National Library of Energy BETA

Sample records for togo tuvalu uganda

  1. Office of Communication - Brochures Available

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tadjikistan Taiwan Tanzania Thailand Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks & Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United...

  2. MHK Technologies/TUVALU | Open Energy Information

    Open Energy Info (EERE)

    to the MHK database homepage TUVALU.jpg Technology Profile Primary Organization Arlas Invest Technology Resource Click here Wave Technology Description The chain or cable coils in...

  3. Tuvalu: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Tuvalu Population 10,837 GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code TV 3-letter ISO code TUV Numeric ISO code...

  4. Togo: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Togo Population 5,337,000 GDP 3,685,000,000 Energy Consumption 0.04 Quadrillion Btu 2-letter ISO code TG 3-letter ISO code TGO Numeric ISO...

  5. Togo: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Togo Population 7,154,237 GDP 3,685,000,000 Energy Consumption 0.04 Quadrillion Btu 2-letter ISO code TG 3-letter ISO code TGO Numeric ISO...

  6. Solar Energy for Uganda Ltd | Open Energy Information

    Open Energy Info (EERE)

    Uganda Ltd Jump to: navigation, search Name: Solar Energy for Uganda Ltd Place: Entebbe, Uganda Sector: Solar Product: The company assembles, distributes and installs of solar...

  7. Uganda-UNDP Territorial Approach to Climate Change (TACC) in...

    Open Energy Info (EERE)

    UNDP Territorial Approach to Climate Change (TACC) in Eastern Uganda Jump to: navigation, search Name UNDP Territorial Approach to Climate Change (TACC) in Eastern Uganda Agency...

  8. Uganda-African Climate Change Resilience Alliance | Open Energy...

    Open Energy Info (EERE)

    African Climate Change Resilience Alliance Jump to: navigation, search Logo: Uganda-African Climate Change Resilience Alliance Name Uganda-African Climate Change Resilience...

  9. Uganda-REEEP Energy Activities | Open Energy Information

    Open Energy Info (EERE)

    Southern A Microfinancing the uptake of modern cookstoves in Uganda Promotion of Solar Water Heating in Uganda References "REEEP project database" Retrieved from "http:...

  10. Uganda-Developing Energy Enterprises Project (DEEP) | Open Energy...

    Open Energy Info (EERE)

    Developing Energy Enterprises Project (DEEP) Jump to: navigation, search Logo: Uganda-Developing Energy Enterprises Project (DEEP) Name Uganda-Developing Energy Enterprises Project...

  11. Uganda: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Uganda Population Unavailable GDP Unavailable Energy Consumption 0.04 Quadrillion Btu 2-letter ISO code UG 3-letter ISO code UGA Numeric ISO...

  12. Uganda-National Adaptation Programme of Action | Open Energy...

    Open Energy Info (EERE)

    Background analysis Website http:unfccc.intresourcedoc Country Uganda Eastern Africa References Uganda-NAPA1 This article is a stub. You can help OpenEI by expanding...

  13. Uganda-USAID Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    U.S. Agency for International Development Sector Land Focus Area Forestry, Agriculture Topics Background analysis Website http:www.usaid.govourwork Country Uganda...

  14. Uganda-Demonstrating Wind and Solar Energy on Lake Victoria ...

    Open Energy Info (EERE)

    programs, Background analysis, Technology characterizations Resource Type Guidemanual, Lessons learnedbest practices Website http:sgp.undp.orgdownloadS Country Uganda UN...

  15. CRC handbook of agricultural energy potential of developing countries

    SciTech Connect (OSTI)

    Duke, J.A.

    1986-01-01

    The contents of this book are: Introduction; Kenya; Korea (Republic of); Lesotho; Liberia; Malagasy; Malawi; Mali; Mauritania; Mexico, Mozambique, Nepal; Nicaragua; Niger; Nigeria; Pakistan; Panama; Paraguay; Peru; Philippines; Rwanda; Senegal; Sierra Leone; Somalia; Sri Lanka; Sudana; Surinam; Swaziland; Tanzania; Thailand; Togo; Uganda; Uruguay; Venezuela; Zaire; Zambia; Appendix I. Conventional and Energetic Yields; Appendix II, Phytomass Files; and References.

  16. Uganda-Reducing the GHG Impacts of Sustainable Intensification...

    Open Energy Info (EERE)

    can benefit poor farmers and to understand trade-offs among different dimensions of poverty and different groups of the poor (including between men and women). Special attention...

  17. Uganda-EU-UNDP Low Emission Capacity Building Programme (LECBP...

    Open Energy Info (EERE)

    Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE),...

  18. Uganda-GTZ Promotion of EERE | Open Energy Information

    Open Energy Info (EERE)

    energy services for the Ugandan population and economy as a means of achieving social and economic development, especially for the poor. Therefore, the project supports...

  19. Uganda-National Adaptation Plan Global Support Programme (NAP...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  20. Tropical Africa: Land Use, Biomass, and Carbon Estimates for 1980 (NDP-055)

    SciTech Connect (OSTI)

    Brown, S.

    2002-04-16

    This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980. The biomass data and carbon estimates are associated with woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with estimating historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth's land surface and is comprised of countries that are located in tropical Africa (Angola, Botswana, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Congo, Benin, Equatorial Guinea, Ethiopia, Djibouti, Gabon, Gambia, Ghana, Guinea, Ivory Coast, Kenya, Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Niger, Nigeria, Guinea-Bissau, Zimbabwe (Rhodesia), Rwanda, Senegal, Sierra Leone, Somalia, Sudan, Tanzania, Togo, Uganda, Burkina Faso (Upper Volta), Zaire, and Zambia). The database was developed using the GRID module in the ARC/INFO{trademark} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

  1. Property:Country | Open Energy Information

    Open Energy Info (EERE)

    + HOMER + Armenia + HOMER + Bhutan + HOMER + Yugoslavia + HOMER + Mexico + HOMER + Egypt + HOMER + Saint Helena + HOMER + Syria + HOMER + Israel + HOMER + Uganda + HOMER +...

  2. Africa Forum for Clean Energy Financing (AFRICEF) | Open Energy...

    Open Energy Info (EERE)

    from any African Country, and particularly targets projects from South Africa, Mozambique and Uganda. Applicants need to respond to the attached call for proposals by 16th...

  3. Forest Carbon Partnership Facility | Open Energy Information

    Open Energy Info (EERE)

    Madagascar, Mexico, Moldova, Mozambique, Nepal, Nicaragua, Panama, Papua New Guinea, Paraguay, Peru, Republic of the Congo, Suriname, Tanzania, Thailand, Uganda, Vanuatu, Vietnam...

  4. The REDD Opportunities Scoping Exercise (ROSE) | Open Energy...

    Open Energy Info (EERE)

    Tanzania, and Uganda AgencyCompany Organization The Katoomba Group, Forest Trends, Nature Conservation Research Centre Sector Land Focus Area Forestry Topics Implementation,...

  5. Energy Systems Limited ESL | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy, Solar Product: ESL deals with design, supply, installations and maintenance of solar and other renewable energy systems in Uganda. The company has a special...

  6. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ...

    Open Energy Info (EERE)

    for GHG inventories and MRV Tunisia-GTZ Promotion of EERE Uganda-GTZ Promotion of EERE Ukraine-GTZ Climate Oriented Mobility Uruguay-Enhancing Low-carbon Development by Greening...

  7. Kakira Sugar Works (1985) Limited, Kakira biomass cogeneration: Volume 3 -- Final report. Export trade information

    SciTech Connect (OSTI)

    1998-06-01

    This report, conducted by John H. Payne, Inc., was funded by the US Trade and Development Agency. The study concerns the technical and financial feasibility of the Kakira Sugar Works Limited to increase its capacity to 5,000 TCD and to sell its surplus power to the Uganda Electricity Board. This is Volume 3, the Purchase Energy Contract between Kakira Cogeneration Company Limited and Uganda Electricity Board.

  8. Slide 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OAPM Red Yellow Report Office of Acquisition and Project Management (OAPM) MA-60 U. S. Department of Energy July 2014 Achieving Management and Operational Excellence Analysis Reports - Project Analysis SOP Page 2 APM DepSec Monthly Reports * APM DepSec Monthly Reports * Verification Reports (Project) - APM Red/Yellow Detail 1 - 6 Month Trend - APM Red/Yellow Detail 2 - 12 Month Plan v Actual - APM Red/Yellow Detail 3 - Contractor Completion Forecast - APM Red/Yellow Detail 4 - TPC To-Go - APM

  9. Microsoft PowerPoint - Rod Rimando- NCW 2015 - TD Session 150929 Rimando Opening

    Office of Environmental Management (EM)

    A Big Step Increase in the EM TD Program Office of Environmental Management No EM Mission Completed State Completed Site Remaining EM Mission MISSION SUCCESS AND CHALLENGE MISSION SUCCESS 0 1 2 3 4 5 6 7 8 1989 1994 1999 2004 2009 2014 $152 billion total spent. Completed 91 of 107 major sites. Profile of Historical EM Annual Costs US Dollars in Billions Average Annual Budget = $6B MISSION CHALLENGE 0 1 2 3 4 5 6 7 8 9 10 2016 2026 2036 2046 2056 2066 $235 billion to-go estimate. 2065 completion

  10. SREL Reprint #3073

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Isolation and characterization of tetranucleotide microsatellite markers in a mouth-brooding haplochromine cichlid fish (Pseudocrenilabrus multicolor victoriae) from Uganda Erika Crispo1, Cris Hagen2, Travis Glenn2, Geneviève Geneau3, and Lauren J. Chapman1 1Department of Biology, McGill University, 1205 Ave. Docteur Penfield, Montréal, Québec, Canada, H3A 1B1 2Savannah River Ecology Laboratory, University of Georgia, Savannah River Site, Aiken, South Carolina, 29802, USA 3Génome Québec

  11. Turmoil doesn`t dampen enthusiasm

    SciTech Connect (OSTI)

    1997-08-01

    The paper discusses the outlook for the African gas and oil industries. Though Africa remains politically and economically volatile, its vast energy potential is becoming increasingly attractive to foreign oil and gas companies. Separate evaluations are given for Algeria, Egypt, Nigeria, Angola, Libya, Congo, Gabon, Tunisia, Cameroon, Cote D`Ivoire, and briefly for South Africa, Sudan, Equatorial Guinea, Ghana, Zaire, Benin, Mozambique, Chad, Namibia, Tanzania, Eritrea, Guinea-Bissau, Senegal, Morocco, Sao Tome and Principe, Ethiopia, Niger, Madagascar, Rwanda, Mauritania, Seychelles, Uganda, and Liberia.

  12. Closure End States for Facilities, Waste Sites, and Subsurface Contamination - 12543

    SciTech Connect (OSTI)

    Gerdes, Kurt; Chamberlain, Grover; Whitehurst, Latrincy; Marble, Justin; Wellman, Dawn; Deeb, Rula; Hawley, Elisabeth

    2012-07-01

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE's Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation and decommissioning (D and D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites. (authors)

  13. Closure End States for Facilities, Waste Sites, and Subsurface Contamination

    SciTech Connect (OSTI)

    Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

    2012-11-21

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE’s Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites.

  14. Heteromorphism and crystallization paths of katungites, Navajo volcanic field, Arizona, USA

    SciTech Connect (OSTI)

    Laughlin, A.W.; Charles, R.W.; Aldrich, M.J. Jr.

    1986-01-01

    A swarm of thin, isochemical but heteromorphic dikes crops out in the valley of Hasbidito Creek in NE Arizona. The swarm is part of the dominantly potassic, mid-Tertiary Navajo volcanic field of the Colorado Plateau. Whole-rock chemical analyses of five samples from four of the dikes indicate that they are chemically identical to the katungites of Uganda. These dikes show the characteristic seriate-porphyritic texture of lamprophyres. Samples of an olivine-melilitite dike from the same swarm lack this texture and the chemical analysis, while similar to those of the other dikes, shows effects from the incorporation of xenocrystic olivine. Over 20 mineral phases have been identified in the Arizona samples and as many as 18 phases may occur in a single sample. The major phases are phlogopite, olivine, perovskite, opaque oxides, +- melilite and +- clinopyroxene. Based upon the modal mineralogies and textures of ten dike samples, we recognize five general non-equilibrium assemblages. Comparison of these assemblages with recent experimental results shows that they represent various combinations of complete and incomplete reactions. Reaction relations were determined by entering melt and phase compositions into the computer program GENMIX to obtain balanced reactions. By combining petrographic observations with mineral chemical data, balanced reactions from GENMIX, and the recently determined phase diagrams we are able to trace crystallization paths for the katungite magma.

  15. Clean energy for development investment framework: the World Bank Group action plan

    SciTech Connect (OSTI)

    2007-03-06

    In September 2005 the Development Committee requested the World Bank to develop an Investment Framework for Clean Energy and Development - in the context of the Gleneagles Communique on Climate Change, Clean Energy and Sustainable Development which was issued in July 2005. This Action Plan provides an update of work undertaken to date as well as actions planned by the World Bank Group (WBG) in support of the Clean Energy for Development Investment Framework (CEIF). The Action Plan relies on partnerships, including with the International Financial Institutions (IFIs) and the private sector. While it concentrates on maximizing and extending existing instruments, it provides for continued dialogue with governments and the private sector on new approaches to accelerate the transition to a low carbon economy. In addition to increased investments, the private sector has an important role to play in closing the investment gap in many countries. Projects such as Bujagali (Uganda), Nam Theun II (Laos) and China and India Thermal Power Plant Rehabilitation projects are examples of how partnerships with the private sector can work, both on financing but also on enhancing the overall regulatory framework for enhanced partnerships. The report was prepared for the 15 April 2007 Development Committee meeting, a joint committee of the Board of Governors of the World Bank and the International Monetary Fund on the transfer of real resources to developing countries. 3 figs., 3 tabs., 5 annexes.

  16. Building international genomics collaboration for global health security

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cui, Helen H.; Erkkila, Tracy; Chain, Patrick S. G.; Vuyisich, Momchilo

    2015-12-07

    Genome science and technologies are transforming life sciences globally in many ways and becoming a highly desirable area for international collaboration to strengthen global health. The Genome Science Program at the Los Alamos National Laboratory is leveraging a long history of expertise in genomics research to assist multiple partner nations in advancing their genomics and bioinformatics capabilities. The capability development objectives focus on providing a molecular genomics-based scientific approach for pathogen detection, characterization, and biosurveillance applications. The general approaches include introduction of basic principles in genomics technologies, training on laboratory methodologies and bioinformatic analysis of resulting data, procurement, and installationmore » of next-generation sequencing instruments, establishing bioinformatics software capabilities, and exploring collaborative applications of the genomics capabilities in public health. Genome centers have been established with public health and research institutions in the Republic of Georgia, Kingdom of Jordan, Uganda, and Gabon; broader collaborations in genomics applications have also been developed with research institutions in many other countries.« less

  17. Profiteering on the Iran-Iraq war

    SciTech Connect (OSTI)

    Brzoska, M.

    1987-06-01

    The military gear delivered from the US in the Iran-contra affair represents only a minor portion of arms sales to the combatants in the Iraq-Iran war. That war has now lasted more than six years and has deeply influenced the international arms market. Occurring during a period when other demand for arms has been relatively low, the war has nourished new suppliers and has revived both the legal and illegal private arms market. The erratic behavior of the USSR and the US, until recently by far the most important arms suppliers to the Third World, has pushed Iran and Iraq toward more commercially oriented sources, including many in the Third World. Both countries have had ample supplies of weapons during the war, and these weapons have served their purpose. Mainly because of its duration, the war already ranks third among post-World War II wars - after the Vietnam war and the Biafra war - in battlefield victims, with 300,000-500,000 casualties. The economic cost has risen to nearly $500 billion in weapons, destruction, and lost income. While it is hard to see anything but losers on the battlefield, the arms traffickers are profiting. Total Iranian arms imports since August 1980 have been higher than $10 billion, while Iraq has imported more than $30 billion worth. It is difficult to know whether making arms more difficult to obtain would have stopped the war, but judging from other recent wars, such as those between India and Pakistan, between Uganda and Tanzania, and in the Middle East, it seems likely that hostilities could have been stopped long ago. 12 references.

  18. War, peace, and international politics. Fourth edition

    SciTech Connect (OSTI)

    Ziegler, D.W. )

    1987-01-01

    We must conclude that war remains a major problem in the last quarter of the twentieth century. My intention in this book is to introduce you to international relations by focusing on this problem. War is not the only problem of international relations, and so this book does not exhaust the field. But war is a central problem, and the possibility of resort to war affects other aspects of international relations. Whatever else we may look at, we cannot avoid looking at war. In fact, in looking at war, we will touch on most of the other subjects important in international relations. War is conflict among states carried on by their armed forces. To distinguish war from border skirmishes and other minor incidents we usually say it must reach a certain magnitude (for example, at least 1,000 soldiers killed in battle over a year). It would be ideal if we could systematically study all the wars in the last hundred years, but such an exhaustive study would be out of place here. At the same time we cannot discuss such subjects as the cause of war or proposals for preventing it without some knowledge about actual wars. We must test theories against historical facts. What follows in Part I is a somewhat detailed history of seven wars (or groups of wars) fought in the last hundred years. These include the most destructive of the wars World War I (1914-1918), World War II (1939-1945), and the Korean War (1950-1953). By way of background to World War I, we will look at the wars of German unification (1864-1871), which preceded and in some ways prepared the way for it. To balance our account, we will also look at several recent wars India and Pakistan (1971), Uganda and Tanzania (1978-1979), and Cambodia, Vietnam, and China (1978-1980). After looking at some of the major wars of the last hundred years, we will look at what people have the about the causes of war in general.