National Library of Energy BETA

Sample records for title demand response

  1. Demand Response

    Energy Savers [EERE]

    Demand Response Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee Prepared for FY12 DOE-CERTS Transmission Reliability R&D Internal Program Review September 20, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy DOE National Laboratory Studies Funded to Support FOA 63 * DOE set aside $20 million from transmission funding for national laboratory studies. * DOE

  2. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  3. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  4. Demand Response Analysis Tool

    Energy Science and Technology Software Center (OSTI)

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be usedmore » by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.« less

  5. Demand Response Analysis Tool

    SciTech Connect (OSTI)

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be used by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.

  6. Demand Response Dispatch Tool

    SciTech Connect (OSTI)

    2012-08-31

    The Demand Response (DR) Dispatch Tool uses price profiles to dispatch demand response resources and create load modifying profiles. These annual profiles are used as inputs to production cost models and regional planning tools (e.g., PROMOD). The tool has been effectively implemented in transmission planning studies conducted by the Western Electricity Coordinating Council via its Transmission Expansion Planning and Policy Committee. The DR Dispatch Tool can properly model the dispatch of DR resources for both reliability and economic conditions.

  7. Demand Response Dispatch Tool

    Energy Science and Technology Software Center (OSTI)

    2012-08-31

    The Demand Response (DR) Dispatch Tool uses price profiles to dispatch demand response resources and create load modifying profiles. These annual profiles are used as inputs to production cost models and regional planning tools (e.g., PROMOD). The tool has been effectively implemented in transmission planning studies conducted by the Western Electricity Coordinating Council via its Transmission Expansion Planning and Policy Committee. The DR Dispatch Tool can properly model the dispatch of DR resources for bothmore » reliability and economic conditions.« less

  8. Demand Response | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in

  9. Demand Response Quick Assessment Tool

    Energy Science and Technology Software Center (OSTI)

    2008-12-01

    DRQAT (Demand Response Quick Assessment Tool) is the tool for assessing demand response saving potentials for large commercial buildings. This tool is based on EnergyPlus simulations of prototypical buildings and HVAC equipment. The opportunities for demand reduction and cost savings with building demand responsive controls vary tremendously with building type and location. The assessment tools will predict the energy and demand savings, the economic savings, and the thermal comfor impact for various demand responsive strategies.more » Users of the tools will be asked to enter the basic building information such as types, square footage, building envelope, orientation, utility schedule, etc. The assessment tools will then use the prototypical simulation models to calculate the energy and demand reduction potential under certain demand responsive strategies, such as precooling, zonal temperature set up, and chilled water loop and air loop set points adjustment.« less

  10. Residential Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in-home displays with controllable home area network capabilities and thermal storage devices for home heating. Goals and objectives: Reduce the City's NCP demand above...

  11. Demand Response Programs, 6. edition

    SciTech Connect (OSTI)

    2007-10-15

    The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

  12. Demand Response Technology Roadmap A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meetings and workshops convened to develop content for the Demand Response Technology Roadmap. The project team has developed this companion document in the interest of providing...

  13. Demand Response for Ancillary Services

    SciTech Connect (OSTI)

    Alkadi, Nasr E; Starke, Michael R

    2013-01-01

    Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

  14. Automated Demand Response and Commissioning

    SciTech Connect (OSTI)

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-04-01

    This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

  15. Honeywell Demonstrates Automated Demand Response Benefits for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility, ...

  16. Demand Response for Ancillary Services

    Broader source: Energy.gov [DOE]

    Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and implement a methodology to construct detailed temporal and spatial representations of demand response resources and to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to assess economic value of the realizable potential of demand response for ancillary services.

  17. Demand Response - Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response - Policy Demand Response - Policy Since its inception, the Office of Electricity Delivery and Energy Reliability (OE) has been committed to modernizing the nation's ...

  18. Response to Request for Information titled "Addressing Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Request for Information titled "Addressing Policy and Logistical Challenges to Smart Grid Implementation" Response to Request for Information titled "Addressing Policy and ...

  19. Demand Response Valuation Frameworks Paper

    SciTech Connect (OSTI)

    Heffner, Grayson

    2009-02-01

    While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.

  20. Demand Response - Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response - Policy Demand Response - Policy Since its inception, the Office of Electricity Delivery and Energy Reliability (OE) has been committed to modernizing the nation's electricity delivery infrastructure to assure consumers a robust, reliable electric power system that meets their increasing demand for energy. OE's mission includes assisting states and regions in developing policies that decrease demand on existing energy infrastructure. Appropriate cost-effective demand response

  1. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    none,

    2010-01-01

    Summarizes existing research and discusses current practices, opportunities, and barriers to coordinating energy efficiency and demand response programs.

  2. Demand Response in the ERCOT Markets

    SciTech Connect (OSTI)

    Patterson, Mark

    2011-10-25

    ERCOT grid serves 85% of Texas load over 40K+ miles transmission line. Demand response: voluntary load response, load resources, controllable load resources, and emergency interruptible load service.

  3. NCEP_Demand_Response_Draft_111208.indd

    Energy Savers [EERE]

    National Council on Electricity Policy: Electric Transmission Series for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials Prepared by the U.S. Demand Response Coordinating Committee for The National Council on Electricity Policy Fall 2008 i National Council on Electricity Policy: Electric

  4. BPA, Energy Northwest launch demand response pilot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA-Energy-Northwest-launch-demand-response-pilot Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand...

  5. Demand Response and Energy Storage Integration Study

    Broader source: Energy.gov [DOE]

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable...

  6. Demand Response (transactional control) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Demand Response (transactional control) Pacific Northwest ...

  7. Distributed Automated Demand Response - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Distributed Automated Demand Response Lawrence Livermore ...

  8. Energy Efficiency, Demand Response, and Volttron

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY EFFICIENCY, DEMAND RESPONSE, AND VOLTTRON Presented by Justin Sipe SEEMINGLY SIMPLE STATEMENTS Utilities need more capacity to handle growth on the grid ...

  9. Addressing Energy Demand through Demand Response. International Experiences and Practices

    SciTech Connect (OSTI)

    Shen, Bo; Ghatikar, Girish; Ni, Chun Chun; Dudley, Junqiao; Martin, Phil; Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects “changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 1 The California Energy Commission (CEC) defines DR as “a reduction in customers’ electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.” 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  10. Strategies for Demand Response in Commercial Buildings

    SciTech Connect (OSTI)

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-06-20

    This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

  11. Autonomous Demand Response for Primary Frequency Regulation

    SciTech Connect (OSTI)

    Donnelly, Matt; Trudnowski, Daniel J.; Mattix, S.; Dagle, Jeffery E.

    2012-02-28

    The research documented within this report examines the use of autonomous demand response to provide primary frequency response in an interconnected power grid. The work builds on previous studies in several key areas: it uses a large realistic model (i.e., the interconnection of the western United States and Canada); it establishes a set of metrics that can be used to assess the effectiveness of autonomous demand response; and it independently adjusts various parameters associated with using autonomous demand response to assess effectiveness and to examine possible threats or vulnerabilities associated with the technology.

  12. The alchemy of demand response: turning demand into supply

    SciTech Connect (OSTI)

    Rochlin, Cliff

    2009-11-15

    Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

  13. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  14. Demand Response and Energy Storage Integration Study

    Broader source: Energy.gov [DOE]

    This study is a multi-national laboratory effort to assess the potential value of demand response and energy storage to electricity systems with different penetration levels of variable renewable...

  15. Measuring the capacity impacts of demand response

    SciTech Connect (OSTI)

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  16. Centralized and Decentralized Control for Demand Response

    SciTech Connect (OSTI)

    Lu, Shuai; Samaan, Nader A.; Diao, Ruisheng; Elizondo, Marcelo A.; Jin, Chunlian; Mayhorn, Ebony T.; Zhang, Yu; Kirkham, Harold

    2011-04-29

    Demand response has been recognized as an essential element of the smart grid. Frequency response, regulation and contingency reserve functions performed traditionally by generation resources are now starting to involve demand side resources. Additional benefits from demand response include peak reduction and load shifting, which will defer new infrastructure investment and improve generator operation efficiency. Technical approaches designed to realize these functionalities can be categorized into centralized control and decentralized control, depending on where the response decision is made. This paper discusses these two control philosophies and compares their relative advantages and disadvantages in terms of delay time, predictability, complexity, and reliability. A distribution system model with detailed household loads and controls is built to demonstrate the characteristics of the two approaches. The conclusion is that the promptness and reliability of decentralized control should be combined with the predictability and simplicity of centralized control to achieve the best performance of the smart grid.

  17. FERC sees huge potential for demand response

    SciTech Connect (OSTI)

    2010-04-15

    The FERC study concludes that U.S. peak demand can be reduced by as much as 188 GW -- roughly 20 percent -- under the most aggressive scenario. More moderate -- and realistic -- scenarios produce smaller but still significant reductions in peak demand. The FERC report is quick to point out that these are estimates of the potential, not projections of what could actually be achieved. The main varieties of demand response programs include interruptible tariffs, direct load control (DLC), and a number of pricing schemes.

  18. Refrigerated Warehouse Demand Response Strategy Guide

    SciTech Connect (OSTI)

    Scott, Doug; Castillo, Rafael; Larson, Kyle; Dobbs, Brian; Olsen, Daniel

    2015-11-01

    This guide summarizes demand response measures that can be implemented in refrigerated warehouses. In an appendix, it also addresses related energy efficiency opportunities. Reducing overall grid demand during peak periods and energy consumption has benefits for facility operators, grid operators, utility companies, and society. State wide demand response potential for the refrigerated warehouse sector in California is estimated to be over 22.1 Megawatts. Two categories of demand response strategies are described in this guide: load shifting and load shedding. Load shifting can be accomplished via pre-cooling, capacity limiting, and battery charger load management. Load shedding can be achieved by lighting reduction, demand defrost and defrost termination, infiltration reduction, and shutting down miscellaneous equipment. Estimation of the costs and benefits of demand response participation yields simple payback periods of 2-4 years. To improve demand response performance, it’s suggested to install air curtains and another form of infiltration barrier, such as a rollup door, for the passageways. Further modifications to increase efficiency of the refrigeration unit are also analyzed. A larger condenser can maintain the minimum saturated condensing temperature (SCT) for more hours of the day. Lowering the SCT reduces the compressor lift, which results in an overall increase in refrigeration system capacity and energy efficiency. Another way of saving energy in refrigerated warehouses is eliminating the use of under-floor resistance heaters. A more energy efficient alternative to resistance heaters is to utilize the heat that is being rejected from the condenser through a heat exchanger. These energy efficiency measures improve efficiency either by reducing the required electric energy input for the refrigeration system, by helping to curtail the refrigeration load on the system, or by reducing both the load and required energy input.

  19. Wireless Demand Response Controls for HVAC Systems

    SciTech Connect (OSTI)

    Federspiel, Clifford

    2009-06-30

    The objectives of this scoping study were to develop and test control software and wireless hardware that could enable closed-loop, zone-temperature-based demand response in buildings that have either pneumatic controls or legacy digital controls that cannot be used as part of a demand response automation system. We designed a SOAP client that is compatible with the Demand Response Automation Server (DRAS) being used by the IOUs in California for their CPP program, design the DR control software, investigated the use of cellular routers for connecting to the DRAS, and tested the wireless DR system with an emulator running a calibrated model of a working building. The results show that the wireless DR system can shed approximately 1.5 Watts per design CFM on the design day in a hot, inland climate in California while keeping temperatures within the limits of ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy.

  20. Demand Response and Energy Storage Integration Study - Past Workshops...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Energy Storage Integration Study - Past Workshops Demand Response and Energy Storage Integration Study - Past Workshops The project was initiated and informed...

  1. SGDP Report Now Available: Interoperability of Demand Response...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SGDP Report Now Available: Interoperability of Demand Response Resources Demonstration in NY (February 2015) SGDP Report Now Available: Interoperability of Demand Response ...

  2. SGDP Report: Interoperability of Demand Response Resources Demonstrati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SGDP Report: Interoperability of Demand Response Resources Demonstration in NY (February 2015) SGDP Report: Interoperability of Demand Response Resources Demonstration in NY ...

  3. FERC Presendation: Demand Response as Power System Resources...

    Office of Environmental Management (EM)

    FERC Presendation: Demand Response as Power System Resources, October 29, 2010 FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Federal Energy ...

  4. Demand Responsive Lighting: A Scoping Study

    SciTech Connect (OSTI)

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-03

    The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

  5. Taxonomy for Modeling Demand Response Resources

    SciTech Connect (OSTI)

    Olsen, Daniel; Kiliccote, Sila; Sohn, Michael; Dunn, Laura; Piette, Mary, A

    2014-08-01

    Demand response resources are an important component of modern grid management strategies. Accurate characterizations of DR resources are needed to develop systems of optimally managed grid operations and to plan future investments in generation, transmission, and distribution. The DOE Demand Response and Energy Storage Integration Study (DRESIS) project researched the degree to which demand response (DR) and energy storage can provide grid flexibility and stability in the Western Interconnection. In this work, DR resources were integrated with traditional generators in grid forecasting tools, specifically a production cost model of the Western Interconnection. As part of this study, LBNL developed a modeling framework for characterizing resource availability and response attributes of DR resources consistent with the governing architecture of the simulation modeling platform. In this report, we identify and describe the following response attributes required to accurately characterize DR resources: allowable response frequency, maximum response duration, minimum time needed to achieve load changes, necessary pre- or re-charging of integrated energy storage, costs of enablement, magnitude of controlled resources, and alignment of availability. We describe a framework for modeling these response attributes, and apply this framework to characterize 13 DR resources including residential, commercial, and industrial end-uses. We group these end-uses into three broad categories based on their response capabilities, and define a taxonomy for classifying DR resources within these categories. The three categories of resources exhibit different capabilities and differ in value to the grid. Results from the production cost model of the Western Interconnection illustrate that minor differences in resource attributes can have significant impact on grid utilization of DR resources. The implications of these findings will be explored in future DR valuation studies.

  6. Retail Demand Response in Southwest Power Pool

    Energy Savers [EERE]

    LBNL-1470E Retail Demand Response in Southwest Power Pool Ranjit Bharvirkar, Grayson Heffner and Charles Goldman Lawrence Berkeley National Laboratory Environmental Energy Technologies Division January 2009 The work described in this report was funded by the Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was

  7. Detailed Modeling and Response of Demand Response Enabled Appliances

    SciTech Connect (OSTI)

    Vyakaranam, Bharat; Fuller, Jason C.

    2014-04-14

    Proper modeling of end use loads is very important in order to predict their behavior, and how they interact with the power system, including voltage and temperature dependencies, power system and load control functions, and the complex interactions that occur between devices in such an interconnected system. This paper develops multi-state time variant residential appliance models with demand response enabled capabilities in the GridLAB-DTM simulation environment. These models represent not only the baseline instantaneous power demand and energy consumption, but the control systems developed by GE Appliances to enable response to demand response signals and the change in behavior of the appliance in response to the signal. These DR enabled appliances are simulated to estimate their capability to reduce peak demand and energy consumption.

  8. Demand Response - Policy: More Information | Department of Energy

    Energy Savers [EERE]

    Demand Response - Policy: More Information Demand Response - Policy: More Information OE's commitment to ensuring non-wires options to modernize the nation's electricity delivery system includes ongoing support of a number of national and regional activities in support of demand response. The New England Demand Response Initiative (NEDRI), OE's initial endeavor to assist states with non-wire solutions, was created to develop a comprehensive, coordinated set of demand response programs for the

  9. Price-responsive demand management for a smart grid world

    SciTech Connect (OSTI)

    Chao, Hung-po

    2010-01-15

    Price-responsive demand is essential for the success of a smart grid. However, existing demand-response programs run the risk of causing inefficient price formation. This problem can be solved if each retail customer could establish a contract-based baseline through demand subscription before joining a demand-response program. (author)

  10. Home Network Technologies and Automating Demand Response

    SciTech Connect (OSTI)

    McParland, Charles

    2009-12-01

    Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

  11. Demand Response: Lessons Learned with an Eye to the Future |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response: Lessons Learned with an Eye to the Future Demand Response: Lessons Learned with an Eye to the Future July 11, 2013 - 11:56am Addthis Patricia A. Hoffman Patricia...

  12. A National Forum on Demand Response: Results on What Remains...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Part of the July 2011 Implementation Proposal called for a "National Forum" on demand response to be conducted by DOE and FERC. Given the rapid development of the demand response ...

  13. 2010 Assessment of Demand Response and Advanced Metering - Staff Report |

    Energy Savers [EERE]

    Department of Energy Assessment of Demand Response and Advanced Metering - Staff Report 2010 Assessment of Demand Response and Advanced Metering - Staff Report 2010 Assessment of Demand Response and Advanced Metering - Staff Report. The Federal Energy Regulatory Commission's 2010 Demand Response and Advanced Metering Survey (2010 FERC Survey, covering calendar year 2009) indicates that advanced metering penetration (i.e., the fraction of all installed meters that are advanced meters) reached

  14. FERC Presendation: Demand Response as Power System Resources, October 29,

    Energy Savers [EERE]

    2010 | Department of Energy FERC Presendation: Demand Response as Power System Resources, October 29, 2010 FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Federal Energy Regulatory Commission (FERC) presentation on demand response as power system resources before the Electicity Advisory Committee, October 29, 2010 PDF icon Demand Response as Power System Resources More Documents & Publications Ancillary Service Revenue Potential for Geothermal Generators in

  15. Title:

    National Nuclear Security Administration (NNSA)

    Title: 2008 Site-Wide Environmental Impact Statement for the Continued Operation of Los Alamos National Laboratory (DOE/EIS 0380) Mitigation Action Plan U.S. Department of Energy Date: December 2008 Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher

  16. Title

    U.S. Energy Information Administration (EIA) Indexed Site

    Name Title Date Cap and Trade: the Lieberman-Warner Climate Security Act of 2007 John Steelman April 2011 The Future of Onshore Oil & Gas Production 1 Largest New Source: Existing Oil Fields 2 How we produce oil matters NETL 2008 3 How we produce oil matters NETL 2008 CO 2 -EOR in Permian Basin w/ natural CO 2 NETL 2010 71 4 How we produce oil matters NETL 2008 CO 2 -EOR in Permian Basin w/ natural CO 2 NETL 2010 -157 CO 2 -EOR in Permian Basin w/ CCS 71 5 Where we produce gas matters 6

  17. TITLE

    Office of Legacy Management (LM)

    WE/OR/20722-275 102-HSP-01 Rev. 1 HEALTH AND SAFETY PLAN FOR THE ALBANY RESEARCH CENTER SITE SEFTEMBER 1990 Prepared for United S t a t e s Department of Energy Oak Ridge Operations Office Under Contract N o . DE-AC05-810R20722 Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job N o . 14501 TITLE : HEALTH AND SAFETY PLAN FOR THE U Y RESEARCH CENTER SITE DDCUMENT NUMBER: 102-HSP-01 REVISION NUMBER: 1 PROJECT: PUSPAP JOB NO. : 1 4 5 0 1 REVIEW: ~a fetf Services REVIEWED: REVIEWED : APPROVED:

  18. Demand Response Energy Consulting LLC | Open Energy Information

    Open Energy Info (EERE)

    Response Energy Consulting LLC Jump to: navigation, search Name: Demand Response & Energy Consulting LLC Place: Delanson, New York Zip: NY 12053 Sector: Efficiency Product:...

  19. Measurement and evaluation techniques for automated demand response demonstration

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann; Watson, David S.; Sezgen, Osman; ten Hope, Laurie

    2004-08-01

    The recent electricity crisis in California and elsewhere has prompted new research to evaluate demand response strategies in large facilities. This paper describes an evaluation of fully automated demand response technologies (Auto-DR) in five large facilities. Auto-DR does not involve human intervention, but is initiated at a facility through receipt of an external communications signal. This paper summarizes the measurement and evaluation of the performance of demand response technologies and strategies in five large facilities. All the sites have data trending systems such as energy management and control systems (EMCS) and/or energy information systems (EIS). Additional sub-metering was applied where necessary to evaluate the facility's demand response performance. This paper reviews the control responses during the test period, and analyzes demand savings achieved at each site. Occupant comfort issues are investigated where data are available. This paper discusses methods to estimate demand savings and results from demand response strategies at five large facilities.

  20. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    SciTech Connect (OSTI)

    Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

    2008-11-19

    Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

  1. Retail Demand Response in Southwest Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retail Demand Response in Southwest Power Pool Retail Demand Response in Southwest Power Pool In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating

  2. Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards

    SciTech Connect (OSTI)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

    2010-04-08

    In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested changes in specifications were developed in consultation with staff from the Iowa Energy Center who evaluated the accuracy of new CO{sub 2} sensors in laboratory-based research. In addition, staff of the California Energy Commission, and their consultants in the area of DCV, provided input for the suggested changes in specifications.

  3. Opportunities for Automated Demand Response in California Agricultural Irrigation

    SciTech Connect (OSTI)

    Olsen, Daniel; Aghajanzadeh, Arian; McKane, Aimee

    2015-08-01

    Pumping water for agricultural irrigation represents a significant share of California’s annual electricity use and peak demand. It also represents a large source of potential flexibility, as farms possess a form of storage in their wetted soil. By carefully modifying their irrigation schedules, growers can participate in demand response without adverse effects on their crops. This report describes the potential for participation in demand response and automated demand response by agricultural irrigators in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use in California. Typical on-­farm controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Case studies of demand response programs in California and across the country are reviewed, and their results along with overall California demand estimates are used to estimate statewide demand response potential. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  4. SGDP Report Now Available: Interoperability of Demand Response Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration in NY (February 2015) | Department of Energy SGDP Report Now Available: Interoperability of Demand Response Resources Demonstration in NY (February 2015) SGDP Report Now Available: Interoperability of Demand Response Resources Demonstration in NY (February 2015) March 20, 2015 - 4:42pm Addthis The Interoperability of Demand Response Resources Demonstration in NY was awarded to Con Edison in 2009 as part of DOE's Smart Grid Demonstration Project (SGDP) grants funded by the

  5. SGDP Report: Interoperability of Demand Response Resources Demonstration in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NY (February 2015) | Department of Energy SGDP Report: Interoperability of Demand Response Resources Demonstration in NY (February 2015) SGDP Report: Interoperability of Demand Response Resources Demonstration in NY (February 2015) The Interoperability of Demand Response Resources Demonstration in NY was awarded to Con Edison in 2009 as part of DOE's Smart Grid Demonstration Project (SGDP) grants funded by the Recovery Act. The objective of the project was to develop and demonstrate

  6. Honeywell Demonstrates Automated Demand Response Benefits for Utility,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial, and Industrial Customers | Department of Energy Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers September 22, 2014 - 5:59pm Addthis Honeywell's Smart Grid Investment Grant (SGIG) project demonstrates utility-scale performance of a hardware/software platform for automated demand response (ADR). This project stands

  7. Demand Response National Trends: Implications for the West? | Department of

    Energy Savers [EERE]

    Energy National Trends: Implications for the West? Demand Response National Trends: Implications for the West? Committee on Regional Electric Power Cooperation. San Francisco, CA. March 25, 2004 PDF icon Demand Response National Trends: Implications for the West? More Documents & Publications Demand Response in U.S. Electricity Markets: Empirical Evidence Technical Assistance to ISO's and Grid Operators For Loads Providing Ancillary Services To Enhance Grid Reliability Transmission

  8. Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disclaimer: "This report was prepared by Savannah River Nuclear Solutions, LLC (SRNS) for the United States Department of Energy under Contract No. DE-AC09-08SR22470 and is an account of work performed under that contract. Neither the Unites States Government nor any agency thereof, nor any of their employees, not any of their contractors, subcontractors or their employees assume any legal liability or responsibility for any third party's use of the results of such use of any information,

  9. TITLE

    Office of Legacy Management (LM)

    FUSRAP-031 Page 3 of 5 CATEGORICAL EXCLUSION (CX) FOR REMOVAL ACTION AT THE ASSOCIATE AIRCRAFT SITE ( c o d ) CX TO BE APPLIED: From the DOE NEPA Implementing Procedures, 10 CFR 1021, Subpart D, Appendix 0 , under actions that "Normatly Do Not Require EAs or EISs," "B6.1 Removal actions under CERCLA (induding those taken as final response actions and those taken before remedial action) and removal-type actions similar in scope under RCRA and other authorities (induding those taken

  10. TITLE

    Office of Legacy Management (LM)

    2 Velma Avenue Columbus, 0h.o 4321 1-2497 6141297-2300 Fax: 297-241 1 OH I 0 HISTORICAL SOCIETY SlSCE 1885 February 23, 1996 David G. Adler, Site Manager F o m r Sites Restoration Division Department of Energy Oak Ridge Operations Office P.O. 80x 200T Oak Ridge, Tennessee 37831 -8723 Dear Mr. Adler: Re: 8 8 T Metal Building, Columbus, Ohio This is in response to your correspondence, received on February 22, 1996, regarding the project noted above. My staff has reviewed carefully the information

  11. Estimating Demand Response Market Potential | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentestimating-demand-response-market-pot Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible...

  12. Coordination of Energy Efficiency and Demand Response: A Resource...

    Open Energy Info (EERE)

    Coordination of Energy Efficiency and Demand Response: A Resource of the National Action Plan for Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  13. Benefits of Demand Response in Electricity Markets and Recommendations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response in Electricity Markets and Recommendations for Achieving Them. A report to the United States Congress Pursuant to Section 1252 of the Energy Policy Act of 2005 ...

  14. Opportunities for Mass Market Demand Response to Provide Ancillary Services

    SciTech Connect (OSTI)

    Pratt, Rob; Najewicz, Dave

    2011-10-01

    Discusses what is meant by mass market demand response to provide ancillary services and outlines opportunities for adoption, and barriers to adoption.

  15. EnergySolve Demand Response | Open Energy Information

    Open Energy Info (EERE)

    Demand Response Place: Somerset, New Jersey Product: Somerset-based utility bill outsourcing company that provides electronic utility bill auditing, tariff analysis, late fee...

  16. Grid Integration of Aggregated Demand Response, Part 2: Modeling Demand Response in a Production Cost Model

    Broader source: Energy.gov [DOE]

    Renewable integration studies have evaluated many challenges associated with deploying large amounts of variable wind and solar generation technologies. These studies can evaluate operational impacts associated with variable generation, benefits of improved wind and solar resource forecasting, and trade-offs between institutional changes, including increasing balancing area cooperation and technical changes such as installing new flexible generation. Demand response (DR) resources present a potentially important source of grid flexibility and can aid in integrating variable generation; however, integration analyses have not yet incorporated these resources explicitly into grid simulation models as part of a standard toolkit for resource planners.

  17. Progress toward Producing Demand-Response-Ready Appliances

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.; Sastry, Chellury

    2009-12-01

    This report summarizes several historical and ongoing efforts to make small electrical demand-side devices like home appliances more responsive to the dynamic needs of electric power grids. Whereas the utility community often reserves the word demand response for infrequent 2 to 6 hour curtailments that reduce total electrical system peak load, other beneficial responses and ancillary services that may be provided by responsive electrical demand are of interest. Historically, demand responses from the demand side have been obtained by applying external, retrofitted, controlled switches to existing electrical demand. This report is directed instead toward those manufactured products, including appliances, that are able to provide demand responses as soon as they are purchased and that require few, or no, after-market modifications to make them responsive to needs of power grids. Efforts to be summarized include Open Automated Demand Response, the Association of Home Appliance Manufacturer standard CHA 1, a simple interface being developed by the U-SNAP Alliance, various emerging autonomous responses, and the recent PinBus interface that was developed at Pacific Northwest National Laboratory.

  18. Interoperability of Demand Response Resources Demonstration in NY

    SciTech Connect (OSTI)

    Wellington, Andre

    2014-03-31

    The Interoperability of Demand Response Resources Demonstration in NY (Interoperability Project) was awarded to Con Edison in 2009. The objective of the project was to develop and demonstrate methodologies to enhance the ability of customer sited Demand Response resources to integrate more effectively with electric delivery companies and regional transmission organizations.

  19. Demand-Side Response from Industrial Loads

    SciTech Connect (OSTI)

    Starke, Michael R; Alkadi, Nasr E; Letto, Daryl; Johnson, Brandon; Dowling, Kevin; George, Raoule; Khan, Saqib

    2013-01-01

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  20. Demand response compensation, net Benefits and cost allocation: comments

    SciTech Connect (OSTI)

    Hogan, William W.

    2010-11-15

    FERC's Supplemental Notice of Public Rulemaking addresses the question of proper compensation for demand response in organized wholesale electricity markets. Assuming that the Commission would proceed with the proposal ''to require tariff provisions allowing demand response resources to participate in wholesale energy markets by reducing consumption of electricity from expected levels in response to price signals, to pay those demand response resources, in all hours, the market price of energy for such reductions,'' the Commission posed questions about applying a net benefits test and rules for cost allocation. This article summarizes critical points and poses implications for the issues of net benefit tests and cost allocation. (author)

  1. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    SciTech Connect (OSTI)

    Aghajanzadeh, Arian; Wray, Craig; McKane, Aimee

    2015-08-30

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered process equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.

  2. Assessment of Industrial Load for Demand Response across Western Interconnect

    SciTech Connect (OSTI)

    Alkadi, Nasr E; Starke, Michael R; Ma, Ookie

    2013-11-01

    Demand response (DR) has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles that can provide more regional understanding and can be inserted into analysis software for further study. The developed framework utilizes a number of different informational resources, algorithms, and real-world measurements to perform a bottom-up approach in the development of a new database with representation of the potential demand response resource in the industrial sector across the U.S. This tool houses statistical values of energy and demand response (DR) potential by industrial plant and geospatially locates the information for aggregation for different territories without proprietary information. This report will discuss this framework and the analyzed quantities of demand response for Western Interconnect (WI) in support of evaluation of the cost production modeling with power grid modeling efforts of demand response.

  3. Regulation Services with Demand Response - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regulation Services with Demand Response Pacific Northwest National Laboratory Contact PNNL About This Technology Using grid frequency information, researchers have created algorithms that intelligently control power demand while meeting consumer objectives (i.e. target pricing). Using grid frequency information, researchers have created algorithms that intelligently control power demand while meeting consumer objectives (i.e. target pricing). Technology Marketing Summary Grid Friendly(tm)

  4. Analysis of Residential Demand Response and Double-Auction Markets

    SciTech Connect (OSTI)

    Fuller, Jason C.; Schneider, Kevin P.; Chassin, David P.

    2011-10-10

    Demand response and dynamic pricing programs are expected to play increasing roles in the modern Smart Grid environment. While direct load control of end-use loads has existed for decades, price driven response programs are only beginning to be explored at the distribution level. These programs utilize a price signal as a means to control demand. Active markets allow customers to respond to fluctuations in wholesale electrical costs, but may not allow the utility to control demand. Transactive markets, utilizing distributed controllers and a centralized auction can be used to create an interactive system which can limit demand at key times on a distribution system, decreasing congestion. With the current proliferation of computing and communication resources, the ability now exists to create transactive demand response programs at the residential level. With the combination of automated bidding and response strategies coupled with education programs and customer response, emerging demand response programs have the ability to reduce utility demand and congestion in a more controlled manner. This paper will explore the effects of a residential double-auction market, utilizing transactive controllers, on the operation of an electric power distribution system.

  5. Open Automated Demand Response Communications Specification (Version 1.0)

    SciTech Connect (OSTI)

    Piette, Mary Ann; Ghatikar, Girish; Kiliccote, Sila; Koch, Ed; Hennage, Dan; Palensky, Peter; McParland, Charles

    2009-02-28

    The development of the Open Automated Demand Response Communications Specification, also known as OpenADR or Open Auto-DR, began in 2002 following the California electricity crisis. The work has been carried out by the Demand Response Research Center (DRRC), which is managed by Lawrence Berkeley National Laboratory. This specification describes an open standards-based communications data model designed to facilitate sending and receiving demand response price and reliability signals from a utility or Independent System Operator to electric customers. OpenADR is one element of the Smart Grid information and communications technologies that are being developed to improve optimization between electric supply and demand. The intention of the open automated demand response communications data model is to provide interoperable signals to building and industrial control systems that are preprogrammed to take action based on a demand response signal, enabling a demand response event to be fully automated, with no manual intervention. The OpenADR specification is a flexible infrastructure to facilitate common information exchange between the utility or Independent System Operator and end-use participants. The concept of an open specification is intended to allow anyone to implement the signaling systems, the automation server or the automation clients.

  6. Role of Storage and Demand Response, Greening the Grid

    SciTech Connect (OSTI)

    Author: Denholm, Paul

    2015-09-01

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. This document, part of a Greening the Grid toolkit, examines storage and demand response as means to match renewable energy supply with demand.

  7. Demand Response and Open Automated Demand Response Opportunities for Data Centers

    SciTech Connect (OSTI)

    Ghatikar, Girish; Piette, Mary Ann; Fujita, Sydny; McKane, Aimee; Dudley, Junqiao Han; Radspieler, Anthony; Mares, K.C.; Shroyer, Dave

    2009-12-30

    This study examines data center characteristics, loads, control systems, and technologies to identify demand response (DR) and automated DR (Open Auto-DR) opportunities and challenges. The study was performed in collaboration with technology experts, industrial partners, and data center facility managers and existing research on commercial and industrial DR was collected and analyzed. The results suggest that data centers, with significant and rapidly growing energy use, have significant DR potential. Because data centers are highly automated, they are excellent candidates for Open Auto-DR. 'Non-mission-critical' data centers are the most likely candidates for early adoption of DR. Data center site infrastructure DR strategies have been well studied for other commercial buildings; however, DR strategies for information technology (IT) infrastructure have not been studied extensively. The largest opportunity for DR or load reduction in data centers is in the use of virtualization to reduce IT equipment energy use, which correspondingly reduces facility cooling loads. DR strategies could also be deployed for data center lighting, and heating, ventilation, and air conditioning. Additional studies and demonstrations are needed to quantify benefits to data centers of participating in DR and to address concerns about DR's possible impact on data center performance or quality of service and equipment life span.

  8. Benefits of Demand Response in Electricity Markets and Recommendations for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Achieving Them. A report to the United States Congress Pursuant to Section 1252 of the Energy Policy Act of 2005 (February 2006) | Department of Energy Demand Response in Electricity Markets and Recommendations for Achieving Them. A report to the United States Congress Pursuant to Section 1252 of the Energy Policy Act of 2005 (February 2006) Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them. A report to the United States Congress Pursuant to Section

  9. A Look Ahead at Demand Response in New England

    SciTech Connect (OSTI)

    Burke, Robert B.; Henderson, Michael I.; Widergren, Steven E.

    2008-08-01

    The paper describes the demand response programs developed and in operation in New England, and the revised designs for participation in the forward capacity market. This description will include how energy efficiency, demand-side resources, and distributed generation are eligible to participate in this new forward capacity market. The paper will also discuss various methods that can be used to configure and communicate with demand response resources and important concerns in specifying interfaces that accommodate multiple technologies and allow technology choice and evolution.

  10. Open Automated Demand Response for Small Commerical Buildings

    SciTech Connect (OSTI)

    Dudley, June Han; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2009-05-01

    This report characterizes small commercial buildings by market segments, systems and end-uses; develops a framework for identifying demand response (DR) enabling technologies and communication means; and reports on the design and development of a low-cost OpenADR enabling technology that delivers demand reductions as a percentage of the total predicted building peak electric demand. The results show that small offices, restaurants and retail buildings are the major contributors making up over one third of the small commercial peak demand. The majority of the small commercial buildings in California are located in southern inland areas and the central valley. Single-zone packaged units with manual and programmable thermostat controls make up the majority of heating ventilation and air conditioning (HVAC) systems for small commercial buildings with less than 200 kW peak electric demand. Fluorescent tubes with magnetic ballast and manual controls dominate this customer group's lighting systems. There are various ways, each with its pros and cons for a particular application, to communicate with these systems and three methods to enable automated DR in small commercial buildings using the Open Automated Demand Response (or OpenADR) communications infrastructure. Development of DR strategies must consider building characteristics, such as weather sensitivity and load variability, as well as system design (i.e. under-sizing, under-lighting, over-sizing, etc). Finally, field tests show that requesting demand reductions as a percentage of the total building predicted peak electric demand is feasible using the OpenADR infrastructure.

  11. Title | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Title Title

  12. Demand Response in U.S. Electricity Markets: Empirical Evidence |

    Energy Savers [EERE]

    Department of Energy in U.S. Electricity Markets: Empirical Evidence Demand Response in U.S. Electricity Markets: Empirical Evidence The work described in this paper was funded by the Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis of the U.S. Department of Energy under contract No. DE-AC02-05CH11231. The authors are solely responsible for any omissions or errors contained herein. PDF icon Demand Response in U.S. Electricity Markets: Empirical Evidence

  13. Providing Reliability Services through Demand Response: A Prelimnary Evaluation of the Demand Response Capabilities of Alcoa Inc.

    SciTech Connect (OSTI)

    Starke, Michael R; Kirby, Brendan J; Kueck, John D; Todd, Duane; Caulfield, Michael; Helms, Brian

    2009-02-01

    Demand response is the largest underutilized reliability resource in North America. Historic demand response programs have focused on reducing overall electricity consumption (increasing efficiency) and shaving peaks but have not typically been used for immediate reliability response. Many of these programs have been successful but demand response remains a limited resource. The Federal Energy Regulatory Commission (FERC) report, 'Assessment of Demand Response and Advanced Metering' (FERC 2006) found that only five percent of customers are on some form of demand response program. Collectively they represent an estimated 37,000 MW of response potential. These programs reduce overall energy consumption, lower green house gas emissions by allowing fossil fuel generators to operate at increased efficiency and reduce stress on the power system during periods of peak loading. As the country continues to restructure energy markets with sophisticated marginal cost models that attempt to minimize total energy costs, the ability of demand response to create meaningful shifts in the supply and demand equations is critical to creating a sustainable and balanced economic response to energy issues. Restructured energy market prices are set by the cost of the next incremental unit of energy, so that as additional generation is brought into the market, the cost for the entire market increases. The benefit of demand response is that it reduces overall demand and shifts the entire market to a lower pricing level. This can be very effective in mitigating price volatility or scarcity pricing as the power system responds to changing demand schedules, loss of large generators, or loss of transmission. As a global producer of alumina, primary aluminum, and fabricated aluminum products, Alcoa Inc., has the capability to provide demand response services through its manufacturing facilities and uniquely through its aluminum smelting facilities. For a typical aluminum smelter, electric power accounts for 30% to 40% of the factory cost of producing primary aluminum. In the continental United States, Alcoa Inc. currently owns and/or operates ten aluminum smelters and many associated fabricating facilities with a combined average load of over 2,600 MW. This presents Alcoa Inc. with a significant opportunity to respond in areas where economic opportunities exist to help mitigate rising energy costs by supplying demand response services into the energy system. This report is organized into seven chapters. The first chapter is the introduction and discusses the intention of this report. The second chapter contains the background. In this chapter, topics include: the motivation for Alcoa to provide demand response; ancillary service definitions; the basics behind aluminum smelting; and a discussion of suggested ancillary services that would be particularly useful for Alcoa to supply. Chapter 3 is concerned with the independent system operator, the Midwest ISO. Here the discussion examines the evolving Midwest ISO market structure including specific definitions, requirements, and necessary components to provide ancillary services. This section is followed by information concerning the Midwest ISO's classifications of demand response parties. Chapter 4 investigates the available opportunities at Alcoa's Warrick facility. Chapter 5 involves an in-depth discussion of the regulation service that Alcoa's Warrick facility can provide and the current interactions with Midwest ISO. Chapter 6 reviews future plans and expectations for Alcoa providing ancillary services into the market. Last, chapter 7, details the conclusion and recommendations of this paper.

  14. Response to Request for Information titled "Addressing Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Logistical Challenges to Smart Grid Implementation" | Department of Energy to Request for Information titled "Addressing Policy and Logistical Challenges to Smart Grid Implementation" Response to Request for Information titled "Addressing Policy and Logistical Challenges to Smart Grid Implementation" Response to Request for Information titled "Addressing Policy and Logistical Challenges to Smart Grid Implementation." urrent smart grid initiatives are

  15. Evaluation of Representative Smart Grid Investment Project Technologies: Demand Response

    SciTech Connect (OSTI)

    Fuller, Jason C.; Prakash Kumar, Nirupama; Bonebrake, Christopher A.

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of a limited number of demand response technologies and implementations deployed in the SGIG projects.

  16. Title 40 CFR 1503.4 Response to Comments | Open Energy Information

    Open Energy Info (EERE)

    .4 Response to Comments Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 40 CFR 1503.4 Response to...

  17. Aggregate Model for Heterogeneous Thermostatically Controlled Loads with Demand Response

    SciTech Connect (OSTI)

    Zhang, Wei; Kalsi, Karanjit; Fuller, Jason C.; Elizondo, Marcelo A.; Chassin, David P.

    2012-07-22

    Due to the potentially large number of Distributed Energy Resources (DERs) demand response, distributed generation, distributed storage - that are expected to be deployed, it is impractical to use detailed models of these resources when integrated with the transmission system. Being able to accurately estimate the fast transients caused by demand response is especially important to analyze the stability of the system under different demand response strategies. On the other hand, a less complex model is more amenable to design feedback control strategies for the population of devices to provide ancillary services. The main contribution of this paper is to develop aggregated models for a heterogeneous population of Thermostatic Controlled Loads (TCLs) to accurately capture their collective behavior under demand response and other time varying effects of the system. The aggregated model efficiently includes statistical information of the population and accounts for a second order effect necessary to accurately capture the collective dynamic behavior. The developed aggregated models are validated against simulations of thousands of detailed building models using GridLAB-D (an open source distribution simulation software) under both steady state and severe dynamic conditions caused due to temperature set point changes.

  18. Demand Response and Energy Storage Integration Study- Past Workshops

    Broader source: Energy.gov [DOE]

    The project was initiated and informed by the results of two DOE workshops; one on energy storage and the other on demand response. The workshops were attended by members of the electric power industry, researchers, and policy makers; and the study design and goals reflect their contributions to the collective thinking of the project team.

  19. Load Reduction, Demand Response and Energy Efficient Technologies and Strategies

    SciTech Connect (OSTI)

    Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

    2008-11-19

    The Department of Energys (DOEs) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

  20. Automation systems for Demand Response, ForskEL (Smart Grid Project...

    Open Energy Info (EERE)

    systems for Demand Response, ForskEL (Smart Grid Project) Jump to: navigation, search Project Name Automation systems for Demand Response, ForskEL Country Denmark Coordinates...

  1. Electric Water Heater Modeling and Control Strategies for Demand Response

    SciTech Connect (OSTI)

    Diao, Ruisheng; Lu, Shuai; Elizondo, Marcelo A.; Mayhorn, Ebony T.; Zhang, Yu; Samaan, Nader A.

    2012-07-22

    Abstract Demand response (DR) has a great potential to provide balancing services at normal operating conditions and emergency support when a power system is subject to disturbances. Effective control strategies can significantly relieve the balancing burden of conventional generators and reduce investment on generation and transmission expansion. This paper is aimed at modeling electric water heaters (EWH) in households and tests their response to control strategies to implement DR. The open-loop response of EWH to a centralized signal is studied by adjusting temperature settings to provide regulation services; and two types of decentralized controllers are tested to provide frequency support following generator trips. EWH models are included in a simulation platform in DIgSILENT to perform electromechanical simulation, which contains 147 households in a distribution feeder. Simulation results show the dependence of EWH response on water heater usage . These results provide insight suggestions on the need of control strategies to achieve better performance for demand response implementation. Index Terms Centralized control, decentralized control, demand response, electrical water heater, smart grid

  2. The Role of Demand Response in Default Service Pricing

    SciTech Connect (OSTI)

    Barbose, Galen; Goldman, Chuck; Neenan, Bernie

    2006-03-10

    Dynamic retail electricity pricing, especially real-time pricing (RTP), has been widely heralded as a panacea for providing much-needed demand response in electricity markets. However, in designing default service for competitive retail markets, demand response often appears to be an afterthought. But that may be changing as states that initiated customer choice in the past 5-7 years reach an important juncture in retail market design. Most states with retail choice established an initial transitional period, during which utilities were required to offer a default or ''standard offer'' generation service, often at a capped or otherwise administratively-determined rate. Many retail choice states have reached, or are nearing, the end of their transitional period and several states have adopted an RTP-type default service for large commercial and industrial (C&I) customers. Are these initiatives motivated by the desire to induce greater demand response, or is RTP being called upon to serve a different role in competitive markets? Surprisingly, we found that in most cases, the primary reason for adopting RTP as the default service was not to encourage demand response, but rather to advance policy objectives related to the development of competitive retail markets. However, we also find that, if efforts are made in its design and implementation, default RTP service can also provide a solid foundation for developing price responsive demand, creating an important link between wholesale and retail market transactions. This paper, which draws from a lengthier report, describes the experience to date with default RTP in the U.S., identifying findings related to its actual and potential role as an instrument for cultivating price responsive demand [1]. For each of the five states currently with default RTP, we conducted a detailed review of the regulatory proceedings leading to its adoption. To further understand the intentions and expectations of those involved in its design and implementation, we also interviewed regulatory staff and utilities in each state, as well as eight of the most prominent competitive retail suppliers operating in these markets which, together, comprised about 60-65% of competitive C&I sales in the U.S. in 2004 [2].

  3. Effects of Demand Response on Retail and Wholesale Power Markets

    SciTech Connect (OSTI)

    Chassin, David P.; Kalsi, Karanjit

    2012-07-26

    Demand response has grown to be a part of the repertoire of resources used by utilities to manage the balance between generation and load. In recent years, advances in communications and control technology have enabled utilities to consider continuously controlling demand response to meet generation, rather than the other way around. This paper discusses the economic applications of a general method for load resource analysis that parallels the approach used to analyze generation resources and uses the method to examine the results of the US Department of Energys Olympic Peninsula Demonstration Testbed. A market-based closed-loop system of controllable assets is discussed with necessary and sufficient conditions on system controllability, observability and stability derived.

  4. ECIS-Princeton Power Systems, Inc.: Demand Response Inverter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Power Systems, Inc.: Demand Response Inverter - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense

  5. The Role of Demand Response in Default Service Pricing

    SciTech Connect (OSTI)

    Barbose, Galen; Goldman, Charles; Neenan, Bernie

    2005-11-09

    Dynamic retail pricing, especially real-time pricing (RTP), has been widely heralded as a panacea for providing much-needed demand response in electricity markets. However, in designing default service for competitive retail markets, demand response has been an afterthought, and in some cases not given any weight at all. But that may be changing, as states that initiated customer choice in the past 5-7 years reach an important juncture in retail market design. Most states with retail choice established an initial transitional period during which utilities were required to offer a default or standard offer generation service, often at a capped or otherwise administratively-determined rate. Many retail choice states have reached the end of their transitional period, and several have adopted or are actively considering an RTP-type default service for large commercial and industrial (C&I) customers. In most cases, the primary reason for adopting RTP as the default service has been to advance policy objectives related to the development of competitive retail markets. However, if attention is paid in its design and implementation, default RTP service can also provide a solid foundation for developing price responsive demand, creating an important link between wholesale and retail market transactions. This article, which draws from a lengthier report, describes experience to date with RTP as a default service, focusing on its role as an instrument for cultivating price responsive demand.1 As of summer 2005, default service RTP was in place or approved for future implementation in five U.S. states: New Jersey, Maryland, Pennsylvania, New York, and Illinois. For each of these states, we conducted a detailed review of the regulatory proceedings leading to adoption of default RTP and interviewed regulatory staff and utilities in these states, as well as eight competitive retail suppliers active in these markets.

  6. Laboratory Testing of Demand-Response Enabled Household Appliances

    SciTech Connect (OSTI)

    Sparn, B.; Jin, X.; Earle, L.

    2013-10-01

    With the advent of the Advanced Metering Infrastructure (AMI) systems capable of two-way communications between the utility's grid and the building, there has been significant effort in the Automated Home Energy Management (AHEM) industry to develop capabilities that allow residential building systems to respond to utility demand events by temporarily reducing their electricity usage. Major appliance manufacturers are following suit by developing Home Area Network (HAN)-tied appliance suites that can take signals from the home's 'smart meter,' a.k.a. AMI meter, and adjust their run cycles accordingly. There are numerous strategies that can be employed by household appliances to respond to demand-side management opportunities, and they could result in substantial reductions in electricity bills for the residents depending on the pricing structures used by the utilities to incent these types of responses. The first step to quantifying these end effects is to test these systems and their responses in simulated demand-response (DR) conditions while monitoring energy use and overall system performance.

  7. Laboratory Testing of Demand-Response Enabled Household Appliances

    SciTech Connect (OSTI)

    Sparn, B.; Jin, X.; Earle, L.

    2013-10-01

    With the advent of the Advanced Metering Infrastructure (AMI) systems capable of two-way communications between the utility's grid and the building, there has been significant effort in the Automated Home Energy Management (AHEM) industry to develop capabilities that allow residential building systems to respond to utility demand events by temporarily reducing their electricity usage. Major appliance manufacturers are following suit by developing Home Area Network (HAN)-tied appliance suites that can take signals from the home's 'smart meter,' a.k.a. AMI meter, and adjust their run cycles accordingly. There are numerous strategies that can be employed by household appliances to respond to demand-side management opportunities, and they could result in substantial reductions in electricity bills for the residents depending on the pricing structures used by the utilities to incent these types of responses.The first step to quantifying these end effects is to test these systems and their responses in simulated demand-response (DR) conditions while monitoring energy use and overall system performance.

  8. A DISTRIBUTED INTELLIGENT AUTOMATED DEMAND RESPONSE BUILDING MANAGEMENT SYSTEM

    SciTech Connect (OSTI)

    Auslander, David; Culler, David; Wright, Paul; Lu, Yan; Piette, Mary

    2013-12-30

    The goal of the 2.5 year Distributed Intelligent Automated Demand Response (DIADR) project was to reduce peak electricity load of Sutardja Dai Hall at UC Berkeley by 30% while maintaining a healthy, comfortable, and productive environment for the occupants. We sought to bring together both central and distributed control to provide “deep” demand response1 at the appliance level of the building as well as typical lighting and HVAC applications. This project brought together Siemens Corporate Research and Siemens Building Technology (the building has a Siemens Apogee Building Automation System (BAS)), Lawrence Berkeley National Laboratory (leveraging their Open Automated Demand Response (openADR), Auto-­Demand Response, and building modeling expertise), and UC Berkeley (related demand response research including distributed wireless control, and grid-­to-­building gateway development). Sutardja Dai Hall houses the Center for Information Technology Research in the Interest of Society (CITRIS), which fosters collaboration among industry and faculty and students of four UC campuses (Berkeley, Davis, Merced, and Santa Cruz). The 141,000 square foot building, occupied in 2009, includes typical office spaces and a nanofabrication laboratory. Heating is provided by a district heating system (steam from campus as a byproduct of the campus cogeneration plant); cooling is provided by one of two chillers: a more typical electric centrifugal compressor chiller designed for the cool months (Nov-­ March) and a steam absorption chiller for use in the warm months (April-­October). Lighting in the open office areas is provided by direct-­indirect luminaries with Building Management System-­based scheduling for open areas, and occupancy sensors for private office areas. For the purposes of this project, we focused on the office portion of the building. Annual energy consumption is approximately 8053 MWh; the office portion is estimated as 1924 MWh. The maximum peak load during the study period was 1175 kW. Several new tools facilitated this work, such as the Smart Energy Box, the distributed load controller or Energy Information Gateway, the web-­based DR controller (dubbed the Central Load-­Shed Coordinator or CLSC), and the Demand Response Capacity Assessment & Operation Assistance Tool (DRCAOT). In addition, an innovative data aggregator called sMAP (simple Measurement and Actuation Profile) allowed data from different sources collected in a compact form and facilitated detailed analysis of the building systems operation. A smart phone application (RAP or Rapid Audit Protocol) facilitated an inventory of the building’s plug loads. Carbon dioxide sensors located in conference rooms and classrooms allowed demand controlled ventilation. The extensive submetering and nimble access to this data provided great insight into the details of the building operation as well as quick diagnostics and analyses of tests. For example, students discovered a short-­cycling chiller, a stuck damper, and a leaking cooling coil in the first field tests. For our final field tests, we were able to see how each zone was affected by the DR strategies (e.g., the offices on the 7th floor grew very warm quickly) and fine-­tune the strategies accordingly.

  9. Demand Response in the West: Lessons for States and Provinces

    SciTech Connect (OSTI)

    Douglas C. Larson; Matt Lowry; Sharon Irwin

    2004-06-29

    OAK-B135 This paper is submitted in fulfillment of DOE Grant No. DE-FG03-015F22369 on the experience of western states/provinces with demand response (DR) in the electricity sector. Demand-side resources are often overlooked as a viable option for meeting load growth and addressing the challenges posed by the region's aging transmission system. Western states should work together with utilities and grid operators to facilitate the further deployment of DR programs which can provide benefits in the form of decreased grid congestion, improved system reliability, market efficiency, price stabilization, hedging against volatile fuel prices and reduced environmental impacts of energy production. This report describes the various types of DR programs; provides a survey of DR programs currently in place in the West; considers the benefits, drawbacks and barriers to DR; and presents lessons learned and recommendations for states/provinces.

  10. The Impact of Uncertain Physical Parameters on HVAC Demand Response

    SciTech Connect (OSTI)

    Sun, Yannan; Elizondo, Marcelo A.; Lu, Shuai; Fuller, Jason C.

    2014-03-01

    HVAC units are currently one of the major resources providing demand response (DR) in residential buildings. Models of HVAC with DR function can improve understanding of its impact on power system operations and facilitate the deployment of DR technologies. This paper investigates the importance of various physical parameters and their distributions to the HVAC response to DR signals, which is a key step to the construction of HVAC models for a population of units with insufficient data. These parameters include the size of floors, insulation efficiency, the amount of solid mass in the house, and efficiency of the HVAC units. These parameters are usually assumed to follow Gaussian or Uniform distributions. We study the effect of uncertainty in the chosen parameter distributions on the aggregate HVAC response to DR signals, during transient phase and in steady state. We use a quasi-Monte Carlo sampling method with linear regression and Prony analysis to evaluate sensitivity of DR output to the uncertainty in the distribution parameters. The significance ranking on the uncertainty sources is given for future guidance in the modeling of HVAC demand response.

  11. Northwest Open Automated Demand Response Technology Demonstration Project

    SciTech Connect (OSTI)

    Kiliccote, Sila; Piette, Mary Ann; Dudley, Junqiao

    2010-03-17

    The Lawrence Berkeley National Laboratory (LBNL) Demand Response Research Center (DRRC) demonstrated and evaluated open automated demand response (OpenADR) communication infrastructure to reduce winter morning and summer afternoon peak electricity demand in commercial buildings the Seattle area. LBNL performed this demonstration for the Bonneville Power Administration (BPA) in the Seattle City Light (SCL) service territory at five sites: Seattle Municipal Tower, Seattle University, McKinstry, and two Target stores. This report describes the process and results of the demonstration. OpenADR is an information exchange model that uses a client-server architecture to automate demand-response (DR) programs. These field tests evaluated the feasibility of deploying fully automated DR during both winter and summer peak periods. DR savings were evaluated for several building systems and control strategies. This project studied DR during hot summer afternoons and cold winter mornings, both periods when electricity demand is typically high. This is the DRRC project team's first experience using automation for year-round DR resources and evaluating the flexibility of commercial buildings end-use loads to participate in DR in dual-peaking climates. The lessons learned contribute to understanding end-use loads that are suitable for dispatch at different times of the year. The project was funded by BPA and SCL. BPA is a U.S. Department of Energy agency headquartered in Portland, Oregon and serving the Pacific Northwest. BPA operates an electricity transmission system and markets wholesale electrical power at cost from federal dams, one non-federal nuclear plant, and other non-federal hydroelectric and wind energy generation facilities. Created by the citizens of Seattle in 1902, SCL is the second-largest municipal utility in America. SCL purchases approximately 40% of its electricity and the majority of its transmission from BPA through a preference contract. SCL also provides ancillary services within its own balancing authority. The relationship between BPA and SCL creates a unique opportunity to create DR programs that address both BPA's and SCL's markets simultaneously. Although simultaneously addressing both market could significantly increase the value of DR programs for BPA, SCL, and the end user, establishing program parameters that maximize this value is challenging because of complex contractual arrangements and the absence of a central Independent System Operator or Regional Transmission Organization in the northwest.

  12. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Goli, Sasank; McKane, Aimee; Olsen, Daniel

    2011-06-14

    Industrial refrigerated warehouses that implemented energy efficiency measures and have centralized control systems can be excellent candidates for Automated Demand Response (Auto-DR) due to equipment synergies, and receptivity of facility managers to strategies that control energy costs without disrupting facility operations. Auto-DR utilizes OpenADR protocol for continuous and open communication signals over internet, allowing facilities to automate their Demand Response (DR). Refrigerated warehouses were selected for research because: They have significant power demand especially during utility peak periods; most processes are not sensitive to short-term (2-4 hours) lower power and DR activities are often not disruptive to facility operations; the number of processes is limited and well understood; and past experience with some DR strategies successful in commercial buildings may apply to refrigerated warehouses. This paper presents an overview of the potential for load sheds and shifts from baseline electricity use in response to DR events, along with physical configurations and operating characteristics of refrigerated warehouses. Analysis of data from two case studies and nine facilities in Pacific Gas and Electric territory, confirmed the DR abilities inherent to refrigerated warehouses but showed significant variation across facilities. Further, while load from California's refrigerated warehouses in 2008 was 360 MW with estimated DR potential of 45-90 MW, actual achieved was much less due to low participation. Efforts to overcome barriers to increased participation may include, improved marketing and recruitment of potential DR sites, better alignment and emphasis on financial benefits of participation, and use of Auto-DR to increase consistency of participation.

  13. Demand Response Resources for Energy and Ancillary Services (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.

    2014-04-01

    Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind an solar power generation. However, DR in grid models is limited by data availability and modeling complexity. This presentation focuses on the co-optimization of DR resources to provide energy and ancillary services in a production cost model of the Colorado test system. We assume each DR resource can provide energy services by either shedding load or shifting its use between different times, as well as operating

  14. Role of Standard Demand Response Signals for Advanced Automated Aggregation

    SciTech Connect (OSTI)

    Lawrence Berkeley National Laboratory; Kiliccote, Sila

    2011-11-18

    Emerging standards such as OpenADR enable Demand Response (DR) Resources to interact directly with Utilities and Independent System Operators to allow their facility automation equipment to respond to a variety of DR signals ranging from day ahead to real time ancillary services. In addition, there are Aggregators in today’s markets who are capable of bringing together collections of aggregated DR assets and selling them to the grid as a single resource. However, in most cases these aggregated resources are not automated and when they are, they typically use proprietary technologies. There is a need for a framework for dealing with aggregated resources that supports the following requirements: • Allows demand-side resources to participate in multiple DR markets ranging from wholesale ancillary services to retail tariffs without being completely committed to a single entity like an Aggregator; • Allow aggregated groups of demand-side resources to be formed in an ad hoc fashion to address specific grid-side issues and support the optimization of the collective response of an aggregated group along a number of different dimensions. This is important in order to taylor the aggregated performance envelope to the needs to of the grid; • Allow aggregated groups to be formed in a hierarchical fashion so that each group can participate in variety of markets from wholesale ancillary services to distribution level retail tariffs. This paper explores the issues of aggregated groups of DR resources as described above especially within the context of emerging smart grid standards and the role they will play in both the management and interaction of various grid-side entities with those resources.

  15. Demand Response Performance of GE Hybrid Heat Pump Water Heater

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

    2013-07-01

    This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation “Brillion”-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in “Standard” electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in “Heat Pump” mode to provide the comparison to heat pump-only demand response. It is expected that “Hybrid” DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

  16. Market and Policy Barriers for Demand Response Providing Ancillary Services

    Broader source: Energy.gov [DOE]

    In this study, we attempt to provide a comprehensive examination of various market and policy barriers to demand response providing ancillary services in both ISO/RTO and non-ISO/RTO regions, especially at the program provider level. It is useful to classify barriers in order to create a holistic understanding and identify parties that could be responsible for their removal. This study develops a typology of barriers focusing on smaller customers that must rely on a program provider (i.e., electric investor owned utility or IOU, ARC) to create an aggregated DR resource in order to bring ancillary services to the balancing authority. The barriers were identified through examinations of regulatory structures, market environments, and product offerings; and discussions with industry stakeholders and regulators.

  17. Direct versus Facility Centric Load Control for Automated Demand Response

    SciTech Connect (OSTI)

    Koch, Ed; Piette, Mary Ann

    2009-11-06

    Direct load control (DLC) refers to the scenario where third party entities outside the home or facility are responsible for deciding how and when specific customer loads will be controlled in response to Demand Response (DR) events on the electric grid. Examples of third parties responsible for performing DLC may be Utilities, Independent System Operators (ISO), Aggregators, or third party control companies. DLC can be contrasted with facility centric load control (FCLC) where the decisions for how loads are controlled are made entirely within the facility or enterprise control systems. In FCLC the facility owner has more freedom of choice in how to respond to DR events on the grid. Both approaches are in use today in automation of DR and both will continue to be used in future market segments including industrial, commercial and residential facilities. This paper will present a framework which can be used to differentiate between DLC and FCLC based upon where decisions are made on how specific loads are controlled in response to DR events. This differentiation is then used to compare and contrast the differences between DLC and FCLC to identify the impact each has on:(1)Utility/ISO and third party systems for managing demand response, (2)Facility systems for implementing load control, (3)Communications networks for interacting with the facility and (4)Facility operators and managers. Finally a survey of some of the existing DR related specifications and communications standards is given and their applicability to DLC or FCLC. In general FCLC adds more cost and responsibilities to the facilities whereas DLC represents higher costs and complexity for the Utility/ISO. This difference is primarily due to where the DR Logic is implemented and the consequences that creates. DLC may be more certain than FCLC because it is more predictable - however as more loads have the capability to respond to DR signals, people may prefer to have their own control of end-use loads and FCLC systems. Research is needed to understand the predictability of FCLC which is related to the perceived value of the DR from the facility manager or home owner's perspective.

  18. Opportunities, Barriers and Actions for Industrial Demand Response in California

    SciTech Connect (OSTI)

    McKane, Aimee T.; Piette, Mary Ann; Faulkner, David; Ghatikar, Girish; Radspieler Jr., Anthony; Adesola, Bunmi; Murtishaw, Scott; Kiliccote, Sila

    2008-01-31

    In 2006 the Demand Response Research Center (DRRC) formed an Industrial Demand Response Team to investigate opportunities and barriers to implementation of Automated Demand Response (Auto-DR) systems in California industries. Auto-DR is an open, interoperable communications and technology platform designed to: Provide customers with automated, electronic price and reliability signals; Provide customers with capability to automate customized DR strategies; Automate DR, providing utilities with dispatchable operational capability similar to conventional generation resources. This research began with a review of previous Auto-DR research on the commercial sector. Implementing Auto-DR in industry presents a number of challenges, both practical and perceived. Some of these include: the variation in loads and processes across and within sectors, resource-dependent loading patterns that are driven by outside factors such as customer orders or time-critical processing (e.g. tomato canning), the perceived lack of control inherent in the term 'Auto-DR', and aversion to risk, especially unscheduled downtime. While industry has demonstrated a willingness to temporarily provide large sheds and shifts to maintain grid reliability and be a good corporate citizen, the drivers for widespread Auto-DR will likely differ. Ultimately, most industrial facilities will balance the real and perceived risks associated with Auto-DR against the potential for economic gain through favorable pricing or incentives. Auto-DR, as with any ongoing industrial activity, will need to function effectively within market structures. The goal of the industrial research is to facilitate deployment of industrial Auto-DR that is economically attractive and technologically feasible. Automation will make DR: More visible by providing greater transparency through two-way end-to-end communication of DR signals from end-use customers; More repeatable, reliable, and persistent because the automated controls strategies that are 'hardened' and pre-programmed into facility's software and hardware; More affordable because automation can help reduce labor costs associated with manual DR strategies initiated by facility staff and can be used for long-term.

  19. A National Forum on Demand Response: What Remains to Be Done...

    Office of Environmental Management (EM)

    A National Forum on Demand Response: What Remains to Be Done to Achieve Its Potential A National Forum on Demand Response: What Remains to Be Done to Achieve Its Potential In July ...

  20. Opportunities for Automated Demand Response in California’s Dairy Processing Industry

    SciTech Connect (OSTI)

    Homan, Gregory K.; Aghajanzadeh, Arian; McKane, Aimee

    2015-08-30

    During periods of peak electrical demand on the energy grid or when there is a shortage of supply, the stability of the grid may be compromised or the cost of supplying electricity may rise dramatically, respectively. Demand response programs are designed to mitigate the severity of these problems and improve reliability by reducing the demand on the grid during such critical times. In 2010, the Demand Response Research Center convened a group of industry experts to suggest potential industries that would be good demand response program candidates for further review. The dairy industry was suggested due to the perception that the industry had suitable flexibility and automatic controls in place. The purpose of this report is to provide an initial description of the industry with regard to demand response potential, specifically automated demand response. This report qualitatively describes the potential for participation in demand response and automated demand response by dairy processing facilities in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use. Typical process equipment and controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Two case studies of demand response at dairy facilities in California and across the country are reviewed. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  1. Integration of Renewables Via Demand Management: Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation

    SciTech Connect (OSTI)

    2012-02-11

    GENI Project: AutoGrid, in conjunction with Lawrence Berkeley National Laboratory and Columbia University, will design and demonstrate automated control software that helps manage real-time demand for energy across the electric grid. Known as the Demand Response Optimization and Management System - Real-Time (DROMS-RT), the software will enable personalized price signal to be sent to millions of customers in extremely short timeframesincentivizing them to alter their electricity use in response to grid conditions. This will help grid operators better manage unpredictable demand and supply fluctuations in short time-scales making the power generation process more efficient and cost effective for both suppliers and consumers. DROMS-RT is expected to provide a 90% reduction in the cost of operating demand response and dynamic pricing Projects in the U.S.

  2. Pilot Testing of Commercial Refrigeration-Based Demand Response

    SciTech Connect (OSTI)

    Hirsch, Adam; Clark, Jordan; Deru, Michael; Trenbath, Kim; Doebber, Ian; Studer, Daniel

    2015-10-08

    Supermarkets potentially offer a substantial demand response (DR) resource because of their high energy intensity and use patterns. This report describes a pilot project conducted to better estimate supermarket DR potential. Previous work has analyzed supermarket DR using heating, ventilating, and air conditioning (HVAC), lighting, and anti-condensate heaters. This project was concerned with evaluating DR using the refrigeration system and quantifying the DR potential inherent in supermarket refrigeration systems. Ancillary aims of the project were to identify practical barriers to the implementation of DR programs in supermarkets and to determine which high-level control strategies were most appropriate for achieving certain DR objectives. The scope of this project does not include detailed control strategy development for DR or development of a strategy for regional implementation of DR in supermarkets.

  3. Value of Demand Response: Quantities from Production Cost Modeling (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.

    2014-04-01

    Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind and solar power generation. However, managed loads in grid models are limited by data availability and modeling complexity. This presentation focuses on the value of co-optimized DR resources to provide energy and ancillary services in a production cost model. There are significant variations in the availabilities of different types of DR resources, which affect both the operational savings as well as the revenue for each DR resource. The results presented include the system-wide avoided fuel and generator start-up costs as well as the composite revenue for each DR resource by energy and operating reserves. In addition, the revenue is characterized by the capacity, energy, and units of DR enabled.

  4. National Action Plan on Demand Response, June 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Action Plan on Demand Response, June 2010 National Action Plan on Demand Response, June 2010 The Federal Energy Regulatory Commission (FERC) is required to develop the National Action Plan on Demand Response (National Action Plan) as outlined in section 529 of the Energy Independence and Security Act of 2007 (EISA), entitled "Electricity Sector Demand Response." This National Action Plan is designed to meet three objectives: Identify "requirements for technical assistance to

  5. Demand Response and Smart Metering Policy Actions Since the Energy Policy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act of 2005: A Summary for State Officials | Department of Energy Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials This report represents a review of policy developments on demand response and other related areas such as smart meters and smart grid. It has been prepared by the Demand Response Coordinating

  6. Real-time Pricing Demand Response in Operations

    SciTech Connect (OSTI)

    Widergren, Steven E.; Marinovici, Maria C.; Berliner, Teri; Graves, Alan

    2012-07-26

    AbstractDynamic pricing schemes have been implemented in commercial and industrial application settings, and recently they are getting attention for application to residential customers. Time-of-use and critical-peak-pricing rates are in place in various regions and are being piloted in many more. These programs are proving themselves useful for balancing energy during peak periods; however, real-time (5 minute) pricing signals combined with automation in end-use systems have the potential to deliver even more benefits to operators and consumers. Besides system peak shaving, a real-time pricing system can contribute demand response based on the locational marginal price of electricity, reduce load in response to a generator outage, and respond to local distribution system capacity limiting situations. The US Department of Energy (DOE) is teaming with a mid-west electricity service provider to run a distribution feeder-based retail electricity market that negotiates with residential automation equipment and clears every 5 minutes, thus providing a signal for lowering or raising electric consumption based on operational objectives of economic efficiency and reliability. This paper outlines the capability of the real-time pricing system and the operational scenarios being tested as the system is rolled-out starting in the first half of 2012.

  7. Northwest Open Automated Demand Response Technology Demonstration Project

    SciTech Connect (OSTI)

    Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann

    2009-08-01

    Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) performed a technology demonstration and evaluation for Bonneville Power Administration (BPA) in Seattle City Light's (SCL) service territory. This report summarizes the process and results of deploying open automated demand response (OpenADR) in Seattle area with winter morning peaking commercial buildings. The field tests were designed to evaluate the feasibility of deploying fully automated demand response (DR) in four to six sites in the winter and the savings from various building systems. The project started in November of 2008 and lasted 6 months. The methodology for the study included site recruitment, control strategy development, automation system deployment and enhancements, and evaluation of sites participation in DR test events. LBNL subcontracted McKinstry and Akuacom for this project. McKinstry assisted with recruitment, site survey collection, strategy development and overall participant and control vendor management. Akuacom established a new server and enhanced its operations to allow for scheduling winter morning day-of and day-ahead events. Each site signed a Memorandum of Agreement with SCL. SCL offered each site $3,000 for agreeing to participate in the study and an additional $1,000 for each event they participated. Each facility and their control vendor worked with LBNL and McKinstry to select and implement control strategies for DR and developed their automation based on the existing Internet connectivity and building control system. Once the DR strategies were programmed, McKinstry commissioned them before actual test events. McKinstry worked with LBNL to identify control points that can be archived at each facility. For each site LBNL collected meter data and trend logs from the energy management and control system. The communication system allowed the sites to receive day-ahead as well as day-of DR test event signals. Measurement of DR was conducted using three different baseline models for estimation peak load reductions. One was three-in-ten baseline, which is based on the site electricity consumption from 7 am to 10 am for the three days with the highest consumption of the previous ten business days. The second model, the LBNL outside air temperature (OAT) regression baseline model, is based on OAT data and site electricity consumption from the previous ten days, adjusted using weather regressions from the fifteen-minute electric load data during each DR test event for each site. A third baseline that simply averages the available load data was used for sites less with less than 10 days of historical meter data. The evaluation also included surveying sites regarding any problems or issues that arose during the DR test events. Question covered occupant comfort, control issues and other potential problems.

  8. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    SciTech Connect (OSTI)

    Ghatikar, Girish; Mathieu, Johanna L.; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2010-08-02

    This study examines the use of OpenADR communications specification, related data models, technologies, and strategies to send dynamic prices (e.g., real time prices and peak prices) and Time of Use (TOU) rates to commercial and industrial electricity customers. OpenADR v1.0 is a Web services-based flexible, open information model that has been used in California utilities' commercial automated demand response programs since 2007. We find that data models can be used to send real time prices. These same data models can also be used to support peak pricing and TOU rates. We present a data model that can accommodate all three types of rates. For demonstration purposes, the data models were generated from California Independent System Operator's real-time wholesale market prices, and a California utility's dynamic prices and TOU rates. Customers can respond to dynamic prices by either using the actual prices, or prices can be mapped into"operation modes," which can act as inputs to control systems. We present several different methods for mapping actual prices. Some of these methods were implemented in demonstration projects. The study results demonstrate show that OpenADR allows interoperability with existing/future systems/technologies and can be used within related dynamic pricing activities within Smart Grid.

  9. Response to several FOIA requests - Renewable Energy. Demand...

    Broader source: Energy.gov (indexed) [DOE]

    Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that ...

  10. Demand response medium sized industry consumers (Smart Grid Project...

    Open Energy Info (EERE)

    demand and regulation power in Danish Industry consumers via a price and control signal from the supplier of electricity. The aim is to develop a valuable solution for the...

  11. A National Forum on Demand Response: What Remains to Be Done to Achieve Its

    Energy Savers [EERE]

    Potential | Department of Energy A National Forum on Demand Response: What Remains to Be Done to Achieve Its Potential A National Forum on Demand Response: What Remains to Be Done to Achieve Its Potential In July 2011, the Federal Energy Regulatory Commission's (FERC) staff and the Department of Energy (DOE) jointly submitted to Congress a required "Implementation Proposal for the National Action Plan on Demand Response." The Implementation Proposal was for FERC's June 2010

  12. Introduction to Commercial Building Control Strategies and Techniques for Demand Response -- Appendices

    SciTech Connect (OSTI)

    Motegi, N.; Piette, M.A.; Watson, D.S.; Kiliccote, S.; Xu, P.

    2007-05-01

    There are 3 appendices listed: (A) DR strategies for HVAC systems; (B) Summary of DR strategies; and (C) Case study of advanced demand response.

  13. Assessment of Industrial Load for Demand Response across U.S. Regions of the Western Interconnection

    Broader source: Energy.gov [DOE]

    Demand response has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles for demand response that can provide more regional understanding and can be inserted into analysis software for further study.

  14. Comments of the Demand Response and Smart Grid Coalition on DOE...

    Energy Savers [EERE]

    the Demand Response and Smart Grid Coalition on DOE's Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy ...

  15. Greening the Grid: The Role of Storage and Demand Response, Greening the Grid (Fact Sheet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STORAGE AND DEMAND RESPONSE GREENING THE GRID THE NEED FOR FLEXIBILITY Affordably integrating high levels of variable renewable energy (VRE) sources such as wind and solar requires a flexible grid. Numerous grid integration studies have identified two major categories of tools for increasing grid flexibility: 1) Resources that allow VRE to be used directly to offset demand and increase instantaneous VRE penetration; 1 and 2) Resources that improve the alignment of VRE supply and demand. Demand

  16. Drivers for the Value of Demand Response under Increased Levels of Wind and Solar Power; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Hale, Elaine

    2015-07-30

    Demand response may be a valuable flexible resource for low-carbon electric power grids. However, there are as many types of possible demand response as there are ways to use electricity, making demand response difficult to study at scale in realistic settings. This talk reviews our state of knowledge regarding the potential value of demand response in several example systems as a function of increasing levels of wind and solar power, sometimes drawing on the analogy between demand response and storage. Overall, we find demand response to be promising, but its potential value is very system dependent. Furthermore, demand response, like storage, can easily saturate ancillary service markets.

  17. --No Title--

    Open Energy Info (EERE)

    utility company to see your electricity data access options. Select the Benchmarking or Demand ResponseEnergy Efficiency map to find out whether your utility provides sufficient...

  18. A Full Demand Response Model in Co-Optimized Energy and

    SciTech Connect (OSTI)

    Liu, Guodong; Tomsovic, Kevin

    2014-01-01

    It has been widely accepted that demand response will play an important role in reliable and economic operation of future power systems and electricity markets. Demand response can not only influence the prices in the energy market by demand shifting, but also participate in the reserve market. In this paper, we propose a full model of demand response in which demand flexibility is fully utilized by price responsive shiftable demand bids in energy market as well as spinning reserve bids in reserve market. A co-optimized day-ahead energy and spinning reserve market is proposed to minimize the expected net cost under all credible system states, i.e., expected total cost of operation minus total benefit of demand, and solved by mixed integer linear programming. Numerical simulation results on the IEEE Reliability Test System show effectiveness of this model. Compared to conventional demand shifting bids, the proposed full demand response model can further reduce committed capacity from generators, starting up and shutting down of units and the overall system operating costs.

  19. Chilled Water Thermal Storage System and Demand Response at the University of California at Merced

    SciTech Connect (OSTI)

    Granderson, Jessica; Dudley, Junqiao Han; Kiliccote, Sila; Piette, Mary Ann

    2009-10-08

    The University of California at Merced is a unique campus that has benefited from intensive efforts to maximize energy efficiency, and has participated in a demand response program for the past two years. Campus demand response evaluations are often difficult because of the complexities introduced by central heating and cooling, non-coincident and diverse building loads, and existence of a single electrical meter for the entire campus. At the University of California at Merced, a two million gallon chilled water storage system is charged daily during off-peak price periods and used to flatten the load profile during peak demand periods. This makes demand response more subtle and challenges typical evaluation protocols. The goal of this research is to study demand response savings in the presence of storage systems in a campus setting. First, University of California at Merced summer electric loads are characterized; second, its participation in two demand response events is detailed. In each event a set of strategies were pre-programmed into the campus control system to enable semi-automated response. Finally, demand savings results are applied to the utility's DR incentives structure to calculate the financial savings under various DR programs and tariffs. A key conclusion to this research is that there is significant demand reduction using a zone temperature set point change event with the full off peak storage cooling in use.

  20. Assessing the Control Systems Capacity for Demand Response in California Industries

    SciTech Connect (OSTI)

    Ghatikar, Girish; McKane, Aimee; Goli, Sasank; Therkelsen, Peter; Olsen, Daniel

    2012-01-18

    California's electricity markets are moving toward dynamic pricing models, such as real-time pricing, within the next few years, which could have a significant impact on an industrial facility's cost of energy use during the times of peak use. Adequate controls and automated systems that provide industrial facility managers real-time energy use and cost information are necessary for successful implementation of a comprehensive electricity strategy; however, little is known about the current control capacity of California industries. To address this gap, Lawrence Berkeley National Laboratory, in close collaboration with California industrial trade associations, conducted a survey to determine the current state of controls technologies in California industries. This,study identifies sectors that have the technical capability to implement Demand Response (DR) and Automated Demand Response (Auto-DR). In an effort to assist policy makers and industry in meeting the challenges of real-time pricing, facility operational and organizational factors were taken into consideration to generate recommendations on which sectors Demand Response efforts should be focused. Analysis of the survey responses showed that while the vast majority of industrial facilities have semi- or fully automated control systems, participation in Demand Response programs is still low due to perceived barriers. The results also showed that the facilities that use continuous processes are good Demand Response candidates. When comparing facilities participating in Demand Response to those not participating, several similarities and differences emerged. Demand Response-participating facilities and non-participating facilities had similar timings of peak energy use, production processes, and participation in energy audits. Though the survey sample was smaller than anticipated, the results seemed to support our preliminary assumptions. Demonstrations of Auto-Demand Response in industrial facilities with good control capabilities are needed to dispel perceived barriers to participation and to investigate industrial subsectors suggested of having inherent Demand Response potential.

  1. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

    2009-05-11

    This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  2. Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response

    SciTech Connect (OSTI)

    Kiliccote, Sila; Piette, Mary Ann

    2008-10-01

    This report summarizes San Diego Gas& Electric Company?s collaboration with the Demand Response Research Center to develop and test automation capability for the Capacity Bidding Program in 2007. The report describes the Open Automated Demand Response architecture, summarizes the history of technology development and pilot studies. It also outlines the Capacity Bidding Program and technology being used by an aggregator that participated in this demand response program. Due to delays, the program was not fully operational for summer 2007. However, a test event on October 3, 2007, showed that the project successfully achieved the objective to develop and demonstrate how an open, Web?based interoperable automated notification system for capacity bidding can be used by aggregators for demand response. The system was effective in initiating a fully automated demand response shed at the aggregated sites. This project also demonstrated how aggregators can integrate their demand response automation systems with San Diego Gas& Electric Company?s Demand Response Automation Server and capacity bidding program.

  3. Development and Validation of Aggregated Models for Thermostatic Controlled Loads with Demand Response

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Elizondo, Marcelo A.; Fuller, Jason C.; Lu, Shuai; Chassin, David P.

    2012-01-04

    Demand response is playing an increasingly important role in smart grid research and technologies being examined in recently undertaken demonstration projects. The behavior of load as it is affected by various load control strategies is important to understanding the degree to which different classes of end-use load can contribute to demand response programs at various times. This paper focuses on developing aggregated control models for a population of thermostatically controlled loads. The effects of demand response on the load population dynamics are investigated.

  4. Export demand response in the Ontario electricity market

    SciTech Connect (OSTI)

    Peerbocus, Nash; Melino, Angelo

    2007-11-15

    Export responses to unanticipated price shocks can be a key contributing factor to the rapid mean reversion of electricity prices. The authors use event analysis - a technique more familiar from financial applications - to demonstrate how hourly export transactions respond to negative supply shocks in the Ontario electricity market. (author)

  5. Opportunities for Demand Response in California Agricultural Irrigation: A Scoping Study

    SciTech Connect (OSTI)

    Marks, Gary; Wilcox, Edmund; Olsen, Daniel; Goli, Sasank

    2013-01-02

    California agricultural irrigation consumes more than ten billion kilowatt hours of electricity annually and has significant potential for contributing to a reduction of stress on the grid through demand response, permanent load shifting, and energy efficiency measures. To understand this potential, a scoping study was initiated for the purpose of determining the associated opportunities, potential, and adoption challenges in California agricultural irrigation. The primary research for this study was conducted in two ways. First, data was gathered and parsed from published sources that shed light on where the best opportunities for load shifting and demand response lie within the agricultural irrigation sector. Secondly, a small limited survey was conducted as informal face-to-face interviews with several different California growers to get an idea of their ability and willingness to participate in permanent load shifting and/or demand response programs. Analysis of the data obtained from published sources and the survey reveal demand response and permanent load shifting opportunities by growing region, irrigation source, irrigation method, grower size, and utility coverage. The study examines some solutions for demand response and permanent load shifting in agricultural irrigation, which include adequate irrigation system capacity, automatic controls, variable frequency drives, and the contribution from energy efficiency measures. The study further examines the potential and challenges for grower acceptance of demand response and permanent load shifting in California agricultural irrigation. As part of the examination, the study considers to what extent permanent load shifting, which is already somewhat accepted within the agricultural sector, mitigates the need or benefit of demand response for agricultural irrigation. Recommendations for further study include studies on how to gain grower acceptance of demand response as well as other related studies such as conducting a more comprehensive survey of California growers.

  6. Demand Response: Lessons Learned with an Eye to the Future | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Demand Response: Lessons Learned with an Eye to the Future Demand Response: Lessons Learned with an Eye to the Future July 11, 2013 - 11:56am Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability In today's world of limited resources and rising costs, everyone is looking for ways to use what they have more effectively while, at the same time, controlling - and ideally - reducing expenses. The electricity industry

  7. Demand Response is Focus of New Effort by Electricity Industry Leaders |

    Energy Savers [EERE]

    Department of Energy is Focus of New Effort by Electricity Industry Leaders Demand Response is Focus of New Effort by Electricity Industry Leaders U.S. Utilities, Grid Operators, Others Come Together in National Effort to Tackle Important New Electricity Area PDF icon Demand Response is Focus of New Effort by Electricity Industry Leaders More Documents & Publications SEAD-Fact-Sheet.pdf The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon Technologies, July 2008 2011

  8. Comments of the Demand Response and Smart Grid Coalition on DOE's

    Energy Savers [EERE]

    Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy | Department of Energy the Demand Response and Smart Grid Coalition on DOE's Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy Comments of the Demand Response and Smart Grid Coalition on DOE's Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access,

  9. When it comes to demand response, is FERC its own worst enemy?

    SciTech Connect (OSTI)

    Bushnell, James; Hobbs, Benjamin F.; Wolak, Frank A.

    2009-10-15

    There is a significant risk of creating conditions that will crowd out true price response by focusing too much on demand response programs with unverifiable baselines and reliability-based rather than price-based mechanisms for obtaining consumption reductions. (author)

  10. Price Responsive Demand in New York Wholesale Electricity Market using OpenADR

    SciTech Connect (OSTI)

    Kim, Joyce Jihyun; Kiliccote, Sila

    2012-06-01

    In New York State, the default electricity pricing for large customers is Mandatory Hourly Pricing (MHP), which is charged based on zonal day-ahead market price for energy. With MHP, retail customers can adjust their building load to an economically optimal level according to hourly electricity prices. Yet, many customers seek alternative pricing options such as fixed rates through retail access for their electricity supply. Open Automated Demand Response (OpenADR) is an XML (eXtensible Markup Language) based information exchange model that communicates price and reliability information. It allows customers to evaluate hourly prices and provide demand response in an automated fashion to minimize electricity costs. This document shows how OpenADR can support MHP and facilitate price responsive demand for large commercial customers in New York City.

  11. Aggregated Modeling of Thermostatic Loads in Demand Response: A Systems and Control Perspective

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Chassin, Forrest S.; Chassin, David P.

    2011-12-12

    Demand response is playing an increasingly important role in smart grid research and technologies being examined in recently undertaken demonstration projects. The behavior of load as it is affected by various load control strategies is important to understanding the degree to which different classes of end-use load can contribute to demand response programs at various times. This paper focuses on developing aggregated models for a homogeneous population of thermostatically controlled loads. The different types of loads considered in this paper include, but are not limited to, water heaters and HVAC units. The effects of demand response and user over-ride on the load population dynamics are investigated. The controllability of the developed lumped models is validated which forms the basis for designing different control strategies.

  12. Quantifying Changes in Building Electricity Use, with Application to Demand Response

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Price, Phillip N.; Kiliccote, Sila; Piette, Mary Ann

    2010-11-17

    We present methods for analyzing commercial and industrial facility 15-minute-interval electric load data. These methods allow building managers to better understand their facility's electricity consumption over time and to compare it to other buildings, helping them to ask the right questions to discover opportunities for demand response, energy efficiency, electricity waste elimination, and peak load management. We primarily focus on demand response. Methods discussed include graphical representations of electric load data, a regression-based electricity load model that uses a time-of-week indicator variable and a piecewise linear and continuous outdoor air temperature dependence, and the definition of various parameters that characterize facility electricity loads and demand response behavior. In the future, these methods could be translated into easy-to-use tools for building managers.

  13. Demand response pilot event conducted August 2,2011 : summary report.

    SciTech Connect (OSTI)

    Lincoln, Donald; Evans, Christoper

    2012-01-01

    Energy management in a commercial facility can be segregated into two areas: energy efficiency and demand response (DR). Energy efficiency focuses on steady-state load minimization. Demand response reduces load for event driven periods during the peak load. Demand-response-driven changes in electricity use are designed to be short-term in nature, centered on critical hours during the day when demand is high or when the electricity supplier's reserve margins are low. Due to the recent Federal Energy Regulatory Commission (FERC) Order 745, Demand Response Compensation in Organized Wholesale Energy Markets the potential annual compensation to Sandia National Laboratories (SNL) from performing DR ranges from $300K to $2,400K. While the current energy supply contract does not offer any compensation for participating in DR, there is benefit in understanding the issues and potential value in performing a DR event. This Report will be helpful in upcoming energy supply contract negotiations to quantify the energy savings and power reduction potential from DR at SNL. On August 25, 2011 the Facilities Management and Operations Center (FMOC) performed the first DR pilot event at SNL/NM. This report describes the details and results of this DR event.

  14. AMI Communication Requirements to Implement Demand-Response: Applicability of Hybrid Spread Spectrum Wireless

    SciTech Connect (OSTI)

    Hadley, Mark D.; Clements, Samuel L.; Carroll, Thomas E.

    2011-09-30

    While holistically defining the smart grid is a challenge, one area of interest is demand-response. In 2009, the Department of Energy announced over $4 billion in grant and project funding for the Smart Grid. A significant amount of this funding was allotted to utilities for cost sharing projects to deploy Smart Grid technologies, many of whom have deployed and are deploying advanced metering infrastructure (AMI). AMI is an enabler to increase the efficiency of utilities and the bulk power grid. The bulk electrical system is unique in that it produces electricity as it is consumed. Most other industries have a delay between generation and consumption. This aspect of the power grid means that there must be enough generation capacity to meet the highest demand whereas other industries could over produce during off-peak times. This requires significant investment in generation capacity to cover the few days a year of peak consumption. Since bulk electrical storage doesn't yet exist at scale another way to curb the need for new peak period generation is through demand-response; that is to incentivize consumers (demand) to curtail (respond) electrical usage during peak periods. Of the various methods proposed for enabling demand-response, this paper will focus on the communication requirements for creating an energy market using transactional controls. More specifically, the paper will focus on the communication requirements needed to send the peak period notices and receive the response back from the consumers.

  15. Demand Charges | Open Energy Information

    Open Energy Info (EERE)

    Demand Charges Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDemandCharges&oldid488967" Feedback Contact needs updating Image needs...

  16. Reduced-Order Modeling of Aggregated Thermostatic Loads With Demand Response

    SciTech Connect (OSTI)

    Zhang, Wei; Lian, Jianming; Chang, Chin-Yao; Kalsi, Karanjit; Sun, Yannan

    2012-12-12

    Demand Response is playing an increasingly important role in smart grid control strategies. Modeling the behavior of populations of appliances under demand response is especially important to evaluate the effectiveness of these demand response programs. In this paper, an aggregated model is proposed for a class of Thermostatically Controlled Loads (TCLs). The model efficiently includes statistical information of the population, systematically deals with heterogeneity, and accounts for a second-order effect necessary to accurately capture the transient dynamics in the collective response. However, an accurate characterization of the collective dynamics however requires the aggregate model to have a high state space dimension. Most of the existing model reduction techniques require the stability of the underlying system which does not hold for the proposed aggregated model. In this work, a novel model reduction approach is developed for the proposed aggregated model, which can significantly reduce its complexity with small performance loss. The original and the reducedorder aggregated models are validated against simulations of thousands of detailed building models using GridLAB-D, which is a realistic open source distribution simulation software. Index Terms demand response, aggregated model, ancillary

  17. Development and evaluation of fully automated demand response in large facilities

    SciTech Connect (OSTI)

    Piette, Mary Ann; Sezgen, Osman; Watson, David S.; Motegi, Naoya; Shockman, Christine; ten Hope, Laurie

    2004-03-30

    This report describes the results of a research project to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve electric grid reliability, manage electricity costs, and ensure that customers receive signals that encourage load reduction during times when the electric grid is near its capacity. The two main drivers for widespread demand responsiveness are the prevention of future electricity crises and the reduction of electricity prices. Additional goals for price responsiveness include equity through cost of service pricing, and customer control of electricity usage and bills. The technology developed and evaluated in this report could be used to support numerous forms of DR programs and tariffs. For the purpose of this report, we have defined three levels of Demand Response automation. Manual Demand Response involves manually turning off lights or equipment; this can be a labor-intensive approach. Semi-Automated Response involves the use of building energy management control systems for load shedding, where a preprogrammed load shedding strategy is initiated by facilities staff. Fully-Automated Demand Response is initiated at a building or facility through receipt of an external communications signal--facility staff set up a pre-programmed load shedding strategy which is automatically initiated by the system without the need for human intervention. We have defined this approach to be Auto-DR. An important concept in Auto-DR is that a facility manager is able to ''opt out'' or ''override'' an individual DR event if it occurs at a time when the reduction in end-use services is not desirable. This project sought to improve the feasibility and nature of Auto-DR strategies in large facilities. The research focused on technology development, testing, characterization, and evaluation relating to Auto-DR. This evaluation also included the related decisionmaking perspectives of the facility owners and managers. Another goal of this project was to develop and test a real-time signal for automated demand response that provided a common communication infrastructure for diverse facilities. The six facilities recruited for this project were selected from the facilities that received CEC funds for new DR technology during California's 2000-2001 electricity crises (AB970 and SB-5X).

  18. Automated Demand Response: The Missing Link in the Electricity Value Chain

    SciTech Connect (OSTI)

    McKane, Aimee; Rhyne, Ivin; Piette, Mary Ann; Thompson, Lisa; Lekov, Alex

    2008-08-01

    In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This 'electricity value chain' defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to 'demo' potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives. In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies of refrigerated warehouses and wastewater treatment facilities are used to illustrate OpenADR load reduction potential. Typical shed and shift strategies include: turning off or operating compressors, aerator blowers and pumps at reduced capacity, increasing temperature set-points or pre-cooling cold storage areas and over-oxygenating stored wastewater prior to a DR event. This study concludes that understanding industrial end-use processes and control capabilities is a key to support reduced service during DR events and these capabilities, if DR enabled, hold significant promise in reducing the electricity demand of the industrial sector during utility peak periods.

  19. Automated Demand Response: The Missing Link in the Electricity Value Chain

    SciTech Connect (OSTI)

    McKane, Aimee; Rhyne, Ivin; Lekov, Alex; Thompson, Lisa; Piette, MaryAnn

    2009-08-01

    In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This ?electricity value chain? defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to"demo" potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives.1 In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies of refrigerated warehouses and wastewater treatment facilities are used to illustrate OpenADR load reduction potential. Typical shed and shift strategies include: turning off or operating compressors, aerator blowers and pumps at reduced capacity, increasing temperature set-points or pre-cooling cold storage areas and over-oxygenating stored wastewater prior to a DR event. This study concludes that understanding industrial end-use processes and control capabilities is a key to support reduced service during DR events and these capabilities, if DR enabled, hold significant promise in reducing the electricity demand of the industrial sector during utility peak periods.

  20. Automated Price and Demand Response Demonstration for Large Customers in New York City using OpenADR

    SciTech Connect (OSTI)

    Kim, Joyce Jihyun; Yin, Rongxin; Kiliccote, Sila

    2013-10-01

    Open Automated Demand Response (OpenADR), an XML-based information exchange model, is used to facilitate continuous price-responsive operation and demand response participation for large commercial buildings in New York who are subject to the default day-ahead hourly pricing. We summarize the existing demand response programs in New York and discuss OpenADR communication, prioritization of demand response signals, and control methods. Building energy simulation models are developed and field tests are conducted to evaluate continuous energy management and demand response capabilities of two commercial buildings in New York City. Preliminary results reveal that providing machine-readable prices to commercial buildings can facilitate both demand response participation and continuous energy cost savings. Hence, efforts should be made to develop more sophisticated algorithms for building control systems to minimize customer's utility bill based on price and reliability information from the electricity grid.

  1. Aggregated Modeling and Control of Air Conditioning Loads for Demand Response

    SciTech Connect (OSTI)

    Zhang, Wei; Lian, Jianming; Chang, Chin-Yao; Kalsi, Karanjit

    2013-06-21

    Demand response is playing an increasingly important role in the efficient and reliable operation of the electric grid. Modeling the dynamic behavior of a large population of responsive loads is especially important to evaluate the effectiveness of various demand response strategies. In this paper, a highly-accurate aggregated model is developed for a population of air conditioning loads. The model effectively includes statistical information of the population, systematically deals with load heterogeneity, and accounts for second-order dynamics necessary to accurately capture the transient dynamics in the collective response. Based on the model, a novel aggregated control strategy is designed for the load population under realistic conditions. The proposed controller is fully responsive and achieves the control objective without sacrificing end-use performance. The proposed aggregated modeling and control strategies are validated through realistic simulations using GridLAB-D. Extensive simulation results indicate that the proposed approach can effectively manage a large number of air conditioning systems to provide various demand response services, such as frequency regulation and peak load reduction.

  2. Advanced Control Technologies and Strategies Linking DemandResponse and Energy Efficiency

    SciTech Connect (OSTI)

    Kiliccote, Sila; Piette, Mary Ann

    2005-09-02

    This paper presents a preliminary framework to describe how advanced controls can support multiple modes of operations including both energy efficiency and demand response (DR). A general description of DR, its benefits, and nationwide status is outlined. The role of energy management and control systems for DR is described. Building systems such as HVAC and lighting that utilize control technologies and strategies for energy efficiency are mapped on to DR and demand shedding strategies are developed. Past research projects are presented to provide a context for the current projects. The economic case for implementing DR from a building owner perspective is also explored.

  3. Modeling Framework and Validation of a Smart Grid and Demand Response System for Wind Power Integration

    SciTech Connect (OSTI)

    Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.; Chassin, David P.; Djilali, Ned

    2014-01-31

    Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generator and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.

  4. Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2012-12-20

    This report details a study into the demand response potential of a large wastewater treatment facility in San Francisco. Previous research had identified wastewater treatment facilities as good candidates for demand response and automated demand response, and this study was conducted to investigate facility attributes that are conducive to demand response or which hinder its implementation. One years' worth of operational data were collected from the facility's control system, submetered process equipment, utility electricity demand records, and governmental weather stations. These data were analyzed to determine factors which affected facility power demand and demand response capabilities The average baseline demand at the Southeast facility was approximately 4 MW. During the rainy season (October-March) the facility treated 40% more wastewater than the dry season, but demand only increased by 4%. Submetering of the facility's lift pumps and centrifuges predicted load shifts capabilities of 154 kW and 86 kW, respectively, with large lift pump shifts in the rainy season. Analysis of demand data during maintenance events confirmed the magnitude of these possible load shifts, and indicated other areas of the facility with demand response potential. Load sheds were seen to be possible by shutting down a portion of the facility's aeration trains (average shed of 132 kW). Load shifts were seen to be possible by shifting operation of centrifuges, the gravity belt thickener, lift pumps, and external pump stations These load shifts were made possible by the storage capabilities of the facility and of the city's sewer system. Large load reductions (an average of 2,065 kW) were seen from operating the cogeneration unit, but normal practice is continuous operation, precluding its use for demand response. The study also identified potential demand response opportunities that warrant further study: modulating variable-demand aeration loads, shifting operation of sludge-processing equipment besides centrifuges, and utilizing schedulable self-generation.

  5. Future Opportunities and Challenges with Using Demand Response as a Resource in Distribution System Operation and Planning Activities

    Broader source: Energy.gov [DOE]

    This scoping study focuses on identifying the ability for current and future demand response opportunities to contribute to distribution system management. To do so, this scoping study will...

  6. The Impact of Energy Efficiency and Demand Response Programs on the U.S. Electricity Market

    SciTech Connect (OSTI)

    Baek, Young Sun; Hadley, Stanton W

    2012-01-01

    This study analyzes the impact of the energy efficiency (EE) and demand response (DR) programs on the grid and the consequent level of production. Changes in demand caused by EE and DR programs affect not only the dispatch of existing plants and new generation technologies, the retirements of old plants, and the finances of the market. To find the new equilibrium in the market, we use the Oak Ridge Competitive Electricity Dispatch Model (ORCED) developed to simulate the operations and costs of regional power markets depending on various factors including fuel prices, initial mix of generation capacity, and customer response to electricity prices. In ORCED, over 19,000 plant units in the nation are aggregated into up to 200 plant groups per region. Then, ORCED dispatches the power plant groups in each region to meet the electricity demands for a given year up to 2035. In our analysis, we show various demand, supply, and dispatch patterns affected by EE and DR programs across regions.

  7. Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid

    SciTech Connect (OSTI)

    Ghatikar, Girish; Mathieu, Johanna L.; Piette, Mary Ann; Kiliccote, Sila

    2010-06-02

    We present an Open Automated Demand Response Communications Specifications (OpenADR) data model capable of communicating real-time prices to electricity customers. We also show how the same data model could be used to for other types of dynamic pricing tariffs (including peak pricing tariffs, which are common throughout the United States). Customers participating in automated demand response programs with building control systems can respond to dynamic prices by using the actual prices as inputs to their control systems. Alternatively, prices can be mapped into"building operation modes," which can act as inputs to control systems. We present several different strategies customers could use to map prices to operation modes. Our results show that OpenADR can be used to communicate dynamic pricing within the Smart Grid and that OpenADR allows for interoperability with existing and future systems, technologies, and electricity markets.

  8. 2012 CERTS LAAR Program Peer Review - Frequency Response Demand - Jeff Dagle, PNNL

    Energy Savers [EERE]

    Responsive Demand Jeff Dagle, PE Chief Electrical Engineer Advanced Power & Energy Systems Pacific Northwest National Laboratory (509) 375-3629 jeff.dagle@pnl.gov CERTS Project Meeting Berkeley, CA September 20, 2012 Acknowledgements Montana Tech University MK Donnelly DJ Turdnowski S Mattix 2 Project Objective This project is evaluating the utilization of large numbers of small loads to provide spinning reserve The specific scope of this project is comparing the ability of load to provide

  9. Value of Demand Response: Quantities from Production Cost Modeling (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Value Study Desk Manual Value Study Desk Manual Updated September 26, 2012. PDF icon Memo from Robert Myers regarding DOE Benefit Value Desk Manual PDF icon Value Study Desk Manual More Documents & Publications Contractor Human Resources Management VALUE STUDY VALUE STUDY

    Value of Demand Response: Quantities from Production Cost Modeling Marissa Hummon PLMA Spring 2014 April 15-16, 2014 Denver, CO NREL/PR-6A20-61815 2 Background DOE-led, multiple national laboratory research project

  10. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect (OSTI)

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO{sub 2}) and oxides of nitrogen (NO{sub x}) from electric power generating stations. The restrictions on SO{sub 2} take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry`s response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  11. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect (OSTI)

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO[sub 2]) and oxides of nitrogen (NO[sub x]) from electric power generating stations. The restrictions on SO[sub 2] take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry's response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  12. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    SciTech Connect (OSTI)

    Cappers, Peter; Mills, Andrew; Goldman, Charles; Wiser, Ryan; Eto, Joseph H.

    2011-09-10

    This scoping study focuses on the policy issues inherent in the claims made by some Smart Grid proponents that the demand response potential of mass market customers which is enabled by widespread implementation of Advanced Metering Infrastructure (AMI) through the Smart Grid could be the “silver bullet” for mitigating variable generation integration issues. In terms of approach, we will: identify key issues associated with integrating large amounts of variable generation into the bulk power system; identify demand response opportunities made more readily available to mass market customers through widespread deployment of AMI systems and how they can affect the bulk power system; assess the extent to which these mass market Demand Response (DR) opportunities can mitigate Variable Generation (VG) integration issues in the near-term and what electricity market structures and regulatory practices could be changed to further expand the ability for DR to mitigate VG integration issues over the long term; and provide a qualitative comparison of DR and other approaches to mitigate VG integration issues.

  13. Analysis of Open Automated Demand Response Deployments in California and Guidelines to Transition to Industry Standards

    SciTech Connect (OSTI)

    Ghatikar, Girish; Riess, David; Piette, Mary Ann

    2014-01-02

    This report reviews the Open Automated Demand Response (OpenADR) deployments within the territories serviced by California?s investor-owned utilities (IOUs) and the transition from the OpenADR 1.0 specification to the formal standard?OpenADR 2.0. As demand response service providers and customers start adopting OpenADR 2.0, it is necessary to ensure that the existing Automated Demand Response (AutoDR) infrastructure investment continues to be useful and takes advantage of the formal standard and its many benefits. This study focused on OpenADR deployments and systems used by the California IOUs and included a summary of the OpenADR deployment from the U.S. Department of Energy-funded demonstration conducted by the Sacramento Municipal Utility District (SMUD). Lawrence Berkeley National Laboratory collected and analyzed data about OpenADR 1.0 deployments, categorized architectures, developed a data model mapping to understand the technical compatibility of each version, and compared the capabilities and features of the two specifications. The findings, for the first time, provided evidence of the total enabled load shed and average first cost for system enablement in the IOU and SMUD service territories. The OpenADR 2.0a profile specification semantically supports AutoDR system architectures and data propagation with a testing and certification program that promotes interoperability, scaled deployments by multiple vendors, and provides additional features that support future services.

  14. Final Scientific Technical Report: INTEGRATED PREDICTIVE DEMAND RESPONSE CONTROLLER FOR COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Wenzel, Mike

    2013-10-14

    This project provides algorithms to perform demand response using the thermal mass of a building. Using the thermal mass of the building is an attractive method for performing demand response because there is no need for capital expenditure. The algorithms rely on the thermal capacitance inherent in the building?s construction materials. A near-optimal ?day ahead? predictive approach is developed that is meant to keep the building?s electrical demand constant during the high cost periods. This type of approach is appropriate for both time-of-use and critical peak pricing utility rate structures. The approach uses the past days data in order to determine the best temperature setpoints for the building during the high price periods on the next day. A second ?model predictive approach? (MPC) uses a thermal model of the building to determine the best temperature for the next sample period. The approach uses constant feedback from the building and is capable of appropriately handling real time pricing. Both approaches are capable of using weather forecasts to improve performance.

  15. Understanding the Effect of Baseline Modeling Implementation Choices on Analysis of Demand Response Performance

    SciTech Connect (OSTI)

    University of California, Berkeley; Addy, Nathan; Kiliccote, Sila; Mathieu, Johanna; Callaway, Duncan S.

    2012-06-13

    Accurate evaluation of the performance of buildings participating in Demand Response (DR) programs is critical to the adoption and improvement of these programs. Typically, we calculate load sheds during DR events by comparing observed electric demand against counterfactual predictions made using statistical baseline models. Many baseline models exist and these models can produce different shed calculations. Moreover, modelers implementing the same baseline model can make different modeling implementation choices, which may affect shed estimates. In this work, using real data, we analyze the effect of different modeling implementation choices on shed predictions. We focused on five issues: weather data source, resolution of data, methods for determining when buildings are occupied, methods for aligning building data with temperature data, and methods for power outage filtering. Results indicate sensitivity to the weather data source and data filtration methods as well as an immediate potential for automation of methods to choose building occupied modes.

  16. Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings

    SciTech Connect (OSTI)

    Page, Janie; Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann; Chiu, Albert K.; Kellow, Bashar; Koch, Ed; Lipkin, Paul

    2011-07-01

    Small and medium commercial customers in California make up about 20-25% of electric peak load in California. With the roll out of smart meters to this customer group, which enable granular measurement of electricity consumption, the investor-owned utilities will offer dynamic prices as default tariffs by the end of 2011. Pacific Gas and Electric Company, which successfully deployed Automated Demand Response (AutoDR) Programs to its large commercial and industrial customers, started investigating the same infrastructures application to the small and medium commercial customers. This project aims to identify available technologies suitable for automating demand response for small-medium commercial buildings; to validate the extent to which that technology does what it claims to be able to do; and determine the extent to which customers find the technology useful for DR purpose. Ten sites, enabled by eight vendors, participated in at least four test AutoDR events per site in the summer of 2010. The results showed that while existing technology can reliably receive OpenADR signals and translate them into pre-programmed response strategies, it is likely that better levels of load sheds could be obtained than what is reported here if better understanding of the building systems were developed and the DR response strategies had been carefully designed and optimized for each site.

  17. Field Demonstration of Automated Demand Response for Both Winter and Summer Events in Large Buildings in the Pacific Northwest

    SciTech Connect (OSTI)

    Piette, Mary Ann; Kiliccote, Sila; Dudley, Junqiao H.

    2011-11-11

    There are growing strains on the electric grid as cooling peaks grow and equipment ages. Increased penetration of renewables on the grid is also straining electricity supply systems and the need for flexible demand is growing. This paper summarizes results of a series of field test of automated demand response systems in large buildings in the Pacific Northwest. The objective of the research was two fold. One objective was to evaluate the use demand response automation technologies. A second objective was to evaluate control strategies that could change the electric load shape in both winter and summer conditions. Winter conditions focused on cold winter mornings, a time when the electric grid is often stressed. The summer test evaluated DR strategies in the afternoon. We found that we could automate both winter and summer control strategies with the open automated demand response communication standard. The buildings were able to provide significant demand response in both winter and summer events.

  18. Small Business Demand Response with Communicating Thermostats: SMUD's Summer Solutions Research Pilot

    SciTech Connect (OSTI)

    Herter, Karen; Wayland, Seth; Rasin, Josh

    2009-09-25

    This report documents a field study of 78 small commercial customers in the Sacramento Municipal Utility District service territory who volunteered for an integrated energy-efficiency/demand-response (EE-DR) program in the summer of 2008. The original objective for the pilot was to provide a better understanding of demand response issues in the small commercial sector. Early findings justified a focus on offering small businesses (1) help with the energy efficiency of their buildings in exchange for occasional load shed, and (2) a portfolio of options to meet the needs of a diverse customer sector. To meet these expressed needs, the research pilot provided on-site energy efficiency advice and offered participants several program options, including the choice of either a dynamic rate or monthly payment for air-conditioning setpoint control. An analysis of hourly load data indicates that the offices and retail stores in our sample provided significant demand response, while the restaurants did not. Thermostat data provides further evidence that restaurants attempted to precool and reduce AC service during event hours, but were unable to because their air-conditioning units were undersized. On a 100 F reference day, load impacts of all participants during events averaged 14%, while load impacts of office and retail buildings (excluding restaurants) reached 20%. Overall, pilot participants including restaurants had 2007-2008 summer energy savings of 20% and bill savings of 30%. About 80% of participants said that the program met or surpassed their expectations, and three-quarters said they would probably or definitely participate again without the $120 participation incentive. These results provide evidence that energy efficiency programs, dynamic rates and load control programs can be used concurrently and effectively in the small business sector, and that communicating thermostats are a reliable tool for providing air-conditioning load shed and enhancing the ability of customers on dynamic rates to respond to intermittent price events.

  19. Effects of Granular Control on Customers’ Perspective and Behavior with Automated Demand Response Systems

    SciTech Connect (OSTI)

    Schetrit, Oren; Kim, Joyce; Yin, Rongxin; Kiliccote, Sila

    2014-08-01

    Automated demand response (Auto-DR) is expected to close the loop between buildings and the grid by providing machine-to-machine communications to curtail loads without the need for human intervention. Hence, it can offer more reliable and repeatable demand response results to the grid than the manual approach and make demand response participation a hassle-free experience for customers. However, many building operators misunderstand Auto-DR and are afraid of losing control over their building operation. To ease the transition from manual to Auto-DR, we designed and implemented granular control of Auto-DR systems so that building operators could modify or opt out of individual load-shed strategies whenever they wanted. This paper reports the research findings from this effort demonstrated through a field study in large commercial buildings located in New York City. We focused on (1) understanding how providing granular control affects building operators’ perspective on Auto-DR, and (2) evaluating the usefulness of granular control by examining their interaction with the Auto-DR user interface during test events. Through trend log analysis, interviews, and surveys, we found that: (1) the opt-out capability during Auto-DR events can remove the feeling of being forced into load curtailments and increase their willingness to adopt Auto-DR; (2) being able to modify individual load-shed strategies allows flexible Auto-DR participation that meets the building’s changing operational requirements; (3) a clear display of automation strategies helps building operators easily identify how Auto-DR is functioning and can build trust in Auto-DR systems.

  20. Demand Response Spinning Reserve Demonstration -- Phase 2 Findings from the Summer of 2008

    SciTech Connect (OSTI)

    Eto, Joseph H.; Nelson-Hoffman, Janine; Parker, Eric; Bernier, Clark; Young, Paul; Sheehan, Dave; Kueck, John; Kirby, Brendan

    2009-04-30

    The Demand Response Spinning Reserve project is a pioneering demonstration showing that existing utility load-management assets can provide an important electricity system reliability resource known as spinning reserve. Using aggregated demand-side resources to provide spinning reserve as demonstrated in this project will give grid operators at the California Independent System Operator (CA ISO) and Southern California Edison (SCE) a powerful new tool to improve reliability, prevent rolling blackouts, and lower grid operating costs.In the first phase of this demonstration project, we target marketed SCE?s air-conditioning (AC) load-cycling program, called the Summer Discount Plan (SDP), to customers on a single SCE distribution feederand developed an external website with real-time telemetry for the aggregated loads on this feeder and conducted a large number of short-duration curtailments of participating customers? air-conditioning units to simulate provision of spinning reserve. In this second phase of the demonstration project, we explored four major elements that would be critical for this demonstration to make the transition to a commercial activity:1. We conducted load curtailments within four geographically distinct feeders to determine the transferability of target marketing approaches and better understand the performance of SCE?s load management dispatch system as well as variations in the AC use of SCE?s participating customers;2. We deployed specialized, near-real-time AC monitoring devices to improve our understanding of the aggregated load curtailments we observe on the feeders;3. We integrated information provided by the AC monitoring devices with information from SCE?s load management dispatch system to measure the time required for each step in the curtailment process; and4. We established connectivity with the CA ISO to explore the steps involved in responding to CA ISO-initiated requests for dispatch of spinning reserve.The major findings from the second phase of this demonstration are:1. Demand-response resources can provide full response significantly faster than required by NERC and WECC reliability rules.2. The aggregate impact of demand response from many small, individual sources can be estimated with varying degrees of reliability through analysis of distribution feeder loads.3. Monitoring individual AC units helps to evaluate the efficacy of the SCE load management dispatch system and better understand AC energy use by participating customers.4. Monitoring individual AC units provides an independent data source to corroborate the estimates of the magnitude of aggregate load curtailments and gives insight into results from estimation methods that rely solely on distribution feeder data.

  1. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    SciTech Connect (OSTI)

    Stadler , Michael; Siddiqui, Afzal; Marnay, Chris; ,, Hirohisa Aki; Lai, Judy

    2009-05-26

    The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case. Finally, we illustrate that the multi-criteria frontier that considers costs and carbon emissions in the presence of demand response dominates the one without it.

  2. Title XVII

    Broader source: Energy.gov [DOE]

    Title XVII of EPAct05 provides the basis of the Energy Department’s program. This title provides broad authority for the Department to guarantee loans that support early commercial use of advanced...

  3. Development and Demonstration of the Open Automated Demand Response Standard for the Residential Sector

    SciTech Connect (OSTI)

    Herter, Karen; Rasin, Josh; Perry, Tim

    2009-11-30

    The goal of this study was to demonstrate a demand response system that can signal nearly every customer in all sectors through the integration of two widely available and non- proprietary communications technologies--Open Automated Demand Response (OpenADR) over lnternet protocol and Utility Messaging Channel (UMC) over FM radio. The outcomes of this project were as follows: (1) a software bridge to allow translation of pricing signals from OpenADR to UMC; and (2) a portable demonstration unit with an lnternet-connected notebook computer, a portfolio of DR-enabling technologies, and a model home. The demonstration unit provides visitors the opportunity to send electricity-pricing information over the lnternet (through OpenADR and UMC) and then watch as the model appliances and lighting respond to the signals. The integration of OpenADR and UMC completed and demonstrated in this study enables utilities to send hourly or sub-hourly electricity pricing information simultaneously to the residential, commercial and industrial sectors.

  4. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  5. Market and policy barriers for demand response providing ancillary services in U.S. markets

    SciTech Connect (OSTI)

    Cappers, Peter; MacDonald, Jason; Goldman, Charles

    2013-03-01

    This study provides an examination of various market and policy barriers to demand response providing ancillary services in both ISO/RTO and non-ISO/RTO regions, especially at the program provider level. It is useful to classify barriers in order to create a holistic understanding and identify parties that could be responsible for their removal. This study develops a typology of barriers focusing on smaller customers that must rely on a program provider (i.e., electric investor owned utility or IOU, ARC) to create an aggregated DR resource in order to bring ancillary services to the balancing authority. The barriers were identified through examinations of regulatory structures, market environments, and product offerings; and discussions with industry stakeholders and regulators. In order to help illustrate the differences in barriers among various wholesale market designs and their constituent retail environments, four regions were chosen to use as case studies: Colorado, Texas, Wisconsin, and New Jersey.

  6. DOE and FERC Jointly Submit Implementation Proposal for The National Action Plan on Demand Response to Congress

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy and the Federal Energy Regulatory Commission (FERC) jointly submitted to Congress a required “Implementation Proposal for The National Action Plan on Demand Response.”

  7. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    SciTech Connect (OSTI)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Song, Katherine; Piette, Mary Ann

    2009-04-01

    This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  8. Web-based energy information systems for energy management and demand response in commercial buildings

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS are discussed: Metering and Connectivity; Visualization and Analysis Features; Demand Response Features; and Remote Control Features. This report also describes the following technologies and the potential benefits of incorporating them into future EIS products: Benchmarking; Load Shape Analysis; Fault Detection and Diagnostics; and Savings Analysis.

  9. Modeling of Electric Water Heaters for Demand Response: A Baseline PDE Model

    SciTech Connect (OSTI)

    Xu, Zhijie; Diao, Ruisheng; Lu, Shuai; Lian, Jianming; Zhang, Yu

    2014-09-05

    Demand response (DR)control can effectively relieve balancing and frequency regulation burdens on conventional generators, facilitate integrating more renewable energy, and reduce generation and transmission investments needed to meet peak demands. Electric water heaters (EWHs) have a great potential in implementing DR control strategies because: (a) the EWH power consumption has a high correlation with daily load patterns; (b) they constitute a significant percentage of domestic electrical load; (c) the heating element is a resistor, without reactive power consumption; and (d) they can be used as energy storage devices when needed. Accurately modeling the dynamic behavior of EWHs is essential for designing DR controls. Various water heater models, simplified to different extents, were published in the literature; however, few of them were validated against field measurements, which may result in inaccuracy when implementing DR controls. In this paper, a partial differential equation physics-based model, developed to capture detailed temperature profiles at different tank locations, is validated against field test data for more than 10 days. The developed model shows very good performance in capturing water thermal dynamics for benchmark testing purposes

  10. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Stadler, Michael; Marnay, Chris; Lai, Judy

    2010-06-01

    We take the perspective of a microgrid that has installed distribution energy resources (DER) in the form of distributed generation with combined heat and power applications. Given uncertain electricity and fuel prices, the microgrid minimizes its expected annual energy bill for various capacity sizes. In almost all cases, there is an economic and environmental advantage to using DER in conjunction with demand response (DR): the expected annualized energy bill is reduced by 9percent while CO2 emissions decline by 25percent. Furthermore, the microgrid's risk is diminished as DER may be deployed depending on prevailing market conditions and local demand. In order to test a policy measure that would place a weight on CO2 emissions, we use a multi-criteria objective function that minimizes a weighted average of expected costs and emissions. We find that greater emphasis on CO2 emissions has a beneficial environmental impact only if DR is available and enough reserve generation capacity exists. Finally, greater uncertainty results in higher expected costs and risk exposure, the effects of which may be mitigated by selecting a larger capacity.

  11. Heat Pump Water Heaters: Controlled Field Research of Impact on Space Conditioning and Demand Response Characteristics

    SciTech Connect (OSTI)

    Parker, Graham B.; Widder, Sarah H.; Eklund, Ken; Petersen, Joseph M.; Sullivan, Greg

    2015-10-05

    A new generation of heat pump water heaters (HPWH) has been introduced into the U.S. market that promises to provide significant energy savings for water heating. Many electric utilities are promoting their widespread adoption as a key technology for meeting energy conservation goals and reducing greenhouse gas emissions. There is, however, considerable uncertainty regarding the space conditioning impact of an HPWH installed in a conditioned space. There is also uncertainty regarding the potential for deployment of HPWHs in demand response (DR) programs to help manage and balance peak utility loads in a similar manner as conventional electric resistance water heaters (ERWH). To help answer these uncertainties, controlled experiments have been undertaken over 30 months in a matched pair of unoccupied Lab Homes located on the campus of the Pacific Northwest National Laboratory (PNNL) in Richland, Washington.

  12. Grid Integration of Aggregated Demand Response, Part 1: Load Availability Profiles and Constraints for the Western Interconnection

    Broader source: Energy.gov [DOE]

    Demand response (DR) has the potential to improve electric grid reliability and reduce system operation costs. However, including DR in grid modeling can be difficult due to its variable and non-traditional response characteristics, compared to traditional generation. Therefore, efforts to value the participation of DR in procurement of grid services have been limited. In this report, we present methods and tools for predicting demand response availability profiles, representing their capability to participate in capacity, energy, and ancillary services. With the addition of response characteristics mimicking those of generation, the resulting profiles will help in the valuation of the participation of demand response through production cost modeling, which informs infrastructure and investment planning.

  13. --No Title--

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reciprocity of tax-exempt status to other states. The only provision which will establish tax-exempt status under California ruling is that title of property purchased for use in...

  14. --No Title--

    Broader source: Energy.gov (indexed) [DOE]

    Guard Corps, as contained in Titles II and III of the Iran Threat Reduction and Syria Human Rights Act of 2012. The effective date was December 10, 2012. This Flash will be...

  15. China’s rare earth supply chain: Illegal production, and response to new cerium demand

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nguyen, Ruby Thuy; Imholte, D. Devin

    2016-03-29

    As the demand for personal electronic devices, wind turbines, and electric vehicles increases, the world becomes more dependent on rare earth elements. Given the volatile, Chinese-concentrated supply chain, global attempts have been made to diversify supply of these materials. However, the overall effect of supply diversification on the entire supply chain, including increasing low-value rare earth demand, is not fully understood. This paper is the first attempt to shed some light on China’s supply chain from both demand and supply perspectives, taking into account different Chinese policies such as mining quotas, separation quotas, export quotas, and resource taxes. We constructedmore » a simulation model using Powersim Studio that analyzes production (both legal and illegal), production costs, Chinese and rest-of-world demand, and market dynamics. We also simulated new demand of an automotive aluminum-cerium alloy in the U.S. market starting from 2018. Results showed that market share of the illegal sector has grown since 2007 to 2015, ranging between 22% and 25% of China’s rare earth supply, translating into 59–65% illegal heavy rare earths and 14–16% illegal light rare earths. There would be a shortage in certain light and heavy rare earths given three production quota scenarios and constant demand growth rate from 2015 to 2030. The new simulated Ce demand would require supply beyond that produced in China. Lastly, we illustrated revenue streams for different ore compositions in China in 2015.« less

  16. A New Thermostat for Real-Time Price Demand Response: Cost, Comfort and Energy Impacts of Discrete-Time Control without Deadband

    SciTech Connect (OSTI)

    Chassin, David P.; Stoustrup, Jakob; Agathoklis, Pan; Djilali, Ned

    2015-10-01

    This paper presents a residential thermostat design that enables accurate aggregate load control systems for electricity demand response. The thermostat features a control strategy that can be modeled as a linear time-invariant system for short- term demand response signals from the utility. This control design maintains the same comfort and demand response characteristics of existing real-time price- responsive thermostats but gives rise to linear time-invariant models of aggregate load control and demand response, which facilitates the design of highly accurate load-based regulation services for electricity interconnections.

  17. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    for emergency back-up' '2''During periods of high demand' '3''Whenever electricity was used' ; VALUE GLSAREA '1''More glass area' '2''Less glass area' '3''About...

  18. --No Title--

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Demand case was developed by assuming changes in technology choices and higher efficiency in the end-use sectors. To limit the number of competing influences,...

  19. TITLE XVII APPLICATION PORTAL

    Broader source: Energy.gov [DOE]

    The Title XVII online application portal guides users through the Title XVII loan guarantee application process.

  20. Presentation title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil markets -- a view from EIA for State of the Oil Markets Panel Discussion Center for Strategic and International Studies February 17, 2016 | Washington DC by Howard Gruenspecht, Deputy Administrator World supply and demand million barrels per day implied stock change million barrels per day Center for Strategic and International Studies | State of the oil markets February 17, 2016 Global supply has consistently exceeded demand since the start of 2014; EIA forecasts a return to market balance

  1. Guide Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE G XXX.X-X xx-xx-20XX Guide Title [This Guide describes acceptable, but not mandatory means for complying with requirements. Guides are not requirements documents and are not to be construed as requirements in any audit or appraisal for compliance with associated rule or directives.] U.S. Department of Energy Office of Primary Interest FOREWORD (optional) THE FOREWORD SHOULD DESCRIBE THE DOE REQUIREMENTS, DIRECTIVES, OR RULES THAT MAY BE SATISFIED BY IMPLEMENTING THIS GUIDE. CONTENTS

  2. Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

    SciTech Connect (OSTI)

    Dudley, Junqiao Han; Black, Doug; Apte, Mike; Piette, Mary Ann; Berkeley, Pam

    2010-05-14

    We have studied a low energy building on a campus of the University of California. It has efficient heating, ventilation, and air conditioning (HVAC) systems, consisting of a dual-fan/dual-duct variable air volume (VAV) system. As a major building on the campus, it was included in two demand response (DR) events in the summers of 2008 and 2009. With chilled water supplied by thermal energy storage in the central plant, cooling fans played a critical role during DR events. In this paper, an EnergyPlus model of the building was developed and calibrated. We compared both whole-building and HVAC fan energy consumption with model predictions to understand why demand savings in 2009 were much lower than in 2008. We also used model simulations of the study building to assess pre-cooling, a strategy that has been shown to improve demand saving and thermal comfort in many types of building. This study indicates a properly calibrated EnergyPlus model can reasonably predict demand savings from DR events and can be useful for designing or optimizing DR strategies.

  3. Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

  4. Can Automotive Battery Recycling Help Meet Lithium Demand? |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can Automotive Battery Recycling Help Meet Lithium Demand? Title Can Automotive Battery Recycling Help Meet Lithium Demand? Publication Type Presentation Year of Publication 2013...

  5. my title

    Office of Scientific and Technical Information (OSTI)

    Negative to positive magnetoresistance and magnetocaloric effect in Pr0.6Er0.4Al2 Arjun K. Pathak, 1, [1] K. A. Gschneidner, Jr., 1, 2 and V. K. Pecharsky1, 2 1The Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, Iowa 50011-3020, USA 2Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011-2300, USA ABSTRACT We report on the magnetic, magnetocaloric and magnetotransport properties of Pr0.6Er0.4Al2. The title compound exhibits a large

  6. Reducing Logistics Footprints and Replenishment Demands: Nano...

    Office of Scientific and Technical Information (OSTI)

    Water Treatment Citation Details In-Document Search Title: Reducing Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water ...

  7. Title Standards 2001

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards 2001 A guide for the preparation of title evidence in land acquisitions by the United States of America. Quick links to Contents: Table of Contents / Why Title Standards 2001, and who uses it? / Evidence of title / Abstract of Title Supplemental and Supporting Title Evidence / Title Insurance Policies and Certificates of Title / Final Title Evidence Title Evidence for Condemnations / The Deed to the United States / Special Standards for Texas / Sample Forms U.S. Department of Justice

  8. Market transformation lessons learned from an automated demand response test in the Summer and Fall of 2003

    SciTech Connect (OSTI)

    Shockman, Christine; Piette, Mary Ann; ten Hope, Laurie

    2004-08-01

    A recent pilot test to enable an Automatic Demand Response system in California has revealed several lessons that are important to consider for a wider application of a regional or statewide Demand Response Program. The six facilities involved in the site testing were from diverse areas of our economy. The test subjects included a major retail food marketer and one of their retail grocery stores, financial services buildings for a major bank, a postal services facility, a federal government office building, a state university site, and ancillary buildings to a pharmaceutical research company. Although these organizations are all serving diverse purposes and customers, they share some underlying common characteristics that make their simultaneous study worthwhile from a market transformation perspective. These are large organizations. Energy efficiency is neither their core business nor are the decision makers who will enable this technology powerful players in their organizations. The management of buildings is perceived to be a small issue for top management and unless something goes wrong, little attention is paid to the building manager's problems. All of these organizations contract out a major part of their technical building operating systems. Control systems and energy management systems are proprietary. Their systems do not easily interact with one another. Management is, with the exception of one site, not electronically or computer literate enough to understand the full dimensions of the technology they have purchased. Despite the research team's development of a simple, straightforward method of informing them about the features of the demand response program, they had significant difficulty enabling their systems to meet the needs of the research. The research team had to step in and work directly with their vendors and contractors at all but one location. All of the participants have volunteered to participate in the study for altruistic reasons, that is, to help find solutions to California's energy problems. They have provided support in workmen, access to sites and vendors, and money to participate. Their efforts have revealed organizational and technical system barriers to the implementation of a wide scale program. This paper examines those barriers and provides possible avenues of approach for a future launch of a regional or statewide Automatic Demand Response Program.

  9. Presentation Title

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Energy Outlook 2016 For AEO2016 Working Group December 15, 2015| Washington, DC By Trisha Hutchins, Melissa Lynes, John Maples, and Mark Schipper Office of Energy Consumption and Efficiency Analysis Modeling updates in the transportation sector AEO2016 Transportation Demand Model Updates * Domestic and international marine - International Convention for the Prevention of Pollution from Ships (MARPOL) * On-road vehicles - Light duty vehicles (LDV) - Heavy duty vehicles (HDV) * Side cases

  10. Automated Demand Response Benefits California Utilities and Commercial & Industrial Customers

    Energy Savers [EERE]

    (AO) Authorizing Official (AO) keyboard-621831_960_720.jpg The Authorizing Official (AO) is the Senior Federal DOE management official with the authority to assume responsibility for operating an information system at an acceptable level of risk. PDF icon AO Energy

    Designated Representative (AODR) Authorizing Official Designated Representative (AODR) student-849822_960_720.jpg The Authorizing Official Designated Representative (AODR) provides technical and organizational support to the

  11. Demand Reduction

    Broader source: Energy.gov [DOE]

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  12. DemandDirect | Open Energy Information

    Open Energy Info (EERE)

    DemandDirect Place: Woodbury, Connecticut Zip: 6798 Sector: Efficiency, Renewable Energy, Services Product: DemandDirect provides demand response, energy efficiency, load...

  13. TITLE XVII | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TITLE XVII TITLE XVII TITLE XVII INNOVATIVE CLEAN ENERGY LOAN GUARANTEE PROGRAM The Title ... advanced fossil energy, nuclear energy, renewable energy, and energy efficiency. ...

  14. Dynamic Controls for Energy Efficiency and Demand Response:Framework Concepts and a New Construction Study Case in New York

    SciTech Connect (OSTI)

    Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

    2006-06-20

    Many of today's advanced building control systems are designed to improve granularity of control for energy efficiency. Examples include direct digital controls for building heating, ventilation, and cooling systems (HVAC), and dimmable ballasts for continuous dimming for daylighting applications. This paper discusses recent research on the use of new and existing controls in commercial buildings for integrated energy efficiency and demand response (DR). The paper discusses the use of DR controls strategies in commercial buildings and provides specific details on DR control strategy design concepts for a new building in New York. We present preliminary results from EnergyPlus simulations of the DR strategies at the New York Times Headquarters building currently under construction. The DR strategies at the Times building involve unique state of the art systems with dimmable ballasts, movable shades on the glass facade, and underfloor air HVAC. The simulation efforts at this building are novel, with an innovative building owner considering DR and future DR program participation strategies during the design phase. This paper also discusses commissioning plans for the DR strategies. The trends in integration of various systems through the EMCS, master versus supervisory controls and dynamic operational modes concepts are presented and future research directions are outlined.

  15. On the Inclusion of Energy-Shifting Demand Response in Production Cost Models: Methodology and a Case Study

    SciTech Connect (OSTI)

    O'Connell, Niamh; Hale, Elaine; Doebber, Ian; Jorgenson, Jennie

    2015-07-20

    In the context of future power system requirements for additional flexibility, demand response (DR) is an attractive potential resource. Its proponents widely laud its prospective benefits, which include enabling higher penetrations of variable renewable generation at lower cost than alternative storage technologies, and improving economic efficiency. In practice, DR from the commercial and residential sectors is largely an emerging, not a mature, resource, and its actual costs and benefits need to be studied to determine promising combinations of physical DR resource, enabling controls and communications, power system characteristics, regulatory environments, market structures, and business models. The work described in this report focuses on the enablement of such analysis from the production cost modeling perspective. In particular, we contribute a bottom-up methodology for modeling load-shifting DR in production cost models. The resulting model is sufficiently detailed to reflect the physical characteristics and constraints of the underlying flexible load, and includes the possibility of capturing diurnal and seasonal variations in the resource. Nonetheless, the model is of low complexity and thus suitable for inclusion in conventional unit commitment and market clearing algorithms. The ability to simulate DR as an operational resource on a power system over a year facilitates an assessment of its time-varying value to the power system.

  16. Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study

    SciTech Connect (OSTI)

    Thompson, Lisa; Lekov, Alex; McKane, Aimee; Piette, Mary Ann

    2010-08-20

    This case study enhances the understanding of open automated demand response opportunities in municipal wastewater treatment facilities. The report summarizes the findings of a 100 day submetering project at the San Luis Rey Wastewater Treatment Plant, a municipal wastewater treatment facility in Oceanside, California. The report reveals that key energy-intensive equipment such as pumps and centrifuges can be targeted for large load reductions. Demand response tests on the effluent pumps resulted a 300 kW load reduction and tests on centrifuges resulted in a 40 kW load reduction. Although tests on the facility?s blowers resulted in peak period load reductions of 78 kW sharp, short-lived increases in the turbidity of the wastewater effluent were experienced within 24 hours of the test. The results of these tests, which were conducted on blowers without variable speed drive capability, would not be acceptable and warrant further study. This study finds that wastewater treatment facilities have significant open automated demand response potential. However, limiting factors to implementing demand response are the reaction of effluent turbidity to reduced aeration load, along with the cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities.

  17. Assessment of Energy Savings Potential from the Use of Demand...

    Office of Scientific and Technical Information (OSTI)

    Energy Savings Potential from the Use of Demand Controlled Ventilation in General Office Spaces in California Citation Details In-Document Search Title: Assessment of Energy ...

  18. Calculating impacts of energy standards on energy demand in U...

    Office of Scientific and Technical Information (OSTI)

    Calculating impacts of energy standards on energy demand in U.S. buildings with uncertainty in an integrated assessment model Citation Details In-Document Search Title: Calculating ...

  19. Optical People Counting for Demand Controlled Ventilation: A...

    Office of Scientific and Technical Information (OSTI)

    of Counter Performance Citation Details In-Document Search Title: Optical People Counting for Demand Controlled Ventilation: A Pilot Study of Counter Performance This pilot ...

  20. Optical People Counting for Demand Controlled Ventilation: A...

    Office of Scientific and Technical Information (OSTI)

    of Counter Performance Citation Details In-Document Search Title: Optical People Counting for Demand Controlled Ventilation: A Pilot Study of Counter Performance You are ...

  1. Configuring load as a resource for competitive electricity markets--Review of demand response programs in the U.S. and around the world

    SciTech Connect (OSTI)

    Heffner, Grayson C.

    2002-09-01

    The restructuring of regional and national electricity markets in the U.S. and around the world has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created new opportunities for technologies and business approaches that allow load serving entities and other aggregators to control and manage the load patterns of wholesale and retail end-users they serve. Demand Response Programs, once called Load Management, have re-emerged as an important element in the fine-tuning of newly restructured electricity markets. During the summers of 1999 and 2001 they played a vital role in stabilizing wholesale markets and providing a hedge against generation shortfalls throughout the U.S.A. Demand Response Programs include ''traditional'' capacity reservation and interruptible/curtailable rates programs as well as voluntary demand bidding programs offered by either Load Serving Entities (LSEs) or regional Independent System Operators (ISOs). The Lawrence Berkeley National Lab (LBNL) has been monitoring the development of new types of Demand Response Programs both in the U.S. and around the world. This paper provides a survey and overview of the technologies and program designs that make up these emerging and important new programs.

  2. TITLE XVII GOVERNING DOCUMENTS

    Broader source: Energy.gov [DOE]

    The following lists documents that provide the statutory and legislative framework for the Title XVII loan guarantee program.

  3. A Hierarchical Framework for Demand-Side Frequency Control (Conference...

    Office of Scientific and Technical Information (OSTI)

    A Hierarchical Framework for Demand-Side Frequency Control Citation Details In-Document Search Title: A Hierarchical Framework for Demand-Side Frequency Control With large-scale ...

  4. On the Inclusion of Energy-Shifting Demand Response in Production Cost Models: Methodology and a Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | SciTech Connect Technical Report: On the Front Lines of the Cold War Los Alamos 1970-1992 Citation Details In-Document Search Title: On the Front Lines of the Cold War Los Alamos 1970-1992 Authors: Carr, Alan B. [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-06-03 OSTI Identifier: 1082233 Report Number(s): LA-UR-13-24021 DOE Contract Number: AC52-06NA25396 Resource Type: Technical Report Research Org: Los Alamos National Laboratory (LANL) Sponsoring

  5. A Test Bed for Self-regulating Distribution Systems: Modeling Intergrated Renewable Energy and Demand Response in the GridLAB-D/MATLAB Environment

    SciTech Connect (OSTI)

    Wang, Dan; de Wit, Braydon; Parkinson, Simon; Fuller, Jason C.; Chassin, David P.; Crawford, Curran; Djilali, Ned

    2012-01-16

    This paper discusses the development of a simulation test bed permitting the study of integrated renewable energy generators and controlled distributed heat pumps operating within distribution systems. The test bed is demonstrated in this paper by addressing the important issue of the self-regulating effect of consumer-owned air-source heat pumps on the variability induced by wind power integration, particularly when coupled with increased access to demand response realized through a centralized load control strategy.

  6. travel-demand-modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demand Modeler, Cambridge Systematics, Tallahassee, FL Abstract ... Travel demand ... Ahmed Mohideen Travel Demand Modeler Cambridge Systematics, Tallahassee, FL Transportation ...

  7. TITLE XVII APPLICATION PROCESS

    Broader source: Energy.gov [DOE]

    The Title XVII application process is a two-part process.  Eligible applicants receive an invitation to submit Part II of their application after meeting basic eligibility requirements referred to...

  8. The collision of Title III and Title V: A potential permitting and enforcement nightmare

    SciTech Connect (OSTI)

    Facca, G.; Faler, M.

    1998-12-31

    The Clean Air Act of 1990 (CAA) mandated that all facilities classified as major were to obtain a Federal Title V operating permit. In addition, any facility, either major or minor, which emits certain chemicals or compounds above a specific single quantity limit or a total aggregate limit are subject to Title III requirements and are required to obtain a Title V permit as well. The problem with obtaining a Title V permit for Title III substances is there is limited data, at least for the utilities sources, on emission factors and emission rates for many of the Title III listed chemical compounds. In addition, the emission data that exists is very conservative, and if used, would show the facilities to be significant emitters of hazardous air emissions, while actual emissions are significantly less. This could lead a facility to applying for a Title V permit unnecessarily, a time consuming process at best. In Iowa, facilities submitted the first Title V permit applications in 1994. The Iowa Department of Natural Resources is currently in the process of reviewing the submittals prior to issuing operating permits. Title III has not been addressed at all in the submittals and therefore will not be included in this round of finished permits that are to be issued. The outcome of this is that the Title V permits will have to be opened and amended to include the applicable Title III operating conditions and constraints. This paper will examine the areas where Title III and Title V collide and the potential permitting and enforcement issues that will have to be faced by the facilities that operate under these permits. This paper is based on the opinions of two of the three responsible parties (facilities and consultants) that are dealing with the potential permitting and enforcement wreckage before the collision occurs.

  9. Widget:SetTitle | Open Energy Information

    Open Energy Info (EERE)

    Parameters include: title - title text to display Usage: Widget:SetTitle |titleHello World Retrieved from "http:en.openei.orgwindex.php?titleWidget:SetTitle&oldid...

  10. Implementation Proposal for the National Action Plan on Demand...

    Energy Savers [EERE]

    Implementation Proposal for the National Action Plan on DemandResponse - July 2011 Implementation Proposal for the National Action Plan on Demand Response - July 2011 Report to ...

  11. Implementation of Division F, Title I, Title II, and Title III...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Division G, Consolidated and Further Continuing Appropriations Act, 2013, Pub. L. No.113-6 Implementation of Division F, Title I, Title II, and Title III and Division G, ...

  12. Demand Response Research Center and Open Automated Demand Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand
Response
Research
Center
and

 Open
Automated
Demand
Response

 February
22,
2011
 Mary
Ann
PieKe
 mapieKe@lbl.gov

 PresentaIon
to
the
State
Energy
Advisory
Board

 Demand
Response
Research
Center
 Building
Technologies
Dept.
 Lawrence
Berkeley
NaIonal
Laboratory
 drrc.lbl.gov
 Scope
of
DR
Research
Center 
 Sponsored
by
CEC,
PG&E,
SCE,
SD&GE,
DOE,
BPA,
NYSERDA,


  13. Property:OpenEI/UtilityRate/DemandChargePeriod7FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 7 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  14. Property:OpenEI/UtilityRate/DemandWindow | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandWindow&oldid680274...

  15. Property:OpenEI/UtilityRate/DemandWeekdaySchedule | Open Energy...

    Open Energy Info (EERE)

    search This is a property of type Text. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandWeekdaySchedule&oldid539760" Feedback...

  16. Property:OpenEI/UtilityRate/EnableDemandCharge | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Boolean. Name: Enable Demand Charge Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  17. Property:OpenEI/UtilityRate/DemandChargePeriod8 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 8 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  18. Property:OpenEI/UtilityRate/DemandChargePeriod3FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 3 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  19. Property:OpenEI/UtilityRate/DemandChargePeriod6 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 6 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  20. Property:OpenEI/UtilityRate/DemandChargePeriod4FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 4 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  1. Property:OpenEI/UtilityRate/DemandChargePeriod8FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 8 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  2. Property:OpenEI/UtilityRate/DemandChargePeriod4 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 4 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  3. Property:OpenEI/UtilityRate/DemandChargePeriod6FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 6 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  4. Property:OpenEI/UtilityRate/DemandChargePeriod7 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 7 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  5. Property:OpenEI/UtilityRate/DemandChargePeriod1FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 1 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  6. Property:OpenEI/UtilityRate/DemandChargePeriod3 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 3 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  7. G Subject: Implementation of Division D, Title III and Title V, and Division E, Title

    Energy Savers [EERE]

    G Subject: Implementation of Division D, Title III and Title V, and Division E, Title Title VII of the Consolidated and Further Continuing Appropriations Act, 2015, Pub. L. No.113-235 References: Consolidated and Further Continuing Division D, Title III, Sections Appropriations Act, 2015, Pub.L. No. 113-235 301(a), 304, 305, 307, and 310 and Title V, Section 501; Division E, Title VII, Sections 733, 735, 739, 743, 744, 745 and 747 When is this Acquisition Letter (AL) effective? The statutory

  8. G Subject: Implementation of Division F, Title I, Title II, and Title III, and

    Energy Savers [EERE]

    F, Title I, Title II, and Title III, and Division G, Consolidated and Further Continuing Appropriations Act, 2013, Pub. L. No.113- References: Consolidated and Further Continuing Division F, Titles I, II, and III Appropriations Act, 2013, Pub. L. No. 113-6 Division G, Section 3003 Consolidated Appropriations Act, 2012, Division B, Title III, Section Pub. L. No. 112-74 301(a), 301(b), 316, and Title V, Sections 501, 504, 505 Division C, Title VII, Section 725 When is this Financial Assistance

  9. Demand Response Technology Roadmap M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 5 D E M A N D R E S P O N S E T E C H N O L O G Y R O A D M A P Development of this roadmap occurred in stages between May 2014 and February 2015. The Bonneville Power...

  10. Solar Energy Grid Integration Systems. Final Report of the Princeton Power Systems Development of the 100kW Demand Response Inverter.

    SciTech Connect (OSTI)

    Bower, Ward Isaac; Heavener, Paul; Sena-Henderson, Lisa; Hammell, Darren; Holveck, Mark; David, Carolyn; Akhil, Abbas Ali; Gonzalez, Sigifredo

    2012-01-01

    Initiated in 2008, the Solar Energy Grid Integration (SEGIS) program is a partnership involving the U.S. Department of Energy, Sandia National Laboratories, electric utilities, academic institutions and the private sector. Recognizing the need to diversify the nation's energy portfolio, the SEGIS effort focuses on specific technologies needed to facilitate the integration of large-scale solar power generation into the nation's power grid Sandia National Laboratories (SNL) awarded a contract to Princeton Power Systems, Inc., (PPS) to develop a 100kW Advanced AC-link SEGIS inverter prototype under the Department of Energy Solar Energy Technologies Program for near-term commercial applications. This SEGIS initiative emphasizes the development of advanced inverters, controllers, communications and other balance-of-system components for photovoltaic (PV) distributed power applications. The SEGIS Stage 3 Contract was awarded to PPS on July 28, 2010. PPS developed and implemented a Demand Response Inverter (DRI) during this three-stage program. PPS prepared a 'Site Demonstration Conference' that was held on September 28, 2011, to showcase the cumulative advancements. This demo of the commercial product will be followed by Underwriters Laboratories, Inc., certification by the fourth quarter of 2011, and simultaneously the customer launch and commercial production sometime in late 2011 or early 2012. This final report provides an overview of all three stages and a full-length reporting of activities and accomplishments in Stage 3.

  11. Title: Author(s):

    Office of Scientific and Technical Information (OSTI)

    LA:UR- $-3233 Title: Author(s): Submitted to: Los Alamos N A T I O N A L L A B O R A T O R Y STAINLESS STEEL WIRE MESH FLOW-FIELDS FOR POLYMER ELECTROLYTE FUEL CELLS C. Zawodzinski, M. S. Wilson, S. Gottesfeld Fuel Cell Seminar Kissimee, FL November 1996 A Los Alamos National Laboratory, an affirmative action/equal opportunity empldyer, is operated by the University of California for the US. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher

  12. Title: A Novel Method

    Office of Scientific and Technical Information (OSTI)

    Title: A Novel Method for Accurate Operon Predictions in All Sequenced Prokaryotes Authors: Morgan N. Price, Katherine H. Huang, Eric J. Alm, and Adam P. Arkin Author affiliation: Lawrence Berkeley Lab, Berkeley CA, USA. A.P.A. is also affiliated with the Howard Hughes Medical Institute and the UC Berkeley Dept. of Bioengineering. Corresponding author: Eric J. Alm, ejalm@lbl.gov, phone 510-843-1794, fax 510-486-6059, ad- dress Lawrence Berkeley National Lab, 1 Cyclotron Road, Mailstop 939R704,

  13. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    various aspects of demand response, distributed generation, smart grid and energy storage. Annex 9 is a list of pilot programs and case studies, with links to those...

  14. No Slide Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2008 Summer Transportation Fuels Outlook Fuels Outlook Guy Caruso Administrator Energy Information Administration EIA 2008 Energy Conference 30 Years of Energy Information and Analysis April 8, 2008 Washington, DC EIA, Short-Term Energy Outlook, April 2008 1) Rising world oil consumption 2) Low global surplus oil production capacity 3) Insufficient non-OPEC oil supply growth relative to demand 4) Supply concerns in international oil markets Together these factors contribute to high prices for

  15. No Slide Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Summer Fuels Outlook Guy Caruso Administrator, Energy Information Administration 2006 Summer Transportation Fuels Outlook Conference April 11, 2006 Washington, DC Several Key Factors Drive the Short-Term Fuels Forecast 1) Rising world oil consumption; 2) Low global surplus production capacity and tight crude oil supply relative to demand; 3) Supply concerns in international oil markets (such as in Nigeria, Iraq, and Iran); 4) The challenges of:  Stricter sulfur standards under the Tier 2

  16. No Slide Title

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Summer Transportation 2008 Summer Transportation Fuels Outlook Fuels Outlook Guy Caruso Administrator Energy Information Administration EIA 2008 Energy Conference 30 Years of Energy Information and Analysis April 8, 2008 Washington, DC EIA, Short-Term Energy Outlook, April 2008 1) Rising world oil consumption 2) Low global surplus oil production capacity 3) Insufficient non-OPEC oil supply growth relative to demand 4) Supply concerns in international oil markets Together these factors

  17. Main Title 32pt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gaining Confidence in Computational Simulation Measured Credibility, on Demand, for Stockpile Applications - CASL Project Powers Nuclear Energy Resurgence Martin Pilch Sandia National Laboratory July 15, 2009 CASL-U-2010-0047-000 CASL-U-2010-0047-000 Martin Pilch PhD, PMP QMU and Management Support, 1551 Advanced Simulation and Computing Program mpilch@sandia.gov Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of

  18. No Slide Title

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Member Responsibilities * SGE special Government employees - Federal ethics laws and regulations - avoid any action creating the appearance that they are ...

  19. What is a High Electric Demand Day?

    Broader source: Energy.gov [DOE]

    This presentation by T. McNevin of the New Jersey Bureau of Air Quality Planning was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

  20. No Slide Title

    Gasoline and Diesel Fuel Update (EIA)

    Next Update: November 2013 Table 3B.1. FRCC monthly peak hour demand, by North American Electric Reliability Corporation Assesment Area, 1996-2011 actual, 2012-2013 projected megawatts FRCC Year January February March April May June July August September October November December 1996 39,860 41,896 32,781 28,609 32,059 33,886 35,444 34,341 34,797 30,037 29,033 34,191 1997 37,127 28,144 27,998 28,458 33,859 34,125 35,356 35,375 33,620 31,798 27,669 31,189 1998 27,122 28,116 29,032 28,008 32,879

  1. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  2. NIF Title III engineering plan

    SciTech Connect (OSTI)

    Deis, G

    1998-06-01

    The purpose of this document is to define the work that must be accomplished by the NIF Project during Title III Engineering. This definition is intended to be sufficiently detailed to provide a framework for yearly planning, to clearly identify the specific deliverables so that the Project teams can focus on them, and to provide a common set of objectives and processes across the Project. This plan has been preceded by similar documents for Title I and Title II design and complements the Site Management Plan, the Project Control Manual, the Quality Assurance Program Plan, the RM Parsons NIF Title III Configuration Control Plan, the Integrated Project Schedule, the Preliminary Safety Analysis Report, the Configuration Management Plan, and the Transition Plan.

  3. Title IX | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IX Title IX Title IX of the Education Amendments of 1972, as amended, prohibits discrimination on the basis of sex in all educational programs and activities of institutions that receive federal financial assistance. The law states, in part, that: No person in the United States shall, on the basis of sex, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any education program or activity receiving federal financial assistance. Click here to

  4. Title VI | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VI Title VI Title VI of the Civil Rights Act of 1964 prohibits discrimination on the basis of race, color, and national origin in programs and activities that receive federal financial assistance. The law states, in part, that: No person in the United States shall, on the ground of race, color, or national origin, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any program or activity receiving Federal financial assistance. The Office of

  5. Major Design Changes Late in Title II or early in Title III Can...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Changes Late in Title II or early in Title III Can Be Costly PMLL Identifier: ... design changes occur late in Title II or early in Title III Discussion: Numerous ...

  6. TITLE XVII OPEN SOLICITATIONS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OPEN SOLICITATIONS TITLE XVII OPEN SOLICITATIONS TITLE XVII OPEN SOLICITATIONS LPO has more than 24 billion in remaining loan authority to help finance innovative clean energy ...

  7. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you...

  8. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you ...

  9. Reducing Logistics Footprints and Replenishment Demands: Nano-engineered

    Office of Scientific and Technical Information (OSTI)

    Silica Aerogels a Proven Method for Water Treatment (Technical Report) | SciTech Connect Technical Report: Reducing Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water Treatment Citation Details In-Document Search Title: Reducing Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water Treatment Rapid deployment and the use of objective force aggressively reduce logistic footprints and

  10. National Ignition Facility Title II Design Plan

    SciTech Connect (OSTI)

    Kumpan, S

    1997-03-01

    This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed.

  11. Water demands for electricity generation in the U.S.: Modeling...

    Office of Scientific and Technical Information (OSTI)

    Water demands for electricity generation in the U.S.: Modeling different scenarios for the water-energy nexus This content will become publicly available on March 11, 2018 Title: ...

  12. Property:OpenEI/UtilityRate/DemandRateStructure/Tier2Adjustment...

    Open Energy Info (EERE)

    search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandRateStructureTier2Adjustment&oldid539746...

  13. Property:OpenEI/UtilityRate/DemandRateStructure/Tier5Max | Open...

    Open Energy Info (EERE)

    navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandRateStructureTier5Max&oldid539754...

  14. Property:OpenEI/UtilityRate/DemandRateStructure/Tier6Adjustment...

    Open Energy Info (EERE)

    search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandRateStructureTier6Adjustment&oldid539759...

  15. Property:OpenEI/UtilityRate/DemandRateStructure/Tier4Max | Open...

    Open Energy Info (EERE)

    navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandRateStructureTier4Max&oldid539751...

  16. Property:OpenEI/UtilityRate/DemandChargePeriod9 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 9 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRate...

  17. Property:OpenEI/UtilityRate/DemandChargePeriod9FAdj | Open Energy...

    Open Energy Info (EERE)

    FAdj Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 9 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  18. Property:OpenEI/UtilityRate/DemandChargePeriod2 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 2 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRate...

  19. Property:OpenEI/UtilityRate/DemandChargePeriod5 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 5 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRate...

  20. Property:OpenEI/UtilityRate/DemandChargePeriod5FAdj | Open Energy...

    Open Energy Info (EERE)

    FAdj Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 5 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  1. Property:OpenEI/UtilityRate/DemandChargePeriod2FAdj | Open Energy...

    Open Energy Info (EERE)

    FAdj Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 2 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  2. Implementation of Title V in California

    SciTech Connect (OSTI)

    Werner, B.; Cook, B.

    1996-12-31

    This presentation provides information on California`s Title V operating permit programs for stationary sources mandated by the 1990 Clean Air Act amendments. It covers background, applicability, regulatory history, requirements, and issues. In addition, specific information is provided on the progress of Title V implementation in California, including: the roles of implementing agencies, the status of district Title V programs, number and distribution of Title V sources, cost of Title V implementation, and highlights of Title V implementation in the State. The question and answer format is intended to facilitate easy access to specific information related to the Title V operating permit programs in California.

  3. Title III hazardous air pollutants

    SciTech Connect (OSTI)

    Todd, R.

    1995-12-31

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  4. Louisiana Title V General Permits

    SciTech Connect (OSTI)

    Boyer, B.E.; Neal, T.L.

    1995-12-31

    Title V of the Federal Clean Air Act Amendments of 1990 requires federal operating permits for all major sources of air pollution. In 1992, Title 40, Part 70 of the Code of Federal Regulations (40 CFR Part 70) codified the law s requirements. These federal regulations, entitled Operating Permit Program, define the minimum requirements for state administered operating permit programs. The intent of Title V is to put into one document all requirements of an operating permit. General Permits for oil and gas facilities may be preferred if the facility can comply with all permit requirements. If greater flexibility than allowed by the General Permit is required, then the facility should apply for an individual Title V permit. General Permits are designed to streamline the permitting process, shorten the time it takes to obtain approval for initial and modified permits. The advantages of the General Permit include reduced paperwork and greater consistency because the permits are standardized. There should be less uncertainty because permit requirements will be known at the time of application. Approval times for Initial and modified General Permits should be reduced. Lengthy public notice procedures (and possible hearings) will be required for only the initial approval of the General Permit and not for each applicant to the permit. A disadvantage of General Permits is reduced flexibility since the facility must comply with the requirements of a standardized permit.

  5. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demand Dispatch-Intelligent Demand for a More Efficient Grid 10 August 2011 DOE/NETL- DE-FE0004001 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal

  6. Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tips For Getting Hired Tips For Getting Hired Successful candidates know it takes a little extra effort to get to the top. This one hour workshop introduces you to the Department of Energy, in addition to guiding you in creating a competitive Federal resume, it also covers veteran hiring options, and offers important tips to help prepare for the interview. So, If you are new to the Federal government hiring process or just want to improve your odds of getting that critical interview, this

  7. Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study of Scintillation, Fluorescence and Scattering in Mineral Oil for the MiniBooNE Neutrino Detector Bruce C. Brown, Senior-Member, IEEE,Stephen Brice, Eric Hawker, Shannon Maza, Hans-Otto Meyer, Anna Pla-Dalmau, Rex Tayloe, Hirohisa A. Tanaka and Dmitri Toptygin Abstract- The MiniBooNE neutrino detector at Fermilab (FNAL) is filled with 250,000 gallons of pure mineral oil. The principal signal for MiniBooNE is light observed in a prompt Cherenkov cone. Scattering and fluorescence modify our

  8. Title

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    under Contract No. DE-AC02-05CH11231. RESULTS AND ACCOMPLISHMENTS Intermediate-Scale Hydraulic Fracture and Stimulation Field Laboratory in a Deep Mine for the Investigation of...

  9. Title

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil & Natural Gas R&D National Energy Technology Laboratory Office of Fossil Energy 2008 ... John R. Duda, Deputy Director Strategic Center for Natural Gas & Oil January 30, 2008 ...

  10. Title

    U.S. Energy Information Administration (EIA) Indexed Site

    Unlocking Energy Efficiency in the U.S. Economy 2010 Energy Conference EIA, SAIS April 7, 2010 McKinsey & Company | 1 Carbon emissions Gigatons CO 2 e * End-use consumption Quadrillion BTUs * Includes carbon emission abatement potential from CHP Source: EIA AEO 2008, McKinsey analysis Significant energy efficiency potential exists in the U.S. economy Industrial Residential Commercial -9.1 Baseline 2020 Baseline case, 2008 30.8 36.9 39.9 NPV- positive case, 2020 3.2 NPV- positive case, 2020

  11. Title

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    DESTABILIZINGACTIVITY Traders may distort efficient pricing in the futures markets only ... condition should hold if markets are efficient and arbitrage opportunities are ...

  12. Title

    National Nuclear Security Administration (NNSA)

    These regions included the ground zeros of above-ground nuclear tests, underground tests that vented, and some safety ... including an amplifier and power supply, a pulse-height ...

  13. Title:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education and Outreach Lesson Plan Visit our online activities collection http://education.arm.gov/ Grade levels 9-12 Monsoon Convection Cells http://education.arm.gov Monsoon Convection Cell: Grades 9-12 1 Monsoon Convection Cells Approximate Time 1 hour Objective The student will investigate how high- and low-pressure differences caused by temperature create monsoons as evidenced by the completion of the experiment. Background Information If you live near a large lake, then you may have heard

  14. Title:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-5 Planting Trees http://education.arm.gov Planting Trees: Grades 3-5 2 Planting Trees Approximate Time 1 to 3 hours, depending upon amount of teacher modeling and depth required in written portion of worksheets. Can be a one-day or several- day investigation. Objective The objective is to estimate the number of trees to be planted per year as a carbon sink to compensate for one year's use of four types of cars. Key Points to Understand Human activities, such as driving a car, using a hot tub,

  15. Title:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-5 Rainfall and the Water Table: The Salinity of Soil http://education.arm.gov Rainfall and the Water Table: The Salinity of Soil: Grades 3-5 1 Rainfall and the Water Table: The Salinity of Soil Approximate Time Setup and initial experiment: 45 minutes, followed by several short time segments to observe, record, and add water to soil. Objective The student will be able to explain how an increase of rainfall influenced by climate change can affect the water table and soil salinity underground as

  16. Title:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education and Outreach Lesson Plan Visit our online activities collection http://education.arm.gov/ Grade levels 9-12 Thermal Expansion of Water Educational resources that have been selected by the Climate Literacy and Energy Awareness Network (CLEAN) have passed an extensive peer- review process to verify the accuracy and relevance of the science. http://education.arm.gov Thermal Expansion of Water: Grades 9-12 1 Thermal Expansion of Water Approximate Time 1 hour Objective The student will

  17. Title:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    K-2 When Floating Ice Melts in the Sea http://education.arm.gov When Floating Ice Melts in the Sea: Grades K-2 1 When Floating Ice Melts in the Sea Approximate Time Two 30-minute periods for experiment; additional time for teacher-directed completion of Student Record Sheet. Objective The student will investigate the effect of melting ice on sea level due to global warming as evidenced by analyzing the data from the class experiment. Key Points to Understand * Global warming is the rise in

  18. Title

    National Nuclear Security Administration (NNSA)

    ... persons with extreme positions that have an emotional or economic rather than an ecological base. * Work performed under the auspices of the United States Atomic Energy Commission. ...

  19. Title

    National Nuclear Security Administration (NNSA)

    ... MAP 12 CONTAMINATED AREAS REPORT DATED 10-10-92 PAGE 13 of 22 GRAVEL GERTIE U.S. ATOMIC ENERGY COMMISSION NEVADA TEST SITE WITH REFERENCE STAKES REYNOLDS ELECT. AND ENGR. CO., INC. ...

  20. TITLE

    Office of Legacy Management (LM)

    ... t o s a i d g r a n t o r ' s h e i r , Lee Hapard, extending the term o f s a i d grant through February 23, 1979; and WHEREAS, the Government has now completed the project f ...

  1. Title

    Broader source: Energy.gov (indexed) [DOE]

    Grant and Loan Recipients 1 Outline of Presentation * Basic Background on Recovery Act * ... 4 OMB Reporting Requirements * All Prime Grant and Loan Recipients whose award was signed ...

  2. Title

    National Nuclear Security Administration (NNSA)

    ... Extract- .f?" 6 Strontium 90 Alpha , ,,. (Net) (PC1 > 1 0 i | j"l O ' * Oil * i * ... indicate that the discharge varies widely and is greatest shortly after heavy rains. ...

  3. TITLE

    Office of Legacy Management (LM)

    DC 20460 Annual Water Sampling and Analysis, Calendar Year 2001: RULISON Test Site Area RIO BLANCO Test Site Area FAULTLESS Test Site Area SHOAL Test Site Area GASBUGGY Test Site ...

  4. Title

    Broader source: Energy.gov (indexed) [DOE]

    ... be addressed in future planning processes) - Focus on minimizing the exploration footprint (All projects will be evaluated based on minimizing environmental footprint) Strategic ...

  5. Title:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stand) * Black construction paper (one sheet per group of students) * Several books to prop thermometers * Metric ruler * Scissors * Stapler * Pencil * Student Record Sheets *...

  6. Title:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    about 2 centimeters of water in the bottom of the jar. Hold the black paper upright or prop it up against some books behind the jar. 3. Turn the lid of the jar upside down and...

  7. TITLE

    Office of Scientific and Technical Information (OSTI)

    Analysis of Memory Transfers and GEMM Subroutines on NVIDIA Tesla GPU Cluster Veerendra Allada, Troy Benjegerdes Electrical and Computer Engineering, Ames Laboratory Iowa State University Ames, IA, USA allada@iastate.edu, troy@scl.ameslab.gov Brett Bode National Center for Supercomputing Applications Urbana-Champaign, IL, USA bbode@ncsa.uiuc.edu Abstract-Commodity clusters augmented with application accelerators are evolving as competitive high performance com- puting systems. The Graphical

  8. Title:

    Office of Scientific and Technical Information (OSTI)

    A uttwr(s): submined to: NUCLEAR DATA FOR RADIOTHERAPY: PRESENTATION OF A NEW ICRU REPORT AND IAEA INITIATIVES M. B. Chadwick, T-2, MS-B283, Los Alamos National Laboratory, P.O. Box D.T.L. Jones, National Accelerator Centre, Faure, South Africa H . H . Barschall, University of Wisconsin, Madison, WI, USA R.S. Caswell, National Jnstitute of Standards and Technology, P.M. DeLuca Jr., University of Wisconsin, Madison, WI, USA J-P Meulders, Universite Catholique de Louvain, lowain-la-Neuve, Belgium

  9. Title

    Energy Savers [EERE]

    Comments on DOE's Upcoming 2012 Congestion Study Keith White California Public Utilities Commission December 15, 2011 2 General Comments ◊ California has been fully participating in west-wide "economic" transmission studies (TEPPC since 2006, recently with much-appreciated ARRA funding) ◊ The 2005 Energy Policy Act gives DOE unclear scope regarding "congestion," and a requirement to consult with states. The following are essential: * Clearly address the specific rationale

  10. Title

    National Nuclear Security Administration (NNSA)

    (USGS Open file Report 92-xxxx) Author Laczniak, R. J., Cole, J. C, Sawyer D.A. and Trudeau, D. A. Document Date 5792 Document Type Report Recipients DOENV 100960 ...

  11. TITLE

    Office of Legacy Management (LM)

    Pages 12 and 13 are unavailable Appendix B is unavailable

  12. <Title>

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and data locality Luigi Iapichino Leibniz-Rechenzentrum (LRZ), Garching b. Mnchen, Germany Collaborators: V. Karakasis, N. Hammer, A. Karmakar (LRZ) in the framework of the...

  13. TITLE

    Office of Legacy Management (LM)

    ... U.S. Department of Energy U.S. Department of Energy, ... National Environmental Policy Act New Mexico Department ... nuclear explosions to stimulate natural gas production. ...

  14. TITLE

    Office of Legacy Management (LM)

    ... National Environmental Policy Act Remedial ... Department of Energy (DOE) studied the economic feasibility of stimulating the flow of natural gas by fracturing ...

  15. Title

    National Nuclear Security Administration (NNSA)

    ... three new programs. Section 3.1.4 provides further details on these new programs. * Green Energy Futures Park * Kistler Launch Facility (KLF) Work-for-others programs NNSANV ...

  16. Title

    National Nuclear Security Administration (NNSA)

    During tlic course of ecological studies con- ducted tit the Atomic Energy Commission test ... The Sal-'.- Thrasher (Orcoacuptea montannx). Green- tailed Towhce (Chlonirti chloruru), ...

  17. Title

    National Nuclear Security Administration (NNSA)

    This work was performed by EG&GEM for the United States Departments of Energy under ... individuals: David C. Anderson, Ron A. Green, Danny L. Rakestraw, and Cathy A. Wills. ...

  18. Title

    National Nuclear Security Administration (NNSA)

    ... PHOTOGRAPHS TAKEN AUGUST, 1991 BY E G 8 G ENERGY MEASUREMENTS, INC. TION ALLUVIAL FAN ... AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW ...

  19. Title

    National Nuclear Security Administration (NNSA)

    ... These include such species as: Mallard, Pintail, Green-winged Teal, Bufflehead, Ruddy ... RESUME The U. S. Energy Research and Development Administration's Nevada Test Site (NTS) ...

  20. Title

    National Nuclear Security Administration (NNSA)

    ... L , : L - C ' , . ; k ' v k Giles to the public (Smith, et al., 1980). The ... The Georgia Veterinarian, Vol. 24, No. 3. Smith, D. D., K. R. Giles and D. E. Bernhardt. ...

  1. Title

    National Nuclear Security Administration (NNSA)

    ... ZONE VALLEY, REESE RIVEB, AND SMITH: CREEK VALLET lone and Reese River Valleys were more ... The Paradise Range which bounds lone Valley and the Desatoya Mountains which bound Smith ...

  2. Title

    National Nuclear Security Administration (NNSA)

    ... Photo 28 (Photo YM-196) Etfie Smith (Las Vegas Indian Center) at Stte 15 . 89 Photo 29 ... .91 Photo 33 (Photo YM-8) Edward THo" Smith (Chemehuevi) Holds Examples of the Lrthic ...

  3. Title

    National Nuclear Security Administration (NNSA)

    ... Observations of regional strain variations (Smith and Kind, 1972) from strain meters in ... The apparent lack of correlation of stress relaxation with seismic activity led Smith and ...

  4. Title

    National Nuclear Security Administration (NNSA)

    ... The population of Lathrop Wells in 1984 was reported as 45 (Smith and Coogan, 1984), ... Series Report 54, 25p. Smith, D.D. and J.S. Coogan, 1984. Population ...

  5. Title

    National Nuclear Security Administration (NNSA)

    ... SYSTEM (17) 106 Antelope Valley 107 Smith Valley 108 Mason Valley 109 East Walker ... Valley 133 EDWARDS CREEK VALLEY (19) 134 SMITH CREEK VALLEY (20) 123 RAWHIDE FLATS (21) ...

  6. Title

    National Nuclear Security Administration (NNSA)

    ... Cattle As discussed by Gilbert et al. (1988) and in greater detail by Smith (1979), a ... These data are given by Smith (1979) and were used by Gilbert et al. (1988) to estimate ...

  7. Title

    National Nuclear Security Administration (NNSA)

    ... Especially does it reflect the efforts of James L. Reveal, University of Maryland and the Smith- sonian Institution, whose contributions began with the first intensive plant ...

  8. Title

    National Nuclear Security Administration (NNSA)

    ... Hamilton, R. M., B. E. Smith, F. G. Fischer, and P. J. Papanek, 1971. Seismicity of the ... Hamilton, R. M., B. E. Smith, J. C. H a l l , and J. H. HeaIy, 1969. Summary of Seismic ...

  9. Title

    National Nuclear Security Administration (NNSA)

    ... Additional evaluations include Bradshaw and Smith (1994), Connor and Hill (1994), Ho et al (1991), Smith et al (1990 and 1991), and Wells et al (1990). For facilities with siting ...

  10. Title

    National Nuclear Security Administration (NNSA)

    ... C. Eadie. 1976. "Parameters for Estimating the Uptake of Transuranic Elements. by Terrestrial Plants." USEPA Technical Note. ORPI.V 76-2. Brctthaucr, E. W. , P. B. Smith, A. .). ...

  11. Title

    National Nuclear Security Administration (NNSA)

    ... culminated in the environmental assessment studies recommending three candidate sites for further consideration: Hanford, Washington; Deaf Smith, Texas; and Yucca Mountain, Nevada. ...

  12. Title

    National Nuclear Security Administration (NNSA)

    ... The terminology for the pyroclastic rocks described in this report is that of Ross and Smith (1961) and Poole, Elston, and Carr (1965). I Several general characteristics of the ...

  13. Title

    National Nuclear Security Administration (NNSA)

    ... from the soil and not through a food-web intermediary. 404 TRANSURANIC, ELEMENTS IN ... plutonium directly from the soil and to a lesser extent through a food-web intermediary. ...

  14. Title

    National Nuclear Security Administration (NNSA)

    20km i i i i t Fig. 14, Approximate location of boundary between Ash Meadows ground-water basin and Pahute Mesa ground.-water system, Nevada Test Site. -46- point out, however,...

  15. Title

    National Nuclear Security Administration (NNSA)

    ... MAXHID cm 10514 6911 525 25 20 5827 7721 21 71 9i2 16fi 271 262 PERU ID ... PERU ID cm 1 63 61 6026 3917 40 51 2113 196 41 20 61 51 40 30 ...

  16. TITLE

    Office of Legacy Management (LM)

    ... 19 4.1 Predictive Reliability and Postaudit ......that will affect the groundwater system reduces the reliability of future predictions. ...

  17. TITLE

    Office of Legacy Management (LM)

    ... this method show a high degree of reliability when compared with the hand-drawn version. ... a test of the reliability of the computer program in mapping irregularly rpaced data. ...

  18. TITLE

    Office of Legacy Management (LM)

    AMCHITKA BIOLOGICAL IWODlATION S J M U I i Y Prspard for tho U. S. Atoric Enrny C d a a i o n undmr Contract No. A T (26-11-171 MTTkUE Colrubua LaboratoriRa 505 Kirq A V R ...

  19. Title

    National Nuclear Security Administration (NNSA)

    ... measurements are lacking, the general climatic data and obser- vations on the climate and botany of NTS indicate that evapotranspiration equals or exceeds annual ...

  20. TITLE

    Office of Legacy Management (LM)

  1. TITLE

    Office of Legacy Management (LM)

  2. TITLE

    Office of Legacy Management (LM)

  3. TITLE

    Office of Legacy Management (LM)

    Plates are not available in electronic format. Please e-mail lm.records@lm.doe.gov to request the appendix.

  4. TITLE

    Office of Legacy Management (LM)

    Plates are not available in electronic format. Please e-mail lm.records@lm.doe.gov to request the appendix

  5. TITLE

    Office of Legacy Management (LM)

    , , - :. , L L b ' pi1 2 25. STATE OF MISSISSIPPI a . a . , i l l ; .. - . a ,-. , I , SALMON SITE , , , . . . C I A . - - 1 COUNTY OF LAMAR - T - TRACT NO. 101-E KNOW ALL MEN BY THESE PRESENTS, that, we, MARTHA T. BRIDGES alkla MARTHA TATUM BRIDGES LOPEZ, ROBERT TODD BRIDGES, MARTHA TATUM BRIDGES LOPEZ as Guardian of Nlchoias Carl Bridges, a minor, DIANA W. TATUM, NANCY 0. TATUM, and ADDISON T. TATUM, JR., alkla A. T. Tatum, Jr., whose addreas I s clo Mr. John Burnam, Post Office Box 1828,

  6. Title

    Energy Savers [EERE]

    ... Potential * Impacts - Better informed oceanclimate policy - Potential new domestic ... The Program Up to Now Setting the stage for current field activities * Initiated ...

  7. TITLE

    Office of Legacy Management (LM)

    ... In accordance with these requirements, plans ... to stimulate natural gas production. The 65-hectare (160-acre) Gasbuggy Gas Stimulation ... The principal land use is grazing, although a ...

  8. TITLE

    Office of Legacy Management (LM)

    ... stimulating the flow of natural gas by fracturing rock ... FlocdplainWetlands Environmental Review Requirements". ... WETLAND DERMINATIOH DATA FORM ROUTINE Wl3lAND DEERMINATION ...

  9. TITLE

    Office of Legacy Management (LM)

    ... state environmental and land-use requirements t o the ... is assumed to have complied with contractual requirements. ... from the machining of natural uranium (neither depleted ...

  10. TITLE

    Office of Legacy Management (LM)

    ... Act BLM U.S. Bureau of Land Management CERCLA ... Test Site, Colorado Rulison Gas Stimulation Test Site, ... wet meadows, river overflows. mudflats. and natural ponds. ...

  11. TITLE

    Office of Legacy Management (LM)

    ... oil and gas development, and tourism comprise the present day economic resources of the area. The project land is ... stimulating the flow of natural gas by fracturing rock ...

  12. TITLE

    Office of Legacy Management (LM)

    ... (Carson National Forest) land that is withdrawn by the ... rock formations and stimulate the flow of natural gas. ... If scientific or technical requirements do not permit ...

  13. Title:

    Office of Scientific and Technical Information (OSTI)

    ... Phys Med Biol 1984; 29: 1537-1554. 8 . ' 21. Mijnheer BJ, Wootton P, Williams JR, Eenma J, Pamell, CJ. Uniformity in dosimetry protocols for therapeutic applications of fast ...

  14. Title

    National Nuclear Security Administration (NNSA)

    EASTERN PART OF JACKASS FLATS, NEVADA TEST SITE, SOUTHERN NEVADA By Rulon C. Christensen ... eastern Jackass Flats, Nevada Test Site, southern Nevada -:--* * In pocket Figure 1.'.' ...

  15. Title

    National Nuclear Security Administration (NNSA)

    Baseline vegetation contamination at safety test sites on the NTS and Tonopah Test Range. Describes concentrations of transuranics onin native vegetation sampled on NTS and TTR in ...

  16. Title

    National Nuclear Security Administration (NNSA)

    Noteworthy Mammal Distribution Records for the Nevada Test Site (RE: "Great Basin ... NOTEWORTHY M A M M A L DISTRIBUTION RECORDS FOR THE NEVADA TEST SITE Philip A. M.'clic-u' ...

  17. Title

    National Nuclear Security Administration (NNSA)

    Ecological studies of vertebrates in plutonium-contaminated areas of the Nevada Test Site ... of four Nevada Applied Ecology Group (NAEG) study areas of the Tonopah Test Range (TTR). ...

  18. Title

    National Nuclear Security Administration (NNSA)

    Geologic map of the Nevada Test Site, Southern Nevada. Geographic Features of NTS and upland Areas. Author Frizzell, Jr. V.A. and J. Shulters 101056 Document Date 1190 Document ...

  19. Title

    Broader source: Energy.gov (indexed) [DOE]

    ... that should be linked. * In the search results, click on the previous ... box will be blank. * Check the "Terms and Conditions" box and enter your FRPIN. * Click "Update Link." ...

  20. Title

    National Nuclear Security Administration (NNSA)

    of the water resources of the State and represents the water supply presently available to Nevada. Respectfully Poland D. Westergard State Engineer WATER FOR NEVADA yield. ...

  1. Title

    National Nuclear Security Administration (NNSA)

    Averages (1981-1967), October 56 I i i i i i i 12 15 18 21 24 Hour of Day MST Graph HI-24. Daily March of Wind Speed, 7-Year Averages (1961-1967), November 57 w -*-> o Ti O "S...

  2. Title

    National Nuclear Security Administration (NNSA)

    D bo a 10 12 15 18 21 24 Hour of Day MST Graph HI-20. Daily March of Wind Speed, 7-Year Averages (1 961-1967), July 53 Hour of Day MST. Graph ni-21. Daily March of Wind Speed,...

  3. TITLE

    Office of Legacy Management (LM)

  4. TITLE

    Office of Legacy Management (LM)

    III IIIIIIIIIIII~IIIIIIIIIIIIII 0001 05 CONTAMINATION ASSESSMENT RE PORT AMCHITKA ISUND ALEUTIAN ISUNDS. A U S K A Contract No. DACWBl-D-0003 Delivery Ordar No. 007 Prepared for: Mr. Dale Betry, Project Manager Engineering Project Management United States Army Corps of Engineers Alaska District Pouch 898 Anchorage, Alaska 99506-0898 ecology . and environment. ine. 1057 WEST FIREWEED LANE. ANCHORAGE. ALASKA 99603. TEL. 1 9 0 1 1 ZS7-5m(l hmmm& S p a d k r s n the Enmonmsm 7 " C W -I

  5. TITLE

    Office of Legacy Management (LM)

  6. TITLE

    Office of Legacy Management (LM)

  7. TITLE

    Office of Legacy Management (LM)

  8. TITLE

    Office of Legacy Management (LM)

  9. TITLE

    Office of Legacy Management (LM)

    Mi w u United S taies Office of Radiation a ~ d EPA 8 Environmental Protection Indoor Air Dcccmbcr 1999 Q Agency Washington, DC 304hC) EPA-402-R-93-0 12 Q w 0 4 : 0 0 0 4 &€PA Annual Water Samp and Analysis Ca endar Year 1999: RULISON Test Site Area RIO BLANCO Test Site Area FAULTLESS Test Site Area SHOAL Test Site Area GASBUGGY Test Site Area GNOME Test Site Area Annual Water Sampling and Analysis, Calendar Year 1999 RULISON Test Site Area RIO BLANCO Test Site Area FAULTLESS Test Site

  10. TITLE

    Office of Legacy Management (LM)

    902 GEN-BKS - - - . I 111 111 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l l Ill SHL 000024 United States Office of Radiation and EPA-402-R-94-001 Environmental Protection Indoor Air January 2004 Agency Washington, DC 20460 Annual Water Sampling and Analysis, Calendar Year 2003: SHOAL Test Site Area FAULTLESS Test Site Area RULISON Test Site Area RI0 BLANCO Test Site Area GASBUGGY Test Site Area GNOME Test Site Area Annual Water Sampling and Analysis, Calendar Year 2003 SHOAL Test Site Area

  11. TITLE

    Office of Legacy Management (LM)

    OEce of Radiation and 12nvirorunentai Protection Indoor Ailr Washington., DC 20460 Annual Water Sampling and Analysis, Calendar Year 2000: R'ULISON Tes,t Site Area RLO BLANCO Test Site Area FAULTLESS Tes it Site Area SHOAL Test Site Area GASBUGGY Test Site, Area GNOME Test Site Area Annual Water Sampling and Analysis, Calendar Year 2000 RULISON Test Site Area RIO BLANCO Test Site Area FAULTLESS Test Site Area SHOAL Test Site Area GASBUGGY Test Site Area GNOME Test Site Area by Max G. Davis

  12. TITLE

    Office of Legacy Management (LM)

    - . ' R U L 000003 United States Office of Radiation and ~ ~ ~ - 4 0 2 7 ~ - 0 2 - 0 0 7 Environmental Protection 1ndoor Air November 2002 Agency Washington, DC 20460 &EPA Annual Water Sampling and Analysis, Calendar Year 2002: SHOAL Test Site Area FAULTLESS Test Site Area RULISON Test Site Area RIO BLANCO Test Site Area GASBUGGY Test Site Area GNOME Test Site Area Annual Water Sampling and Analysis, Calendar Year 2002 SHOAL Test Site Area FAULTLESS Test Site Area RULISON Test Site Area RIO

  13. TITLE

    Office of Legacy Management (LM)

    SHOAL AREA TRACER TEST EXPERlIMENT prepared by Rosemary Carrolt, Todd Mihevc, Greg Pohll, Brad Lyles, Sean Kosinski and Rich Niswonger submitted to Nevada Operations Office U.S. Department of Energy Las Vegas, Nevada NOVEMBER 2000 Publication No. 45177 Reference herein to any specific commercial pmduct, process, or service by trade name, trademark, mufacturer, or otherw~se, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or

  14. TITLE

    Office of Legacy Management (LM)

    CULTURAL RESOURCES STUDY BACKQROUND RESEARCH REPORT Off-NfS Cukural Rasowcmr Studks: Background Research for Project Shot11 Prepared by Maureen King Alvin R. McLane and William Gray Johnson MAY 1993 DESERT RESEARCH INSTITUTE CULTURAL RESOURCES STUDY BACKGROUND RESEARCH REPORT Off-NTS Cultural Resources Studies: Background Research for Project Shoal Prepared by Maureen King Alvin R. McLane and William Gray Johnson Prepared for the U.S. Department of Energy Nevada Field Office Las Vegas, Nevada

  15. TITLE

    Office of Legacy Management (LM)

    ... available to man through the food web from areas likely to be contaminated if ... - Species should be part of the food web or indicators for a part of the food web ...

  16. TITLE

    Office of Legacy Management (LM)

    ... Although other radionuclides were identified by Smith (1997). they were not included in ... Although other radionuclides were identified by Smith (1997), they were not includcd in ...

  17. TITLE

    Office of Legacy Management (LM)

    ... David Prudic, a n d Sirous Djafari, David Smith, of Lawrence Livermore National Laboratory ... Three distinct zones are found in a complete cooIing unit after cooling (Smith. 1960; Ross ...

  18. TITLE

    Office of Legacy Management (LM)

    ... and A t m o s p h e r i c Administration, Air Reaourcea L a b o r a t o r i e s , L a s V ... i o n Agency Regional D i r e c t o r , Pollution C o n t r o l A d m i n i s t r a t i o ...

  19. Title

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... on thickeners * develop CO2-soluable surfactants to decrease mobility and increase viscosity of CO2. - Microwave conversion for EOR study * literature review of current state of ...

  20. Title

    National Nuclear Security Administration (NNSA)

    ... caldera complex are intercalated with the major ash flow sheet, from the complex, and analyses of the lavas fit well on compositional trends determined by the ash flow sheets. ...

  1. TITLE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Approval Prior DOE written approval is required for the following actions: 1. Contractor award of any subcontract having a value of 500,000.00 or greater, or any subcontract...

  2. TITLE

    Office of Legacy Management (LM)

    TAKE- s - United States Department of' h e Interior - - FISH AND WII.,DLIFE SEKWC:E am I ... Thin lilt fulfills the Sequiroment of the Fish and wildlife service (Service) to provide a ...

  3. Title

    Gasoline and Diesel Fuel Update (EIA)

    Unlocking Energy Efficiency in the U.S. Economy 2010 Energy Conference EIA, SAIS April 7, 2010 McKinsey & Company | 1 Carbon emissions Gigatons CO 2 e * End-use consumption Quadrillion BTUs * Includes carbon emission abatement potential from CHP Source: EIA AEO 2008, McKinsey analysis Significant energy efficiency potential exists in the U.S. economy Industrial Residential Commercial -9.1 Baseline 2020 Baseline case, 2008 30.8 36.9 39.9 NPV- positive case, 2020 3.2 NPV- positive case, 2020

  4. Title

    National Nuclear Security Administration (NNSA)

    dating, and nomenclature of Mississippian rocks along these transects of the outer carbon- ate platform and Antler foreland basin are shown in five time-rock correlation charts...

  5. Title

    National Nuclear Security Administration (NNSA)

    ... A blank was processed in a similar manner and proved to be quite clean. The TEM samples ... substrate during .two long, unplanned storage periods at NTS. It was not possible to 1 ...

  6. TITLE

    Office of Legacy Management (LM)

    ... t a l a t o r a g e sheda, f o u r l i g h t standards, t h r e e e l e c t r i c a l panel boarda, one p i p e atanchion s e t i n a c o n c r e t e b a r e , two abandoned a e p ...

  7. TITLE

    Office of Legacy Management (LM)

    to install a second ground water treatment cell at the permeable reactive ... temperatu.re.---'---- High Temperature -.,.,----- Low Temperature Curre:gt barometric ...

  8. TITLE

    Office of Legacy Management (LM)

    * A second ground water treatment cell at the permeable ... 00" w TEMPERATURE (OF)' RAIN (in), WIND SPEED (mph) HEAT COOL AVG MEAN DEG DEG WIND DOM DAY TEMP HIGH TTME LOW TIME DAYS ...

  9. Title

    National Nuclear Security Administration (NNSA)

    ... The mobile system is mounted in a small van with a portable power supply and transported ... Vegetation appeared to be the most important influence fn decreasing wind-borne ...

  10. TITLE

    Office of Legacy Management (LM)

    Description of the Formerly Utilized Sites Remedial Action Program United States Department o f Energy "This book w l r prepartd u a n account 01 wo* lporuond by m uency o f the Unhd Sutes Govrrnmrnt. N a l h r t the United StalrsGovrrnment nos i n y m y lhumf, rm any 01 lheh employees, makes any .nrrmly, u p m r or impkd, or arrunrr my I@ LirbHty or rcsponiibiiily for ihe rccutrcy. wmplaenm. 01 u ~ l u l n e ~ i of any intotnulion, mppmtur, p f d u c t , 01 p r o m s d i ~ l o w d , or

  11. TITLE

    Office of Legacy Management (LM)

    VERIFICATIOH AND CERTIFICIITIOH PROTOCOL FOR ME OFFICE O f WIROHnMlAL RESTORATION FORMERLY UTILIZED SITES REHEDIAL ACTION PROSRAN IW DECOHTMIHATI OH AND DE?OWISSIONING P R O G M (Revision 3, Nowember, 1930) I L - I This p r o t o c o l o u t l i n e s the procedures f o r t h e v c r f f i c a t f o n and c e r t t f i c a t f o n o f remedi a1 a c t i o n projects p e r f ~ m e d under t h e Formerly Ut4lIzed S l t e s Remedial A c t i o n Program (FUSRRP) and p r o j e c t s performed under

  12. TITLE

    Office of Legacy Management (LM)

    , ,-- - < , - ' a 7. *: POST OFFICE BOX 2038 1; : . - - , . MANAGED BY M h M l N M A R I E l T A E N E l G Y S I S l E H S . INC. - .-- OAK RIDGE. TENNESSEE 37831 FOR THE U.S. DEPARTMEIIT OF EWEROI April 22, 1994 Dr. W. k Williams EM-421 Trwion n: Building Department of Energy Washington, D. C 20585-0002 Dear Dr. Williams: In a letter to you dated August 18, 1993, a summary of the initial radiological survey was provided with only limited inionnation regarding mncentratiom in soil samples and

  13. TITLE

    Office of Legacy Management (LM)

    Survey Results for Neigh boring Properties of the Alba Craft Site Oxford, Ohio U.S. Department of Energy Formerly Utilized Sites Remedial Action Program Index / / { i s / . . ....................................................... s. Main s t r a e t f i o w e s 3 . . (~1-008,012-014,016) : : , . W . Rose Avenue Properties ............................... .:. ........... I . . .97 (017) Linden Street Properties .................................................... 103 (010-011) Municipd Landfill h

  14. TITLE

    Office of Legacy Management (LM)

    amv. I.. - - DESlON CRITERIA FOR f ORMERLV UTILIZISU 81TEb REMEDIAL ACTIUN PROORAM [FUmRAP) AND BURPLUS FACILITIES MANAOEMENT D E S I G N C R I T E R I A POR FORMERLY U T I L I Z E D S I T E S REHEDIAL ACTION PROGRAM (?USRAP). AlPD SURPLUS FACILITIES MUINAGEHEIT P R O C R U (SFHP) ( I S S U E D FOR C L I E N T APPROVAL) FEBRUARY 1 9 8 6 ~pproved by: a . CI, Director 2- 24-86 Date T e c h n i c a l Services Division Oak RiPge Operations Office Approved by: 2-24-86 Date Construction and E n g i n

  15. TITLE

    Office of Legacy Management (LM)

    Post-Remedial Action Report for the Alba Craft Site and Vicinity Properties Oxford , Ohio August 1995 POST-REMEDIAL ACTION REPORT FOR THE A D A CRAFT SITE AND VICINITY PROPERTIES OXFORD, OHIO AUGUST 1995 Prepared f o ~ United States Department of Energy Oak Ridge Operations Office Under Contract No. DE-ACO5-910R21949 Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 CONTENTS Page FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  16. TITLE

    Office of Legacy Management (LM)

    lnc: POST-REMEDIAL ACTION REPORT FOR THE ALBANY RESEARCH CENTER ALBANY, OREGQN APRIL 1989 Prepared for UNITED STATES DEPARTMENT OF ENERGY OAK RIDGE OPERATIONS OFFICE Under Contract No. DE-AC05-810R20722 H . E. Kaye, J. H . Wright, and C . M. Sekula Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job NO. 14501 TABLE OF CONTENTS 1.0 Introduction and Background 2.0 Remedial Action Guidelines 3.0 Remedial Action 3.1 Remedial Action Activities 3.1.1 Outside Areas 3.1.2 Buildings 3.2 Contamination

  17. TITLE

    Office of Legacy Management (LM)

    1 992 Bechtel National, Inc. POST-REMEDIAL ACTION REPORT FOR PHASE I1 WORK CONDUCTED DURING 1990-1991 AT THE ALBANY RESEARCH C E W R ALBANY, OREGON Prepared for United States Department of Energy Oak Ridge Field Office Under Contract No. DE-AC05-9 1OR2 19 4 9 Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 Page F i g u r e s . . . . . . . . . . . . . . . . . . . . . . . . . . . i v T a b l e s . . . . . . . . . . . . . . . . . . . . . . . . . . . v i Acronyms . . . . . . . . .

  18. TITLE

    Office of Legacy Management (LM)

    SURVEY OF PHASE I r REMEDIAL ACnONS ALBANYRESFARcEcmTEu AzBANy,OaEGON E A. Powell R B. S l a m JUNE W l This report is based on work performed under contract number DE-AC05-760R00033 with the US. Department o f Enew. This draft report bas not been given full review and patent clearance, and the dissemination o f its information is only f o r official use. No release to the pubIic shall be made without the approval o f tbe Office of Communication Resources, Oak Ridge Assodated U n i v d t k 0 7 8

  19. TITLE

    Office of Legacy Management (LM)

    LABORATORY 9700 South Cass Avenue, A q o m e , Illinob 60159 ACTION DESCRIPTION MEMORANDUM PROPOSED DECONTAMINATION OF THE ALBANY RESEARCH CENTER, ALBANY, OREGON June 1987 U.S. DEPARTMENT OF ENERGY Oak Rice Operatlorn Technical Services Division Oak Ridge, Tennessee 1 SUMMARYOFPROPOSEDACTION ........................................ 1 2 f I l S M R Y AND NEED FOR ACTION ....................................... 2 1 GeneralSttti np ...................................................... 2 2.3 History

  20. TITLE

    Office of Legacy Management (LM)

    Distribution Category: Remedial Action nnd Ikco~issioning Progrnm (UC- 70A) A R - HhTIOaAL lABORlrTORY 9700 South Cnss Avenue Arsoune, Illinois 60439 Prepared bp R. A. Uynveen Associate Division Director, OHS W. H. Smith Senior Health Physicist C. . Sholeen Health Physicist A. L. Just- liealth Physicist K. F. Flynn Eealth Phymicist hdiologicnl Sumey Group Health Physics Section O c c u p n t i o ~ l Bealth and Safety Division June 1983 Work Performed under Budget Activity WE m-03-60-40 and AUL

  1. TITLE

    Office of Legacy Management (LM)

    M January 28. 1991 EHVIROKHE?ITAL DOCLRIEHTATIOH AND C O M I T Y RELATION REQUIRED FOR THE ALMNY RESEARCH CENTER n , F i l e The purpose o f t h i s memorandm i s t o document the selected approach t o s a t i s f y i n g environmental docmentat ion and comnuni ty re1 a t i o n s n q u l rements f o r t h e Albany Research Center Phase II cleanup e f f o r t . A f t e r review o f t h e NEPA and C E K L A regulations applicable t o t h i s issue, I have concluded t h a t - the NEPA documentation

  2. TITLE

    Office of Legacy Management (LM)

    7 9 3 2 0 ?. . .. ~ - 1 -<. $ 2 . DOVOW21 949-279 ~ : & . ' r; . ( i i . :.a . - l i Formerly Utilized Sites Remedial Action Program (FUSRAP) : ! Contract No. DE-AC05-91 OR21 949 $ * i -> Community Relations Plan . .!. I - for a Removal Action , - 1 . i at the Albany Research Center Site . 1 - July 1991 U.S. Department of Energy DOE Field Office, Oak Ridge Formerly Utilized Sites Remedial Action Program COMMUNITY RELATIONS PLAN FOR THE ALBANY RESEARCH CENTER SITE ALBANY, OREGON JULY 1

  3. TITLE

    Office of Legacy Management (LM)

    ENGINEERING EVALUATION O F SELECTED REMEDIAL ACTION ALTERNATIVES FOR THE ALBANY RESEARCH CENTER, ALBANY, OREGON J U N E 1 9 8 5 Prepared for UNITED STATES DEPARTMENT O F ENERGY OAK RIDGE OPERATIONS OFFICE Under Contract No. DE-AC05-810R20722 Bechtel National, InC. Advanced Technology Division Oak Ridge, Tennessee Bechtel J o b No. 14501 SPECIAL NOTE This Preliminary Engineering Evaluation of Selected Remedial Action Alternatives (EEA) was originally prepared in early 1984. In the EEA, three

  4. TITLE

    Office of Legacy Management (LM)

    REMEDIAL A C T I O N WORK P L A N FOR THE ALBANY RESEARCH CENTER FEBRUARY 1 9 8 7 U N I T E D STATES DEPARTMENT OF ENERGY OAK R I D G E O P E R A T I O N S T h i s document p r o v i d e s g e n e r a l i n f o r m a t i o n about t h e Department of Energy's remedial a c t i o n program a t t h e Albany Research Center, Albany, Oregon. A d d i t i o n a l i n f o r m a t i o n i s a v a i l a b l e from t h e Department of Energy, T e c h n i c a l S e r v i c e s D i v i s i o n , P o s t O f

  5. TITLE

    Office of Legacy Management (LM)

    Inc. RADIOLOGICAL CHARACTERIZATION REPORT FOR THE ALBANY RESEARCH CENTER ALBANY, OREGON APRIL 1989 Prepared for UNITED STATES DEPARTMENT OF ENERGY OAK RIDGE OPERATIONS OFFICE Under Contract No. DE-AC05-BlOR20722 BY J. H . Wright. M. E. Kaye, and C. M. Sekula Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 TABLE OF CONTENTS 1.0 Introduction and Summary I . 1 Introduction 1.2 Purpose and Objectives 1.3 Remedial Action Guidelines 1.4 Summary 2.0 Site Description and History 2.2.2

  6. TITLE

    Office of Legacy Management (LM)

    September 1989 Sechtel National, Inc. HAZARD ASSESSMENT FOR RADIOACTIVE CONTAMINATION IN AND BENEATH CERTAIN BUILDINGS AT THE ALBANY RESEARCH CENTER ALBANY. OREGON SEPTEMBER 1989 Prepared for UNITED STATES DEPRRTHENT OF ENERGY OAK RIDGE OPERATIONS OFFICE Under Contract No. DE-AC05-810R20722 BY H . E. Kaye, J. H . Wright, D. G. Adler, and W. F. Stanley Bechtel National. Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 TABLE OF CONTENTS List of Figures ..............................................

  7. TITLE

    Office of Legacy Management (LM)

    ADDENDUM TO THE HAZARD ASSESSMEHT FOR RADIOACTIVE CONTAnINATION IN AND BENHATB CERTAIN BUILDINGS AT TBE ALBANY RESBARCH CKNTER ALBANY, OREGON MARCH 1992 Prepared for United States Department of Energy Oak Ridge Field Office Under Contract No. DE-AC05-910R2 19 49 Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 Page F i g u r e s . . . . . . . . . . . . . . . . . . . . . . . . . . i v T a b l e s . . . . . . . . . . . . . . . . . . . . . . . . . . i v Acronyms . . . . . . . . . .

  8. TITLE

    Office of Legacy Management (LM)

    Bechtel Inferoffice Memorandum TO G. L. Palau Subject Scoping Notice:' Former Associate Aircraft Tool and Manufacturing., Inc . Site, Fairf ield, Ohio copies to T. E. Morris G. R. Gale W & J. S. Allison File No. 7440/124 Date November 1, 1994 Frcm D. D. Sexton MS of ES &H ~t Oak Ridge ~ x t . 4-3643 SCOPING NOTICE INTRODUCTION The purpose of this scoping notice is to formalize the identification and application of federal and state rules and regulations that may apply to the cleanup of

  9. TITLE

    Office of Legacy Management (LM)

    Departmentaof ~ n e r ~ ~ Washington, DC 20585 IdkY O 3 1993 Mr. James Besl President Force Control Industries 3660 D i x i e Hrghway F a i r f i e l d , Ohio 45014 Dear M r . Besl : This i s t o n o t i f y you t h a t the U.S. Oepartlaent o f Energy (WE) has designated the former Associate A i r c r a f t Tool and Manufacturing Company s i t e i n F a i r f i e l d , Ohio, f o r remedial a c t i o n as a p a r t o f the Formerly U t i l i z e d Sttes Remedial Action Program. Remedial a c t i v

  10. TITLE

    Office of Legacy Management (LM)

    10 G . Drexel/ M. Poligone F i l e no. 7315/124 s b j e c t Determination of Additional D o t e Contaminated Areas at AAS March 17, 1994 Copies to J. Allison G. Palau K. Thompson A. John At Oak Ridge Ext. 6-5173 The purpose of this memorandum is t o provide results from characterization activities at the Former Associated Aircraft Site (AAS) in Fairfield, Ohio. Additional areas of contamination requiring remediation were identified during these activities. Areas that are currently known to

  11. TITLE

    Office of Legacy Management (LM)

    Distribution Subject EIN: Ohio Hazardous Waste Regulations Copier t o G. R. Galen G. L. Palau F i l e No. 7440/124, 135 ate January 10, 1995 Frm D. D. Sexton TDS of ES&H ~t Oak Ridge ~ x t . 4-3643 BACKGROUND This Environmental Information Notice (EIN) provides detailed regulatory guidance concerning compliance with the Ohio Hazardous Waste Code. This EIN is based on research of the Ohio Administrative Code (OACI and conversations of a generic nature with the federal Environmental Protection

  12. TITLE

    Office of Legacy Management (LM)

    ~overnment Department of Energy Oak Ridge Operations Office memorandum DATE: January 19. 1995 SUBIECT: USE OF EXEHPTIOW FROW DEPhRTnEKl OF ENERGY ORDER 5820.2A F O R RADIOhCTIVE WASTE FROn FUSlUl To: James A. Turi , Director, O f f i c e o f Program Support, O f f i c e o f the Deputy Assistant Secretary Waste Clanagelent, M-33, TREY I I This m r a n d u n serves t o n o t i f y 01-33 o f the F o m r l y U t i l i z e d Sites Remedial Action Program's (FUSRAP] i n t e n t t s dispose o f

  13. TITLE

    Office of Legacy Management (LM)

    FORCE CONTROL INDUSTRIES,'INC. 1 2 3 0 7 2 CONTROL %60 Dixie Hwy.. Zip 45014 P.O. Box l a . Z p 45018 11W b l e . Sule F Failfield. Ohio T w M i g a n a8083 Phone: (513) 868-0900 Phone: !B10) 52441= FAX. (513) 868-2105 F . U i81C.l 52d-1208 C,ir Shear Clutch & Brake Systems November 10.1994 U. S. Deparbnent of Energy Oak Ridge Operations office Ann: AD-424, Katy Kates P.O. Box 2001 Oak Ridge, TN 37831 Dear Ms. Kates, In furtherance of the August 24,1994 letter from Doug Shook, his subsequent

  14. TITLE

    Office of Legacy Management (LM)

    POST-REMEDIAL ACTION REPORT FOR THE ASSOCIATE AIRCRAJT SITE Fairfield, Ohio Bechtel National, Inc. POST-REMEDIAL ACTION REPORT FOR THE ASSOCIATE AIRCRAFT SITE FAIRFIELD. OHIO JULY 1996 Prepared for United States Depariment o f Energy Oak Ridge Operations Off= Under Contract No. DE-AC05-910R2 1949 Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 CONTENTS FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv TABLES . .

  15. TITLE

    Office of Legacy Management (LM)

    J a s 1. Besl President Force Control Industries 3664 Dixla H i 9 h p ~ Falrfleld, Ohio 45014 Dear Hr. Besl: With your consent,. the U.S. Dcpartwnt o f Energy (WE) conducted a r a d i o l q l l c a l survey a t the Former Associate A i r c r a f t Tool and Manufrcturlng Conpany s l t e i n Fairfield, Ohio. OOE has received the-auwey report frm i t s survey. contractor, Oak Rldge national Laboratory (OWL). Two copies o f the report are enclosed f o r your information and use. 71.5 report C 0 n ~

  16. TITLE

    Office of Legacy Management (LM)

    M A U h G E D 0 1 M M l N Y A R I E I ENERGY SYSTEMS. IYC. FOR THE U.S. O E P A R I M E I I T OF ENEnOY June 14, 1994 POST OFFICE BOX 2006 OAK RIDGE. TENNESSEE 37831 Dr. W. A. Williams EM-421 Trevion II Building Department of Energy Washington, D. C. 20585 Dear Dr. Williams: T r i p Report: Radiological Survey of Former Associate Aircraft Tool and Manufacturing Company Site, Fairfield, Ohio (FOHOOl), M a y 31 and June 1,1994 On May 31 and June I, a radiological survey was conducted in the area

  17. TITLE

    Office of Legacy Management (LM)

    R i i e . Tennessee 37831 -8723 J u l y 18, 1995 Mr. Graham H i t c h e l l , Environmental Manager Ohio Envi r o n e n t a l Protection llgency Southwest O I s t r i c t O f f l c e 40 South H r i n Street Dayton, Ohio 45402 Dear Hr. M i t c h e l l : MUMD hSSESSHEKT FOR RESIDUAL COHTMINATION AT THE FORMER CISSOClATE AIRCRAFT SITE ( M S ) Enclosed i s a copy of the Hazard Assessment t h a t was performed f o r the Former Associate A i r c r a f t S i t e (MS) fn F a i r f i e l d , Ohio. In

  18. TITLE

    Office of Legacy Management (LM)

    State of ohlo Env~ronmental Protectton Agency PROVISIONAL ID NUMBER O H P

  19. TITLE

    Office of Legacy Management (LM)

    / m - 1 2 0 6 7 4 Department of Energy Oak Ridge *rations P.O. Box 2001 Oak Ridge, Tennessee 37831-8723 September 19, 1994 Hr. Saul Gleiser Ohio H i s t o r i c a l Society H i s t o r i c Preservation D i v i s i o n 1982 Yelma Avenue Columbus, Ohio 43211-2497 Dear Mr. Gleiser: ASSOCIATE AIRCRAFT SITE - NHPA (SECTION 106) DETERHINATION I n accordance w i t h Section 106 o f the National H i s t o r i c Preservation Act (NHPA), the Department o f Energy (WE) has determined t h a t the proposed

  20. TITLE

    Office of Legacy Management (LM)

    O Distribution pile 10. 7 4 4 0 / 1 2 4 , 135 s & ; ~ t EIN: Ohio ~azardous D ~ I C February 6 . 1995 Waste Regulat ions; Empty Container Rule ~ r - D . D. Sexton C-ics lo T. E. Morris& G. R. Galen G . L. Palau This Environmental Informat ion Notice ( E I N ) provides regulatory guidance concerning compliance with the Ohio Hazardous Waste regulations for residues of hazardous waste in empty containers or inner liners Ie.g.. the Empty Container Rule). This EIN is based on research and

  1. TITLE

    Office of Legacy Management (LM)

    Nationd Laboratory 9700 South Cass Avenue, Argonne, IUinois 60439 DERIVATION OF GUIDELINES FOR UaANIUbi RESIDUAL &ADIOACTIVE MATERIAL M 801L AT THE FORMER - U T E AIRCRAFT TOOL AND m A C l ' U I U N C COMPANY SlTE, FAIRFIELD, OHIO E.R. Faillace, M . Nimmagadda, and C . Yu Environmental Assessment Division January 1995 work sponsonxl by U.S. Department of Energy OMice of Environmental Restoration Washington, D.C. CONTENTS NOTATION ......................................................... v

  2. TITLE

    Office of Legacy Management (LM)

    -. i . , . United States Government L-u+-tw / S / V ~ f Department of nersy memorandum D i T E June 0 5 , 1995 FEP-Y ATTK OF: EM-421 (U. A. Williams, 301-903-8149) SUGJECT Hazard Assessmnt f o r Radioactive Contamination a t the Associate. A i r c r a f t Site, F a i r f i e l d , Ohio To L. Price, OR This memorandum i s t o ' provide comments and approval o f the Associate i r ft i t n f o r e n ' i A r c a S eHazardAssessmet I d t i f e d S o i l C ~ m i n a t i o n . The hazard assessment was

  3. TITLE

    Office of Legacy Management (LM)

    Corporare Center f 5 1 Lalayerre Drive P.O. Box 350 Oak Ridge. Tennewt 3783 1.0350 Facsimile: 1 6 1 5 1 220.2 100 ~ o b No. 14501, FUSRAP Project DOE Contract NO. DE-AC05-9 10R2 194 9 Code: 7340/WBS: 135 U.S. Department of Energy Oak Ridge Field Office P . O . BOX 2001 Oak Ridge, Tennessee 37831-8723 Attention: David G. hdler, Site Manager , Former Sites Restoration Division subject: Hazard Assessment for Residual Contaminztion at the Former Associate Aircraft S i t e ' ( P 2 S ) Dear Mr. Adler:

  4. TITLE

    Office of Legacy Management (LM)

    RIDOH NArnONAL LABORATORY c- Results of the Independent Radiological Verification Survey I.* K . . . . 1 A . T I r n * at the Former Associate Aircraft Tool and Manufacturing Company Site, Fairfield, Ohio - (FOH001) D . E . Rice M . E . Murray K. S . Brown EEALTH SCIENCES RESEARCH DMSION E ' * I ~ m d w a s k M ~ t ~ ~ ~ ( ~ N o . E X Z D 2 0 0 1 O; AB131DM) Aircraft ~ o o l and Manrlaet~ring Company Site, Fiirfleld, Oh10 (FOH001) D. E. Rice, M. E. Mumy, K:S. Brown . . . . lmza@am Tam R D.

  5. TITLE

    Office of Legacy Management (LM)

    .-, EFZ. lor-%., United States Governmerit memorandum DATE: FEB 2 1 1991 MEPLY TO EM- 421 ATTN OF: SUBJECT: A u t h o r i t y Determination--8&T Metals i n Columbus, Ohio TO: The F i l e The attached review documents the basis f o r determining whether DOE has a u t h o r i t y f o r t a k i n g remedial a c t i o n a t the BaT Metals f a c i l i t y i n Columbus, Ohio, under the Formerly U t i 1 ized Sites Remedi a1 Action Program (FUSRAP). The B&T Hetals f a c i l i t y was used by the

  6. TITLE

    Office of Legacy Management (LM)

    CHAPTER lV 1. PURPOSE. This chapter presents radiological protection requirements and guidelines for cleanup of residual radioactive material and management of the resulting wastes and residues and release of property. These requirements and guidelines are applicable at the time the property is released. Property subject to these criteria indudes, but is not limited to sacs identied by the Formerly Utilized Sites Remedial Action Program (FUSRAP) and the Surplus Facilities Management Program

  7. TITLE

    Office of Legacy Management (LM)

    p a * T A olistii. ..ow ... Unlted States awernment 00))#~Tmsnt of Energy - - memorandum D*=APR 0 2 1987 muym NE-23 A m OR W C I : Revised Guidelines f o r Resldual R a d ~ o a c t i v e M a t e r i a l a t N S R A P and R e m t e SRIP S l t e s Ahrends, OR Kluk, OP-124 Nelson, WSSPd Schrelber , SSDPD Welty, EH-23 G I l b e r t , MIL Berven, ORHL Berger, ORAL! Young, Aerospace Attached I s a revjsed copy o f thc Department's Guidelines f o r n s l d u a l r a d l o a c t f v e material. This

  8. TITLE

    Office of Legacy Management (LM)

    ~ ~erivation of ~uidelines for Uranium Residual Radioactive Material in soil at the B&T Metals Company Site, Columbus,. Ohio Environmental Assessment Division f i Argonne National Laborgory Operated by The Unlvenlty of ChCago. under Contract w-31-109-Eng-38, lor tne United States Department of Energy Derivation of Guidelines for Uranium Residual Radioactive Material in Soil at the B&T Metals Company Site, Columbus, Ohio by S. Kamboj. M. Nimmagadda, and C. Yu Env~ronmental Assessment

  9. TITLE

    Office of Legacy Management (LM)

    Verification Survey at B&T Metals, 425 West Town Street, Columbus, Ohio M. E. Murray V. P. Patania C. A. Johnson This report h s ken rcpmduccd directly from the t f s i avail3ble copy. Avaihble to DOE and DOE c o n m u x s from the Olficc of Scienlific and Technical inlormaliar. P.O. Boa 6 1 . W Ridsee. l X 378331: priccsav&lable from (6t5) 576-8101, TTS 6268401. A v ~ i t b I e t o h e public lmm the Naliorul Technical Inlormalion Service. U.S. Dcpvtmenl 01 Commcrcc. 5285 Pon Royal Rd..

  10. TITLE

    Office of Legacy Management (LM)

    Formerly Utilized Sites Remedial Action Program (FUSRAP) - Contract No. DE-ACOS-9 1 OR21 949 Post-Remedial Action Report for the 8. & T Metals Site Columbus, Ohio October 1996 POST-REMEDIAL ACTION REPORT f OR THE . . B&T METALS SITE COLUMBUS. OHIO OCTOBER 1 W6 Prepared for United States Department of Energy Oak Ridge Operations Office Under Contract No. DE-ACOS-91 OR2 1949 I Bechtel National, Inc. Oak Ridge, Tcnncssoe I Bcchtel lob No. 14501 CONTENTS Page FIGURES

  11. TITLE

    Office of Legacy Management (LM)

    TO File rn w. 1 1311 300 s ~ b p ~ t B&T Metals Site Scoping Trip Report mh November 22, 1995 hwr J.G. Braun 01 FUSRAP - Geotech ~ l t 4D12 f i t 241-5296 C ~ M S T O Distribution This trip report summarizes the information obtained by b t h the New York and MissourifOhio Teams during visits to the B&T Metals site. The scoping trips were - . - . performed to provide information to aid in the detailed ptanning, design, and preparation for site characterization and remedial action. The

  12. TITLE

    Office of Legacy Management (LM)

    T O G. L. Palau Subject Scoping Notice: The B&T Metals Site, Columbus, Ohio F i l s No. 744011 13 ~ a t t February 26, 1996 F P m l D. D. Sexton b of Environmental Compliance EX^. Oak Ridge ~t 4-3643 BACKGROUND The purpose of this Scoping Notice is to formalize the identification and evaluate the application of federal and state rulcs and regulations that apply to the cleanup of the B&T Metals site, located in Columbus, Ohio. This environmental compliance evaluation is based on

  13. TITLE

    Office of Legacy Management (LM)

    e ~ a r t m e n t of Energy Oak Ridge Operations P.O. Box 2001 Oak Ridge. Tennessee 37831- November 7, 1995 Dave To1 b e r t B&T Metals Company & B&T F l o o r Company P. 0 . Box 163520 Columbus, Ohio 43216-3520 Dear M r . To1 b e r t : REAL ESTATE LICENSE REORDOER-7-96-0103, B&T METALS COHPANY, COLUMBUS, OH Enclosed f o r your records i s a copy o f the f u l l y executed 1 icense between B&T Metals Company and the Department o f Energy. Is t h e separate l i c e n s e f o

  14. TITLE

    Office of Legacy Management (LM)

    Date: 11/21/35 10:12:16 AM 136930 From: HARTMANGSOoro.doe.gov Subject: Re: CX Determination - B&T Metals Removal Action (FUSRAP-036 HOW about this! This is the first CX determination that we have done electronically - - - same-day turnaround!!! Gary Forwarding routing: Les Price, PSRD Bill Seay, FSRD Dave Adler, PSRD Loren Marz, PSRD Gerry Palau. BNI Dave Sexton, BNI Teresa Noe, BNI (PDCC) Forward Header :~Liject: Re: CX Determination - B&T Metals Removal Action (PUSPAP-036 i~thor:

  15. Title

    National Nuclear Security Administration (NNSA)

    Anita G. Harris Branch of Paleontology and Stratigraphy U. S. Geological Survey National ... km of Yucca Mountain in 1991. Cqnodont samples from two of these hew wells and 190 ...

  16. TITLE

    Office of Legacy Management (LM)

    H Heat distribution in the Cannikin cnwry I 1 Water quality of the Cennikin.perturbed ... If a @ven amount of heat is transfer. chimney was still 23 ft (7.0 m) below the potential ...

  17. Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utah, Nevada, and California BPA markets wholesale electrical power from 31 federal hydro projects in the Columbia River Basin, one nonfederal nuclear plant and several other...

  18. G Subject: Implementation of Division B, Title III, Title V and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    G Subject: Implementation of Division B, Title III, Title V and Division C Title VII, ... incremental funding and funding terms of grant and cooperative agreement awards (e.g. ...

  19. Sandia National Laboratories: Page Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facebook Twitter YouTube Flickr RSS Pulsed Power Publications *only first authors listed 2015 Author Title Journal Volume Apruzese, JP Radiation Transport in Z-Pinches IEEE Transactions on Plasma Science 93 Awe, TJ Experimental Studies of Instability Development in Magnetically Driven Systems NNSA Stockpile Stewardship Quarterly 5 Bailey, JE A higher-than-predicted measurement of iron opacity at solar interior temperatures Nature International Weekly Journal of Science 517 Bennett, N The impact

  20. Ultrafast Photovoltaic Response in Ferroelectric Nanolayers ...

    Office of Scientific and Technical Information (OSTI)

    Ultrafast Photovoltaic Response in Ferroelectric Nanolayers Citation Details In-Document Search Title: Ultrafast Photovoltaic Response in Ferroelectric Nanolayers Authors:...

  1. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    SciTech Connect (OSTI)

    Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

    2014-01-06

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits.? Confirming these findings in intervention studies is recommended. ? Energy costs of heating/cooling unoccupied classrooms statewide are modest, but a large portion occurs in relatively few classrooms.

  2. Title XVII Final Rule | Department of Energy

    Energy Savers [EERE]

    Final Rule Title XVII Final Rule PDF icon Title XVII Final Rule More Documents & Publications Final Rule (December 4, 2009) Notice of Proposed Rulemaking (August 6, 2009) Final Rule (October 23, 2007)

  3. Title 23 CCR Waters | Open Energy Information

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 23 CCR WatersLegal Abstract California Code of Regulations, Title 23 Waters, sections...

  4. No Slide Title | Department of Energy

    Energy Savers [EERE]

    No Slide Title No Slide Title PDF icon No Slide Title More Documents & Publications Slide 1 EVMS and Project Analysis Standard Operating Procedure (EPASOP) Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report

  5. Chapter 3 Demand-Side Resources | Department of Energy

    Energy Savers [EERE]

    Typically, these resources result from one of two methods of reducing load: energy efficiency or demand response load management. The energy efficiency method designs and deploys ...

  6. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Office of Environmental Management (EM)

    To better control costs and manage electric reliability under these conditions, OG&E is pursuing demand response strategies made possible by implementation of smart grid ...

  7. Research Highlights Sorted by Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Title "Invisible" Giants in the Sky ARM ASR Kassianov, E. "Radiance Assimilation" Correction Method Improves Water Vapor Radiosonde Observations in the Upper Troposphere ARM Soden, B. J. "Roobik" Is Part of the Answer, Not a Puzzle ARM Turner, D. D. 2007 Floods Not a Complete Washout in U.S. Great Plains ARM ASR Bhattacharya, A. A "Little" Respect: Droplet Nucleation Finally Included in Global Climate Model ARM Ghan, S. J. A Bulk Parameterization of Giant

  8. Title XVII-Innovative Technology Loan Guarantee Program under ARRA |

    Energy Savers [EERE]

    Standards 2001 A guide for the preparation of title evidence in land acquisitions by the United States of America. Quick links to Contents: Table of Contents / Why Title Standards 2001, and who uses it? / Evidence of title / Abstract of Title Supplemental and Supporting Title Evidence / Title Insurance Policies and Certificates of Title / Final Title Evidence Title Evidence for Condemnations / The Deed to the United States / Special Standards for Texas / Sample Forms U.S. Department of Justice

  9. The United States Code - Printing, Title 44 Excerpts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The United States Code - Printing, Title 44 Excerpts The United States Code - Printing, Title 44 Excerpts The United States Code - Printing, Title 44 Excerpts PDF icon The United ...

  10. Using Utility Load Data to Estimate Demand for Space Cooling and Potential for Shiftable Loads

    SciTech Connect (OSTI)

    Denholm, P.; Ong, S.; Booten, C.

    2012-05-01

    This paper describes a simple method to estimate hourly cooling demand from historical utility load data. It compares total hourly demand to demand on cool days and compares these estimates of total cooling demand to previous regional and national estimates. Load profiles generated from this method may be used to estimate the potential for aggregated demand response or load shifting via cold storage.

  11. Barrier Immune Radio Communications for Demand Response

    SciTech Connect (OSTI)

    Rubinstein, Francis; Ghatikar, Girish; Granderson, Jessica; Haugen, Paul; Romero, Carlos; Watson, David

    2009-02-01

    Various wireless technologies were field-tested in a six-story laboratory building to identify wireless technologies that can scale for future DR applications through very low node density power consumption, and unit cost. Data analysis included analysis of the signal-to-noise ratio (SNR), packet loss, and link quality at varying power levels and node densities. The narrowband technologies performed well, penetrating the floors of the building with little loss and exhibiting better range than the wideband technology. 900 MHz provided full coverage at 1 watt and substantially complete coverage at 500 mW at the test site. 900 MHz was able to provide full coverage at 100 mW with only one additional relay transmitter, and was the highest-performing technology in the study. 2.4 GHz could not provide full coverage with only a single transmitter at the highest power level tested (63 mW). However, substantially complete coverage was provided at 2.4 GHz at 63 mW with the addition of one repeater node.

  12. Demand Response Performance and Communication Strategy: AHRI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Jersey Natural Gas New Mexico Gas Company New York Power Authority Newfoundland and Labrador Hydro Newfoundland Power Nicor Gas Northeast Utilities Northern California Power ...

  13. National Action Plan on Demand Response

    Energy Savers [EERE]

    Energy Nashville Turns an Eyesore into an Energy-Efficient Asset Nashville Turns an Eyesore into an Energy-Efficient Asset September 19, 2012 - 10:43am Addthis The completed Nashville Bridge Company's building (called NABRICO for short) includes a geothermal heat pump system to keep public energy costs low. | Photo courtesy of David Powell, AIA. The completed Nashville Bridge Company's building (called NABRICO for short) includes a geothermal heat pump system to keep public energy costs low.

  14. Implementation of Division D, Titles III and V, and Division...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and guidance for Division D, Titles III and V, and Division E, Title VII of the ... Implementation of Division D, Titles III and V, and Division E, Title VII of the ...

  15. Flyer, Title VI | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flyer, Title VI Flyer, Title VI Titles VI and IX of the Civil Rights Act of 1964, as amended prohibit discrimination in programs and activities receiving Federal financial assistance. This flyer explains this probition, and can be downloaded and displayed at your place of work. PDF icon discrimination flyer July 2011.pdf More Documents & Publications NO FEAR Act Notice DOE F 1600.5 DOE F 1600.1

  16. No Slide Title | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Title More Documents & Publications Policy Flash 2014-01 Acquisition Guide 15.4-3 Negotiation Documentation: Pre-negotiation Plan & the Price Negotiation Memorandum Chapter 71 -...

  17. Categorical Exclusion Determination Form Proposed Action Title...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proposed Action Title: (0473-1597) Smart Wire Grid, Inc. - Distributed Power Flow Contro l Using Smart Wires for Energy Routing Program or Field Office: Advanced Research Projects ...

  18. Microsoft Word - Title X Reimbursements.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Office of Inspector General Office of Audit Operations Audit Report Management Controls Over Title X Claims Reimbursement at the West Chicago Thorium Processing Facility ...

  19. Title IX: More than Just Sports

    Office of Energy Efficiency and Renewable Energy (EERE)

    Title IX isn't just about sports or the law. It's about securing a clean energy future by closing the gender gap in math and science.

  20. Title 46 Alaska Statutes | Open Energy Information

    Open Energy Info (EERE)

    Title 46 Alaska StatutesLegal Published NA Year Signed or Took Effect 1971 Legal Citation Alaska Stat. tit. 46 (1971) DOI Not Provided Check for DOI availability: http:...

  1. Alaska Statutes: Title 38 | Open Energy Information

    Open Energy Info (EERE)

    Alaska Statutes: Title 38Legal Published NA Year Signed or Took Effect 2014 Legal Citation Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online...

  2. Title 30 Chapter 5 | Open Energy Information

    Open Energy Info (EERE)

    Chapter 5 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 30 Chapter 5Legal Published NA Year Signed or Took Effect 1969...

  3. TYPE REPORT DOCUMENT TITLE HERE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL's ARRA Site Characterization Initiative: Accomplishments DOE/NETL-000/000000 ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  4. Water demands for electricity generation in the U.S.: Modeling different

    Office of Scientific and Technical Information (OSTI)

    scenarios for the water-energy nexus (Journal Article) | SciTech Connect Water demands for electricity generation in the U.S.: Modeling different scenarios for the water-energy nexus Citation Details In-Document Search This content will become publicly available on March 11, 2018 Title: Water demands for electricity generation in the U.S.: Modeling different scenarios for the water-energy nexus Authors: Liu, Lu ; Hejazi, Mohamad ; Patel, Pralit ; Kyle, Page ; Davies, Evan ; Zhou, Yuyu ;

  5. Water demands for electricity generation in the U.S.: Modeling different

    Office of Scientific and Technical Information (OSTI)

    scenarios for the water-energy nexus (Journal Article) | DOE PAGES Water demands for electricity generation in the U.S.: Modeling different scenarios for the water-energy nexus This content will become publicly available on March 11, 2018 Title: Water demands for electricity generation in the U.S.: Modeling different scenarios for the water-energy nexus Authors: Liu, Lu ; Hejazi, Mohamad ; Patel, Pralit ; Kyle, Page ; Davies, Evan ; Zhou, Yuyu ; Clarke, Leon ; Edmonds, James Publication

  6. DOJ Title Standards for Acquisition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOJ Title Standards for Acquisition DOJ Title Standards for Acquisition PDF icon Title Standards 2001 More Documents & Publications Acquisition Guide for Federal Agencies REAL ESTATE PROPERTY GUIDE 2014 REAL ESTATE PROPERTY GUIDE 2013

  7. China, India demand cushions prices

    SciTech Connect (OSTI)

    Boyle, M.

    2006-11-15

    Despite the hopes of coal consumers, coal prices did not plummet in 2006 as demand stayed firm. China and India's growing economies, coupled with solid supply-demand fundamentals in North America and Europe, and highly volatile prices for alternatives are likely to keep physical coal prices from wide swings in the coming year.

  8. Title 33 CFR 327 Public Hearings | Open Energy Information

    Open Energy Info (EERE)

    Hearings (2014). Retrieved from "http:en.openei.orgwindex.php?titleTitle33CFR327PublicHearings&oldid890311" Feedback Contact needs updating Image needs updating...

  9. Title 16 USC 818 Public Lands Included in Project - Reservation...

    Open Energy Info (EERE)

    Entry (1996). Retrieved from "http:en.openei.orgwindex.php?titleTitle16USC818PublicLandsIncludedinProject-ReservationofLandsFromEntry&oldid722800" ...

  10. Transcript of March 28, 2013, TAP webinar titled Internal Benchmarking...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TAP webinar titled Internal Benchmarking Outreach and Data Collection Techniques Transcript of March 28, 2013, TAP webinar titled Internal Benchmarking Outreach and Data ...

  11. Title 22 California Code of Regulations | Open Energy Information

    Open Energy Info (EERE)

    Abstract Title 22 California Code of Regulations, current through August 7, 2014. Published NA Year Signed or Took Effect 2014 Legal Citation Title 22 California Code...

  12. File:AlaskaTitleVApplicationSubmittalInstructions.pdf | Open...

    Open Energy Info (EERE)

    AlaskaTitleVApplicationSubmittalInstructions.pdf Jump to: navigation, search File File history File usage File:AlaskaTitleVApplicationSubmittalInstructions.pdf Size of this...

  13. Title 40 CFR 1502 - Environmental Impact Statement | Open Energy...

    Open Energy Info (EERE)

    Regulation: Title 40 CFR 1502 - Environmental Impact StatementLegal Abstract Subpart 1502 Environmental Impact Statement under Title 40: Protection of Environment of the U.S. Code...

  14. Final scientific report for DOE award title: Improving the Representat...

    Office of Scientific and Technical Information (OSTI)

    scientific report for DOE award title: Improving the Representation of Ice Sedimentation Rates in Global Climate Models Citation Details In-Document Search Title: Final scientific ...

  15. Clarifying Technology Eligibility for Title XVII Loan Guarantee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clarifying Technology Eligibility for Title XVII Loan Guarantee Solicitations Clarifying Technology Eligibility for Title XVII Loan Guarantee Solicitations July 22, 2015 - 10:50am ...

  16. Should Title 24 Ventilation Requirements Be Amended to include...

    Office of Scientific and Technical Information (OSTI)

    include an Indoor Air Quality Procedure? Citation Details In-Document Search Title: Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure? ...

  17. News Release: 2010 UMTRCA Title I and Title II Disposal Sites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites and the 2010 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation ...

  18. Industrial Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

  19. Residential Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  20. Drivers of Future Energy Demand

    U.S. Energy Information Administration (EIA) Indexed Site

    Drivers of Future Energy Demand in China Asian Energy Demand Outlook 2014 EIA Energy Conference July 14, 2014 Valerie J. Karplus MIT Sloan School of Management 2 www.china.org.cn www.flickr.com www.wikimedia.org globalchange.mit.edu Global Climate Change Human Development Local Pollution Industrial Development & Resource Needs How to balance? 0 500 1000 1500 2000 2500 3000 3500 4000 1981 1991 2001 2011 Non-material Sectors/Other Construction Commercial consumption Residential consumption

  1. The preparation for and survival of an EPA Title IV and Title V facility audit

    SciTech Connect (OSTI)

    Facca, G.L.; Faler, M.

    1999-07-01

    As part of the 1990 Clean Air Act Amendments, major facilities are required to obtain federally enforceable operating permits (Title V). In a separate permitting action, the electric utilities with units generating more then 25 megawatts are required to obtain permits for NO{sub x} and SO{sub x}, the emissions which contribute to acid rain (Title IV). The Title IV permit is included as part of the Title V permit. This paper will use an actual audit experience at a coal fired generation facility as a case study for the preparation for and outcome of an EPA Title IV Level 3 audit. The paper will document the procedures for preparation, the audit process, and the outcome. The audit is part of the EPA's process for review of the record keeping and instrument calibration methods outlined in Title IV. Both types of permits have many different record keeping and monitoring requirements as well as separate reporting requirements which are submitted to both federal; state and local regulatory agencies for review and evaluation. Title IV units include very specific instrument calibration/audit requirements, and Title V has compliance testing and monitoring requirements. Alliant Power was notified in August 1998 of the intent of EPA Region VII to conduct a Level 3 audit at the Lansing Generation Station. The US EPA and the State of Iowa intended to review all Title IV record keeping (Level 1), continuous emission monitoring calibrations and linearity testing (Level 2) and observe the annual Relative Accuracy Testing Audit performed by an outside contractor. In addition, during this facility site visit, the compliance with Title V permit requirements was also audited.

  2. Title I Disposal Sites Annual Report | Department of Energy

    Energy Savers [EERE]

    I Disposal Sites Annual Report Title I Disposal Sites Annual Report 2014 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites (March 2015) PDF icon 2014 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites (March 2015) More Documents & Publications Title II

  3. Title II Disposal Sites Annual Report | Department of Energy

    Energy Savers [EERE]

    II Disposal Sites Annual Report Title II Disposal Sites Annual Report 2014 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites (November 2014) PDF icon 2014 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites (November 2014) More Documents & Publications Title I

  4. The Role of Demand Resources In Regional Transmission Expansion Planning and Reliable Operations

    SciTech Connect (OSTI)

    Kirby, Brendan J

    2006-07-01

    Investigating the role of demand resources in regional transmission planning has provided mixed results. On one hand there are only a few projects where demand response has been used as an explicit alternative to transmission enhancement. On the other hand there is a fair amount of demand response in the form of energy efficiency, peak reduction, emergency load shedding, and (recently) demand providing ancillary services. All of this demand response reduces the need for transmission enhancements. Demand response capability is typically (but not always) factored into transmission planning as a reduction in the load which must be served. In that sense demand response is utilized as an alternative to transmission expansion. Much more demand response is used (involuntarily) as load shedding under extreme conditions to prevent cascading blackouts. The amount of additional transmission and generation that would be required to provide the current level of reliability if load shedding were not available is difficult to imagine and would be impractical to build. In a very real sense demand response solutions are equitably treated in every region - when proposed, demand response projects are evaluated against existing reliability and economic criteria. The regional councils, RTOs, and ISOs identify needs. Others propose transmission, generation, or responsive load based solutions. Few demand response projects get included in transmission enhancement plans because few are proposed. But this is only part of the story. Several factors are responsible for the current very low use of demand response as a transmission enhancement alternative. First, while the generation, transmission, and load business sectors each deal with essentially the same amount of electric power, generation and transmission companies are explicitly in the electric power business but electricity is not the primary business focus of most loads. This changes the institutional focus of each sector. Second, market and reliability rules have, understandably, been written around the capabilities and limitations of generators, the historic reliability resources. Responsive load limitations and capabilities are often not accommodated in markets or reliability criteria. Third, because of the institutional structure, demand response alternatives are treated as temporary solutions that can delay but not replace transmission enhancement. Financing has to be based on a three to five year project life as opposed to the twenty to fifty year life of transmission facilities. More can be done to integrate demand response options into transmission expansion planning. Given the societal benefits it may be appropriate for independent transmission planning organizations to take a more proactive role in drawing demand response alternatives into the resource mix. Existing demand response programs provide a technical basis to build from. Regulatory and market obstacles will have to be overcome if demand response alternatives are to be routinely considered in transmission expansion planning.

  5. Response to Questions on Presentation to NAS (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Response to Questions on Presentation to NAS Citation Details In-Document Search Title: Response to Questions on Presentation to NAS Response to questions on the presentation ...

  6. Dramatic Demand Reduction In The Desert Southwest

    SciTech Connect (OSTI)

    Boehm, Robert; Hsieh, Sean; Lee, Joon; Baghzouz, Yahia; Cross, Andrew; Chatterjee, Sarah

    2015-07-06

    This report summarizes a project that was funded to the University of Nevada Las Vegas (UNLV), with subcontractors Pulte Homes and NV Energy. The project was motivated by the fact that locations in the Desert Southwest portion of the US demonstrate very high peak electrical demands, typically in the late afternoons in the summer. These high demands often require high priced power to supply the needs, and the large loads can cause grid supply problems. An approach was proposed through this contact that would reduce the peak electrical demands to an anticipated 65% of what code-built houses of the similar size would have. It was proposed to achieve energy reduction through four approaches applied to a development of 185 homes in northwest part of Las Vegas named Villa Trieste. First, the homes would all be highly energy efficient. Secondly, each house would have a PV array installed on it. Third, an advanced demand response technique would be developed to allow the resident to have some control over the energy used. Finally, some type of battery storage would be used in the project. Pulte Homes designed the houses. The company considered initial cost vs. long-term savings and chose options that had relatively short paybacks. HERS (Home Energy Rating Service) ratings for the homes are approximately 43 on this scale. On this scale, code-built homes rate at 100, zero energy homes rate a 0, and Energy Star homes are 85. In addition a 1.764 Wp (peak Watt) rated PV array was used on each house. This was made up of solar shakes that were in visual harmony with the roofing material used. A demand response tool was developed to control the amount of electricity used during times of peak demand. While demand response techniques have been used in the utility industry for some time, this particular approach is designed to allow the customer to decide the degree of participation in the response activity. The temperature change in the residence can be decided by the residents by adjusting settings. In a sense the customer can choose between greater comfort and greater money savings during demand response circumstances. Finally a battery application was to be considered. Initially it was thought that a large battery (probably a sodium-sulfur type) would be installed. However, after the contract was awarded, it was determined that a single, centrally-located battery system would not be appropriate for many reasons, including that with the build out plan there would not be any location to put it. The price had risen substantially since the budget for the project was put together. Also, that type of battery has to be kept hot all the time, but its use was only sought for summer operation. Hence, individual house batteries would be used, and these are discussed at the end of this report. Many aspects of the energy use for climate control in selected houses were monitored before residents moved in. This was done both to understand the magnitude of the energy flows but also to have data that could be compared to the computer simulations. The latter would be used to evaluate various aspects of our plan. It was found that good agreement existed between actual energy use and computed energy use. Hence, various studies were performed via simulations. Performance simulations showed the impact on peak energy usage between a code built house of same size and shape compared to the Villa Trieste homes with and without the PV arrays on the latter. Computations were also used to understand the effect of varying orientations of the houses in this typical housing development, including the effect of PV electrical generation. Energy conservation features of the Villa Trieste homes decreased the energy use during peak times (as well as all others), but the resulting decreased peak occurred at about the same time as the code-built houses. Consideration of the PV generation decreases the grid energy use further during daylight hours, but did not extend long enough many days to decrease the peak. Hence, a demand response approach, as planned, was needed. With participation of the residents in the demand response program developed does enable the houses to reduce the peak demand between 66% and 72%, depending on the built years. This was addressed fully in the latter part the study and is described in the latter part of this report.

  7. Implementation of Division F, Title I, Title II, and Title III and Division G, Consolidated and Further Continuing Appropriations Act, 2013, Pub. L. No.113-6

    Broader source: Energy.gov [DOE]

    Acquisition Letter (AL) 2013-06 and Financial Assistance Letter (FAL) 2013-04 provides implementing instructions and guidance for Division F, Title I, Title II, and Title III and Division G, Consolidated and Further Continuing Appropriations Act, 2013, Pub. L. No.113-6.

  8. Implementation of Division B, Title III, Title V and Division C Title VII, Consolidated Appropriations Act, 2012, Pub. L. No.112-74 and Related Conference Report

    Broader source: Energy.gov [DOE]

    Acquisition Letter (AL) 2012-08 and Financial Assistance Letter (FAL) 2012-01 provides implementing instructions and guidance for Division B, Title III, Title V and Division C Title VII, Consolidated Appropriations Act, 2012, Pub. L. No.112-74 and Related Conference Report.

  9. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  10. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  11. U.S. Coal Supply and Demand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal > U.S. Coal Supply and Demand > U.S. Coal Supply and Demand U.S. Coal Supply and Demand 2010 Review (entire report also available in printer-friendly format ) Previous ...

  12. EIA projections of coal supply and demand

    SciTech Connect (OSTI)

    Klein, D.E.

    1989-10-23

    Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

  13. G Subject: Implementation of Division D, Titles III and V, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Section Pub.L. No. 113-76 301(a) and Title V, Sections 501, 502, 503 Division E, Title ... of Division D, Title III and Title V, and Division E, Title VII of the ...

  14. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Energy Savers [EERE]

    Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant challenges from severe weather, hot summers, and about 2% annual load growth. To better control costs and manage electric reliability under these conditions, OG&E is pursuing demand response strategies made possible by implementation of smart grid technologies, tools, and techniques from

  15. Promising Technology: Demand Control Ventilation

    Broader source: Energy.gov [DOE]

    Demand control ventilation (DCV) measures carbon dioxide concentrations in return air or other strategies to measure occupancy, and accurately matches the ventilation requirement. This system reduces ventilation when spaces are vacant or at lower than peak occupancy. When ventilation is reduced, energy savings are accrued because it is not necessary to heat, cool, or dehumidify as much outside air.

  16. Commercial Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

  17. Projecting Electricity Demand in 2050

    SciTech Connect (OSTI)

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

    2014-07-01

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% − 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  18. Demand Management Institute (DMI) | Open Energy Information

    Open Energy Info (EERE)

    Demand Management Institute (DMI) Jump to: navigation, search Name: Demand Management Institute (DMI) Address: 35 Walnut Street Place: Wellesley, Massachusetts Zip: 02481 Region:...

  19. Generating Demand for Multifamily Building Upgrades | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generating Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades Better Buildings Residential Network Peer Exchange Call Series: Generating...

  20. Marketing & Driving Demand: Social Media Tools & Strategies ...

    Office of Environmental Management (EM)

    Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text Version) Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text...