, Azores, but to improve the path coverage a number of instruments at coastal sites in northwest Europe, Iceland three major hotspots: Iceland, the Azores and Eifel. The best depth resolution in the model occurs in NW

  9. Insights into manufacturing techniques of archaeological pottery: Industrial X-ray computed tomography as a tool in the examination of

    E-Print Network [OSTI]

    Gertz, Michael

    -ray computed tomography (CT) for non-destructive testing as an archaeometric or archaeological method-invasive archaeology. 1. Introduction For as long as archaeometric methods have been well established in the study of manufacturing details and to provide more accurate vessel profiles, particularly of closed shapes. The further

  10. Imaging of high-intensity focused ultrasound-induced lesions in soft biological tissue using thermoacoustic tomography

    E-Print Network [OSTI]

    Wang, Lihong

    thermoacoustic tomography Xing Jin, Yuan Xu, and Lihong V. Wanga) Optical Imaging Laboratory, Department December 2004) An imaging technology, thermoacoustic tomograpy (TAT), was applied to the visualization thermoacoustic sources in this tissue sample. The thermoacoustic signals were detected by an unfocused ultrasonic

  11. Imaging and sensing based on muon tomography (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers(Journal Article) |SciTechphysical experiments, and

  12. Imaging and sensing based on muon tomography (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers(Journal Article) |SciTechphysical experiments, andPatent:

  13. X-ray tomography system to investigate granular materials during mechanical loading

    SciTech Connect (OSTI)

    Athanassiadis, Athanasios G. [James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); La Rivière, Patrick J.; Sidky, Emil; Pan, Xiaochuan [Department of Radiology, The University of Chicago, Chicago, Illinois 60637 (United States); Pelizzari, Charles [Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637 (United States); Jaeger, Heinrich M., E-mail: h-jaeger@uchicago.edu [James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637 (United States)

    2014-08-15

    We integrate a small and portable medical x-ray device with mechanical testing equipment to enable in situ, non-invasive measurements of a granular material's response to mechanical loading. We employ an orthopedic C-arm as the x-ray source and detector to image samples mounted in the materials tester. We discuss the design of a custom rotation stage, which allows for sample rotation and tomographic reconstruction under applied compressive stress. We then discuss the calibration of the system for 3D computed tomography, as well as the subsequent image reconstruction process. Using this system to reconstruct packings of 3D-printed particles, we resolve packing features with 0.52?mm resolution in a (60 mm){sup 3} field of view. By analyzing the performance bounds of the system, we demonstrate that the reconstructions exhibit only moderate noise.

  14. Atomic-scale characterization of germanium isotopic multilayers by atom probe tomography

    SciTech Connect (OSTI)

    Shimizu, Y.; Takamizawa, H.; Toyama, T.; Inoue, K.; Nagai, Y. [Oarai Center, Institute for Materials Research, Tohoku University, 2145-2 Narita, Oarai, Ibaraki 311-1313 (Japan); Kawamura, Y.; Uematsu, M.; Itoh, K. M. [School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Haller, E. E. [University of California at Berkeley and Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2013-01-14

    We report comparison of the interfacial sharpness characterization of germanium (Ge) isotopic multilayers between laser-assisted atom probe tomography (APT) and secondary ion mass spectrometry (SIMS). An alternating stack of 8-nm-thick naturally available Ge layers and 8-nm-thick isotopically enriched {sup 70}Ge layers was prepared on a Ge(100) substrate by molecular beam epitaxy. The APT mass spectra consist of clearly resolved peaks of five stable Ge isotopes ({sup 70}Ge, {sup 72}Ge, {sup 73}Ge, {sup 74}Ge, and {sup 76}Ge). The degree of intermixing at the interfaces between adjacent layers was determined by APT to be around 0.8 {+-} 0.1 nm which was much sharper than that obtained by SIMS.

  15. Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium

    DOE Patents [OSTI]

    Beller, L.S.

    1993-01-26

    A method and apparatus are described for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.

  16. Waveform Inversion with Source Encoding for Breast Sound Speed Reconstruction in Ultrasound Computed Tomography

    E-Print Network [OSTI]

    Wang, Kun; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A

    2015-01-01

    Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the sound speed distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Both computer-simulation and experimental phantom studies are conduc...

  17. Thermoacoustic tomography with detectors on an open curve: an efficient reconstruction algorithm

    E-Print Network [OSTI]

    Kunyansky, Leonid

    2008-01-01

    Practical applications of thermoacoustic tomography require numerical inversion of the spherical mean Radon transform with the centers of integration spheres occupying an open surface. Solution of this problem is needed (both in 2-D and 3-D) because frequently the region of interest cannot be completely surrounded by the detectors, as it happens, for example, in breast imaging. We present an efficient numerical algorithm for solving this problem in 2-D (similar methods are applicable in the 3-D case). Our method is based on the numerical approximation of plane waves by certain single layer potentials related to the acquisition geometry. After the densities of these potentials have been precomputed, each subsequent image reconstruction has the complexity of the regular filtration backprojection algorithm for the classical Radon transform. The peformance of the method is demonstrated in several numerical examples: one can see that the algorithm produces very accurate reconstructions if the data are accurate and...

  18. Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium

    DOE Patents [OSTI]

    Beller, Laurence S. (Idaho Falls, ID)

    1993-01-01

    A method and apparatus for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.

  19. Compact MEMS-based Adaptive Optics Optical Coherence Tomography for Clinical Use

    SciTech Connect (OSTI)

    Chen, D; Olivier, S; Jones, S; Zawadzki, R; Evans, J; Choi, S; Werner, J

    2008-02-04

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of the limitation on the current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in the previous AO-OCT instruments. In this instrument, we proposed to add an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminated the tedious process of the trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.

  20. A constrained variable projection reconstruction method for photoacoustic computed tomography without accurate knowledge of transducer responses

    E-Print Network [OSTI]

    Sheng, Qiwei; Matthews, Thomas P; Xia, Jun; Zhu, Liren; Wang, Lihong V; Anastasio, Mark A

    2015-01-01

    Photoacoustic computed tomography (PACT) is an emerging computed imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the absorbed optical energy density within tissue. When the imaging system employs conventional piezoelectric ultrasonic transducers, the ideal photoacoustic (PA) signals are degraded by the transducers' acousto-electric impulse responses (EIRs) during the measurement process. If unaccounted for, this can degrade the accuracy of the reconstructed image. In principle, the effect of the EIRs on the measured PA signals can be ameliorated via deconvolution; images can be reconstructed subsequently by application of a reconstruction method that assumes an idealized EIR. Alternatively, the effect of the EIR can be incorporated into an imaging model and implicitly compensated for during reconstruction. In either case, the efficacy of the correction can be limited by errors in the assumed EIRs. In this work, a joint optimization approach to PACT image r...

  1. THERMAL EFFECTS ON MASS AND SPATIAL RESOLUTION DURING LASER PULSE ATOM PROBE TOMOGRAPHY OF CERIUM OXIDE

    SciTech Connect (OSTI)

    Rita Kirchhofer; Melissa C. Teague; Brian P. Gorman

    2013-05-01

    Cerium oxide (CeO2) is an ideal surrogate material for trans-uranic elements and fission products found in nuclear fuels due to similarities in their thermal properties; therefore, cerium oxide was used to determine the best run condition for atom probe tomography (APT). Laser pulse APT is a technique that allows for spatial resolution in the nm scale and isotopic/elemental chemical identification. A systematic study of the impact of laser pulse energy and specimen base temperature on the mass resolution, measurement of stoichiometry, multiples, and evaporation mechanisms are reported in this paper. It was demonstrated that using laser pulse APT stoichiometric field evaporation of cerium oxide was achieved at 1 pJ laser pulse energy and 20 K specimen base temperature.

  2. An automated system for lung nodule detection in low-dose computed tomography

    E-Print Network [OSTI]

    Gori, I; Martinez, A Preite; Retico, A

    2007-01-01

    A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 Italian project. One of the main goals of this project is to build a distributed database of lung CT scans in order to enable automated image analysis through a data and cpu GRID infrastructure. The basic modules of our lung-CAD system, a dot-enhancement filter for nodule candidate selection and a neural classifier for false-positive finding reduction, are described. The system was designed and tested for both internal and sub-pleural nodules. The results obtained on the collected database of low-dose thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.

  3. MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging

    SciTech Connect (OSTI)

    Cooper, Robert J. Magee, Elliott; Everdell, Nick; Magazov, Salavat; Varela, Marta; Airantzis, Dimitrios; Gibson, Adam P.; Hebden, Jeremy C.

    2014-05-15

    We detail the design, construction and performance of the second generation UCL time-resolved optical tomography system, known as MONSTIR II. Intended primarily for the study of the newborn brain, the system employs 32 source fibres that sequentially transmit picosecond pulses of light at any four wavelengths between 650 and 900 nm. The 32 detector channels each contain an independent photo-multiplier tube and temporally correlated photon-counting electronics that allow the photon transit time between each source and each detector position to be measured with high temporal resolution. The system's response time, temporal stability, cross-talk, and spectral characteristics are reported. The efficacy of MONSTIR II is demonstrated by performing multi-spectral imaging of a simple phantom.

  4. Using electrokinetic phenomena and electrical resistance tomography to characterize the movement of subsurface fluids

    DOE Patents [OSTI]

    Ramirez, Abelardo L. (Pleasanton, CA); Cooper, John F. (Oakland, CA); Daily, William D. (Livermore, CA)

    1996-01-01

    This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination.

  5. Using electrokinetic phenomena and electrical resistance tomography to characterize the movement of subsurface fluids

    DOE Patents [OSTI]

    Ramirez, A.L.; Cooper, J.F.; Daily, W.D.

    1996-02-27

    This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination. 1 fig.

  6. Functional optoacoustic neuro-tomography (FONT) for whole-brain monitoring of calcium indicators

    E-Print Network [OSTI]

    Sela, Gali; Deán-Ben, X Luís; Kneipp, Moritz; Ntziachristos, Vasilis; Shoham, Shy; Westmeyer, Gil G; Razansky, Daniel

    2015-01-01

    Non-invasive observation of spatiotemporal neural activity of large neural populations distributed over entire brains is a longstanding goal of neuroscience. We developed a real-time volumetric and multispectral optoacoustic tomography platform for imaging of neural activation deep in scattering brains. The system can record 100 volumetric frames per second across a 200mm3 field of view and spatial resolutions below 70um. Experiments performed in immobilized and freely swimming larvae and in adult zebrafish brains demonstrate, for the first time, the fundamental ability to optoacoustically track neural calcium dynamics in animals labeled with genetically encoded calcium indicator GCaMP5G, while overcoming the longstanding penetration barrier of optical imaging in scattering brains. The newly developed platform offers unprecedented capabilities for functional whole-brain observations of fast calcium dynamics; in combination with optoacoustics' well-established capacity in resolving vascular hemodynamics, it co...

  7. Determination of Diffusion Profiles in Altered Wellbore Cement Using X-ray Computed Tomography Methods

    SciTech Connect (OSTI)

    Mason, Harris E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walsh, Stuart D. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); DuFrane, Wyatt L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carroll, Susan A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-06-17

    The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining “effective linear activity coefficients” (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data set supports the modeling of cement alteration by CO2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment.

  8. Atomic Scale Characterization of Compound Semiconductors using Atom Probe Tomography: Preprint

    SciTech Connect (OSTI)

    Gorman, B. P.; Guthrey, H.; Norman, A. G.; Al-Jassim, M.; Lawrence, D.; Prosa, T.

    2011-07-01

    Internal interfaces are critical in determining the performance of III-V multijunction solar cells. Studying these interfaces with atomic resolution using a combination of transmission electron microscopy (TEM), atom probe tomography (APT), and density functional calculations enables a more fundamental understanding of carrier dynamics in photovoltaic (PV) device structures. To achieve full atomic scale spatial and chemical resolution, data acquisition parameters in laser pulsed APT must be carefully studied to eliminate surface diffusion. Atom probe data with minimized group V ion clustering and expected stoichiometry can be achieved by adjusting laser pulse power, pulse repetition rate, and specimen preparation parameters such that heat flow away from the evaporating surface is maximized. Applying these improved analysis conditions to III-V based PV gives an atomic scale understanding of compositional and dopant profiles across interfaces and tunnel junctions and the initial stages of alloy clustering and dopant accumulation. Details on APT experimental methods and future in-situ instrumentation developments are illustrated.

  9. Measuring the efficacy of a root biobarrier with x-ray computed tomography

    SciTech Connect (OSTI)

    Tollner, E.W.; Murphy, C.E. Jr. . Dept. of Agricultural Engineering)

    1990-08-16

    X-ray computed tomography is a useful tool for investigating soil physical properties nondestructively. There is a need to develop proper calibration relationships between soil properties and the x-ray absorption coefficient. The objective of the work was to evaluate soil factors affecting the x-ray absorption coefficient. Based on a theoretical analysis, experimental data from five soils and on results of several other investigators, it was concluded that for many applications, one calibration relationship is applicable to a wide range of soils. The montmorillinitic clay used in the study required special handling due to the extreme shrinkage of this soil upon drying. Knowledge of chemical composition enables approximations but not exact predictions of the x-ray absorption coefficient. The results suggested some reasonable alternative to exhaustive calibration for each anticipated soil condition. Quantification of root activity in terms of root growth and indirectly through water uptake is necessary for understanding plant growth dynamics. X-ray computed tomography (CT) enables qualitative as well as two quantitative outputs, one of which can lead to conclusions regarding root activity. A greenhouse study involving soil columns (Lakeland sand, bulk density 1.4 Mg/m{sup 3}) planted to soybean, Bahiagras, and control (no vegetation) was conducted in 1989. A treflan based on chemical barrier was placed in half of the soil column of each species. The mean x-ray absorption correlated to water content. Results suggested that root presence can also be indirectly inferred based on water content drawn down during planned stress events. It was concluded that x-ray CT may have a niche in soil-water-plant relation studies, particularly when plant species have large roots. 35 refs., 13 figs., 8 tabs.

  10. Technical Note: Spatial resolution of proton tomography: Impact of air gap between patient and detector

    SciTech Connect (OSTI)

    Schneider, Uwe; Besserer, Juergen; Hartmann, Matthias [Vetsuisse Faculty, University of Zuerich, Winterthurerstrasse 260, 8057 Zuerich (Switzerland) and Radiotherapy Hirslanden AG, Rain 34, 5000 Aarau (Switzerland); Radiotherapy Hirslanden AG, Rain 34, 5000 Aarau (Switzerland)

    2012-02-15

    Purpose: Proton radiography and tomography were investigated since the early 1970s because of its low radiation dose, high density resolution, and ability to image directly proton stopping power. However, spatial resolution is still a limiting factor. In this note, preliminary results of the impact of an air gap between detector system and patient on spatial resolution are presented. Methods: Spatial resolution of proton radiography and tomography is governed by multiple Coulomb scattering (MCS) of the protons in the patient. In this note, the authors employ Monte Carlo simulations of protons traversing a 20 cm thick water box. Entrance and exit proton coordinate measurements were simulated for improved spatial resolution. The simulations were performed with and without a 5 cm air gap in front of and behind the patient. Loss of spatial resolution due to the air gap was studied for protons with different initial angular confusion. Results: It was found that spatial resolution is significantly deteriorated when a 5 cm air gap between the position sensitive detector and the patient is included. For a perfect parallel beam spatial resolution worsens by about 40%. Spatial resolution is getting worse with increasing angular confusion and can reach 80%. Conclusions: When proton radiographies are produced by measuring the entrance and exit coordinates of the protons in front of and behind the patient the air gap between the detector and the patient can significantly deteriorate the spatial resolution of the system by up to 80%. An alternative would be to measure in addition to the coordinates also the exit and entrance angles of each proton. In principle, using the air gap size and proton angle, images can be reconstructed with the same spatial resolution than without air gap.

  11. Time-dependent seismic tomography and its application to the Coso geothermal area, 1996-2006

    SciTech Connect (OSTI)

    Julian, B.R.; G.R. Foulger; F. Monastero

    2008-04-01

    Measurements of temporal changes in Earth structure are commonly determined using localearthquake tomography computer programs that invert multiple seismic-wave arrival time data sets separately and assume that any differences in the structural results arise from real temporal variations. This assumption is dangerous because the results of repeated tomography experiments would differ even if the structure did not change, simply because of variation in the seismic ray distribution caused by the natural variation in earthquake locations. Even if the source locations did not change (if only explosion data were used, for example), derived structures would inevitably differ because of observational errors. A better approach is to invert multiple data sets simultaneously, which makes it possible to determine what changes are truly required by the data. This problem is similar to that of seeking models consistent with initial assumptions, and techniques similar to the “damped least squares” method can solve it. We have developed a computer program, dtomo, that inverts multiple epochs of arrival-time measurements to determine hypocentral parameters and structural changes between epochs. We shall apply this program to data from the seismically active Coso geothermal area, California, in the near future. The permanent network operated there by the US Navy, supplemented by temporary stations, has provided excellent earthquake arrival-time data covering a span of more than a decade. Furthermore, structural change is expected in the area as a result of geothermal exploitation of the resource. We have studied the period 1996 through 2006. Our results to date using the traditional method show, for a 2-km horizontal grid spacing, an irregular strengthening with time of a negative VP/VS anomaly in the upper ~ 2 km of the reservoir. This progressive reduction in VP/VS results predominately from an increase of VS with respect to VP. Such a change is expected to result from effects of geothermal operations such as decreasing fluid pressure and the drying of argillaceous minerals such as illite.

  12. Addressing the risks of diagnostic radiology : what should be done about the increasing use of computed tomography in the United States

    E-Print Network [OSTI]

    Eastwick, Gary (Gary A.)

    2010-01-01

    Computed tomography (CT) is a prominent procedure in the US with larger radiation doses than traditional radiology. CT is a powerful tool in the diagnosis of a wide variety of conditions and its use has grown quickly because ...

  13. Meteoritic Nanodiamond Particles Studied by Atom-Probe Tomography D. Isheim*, J. B. Lewis**, D. N. Seidman*, T. L. Daulton**, F. J. Stadermann**, C. Floss**

    E-Print Network [OSTI]

    Floss, Christine

    Meteoritic Nanodiamond Particles Studied by Atom-Probe Tomography D. Isheim*, J. B. Lewis**, D. N nanodiamonds (NDs) with diamters of about 3 nm were first identified by transmission electron microscopy (TEM

  14. A field comparison of Fresnel zone and ray-based GPR attenuation-difference tomography for time-lapse imaging of

    E-Print Network [OSTI]

    Barrash, Warren

    A field comparison of Fresnel zone and ray-based GPR attenuation-difference tomography for time the medium. These sensitivities occupy the first Fresnel zone, account for the finite frequency nature

  15. A Parametric Level Set Approach to Simultaneous Object Identification and Background Reconstruction for Dual Energy Computed Tomography

    E-Print Network [OSTI]

    Semerci, Oguz

    2011-01-01

    Dual energy computerized tomography has gained great interest because of its ability to characterize the chemical composition of a material rather than simply providing relative attenuation images as in conventional tomography. The purpose of this paper is to introduce a novel polychromatic dual energy processing algorithm with an emphasis on detection and characterization of piecewise constant objects embedded in an unknown, cluttered background. Physical properties of the objects, specifically the Compton scattering and photoelectric absorption coefficients, are assumed to be known with some level of uncertainty. Our approach is based on a level-set representation of the characteristic function of the object and encompasses a number of regularization techniques for addressing both the prior information we have concerning the physical properties of the object as well as fundamental, physics-based limitations associated with our ability to jointly recover the Compton scattering and photoelectric absorption pr...

  16. Images of gravitational and magnetic phenomena derived from two-dimensional back-projection Doppler tomography of interacting binary stars

    SciTech Connect (OSTI)

    Richards, Mercedes T.; Cocking, Alexander S.; Fisher, John G.; Conover, Marshall J., E-mail: mrichards@astro.psu.edu, E-mail: asc5097@psu.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2014-11-10

    We have used two-dimensional back-projection Doppler tomography as a tool to examine the influence of gravitational and magnetic phenomena in interacting binaries that undergo mass transfer from a magnetically active star onto a non-magnetic main-sequence star. This multitiered study of over 1300 time-resolved spectra of 13 Algol binaries involved calculations of the predicted dynamical behavior of the gravitational flow and the dynamics at the impact site, analysis of the velocity images constructed from tomography, and the influence on the tomograms of orbital inclination, systemic velocity, orbital coverage, and shadowing. The H? tomograms revealed eight sources: chromospheric emission, a gas stream along the gravitational trajectory, a star-stream impact region, a bulge of absorption or emission around the mass-gaining star, a Keplerian accretion disk, an absorption zone associated with hotter gas, a disk-stream impact region, and a hot spot where the stream strikes the edge of a disk. We described several methods used to extract the physical properties of the emission sources directly from the velocity images, including S-wave analysis, the creation of simulated velocity tomograms from hydrodynamic simulations, and the use of synthetic spectra with tomography to sequentially extract the separate sources of emission from the velocity image. In summary, the tomography images have revealed results that cannot be explained solely by gravitational effects: chromospheric emission moving with the mass-losing star, a gas stream deflected from the gravitational trajectory, and alternating behavior between stream state and disk state. Our results demonstrate that magnetic effects cannot be ignored in these interacting binaries.

  17. Radiation doses in cone-beam breast computed tomography: A Monte Carlo simulation study

    SciTech Connect (OSTI)

    Yi Ying; Lai, Chao-Jen; Han Tao; Zhong Yuncheng; Shen Youtao; Liu Xinming; Ge Shuaiping; You Zhicheng; Wang Tianpeng; Shaw, Chris C.

    2011-02-15

    Purpose: In this article, we describe a method to estimate the spatial dose variation, average dose and mean glandular dose (MGD) for a real breast using Monte Carlo simulation based on cone beam breast computed tomography (CBBCT) images. We present and discuss the dose estimation results for 19 mastectomy breast specimens, 4 homogeneous breast models, 6 ellipsoidal phantoms, and 6 cylindrical phantoms. Methods: To validate the Monte Carlo method for dose estimation in CBBCT, we compared the Monte Carlo dose estimates with the thermoluminescent dosimeter measurements at various radial positions in two polycarbonate cylinders (11- and 15-cm in diameter). Cone-beam computed tomography (CBCT) images of 19 mastectomy breast specimens, obtained with a bench-top experimental scanner, were segmented and used to construct 19 structured breast models. Monte Carlo simulation of CBBCT with these models was performed and used to estimate the point doses, average doses, and mean glandular doses for unit open air exposure at the iso-center. Mass based glandularity values were computed and used to investigate their effects on the average doses as well as the mean glandular doses. Average doses for 4 homogeneous breast models were estimated and compared to those of the corresponding structured breast models to investigate the effect of tissue structures. Average doses for ellipsoidal and cylindrical digital phantoms of identical diameter and height were also estimated for various glandularity values and compared with those for the structured breast models. Results: The absorbed dose maps for structured breast models show that doses in the glandular tissue were higher than those in the nearby adipose tissue. Estimated average doses for the homogeneous breast models were almost identical to those for the structured breast models (p=1). Normalized average doses estimated for the ellipsoidal phantoms were similar to those for the structured breast models (root mean square (rms) percentage difference=1.7%; p=0.01), whereas those for the cylindrical phantoms were significantly lower (rms percentage difference=7.7%; p<0.01). Normalized MGDs were found to decrease with increasing glandularity. Conclusions: Our results indicate that it is sufficient to use homogeneous breast models derived from CBCT generated structured breast models to estimate the average dose. This investigation also shows that ellipsoidal digital phantoms of similar dimensions (diameter and height) and glandularity to actual breasts may be used to represent a real breast to estimate the average breast dose with Monte Carlo simulation. We have also successfully demonstrated the use of structured breast models to estimate the true MGDs and shown that the normalized MGDs decreased with the glandularity as previously reported by other researchers for CBBCT or mammography.

  18. REGIONAL SEISMIC AMPLITUDE MODELING AND TOMOGRAPHY FOR EARTHQUAKE-EXPLOSION DISCRIMINATION

    SciTech Connect (OSTI)

    Walter, W R; Pasyanos, M E; Matzel, E; Gok, R; Sweeney, J; Ford, S R; Rodgers, A J

    2008-07-08

    We continue exploring methodologies to improve earthquake-explosion discrimination using regional amplitude ratios such as P/S in a variety of frequency bands. Empirically we demonstrate that such ratios separate explosions from earthquakes using closely located pairs of earthquakes and explosions recorded on common, publicly available stations at test sites around the world (e.g. Nevada, Novaya Zemlya, Semipalatinsk, Lop Nor, India, Pakistan, and North Korea). We are also examining if there is any relationship between the observed P/S and the point source variability revealed by longer period full waveform modeling (e. g. Ford et al 2008). For example, regional waveform modeling shows strong tectonic release from the May 1998 India test, in contrast with very little tectonic release in the October 2006 North Korea test, but the P/S discrimination behavior appears similar in both events using the limited regional data available. While regional amplitude ratios such as P/S can separate events in close proximity, it is also empirically well known that path effects can greatly distort observed amplitudes and make earthquakes appear very explosion-like. Previously we have shown that the MDAC (Magnitude Distance Amplitude Correction, Walter and Taylor, 2001) technique can account for simple 1-D attenuation and geometrical spreading corrections, as well as magnitude and site effects. However in some regions 1-D path corrections are a poor approximation and we need to develop 2-D path corrections. Here we demonstrate a new 2-D attenuation tomography technique using the MDAC earthquake source model applied to a set of events and stations in both the Middle East and the Yellow Sea Korean Peninsula regions. We believe this new 2-D MDAC tomography has the potential to greatly improve earthquake-explosion discrimination, particularly in tectonically complex regions such as the Middle East. Monitoring the world for potential nuclear explosions requires characterizing seismic events and discriminating between natural and man-made seismic events, such as earthquakes and mining activities, and nuclear weapons testing. We continue developing, testing, and refining size-, distance-, and location-based regional seismic amplitude corrections to facilitate the comparison of all events that are recorded at a particular seismic station. These corrections, calibrated for each station, reduce amplitude measurement scatter and improve discrimination performance. We test the methods on well-known (ground truth) datasets in the U.S. and then apply them to the uncalibrated stations in Eurasia, Africa, and other regions of interest to improve underground nuclear test monitoring capability.

  19. Tomography of one and two qubit states and factorisation of the Wigner distribution in prime power dimensions

    E-Print Network [OSTI]

    Thomas Durt

    2006-04-17

    We study different techniques that allow us to gain complete knowledge about an unknown quantum state, e.g. to perform full tomography of this state. We focus on two apparently simple cases, full tomography of one and two qubit systems. We analyze and compare those techniques according to two figures of merit. Our first criterion is the minimisation of the redundancy of the data acquired during the tomographic process. In the case of two-qubits tomography, we also analyze this process from the point of view of factorisability, so to say we analyze the possibility to realise the tomographic process through local operations and classical communications between local observers. This brings us naturally to study the possibility to factorize the (discrete) Wigner distribution of a composite system into the product of local Wigner distributions. The discrete Heisenberg-Weyl group is an essential ingredient of our approach. Possible extensions of our results to higher dimensions are discussed in the last section and in the conclusions.

  20. Volume-Based Parameters of {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Improve Disease Recurrence Prediction in Postmastectomy Breast Cancer Patients With 1 to 3 Positive Axillary Lymph Nodes

    SciTech Connect (OSTI)

    Nakajima, Naomi; Kataoka, Masaaki; Sugawara, Yoshifumi; Ochi, Takashi; Kiyoto, Sachiko; Ohsumi, Shozo; Mochizuki, Teruhito

    2013-11-15

    Purpose: To determine whether volume-based parameters on pretreatment {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography in breast cancer patients treated with mastectomy without adjuvant radiation therapy are predictive of recurrence. Methods and Materials: We retrospectively analyzed 93 patients with 1 to 3 positive axillary nodes after surgery, who were studied with {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography for initial staging. We evaluated the relationship between positron emission tomography parameters, including the maximum standardized uptake value, metabolic tumor volume (MTV), and total lesion glycolysis (TLG), and clinical outcomes. Results: The median follow-up duration was 45 months. Recurrence was observed in 11 patients. Metabolic tumor volume and TLG were significantly related to tumor size, number of involved nodes, nodal ratio, nuclear grade, estrogen receptor (ER) status, and triple negativity (TN) (all P values were <.05). In receiver operating characteristic curve analysis, MTV and TLG showed better predictive performance than tumor size, ER status, or TN (area under the curve: 0.85, 0.86, 0.79, 0.74, and 0.74, respectively). On multivariate analysis, MTV was an independent prognostic factor of locoregional recurrence-free survival (hazard ratio 34.42, 95% confidence interval 3.94-882.71, P=.0008) and disease-free survival (DFS) (hazard ratio 13.92, 95% confidence interval 2.65-103.78, P=.0018). The 3-year DFS rate was 93.8% for the lower MTV group (<53.1; n=85) and 25.0% for the higher MTV group (?53.1; n=8; P<.0001, log–rank test). The 3-year DFS rate for patients with both ER-positive status and MTV <53.1 was 98.2%; and for those with ER-negative status and MTV ?53.1 it was 25.0% (P<.0001). Conclusions: Volume-based parameters improve recurrence prediction in postmastectomy breast cancer patients with 1 to 3 positive nodes. The addition of MTV to ER status or TN has potential benefits to identify a subgroup at higher risk for recurrence.

  1. Cosmic Shear Results from the Deep Lens Survey - II: Full Cosmological Parameter Constraints from Tomography

    E-Print Network [OSTI]

    Jee, M James; Hilbert, Stefan; Schneider, Michael D; Schmidt, Samuel; Wittman, David

    2015-01-01

    We present a tomographic cosmic shear study from the Deep Lens Survey (DLS), which, providing a limiting magnitude r_{lim}~27 (5 sigma), is designed as a pre-cursor Large Synoptic Survey Telescope (LSST) survey with an emphasis on depth. Using five tomographic redshift bins, we study their auto- and cross-correlations to constrain cosmological parameters. We use a luminosity-dependent nonlinear model to account for the astrophysical systematics originating from intrinsic alignments of galaxy shapes. We find that the cosmological leverage of the DLS is among the highest among existing >10 sq. deg cosmic shear surveys. Combining the DLS tomography with the 9-year results of the Wilkinson Microwave Anisotropy Probe (WMAP9) gives Omega_m=0.293_{-0.014}^{+0.012}, sigma_8=0.833_{-0.018}^{+0.011}, H_0=68.6_{-1.2}^{+1.4} km/s/Mpc, and Omega_b=0.0475+-0.0012 for LCDM, reducing the uncertainties of the WMAP9-only constraints by ~50%. When we do not assume flatness for LCDM, we obtain the curvature constraint Omega_k=-0...

  2. Three-dimensional flow contrast imaging of deep tissue using noncontact diffuse correlation tomography

    SciTech Connect (OSTI)

    Lin, Yu; Huang, Chong; Irwin, Daniel; He, Lian; Shang, Yu; Yu, Guoqiang

    2014-03-24

    This study extended our recently developed noncontact diffuse correlation spectroscopy flowmetry system into noncontact diffuse correlation tomography (ncDCT) for three-dimensional (3-D) flow imaging of deep tissue. A linear array of 15 photodetectors and two laser sources connected to a mobile lens-focusing system enabled automatic and noncontact scanning of flow in a region of interest. These boundary measurements were combined with a finite element framework for DCT image reconstruction implemented into an existing software package. This technique was tested in computer simulations and using a tissue-like phantom with anomaly flow contrast design. The cylindrical tube-shaped anomaly was clearly reconstructed in both simulation and phantom. Recovered and assigned flow contrast changes in anomaly were found to be highly correlated: regression slope?=?1.00, R{sup 2}?=?1.00, and p?

  3. The use of wavelet filters for reducing noise in posterior fossa Computed Tomography images

    SciTech Connect (OSTI)

    Pita-Machado, Reinado; Perez-Diaz, Marlen Lorenzo-Ginori, Juan V. Bravo-Pino, Rolando

    2014-11-07

    Wavelet transform based de-noising like wavelet shrinkage, gives the good results in CT. This procedure affects very little the spatial resolution. Some applications are reconstruction methods, while others are a posteriori de-noising methods. De-noising after reconstruction is very difficult because the noise is non-stationary and has unknown distribution. Therefore, methods which work on the sinogram-space don’t have this problem, because they always work over a known noise distribution at this point. On the other hand, the posterior fossa in a head CT is a very complex region for physicians, because it is commonly affected by artifacts and noise which are not eliminated during the reconstruction procedure. This can leads to some false positive evaluations. The purpose of our present work is to compare different wavelet shrinkage de-noising filters to reduce noise, particularly in images of the posterior fossa within CT scans in the sinogram-space. This work describes an experimental search for the best wavelets, to reduce Poisson noise in Computed Tomography (CT) scans. Results showed that de-noising with wavelet filters improved the quality of posterior fossa region in terms of an increased CNR, without noticeable structural distortions.

  4. Atom Probe Tomography Examination of Carbon Redistribution in Quenched and Tempered 4340 Steel

    SciTech Connect (OSTI)

    Clarke, Amy J.; Miller, Michael K.; Alexander, David J.; Field, Robert D.; Clarke, Kester D.

    2012-08-07

    Quenching and tempering produces a wide range of mechanical properties in medium carbon, low alloyed steels - Study fragmentation behavior as a function of heat-treatment. Subtle microstructural changes accompany the mechanical property changes that result from quenching and tempering - Characterize the location and distribution of carbon and alloying elements in the microstructure using atom probe tomography (APT). Perform complementary transmission electron microscopy (TEM). Tempering influences the mechanical properties and fragmentation of quenched 4340 (hemi-shaped samples). APT revealed carbon-enriched features that contain a maximum of {approx}12-14 at.% carbon after quenching to RT (the level of carbon is perhaps associated with the extent of autotempering). TEM confirmed the presence of twinned martensite and indicates {var_epsilon} ({eta}) transition carbides after oil quenching to RT. Tempering at 325 C resulted in carbon-enriched plates (> 25 at.% C) with no significant element partitioning (transition carbides?). Tempering at 450 C and 575 C resulted in cementite ({approx} 25 at.% C) during late stage tempering; Cr, Mn, Mo partitioned to cementite and Si partitioned to ferrite. Tempering at 575 C resulted in P segregation at cementite interfaces and the formation of Cottrell atmospheres.

  5. Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries

    E-Print Network [OSTI]

    Kunyansky, Leonid

    2011-01-01

    We propose three fast algorithms for solving the inverse problem of the thermoacoustic tomography corresponding to certain acquisition geometries. Two of these methods are designed to process the measurements done with point-like detectors placed on a circle (in 2D) or a sphere (in 3D) surrounding the object of interest. The third inversion algorithm works with the data measured by the integrating line detectors arranged in a cylindrical assembly rotating around the object. The number of operations required by these techniques is equal to O(n^3 log n) and O(n^3 log^2 n) for the 3D techniques (assuming the reconstruction grid with n^3 nodes) and to O(n^2 log n) for the 2D problem with n-by-n discretizetion grid. Numerical simulations show that our methods are at least two orders of magnitude faster than the existing algorithms, without any sacrifice in accuracy or stability. The results of reconstructions from real measurements done by the integrating line detectors are also presented, to demonstrate the pract...

  6. Sci—Thur PM: Imaging — 06: Canada's National Computed Tomography (CT) Survey

    SciTech Connect (OSTI)

    Wardlaw, GM; Martel, N; Blackler, W; Asselin, J-F

    2014-08-15

    The value of computed tomography (CT) in medical imaging is reflected in its' increased use and availability since the early 1990's; however, given CT's relatively larger exposures (vs. planar x-ray) greater care must be taken to ensure that CT procedures are optimised in terms of providing the smallest dose possible while maintaining sufficient diagnostic image quality. The development of CT Diagnostic Reference Levels (DRLs) supports this process. DRLs have been suggested/supported by international/national bodies since the early 1990's and widely adopted elsewhere, but not on a national basis in Canada. Essentially, CT DRLs provide guidance on what is considered good practice for common CT exams, but require a representative sample of CT examination data to make any recommendations. Canada's National CT Survey project, in collaboration with provincial/territorial authorities, has collected a large national sample of CT practice data for 7 common examinations (with associated clinical indications) of both adult and pediatric patients. Following completion of data entry into a common database, a survey summary report and recommendations will be made on CT DRLs from this data. It is hoped that these can then be used by local regions to promote CT practice optimisation and support any dose reduction initiatives.

  7. MAPPING EARTH ANALOGS FROM PHOTOMETRIC VARIABILITY: SPIN-ORBIT TOMOGRAPHY FOR PLANETS IN INCLINED ORBITS

    SciTech Connect (OSTI)

    Fujii, Yuka [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Kawahara, Hajime, E-mail: yuka.fujii@utap.phys.s.u-tokyo.ac.jp [Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 (Japan)

    2012-08-20

    Aiming at obtaining detailed information on the surface environment of Earth analogs, Kawahara and Fujii proposed an inversion technique of annual scattered light curves named spin-orbit tomography (SOT), which enables us to sketch a two-dimensional albedo map from annual variation of the disk-integrated scattered light, and demonstrated the method with a planet in a face-on orbit. We extend it to be applicable to general geometric configurations, including low-obliquity planets like the Earth in inclined orbits. We simulate light curves of the Earth in an inclined orbit in three photometric bands (0.4-0.5 {mu}m, 0.6-0.7 {mu}m, and 0.8-0.9 {mu}m) and show that the distribution of clouds, snow, and continents is retrieved with the aid of the SOT. We also demonstrate the SOT by applying it to an upright Earth, a tidally locked Earth, and Earth analogs with ancient continental configurations. The inversion is model independent in the sense that we do not assume specific albedo models when mapping the surface, and hence applicable in principle to any kind of inhomogeneity. This method can potentially serve as a unique tool to investigate the exohabitats/exoclimes of Earth analogs.

  8. X-Ray Energy Responses of Silicon Tomography Detectors Irradiated with Fusion Produced Neutrons

    SciTech Connect (OSTI)

    Kohagura, J. [Plasma Research Centre, University of Tsukuba (Japan); Cho, T. [Plasma Research Centre, University of Tsukuba (Japan); Hirata, M. [Plasma Research Centre, University of Tsukuba (Japan); Numakura, T. [Plasma Research Centre, University of Tsukuba (Japan); Yokoyama, N. [Plasma Research Centre, University of Tsukuba (Japan); Fukai, T. [Plasma Research Centre, University of Tsukuba (Japan); Tomii, Y. [Plasma Research Centre, University of Tsukuba (Japan); Tokioka, S. [Plasma Research Centre, University of Tsukuba (Japan); Miyake, Y. [Plasma Research Centre, University of Tsukuba (Japan); Kiminami, S. [Plasma Research Centre, University of Tsukuba (Japan); Shimizu, K. [Plasma Research Centre, University of Tsukuba (Japan); Miyoshi, S. [Plasma Research Centre, University of Tsukuba (Japan); Hirano, K. [High Energy Accelerator Research Organization (Japan); Yoshida, M. [Japan Atomic Energy Research Institute (Japan); Yamauchi, M. [Japan Atomic Energy Research Institute (Japan); Kondoh, T. [Japan Atomic Energy Research Institute (Japan); Nishitani, T. [Japan Atomic Energy Research Institute (Japan)

    2005-01-15

    In order to clarify the effects of fusion-produced neutron irradiation on silicon semiconductor x-ray detectors, the x-ray energy responses of both n- and p-type silicon tomography detectors used in the Joint European Torus (JET) tokamak (n-type) and the GAMMA 10 tandem mirror (p-type) are studied using synchrotron radiation at the Photon Factory of the National Laboratory for High Energy Accelerator Research Organization (KEK). The fusion neutronics source (FNS) of Japan Atomic Energy Research Institute (JAERI) is employed as well-calibrated D-T neutron source with fluences from 10{sup 13} to 10{sup 15} neutrons/cm{sup 2} onto these semiconductor detectors. Different fluence dependence is found between these two types of detectors; that is, (i) for the n-type detector, the recovery of the degraded response is found after the neutron exposure beyond around 10{sup 13} neutrons/cm{sup 2} onto the detector. A further finding is followed as a 're-degradation' by a neutron irradiation level over about 10{sup 14} neutrons/cm{sup 2}. On the other hand, (ii) the energy response of the p-type detector shows only a gradual decrease with increasing neutron fluences. These properties are interpreted by our proposed theory on semiconductor x-ray responses in terms of the effects of neutrons on the effective doping concentration and the diffusion length of a semiconductor detector.

  9. Automated detection of lung nodules in low-dose computed tomography

    E-Print Network [OSTI]

    Cascio, D; Chincarini, A; De Nunzio, G; Delogu, P; Fantacci, M E; Gargano, G; Gori, I; Masala, G L; Martinez, A Preite; Retico, A; Santoro, M; Spinelli, C; Tarantino, T

    2007-01-01

    A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector computed-tomography (CT) images has been developed in the framework of the MAGIC-5 Italian project. One of the main goals of this project is to build a distributed database of lung CT scans in order to enable automated image analysis through a data and cpu GRID infrastructure. The basic modules of our lung-CAD system, consisting in a 3D dot-enhancement filter for nodule detection and a neural classifier for false-positive finding reduction, are described. The system was designed and tested for both internal and sub-pleural nodules. The database used in this study consists of 17 low-dose CT scans reconstructed with thin slice thickness (~300 slices/scan). The preliminary results are shown in terms of the FROC analysis reporting a good sensitivity (85% range) for both internal and sub-pleural nodules at an acceptable level of false positive findings (1-9 FP/scan); the sensitivity value remains very hig...

  10. Low background high efficiency radiocesium detection system based on positron emission tomography technology

    SciTech Connect (OSTI)

    Yamamoto, Seiichi; Ogata, Yoshimune [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673 (Japan)] [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673 (Japan)

    2013-09-15

    After the 2011 nuclear power plant accident at Fukushima, radiocesium contamination in food became a serious concern in Japan. However, low background and high efficiency radiocesium detectors are expensive and huge, including semiconductor germanium detectors. To solve this problem, we developed a radiocesium detector by employing positron emission tomography (PET) technology. Because {sup 134}Cs emits two gamma photons (795 and 605 keV) within 5 ps, they can selectively be measured with coincidence. Such major environmental gamma photons as {sup 40}K (1.46 MeV) are single photon emitters and a coincidence measurement reduces the detection limit of radiocesium detectors. We arranged eight sets of Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) scintillation detectors in double rings (four for each ring) and measured the coincidence between these detectors using PET data acquisition system. A 50 × 50 × 30 mm BGO was optically coupled to a 2 in. square photomultiplier tube (PMT). By measuring the coincidence, we eliminated most single gamma photons from the energy distribution and only detected those from {sup 134}Cs at an average efficiency of 12%. The minimum detectable concentration of the system for the 100 s acquisition time is less than half of the food monitor requirements in Japan (25 Bq/kg). These results show that the developed radiocesium detector based on PET technology is promising to detect low level radiocesium.

  11. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography

    SciTech Connect (OSTI)

    Saha, Krishnendu; Straus, Kenneth J.; Glick, Stephen J.; Chen, Yu.

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  12. Data fusion in X-ray computed tomography using a superiorization approach

    SciTech Connect (OSTI)

    Schrapp, Michael J.; Herman, Gabor T.

    2014-05-15

    X-ray computed tomography (CT) is an important and widespread inspection technique in industrial non-destructive testing. However, large-sized and heavily absorbing objects cause artifacts due to either the lack of penetration of the specimen in specific directions or by having data from only a limited angular range of views. In such cases, valuable information about the specimen is not revealed by the CT measurements alone. Further imaging modalities, such as optical scanning and ultrasonic testing, are able to provide data (such as an edge map) that are complementary to the CT acquisition. In this paper, a superiorization approach (a newly developed method for constrained optimization) is used to incorporate the complementary data into the CT reconstruction; this allows precise localization of edges that are not resolvable from the CT data by itself. Superiorization, as presented in this paper, exploits the fact that the simultaneous algebraic reconstruction technique (SART), often used for CT reconstruction, is resilient to perturbations; i.e., it can be modified to produce an output that is as consistent with the CT measurements as the output of unmodified SART, but is more consistent with the complementary data. The application of this superiorized SART method to measured data of a turbine blade demonstrates a clear improvement in the quality of the reconstructed image.

  13. High performance graphics processor based computed tomography reconstruction algorithms for nuclear and other large scale applications.

    SciTech Connect (OSTI)

    Jimenez, Edward Steven,

    2013-09-01

    The goal of this work is to develop a fast computed tomography (CT) reconstruction algorithm based on graphics processing units (GPU) that achieves significant improvement over traditional central processing unit (CPU) based implementations. The main challenge in developing a CT algorithm that is capable of handling very large datasets is parallelizing the algorithm in such a way that data transfer does not hinder performance of the reconstruction algorithm. General Purpose Graphics Processing (GPGPU) is a new technology that the Science and Technology (S&T) community is starting to adopt in many fields where CPU-based computing is the norm. GPGPU programming requires a new approach to algorithm development that utilizes massively multi-threaded environments. Multi-threaded algorithms in general are difficult to optimize since performance bottlenecks occur that are non-existent in single-threaded algorithms such as memory latencies. If an efficient GPU-based CT reconstruction algorithm can be developed; computational times could be improved by a factor of 20. Additionally, cost benefits will be realized as commodity graphics hardware could potentially replace expensive supercomputers and high-end workstations. This project will take advantage of the CUDA programming environment and attempt to parallelize the task in such a way that multiple slices of the reconstruction volume are computed simultaneously. This work will also take advantage of the GPU memory by utilizing asynchronous memory transfers, GPU texture memory, and (when possible) pinned host memory so that the memory transfer bottleneck inherent to GPGPU is amortized. Additionally, this work will take advantage of GPU-specific hardware (i.e. fast texture memory, pixel-pipelines, hardware interpolators, and varying memory hierarchy) that will allow for additional performance improvements.

  14. Lung Tumors Treated With Percutaneous Radiofrequency Ablation: Computed Tomography Imaging Follow-Up

    SciTech Connect (OSTI)

    Palussiere, Jean, E-mail: palussiere@bergonie.org; Marcet, Benjamin; Descat, Edouard [Institut Bergonie, Regional Cancer Center, Department of Interventional Radiology (France); Deschamps, Frederic; Rao, Pramod [Institut Gustave Roussy, Department of Interventional Radiology (France); Ravaud, Alain [Hopital Saint-Andre, Department of Medical Oncology (France); Brouste, Veronique [Institut Bergonie, Department of Biostatistics (France); Baere, Thierry de [Institut Gustave Roussy, Department of Interventional Radiology (France)

    2011-10-15

    Purpose: To describe the morphologic evolution of lung tumors treated with radiofrequency ablation (RFA) by way of computed tomography (CT) images and to investigate patterns of incomplete RFA at the site of ablation. Materials and Methods: One hundred eighty-nine patients with 350 lung tumors treated with RFA underwent CT imaging at 2, 4, 6, and 12 months. CT findings were interpreted separately by two reviewers with consensus. Five different radiologic patterns were predefined: fibrosis, cavitation, nodule, atelectasis, and disappearance. The appearance of the treated area was evaluated at each follow-up CT using the predefined patterns. Results: At 1 year after treatment, the most common evolutions were fibrosis (50.5%) or nodules (44.8%). Differences were noted depending on the initial size of the tumor, with fibrosis occurring more frequently for tumors <2 cm (58.6% vs. 22.9%, P = 1 Multiplication-Sign 10{sup -5}). Cavitation and atelectasis were less frequent patterns (2.4% and 1.4%, respectively, at 1 year). Tumor location (intraparenchymatous, with pleural contact <50% or >50%) was not significantly correlated with follow-up image pattern. Local tumor progressions were observed with each type of evolution. At 1 year, 12 local recurrences were noted: 2 cavitations, which represented 40% of the cavitations noted at 1 year; 2 fibroses (1.9%); 7 nodules (7.4%); and 1 atelectasis (33.3%). Conclusion: After RFA of lung tumors, follow-up CT scans show that the shape of the treatment zone can evolve in five different patterns. None of these patterns, however, can confirm the absence of further local tumor progression at subsequent follow-up.

  15. PILOT-SCALE FIELD VALIDATION OF THE LONG ELECTRODE ELECTRICAL RESISTIVITY TOMOGRAPHY METHOD

    SciTech Connect (OSTI)

    GLASER DR; RUCKER DF; CROOK N; LOKE MH

    2011-07-14

    Field validation for the long electrode electrical resistivity tomography (LE-ERT) method was attempted in order to demonstrate the performance of the technique in imaging a simple buried target. The experiment was an approximately 1/17 scale mock-up of a region encompassing a buried nuclear waste tank on the Hanford site. The target of focus was constructed by manually forming a simulated plume within the vadose zone using a tank waste simulant. The LE-ERT results were compared to ERT using conventional point electrodes on the surface and buried within the survey domain. Using a pole-pole array, both point and long electrode imaging techniques identified the lateral extents of the pre-formed plume with reasonable fidelity, but the LE-ERT was handicapped in reconstructing the vertical boundaries. The pole-dipole and dipole-dipole arrays were also tested with the LE-ERT method and were shown to have the least favorable target properties, including the position of the reconstructed plume relative to the known plume and the intensity of false positive targets. The poor performance of the pole-dipole and dipole-dipole arrays was attributed to an inexhaustive and non-optimal coverage of data at key electrodes, as well as an increased noise for electrode combinations with high geometric factors. However, when comparing the model resolution matrix among the different acquisition strategies, the pole-dipole and dipole-dipole arrays using long electrodes were shown to have significantly higher average and maximum values than any pole-pole array. The model resolution describes how well the inversion model resolves the subsurface. Given the model resolution performance of the pole-dipole and dipole-dipole arrays, it may be worth investing in tools to understand the optimum subset of randomly distributed electrode pairs to produce maximum performance from the inversion model.

  16. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    SciTech Connect (OSTI)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-11

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  17. Electrical resistivity tomography survey for delineating uncharted mine galleries in West Bengal, India

    SciTech Connect (OSTI)

    Maillol, J.M. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Physics] [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Physics; Seguin, M.K. [Univ. Laval, Ste-Foy, Quebec (Canada). Dept. de Geologie et Genie Geologique] [Univ. Laval, Ste-Foy, Quebec (Canada). Dept. de Geologie et Genie Geologique; Gupta, O.P.; Akhauri, H.M. [Central Mine Planning and Design Inst., Ranchi (India)] [Central Mine Planning and Design Inst., Ranchi (India); Sen, N. [Mining, Geology and Metallurgical Inst., Calcutta (India)] [Mining, Geology and Metallurgical Inst., Calcutta (India)

    1999-03-01

    The history of subsidence, fires, flooding and other kinds of environmental hazards related to shallow coal workings in India goes back to colonial times some 300 years ago. As coal production accelerated in modern times, so did the environmental and socio-economic drawbacks related to exploitation. In the mid-1980s, a hydropneumatic sand-stowing method was developed to fill in abandoned galleries but their exact location had to be known. Unfortunately, most of these old workings are uncharted and consequently large tracts of land cannot be stabilized. A research program making use of integrated surface, borehole and cross-hole geophysical methods was undertaken over a five-year span to try to solve this problem. Surface geophysical methods, being cheaper and faster than their cross- and downhole counterparts, were used to cover larger areas on an exploratory basis, while cross-hole methods were employed to locate more accurately one or a network of galleries to be perforated by drillhole(s) and used as a conduit for sand stowing. The authors report the results of one of the cross-hole geophysical methods: electrical resistivity tomography (ERT). A pole-dipole configuration is used and both cross-hole and surface-borehole methodologies are tested. Forward modelling and inversion of synthetic data making use of downhole and surface physical and geometrical parameters are presented first. This phase is followed by the inversion of real data. It is concluded that ERT is not applicable for the detection of dry voids, but is effective in a waterlogged environment which is estimated to represent 85--90% of the cases. In waterlogged galleries, ERT is applicable in both cross-hole and surface-downhole modes, the latter allowing a larger surface coverage at low cost. ERT is thus a reliable geophysical tool to image water-filled voids and an adequate technique to address environmental and geotechnical problems.

  18. Uncertainty quantification of CO? saturation estimated from electrical resistance tomography data at the Cranfield site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; Ramirez, Abelardo L.

    2014-06-03

    A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO? saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO? saturation, but we focus on how the ERT observation errors propagate to the estimated CO? saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the priormore »information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO? saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO? saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO? saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO? saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO? saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed on a laptop or desktop PC.« less

  19. Uncertainty quantification of CO? saturation estimated from electrical resistance tomography data at the Cranfield site

    SciTech Connect (OSTI)

    Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; Ramirez, Abelardo L.

    2014-06-03

    A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO? saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO? saturation, but we focus on how the ERT observation errors propagate to the estimated CO? saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the prior information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO? saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO? saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO? saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO? saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO? saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed on a laptop or desktop PC.

  20. Characterization of conditional state-engineering quantum processes by coherent state quantum process tomography

    E-Print Network [OSTI]

    Merlin Cooper; Eirion Slade; Michal Karpinski; Brian J. Smith

    2014-10-25

    Conditional quantum optical processes enable a wide range of technologies from generation of highly non-classical states to implementation of quantum logic operations. The process fidelity that can be achieved in a realistic implementation depends on a number of system parameters. Here we experimentally examine Fock-state filtration, a canonical example of a broad class of conditional quantum operations acting on a single optical field mode. This operation is based upon interference of the mode to be manipulated with an auxiliary single-photon state at a beam splitter, resulting in the entanglement of the two output modes. A conditional projective measurement onto a single photon at one output mode heralds the success of the process. This operation, which implements a measurement-induced nonlinearity, is capable of suppressing particular photon-number probability amplitudes of an arbitrary quantum state. We employ coherent-state process tomography to determine the precise operation realized in our experiment. To identify the key sources of experimental imperfection, we develop a model of the process and identify three main contributions that significantly hamper its efficacy. The reconstructed tensor is compared with a model of the process taking into account sources of experimental imperfection with fidelity better than 0.95. This enables us to identify three key challenges to overcome in realizing a filter with high fidelity - namely the single-photon nature of the auxiliary state, high-mode overlap, and the need for number resolving detection when heralding. The results show that the filter does indeed exhibit a nonlinear response as a function of input photon number and preserves the phase relation between Fock layers of the output state, providing promise for future applications.

  1. Enhancement of the resolution of full-field optical coherence tomography by using a colour image sensor

    SciTech Connect (OSTI)

    Kalyanov, A L; Lychagov, V V; Smirnov, I V; Ryabukho, V P [N.G. Chernyshevsky Saratov State University, Saratov (Russian Federation)

    2013-08-31

    The influence of white balance in a colour image detector on the resolution of a full-field optical coherence tomograph (FFOCT) is studied. The change in the interference pulse width depending on the white balance tuning is estimated in the cases of a thermal radiation source (incandescent lamp) and a white light emitting diode. It is shown that by tuning white balance of the detector in a certain range, the FFOCT resolution can be increased by 20 % as compared to the resolution, attained with the use of a monochrome detector. (optical coherence tomography)

  2. Body-wave tomography at Hawaii from the first PLUME deployment... http://www.agu.org/cgi-bin/SFgate/SFgate?language=English&verb... 1 of 2 5/18/09 5:25 PM

    E-Print Network [OSTI]

    Laske, Gabi

    Body-wave tomography at Hawaii from the first PLUME deployment... http://www33B-1380 TI: Body-wave tomography at Hawaii from the first PLUME deployment of ocean-bottom seismometers AU: * Wolfe, C J EM: cecily@soest.hawaii.edu AF: University of Hawaii at Manoa, 1680 East

  3. Electronic diffraction tomography by Green's functions and singular values decompositions Laboratoire de Physique du Solide, Facultes Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61, B-5000 Namur, Belgium

    E-Print Network [OSTI]

    Mayer, Alexandre

    Electronic diffraction tomography by Green's functions and singular values decompositions A. Mayer microscopy, thus per- forming a diffraction tomography. In its Green's-functions formulation, this technique a reconstruction of the potential-energy distribution, which is assumed real valued. The method relies on the use

  4. Julian, B.R. and G.R. Foulger, Time-Dependent Seismic Tomography of Geothermal Systems, Thirty-Fourth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 9-11, 2009.

    E-Print Network [OSTI]

    Foulger, G. R.

    Julian, B.R. and G.R. Foulger, Time-Dependent Seismic Tomography of Geothermal Systems, Thirty-Fourth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 9-11, 2009. Time-Dependent Seismic Tomography of Geothermal Systems Bruce R. Julian, U. S. Geological Survey

  5. 3D parallel-detection microwave tomography for clinical breast imaging

    SciTech Connect (OSTI)

    Epstein, N. R.; Meaney, P. M.; Paulsen, K. D.

    2014-12-15

    A biomedical microwave tomography system with 3D-imaging capabilities has been constructed and translated to the clinic. Updates to the hardware and reconfiguration of the electronic-network layouts in a more compartmentalized construct have streamlined system packaging. Upgrades to the data acquisition and microwave components have increased data-acquisition speeds and improved system performance. By incorporating analog-to-digital boards that accommodate the linear amplification and dynamic-range coverage our system requires, a complete set of data (for a fixed array position at a single frequency) is now acquired in 5.8 s. Replacement of key components (e.g., switches and power dividers) by devices with improved operational bandwidths has enhanced system response over a wider frequency range. High-integrity, low-power signals are routinely measured down to ?130 dBm for frequencies ranging from 500 to 2300 MHz. Adequate inter-channel isolation has been maintained, and a dynamic range >110 dB has been achieved for the full operating frequency range (500–2900 MHz). For our primary band of interest, the associated measurement deviations are less than 0.33% and 0.5° for signal amplitude and phase values, respectively. A modified monopole antenna array (composed of two interwoven eight-element sub-arrays), in conjunction with an updated motion-control system capable of independently moving the sub-arrays to various in-plane and cross-plane positions within the illumination chamber, has been configured in the new design for full volumetric data acquisition. Signal-to-noise ratios (SNRs) are more than adequate for all transmit/receive antenna pairs over the full frequency range and for the variety of in-plane and cross-plane configurations. For proximal receivers, in-plane SNRs greater than 80 dB are observed up to 2900 MHz, while cross-plane SNRs greater than 80 dB are seen for 6 cm sub-array spacing (for frequencies up to 1500 MHz). We demonstrate accurate recovery of 3D dielectric property distributions for breast-like phantoms with tumor inclusions utilizing both the in-plane and new cross-plane data.

  6. Automated aortic calcium scoring on low-dose chest computed tomography

    SciTech Connect (OSTI)

    Isgum, Ivana; Rutten, Annemarieke; Prokop, Mathias; Staring, Marius; Klein, Stefan; Pluim, Josien P. W.; Viergever, Max A.; Ginneken, Bram van [Image Sciences Institute, University Medical Center Utrecht, Utrecht 3584 CX (Netherlands); Department of Radiology, University Medical Center Utrecht, Utrecht 3584 CX (Netherlands); Image Sciences Institute, University Medical Center Utrecht, Utrecht 3584 (Netherlands)

    2010-02-15

    Purpose: Thoracic computed tomography (CT) scans provide information about cardiovascular risk status. These scans are non-ECG synchronized, thus precise quantification of coronary calcifications is difficult. Aortic calcium scoring is less sensitive to cardiac motion, so it is an alternative to coronary calcium scoring as an indicator of cardiovascular risk. The authors developed and evaluated a computer-aided system for automatic detection and quantification of aortic calcifications in low-dose noncontrast-enhanced chest CT. Methods: The system was trained and tested on scans from participants of a lung cancer screening trial. A total of 433 low-dose, non-ECG-synchronized, noncontrast-enhanced 16 detector row examinations of the chest was randomly divided into 340 training and 93 test data sets. A first observer manually identified aortic calcifications on training and test scans. A second observer did the same on the test scans only. First, a multiatlas-based segmentation method was developed to delineate the aorta. Segmented volume was thresholded and potential calcifications (candidate objects) were extracted by three-dimensional connected component labeling. Due to image resolution and noise, in rare cases extracted candidate objects were connected to the spine. They were separated into a part outside and parts inside the aorta, and only the latter was further analyzed. All candidate objects were represented by 63 features describing their size, position, and texture. Subsequently, a two-stage classification with a selection of features and k-nearest neighbor classifiers was performed. Based on the detected aortic calcifications, total calcium volume score was determined for each subject. Results: The computer system correctly detected, on the average, 945 mm{sup 3} out of 965 mm{sup 3} (97.9%) calcified plaque volume in the aorta with an average of 64 mm{sup 3} of false positive volume per scan. Spearman rank correlation coefficient was {rho}=0.960 between the system and the first observer compared to {rho}=0.961 between the two observers. Conclusions: Automatic calcium scoring in the aorta thus appears feasible with good correlation between manual and automatic scoring.

  7. Kilovoltage Rotational External Beam Radiotherapy on a Breast Computed Tomography Platform: A Feasibility Study

    SciTech Connect (OSTI)

    Prionas, Nicolas D.; McKenney, Sarah E. [Department of Radiology, University of California, Davis, Medical Center, Sacramento, California (United States)] [Department of Radiology, University of California, Davis, Medical Center, Sacramento, California (United States); Stern, Robin L. [Department of Radiation Oncology, University of California, Davis, Medical Center, Sacramento, California (United States)] [Department of Radiation Oncology, University of California, Davis, Medical Center, Sacramento, California (United States); Boone, John M., E-mail: jmboone@ucdavis.edu [Department of Radiology, University of California, Davis, Medical Center, Sacramento, California (United States)

    2012-10-01

    Purpose: To demonstrate the feasibility of a dedicated breast computed tomography (bCT) platform to deliver rotational kilovoltage (kV) external beam radiotherapy (RT) for partial breast irradiation, whole breast irradiation, and dose painting. Methods and Materials: Rotational kV-external beam RT using the geometry of a prototype bCT platform was evaluated using a Monte Carlo simulator. A point source emitting 178 keV photons (approximating a 320-kVp spectrum with 4-mm copper filtration) was rotated around a 14-cm voxelized polyethylene disk (0.1 cm tall) or cylinder (9 cm tall) to simulate primary and primary plus scattered photon interactions, respectively. Simulations were also performed using voxelized bCT patient images. Beam collimation was varied in the x-y plane (1-14 cm) and in the z-direction (0.1-10 cm). Dose painting for multiple foci, line, and ring distributions was demonstrated using multiple rotations with varying beam collimation. Simulations using the scanner's native hardware (120 kVp filtered by 0.2-mm copper) were validated experimentally. Results: As the x-y collimator was narrowed, the two-dimensional dose profiles shifted from a cupped profile with a high edge dose to an increasingly peaked central dose distribution with a sharp dose falloff. Using a 1-cm beam, the cylinder edge dose was <7% of the dose deposition at the cylinder center. Simulations using 120-kVp X-rays showed distributions similar to the experimental measurements. A homogeneous dose distribution (<2.5% dose fluctuation) with a 20% decrease in dose deposition at the cylinder edge (i.e., skin sparing) was demonstrated by weighted summation of four dose profiles using different collimation widths. Simulations using patient bCT images demonstrated the potential for treatment planning and image-guided RT. Conclusions: Rotational kV-external beam RT for partial breast irradiation, dose painting, and whole breast irradiation with skin sparing is feasible on a bCT platform with the potential for high-resolution image-guided RT.

  8. Cone Beam Computed Tomography Image Guidance System for a Dedicated Intracranial Radiosurgery Treatment Unit

    SciTech Connect (OSTI)

    Ruschin, Mark; Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario ; Komljenovic, Philip T.; Ansell, Steve; Menard, Cynthia; Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario ; Bootsma, Gregory; Cho, Young-Bin; Chung, Caroline; Jaffray, David; Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario

    2013-01-01

    Purpose: Image guidance has improved the precision of fractionated radiation treatment delivery on linear accelerators. Precise radiation delivery is particularly critical when high doses are delivered to complex shapes with steep dose gradients near critical structures, as is the case for intracranial radiosurgery. To reduce potential geometric uncertainties, a cone beam computed tomography (CT) image guidance system was developed in-house to generate high-resolution images of the head at the time of treatment, using a dedicated radiosurgery unit. The performance and initial clinical use of this imaging system are described. Methods and Materials: A kilovoltage cone beam CT system was integrated with a Leksell Gamma Knife Perfexion radiosurgery unit. The X-ray tube and flat-panel detector are mounted on a translational arm, which is parked above the treatment unit when not in use. Upon descent, a rotational axis provides 210 Degree-Sign of rotation for cone beam CT scans. Mechanical integrity of the system was evaluated over a 6-month period. Subsequent clinical commissioning included end-to-end testing of targeting performance and subjective image quality performance in phantoms. The system has been used to image 2 patients, 1 of whom received single-fraction radiosurgery and 1 who received 3 fractions, using a relocatable head frame. Results: Images of phantoms demonstrated soft tissue contrast visibility and submillimeter spatial resolution. A contrast difference of 35 HU was easily detected at a calibration dose of 1.2 cGy (center of head phantom). The shape of the mechanical flex vs scan angle was highly reproducible and exhibited <0.2 mm peak-to-peak variation. With a 0.5-mm voxel pitch, the maximum targeting error was 0.4 mm. Images of 2 patients were analyzed offline and submillimeter agreement was confirmed with conventional frame. Conclusions: A cone beam CT image guidance system was successfully adapted to a radiosurgery unit. The system is capable of producing high-resolution images of bone and soft tissue. The system is in clinical use and provides excellent image guidance without invasive frames.

  9. Impact of Immobilization on Intrafraction Motion for Spine Stereotactic Body Radiotherapy Using Cone Beam Computed Tomography

    SciTech Connect (OSTI)

    Li, Winnie; Sahgal, Arjun; Department of Radiation Oncology, University of Toronto, Toronto, Ontario ; Foote, Matthew; Millar, Barbara-Ann; Jaffray, David A.; Department of Radiation Oncology, University of Toronto, Toronto, Ontario ; Letourneau, Daniel; Department of Radiation Oncology, University of Toronto, Toronto, Ontario

    2012-10-01

    Purpose: Spine stereotactic body radiotherapy (SBRT) involves tight planning margins and steep dose gradients to the surrounding organs at risk (OAR). This study aimed to assess intrafraction motion using cone beam computed tomography (CBCT) for spine SBRT patients treated using three immobilization devices. Methods and Materials: Setup accuracy using CBCT was retrospectively analyzed for 102 treated spinal metastases in 84 patients. Thoracic and lumbar spine patients were immobilized with either an evacuated cushion (EC, n = 24) or a semirigid vacuum body fixation (BF, n = 60). For cases treated at cervical/upper thoracic (thoracic [T]1-T3) vertebrae, a thermoplastic S-frame (SF) mask (n = 18) was used. Patient setup was corrected by using bony anatomy image registration and couch translations only (no rotation corrections) with shifts confirmed on verification CBCTs. Repeat imaging was performed mid- and post-treatment. Patient translational and rotational positioning data were recorded to calculate means, standard deviations (SD), and corresponding margins {+-} 2 SD for residual setup errors and intrafraction motion. Results: A total of 355 localizations, 333 verifications, and 248 mid- and 280 post-treatment CBCTs were analyzed. Residual translations and rotations after couch corrections (verification scans) were similar for all immobilization systems, with SDs of 0.6 to 0.9 mm in any direction and 0.9 Degree-Sign to 1.6 Degree-Sign , respectively. Margins to encompass residual setup errors after couch corrections were within 2 mm. Including intrafraction motion, as measured on post-treatment CBCTs, SDs for total setup error in the left-right, cranial-caudal, and anterior-posterior directions were 1.3, 1.2, and 1.0 mm for EC; 0.9, 0.7, and 0.9 mm for BF; and 1.3, 0.9, and 1.1 mm for SF, respectively. The calculated margins required to encompass total setup error increased to 3 mm for EC and SF and remained within 2 mm for BF. Conclusion: Following image guidance, residual setup errors for spine SBRT were similar across three immobilization systems. The BF device resulted in the least amount of intrafraction motion, and based on this device, we justify a 2-mm margin for the planning OAR and target volume.

  10. SU-E-I-28: Evaluating the Organ Dose From Computed Tomography Using Monte Carlo Calculations

    SciTech Connect (OSTI)

    Ono, T; Araki, F

    2014-06-01

    Purpose: To evaluate organ doses from computed tomography (CT) using Monte Carlo (MC) calculations. Methods: A Philips Brilliance CT scanner (64 slice) was simulated using the GMctdospp (IMPS, Germany) based on the EGSnrc user code. The X-ray spectra and a bowtie filter for MC simulations were determined to coincide with measurements of half-value layer (HVL) and off-center ratio (OCR) profile in air. The MC dose was calibrated from absorbed dose measurements using a Farmer chamber and a cylindrical water phantom. The dose distribution from CT was calculated using patient CT images and organ doses were evaluated from dose volume histograms. Results: The HVLs of Al at 80, 100, and 120 kV were 6.3, 7.7, and 8.7 mm, respectively. The calculated HVLs agreed with measurements within 0.3%. The calculated and measured OCR profiles agreed within 3%. For adult head scans (CTDIvol) =51.4 mGy), mean doses for brain stem, eye, and eye lens were 23.2, 34.2, and 37.6 mGy, respectively. For pediatric head scans (CTDIvol =35.6 mGy), mean doses for brain stem, eye, and eye lens were 19.3, 24.5, and 26.8 mGy, respectively. For adult chest scans (CTDIvol=19.0 mGy), mean doses for lung, heart, and spinal cord were 21.1, 22.0, and 15.5 mGy, respectively. For adult abdominal scans (CTDIvol=14.4 mGy), the mean doses for kidney, liver, pancreas, spleen, and spinal cord were 17.4, 16.5, 16.8, 16.8, and 13.1 mGy, respectively. For pediatric abdominal scans (CTDIvol=6.76 mGy), mean doses for kidney, liver, pancreas, spleen, and spinal cord were 8.24, 8.90, 8.17, 8.31, and 6.73 mGy, respectively. In head scan, organ doses were considerably different from CTDIvol values. Conclusion: MC dose distributions calculated by using patient CT images are useful to evaluate organ doses absorbed to individual patients.

  11. Directly correlated transmission electron microscopy and atom probe tomography of grain boundary oxidation in a Ni-Al binary alloy exposed to high-temperature water.

    SciTech Connect (OSTI)

    Schreiber, Daniel K.; Olszta, Matthew J.; Bruemmer, Stephen M.

    2013-10-30

    Intergranular oxidation of a Ni-4Al alloy exposed to hydrogenated, high-temperature water was characterized using directly correlated transmission electron microscopy and atom probe tomography. These combined analyses revealed that discrete, well-separated oxides (NiAl2O4) precipitated along grain boundaries in the metal. Aluminum was depleted from the grain boundary between oxides and also from one side of the boundary as a result of grain boundary migration. The discrete oxide morphology, disconnected from the continuous surface oxidation, suggests intergranular solid-state internal oxidation of Al. Keywords: oxidation; grain boundaries; nickel alloys; atom probe tomography; transmission electron microscopy (TEM)

  12. (/sup 11/C)clorgyline and (/sup 11/C)-L-deprenyl and their use in measuring functional monoamine oxidase activity in the brain using positron emission tomography

    DOE Patents [OSTI]

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1986-04-17

    This invention involves a new strategy for imaging the activity of the enzyme monoamine oxidase in the living body by using /sup 11/C-labeled enzyme inhibitors which bind irreversibly to an enzyme as a result of catalysis. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  13. THE ATTENUATED RADON TRANSFORM: APPLICATION TO SINGLE-PHOTON EMISSION COMPUTED TOMOGRAPHY IN THE PRESENCE OF A VARIABLE ATTENUATING MEDIUM

    SciTech Connect (OSTI)

    Gullberg, Grant T.

    1980-03-01

    The properties of the attenuated Radon transform and its application to single-photon emission computed tomography (ECT) are analyzed in detail. In nuclear medicine and biological research, the objective of ECT is to describe quantitatively the position and strengths of internal sources of injected radiopharmaceuticals and radionuclides where the attenuation between the sources and detector is unknown. The problem is mathematically and practically quite different from well-known methods in transmission computed tomography (TCT) where only the attenuation is unknown. A mathematical structure using function theory and the theory of linear operators on Hilbert spaces is developed to better understand the spectral properties of the attenuated Radon transform. The continuous attenuated Radon transform is reduced to a matrix operator for discrete angular and lateral sampling, and the reconstruction problem reduces to a system of linear equations. For variable attenuation coefficients frequently found in imaging internal organs, the numerical methods developed in this paper involve iterative techniques of performing the generalized inverse. Its application to nuclear medicine is demonstrated by reconstructions of transverse sections of the brain, heart, and liver.

  14. Processing of Bi-2212 and Nb$_3$Sn studied in situ by high energy synchrotron diffraction and micro-tomography

    E-Print Network [OSTI]

    Kadar, Julian

    Next generation superconducting wires have been studied to obtain more information on the evolution of phase growth, crystallite size and strain state during wire processing. The high energy scattering beam line ID15 at the European Synchrotron Radiation Facility provides a very high flux of high energy photons for very fast in situ X-ray diffraction and micro-tomography studies of Bi-2212/Ag and Nb$_3$S/Cu wire samples. The typical wire processing conditions could be imitated in the X-ray transparent furnace at ID15 for diffraction and tomography studies. Efficient data analysis is mandatory in order to handle the very fast data acquisition rate. For this purpose an Excel-VBA based program was developed that allows a semi-automated fitting and tracking of peaks with pre-set constraints. With this method, more than one thousand diffraction patterns have been analysed to extract d-spacing, peak intensity and peak width values. X ray absorption micro tomograms were recorded simultaneously with the X-ray diffrac...

  15. WHOLE CELL TOMOGRAPHY/MOLECULAR BIOLOGY/STRUCTURAL BIOLOGY: Affordable x-ray microscopy with nanoscale resolution

    SciTech Connect (OSTI)

    Evans, James E.; Blackborow, Paul; Horne, Stephen J.; Gelb, Jeff

    2013-03-01

    Biological research spans 10 orders of magnitude from angstroms to meters. While electron microscopy can reveal structural details at most of these spatial length scales, transmission electron tomography only reliably reconstructs three-dimensional (3-D) volumes of cellular material with a spatial resolution between 1-5 nm from samples less than 500 nm thick1. Most biological cells are 2-30 times thicker than this threshold, which means that a cell must be cut into consecutive slices with each slice reconstructed individually in order to approximate the contextual information of the entire cell. Fortunately, due to a larger penetration depth2, X-ray computed tomography bypasses the need to physically section a cell and enables imaging of intact cells and tissues on the micrometer or larger scale with tens to hundreds of nanometer spatial resolution. While the technique of soft x-ray microscopy has been extensively developed in synchrotron facilities, advancements in laboratory x-ray source designs now increase its accessibility by supporting commercial systems suitable for a standard laboratory. In this paper, we highlight a new commercial compact cryogenic soft x-ray microscope designed for a standard laboratory setting and explore its capabilities for mesoscopic investigations of intact prokaryotic and eukaryotic cells.

  16. Chun Jiao, Dongming Wang, Hongbing Lu*, Member, IEEE, Zhu Zhang, Jerome Z. Liang, Fellow, IEEE AbstractLow-dose protocol for computed tomography (CT)

    E-Print Network [OSTI]

    higher risk of lung cancer, and that of children. To lower the radiation exposure, low-dose protocols Abstract­Low-dose protocol for computed tomography (CT) scans has been gradually used in clinics to lower-stationary Gaussian noise in low-dose CT sinograms by wavelet analysis. To explore the noise property in wavelet

  17. State Tomography of Capacitively Shunted Phase Qubits with High Fidelity Matthias Steffen, M. Ansmann, R. McDermott, N. Katz, Radoslaw C. Bialczak, Erik Lucero,

    E-Print Network [OSTI]

    Martinis, John M.

    introduce a new design concept for superconducting phase quantum bits (qubits) in which we explicitly tomography with superconducting qubits using single-shot measurements. DOI: 10.1103/PhysRevLett.97.050502 PACS numbers: 03.67.Lx, 74.50.+r, 85.25.Am Superconducting circuits using Josephson junctions pro- vide

  18. ModPET: A Novel Small-Animal PET System Positron Emission Tomography (PET) and PET/CT systems have become the gold standard for imaging

    E-Print Network [OSTI]

    Arizona, University of

    for Gamma-Ray Imaging, we are developing a novel small-animal PET scanner that utilizes common modularModPET: A Novel Small-Animal PET System Positron Emission Tomography (PET) and PET/CT systems have these results to their human counterparts. Current small-animal PET scanners are very costly and complicated

  19. Radon transforms on generalized Cormack's curves and a new Compton scatter tomography This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Nguyen-Verger, Maï K.

    Radon transforms on generalized Cormack's curves and a new Compton scatter tomography modality:10.1088/0266-5611/27/12/125001 Radon transforms on generalized Cormack's curves and a new Compton/125001 Abstract In his seminal work of 1981, Cormack established that Radon transforms defined on two remarkable

  20. A 4D synchrotron X-ray tomography study of the formation of hydrocarbon migration pathways in heated organic-rich shale

    E-Print Network [OSTI]

    Boyer, Edmond

    in recent years because of the ever tightening supply of conventional hydrocarbons and the growingA 4D synchrotron X-ray tomography study of the formation of hydrocarbon migration pathways primary migration of hydrocarbons are closely related processes that have received renewed interests

  1. Re-Inversion of Surface Electrical Resistivity Tomography Data from the Hanford Site B-Complex

    SciTech Connect (OSTI)

    Johnson, Timothy C.; Wellman, Dawn M.

    2013-05-01

    This report documents the three-dimensional (3D) inversion results of surface electrical resistivity tomography (ERT) data collected over the Hanford Site B-Complex. The data were collected in order to image the subsurface distribution of electrically conductive vadose zone contamination resulting from both planned releases of contamination into subsurface infiltration galleries (cribs, trenches, and tile fields), as well as unplanned releases from the B, BX, and BY tank farms and/or associated facilities. Electrically conductive contaminants are those which increase the ionic strength of pore fluids compared to native conditions, which comprise most types of solutes released into the subsurface B-Complex. The ERT data were collected and originally inverted as described in detail in report RPP-34690 Rev 0., 2007, which readers should refer to for a detailed description of data collection and waste disposal history. Although the ERT imaging results presented in that report successfully delineated the footprint of vadose zone contamination in areas outside of the tank farms, imaging resolution was not optimized due to the inability of available inversion codes to optimally process the massive ERT data set collected at the site. Recognizing these limitations and the potential for enhanced ERT characterization and time-lapse imaging at contaminated sites, a joint effort was initiated in 2007 by the U.S. Department of Energy – Office of Science (DOE-SC), with later support by the Office of Environmental Management (DOE-EM), and the U.S. Department of Defense (DOD), to develop a high-performance distributed memory parallel 3D ERT inversion code capable of optimally processing large ERT data sets. The culmination of this effort was the development of E4D (Johnson et al., 2010,2012) In 2012, under the Deep Vadose Zone Applied Field Research Initiative (DVZ-AFRI), the U.S. Department of Energy – Richland Operations Office (DOE-RL) and CH2M Hill Plateau Remediation Company (CHPRC) commissioned an effort for the Pacific Northwest National Laboratory (PNNL) to re-invert the ERT data collected over the B-Complex using E4D, with the objective to improve imaging resolution and better understand the distribution of vadose zone contamination at the B-Complex. The details and results of that effort as documented in this report display a significant improvement in ERT image resolution, revealing the nature and orientation of contaminant plumes originating in former infiltration galleries and extending toward the water table. In particular, large plumes originating in the BY-Cribs area appear to have intercepted, or are close to intercepting the water table after being diverted eastward, possibly by the same low permeability unit causing perched water north of the B-Tank Farm boundary. Contaminant plumes are also evident beneath the BX-Trenches, but do not appear to have intercepted the water table. Imaging results within the tank farms themselves are highly biased by the dense network of electrically conductive tanks and dry wells, and are therefore inconclusive concerning contaminant distributions beneath tanks. However, beneath the diversion boxes, the results do reveal highly conductive anomalies that are not associated with metallic infrastructure, and may be diagnostic of extensive contamination. Overall, the parallel ERT inversion provides additional detail concerning contaminated zones in terms of conductive anomalies. These anomalies are consistent with waste disposal histories, and in several cases reveal lateral contaminant transport caused by heterogeneity within the vadose zone.

  2. The potential of positron emission tomography for intratreatment dynamic lung tumor tracking: A phantom study

    SciTech Connect (OSTI)

    Yang, Jaewon [Department of Electrical Engineering, Stanford University, Stanford, California 94305 and Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States)] [Department of Electrical Engineering, Stanford University, Stanford, California 94305 and Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Yamamoto, Tokihiro [Department of Radiation Oncology, University of California Davis, Sacramento, California 95817 (United States)] [Department of Radiation Oncology, University of California Davis, Sacramento, California 95817 (United States); Mazin, Samuel R. [RefleXion Medical, Inc., Burlingame, California 94010 (United States)] [RefleXion Medical, Inc., Burlingame, California 94010 (United States); Graves, Edward E. [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States)] [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Keall, Paul J., E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, University of Sydney, Sydney, NSW 2006 (Australia)

    2014-02-15

    Purpose: This study aims to evaluate the potential and feasibility of positron emission tomography for dynamic lung tumor tracking during radiation treatment. The authors propose a center of mass (CoM) tumor tracking algorithm using gated-PET images combined with a respiratory monitor and investigate the geometric accuracy of the proposed algorithm. Methods: The proposed PET dynamic lung tumor tracking algorithm estimated the target position information through the CoM of the segmented target volume on gated PET images reconstructed from accumulated coincidence events. The information was continuously updated throughout a scan based on the assumption that real-time processing was supported (actual processing time at each frame ?10?s). External respiratory motion and list-mode PET data were acquired from a phantom programmed to move with measured respiratory traces (external respiratory motion and internal target motion) from human subjects, for which the ground truth target position was known as a function of time. The phantom was cylindrical with six hollow sphere targets (10, 13, 17, 22, 28, and 37 mm in diameter). The measured respiratory traces consisted of two sets: (1) 1D-measured motion from ten healthy volunteers and (2) 3D-measured motion from four lung cancer patients. The authors evaluated the geometric accuracy of the proposed algorithm by quantifying estimation errors (Euclidean distance) between the actual motion of targets (1D-motion and 3D-motion traces) and CoM trajectories estimated by the proposed algorithm as a function of time. Results: The time-averaged error of 1D-motion traces over all trajectories of all targets was 1.6 mm. The error trajectories decreased with time as coincidence events were accumulated. The overall error trajectory of 1D-motion traces converged to within 2 mm in approximately 90 s. As expected, more accurate results were obtained for larger targets. For example, for the 37 mm target, the average error over all 1D-motion traces was 1.1 mm; and for the 10 mm target, the average error over all 1D-motion traces was 2.8 mm. The overall time-averaged error of 3D-motion traces was 1.6 mm, which was comparable to that of the 1D-motion traces. There were small variations in the errors between the 3D-motion traces, although the motion trajectories were very different. The accuracy of the estimates was consistent for all targets except for the smallest. Conclusions: The authors developed an algorithm for dynamic lung tumor tracking using list-mode PET data and a respiratory motion signal, and demonstrated proof-of-principle for PET-guided lung tumor tracking. The overall tracking error in phantom studies is less than 2 mm.

  3. Measured dose rate constant from oncology patients administered 18F for positron emission tomography

    SciTech Connect (OSTI)

    Quinn, Brian; Holahan, Brian; Aime, Jean; Humm, John; St Germain, Jean; Dauer, Lawrence T.

    2012-10-15

    Purpose: Patient exposure rate measurements verify published patient dose rate data and characterize dose rates near 2-18-fluorodeoxyglucose ({sup 18}F-FDG) patients. A specific dose rate constant based on patient exposure rate measurements is a convenient quantity that can be applied to the desired distance, injection activity, and time postinjection to obtain an accurate calculation of cumulative external radiation dose. This study reports exposure rates measured at various locations near positron emission tomography (PET) {sup 18}F-FDG patients prior to PET scanning. These measurements are normalized for the amount of administered activity, measurement distance, and time postinjection and are compared with other published data. Methods: Exposure rates were measured using a calibrated ionization chamber at various body locations from 152 adult oncology patients postvoid after a mean uptake time of 76 min following injection with a mean activity of 490 MBq {sup 18}F-FDG. Data were obtained at nine measurement locations for each patient: three near the head, four near the chest, and two near the feet. Results: On contact with, 30 cm superior to and 30 cm lateral to the head, the mean (75th percentile) dose rates per unit injected activity at 60 min postinjection were 0.482 (0.511), 0.135 (0.155), and 0.193 (0.223) {mu}Sv/MBq h, respectively. On contact with, 30 cm anterior to, 30 cm lateral to and 1 m anterior to the chest, the mean (75th percentile) dose rates per unit injected activity at 60 min postinjection were 0.623 (0.709), 0.254 (0.283), 0.190 (0.218), and 0.067 (0.081) {mu}Sv/MBq h respectively. 30 cm inferior and 30 cm lateral to the feet, the mean (75th percentile) dose rates per unit injected activity at 60 min postinjection were 0.024 (0.022) and 0.039 (0.044) {mu}Sv/MBq h, respectively. Conclusions: The measurements for this study support the use of 0.092 {mu}Sv m{sup 2}/MBq h as a reasonable representation of the dose rate anterior from the chest of patients immediately following injection. This value can then be reliably scaled to the desired time and distance for planning and staff dose evaluation purposes. At distances closer than 1 m, a distance-specific dose rate constant of 0.367 {mu}Sv/MBq h at 30 cm is recommended for accurate calculations. An accurate patient-specific dose rate constant that accounts for patient-specific variables (e.g., distribution and attenuation) will allow an accurate evaluation of the dose rate from a patient injected with an isotope rather than simply utilizing a physical constant.

  4. Evaluation of pore structures and cracking in cement paste exposed to elevated temperatures by X-ray computed tomography

    SciTech Connect (OSTI)

    Kim, Kwang Yeom, E-mail: kimky@kict.re.kr [Korea Institute of Construction Technology, 283 Goyangdae-ro, Ilsanseo-gu, Goyang 411-712 (Korea, Republic of); Yun, Tae Sup, E-mail: taesup@yonsei.ac.kr [School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, Kwang Pil, E-mail: bamtol97@kict.re.kr [Korea Institute of Construction Technology, 283 Goyangdae-ro, Ilsanseo-gu, Goyang 411-712 (Korea, Republic of)

    2013-08-15

    When cement-based materials are exposed to the high temperatures induced by fire, which can rapidly cause temperatures of over 1000 °C, the changes in pore structure and density prevail. In the present study, mortar specimens were subjected to a series of increasing temperatures to explore the temperature-dependent evolution of internal pore structure. High-performance X-ray computed tomography (CT) was used to observe the evolution of temperature-induced discontinuities at the sub-millimeter level. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to investigate the cause of physical changes in the heated mortar specimens. Results exhibit the changes in pore structure caused by elevated temperatures, and thermally induced fractures. We discuss the progressive formation of thermally induced fracture networks, which is a prerequisite for spalling failure of cement-based materials by fire, based on visual observations of the 3D internal structures revealed by X-ray CT.

  5. Computed tomography and optical remote sensing: Development for the study of indoor air pollutant transport and dispersion

    SciTech Connect (OSTI)

    Drescher, A.C.

    1995-06-01

    This thesis investigates the mixing and dispersion of indoor air pollutants under a variety of conditions using standard experimental methods. It also extensively tests and improves a novel technique for measuring contaminant concentrations that has the potential for more rapid, non-intrusive measurements with higher spatial resolution than previously possible. Experiments conducted in a sealed room support the hypothesis that the mixing time of an instantaneously released tracer gas is inversely proportional to the cube root of the mechanical power transferred to the room air. One table-top and several room-scale experiments are performed to test the concept of employing optical remote sensing (ORS) and computed tomography (CT) to measure steady-state gas concentrations in a horizontal plane. Various remote sensing instruments, scanning geometries and reconstruction algorithms are employed. Reconstructed concentration distributions based on existing iterative CT techniques contain a high degree of unrealistic spatial variability and do not agree well with simultaneously gathered point-sample data.

  6. Joint Reconstruction of Absorbed Optical Energy Density and Sound Speed Distribution in Photoacoustic Computed Tomography: A numerical Investigation

    E-Print Network [OSTI]

    Huang, Chao; Schoonover, Robert W; Wang, Lihong V; Anastasio, Mark A

    2015-01-01

    Photoacoustic computed tomography (PACT) is a rapidly emerging bioimaging modality that seeks to reconstruct an estimate of the absorbed optical energy density within an object. Conventional PACT image reconstruction methods assume a constant speed-of-sound (SOS), which can result in image artifacts when acoustic aberrations are significant. It has been demonstrated that incorporating knowledge of an object's SOS distribution into a PACT image reconstruction method can improve image quality. However, in many cases, the SOS distribution cannot be accurately and/or conveniently estimated prior to the PACT experiment. Because variations in the SOS distribution induce aberrations in the measured photoacoustic wavefields, certain information regarding an object's SOS distribution is encoded in the PACT measurement data. Based on this observation, a joint reconstruction (JR) problem has been proposed in which the SOS distribution is concurrently estimated along with the sought-after absorbed optical energy density ...

  7. Sparger Effects on Gas Volume Fraction Distributions in Vertical Bubble-Column Flows as Measured by Gamma-Densitometry Tomography

    SciTech Connect (OSTI)

    GEORGE,DARIN L.; SHOLLENBERGER,KIM ANN; TORCZYNSKI,JOHN R.

    2000-01-18

    Gamma-densitometry tomography is applied to study the effect of sparger hole geometry, gas flow rate, column pressure, and phase properties on gas volume fraction profiles in bubble columns. Tests are conducted in a column 0.48 m in diameter, using air and mineral oil, superficial gas velocities ranging from 5 to 30 cm s{sup -1}, and absolute column pressures from 103 to 517 kPa. Reconstructed gas volume fraction profiles from two sparger geometries are presented. The development length of the gas volume fraction profile is found to increase with gas flow rate and column pressure. Increases in gas flow rate increase the local gas volume fraction preferentially on the column axis, whereas increases in column pressure produce a uniform rise in gas volume fraction across the column. A comparison of results from the two spargers indicates a significant change in development length with the number and size of sparger holes.

  8. Mathematical modeling of positron emission tomography (PET) data to assess radiofluoride transport in living plants following petiolar administration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Converse, Alexander K.; Ahlers, Elizabeth O.; Bryan, Tom W.; Hetue, Jackson D.; Lake, Katherine A.; Ellison, Paul A.; Engle, Jonathan W.; Barnhart, Todd E.; Nickles, Robert J.; Williams, Paul H.; et al

    2015-03-15

    Background: Ion transport is a fundamental physiological process that can be studied non-invasively in living plants with radiotracer imaging methods. Fluoride is a known phytotoxic pollutant and understanding its transport in plants after leaf absorption is of interest to those in agricultural areas near industrial sources of airborne fluoride. Here we report the novel use of a commercial, high-resolution, animal positron emission tomography (PET) scanner to trace a bolus of [¹?F]fluoride administered via bisected petioles of Brassica oleracea, an established model species, to simulate whole plant uptake of atmospheric fluoride. This methodology allows for the first time mathematical compartmental modelingmore »of fluoride transport in the living plant. Radiotracer kinetics in the stem were described with a single-parameter free- and trapped-compartment model and mean arrival times at different stem positions were calculated from the free-compartment time-activity curves. Results: After initiation of administration at the bisected leaf stalk, [¹?F] radioactivity climbed for approximately 10 minutes followed by rapid washout from the stem and equilibration within leaves. Kinetic modeling of transport in the stem yielded a trapping rate of 1.5 +/- 0.3%/min (mean +/- s.d., n = 3), velocity of 2.2 +/- 1.1 cm/min, and trapping fraction of 0.8 +/- 0.5%/cm. Conclusion: Quantitative assessment of physiologically meaningful transport parameters of fluoride in living plants is possible using standard positron emission tomography in combination with petiolar radiotracer administration. Movement of free fluoride was observed to be consistent with bulk flow in xylem, namely a rapid and linear change in position with respect to time. Trapping, likely in the apoplast, was observed. Future applications of the methods described here include studies of transport of other ions and molecules of interest in plant physiology.« less

  9. Mathematical modeling of positron emission tomography (PET) data to assess radiofluoride transport in living plants following petiolar administration

    SciTech Connect (OSTI)

    Converse, Alexander K. [Univ. of Wisconsin, Madison, WI (United States); Ahlers, Elizabeth O. [Univ. of Wisconsin, Madison, WI (United States); Bryan, Tom W. [Univ. of Wisconsin, Madison, WI (United States); Hetue, Jackson D. [Univ. of Wisconsin, Madison, WI (United States); Lake, Katherine A. [Univ. of Wisconsin, Madison, WI (United States); Ellison, Paul A. [Univ. of Wisconsin, Madison, WI (United States); Engle, Jonathan W. [Univ. of Wisconsin, Madison, WI (United States); Barnhart, Todd E. [Univ. of Wisconsin, Madison, WI (United States); Nickles, Robert J. [Univ. of Wisconsin, Madison, WI (United States); Williams, Paul H. [Univ. of Wisconsin, Madison, WI (United States); DeJesus, Onofre T. [Univ. of Wisconsin, Madison, WI (United States)

    2015-01-01

    Background: Ion transport is a fundamental physiological process that can be studied non-invasively in living plants with radiotracer imaging methods. Fluoride is a known phytotoxic pollutant and understanding its transport in plants after leaf absorption is of interest to those in agricultural areas near industrial sources of airborne fluoride. Here we report the novel use of a commercial, high-resolution, animal positron emission tomography (PET) scanner to trace a bolus of [¹?F]fluoride administered via bisected petioles of Brassica oleracea, an established model species, to simulate whole plant uptake of atmospheric fluoride. This methodology allows for the first time mathematical compartmental modeling of fluoride transport in the living plant. Radiotracer kinetics in the stem were described with a single-parameter free- and trapped-compartment model and mean arrival times at different stem positions were calculated from the free-compartment time-activity curves. Results: After initiation of administration at the bisected leaf stalk, [¹?F] radioactivity climbed for approximately 10 minutes followed by rapid washout from the stem and equilibration within leaves. Kinetic modeling of transport in the stem yielded a trapping rate of 1.5 +/- 0.3%/min (mean +/- s.d., n = 3), velocity of 2.2 +/- 1.1 cm/min, and trapping fraction of 0.8 +/- 0.5%/cm. Conclusion: Quantitative assessment of physiologically meaningful transport parameters of fluoride in living plants is possible using standard positron emission tomography in combination with petiolar radiotracer administration. Movement of free fluoride was observed to be consistent with bulk flow in xylem, namely a rapid and linear change in position with respect to time. Trapping, likely in the apoplast, was observed. Future applications of the methods described here include studies of transport of other ions and molecules of interest in plant physiology.

  10. SU-E-T-20: A Novel Hybrid CBCT, Bioluminescence and Fluorescence Tomography System for Preclinical Radiation Research

    SciTech Connect (OSTI)

    Zhang, B; Eslami, S; Iordachita, I; Yang, Y; Patterson, M; Wong, J; Wang, K

    2014-06-01

    Purpose: A novel standalone bioluminescence and fluorescence tomography (BLT and FT) system equipped with high resolution CBCT has been built in our group. In this work, we present the system calibration method and validate our system in both phantom and in vivo environment. Methods: The CBCT is acquired by rotating the animal stage while keeping the x-ray source and detector panel static. The optical signal is reflected by the 3-mirror system to a multispectral filter set and then delivered to the CCD camera with f/1.4 lens mounted. Nine fibers passing through the stage and in contact with the mouse skin serve as the light sources for diffuse optical tomography (DOT) and FT. The anatomical information and optical properties acquired from the CBCT and DOT, respectively, are used as the priori information to improve the BLT/FT reconstruction accuracy. Flat field correction for the optical system was acquired at multiple wavelengths. A home-built phantom is used to register the optical and CBCT coordinates. An absolute calibration relating the CCD photon counts rate to the light fluence rate emitted at animal surface was developed to quantify the bioluminescence power or fluorophore concentration. Results: An optical inhomogeneous phantom with 2 light sources (3mm separation) imbedded is used to test the system. The optical signal is mapped onto the mesh generated from CBCT for optical reconstruction. Our preliminary results show that the center of mass can be reconstructed within 2.8mm accuracy. A live mouse with the light source imbedded is also used to validate our system. Liver or lung metastatic luminescence tumor model will be used for further testing. Conclusion: This hybrid system transforms preclinical research to a level that even sub-palpable volume of cells can be imaged rapidly and non-invasively, which largely extends the scope of radiobiological research. The research is supported by the NCI grant R01CA158100-01.

  11. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator

    SciTech Connect (OSTI)

    Andersson, P. Andersson-Sunden, E.; Sjöstrand, H.; Jacobsson-Svärd, S.

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm{sup ?1}, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful indication on the flow mode, and a visualization of the radial material distribution can be obtained. A benefit of this system is its potential to be mounted at any axial height of a two-phase test section without requirements for pre-fabricated entrances or windows. This could mean a significant increase in flexibility of the void distribution assessment capability at many existing two-phase test loops.

  12. Travel Time Tomography and Tensor Tomography, III

    E-Print Network [OSTI]

    Plamen Stefanov

    2009-07-31

    Sx M. |?(x, ?)|2?(? · ?) d?(?). For tensors, the “weight” is ?i ?j . We get that the principal symbol in that case is ?p(N)ijkl (x, ?)=2?. Z. Sx M ?i ?j ?k ?l ?(? · ?) d?(?).

  13. Effects of laser energy and wavelength on the analysis of LiFePO? using laser assisted atom probe tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Santhanagopalan, Dhamodaran; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Richard L.; Janssen, Yuri; Khalifah, Peter; Meng, Ying Shirley

    2014-09-21

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO? by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ/pulse from 50 pJ/pulse increased the observed oxygenmore »concentration to nearer its correct stoichiometry, which was also well correlated with systematically higher concentrations of ¹?O?? ions. Green laser assisted field evaporation led to the selective loss of Li (33% deficiency) and a relatively minor O deficiency. The loss of Li is likely a result of selective dc evaporation of Li between or after laser pulses. Comparison of the UV and green laser data suggests that the green wavelength energy was absorbed less efficiently than the UV wavelength because of differences in absorption at 355 and 532 nm for LiFePO?. Plotting of multihit events on Saxey plots also revealed a strong neutral O? loss from molecular dissociation, but quantification of this loss was insufficient to account for the observed oxygen deficiency.« less

  14. Effects of laser energy and wavelength on the analysis of LiFePO? using laser assisted atom probe tomography

    SciTech Connect (OSTI)

    Santhanagopalan, Dhamodaran; Khalifah, Peter; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Richard L.; Janssen, Yuri; Meng, Ying Shirley

    2015-01-01

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO? by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ/pulse from 50 pJ/pulse increased the observed oxygen concentration to nearer its correct stoichiometry, which was also well correlated with systematically higher concentrations of ¹?O?? ions. Green laser assisted field evaporation led to the selective loss of Li (33% deficiency) and a relatively minor O deficiency. The loss of Li is likely a result of selective dc evaporation of Li between or after laser pulses. Comparison of the UV and green laser data suggests that the green wavelength energy was absorbed less efficiently than the UV wavelength because of differences in absorption at 355 and 532 nm for LiFePO?. Plotting of multihit events on Saxey plots also revealed a strong neutral O? loss from molecular dissociation, but quantification of this loss was insufficient to account for the observed oxygen deficiency.

  15. Accelerated Aging of BKC 44306-10 Rigid Polyurethane Foam: FT-IR Spectroscopy, Dimensional Analysis, and Micro Computed Tomography

    SciTech Connect (OSTI)

    Gilbertson, Robert D.; Patterson, Brian M.; Smith, Zachary

    2014-01-02

    An accelerated aging study of BKC 44306-10 rigid polyurethane foam was carried out. Foam samples were aged in a nitrogen atmosphere at three different temperatures: 50 °C, 65 °C, and 80 °C. Foam samples were periodically removed from the aging canisters at 1, 3, 6, 9, 12, and 15 month intervals when FT-IR spectroscopy, dimensional analysis, and mechanical testing experiments were performed. Micro Computed Tomography imaging was also employed to study the morphology of the foams. Over the course of the aging study the foams the decreased in size by a magnitude of 0.001 inches per inch of foam. Micro CT showed the heterogeneous nature of the foam structure likely resulting from flow effects during the molding process. The effect of aging on the compression and tensile strength of the foam was minor and no cause for concern. FT-IR spectroscopy was used to follow the foam chemistry. However, it was difficult to draw definitive conclusions about the changes in chemical nature of the materials due to large variability throughout the samples.

  16. Accurate measurement of relative tilt and azimuth angles in electron tomography: A comparison of fiducial marker method with electron diffraction

    SciTech Connect (OSTI)

    Hayashida, Misa [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Malac, Marek; Egerton, Ray F. [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton T6G 2M9 (Canada); Department of Physics, University of Alberta, Edmonton T6H 2E1 (Canada); Bergen, Michael; Li, Peng [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton T6G 2M9 (Canada)

    2014-08-15

    Electron tomography is a method whereby a three-dimensional reconstruction of a nanoscale object is obtained from a series of projected images measured in a transmission electron microscope. We developed an electron-diffraction method to measure the tilt and azimuth angles, with Kikuchi lines used to align a series of diffraction patterns obtained with each image of the tilt series. Since it is based on electron diffraction, the method is not affected by sample drift and is not sensitive to sample thickness, whereas tilt angle measurement and alignment using fiducial-marker methods are affected by both sample drift and thickness. The accuracy of the diffraction method benefits reconstructions with a large number of voxels, where both high spatial resolution and a large field of view are desired. The diffraction method allows both the tilt and azimuth angle to be measured, while fiducial marker methods typically treat the tilt and azimuth angle as an unknown parameter. The diffraction method can be also used to estimate the accuracy of the fiducial marker method, and the sample-stage accuracy. A nano-dot fiducial marker measurement differs from a diffraction measurement by no more than ±1°.

  17. Quantum state tomography of large nuclear spins in a semiconductor quantum well: Robustness against errors as quantified by condition numbers

    E-Print Network [OSTI]

    Adam Miranowicz; Sahin K. Ozdemir; Jiri Bajer; Go Yusa; Nobuyuki Imoto; Yoshiro Hirayama; Franco Nori

    2014-10-09

    We discuss methods of quantum state tomography for solid-state systems with a large nuclear spin $I=3/2$ in nanometer-scale semiconductors devices based on a quantum well. Due to quadrupolar interactions, the Zeeman levels of these nuclear-spin devices become nonequidistant, forming a controllable four-level quantum system (known as quartit or ququart). The occupation of these levels can be selectively and coherently manipulated by multiphoton transitions using the techniques of nuclear magnetic resonance (NMR) [Yusa et al., Nature (London) 434, 101 (2005)]. These methods are based on an unconventional approach to NMR, where the longitudinal magnetization $M_z$ is directly measured. This is in contrast to the standard NMR experiments and tomographic methods, where the transverse magnetization $M_{xy}$ is detected. The robustness against errors in the measured data is analyzed by using condition numbers. We propose several methods with optimized sets of rotations. The optimization is applied to decrease the number of NMR readouts and to improve the robustness against errors, as quantified by condition numbers. An example of state reconstruction, using Monte Carlo methods, is presented. Tomographic methods for quadrupolar nuclei with higher-spin numbers (including $I=7/2$) are also described.

  18. Accounting for baryonic effects in cosmic shear tomography: Determining a minimal set of nuisance parameters using PCA

    SciTech Connect (OSTI)

    Eifler, Tim; Krause, Elisabeth; Dodelson, Scott; Zentner, Andrew; Hearin, Andrew; Gnedin, Nickolay

    2014-05-28

    Systematic uncertainties that have been subdominant in past large-scale structure (LSS) surveys are likely to exceed statistical uncertainties of current and future LSS data sets, potentially limiting the extraction of cosmological information. Here we present a general framework (PCA marginalization) to consistently incorporate systematic effects into a likelihood analysis. This technique naturally accounts for degeneracies between nuisance parameters and can substantially reduce the dimension of the parameter space that needs to be sampled. As a practical application, we apply PCA marginalization to account for baryonic physics as an uncertainty in cosmic shear tomography. Specifically, we use CosmoLike to run simulated likelihood analyses on three independent sets of numerical simulations, each covering a wide range of baryonic scenarios differing in cooling, star formation, and feedback mechanisms. We simulate a Stage III (Dark Energy Survey) and Stage IV (Large Synoptic Survey Telescope/Euclid) survey and find a substantial bias in cosmological constraints if baryonic physics is not accounted for. We then show that PCA marginalization (employing at most 3 to 4 nuisance parameters) removes this bias. Our study demonstrates that it is possible to obtain robust, precise constraints on the dark energy equation of state even in the presence of large levels of systematic uncertainty in astrophysical processes. We conclude that the PCA marginalization technique is a powerful, general tool for addressing many of the challenges facing the precision cosmology program.

  19. Permeability of laboratory-formed methane-hydrate-bearing sand: Measurements and observations using x-ray computed tomography

    SciTech Connect (OSTI)

    Kneafsey, T. J.; Seol, Y.; Gupta, A.; Tomutsa, L.

    2010-09-15

    Methane hydrate was formed in two moist sands and a sand/silt mixture under a confining stress in an X-ray-transparent pressure vessel. Three initial water saturations were used to form three different methane-hydrate saturations in each medium. X-ray computed tomography (CT) was used to observe location-specific density changes caused by hydrate formation and flowing water. Gas-permeability measurements in each test for the dry, moist, frozen, and hydrate-bearing states are presented. As expected, the effective permeabilities (intrinsic permeability of the medium multiplied by the relative permeability) of the moist sands decreased with increasing moisture content. In a series of tests on a single sample, the effective permeability typically decreased as the pore space became more filled, in the order of dry, moist, frozen, and hydrate-bearing. In each test, water was flowed through the hydrate-bearing medium and we observed the location-specific changes in water saturation using CT scanning. We compared our data to a number of models, and our relative permeability data compare most favorably with models in which hydrate occupies the pore bodies rather than the pore throats. Inverse modeling (using the data collected from the tests) will be performed to extend the relative permeability measurements.

  20. X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand

    SciTech Connect (OSTI)

    Seol, Yongkoo; Kneafsey, Timothy J.

    2009-06-01

    We used X-ray computed tomography (CT) to image and quantify the effect of a heterogeneous sand grain-size distribution on the formation and dissociation of methane hydrate, as well as the effect on water flow through the heterogeneous hydrate-bearing sand. A 28 cm long sand column was packed with several segments having vertical and horizontal layers with sands of different grain-size distributions. During the hydrate formation, water redistribution occurred. Observations of water flow through the hydrate-bearing sands showed that water was imbibed more readily into the fine sand, and that higher hydrate saturation increased water imbibition in the coarse sand due to increased capillary strength. Hydrate dissociation induced by depressurization resulted in different flow patterns with the different grain sizes and hydrate saturations, but the relationships between dissociation rates and the grain sizes could not be identified using the CT images. The formation, presence, and dissociation of hydrate in the pore space dramatically impact water saturation and flow in the system.

  1. SU-D-12A-07: Optimization of a Moving Blocker System for Cone-Beam Computed Tomography Scatter Correction

    SciTech Connect (OSTI)

    Ouyang, L; Yan, H; Jia, X; Jiang, S; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States); Zhang, H [Southern Medical University, Guangzhou, Guang Dong (China)

    2014-06-01

    Purpose: A moving blocker based strategy has shown promising results for scatter correction in cone-beam computed tomography (CBCT). Different parameters of the system design affect its performance in scatter estimation and image reconstruction accuracy. The goal of this work is to optimize the geometric design of the moving block system. Methods: In the moving blocker system, a blocker consisting of lead strips is inserted between the x-ray source and imaging object and moving back and forth along rotation axis during CBCT acquisition. CT image of an anthropomorphic pelvic phantom was used in the simulation study. Scatter signal was simulated by Monte Carlo calculation with various combinations of the lead strip width and the gap between neighboring lead strips, ranging from 4 mm to 80 mm (projected at the detector plane). Scatter signal in the unblocked region was estimated by cubic B-spline interpolation from the blocked region. Scatter estimation accuracy was quantified as relative root mean squared error by comparing the interpolated scatter to the Monte Carlo simulated scatter. CBCT was reconstructed by total variation minimization from the unblocked region, under various combinations of the lead strip width and gap. Reconstruction accuracy in each condition is quantified by CT number error as comparing to a CBCT reconstructed from unblocked full projection data. Results: Scatter estimation error varied from 0.5% to 2.6% as the lead strip width and the gap varied from 4mm to 80mm. CT number error in the reconstructed CBCT images varied from 12 to 44. Highest reconstruction accuracy is achieved when the blocker lead strip width is 8 mm and the gap is 48 mm. Conclusions: Accurate scatter estimation can be achieved in large range of combinations of lead strip width and gap. However, image reconstruction accuracy is greatly affected by the geometry design of the blocker.

  2. Near-infrared spectral tomography integrated with digital breast tomosynthesis: Effects of tissue scattering on optical data acquisition design

    SciTech Connect (OSTI)

    Michaelsen, Kelly; Krishnaswamy, Venkat; Pogue, Brian W.; Poplack, Steven P.; Paulsen, Keith D.

    2012-07-15

    Purpose: Design optimization and phantom validation of an integrated digital breast tomosynthesis (DBT) and near-infrared spectral tomography (NIRST) system targeting improvement in sensitivity and specificity of breast cancer detection is presented. Factors affecting instrumentation design include minimization of cost, complexity, and examination time while maintaining high fidelity NIRST measurements with sufficient information to recover accurate optical property maps. Methods: Reconstructed DBT slices from eight patients with abnormal mammograms provided anatomical information for the NIRST simulations. A limited frequency domain (FD) and extensive continuous wave (CW) NIRST system was modeled. The FD components provided tissue scattering estimations used in the reconstruction of the CW data. Scattering estimates were perturbed to study the effects on hemoglobin recovery. Breast mimicking agar phantoms with inclusions were imaged using the combined DBT/NIRST system for comparison with simulation results. Results: Patient simulations derived from DBT images show successful reconstruction of both normal and malignant lesions in the breast. They also demonstrate the importance of accurately quantifying tissue scattering. Specifically, 20% errors in optical scattering resulted in 22.6% or 35.1% error in quantification of total hemoglobin concentrations, depending on whether scattering was over- or underestimated, respectively. Limited frequency-domain optical signal sampling provided two regions scattering estimates (for fat and fibroglandular tissues) that led to hemoglobin concentrations that reduced the error in the tumor region by 31% relative to when a single estimate of optical scattering was used throughout the breast volume of interest. Acquiring frequency-domain data with six wavelengths instead of three did not significantly improve the hemoglobin concentration estimates. Simulation results were confirmed through experiments in two-region breast mimicking gelatin phantoms. Conclusions: Accurate characterization of scattering is necessary for quantification of hemoglobin. Based on this study, a system design is described to optimally combine breast tomosynthesis with NIRST.

  3. Reducing the effects of acoustic heterogeneity with an iterative reconstruction method from experimental data in microwave induced thermoacoustic tomography

    SciTech Connect (OSTI)

    Wang, Jinguo; Zhao, Zhiqin Song, Jian; Chen, Guoping; Nie, Zaiping; Liu, Qing-Huo

    2015-05-15

    Purpose: An iterative reconstruction method has been previously reported by the authors of this paper. However, the iterative reconstruction method was demonstrated by solely using the numerical simulations. It is essential to apply the iterative reconstruction method to practice conditions. The objective of this work is to validate the capability of the iterative reconstruction method for reducing the effects of acoustic heterogeneity with the experimental data in microwave induced thermoacoustic tomography. Methods: Most existing reconstruction methods need to combine the ultrasonic measurement technology to quantitatively measure the velocity distribution of heterogeneity, which increases the system complexity. Different to existing reconstruction methods, the iterative reconstruction method combines time reversal mirror technique, fast marching method, and simultaneous algebraic reconstruction technique to iteratively estimate the velocity distribution of heterogeneous tissue by solely using the measured data. Then, the estimated velocity distribution is used subsequently to reconstruct the highly accurate image of microwave absorption distribution. Experiments that a target placed in an acoustic heterogeneous environment are performed to validate the iterative reconstruction method. Results: By using the estimated velocity distribution, the target in an acoustic heterogeneous environment can be reconstructed with better shape and higher image contrast than targets that are reconstructed with a homogeneous velocity distribution. Conclusions: The distortions caused by the acoustic heterogeneity can be efficiently corrected by utilizing the velocity distribution estimated by the iterative reconstruction method. The advantage of the iterative reconstruction method over the existing correction methods is that it is successful in improving the quality of the image of microwave absorption distribution without increasing the system complexity.

  4. Dual-Energy Micro-Computed Tomography Imaging of Radiation-Induced Vascular Changes in Primary Mouse Sarcomas

    SciTech Connect (OSTI)

    Moding, Everett J. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States)] [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Clark, Darin P.; Qi, Yi [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States)] [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Li, Yifan; Ma, Yan [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)] [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Ghaghada, Ketan [The Edward B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas (United States)] [The Edward B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas (United States); Johnson, G. Allan [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States)] [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Kirsch, David G. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States) [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Badea, Cristian T., E-mail: cristian.badea@duke.edu [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States)

    2013-04-01

    Purpose: To evaluate the effects of radiation therapy on primary tumor vasculature using dual-energy (DE) micro-computed tomography (micro-CT). Methods and Materials: Primary sarcomas were generated with mutant Kras and p53. Unirradiated tumors were compared with tumors irradiated with 20 Gy. A liposomal-iodinated contrast agent was administered 1 day after treatment, and mice were imaged immediately after injection (day 1) and 3 days later (day 4) with DE micro-CT. CT-derived tumor sizes were used to assess tumor growth. After DE decomposition, iodine maps were used to assess tumor fractional blood volume (FBV) at day 1 and tumor vascular permeability at day 4. For comparison, tumor vascularity and vascular permeability were also evaluated histologically by use of CD31 immunofluorescence and fluorescently-labeled dextrans. Results: Radiation treatment significantly decreased tumor growth from day 1 to day 4 (P<.05). There was a positive correlation between CT measurement of tumor FBV on day 1 and extravasated iodine on day 4 with microvascular density (MVD) on day 4 (R{sup 2}=0.53) and dextran accumulation (R{sup 2}=0.63) on day 4, respectively. Despite no change in MVD measured by histology, tumor FBV significantly increased after irradiation as measured by DE micro-CT (0.070 vs 0.091, P<.05). Both dextran and liposomal-iodine accumulation in tumors increased significantly after irradiation, with dextran fractional area increasing 5.2-fold and liposomal-iodine concentration increasing 4.0-fold. Conclusions: DE micro-CT is an effective tool for noninvasive assessment of vascular changes in primary tumors. Tumor blood volume and vascular permeability increased after a single therapeutic dose of radiation treatment.

  5. Investigation of the Feasibility of Utilizing Gamma Emission Computed Tomography in Evaluating Fission Product Migration in Irradiated TRISO Fuel Experiments

    SciTech Connect (OSTI)

    Jason M. Harp; Paul A. Demkowicz

    2014-10-01

    In the High Temperature Gas-Cooled Reactor (HTGR) the TRISO particle fuel serves as the primary fission product containment. However the large number of TRISO particles present in proposed HTGRs dictates that there will be a small fraction (~10-4 to 10-5) of as manufactured and in-pile particle failures that will lead to some fission product release. The matrix material surrounding the TRISO particles in fuel compacts and the structural graphite holding the TRISO particles in place can also serve as sinks for containing any released fission products. However data on the migration of solid fission products through these materials is lacking. One of the primary goals of the AGR-3/4 experiment is to study fission product migration from failed TRISO particles in prototypic HTGR components such as structural graphite and compact matrix material. In this work, the potential for a Gamma Emission Computed Tomography (GECT) technique to non-destructively examine the fission product distribution in AGR-3/4 components and other irradiation experiments is explored. Specifically, the feasibility of using the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) Precision Gamma Scanner (PGS) system for this GECT application is considered. To test the feasibility, the response of the PGS system to idealized fission product distributions has been simulated using Monte Carlo radiation transport simulations. Previous work that applied similar techniques during the AGR-1 experiment will also be discussed as well as planned uses for the GECT technique during the post irradiation examination of the AGR-2 experiment. The GECT technique has also been applied to other irradiated nuclear fuel systems that were currently available in the HFEF hot cell including oxide fuel pins, metallic fuel pins, and monolithic plate fuel.

  6. Vector Analysis of Prostate Patient Setup With Image-Guided Radiation Therapy via kV Cone Beam Computed Tomography

    SciTech Connect (OSTI)

    Perks, Julian, E-mail: julian.perks@ucdmc.ucdavis.ed [Department of Radiation Oncology, University of California, Davis, Sacramento, California (United States); Turnbull, Helen; Liu Tianxiao; Purdy, James; Valicenti, Richard [Department of Radiation Oncology, University of California, Davis, Sacramento, California (United States)

    2011-03-01

    Purpose: To analyze the daily setup variations in a cohort of intensity-modulated radiation therapy (IMRT) prostate cancer patients who had received daily image-guided RT without the use of fiducial markers to determine if daily image guidance is necessary. Methods and Materials: 2134 Kilovoltage (kV) cone beam computed tomography (CBCT) images were analyzed, with three shifts recorded for each image. The number of times that the vector of the combined shifts would have exceeded the planning tumor volume (PTV) margin was tallied. Then, the average scalar shift of the first five images was removed from all subsequent images for a given patient, and the number of days for which the shift vector was greater than the three-dimensional clinical tumor volume-PTV (3D CTV-PTV) margin (8 mm, created with rolling ball technique) was recorded. Additionally, the scalar shifts from every other fraction were studied to determine if the individual patient's shift vector would be adequately sampled if CBCT was not performed daily, thus reducing patient imaging dose without compromising treatment quality. Results: There were 297 cases where the vector shift was initially greater than the PTV margin. By correcting each patient's data set by the average shift of their first five images the total was 248 cases. By considering only every other image of each patient data set (after correction for the first 5 days), only 137 days in which the CTV was outside the PTV would have been seen. Conclusions: Daily imaging is recommended for prostate cancer IMRT patients in order to know the 3D (vector) position of the CTV and to ensure that it is always within the PTV margin. Correcting the data set by the average shift from the first 5 days reduces the overall number of outlier days but does not eliminate them completely.

  7. L-[METHYL-{sup 11}C] Methionine Positron Emission Tomography for Target Delineation in Malignant Gliomas: Impact on Results of Carbon Ion Radiotherapy

    SciTech Connect (OSTI)

    Mahasittiwat, Pawinee; Mizoe, Jun-etsu Hasegawa, Azusa; Ishikawa, Hiroyuki; Yoshikawa, Kyosan; Mizuno, Hideyuki; Yanagi, Takeshi; Takagi, Ryou D.D.S.; Pattaranutaporn, Pittayapoom; Tsujii, Hirohiko

    2008-02-01

    Purpose: To assess the importance of {sup 11}C-methionine (MET)-positron emission tomography (PET) for clinical target volume (CTV) delineation. Methods and Materials: This retrospective study analyzed 16 patients with malignant glioma (4 patients, anaplastic astrocytoma; 12 patients, glioblastoma multiforme) treated with surgery and carbon ion radiotherapy from April 2002 to Nov 2005. The MET-PET target volume was compared with gross tumor volume and CTV, defined by using computed tomography/magnetic resonance imaging (MRI). Correlations with treatment results were evaluated between positive and negative extended volumes (EVs) of the MET-PET target for CTV. Results: Mean volumes of the MET-PET targets, CTV1 (defined by means of high-intensity volume on T2-weighted MRI), and CTV2 (defined by means of contrast-enhancement volume on T1-weighted MRI) were 6.35, 264.7, and 117.7 cm{sup 3}, respectively. Mean EVs of MET-PET targets for CTV1 and CTV2 were 0.6 and 2.2 cm{sup 3}, respectively. The MET-PET target volumes were included in CTV1 and CTV2 in 13 (81.3%) and 11 patients (68.8%), respectively. Patients with a negative EV for CTV1 had significantly greater survival rate (p = 0.0069), regional control (p = 0.0047), and distant control time (p = 0.0267) than those with a positive EV. Distant control time also was better in patients with a negative EV for CTV2 than those with a positive EV (p = 0.0401). Conclusions: For patients with malignant gliomas, MET-PET has a possibility to be a predictor of outcome in carbon ion radiotherapy. Direct use of MET-PET fused to planning computed tomography will be useful and yield favorable results for the therapy.

  8. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, S. S.; Williams, J. J.; Lin, M. F.; Xiao, X.; De Carlo, F.; Chawla, N.

    2014-05-14

    In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.

  9. Computed tomography image using sub-terahertz waves generated from a high-T{sub c} superconducting intrinsic Josephson junction oscillator

    SciTech Connect (OSTI)

    Kashiwagi, T., E-mail: kashiwagi@ims.tsukuba.ac.jp; Minami, H.; Kadowaki, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Nakade, K.; Saiwai, Y.; Kitamura, T.; Watanabe, C.; Ishida, K.; Sekimoto, S.; Asanuma, K.; Yasui, T.; Shibano, Y. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Tsujimoto, M. [Department of Electronic Science and Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Yamamoto, T. [Wide Bandgap Materials Group, Optical and Electronic Materials Unit, Environment and Energy Materials Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Markovi?, B. [Faculty of Sciences, University of Montenegro, George Washington Str., 81000 Podgorica (Montenegro); Mirkovi?, J. [Faculty of Science, University of Montenegro, and CETI, Put Radomira Ivanovica, 81000 Podgorica (Montenegro); Klemm, R. A. [Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816-2385 (United States)

    2014-02-24

    A computed tomography (CT) imaging system using monochromatic sub-terahertz coherent electromagnetic waves generated from a device constructed from the intrinsic Josephson junctions in a single crystalline mesa structure of the high-T{sub c} superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+?} was developed and tested on three samples: Standing metallic rods supported by styrofoam, a dried plant (heart pea) containing seeds, and a plastic doll inside an egg shell. The images obtained strongly suggest that this CT imaging system may be useful for a variety of practical applications.

  10. Predicting oropharyngeal tumor volume throughout the course of radiation therapy from pretreatment computed tomography data using general linear models

    SciTech Connect (OSTI)

    Yock, Adam D. Kudchadker, Rajat J.; Rao, Arvind; Dong, Lei; Beadle, Beth M.; Garden, Adam S.; Court, Laurence E.

    2014-05-15

    Purpose: The purpose of this work was to develop and evaluate the accuracy of several predictive models of variation in tumor volume throughout the course of radiation therapy. Methods: Nineteen patients with oropharyngeal cancers were imaged daily with CT-on-rails for image-guided alignment per an institutional protocol. The daily volumes of 35 tumors in these 19 patients were determined and used to generate (1) a linear model in which tumor volume changed at a constant rate, (2) a general linear model that utilized the power fit relationship between the daily and initial tumor volumes, and (3) a functional general linear model that identified and exploited the primary modes of variation between time series describing the changing tumor volumes. Primary and nodal tumor volumes were examined separately. The accuracy of these models in predicting daily tumor volumes were compared with those of static and linear reference models using leave-one-out cross-validation. Results: In predicting the daily volume of primary tumors, the general linear model and the functional general linear model were more accurate than the static reference model by 9.9% (range: ?11.6%–23.8%) and 14.6% (range: ?7.3%–27.5%), respectively, and were more accurate than the linear reference model by 14.2% (range: ?6.8%–40.3%) and 13.1% (range: ?1.5%–52.5%), respectively. In predicting the daily volume of nodal tumors, only the 14.4% (range: ?11.1%–20.5%) improvement in accuracy of the functional general linear model compared to the static reference model was statistically significant. Conclusions: A general linear model and a functional general linear model trained on data from a small population of patients can predict the primary tumor volume throughout the course of radiation therapy with greater accuracy than standard reference models. These more accurate models may increase the prognostic value of information about the tumor garnered from pretreatment computed tomography images and facilitate improved treatment management.

  11. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography

    SciTech Connect (OSTI)

    Cai, C.; Rodet, T.; Mohammad-Djafari, A.; Legoupil, S.

    2013-11-15

    Purpose: Dual-energy computed tomography (DECT) makes it possible to get two fractions of basis materials without segmentation. One is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical DECT measurements are usually obtained with polychromatic x-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam polychromaticity fail to estimate the correct decomposition fractions and result in beam-hardening artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log preprocessing and the ill-conditioned water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on nonlinear forward models counting the beam polychromaticity show great potential for giving accurate fraction images.Methods: This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint maximum a posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a nonquadratic cost function. To solve it, the use of a monotone conjugate gradient algorithm with suboptimal descent steps is proposed.Results: The performance of the proposed approach is analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also necessary to have the accurate spectrum information about the source-detector system. When dealing with experimental data, the spectrum can be predicted by a Monte Carlo simulator. For the materials between water and bone, less than 5% separation errors are observed on the estimated decomposition fractions.Conclusions: The proposed approach is a statistical reconstruction approach based on a nonlinear forward model counting the full beam polychromaticity and applied directly to the projections without taking negative-log. Compared to the approaches based on linear forward models and the BHA correction approaches, it has advantages in noise robustness and reconstruction accuracy.

  12. Use of 4-Dimensional Computed Tomography-Based Ventilation Imaging to Correlate Lung Dose and Function With Clinical Outcomes

    SciTech Connect (OSTI)

    Vinogradskiy, Yevgeniy, E-mail: yevgeniy.vinogradskiy@ucdenver.edu [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado (United States)] [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado (United States); Castillo, Richard [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Castillo, Edward [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States) [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Computational and Applied Mathematics, Rice University, Houston, Texas (United States); Tucker, Susan L. [Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao, Zhongxing [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Guerrero, Thomas [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States) [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Computational and Applied Mathematics, Rice University, Houston, Texas (United States); Martel, Mary K. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-06-01

    Purpose: Four-dimensional computed tomography (4DCT)-based ventilation is an emerging imaging modality that can be used in the thoracic treatment planning process. The clinical benefit of using ventilation images in radiation treatment plans remains to be tested. The purpose of the current work was to test the potential benefit of using ventilation in treatment planning by evaluating whether dose to highly ventilated regions of the lung resulted in increased incidence of clinical toxicity. Methods and Materials: Pretreatment 4DCT data were used to compute pretreatment ventilation images for 96 lung cancer patients. Ventilation images were calculated using 4DCT data, deformable image registration, and a density-change based algorithm. Dose–volume and ventilation-based dose function metrics were computed for each patient. The ability of the dose–volume and ventilation-based dose–function metrics to predict for severe (grade 3+) radiation pneumonitis was assessed using logistic regression analysis, area under the curve (AUC) metrics, and bootstrap methods. Results: A specific patient example is presented that demonstrates how incorporating ventilation-based functional information can help separate patients with and without toxicity. The logistic regression significance values were all lower for the dose–function metrics (range P=.093-.250) than for their dose–volume equivalents (range, P=.331-.580). The AUC values were all greater for the dose–function metrics (range, 0.569-0.620) than for their dose–volume equivalents (range, 0.500-0.544). Bootstrap results revealed an improvement in model fit using dose–function metrics compared to dose–volume metrics that approached significance (range, P=.118-.155). Conclusions: To our knowledge, this is the first study that attempts to correlate lung dose and 4DCT ventilation-based function to thoracic toxicity after radiation therapy. Although the results were not significant at the .05 level, our data suggests that incorporating ventilation-based functional imaging can improve prediction for radiation pneumonitis. We present an important first step toward validating the use of 4DCT-based ventilation imaging in thoracic treatment planning.

  13. Outcomes of Positron Emission Tomography-Staged Clinical N3 Breast Cancer Treated With Neoadjuvant Chemotherapy, Surgery, and Radiotherapy

    SciTech Connect (OSTI)

    Park, Hae Jin; Shin, Kyung Hwan; Cho, Kwan Ho; Park, In Hae; Lee, Keun Seok; Ro, Jungsil; Jung, So-Youn; Lee, Seeyoun; Kim, Seok Won; Kang, Han-Sung; Chie, Eui Kyu; Ha, Sung Whan

    2011-12-01

    Purpose: To evaluate the treatment outcome and efficacy of regional lymph node irradiation after neoadjuvant chemotherapy (NCT) and surgery in positron emission tomography (PET)-positive clinical N3 (cN3) breast cancer patients. Methods and Materials: A total of 55 patients with ipsilateral infraclavicular (ICL), internal mammary (IMN), or supraclavicular (SCL) lymph node involvement in the absence of distant metastases, as revealed by an initial PET scan, were retrospectively analyzed. The clinical nodal stage at diagnosis (2002 AJCC) was cN3a in 14 patients (26%), cN3b in 12 patients (22%), and cN3c in 29 patients (53%). All patients were treated with NCT, followed by mastectomy or breast-conserving surgery and subsequent radiotherapy (RT) with curative intent. Results: At the median follow-up of 38 months (range, 9-80 months), 20 patients (36%) had developed treatment failures, including distant metastases either alone or combined with locoregional recurrences that included one ipsilateral breast recurrence (IBR), six regional failures (RF), and one case of combined IBR and RF. Only 3 patients (5.5%) exhibited treatment failure at the initial PET-positive clinical N3 lymph node. The 5-year locoregional relapse-free survival, disease-free survival (DFS), and overall survival rates were 80%, 60%, and 79%, respectively. RT delivered to PET-positive IMN regions in cN3b patients and at higher doses ({>=}55 Gy) to SCL regions in cN3c patients was not associated with improved 5-year IMN/SCL relapse-free survival or DFS. Conclusion: NCT followed by surgery and RT, including the regional lymph nodes, resulted in excellent locoregional control for patients with PET-positive cN3 breast cancer. The primary treatment failure in this group was due to distant metastasis rather than RF. Neither higher-dose RT directed at PET-positive SCL nodes nor coverage of PET-positive IMN nodes was associated with additional gains in locoregional control or DFS.

  14. Reconstruction 3-dimensional image from 2-dimensional image of status optical coherence tomography (OCT) for analysis of changes in retinal thickness

    SciTech Connect (OSTI)

    Arinilhaq,; Widita, Rena [Department of Physics, Nuclear Physics and Biophysics Research Group, Institut Teknologi Bandung (Indonesia)

    2014-09-30

    Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arrays are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.

  15. Depth-resolved monitoring of diffusion of hyperosmotic agents in normal and malignant human esophagus tissues using optical coherence tomography in-vitro

    SciTech Connect (OSTI)

    Zhao Qingliang; Guo Zhouyi; Wei Huajiang; Yang Hongqin; Xie Shusen

    2011-10-31

    Depth-resolved monitoring with differentiation and quantification of glucose diffusion in healthy and abnormal esophagus tissues has been studied in vitro. Experiments have been performed using human normal esophagus and esophageal squamous cell carcinoma (ESCC) tissues by the optical coherence tomography (OCT). The images have been continuously acquired for 120 min in the experiments, and the depth-resolved and average permeability coefficients of the 40 % glucose solution have been calculated by the OCT amplitude (OCTA) method. We demonstrate the capability of the OCT technique for depth-resolved monitoring, differentiation, and quantifying of glucose diffusion in normal esophagus and ESCC tissues. It is found that the permeability coefficients of the 40 % glucose solution are not uniform throughout the normal esophagus and ESCC tissues and increase from (3.30 {+-} 0.09) Multiplication-Sign 10{sup -6} and (1.57 {+-} 0.05) Multiplication-Sign 10{sup -5} cm s{sup -1} at the mucous membrane of normal esophagus and ESCC tissues to (1.82 {+-} 0.04) Multiplication-Sign 10{sup -5} and (3.53 {+-} 0.09) Multiplication-Sign 10{sup -5} cm s{sup -1} at the submucous layer approximately 742 {mu}m away from the epithelial surface of normal esophagus and ESCC tissues, respectively. (optical coherence tomography)

  16. X-ray micro-tomography investigation of the foaming process in the system of waste glass–silica mud–MnO{sub 2}

    SciTech Connect (OSTI)

    Ducman, V., E-mail: vilma.ducman@zag.si [ZAG Ljubljana, Dimi?eva 12, 1000 Ljubljana (Slovenia); Korat, L.; Legat, A. [ZAG Ljubljana, Dimi?eva 12, 1000 Ljubljana (Slovenia); Mirti?, B. [NTF, Ašker?eva 12, 1000 Ljubljana (Slovenia)

    2013-12-15

    In case of foamed lightweight aggregates (LWAs), porosity is introduced by the addition of a foaming agent to the glassy matrix, which degasses at an elevated temperature, so that the resulting gases remain trapped inside the glassy structure. The efficiency of action of MnO{sub 2} as a foaming agent in waste glass and waste glass/silica mud systems was studied. Samples were fired at different temperatures and with different dwelling times at a certain temperature, and the development of porosity was investigated by means of X-ray micro-tomography. It was found that, with the prolongation in dwelling times, the number of pores decreased, while, on the other hand, the volume of these pores increased, and that the addition of silica mud increases the foaming temperature and slows down the foaming process. - Highlights: • Preparation of lightweight aggregate from waste glass, silica sludge, and MnO{sub 2} • DTA/TG investigation of MnO{sub 2} • Characterization of pore-forming process by means of X-ray micro-tomography (?cT)

  17. Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic Resolution Electron Microscopy and Field Evaporation Simulation

    SciTech Connect (OSTI)

    Devaraj, Arun; Colby, Robert J.; Vurpillot, F.; Thevuthasan, Suntharampillai

    2014-03-26

    Metal-dielectric composite materials, specifically metal nanoparticles supported on or embedded in metal oxides, are widely used in catalysis. The accurate optimization of such nanostructures warrants the need for detailed three-dimensional characterization. Atom probe tomography is uniquely capable of generating sub-nanometer structural and compositional data with part-per-million mass sensitivity, but there are reconstruction artifacts for composites containing materials with strongly differing fields of evaporation, as for oxide-supported metal nanoparticles. By correlating atom probe tomography with scanning transmission electron microscopy for Au nanoparticles embedded in an MgO support, deviations from an ideal topography during evaporation are demonstrated directly, and correlated with compositional errors in the reconstructed data. Finite element simulations of the field evaporation process confirm that protruding Au nanoparticles will evolve on the tip surface, and that evaporation field variations lead to an inaccurate assessment of the local composition, effectively lowering the spatial resolution of the final reconstructed dataset. Cross-correlating the experimental data with simulations results in a more detailed understanding of local evaporation aberrations during APT analysis of metal-oxide composites, paving the way towards a more accurate three-dimensional characterization of this technologically important class of materials.

  18. Apparatus and method for preparing oxygen-15 labeled water H.sub.2 [.sup.15 O] in an injectable form for use in positron emission tomography

    DOE Patents [OSTI]

    Ferrieri, Richard A. (Patchogue, NY); Schlyer, David J. (Bellport, NY); Alexoff, David (Westhampton, NY)

    1996-01-09

    A handling and processing apparatus for preparing Oxygen-15 labeled water (H.sub.2 [.sup.15 O]) in injectable form for use in Positron Emission Tomography from preferably H.sub.2 [.sup.15 O] produced by irradiating a flowing gas target of nitrogen and hydrogen. The apparatus includes a collector for receiving and directing a gas containing H.sub.2 [.sup.15 O] gas and impurities, mainly ammonia (NH.sub.3) gas into sterile water to trap the H.sub.2 [.sup.15 O] and form ammonium (NH.sub.4.sup.+) in the sterile water. A device for displacing the sterile water containing H.sub.2 [.sup.15 O] and NH.sub.4.sup.+ through a cation resin removes NH.sub.4.sup.+ from the sterile water. A device for combining the sterile water containing H.sub.2 [.sup.15 O] with a saline solution produces an injectable solution. Preferably, the apparatus includes a device for delivering the solution to a syringe for injection into a patient. Also, disclosed is a method for preparing H.sub.2 [.sup.15 O] in injectable form for use in Positron Emission Tomography in which the method neither requires isotopic exchange reaction nor application of high temperature.

  19. Apparatus and method for preparing oxygen-15 labeled water H{sub 2}[{sup 15}O] in an injectable form for use in positron emission tomography

    DOE Patents [OSTI]

    Ferrieri, R.A.; Schlyer, D.J.; Alexoff, D.

    1996-01-09

    A handling and processing apparatus is revealed for preparing Oxygen-15 labeled water (H{sub 2}[{sup 15}O]) in injectable form for use in Positron Emission Tomography from preferably H{sub 2}[{sup 15}O] produced by irradiating a flowing gas target of nitrogen and hydrogen. The apparatus includes a collector for receiving and directing a gas containing H{sub 2}[{sup 15}O] gas and impurities, mainly ammonia (NH{sub 3}) gas into sterile water to trap the H{sub 2}[{sup 15}O] and form ammonium (NH{sub 4}{sup +}) in the sterile water. A device for displacing the sterile water containing H{sub 2}[{sup 15}O] and NH{sub 4}{sup +} through a cation resin removes NH{sub 4}{sup +} from the sterile water. A device for combining the sterile water containing H{sub 2}[{sup 15}O] with a saline solution produces an injectable solution. Preferably, the apparatus includes a device for delivering the solution to a syringe for injection into a patient. Also, disclosed is a method for preparing H{sub 2}[{sup 15}O] in injectable form for use in Positron Emission Tomography in which the method neither requires isotopic exchange reaction nor application of high temperature. 7 figs.

  20. Diffraction mode terahertz tomography

    DOE Patents [OSTI]

    Ferguson, Bradley; Wang, Shaohong; Zhang, Xi-Cheng

    2006-10-31

    A method of obtaining a series of images of a three-dimensional object. The method includes the steps of transmitting pulsed terahertz (THz) radiation through the entire object from a plurality of angles, optically detecting changes in the transmitted THz radiation using pulsed laser radiation, and constructing a plurality of imaged slices of the three-dimensional object using the detected changes in the transmitted THz radiation. The THz radiation is transmitted through the object as a two-dimensional array of parallel rays. The optical detection is an array of detectors such as a CCD sensor.

  1. Inversion of a new circular-arc Radon transform for Compton scattering tomography This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Nguyen-Verger, Maï K.

    Inversion of a new circular-arc Radon transform for Compton scattering tomography This article has:10.1088/0266-5611/26/6/065005 Inversion of a new circular-arc Radon transform for Compton scattering-arc Radon transform arising from the mathematical modeling of image formation in a new modality of Compton

  2. Characterization and quantification of the role of coherence in ultrafast quantum biological experiments using quantum master equations, atomistic simulations, and quantum process tomography

    E-Print Network [OSTI]

    Rebentrost, Patrick; Yuen-Zhou, Joel; Aspuru-Guzik, Alán

    2010-01-01

    Long-lived electronic coherences in various photosynthetic complexes at cryogenic and room temperature have generated vigorous efforts both in theory and experiment to understand their origins and explore their potential role to biological function. The ultrafast signals resulting from the experiments that show evidence for these coherences result from many contributions to the molecular polarization. Quantum process tomography (QPT) was conceived in the context of quantum information processing to characterize and understand general quantum evolution of controllable quantum systems, for example while carrying out quantum computational tasks. We introduce our QPT method for ultrafast experiments, and as an illustrative example, apply it to a simulation of a two-chromophore subsystem of the Fenna-Matthews-Olson photosynthetic complex, which was recently shown to have long-lived quantum coherences. Our Fenna-Matthews-Olson model is constructed using an atomistic approach to extract relevant parameters for the s...

  3. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    SciTech Connect (OSTI)

    Mertens, J.C.E. Williams, J.J. Chawla, Nikhilesh

    2014-06-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: • Custom built X-ray tomography system for microstructural characterization • Detector design for maximizing polychromatic X-ray detection efficiency • X-ray design offered for maximizing X-ray flux with respect to imaging resolution • Novel lab-scale XCT data acquisition and data processing methods • 3D characterization of glass-bead mock plastic-bonded-explosive stimulant.

  4. The FALCON concept: multi-object adaptive optics and atmospheric tomography for integral field spectroscopy. Principles and performances on an 8 meter telescope

    E-Print Network [OSTI]

    Francois Assemat; Eric Gendron; Francois Hammer

    2006-12-19

    Integral field spectrographs are major instruments to study the mechanisms involved in the formation and the evolution of early galaxies. When combined with multi-object spectroscopy, those spectrographs can behave as machines used to derive physical parameters of galaxies during their formation process. Up to now, there is only one available spectrograph with multiple integral field units, e.g. FLAMES/GIRAFFE on the VLT. However, current ground based instruments suffer from a degradation of their spatial resolution due to atmospheric turbulence. In this article we describe the performance of FALCON, an original concept of a new generation multi-object integral field spectrograph with adaptive optics for the ESO Very Large Telescope. The goal of FALCON is to combine high angular resolution (0.25 arcsec) and high spectral resolution (R > 5000) in J and H bands over a wide field of view (10x10 arcmin2) in the VLT Nasmyth focal plane. However, instead of correcting the whole field, FALCON will use multi-object adaptive optics (MOAO) to perform locally on each scientific target the adaptive optics correction. This requires then to use atmospheric tomography in order to use suitable natural guide stars for wavefront sensing. We will show that merging MOAO and atmospheric tomography allows us to determine the internal kinematics of distant galaxies up to z=2 with a sky coverage of 50%, even for objects observed near the galactic pole. The application of such a concept to Extremely Large Telescopes seems therefore to be a very promising way to study galaxy evolution from z = 1 to redshifts as high as z = 7.

  5. Muon Collider

    SciTech Connect (OSTI)

    Palmer, R.

    2009-10-19

    Parameters are given of muon colliders with center of mass energies of 1.5 and 3 TeV. Pion production is from protons on a mercury target. Capture, decay, and phase rotation yields bunch trains of both muon signs. Six dimensional cooling reduces the emittances until the trains are merged into single bunches, one of each sign. Further cooling in 6 dimensions is then applied, followed by final transverse cooling in 50 T solenoids. After acceleration the muons enter the collider ring. Ongoing R&D is discussed.

  6. A study on planning organ at risk volume for the rectum using cone beam computed tomography in the treatment of prostate cancer

    SciTech Connect (OSTI)

    Prabhakar, Ramachandran; Oates, Richard; Jones, Daryl; Kron, Tomas; Cramb, Jim; Foroudi, Farshad; Geso, Moshi; Gill, Suki

    2014-04-01

    In this study, we analyzed planning organ at risk volume (PRV) for the rectum using a series of cone beam computed tomographies (CBCTs) acquired during the treatment of prostate cancer and evaluated the dosimetric effect of different PRV definitions. Overall, 21 patients with prostate cancer were treated radically with 78 Gy in 39 fractions had in total 418 CBCTs, each acquired at the end of the first 5 fractions and then every alternate fraction. The PRV was generated from the Boolean sum volume of the rectum obtained from first 5 fractions (PRV-CBCT-5) and from all CBCTs (PRV-CBCT-All). The PRV margin was compared at the superior, middle, and inferior slices of the contoured rectum to compare PRV-CBCT-5 and PRV-CBCT-All. We also compared the dose received by the planned rectum (Rectum-computed tomography [CT]), PRV-CBCT-5, PRV-CBCT-All, and average rectum (CBCT-AV-dose-volume histogram [DVH]) at critical dose levels. The average measured rectal volume for all 21 patients for Rectum-CT, PRV-CBCT-5, and PRV-CBCT-All was 44.3 ± 15.0, 92.8 ± 40.40, and 121.5 ± 36.7 cm{sup 3}, respectively. For PRV-CBCT-All, the mean ± standard deviation displacement in the anterior, posterior, right, and left lateral directions in centimeters was 2.1 ± 1.1, 0.9 ± 0.5, 0.9 ± 0.8, and 1.1 ± 0.7 for the superior rectum; 0.8 ± 0.5, 1.1 ± 0.5, 1.0 ± 0.5, and 1.0 ± 0.5 for the middle rectum; and 0.3 ± 0.3; 0.9 ± 0.5; 0.4 ± 0.2, and 0.5 ± 0.3 for the inferior rectum, respectively. The first 5 CBCTs did not predict the PRV for individual patients. Our study shows that the PRV margin is different for superior, middle, and the inferior parts of the rectum, it is wider superiorly and narrower inferiorly. A uniform PRV margin does not represent the actual rectal variations during treatment for all treatment fractions. The large variation in interpatient rectal size implies a potential role for adaptive radiotherapy for prostate cancer.

  7. Muon Muon Collider: Feasibility Study

    SciTech Connect (OSTI)

    Gallardo, J.C.; Palmer, R.B.; Tollestrup, A.V.; Sessler, A.M.; Skrinsky, A.N.; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. ,

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle reactions which are open to a muon collider and the physics of such reactions - what one learns and the necessary luminosity to see interesting events - are described in detail. Most of the physics accesible to an e{sup +} - e{sup -} collider could be studied in a muon collider. In addition the production of Higgs bosons in the s-channel will allow the measurement of Higgs masses and total widths to high precision; likewise, t{bar t} and W{sup +}W{sup -} threshold studies would yield m{sub t} and m{sub w} to great accuracy. These reactions are at low center of mass energy (if the MSSM is correct) and the luminosity and {Delta}p/p of the beams required for these measurements is detailed in the Physics Chapter. On the other hand, at 2 + 2 TeV, a luminosity of L {approx} 10{sup 35} cm{sup -2}s{sup -1} is desirable for studies such as, the scattering of longitudinal W bosons or the production of heavy scalar particles. Not explored in this work, but worth noting, are the opportunities for muon-proton and muon-heavy ion collisions as well as the enormous richness of such a facility for fixed target physics provided by the intense beams of neutrinos, muons, pions, kaons, antiprotons and spallation neutrons. To see all the interesting physics described herein requires a careful study of the operation of a detector in the very large background. Three sources of background have been identified. The first is from any halo accompanying the muon beams in the collider ring. Very carefully prepared beams will have to be injected and maintained. The second is due to the fact that on average 35% of the muon energy appears in its decay electron. The energy of the electron subsequently is converted into EM showers either from the synchrotron radiation they emit in the collider magnetic field or from direct collision with the surrounding material. The decays that occur as the beams traverse the low beta insert are of particular concern for detector backgrounds. A third source of background is e{sup +} - e{sup -} pair creation from {mu}{sup +} - {mu}{sup -} interaction. Studies of

  8. Pretreatment [{sup 18}F]-fluoro-2-deoxy-glucose Positron Emission Tomography Maximum Standardized Uptake Value as Predictor of Distant Metastasis in Early-Stage Non-Small Cell Lung Cancer Treated With Definitive Radiation Therapy: Rethinking the Role of Positron Emission Tomography in Personalizing Treatment Based on Risk Status

    SciTech Connect (OSTI)

    Nair, Vimoj J.; MacRae, Robert; Sirisegaram, Abby; Pantarotto, Jason R.

    2014-02-01

    Purpose: The aim of this study was to determine whether the preradiation maximum standardized uptake value (SUV{sub max}) of the primary tumor for [{sup 18}F]-fluoro-2-deoxy-glucose positron emission tomography (FDG-PET) has a prognostic significance in patients with Stage T1 or T2N0 non-small cell lung cancer (NSCLC) treated with curative radiation therapy, whether conventional or stereotactic body radiation therapy (SBRT). Methods and Materials: Between January 2007 and December 2011, a total of 163 patients (180 tumors) with medically inoperable histologically proven Stage T1 or T2N0 NSCLC and treated with radiation therapy (both conventional and SBRT) were entered in a research ethics board approved database. All patients received pretreatment FDG-PET / computed tomography (CT) at 1 institution with consistent acquisition technique. The medical records and radiologic images of these patients were analyzed. Results: The overall survival at 2 years and 3 years for the whole group was 76% and 67%, respectively. The mean and median SUV{sub max} were 8.1 and 7, respectively. Progression-free survival at 2 years with SUV{sub max} <7 was better than that of the patients with tumor SUV{sub max} ?7 (67% vs 51%; P=.0096). Tumors with SUV{sub max} ?7 were associated with a worse regional recurrence-free survival and distant metastasis-free survival. In the multivariate analysis, SUV{sub max} ?7 was an independent prognostic factor for distant metastasis-free survival. Conclusion: In early-stage NSCLC managed with radiation alone, patients with SUV{sub max} ?7 on FDG-PET / CT scan have poorer outcomes and high risk of progression, possibly because of aggressive biology. There is a potential role for adjuvant therapies for these high-risk patients with intent to improve outcomes.

  9. Nanoscale Phase Separation In Epitaxial Cr-Mo and Cr-V Alloy Thin Films Studied Using Atom Probe Tomography: Comparison Of Experiments And Simulation

    SciTech Connect (OSTI)

    Devaraj, Arun; Kaspar, Tiffany C.; Ramanan, Sathvik; Walvekar, Sarita K.; Bowden, Mark E.; Shutthanandan, V.; Kurtz, Richard J.

    2014-11-21

    Tailored metal alloy thin film-oxide interfaces generated using molecular beam epitaxial (MBE) deposition of alloy thin films on a single crystalline oxide substrate can be used for detailed studies of irradiation damage response on the interface structure. However presence of nanoscale phase separation in the MBE grown alloy thin films can impact the metal-oxide interface structure. Due to nanoscale domain size of such phase separation it is very challenging to characterize by conventional techniques. Therefor laser assisted atom probe tomography (APT) was utilized to study the phase separation in epitaxial Cr0.61Mo0.39, Cr0.77Mo0.23, and Cr0.32V0.68 alloy thin films grown by MBE on MgO(001) single crystal substrates. Statistical analysis, namely frequency distribution analysis and Pearson coefficient analysis of experimental data was compared with similar analyses conducted on simulated APT datasets with known extent of phase separation. Thus the presence of phase separation in Cr-Mo films, even when phase separation was not clearly observed by x-ray diffraction, and the absence of phase separation in the Cr-V film were thus confirmed.

  10. Nanoscale phase separation in epitaxial Cr-Mo and Cr-V alloy thin films studied using atom probe tomography: Comparison of experiments and simulation

    SciTech Connect (OSTI)

    Devaraj, A.; Ramanan, S.; Walvekar, S.; Bowden, M. E.; Shutthanandan, V.; Kaspar, T. C.; Kurtz, R. J.

    2014-11-21

    Tailored metal alloy thin film-oxide interfaces generated using molecular beam epitaxy (MBE) deposition of alloy thin films on a single crystalline oxide substrate can be used for detailed studies of irradiation damage response on the interface structure. However, the presence of nanoscale phase separation in the MBE grown alloy thin films can impact the metal-oxide interface structure. Due to nanoscale domain size of such phase separation, it is very challenging to characterize by conventional techniques. Therefore, laser assisted atom probe tomography (APT) was utilized to study the phase separation in epitaxial Cr{sub 0.61}Mo{sub 0.39}, Cr{sub 0.77}Mo{sub 0.23}, and Cr{sub 0.32}V{sub 0.68} alloy thin films grown by MBE on MgO(001) single crystal substrates. Statistical analysis, namely frequency distribution analysis and Pearson coefficient analysis of experimental data was compared with similar analyses conducted on simulated APT datasets with known extent of phase separation. Thus, the presence of phase separation in Cr-Mo films, even when phase separation was not clearly observed by x-ray diffraction, and the absence of phase separation in the Cr-V film were confirmed.

  11. Initial experience with SPECT (single-photon computerized tomography) of the brain using N-isopropyl I-123 p-iodoamphetamine: concise communication

    SciTech Connect (OSTI)

    Hill, T.C.; Holman, B.L.; Lovett, R.; O'Leary, D.H.; Front, D.; Magistretti, P.; Zimmerman, R.E.; Moore, S.; Clouse, M.E.; Wu, J.L.; Lin, T.H.; Baldwin, R.M.

    1982-03-01

    Forty-six patients were studied with N-isopropyl I-123 p-iodoamphetamine (IMP) and the Harvard Scanning Multidetector Brain System. In nine control patients, good differentiation between the gray and white matter of the cerebral cortex and the basal ganglia was evident. Regional uptake was affected by physiologic maneuvers (visual stimulation). In 24 patients studied for stroke, IMP images demonstrated areas that were involved in acute infarction in eight patients whose initial transmission computerized tomography (TCT) was normal; IMP also showed perfusion abnormalities larger than the TCT abnormality in ten patients. Perfusion abnormalities were present in 23/24 of these patients. Seven patients studied with a history of TIA had normal TCT and IMP images. In three patients studied during seizure activity, regions of hyperperfusion corresponded to the EEG seizure focus. Markedly decreased activity was present in three patients with brain tumor and corresponded to the focal abnormality on the TCT study. Our study demonstrates the feasibility of assessing regional brain perfusion using a radiopharmaceutical that is lipid soluble and has a high extraction fraction in the brain, together with single-photon ECT.

  12. Does Preinterventional Flat-Panel Computer Tomography Pooled Blood Volume Mapping Predict Final Infarct Volume After Mechanical Thrombectomy in Acute Cerebral Artery Occlusion?

    SciTech Connect (OSTI)

    Wagner, Marlies, E-mail: marlies.wagner@kgu.de [Hospital of Goethe University, Institute of Neuroradiology (Germany); Kyriakou, Yiannis, E-mail: yiannis.kyriakou@siemens.com [Siemens AG, Health Care Sector (Germany); Mesnil de Rochemont, Richard du, E-mail: mesnil@em.uni-frankfurt.de [Hospital of Goethe University, Institute of Neuroradiology (Germany); Singer, Oliver C., E-mail: o.singer@em.uni-frankfurt.de [Hospital of Goethe University, Department of Neurology (Germany); Berkefeld, Joachim, E-mail: berkefeld@em.uni-frankfurt.de [Hospital of Goethe University, Institute of Neuroradiology (Germany)

    2013-08-01

    PurposeDecreased cerebral blood volume is known to be a predictor for final infarct volume in acute cerebral artery occlusion. To evaluate the predictability of final infarct volume in patients with acute occlusion of the middle cerebral artery (MCA) or the distal internal carotid artery (ICA) and successful endovascular recanalization, pooled blood volume (PBV) was measured using flat-panel detector computed tomography (FPD CT).Materials and MethodsTwenty patients with acute unilateral occlusion of the MCA or distal ACI without demarcated infarction, as proven by CT at admission, and successful Thrombolysis in cerebral infarction score (TICI 2b or 3) endovascular thrombectomy were included. Cerebral PBV maps were acquired from each patient immediately before endovascular thrombectomy. Twenty-four hours after recanalization, each patient underwent multislice CT to visualize final infarct volume. Extent of the areas of decreased PBV was compared with the final infarct volume proven by follow-up CT the next day.ResultsIn 15 of 20 patients, areas of distinct PBV decrease corresponded to final infarct volume. In 5 patients, areas of decreased PBV overestimated final extension of ischemia probably due to inappropriate timing of data acquisition and misery perfusion.ConclusionPBV mapping using FPD CT is a promising tool to predict areas of irrecoverable brain parenchyma in acute thromboembolic stroke. Further validation is necessary before routine use for decision making for interventional thrombectomy.

  13. Application of x-ray tomography to optimization of new NOx/NH3 mixed potential sensors for vehicle on-board emissions control

    SciTech Connect (OSTI)

    Nelson, Mark A; Brosha, Eric L; Mukundan, Rangachary; Garzon, Fernando H

    2009-01-01

    Mixed potential sensors for the detection of hydrocarbons, NO{sub x}, and NH{sub 3} have been previously developed at Los Alamos National Laboratory (LANL). The LANL sensors have a unique design incorporating dense ceramic-pelletlmetal-wire electrodes and porous electrolytes. The performance of current-biased sensors using an yttria-stabilized zirconia (YSZ) electrolyte and platinum and La{sub 0.8}Sr{sub 0.2}CrO{sub 3} electrodes is reported. X-ray tomography has been applied to non-destructively examine internal structures of these sensors. NO{sub x} and hydrocarbon response of the sensors under various bias conditions is reported, and very little NO{sub x} response hysteresis was observed. The application of a 0.6 {mu}A bias to these sensors shifts the response from a hydrocarbon response to a NO{sub x} response equal for both NO and NO{sub 2} species at approximately 500 {sup o}C in air.

  14. Impact of [{sup 18}F] Fluorodeoxyglucose Positron Emission Tomography on Staging and Management of Early-Stage Follicular Non-Hodgkin Lymphoma

    SciTech Connect (OSTI)

    Wirth, Andrew Foo, Marcus; Seymour, John F.; MacManus, Michael P.; Hicks, Rodney J.

    2008-05-01

    Purpose: Accurate staging is critical to select patients with early-stage (I-II) follicular lymphoma (ESFL) suitable for involved-field radiotherapy (IFRT) and to define the radiotherapy portal. We evaluated the impact of fluorodeoxyglucose (FDG) PET on staging, treatment, and outcome for patients with ESFL on conventional staging. Methods and Materials: Forty-two patients with untreated ESFL (World Health Organization Grade I-IIIa, or 'low grade') following a minimum of physical examination, computerized tomography, and bone marrow examination (conventional assessment) and who had staging PET from June 1997 to June 2006 were studied retrospectively. Stage allocation was based on routine imaging reports. Disease sites, stage, and management plan were recorded based on conventional assessment or conventional assessment plus PET. Results: FDG avidity was demonstrated in 97% of patients in whom disease was evident on conventional assessment after biopsy. PET findings suggested a change of stage or management in 19 patients: 13 (31%) who were upstaged to Stage III-IV, altering ideal management from IFRT to systemic therapy, and 6 (14%) who had the involved field enlarged, including 4 upstaged from Stage I to II. Of these 19 cases, PET findings were considered true positive in 8 patients, indeterminate in 10, and false positive in only 1 patient. Conclusions: Our data confirm that ESFL is usually FDG-avid. In routine practice, PET has the potential to upstage and thereby alter management in a high proportion of patients with apparent ESFL.

  15. Impact of {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography Before and After Definitive Radiation Therapy in Patients With Apparently Solitary Plasmacytoma

    SciTech Connect (OSTI)

    Kim, Paul J.; Hicks, Rodney J.; Wirth, Andrew; Ryan, Gail; Seymour, John F.; Prince, H. Miles

    2009-07-01

    Purpose: To evaluate the impact of {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) on management of patients with apparently isolated plasmacytoma. Methods and Materials: Twenty-one patients with apparently solitary plasmacytoma who underwent FDG-PET for staging or restaging were identified from a central PET database. They were either candidates for or had received definitive radiation therapy (RT). Results: Seventeen patients had initial staging scans for bone (n = 11) or soft tissue (n = 6) plasmacytomas, and 11 had PET scans after RT. Only 1 of 14 known untreated sites of plasmacytoma was not identified on staging PET (lesion sensitivity = 93%). Three plasmacytomas were excised before PET. Staging PET influenced management in 6 of 17 patients (35%) by showing multiple myeloma (n = 1), discouraging RT after complete resection (n = 1), excluding plasmacytoma at a second site (n = 1), by increasing RT fields (n = 2), or by suggesting sarcoidosis (n = 1). Fifteen of 17 patients with initial staging PET scans received definitive RT. Restaging PET scans after RT showed complete metabolic response in 8 of 11 cases and progressive disease in 2. Two patients with either no response or partial metabolic response had late responses. Staging sestamibi and PET scans were concordant in five of six occasions (one sestamibi scan was false negative). Conclusions: FDG-PET has value for staging and RT planning in plasmacytoma and potentially could have a role in response-assessment after RT. Slow resolution of FDG uptake posttreatment does not necessarily imply an adverse prognosis.

  16. Muons, gravity and time

    E-Print Network [OSTI]

    Francis J. M. Farley

    2015-08-14

    In the muon storage rings the muons are subject to a very large radial acceleration. The equivalence principle implies a large gravity force. It has no effect on the muon lifetime.

  17. A 4D Synchrotron X-Ray-Tomography Study of the Formation of Hydrocarbon- Migration Pathways in Heated Organic-Rich Shale

    SciTech Connect (OSTI)

    Hamed Panahi; Paul Meakin; Francois Renard; Maya Kobchenko; Julien Scheibert; Adriano Mazzini; Bjorn Jamtveit; Anders Malthe-Sorenssen; Dag Kristian Dysthe

    2013-04-01

    Recovery of oil from oil shales and the natural primary migration of hydrocarbons are closely related processes that have received renewed interest in recent years because of the ever tightening supply of conventional hydrocarbons and the growing production of hydrocarbons from low-permeability tight rocks. Quantitative models for conversion of kerogen into oil and gas and the timing of hydrocarbon generation have been well documented. However, lack of consensus about the kinetics of hydrocarbon formation in source rocks, expulsion timing, and how the resulting hydrocarbons escape from or are retained in the source rocks motivates further investigation. In particular, many mechanisms have been proposed for the transport of hydrocarbons from the rocks in which they are generated into adjacent rocks with higher permeabilities and smaller capillary entry pressures, and a better understanding of this complex process (primary migration) is needed. To characterize these processes, it is imperative to use the latest technological advances. In this study, it is shown how insights into hydrocarbon migration in source rocks can be obtained by using sequential high-resolution synchrotron X-ray tomography. Three-dimensional images of several immature "shale" samples were constructed at resolutions close to 5 um. This is sufficient to resolve the source-rock structure down to the grain level, but very-fine-grained silt particles, clay particles, and colloids cannot be resolved. Samples used in this investigation came from the R-8 unit in the upper part of the Green River shale, which is organic rich, varved, lacustrine marl formed in Eocene Lake Uinta, USA. One Green River shale sample was heated in situ up to 400 degrees C as X-ray-tomography images were recorded. The other samples were scanned before and after heating at 400 degrees C. During the heating phase, the organic matter was decomposed, and gas was released. Gas expulsion from the low-permeability shales was coupled with formation of microcracks. The main technical difficulty was numerical extraction of microcracks that have apertures in the 5- to 30-um range (with 5 um being the resolution limit) from a large 3D volume of X-ray attenuation data. The main goal of the work presented here is to develop a methodology to process these 3D data and image the cracks. This methodology is based on several levels of spatial filtering and automatic recognition of connected domains. Supportive petrographic and thermogravimetric data were an important complement to this study. An investigation of the strain field using 2D image correlation analyses was also performed. As one application of the 4D (space + time) microtomography and the developed workflow, we show that fluid generation was accompanied by crack formation. Under different conditions, in the subsurface, this might provide paths for primary migration.

  18. Determinants of Local Progression After Computed Tomography-Guided Percutaneous Radiofrequency Ablation for Unresectable Lung Tumors: 9-Year Experience in a Single Institution

    SciTech Connect (OSTI)

    Okuma, Tomohisa, E-mail: o-kuma@msic.med.osaka-cu.ac.jp; Matsuoka, Toshiyuki; Yamamoto, Akira; Oyama, Yoshimasa; Hamamoto, Shinichi [Osaka City University Graduate School of Medicine, Department of Radiology (Japan); Toyoshima, Masami [Kobe City Medical Center West Hospital, Department of Radiology (Japan); Nakamura, Kenji; Miki, Yukio [Osaka City University Graduate School of Medicine, Department of Radiology (Japan)

    2010-08-15

    The purpose of this study was to retrospectively determine the local control rate and contributing factors to local progression after computed tomography (CT)-guided radiofrequency ablation (RFA) for unresectable lung tumor. This study included 138 lung tumors in 72 patients (56 men and 16 women; age 70.0 {+-} 11.6 years (range 31-94); mean tumor size 2.1 {+-} 1.2 cm [range 0.2-9]) who underwent lung RFA between June 2000 and May 2009. Mean follow-up periods for patients and tumors were 14 and 12 months, respectively. The local progression-free rate and survival rate were calculated to determine the contributing factors to local progression. During follow-up, 44 of 138 (32%) lung tumors showed local progression. The 1-, 2-, 3-, and 5-year overall local control rates were 61, 57, 57, and 38%, respectively. The risk factors for local progression were age ({>=}70 years), tumor size ({>=}2 cm), sex (male), and no achievement of roll-off during RFA (P < 0.05). Multivariate analysis identified tumor size {>=}2 cm as the only independent factor for local progression (P = 0.003). For tumors <2 cm, 17 of 68 (25%) showed local progression, and the 1-, 2-, and 3-year overall local control rates were 77, 73, and 73%, respectively. Multivariate analysis identified that age {>=}70 years was an independent determinant of local progression for tumors <2 cm in diameter (P = 0.011). The present study showed that 32% of lung tumors developed local progression after CT-guided RFA. The significant risk factor for local progression after RFA for lung tumors was tumor size {>=}2 cm.

  19. A general framework and review of scatter correction methods in x-ray cone-beam computerized tomography. Part 1: Scatter compensation approaches

    SciTech Connect (OSTI)

    Ruehrnschopf, Ernst-Peter; Klingenbeck, Klaus

    2011-07-15

    Since scattered radiation in cone-beam volume CT implies severe degradation of CT images by quantification errors, artifacts, and noise increase, scatter suppression is one of the main issues related to image quality in CBCT imaging. The aim of this review is to structurize the variety of scatter suppression methods, to analyze the common structure, and to develop a general framework for scatter correction procedures. In general, scatter suppression combines hardware techniques of scatter rejection and software methods of scatter correction. The authors emphasize that scatter correction procedures consist of the main components scatter estimation (by measurement or mathematical modeling) and scatter compensation (deterministic or statistical methods). The framework comprises most scatter correction approaches and its validity also goes beyond transmission CT. Before the advent of cone-beam CT, a lot of papers on scatter correction approaches in x-ray radiography, mammography, emission tomography, and in Megavolt CT had been published. The opportunity to avail from research in those other fields of medical imaging has not yet been sufficiently exploited. Therefore additional references are included when ever it seems pertinent. Scatter estimation and scatter compensation are typically intertwined in iterative procedures. It makes sense to recognize iterative approaches in the light of the concept of self-consistency. The importance of incorporating scatter compensation approaches into a statistical framework for noise minimization has to be underscored. Signal and noise propagation analysis is presented. A main result is the preservation of differential-signal-to-noise-ratio (dSNR) in CT projection data by ideal scatter correction. The objective of scatter compensation methods is the restoration of quantitative accuracy and a balance between low-contrast restoration and noise reduction. In a synopsis section, the different deterministic and statistical methods are discussed with respect to their properties and applications. The current paper is focused on scatter compensation algorithms. The multitude of scatter estimation models will be dealt with in a separate paper.

  20. The Role of Computed Tomography in the Management of the Neck After Chemoradiotherapy in Patients With Head-and-Neck Cancer

    SciTech Connect (OSTI)

    Clavel, Sebastien, E-mail: sebastien.clavel@umontreal.ca [Department of Radiation Oncology, Centre hospitalier de l'Universite de Montreal, Montreal, Quebec (Canada); Charron, Marie-Pierre [Faculte de medicine, Universite de Montreal, Montreal, Quebec (Canada); Belair, Manon [Department of Radiology, Centre hospitalier de l'Universite de Montreal, Montreal, Quebec (Canada); Delouya, Guila; Fortin, Bernard; Despres, Philippe [Department of Radiation Oncology, Centre hospitalier de l'Universite de Montreal, Montreal, Quebec (Canada); Soulieres, Denis [Department of Medical Oncology, Centre hospitalier de l'Universite de Montreal, Montreal, Quebec (Canada); Filion, Edith [Department of Radiation Oncology, Centre hospitalier de l'Universite de Montreal, Montreal, Quebec (Canada); Guertin, Louis [Department of Head and Neck Surgery, Centre hospitalier de l'Universite de Montreal, Montreal, Quebec (Canada); and others

    2012-02-01

    Purpose: The aim of this study was to describe the outcome in patients with head-and neck-squamous cell carcinoma (HNSCC) followed up without neck dissection (ND) after concomitant chemoradiotherapy (CRT) based on computed tomography (CT) response. The second objective was to establish CT characteristics that can predict which patients can safely avoid ND. Methods and Materials: Between 1998 and 2007, 369 patients with node-positive HNSCC were treated with primary CRT at our institution. After a clinical and a radiologic evaluation based on CT done 6 to 8 weeks after CRT, patients were labeled with a complete neck response (CR) or with a partial neck response (PR). Results: The median follow-up was 44 months. The number of patients presenting with N3, N2, or N1 disease were 54 (15%), 268 (72%), and 47 (13%), respectively. After CRT, 263 (71%) patients reached a CR, and 253 of them did not undergo ND. Ninety-six patients reached a PR and underwent ND. Of those, 34 (35%) had residual disease on pathologic evaluation. A regression of the diameter of {>=}80% and a residual largest diameter of 15 mm of nodes had negative pathologic predictive values of 100% and 86%, respectively. The 3-year regional control and survival rates were not different between patients with CR who had no ND and patients with PR followed by ND. Conclusion: Node-positive patients presenting a CR as determined by CT evaluation 6 to 8 weeks after CRT had a low rate of regional recurrence without ND. This study also suggests that lymph node residual size and percentage of regression on CT after CRT may be useful criteria to guide clinical decisions regarding neck surgery. Those results can help diminish the number of ND procedures with negative results and their associated surgical complications.

  1. Monitoring CO 2 sequestration into deep saline aquifer and associated salt intrusion using coupled multiphase flow modeling and time lapse electrical resistivity tomography

    SciTech Connect (OSTI)

    Chuan Lu; CHI Zhang; Hai Hanag; Timothy C. Johnson

    2014-04-01

    Successful geological storage and sequestration of carbon dioxide (CO2) require efficient monitoring of the migration of CO2 plume during and after large-scale injection in order to verify the containment of the injected CO2 within the target formation and to evaluate potential leakage risk. Field studies have shown that surface and cross-borehole electrical resistivity tomography (ERT) can be a useful tool in imaging and characterizing solute transport in heterogeneous subsurface. In this synthetic study, we have coupled a 3-D multiphase flow model with a parallel 3-D time-lapse ERT inversion code to explore the feasibility of using time-lapse ERT for simultaneously monitoring the migration of CO2 plume in deep saline formation and potential brine intrusion into shallow fresh water aquifer. Direct comparisons of the inverted CO2 plumes resulting from ERT with multiphase flow simulation results indicate the ERT could be used to delineate the migration of CO2 plume. Detailed comparisons on the locations, sizes and shapes of CO2 plume and intruded brine plumes suggest that ERT inversion tends to underestimate the area review of the CO2 plume, but overestimate the thickness and total volume of the CO2 plume. The total volume of intruded brine plumes is overestimated as well. However, all discrepancies remain within reasonable ranges. Our study suggests that time-lapse ERT is a useful monitoring tool in characterizing the movement of injected CO2 into deep saline aquifer and detecting potential brine intrusion under large-scale field injection conditions.

  2. Sample size requirements for estimating effective dose from computed tomography using solid-state metal-oxide-semiconductor field-effect transistor dosimetry

    SciTech Connect (OSTI)

    Trattner, Sigal; Cheng, Bin; Pieniazek, Radoslaw L.; Hoffmann, Udo; Douglas, Pamela S.; Einstein, Andrew J.

    2014-04-15

    Purpose: Effective dose (ED) is a widely used metric for comparing ionizing radiation burden between different imaging modalities, scanners, and scan protocols. In computed tomography (CT), ED can be estimated by performing scans on an anthropomorphic phantom in which metal-oxide-semiconductor field-effect transistor (MOSFET) solid-state dosimeters have been placed to enable organ dose measurements. Here a statistical framework is established to determine the sample size (number of scans) needed for estimating ED to a desired precision and confidence, for a particular scanner and scan protocol, subject to practical limitations. Methods: The statistical scheme involves solving equations which minimize the sample size required for estimating ED to desired precision and confidence. It is subject to a constrained variation of the estimated ED and solved using the Lagrange multiplier method. The scheme incorporates measurement variation introduced both by MOSFET calibration, and by variation in MOSFET readings between repeated CT scans. Sample size requirements are illustrated on cardiac, chest, and abdomen–pelvis CT scans performed on a 320-row scanner and chest CT performed on a 16-row scanner. Results: Sample sizes for estimating ED vary considerably between scanners and protocols. Sample size increases as the required precision or confidence is higher and also as the anticipated ED is lower. For example, for a helical chest protocol, for 95% confidence and 5% precision for the ED, 30 measurements are required on the 320-row scanner and 11 on the 16-row scanner when the anticipated ED is 4 mSv; these sample sizes are 5 and 2, respectively, when the anticipated ED is 10 mSv. Conclusions: Applying the suggested scheme, it was found that even at modest sample sizes, it is feasible to estimate ED with high precision and a high degree of confidence. As CT technology develops enabling ED to be lowered, more MOSFET measurements are needed to estimate ED with the same precision and confidence.

  3. Zeeman tomography of magnetic white dwarfs IV. The complex field structure of the polars EF Eri, BL Hyi, and CP Tuc

    E-Print Network [OSTI]

    K. Beuermann; F. Euchner; K. Reinsch; S. Jordan; B. T. Gaensicke

    2006-10-26

    The magnetic fields of the accreting white dwarfs (WDs) in magnetic cataclysmic variables (mCVs) determine the accretion geometries, the emission properties, and the secular evolution of these objects. We determine the structure of the surface magnetic fields of the WDs primaries in magnetic CVs using Zeeman tomography. Our study is based on orbital-phase resolved optical flux and circular polarization spectra of the polars EF Eri, BL Hyi, and CP Tuc obtained with FORS1 at the ESO VLT. An evolutionary algorithm is used to synthesize best fits to these spectra from an extensive database of pre-computed Zeeman spectra. The general approach has been described in previous papers of this series. The results achieved with simple geometries as centered or offset dipoles are not satisfactory. Significantly improved fits are obtained for multipole expansions that are truncated at degree l(max)=3 or 5 and include all tesseral and sectoral components with 0CP Tuc and the ranges of field strength covered are similar for the dipole and multipole models, but only the latter provide access to accreting matter at the right locations on the WD. The results suggest that the field geometries of the WDs in short-period mCVs are quite complex with strong contributions from multipoles higher than the dipole in spite of a typical age of the WDs in CVs in excess of 1 Gyr. It is feasible to derive the surface field structure of an accreting WD from phase-resolved low-state circular spectropolarimetry of sufficiently high signal-to-noise ratio. The fact that independent information is available on the strength and direction of the field in the accretion spot from high-state observations helps in unraveling the global field structure.

  4. Comparison of Repositioning Accuracy of Two Commercially Available Immobilization Systems for Treatment of Head-and-Neck Tumors Using Simulation Computed Tomography Imaging

    SciTech Connect (OSTI)

    Rotondo, Ronny L. [Department of Oncology, Division of Radiation Oncology, McGill University, Montreal, Quebec (Canada); Sultanem, Khalil [Department of Oncology, Division of Radiation Oncology, McGill University, Montreal, Quebec (Canada)], E-mail: ksultane@roc.jgh.mcgill.ca; Lavoie, Isabelle; Skelly, Julie; Raymond, Luc [Department of Oncology, Division of Radiation Oncology, McGill University, Montreal, Quebec (Canada)

    2008-04-01

    Purpose: To compare the setup accuracy, comfort level, and setup time of two immobilization systems used in head-and-neck radiotherapy. Methods and Materials: Between February 2004 and January 2005, 21 patients undergoing radiotherapy for head-and-neck tumors were assigned to one of two immobilization devices: a standard thermoplastic head-and-shoulder mask fixed to a carbon fiber base (Type S) or a thermoplastic head mask fixed to the Accufix cantilever board equipped with the shoulder depression system. All patients underwent planning computed tomography (CT) followed by repeated control CT under simulation conditions during the course of therapy. The CT images were subsequently co-registered and setup accuracy was examined by recording displacement in the three cartesian planes at six anatomic landmarks and calculating the three-dimensional vector errors. In addition, the setup time and comfort of the two systems were compared. Results: A total of 64 CT data sets were analyzed. No difference was found in the cartesian total displacement errors or total vector displacement errors between the two populations at any landmark considered. A trend was noted toward a smaller mean systemic error for the upper landmarks favoring the Accufix system. No difference was noted in the setup time or comfort level between the two systems. Conclusion: No significant difference in the three-dimensional setup accuracy was identified between the two immobilization systems compared. The data from this study reassure us that our technique provides accurate patient immobilization, allowing us to limit our planning target volume to <4 mm when treating head-and-neck tumors.

  5. Four-Dimensional Measurement of the Displacement of Internal Fiducial and Skin Markers During 320-Multislice Computed Tomography Scanning of Breast Cancer

    SciTech Connect (OSTI)

    Yamashita, Hideomi; Okuma, Kae; Tada, Keiichiro; Shiraishi, Kenshiro; Takahashi, Wataru; Shibata-Mobayashi, Shino; Sakumi, Akira; Saotome, Naoya; Haga, Akihiro; Onoe, Tsuyoshi; Ino, Kenji; Akahane, Masaaki; Ohtomo, Kuni; Nakagawa, Keiichi

    2012-10-01

    Purpose: To study the three-dimensional movement of internal tumor bed fiducial and breast skin markers, using 320-multislice computed tomography (CT); and to analyze intrafractional errors for breast cancer patients undergoing breast irradiation. Methods and Materials: This study examined 280 markers on the skin of the breast (200 markers) and on the primary tumor bed (80 markers) of 20 patients treated by external-beam photon radiotherapy. Motion assessment was analyzed in 41 respiratory phases during 20 s of cine CT in the radiotherapy position. To assess intrafractional errors resulting from respiratory motion, four-dimensional CT scans were acquired for 20 patients. Results: Motion in the anterior-posterior (A/P) and superior-inferior (S/I) directions showed a strong correlation (|r| > 0.7) with the respiratory curve for most markers (79% and 70%, respectively). The average marker displacements between maximum and minimum value during 20 s for the 200 breast skin metal markers were 1.1 {+-} 0.3 mm, 2.1 {+-} 0.6 mm, and 1.6 {+-} 0.4 mm in the left-right, A/P, and S/I directions, respectively. For the 80 tumor bed clips, displacements were 0.9 {+-} 0.2 mm in left-right, 1.7 {+-} 0.5 mm in A/P, and 1.1 {+-} 0.3 mm in S/I. There was no significant difference in the motion between breast quadrant regions or between the primary site and the other regions. Conclusions: Motion in primary breast tumors was evaluated with 320-multislice CT. Very little change was detected during individual radiation treatment fractions.

  6. Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed

    SciTech Connect (OSTI)

    Qussai Marashdeh

    2012-09-30

    A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energyâ??s National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi-phase flow systems in high temperature and high pressure conditions, typical in many industrial applications.

  7. Bayesian recursive data pattern tomography

    E-Print Network [OSTI]

    Alexander Mikhalychev; Dmitri Mogilevtsev; Yong Siah Teo; Jaroslav Rehacek; Zdenek Hradil

    2015-11-05

    We present a simple and efficient Bayesian recursive algorithm for the data-pattern scheme for quantum state reconstruction, which is applicable to situations where measurement settings can be controllably varied efficiently. The algorithm predicts the best measurements required to accurately reconstruct the unknown signal state in terms of a fixed set of probe states. In each iterative step, this algorithm seeks the measurement setting that minimizes the variance of the data-pattern estimator, which essentially measures the reconstruction accuracy, with the help of a data-pattern bank that was acquired prior to the signal reconstruction. We show that with this algorithm, it is possible to minimize the number of measurement settings required to obtain a reasonably accurate state estimator by using just the optimal settings and, at the same time, increasing the numerical efficiency of the data-pattern reconstruction.

  8. Medical Imaging Computed Tomography (CT)

    E-Print Network [OSTI]

    Massey, Thomas N.

    #12;LSO-APD Array Schematic #12;Time-of-Flight PET #12;Energy Spectrum with lutetium oxyorthosilicate

  9. Ultrasound-modulated optical tomography 

    E-Print Network [OSTI]

    Nam, Haewon

    2004-09-30

    36a74a41a43a38a2a49a75a70 a3a76a41a78a77a79a46a51a38a2a7a13a80a11a17a81a0a2a50a10a36a61a82a83a41a43a42a40a38a40a36a84a44 a53 a36a39a50a86a85a10a46a75a42a87a44a54a36a74a46a75a88a21a70a89a59a10a88a74a90a10a88a39a88 a60 a41a43a50a47a44a91a49a51a70a83a44a...9a11a12a58a12a2a7a13a17 a8a10a59 a52a10a60 a36a84a44a40a44a54a41a43a63a69a44a47a49a64a3a71a41a78a77a106a46a51a38a2a7a13a80a11a17a107a0a13a50a10a36a61a82a83a41a43a42a62a38a18a36a84a44 a53 a36a39a50a108a85a10a46a51a42a45a44a47a36a39a46a51a88a109a70a89a...

  10. Chapter 12. The Muon Kicker

    E-Print Network [OSTI]

    Brookhaven National Laboratory - Experiment 821

    per fill with direct muon injection, compared to pion injection. The disadvantage of direct muonChapter 12. The Muon Kicker Revised September 1994 12.1. Introduction and Overview Direct muon injection into the storage ring is accomplished by giving the muon beam a 10 milliradian kick at a quarter

  11. Muons and Neutrinos 2007

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2008-01-29

    This paper is the written version of the rapporteur talk on Section HE-2, muons and neutrinos, presented at the 30th International Cosmic Ray Conference, Merida, Yucatan, July 11, 2007. Topics include atmospheric muons and neutrinos, solar neutrinos and astrophysical neutrinos as well as calculations and instrumentation related to these topics.

  12. The Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S

    2010-05-17

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  13. The Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2011-01-05

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  14. Muon-proton Scattering

    E-Print Network [OSTI]

    E. Borie

    2013-02-05

    A recent proposal to measure the proton form factor by means of muon-proton scattering will use muons which are not ultrarelativistic (and also not nonrelativistic). The usual equations describing the scattering cross section use the approximation that the scattered lepton (usually an electron) is ultrarelativistic, with v/c approximately equal to 1. Here the cross section is calculated for all values of the energy. It agrees with the standard result in the appropriate limit.

  15. Stochastic Cooling in Muon Colliders

    E-Print Network [OSTI]

    Barletta, W.A.

    2008-01-01

    Research Division Stochastic Cooling in Muon Colliders W.A.AC03-76SFOOO98. STOCHASTIC COOLING IN MUON COLLIDERS Williamcan consider the stochastic cooling option as more than a

  16. SU-E-J-243: Possibility of Exposure Dose Reduction of Cone-Beam Computed Tomography in An Image Guided Patient Positioning System by Using Various Noise Suppression Filters

    SciTech Connect (OSTI)

    Kamezawa, H; Arimura, H; Ohki, M; Shirieda, K; Kameda, N

    2014-06-01

    Purpose: To investigate the possibility of exposure dose reduction of the cone-beam computed tomography (CBCT) in an image guided patient positioning system by using 6 noise suppression filters. Methods: First, a reference dose (RD) and low-dose (LD)-CBCT (X-ray volume imaging system, Elekta Co.) images were acquired with a reference dose of 86.2 mGy (weighted CT dose index: CTDIw) and various low doses of 1.4 to 43.1 mGy, respectively. Second, an automated rigid registration for three axes was performed for estimating setup errors between a planning CT image and the LD-CBCT images, which were processed by 6 noise suppression filters, i.e., averaging filter (AF), median filter (MF), Gaussian filter (GF), bilateral filter (BF), edge preserving smoothing filter (EPF) and adaptive partial median filter (AMF). Third, residual errors representing the patient positioning accuracy were calculated as an Euclidean distance between the setup error vectors estimated using the LD-CBCT image and RD-CBCT image. Finally, the relationships between the residual error and CTDIw were obtained for 6 noise suppression filters, and then the CTDIw for LD-CBCT images processed by the noise suppression filters were measured at the same residual error, which was obtained with the RD-CBCT. This approach was applied to an anthropomorphic pelvic phantom and two cancer patients. Results: For the phantom, the exposure dose could be reduced from 61% (GF) to 78% (AMF) by applying the noise suppression filters to the CBCT images. The exposure dose in a prostate cancer case could be reduced from 8% (AF) to 61% (AMF), and the exposure dose in a lung cancer case could be reduced from 9% (AF) to 37% (AMF). Conclusion: Using noise suppression filters, particularly an adaptive partial median filter, could be feasible to decrease the additional exposure dose to patients in image guided patient positioning systems.

  17. Muon Cooling Channels Eberhard Keil

    E-Print Network [OSTI]

    Keil, Eberhard

    Muon Cooling Channels Eberhard Keil Katharinenstr. 17, DE-10711 Berlin, Germany Abstract Parameters of muon cooling channels are discussed that achieve cooling of a muon beam from initial to final emittances in all three degrees of freedom in a given length. Published theories of ionisation cooling yield

  18. SU-E-J-39: Comparison of PTV Margins Determined by In-Room Stereoscopic Image Guidance and by On-Board Cone Beam Computed Tomography Technique for Brain Radiotherapy Patients

    SciTech Connect (OSTI)

    Ganesh, T; Paul, S; Munshi, A; Sarkar, B; Krishnankutty, S; Sathya, J; George, S; Jassal, K; Roy, S; Mohanti, B

    2014-06-01

    Purpose: Stereoscopic in room kV image guidance is a faster tool in daily monitoring of patient positioning. Our centre, for the first time in the world, has integrated such a solution from BrainLAB (ExacTrac) with Elekta's volumetric cone beam computed tomography (XVI). Using van Herk's formula, we compared the planning target volume (PTV) margins calculated by both these systems for patients treated with brain radiotherapy. Methods: For a total of 24 patients who received partial or whole brain radiotherapy, verification images were acquired for 524 treatment sessions by XVI and for 334 sessions by ExacTrac out of the total 547 sessions. Systematic and random errors were calculated in cranio-caudal, lateral and antero-posterior directions for both techniques. PTV margins were then determined using van Herk formula. Results: In the cranio-caudal direction, systematic error, random error and the calculated PTV margin were found to be 0.13 cm, 0.12 cm and 0.41 cm with XVI and 0.14 cm, 0.13 cm and 0.44 cm with ExacTrac. The corresponding values in lateral direction were 0.13 cm 0.1 cm and 0.4 cm with XVI and 0.13 cm, 0.12 cm and 0.42 cm with ExacTrac imaging. The same parameters for antero-posterior were for 0.1 cm, 0.11 cm and 0.34 cm with XVI and 0.13 cm, 0.16 cm and 0.43 cm with ExacTrac imaging. The margins estimated with the two imaging modalities were comparable within ± 1 mm limit. Conclusion: Verification of setup errors in the major axes by two independent imaging systems showed the results are comparable and within ± 1 mm. This implies that planar imaging based ExacTrac can yield equal accuracy in setup error determination as the time consuming volumetric imaging which is considered as the gold standard. Accordingly PTV margins estimated by this faster imaging technique can be confidently used in clinical setup.

  19. Muon Cooling and Future Muon Facilities: The Coming Decade

    E-Print Network [OSTI]

    Daniel M. Kaplan

    2009-10-21

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of parameters of the neutrino mixing matrix. The performance and cost of these depend sensitively on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities can be built in the decade to come.

  20. The US Muon Accelerator Program

    SciTech Connect (OSTI)

    Torun, Y.; Kirk, H.; Bross, A.; Geer, Steve; Shiltsev, Vladimir; Zisman, M.; /LBL, Berkeley

    2010-05-01

    An accelerator complex that can produce ultra-intense beams of muons presents many opportunities to explore new physics. A facility of this type is unique in that, in a relatively straightforward way, it can present a physics program that can be staged and thus move forward incrementally, addressing exciting new physics at each step. At the request of the US Department of Energy's Office of High Energy Physics, the Neutrino Factory and Muon Collider Collaboration (NFMCC) and the Fermilab Muon Collider Task Force (MCTF) have recently submitted a proposal to create a Muon Accelerator Program that will have, as a primary goal, to deliver a Design Feasibility Study for an energy-frontier Muon Collider by the end of a 7 year R&D program. This paper presents a description of a Muon Collider facility and gives an overview of the proposal.

  1. Muon Colliders and Neutrino Factories

    SciTech Connect (OSTI)

    Geer, Steve; /Fermilab

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  2. Muon colliders and neutrino factories

    SciTech Connect (OSTI)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  3. High field solenoids for muon cooling

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01

    Field Solenoids for Muon Cooling M. A. Green a , Y. EyssaField Solenoids for Muon Cooling · M. A. Green a, Y. EyssaABSTRA CT The proposed cooling system for the muon collider

  4. Longitudinal Dynamics and Tomography in the Tevatron

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stogin, J; Sen, T; Moore, R S

    2012-01-10

    Motivated by the desire to understand the longitudinal effects of beam-beam forces, we study the longitudinal dynamics of protons and anti-protons at injection and top energy in the Tevatron. Multi-turn data of the longitudinal profiles are captured to reveal information about frequencies of oscillation, and changes in the bunch distributions. Tomographic reconstruction is used to create phase space maps which are subsequently used to find the momentum distributions. Changes in these distributions for both proton and anti-proton beams are also followed through the operational cycle. We report on the details of interesting dynamics and some unexpected findings.

  5. Atmospheric Neutrino Oscillations for Earth Tomography

    E-Print Network [OSTI]

    Winter, Walter

    2015-01-01

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can robustly measure the lower mantle density of the earth with a precision at the level of 4-5 percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  6. Optimum phase space probabilities from quantum tomography

    SciTech Connect (OSTI)

    Roy, Arunabha S.; Roy, S. M.

    2014-01-15

    We determine a positive normalised phase space probability distribution P with minimum mean square fractional deviation from the Wigner distribution W. The minimum deviation, an invariant under phase space rotations, is a quantitative measure of the quantumness of the state. The positive distribution closest to W will be useful in quantum mechanics and in time frequency analysis. The position-momentum correlations given by the distribution can be tested experimentally in quantum optics.

  7. Tomography of ames in combustion Frank Natterer

    E-Print Network [OSTI]

    Münster, Westfälische Wilhelms-Universität

    radicals in the ames in order to use these for an optimal control of the burners to reduce toxic gas

  8. Passive tomography for elastic waves in solids

    E-Print Network [OSTI]

    Mikael Carmona; Olivier Michel; Jean-Louis Lacoume; Nathalie Sprynski; Barbara Nicolas

    2011-03-24

    In this paper we derive relations between the cross-correlation of ambient noises recorded at two different points and the Green's function of the elastic waves in a medium with viscous damping. The Green's function allows to estimate physical parameters such as speeds or distances. Furthermore, this work is extended by introducing the Green's correlation function proposed by J-L. Lacoume in [Lacoume07]. Some recent works proved the possible reconstruction of the Green's function for scalar waves from the cross-correlation function of ambient noise. In this work, we consider vector waves propagating in a three dimensional solid medium. Two approaches are developed. Firstly, we extend theoretical derivations proposed by Y. Colin de Verdi`ere in [ColinDeVerdiere09], relating cross-correlation of scalar waves to 1D Green's function using linear operator theory. The second approach recasts the three dimensional problem in the framework of Fourier theory. This allows to improve physical understanding of the underlying physical processes as outlined in [Lacoume07].

  9. Study of scattering in positron emission tomography 

    E-Print Network [OSTI]

    Aguiar, James

    1998-01-01

    The Texas A&M University positron emission tomograph (TAMU PET) is an experimental, medical-imaging instrument designed to detect gamma rays produced by positron-electron annihilation. Each annihilation yields two coincident gamma rays...

  10. Optical coherence tomography guided dental drill

    DOE Patents [OSTI]

    DaSilva, Luiz B. (Danville, CA); Colston, Jr., Bill W. (Livermore, CA); James, Dale L. (Tracy, CA)

    2002-01-01

    A dental drill that has one or multiple single mode fibers that can be used to image in the vicinity of the drill tip. It is valuable to image below the surface being drilled to minimize damage to vital or normal tissue. Identifying the boundary between decayed and normal enamel (or dentine) would reduce the removal of viable tissue, and identifying the nerve before getting too close with the drill could prevent nerve damage. By surrounding a drill with several optical fibers that can be used by an optical coherence domain reflectometry (OCDR) to image several millimeters ahead of the ablation surface will lead to a new and improved dental treatment device.

  11. Applying Compactness Constraints to Seismic Traveltime Tomography

    E-Print Network [OSTI]

    Ajo-Franklin, Jonathan B.

    2006-01-01

    Tomographic imaging problems are typically ill-posed and often require the use of regularization techniques to guarantee a stable solution. Minimization of a weighted norm of model length is one commonly used secondary ...

  12. Positron emission tomography and optical tissue imaging

    DOE Patents [OSTI]

    Falen, Steven W. (Carmichael, CA); Hoefer, Richard A. (Newport News, VA); Majewski, Stanislaw (Yorktown, VA); McKisson, John (Hampton, VA); Kross, Brian (Yorktown, VA); Proffitt, James (Newport News, VA); Stolin, Alexander (Newport News, VA); Weisenberger, Andrew G. (Yorktown, VA)

    2012-05-22

    A mobile compact imaging system that combines both PET imaging and optical imaging into a single system which can be located in the operating room (OR) and provides faster feedback to determine if a tumor has been fully resected and if there are adequate surgical margins. While final confirmation is obtained from the pathology lab, such a device can reduce the total time necessary for the procedure and the number of iterations required to achieve satisfactory resection of a tumor with good margins.

  13. -CT CT)Computed Tomography(. ,. , -100 ,

    E-Print Network [OSTI]

    Pinsky, Ross

    sigma . ." , : ·B.sc "BA- · " Lean/six sigma - ·-Green/Black Belt ·. · , , .' , ·" . " * . : ·) B.A ,(-. ·4-6. ·) QFD, CtQ breakdown, DfSS, SPC, AQP, FMEA, Control Plan.( ·Six Sigma GB/EE/Mechanics/Physics/SW/Algorithms/Materials /Application Development) · · - · · Process Improvement Engineer : · . · -six

  14. System and method for ultrasonic tomography

    DOE Patents [OSTI]

    Haddad, Waleed Sami (Dublin, CA)

    2002-01-01

    A system and method for doing both transmission mode and reflection mode three-dimensional ultrasonic imagining. The multimode imaging capability may be used to provide enhanced detectability of cancer tumors within human breast, however, similar imaging systems are applicable to a number of other medical problems as well as a variety of non-medical problems in non-destructive evaluation (NDE).

  15. MICROLOCAL APPROACH TO TENSOR TOMOGRAPHY AND ...

    E-Print Network [OSTI]

    2008-03-14

    Jan 10, 2007 ... ... of other authors on this subject, our main goal is to present a microlocal point of view. ... We try to explain the ideas behind the proofs and skip details often. ... Knowledge of pseudo-differential operator (?DO) theory is also needed. In fact, we ... Thus the term real analytic function/metric on it makes sense.

  16. Addiction Studies with Positron Emission Tomography

    ScienceCinema (OSTI)

    Joanna Fowler

    2010-01-08

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  17. Azimuthal Jet Tomography at RHIC and LHC

    E-Print Network [OSTI]

    Barbara Betz; Miklos Gyulassy

    2014-02-14

    A generic jet-energy loss model that is coupled to state-of-the-art hydrodynamic fields and interpolates between a wide class of running coupling pQCD-based and AdS/CFT-inspired models is compared to recent data on the azimuthal and transverse momentum dependence of high-pT pion nuclear modification factors and high-pT elliptic flow measured at RHIC and LHC. We find that RHIC data are surprisingly consistent with various scenarios considered. However, extrapolations to LHC energies favor running coupling pQCD-based models of jet-energy loss. While conformal holographic models are shown to be inconsistent with data, recent non-conformal generalizations of AdS holography may provide an alternative description.

  18. TE Connectivity Finds Answers in Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cycles. "With recycled resins, we are facing additional variables in the injection molding process," says Gazda. "The ALS can help us understand the limits of adding recycled...

  19. Characterizing aquifer heterogeneity using hydraulic tomography

    E-Print Network [OSTI]

    Wachter, Brian James

    2008-07-29

    Fine-scale heterogeneity in a geologic medium determines rates and directions of flow and of contaminant transport. Traditional methods of determining hydraulic conductivity provide only average values of hydraulic ...

  20. Experimental transport of intensity diffraction tomography

    E-Print Network [OSTI]

    Lee, Justin Wu

    2011-01-01

    In this thesis, I perform intensity-based tomographic phase imaging in two ways. First, I utilize the paraxial transport of intensity equation (TIE) to construct phase maps of a phase object at multiple projection angles ...