National Library of Energy BETA

Sample records for titanium dioxide tio2

  1. Array of titanium dioxide nanostructures for solar energy utilization...

    Office of Scientific and Technical Information (OSTI)

    Patent: Array of titanium dioxide nanostructures for solar energy utilization Citation Details In-Document Search Title: Array of titanium dioxide nanostructures for solar energy ...

  2. Characterization of oxygen and titanium diffusion at the anatase TiO2(001) surface

    SciTech Connect (OSTI)

    Herman, Gregory S.; Zehr, Robert T.; Henderson, Michael A.

    2013-06-01

    The diffusion of intrinsic defects in a single crystal anatase TiO2(001) film was explored by isotopic labeling and static secondary ion mass spectrometry. Using both 46Ti and 18O as isotopic labels, we show that the anatase surface responds to redox imbalances by diffusion of both Ti and O into the bulk under vacuum reduction and (at least) Ti from the bulk to the surface during oxidation. The diffusion of Ti between the bulk and surface in anatase TiO2(001) closely resembles what was observed in the literature for the rutile TiO2(110) surface, however the latter is not known to have oxygen diffusion between the bulk and surface under typical ultrahigh vacuum conditions. We speculate that the open lattice of the anatase bulk structure may facilitate independent diffusion of both point defects (Ti interstitials and O vacancies) or concerted diffusion of "TiO" subunits. The authors gratefully acknowledge S.A. Chambers of Pacific Northwest National Laboratory (PNNL) for providing the anatase samples. This research was supported by the U.S. Department of Energy (DOE) Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, the Office of Naval Research Contract Number 200CAR262, and the Oregon Nanoscience and Microtechnologies Institute. PNNL is operated for the U.S. DOE by Battelle under Contract Number DE05-AC76RL0 1830. The research was performed in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility funded by the U.S. DOE Office of Biological and Environmental Research.

  3. Using Ionic Liquids to Make Titanium Dioxide Nanotubes - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Return to Search Using Ionic Liquids to Make Titanium Dioxide Nanotubes Oak Ridge National ... The most commonly used fabrication method is anodization of titanium metal in aqueous or ...

  4. Array of titanium dioxide nanostructures for solar energy utilization

    SciTech Connect (OSTI)

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  5. Method for synthesis of titanium dioxide nanotubes using ionic liquids

    SciTech Connect (OSTI)

    Qu, Jun; Luo, Huimin; Dai, Sheng

    2013-11-19

    The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

  6. Splitting of magnetic dipole modes in anisotropic TiO 2 micro-spheres: Splitting of magnetic dipole modes in anisotropic TiO 2 micro-spheres

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khromova, Irina; Kužel, Petr; Brener, Igal; Reno, John L.; Chung Seu, U-Chan; Elissalde, Catherine; Maglione, Mario; Mounaix, Patrick; Mitrofanov, Oleg

    2016-06-27

    Monocrystalline titanium dioxide (TiO2) micro-spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii inline imagem through near-field time-domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub-wavelength aperture probe, we found that the magnetic dipole resonances in TiO2 spheres have narrow linewidths of only tens of gigahertz. Lastly, anisotropic TiO2 micro-resonators can be used to enhance the interplay of magnetic and electric dipolemore » resonances in the emerging THz all-dielectric metamaterial technology.« less

  7. Splitting of magnetic dipole modes in anisotropic TiO2 micro-spheres

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khromova, Irina; Kuzel, Petr; Brener, Igal; Reno, John L.; Chung Seu, U-Chan; Elissalde, Catherine; Maglione, Mario; Mounaix, Patrick; Mitrofanov, Oleg

    2016-06-27

    Monocrystalline titanium dioxide (TiO2) micro-spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii inline imagem through near-field time-domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub-wavelength aperture probe, we found that the magnetic dipole resonances in TiO2 spheres have narrow linewidths of only tens of gigahertz. Lastly, anisotropic TiO2 micro-resonators can be used to enhance the interplay of magnetic and electric dipolemore » resonances in the emerging THz all-dielectric metamaterial technology.« less

  8. TITANIUM DIOXIDE TRIADS FOR IMPROVED CHARGE-SEPARATION USING...

    Office of Scientific and Technical Information (OSTI)

    ... Figure 4. Absorbance spectra of TiO 2 DC solution (red line), TiO 2 DC PANI solution (green line), and PANI solution (blue line). U.S. Department of Energy Journal of ...

  9. Low Cost TiO2 Nanoparticles - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing SummaryCurrent methods of producing titanium dioxide nanoparticles ... elegant and economically advantageous method to synthesize titanium dioxide nanoparticles. ...

  10. Titanium dioxide, single-walled carbon nanotube composites

    DOE Patents [OSTI]

    Yao, Yuan; Li, Gonghu; Gray, Kimberly; Lueptow, Richard M.

    2015-07-14

    The present invention provides titanium dioxide/single-walled carbon nanotube composites (TiO.sub.2/SWCNTs), articles of manufacture, and methods of making and using such composites. In certain embodiments, the present invention provides membrane filters and ceramic articles that are coated with TiO.sub.2/SWCNT composite material. In other embodiments, the present invention provides methods of using TiO.sub.2/SWCNT composite material to purify a sample, such as a water or air sample.

  11. Titanium-dioxide nanotube p-n homojunction diode

    SciTech Connect (OSTI)

    Alivov, Yahya E-mail: pnagpal@colorado.edu; Ding, Yuchen; Singh, Vivek; Nagpal, Prashant E-mail: pnagpal@colorado.edu

    2014-12-29

    Application of semiconductors in functional optoelectronic devices requires precise control over their doping and formation of junction between p- and n-doped semiconductors. While doped thin films have led to several semiconductor devices, need for high-surface area nanostructured devices for photovoltaic, photoelectrochemical, and photocatalytic applications has been hindered by lack of desired doping in nanostructures. Here, we show titanium-dioxide (TiO{sub 2}) nanotubes doped with nitrogen (N) and niobium (Nb) as acceptors and donors, respectively, and formation of TiO{sub 2} nanotubes p-n homojunction. This TiO{sub 2}:N/TiO{sub 2}:Nb homojunction showed distinct diode-like behaviour with rectification ratio of 1115 at ±5 V and exhibited good photoresponse for ultraviolet light (λ = 365 nm) with sensitivity of 0.19 A/W at reverse bias of −5 V. These results can have important implications for development of nanostructured metal-oxide solar-cells, photodiodes, LED's, photocatalysts, and photoelectrochemical devices.

  12. Antimicrobial polymers - The antibacterial effect of photoactivated nano titanium dioxide polymer composites

    SciTech Connect (OSTI)

    Huppmann, T. Leonhardt, S. E-mail: erhard.krampe@tum.de; Krampe, E. E-mail: erhard.krampe@tum.de; Wintermantel, E.; Yatsenko, S. Radovanovic, I. E-mail: m.bastian@skz.de; Bastian, M. E-mail: m.bastian@skz.de

    2014-05-15

    To obtain a polymer with antimicrobial properties for medical and sanitary applications nanoscale titanium dioxide (TiO{sub 2}) particles have been incorporated into a medical grade polypropylene (PP) matrix with various filler contents (0 wt %, 2 wt %, 10 wt % and 15 wt %). The standard application of TiO{sub 2} for antimicrobial efficacy is to deposit a thin TiO{sub 2} coating on the surface. In contrast to the common way of applying a coating, TiO{sub 2} particles were applied into the bulk polymer. With this design we want to ensure antimicrobial properties even after application of impact effects that could lead to surface defects. The filler material (Aeroxide® TiO{sub 2} P25, Evonik) was applied via melt compounding and the compounding parameters were optimized with respect to nanoscale titanium dioxide. In a next step the effect of UV-irradiation on the compounds concerning their photocatalytic activity, which is related to the titanium dioxide amount, was investigated. The photocatalytic effect of TiO{sub 2}-PP-composites was analyzed by contact angle measurement, by methylene blue testing and by evaluation of inactivation potential for Escherichia coli (E.coli) bacteria. The dependence of antimicrobial activity on the filler content was evaluated, and on the basis of different titanium dioxide fractions adequate amounts of additives within the compounds were discussed. Specimens displayed a higher photocatalytic and also antimicrobial activity and lower contact angles with increasing titania content. The results suggest that the presence of titania embedded in the PP matrix leads to a surface change and a photocatalytic effect with bacteria killing result.

  13. The Synthesis of Ag-Doped Mesoporous TiO2

    SciTech Connect (OSTI)

    Li, Xiaohong S.; Fryxell, Glen E.; Wang, Chong M.; Engelhard, Mark H.

    2008-04-15

    Ag-doped mesoporous titanium oxide was prepared using non-ionic surfactants and easily handled titanium precursors, under mild reaction conditions. In contrast to the stabilizing effect of Cd-doping on mesoporous TiO2, Ag-doping was found to significantly destabilize the mesoporous structure.

  14. Electrospray deposition of titanium dioxide (TiO{sub 2}) nanoparticles

    SciTech Connect (OSTI)

    Halimi, Siti Umairah Bakar, Noor Fitrah Abu Ismail, Siti Norazian Hashib, Syafiza Abd; Naim, M. Nazli

    2014-02-24

    Deposition of titanium dioxide (TiO{sub 2}) nanoparticles was conducted by using eletrospray method. 0.05wt% of titanium dioxide suspension was prepared and characterized by using Malvern Zetasizer prior to the experiment. From Zetasizer results, stable suspension condition was obtained which is at pH 2 with zeta potential value of ±29.0 mV. In this electrospraying, the suspension was pumped at flowrate of 5 ml/hr by using syringe pump. The input voltage of 2.1 kV was applied at the nozzle tip and counter electrode. Electrosprayed particles were collected on the grounded aluminium plate substrate which was placed at 10–20 cm from counter electrode. Particles were then characterized using FESEM and average size of electrosprayed particles obtained. Initial droplet size was calculated by scaling law and compared with FE-SEM results in order to prove droplet fission occur during electrospray. Due to the results obtained, as the working distance increase from 10–20 cm the deposited TiO{sub 2} droplet size decrease from 247–116 nm to show droplet fission occur during the experiment.

  15. Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents

    SciTech Connect (OSTI)

    Moazeni, Maryam; Hajipour, Hengameh; Askari, Masoud; Nusheh, Mohammad

    2015-01-15

    The ion exchange process is a promising method for lithium extraction from brine and seawater having low concentrations of this element. To achieve this goal, it is vital to use an effective adsorbent with maximum lithium adsorption potential together with a stable structure during extraction and insertion of the ions. In this study, titanium dioxide and then lithium titanate spinel with nanotube morphology was synthesized via a simple two-step hydrothermal process. The produced Li{sub 4}Ti{sub 5}O{sub 12} spinel ternary oxide nanotube with about 70 nm diameter was then treated with dilute acidic solution in order to prepare an adsorbent suitable for lithium adsorption from local brine. Morphological and phase analysis of the obtained nanostructured samples were done by using transmission and scanning electron microscopes along with X-ray diffraction. Lithium ion exchange capacity of this adsorbent was finally evaluated by means of adsorption isotherm. The results showed titanium dioxide adsorbent could recover 39.43 mg/g of the lithium present in 120 mg/L of lithium solution.

  16. Modeling Excited States in TiO2 Nanoparticles: On the Accuracy of a TD-DFT Based Description

    SciTech Connect (OSTI)

    Berardo, Enrico; Hu, Hanshi; Shevlin, S. A.; Woodley, Scott M.; Kowalski, Karol; Zwijnenburg, Martijn A.

    2014-03-11

    We have investigated the suitability of Time-Dependent Density Functional Theory (TD-DFT) to describe vertical low-energy excitations in naked and hydrated titanium dioxide nanoparticles through a comparison with results from Equation-of-Motion Coupled Cluster (EOM-CC) quantum chemistry methods. We demonstrate that for most TiO2 nanoparticles TD-DFT calculations with commonly used exchange-correlation (XC-)potentials (e.g. B3LYP) and EOM-CC methods give qualitatively similar results. Importantly, however, we also show that for an important subset of structures, TD-DFT gives qualitatively different results depending upon the XC-potential used and that in this case only TD-CAM-B3LYP and TD-BHLYP calculations yield results that are consistent with those obtained using EOM-CC theory. Moreover, we demonstrate that the discrepancies for such structures arise from a particular combination of defects, excitations involving which are charge-transfer excitations and hence are poorly described by XC-potentials that contain no or low fractions of Hartree-Fock like exchange. Finally, we discuss that such defects are readily healed in the presence of ubiquitously present water and that as a result the description of vertical low-energy excitations for hydrated TiO2 nanoparticles is hence non-problematic.

  17. Efficient photocatalytic hydrogen generation by silica supported and platinum promoted titanium dioxide

    SciTech Connect (OSTI)

    Joshi, Meenal M.; Labhsetwar, Nitin K.; Parwate, D.V.; Rayalu, Sadhana S.

    2013-09-01

    Graphical abstract: Titanium dioxide was supported on mesoporous silica and promoted with Pt and Ru. The supported photocatalysts show high surface area and better photocatalytic activity in visible light as compared to the benchmark Degussa P25. These photocatalysts were characterized using XRD, BET-SA, and UV-DRS techniques. The surface area of supported photocatalyst was 140.6 m{sup 2}/g which is higher than Degussa P-25. Supported photocatalyst was evaluated for hydrogen evolution via water splitting reaction using ethanol as a sacrificial donor. Hydrogen yield observed is 4791.43 ?mol/h/g of TiO{sub 2} and that for P-25 is 161 ?mol/h/g of TiO{sub 2} under visible light irradiation. The value is 30 times higher than benchmark material Degussa P-25. This photocatalyst is also found stable up to 24 h without replenishing with sacrificial donor ethanol. - Highlights: Semiconductor titanium dioxide has been supported on silica gel and promoted with Pt by simple wet impregnation route. This synthesized photocatalyst is showing high surface area of 140.6 m{sup 2}/g with crystallite size in the range of 15.44 ?. This photocatalyst is showing enhanced hydrogen yield of about 4791.43 ?mol/h/g of TiO{sub 2}. This photocatalyst is also found stable up to 24 h without replenishing with sacrificial donor ethanol. The effect of various operating parameters on supported photocatalyst also has been studied. - Abstract: Titanium dioxide was supported on mesoporous silica and promoted with Pt and Ru. The supported photocatalysts show high surface area and better photocatalytic activity in visible light as compared to the benchmark Degussa P25. These photocatalysts were characterized using XRD, BET-SA, and UV-DRS techniques. The surface area of supported photocatalyst was 140.6 m{sup 2}/g which is higher than Degussa P-25. Supported photocatalyst was evaluated for hydrogen evolution via water splitting reaction using ethanol as a sacrificial donor. Hydrogen yield

  18. Characteristics of titanium dioxide nanostructures synthesized via electrochemical anodization at different applied voltages

    SciTech Connect (OSTI)

    Cheong, Y. L.; Yam, F. K.; Hassan, Z.

    2015-05-15

    This paper presents the study of the growth of nanostructure titanium dioxide (TiO{sub 2}) via electrochemical anodization method. Both constant and alternating anodization voltage would be applied in this study. The effects of applied voltage on the morphological and structural properties were studied. Images of field emission scanning electron microscope (FE-SEM) revealed that morphology of nanostructure could be manipulated by changing the type and amount of applied voltage. Besides that, X-ray diffraction (XRD) results indicated that crystalline structures (anatase and rutile) could be obtained after being annealed at 700°C for 60 minutes. By analysing the data in XRD measurements, crystallite size of the TiO{sub 2} could be calculated by using the Scherrer method. Besides that, the relationship between mean crystallites sizes and anodization voltage would also be further studied in this paper.

  19. Location Of Hole And Electron Traps On Nanocrystalline Anatase TiO2

    SciTech Connect (OSTI)

    Mercado, Candy C.; Knorr, Fritz J.; McHale, Jeanne L.; Usmani, Shirin M.; Ichimura, Andrew S.; Saraf, Laxmikant V.

    2012-05-17

    The defect photoluminescence from TiO2 nanoparticles in the anatase phase is reported for nanosheets which expose predominantly (001) surfaces, and compared to that from conventional anatase nanoparticles which expose mostly (101) surfaces. Also reported is the weak defect photoluminescence of TiO2 nanotubes, which we find using electron back-scattered diffraction to consist of walls which expose (110) and (100) facets. The nanotubes exhibit photoluminescence that is blue-shifted and much weaker than that from conventional TiO2 nanoparticles. Despite the preponderance of (001) surfaces in the nanosheet samples, they exhibit photoluminescence similar to that of conventional nanoparticles. We assign the broad visible photoluminescence of anatase nanoparticles to two overlapping distributions: hole trap emission associated with oxygen vacancies on (101) exposed surfaces, which peaks in the green, and a broader emission extending into the red which results from electron traps on under-coordinated titanium atoms, which are prevalent on (001) facets. The results of this study suggest how morphology of TiO2 nanoparticles could be optimized to control the distribution and activity of surface traps. Our results also shed light on the mechanism by which the TiCl4 surface treatment heals traps on anatase and mixed-phase TiO2 films, and reveals distinct differences in the trap-state distributions of TiO2 nanoparticles and nanotubes. The molecular basis for electron and hole traps and their spatial separation on different facets is discussed.

  20. Electrophoretic deposited TiO2 pigment-based back reflectors for thin film solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bills, Braden; Morris, Nathan; Dubey, Mukul; Wang, Qi; Fan, Qi Hua

    2015-01-16

    Highly reflective coatings with strong light scattering effect have many applications in optical components and optoelectronic devices. This paper reports titanium dioxide (TiO2) pigment-based reflectors that have 2.5 times higher broadband diffuse reflection than commercially produced aluminum or silver based reflectors and result in efficiency enhancements of a single-junction amorphous Si solar cell. Electrophoretic deposition is used to produce pigment-based back reflectors with high pigment density, controllable film thickness and site-specific deposition. Electrical conductivity of the pigment-based back reflectors is improved by creating electrical vias throughout the pigment-based back reflector by making holes using an electrical discharge / dielectric breakdownmore » approach followed by a second electrophoretic deposition of conductive nanoparticles into the holes. While previous studies have demonstrated the use of pigment-based back reflectors, for example white paint, on glass superstrate configured thin film Si solar cells, this work presents a scheme for producing pigment-based reflectors on complex shape and flexible substrates. Finally, mechanical durability and scalability are demonstrated on a continuous electrophoretic deposition roll-to-roll system which has flexible metal substrate capability of 4 inch wide and 300 feet long.« less

  1. Biosynthesis of titanium dioxide nanoparticles using a probiotic from coal fly ash effluent

    SciTech Connect (OSTI)

    Babitha, S; Korrapati, Purna Sai

    2013-11-15

    Graphical abstract: - Highlights: Metal resistant probiotic species was isolated from coal fly ash effluent site. Uniform sized anatase form of TiO{sub 2} nanoparticles were synthesized using Propionibacterium jensenii. Diffraction patterns confirmed the anatase TiO{sub 2} NPs with average size <80 nm. TiO{sub 2} nanoparticle incorporated wound dressing exhibits better wound healing. - Abstract: The synthesis of titanium dioxide nanoparticle (TiO{sub 2} NP) has gained importance in the recent years owing to its wide range of potential biological applications. The present study demonstrates the synthesis of TiO{sub 2} NPs by a metal resistant bacterium isolated from the coal fly ash effluent. This bacterial strain was identified on the basis of morphology and 16s rDNA gene sequence [KC545833]. The physico-chemical characterization of the synthesized nanoparticles is completely elucidated by energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmission and scanning electron microscopy (TEM, SEM). The crystalline nature of the nanoparticles was confirmed by X-RD pattern. Further, cell viability and haemolytic assays confirmed the biocompatible and non toxic nature of the NPs. The TiO{sub 2} NPs was found to enhance the collagen stabilization and thereby enabling the preparation of collagen based biological wound dressing. The paper essentially provides scope for an easy bioprocess for the synthesis of TiO{sub 2} NPs from the metal oxide enriched effluent sample for future biological applications.

  2. Synthesis and electromagnetic properties of BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites

    SciTech Connect (OSTI)

    Xie, Yu; Hong, Xiaowei; Liu, Jinmei; Le, Zhanggao; Huang, Feihui; Qin, Yuancheng; Zhong, Rong; Gao, Yunhua; Pan, Jianfei; Ling, Yun

    2014-02-01

    Graphical abstract: Due to combining different functions and characteristics of individual materials, hybrid nanocomposite materials can strengthen their applications. Magnetic-conductive nanocomposites are the promising materials with electromagnetic loss, which have synergetic behavior between magnetic and conductive materials. It is the first time to report the synthesis of BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide (BF/TD) composites by the gel-precursor self-propagating combustion process. The influence of mass ratio of BF and TD on the electromagnetic properties of BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites was studied. The tgδ{sub μ} and tgδ{sub ε} of BF–TD composites. - Highlights: • It is the first time to report BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites. • The composites are prepared by the gel-precursor self-propagating combustion. • The electromagnetic properties could be adjusted by the mass ratio of BF and TD. • The introduction of TD enhances the dielectric loss and widens the frequency bands. • BF/TD composites will be microwave absorption materials with wide frequency band. - Abstract: Doped BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites have been prepared by the gel-precursor self-propagating combustion process. The characterization of the composites are performed by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Differential thermal analysis-thermo gravimetry (DTA–TG), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and network analyzer. Both XRD and FT-IR indicate that the doped BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites are successfully synthesized and there are some interactions between BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19} and titanium dioxide. DTA–TG analysis of BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites shows that the composite gel

  3. Instability of Hydrogenated TiO2

    SciTech Connect (OSTI)

    Nandasiri, Manjula I.; Shutthanandan, V.; Manandhar, Sandeep; Schwarz, Ashleigh M.; Oxenford, Lucas S.; Kennedy, John V.; Thevuthasan, Suntharampillai; Henderson, Michael A.

    2015-11-06

    Hydrogenated TiO2 (H-TiO2) is toted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Protons (40 keV) implanted at a ~2 atom % level within a ~120 nm wide profile of rutile TiO2(110) were situated ~300 nm below the surface. NRA revealed that this H-profile broadened preferentially toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depth (~800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile, as well as its activity toward interfacial reduction, significantly limits the utilization of H-TiO2 as a photocatalyst. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  4. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOE Patents [OSTI]

    Koc, Rasit; Glatzmaier, Gregory C.

    1995-01-01

    A process for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  5. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOE Patents [OSTI]

    Koc, R.; Glatzmaier, G.C.

    1995-05-23

    A process is disclosed for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  6. In Vitro Phototoxicity and Hazard Identification of Nano-scale Titanium Dioxide

    SciTech Connect (OSTI)

    Sanders, Kristen; Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina ; Degn, Laura L.; Mundy, William R.; Zucker, Robert M.; Dreher, Kevin; Zhao, Baozhong; National Center for Nanoscience and Technology, Beijing ; Roberts, Joan E.; Fordham University, New York, New York ; and others

    2012-01-15

    Titanium dioxide nanoparticles (nano-TiO{sub 2}) catalyze reactions under UV radiation and are hypothesized to cause phototoxicity. A human-derived line of retinal pigment epithelial cells (ARPE-19) was treated with six samples of nano-TiO{sub 2} and exposed to UVA radiation. The TiO{sub 2} nanoparticles were independently characterized to have mean primary particle sizes and crystal structures of 22 nm anatase/rutile, 25 nm anatase, 31 nm anatase/rutile, 59 nm anatase/rutile, 142 nm anatase, and 214 nm rutile. Particles were suspended in cell culture media, sonicated, and assessed for stability and aggregation by dynamic light scattering. Cells were treated with 0, 0.3, 1, 3, 10, 30, or 100 ?g/ml nano-TiO{sub 2} in media for 24 hrs and then exposed to UVA (2 hrs, 7.53 J/cm{sup 2}) or kept in the dark. Viability was assessed 24 hrs after the end of UVA exposure by microscopy with a live/dead assay (calcein-AM/propidium iodide). Exposure to higher concentrations of nano-TiO{sub 2} with UVA lowered cell viability. The 25 nm anatase and 31 nm anatase/rutile were the most phototoxic (LC{sub 50} with UVA < 5 ?g/ml), while the 142 nm anatase and 214 nm rutile were the least phototoxic. An acellular assay ranked TiO{sub 2} nanoparticles for their UVA photocatalytic reactivities. The particles were found to be capable of generating thiobarbituric acid reactive substances (TBARS) under UVA. Flow cytometry showed that nano-TiO{sub 2} combined with UVA decreased cell viability and increased the generation of reactive oxygen species (ROS, measured by Mitosox). LC{sub 50} values under UVA were correlated with TBARS reactivity, particle size, and surface area. -- Highlights: ? Nano-TiO{sub 2} enters cells within 24 hours ? Nano-TiO{sub 2} causes dose-dependent cytotoxicity greatly enhanced by UVA radiation ? Treatment with nano-TiO{sub 2} and UVA produces reactive oxygen species ? Phototoxicity is correlated with particle size, surface area, and TBARS reactivity.

  7. Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices

    SciTech Connect (OSTI)

    Xu, Jinzhuo; Ou-Yang, Wei Chen, Xiaohong; Guo, Pingsheng; Piao, Xianqing; Sun, Zhuo; Xu, Peng; Wang, Miao; Li, Jun

    2015-02-16

    Field emission devices using a wet-processed composite cathode of carbon nanotube films coated with titanium dioxide exhibit outstanding field emission characteristics, including ultralow turn on field of 0.383 V μm{sup −1} and threshold field of 0.657 V μm{sup −1} corresponding with a very high field enhancement factor of 20 000, exceptional current stability, and excellent emission uniformity. The improved field emission properties are attributed to the enhanced edge effect simultaneously with the reduced screening effect, and the lowered work function of the composite cathode. In addition, the highly stable electron emission is found due to the presence of titanium dioxide nanoparticles on the carbon nanotubes, which prohibits the cathode from the influence of ions and free radical created in the emission process as well as residual oxygen gas in the device. The high-performance solution-processed composite cathode demonstrates great potential application in vacuum electronic devices.

  8. Electrochemically synthesized ordered TiO2 and platinum nanocomposite electrode: preparation, characterization, and application to photoelectrocatalytic methanol oxidation

    SciTech Connect (OSTI)

    Li, Zhizhou; Cui, Xiaoli; Lin, Yuehe

    2009-04-01

    In this work, the nanocomposite electrodes consisting of Pt and TiO2 nanotubular arrays have been synthesized, and the morphologies, structural, and photo-electrochemical properties of the electrodes are characterized by SEM, XRD, and electrochemical methods. Highly ordered TiO2 nanotubular arrays can be obtained through anodization of titanium. The platinum nanoparticles are electrodeposited into TiO2 nanotubes by a chronopotentiometry method. Cyclic voltammetry and XRD measurements can confirm the presence of platinum in this nanocomposite electrode. The nanostructural electrode greatly improved performances for methanol oxidation under UV-Vis illumination compared to that without illumination. An enhancement of 58% in the current density has been observed upon illumination with UV-Vis light irradiance at an intensity of 50 mW/cm2. The improved performance of the TiO2/Pt nanocomposite electrode results from a enhanced methanol oxidation by photo-generated holes in the TiO2 nanoarrays under illumination and a synergistic effectiveness between TiO2 and Pt nanoparticles.

  9. A New Method for Production of Titanium Dioxide Pigment - Eliminating CO2 Emission

    SciTech Connect (OSTI)

    Fang, Zhigang Zak

    2013-11-05

    The objective of this project was to demonstrate the potential of a new process technology to reduce the energy consumption and CO{sub 2} emission from the production of titanium dioxide (TiO{sub 2}) pigment. TiO{sub 2} is one of the most commonly used minerals in the chemical manufacturing industry. It has been commercially processed as a pigment since the early 1900's, and has a wide variety of domestic and industrial applications. TiO{sub 2} pigment is currently produced primarily by the use of the so called �chloride process�. A key step of the chloride process relies on high temperature carbo-chlorination of TiO{sub 2} bearing raw materials, hence producing large quantities of CO{sub 2}. The new method uses a chemical/metallurgical sequential extraction methodology to produce pigment grade TiO{sub 2} from high-TiO{sub 2} slag. The specific project objectives were to 1) study and prove the scientific validity of the concept, 2) understand the primary chemical reactions and the efficiency of sequential extraction schemes, 3) determine the properties of TiO{sub 2} produced using the technology, and 4) model the energy consumptions and environmental benefits of the technology. These objectives were successfully met and a new process for producing commercial quality TiO{sub 2} pigment was developed and experimentally validated. The process features a unique combination of established metallurgical processes, including alkaline roasting of titania slag followed by leaching, solvent extraction, hydrolysis, and calcination. The caustic, acidic, and organic streams in the process will also be regenerated and reused in the process, greatly reducing environmental waste. The purpose and effect of each of these steps in producing purified TiO{sub 2} is detailed in the report. The levels of impurities in our pigment meet the requirements for commercial pigment, and are nearly equivalent to those of two commercial pigments. Solvent extraction with an amine extractant

  10. XAFS Study on TiO2 Photocatalyst Loaded on Zeolite Synthesized from Steel Slag

    SciTech Connect (OSTI)

    Kuwahara, Yasutaka; Ohmichi, Tetsutaro; Mori, Kosuke; Katayama, Iwao; Yamashita, Hiromi

    2007-02-02

    The convenient route for the synthesis of Y-zeolites by utilizing steel slag as a material source was developed. Through hydrothermal treatment, well-crystallized Y-zeolite was obtained. We also synthesized TiO2-loaded Y-zeolites by an impregnation method. The structure of titanium oxide species highly dispersed on the zeolite, which couldn't be detected by XRD patterns, was investigated by XAFS analysis. Photocatalytic activity for decomposition of 2-propanol in liquid phase was found to be enhanced by the hydrophobic surface property of zeolite. It has been demonstrated that the zeolite synthesized from steel slag would be applicable as a promising support of TiO2 photocatalyst.

  11. Incorporation of titanium dioxide nanoparticles in mortars - Influence of microstructure in the hardened state properties and photocatalytic activity

    SciTech Connect (OSTI)

    Lucas, S.S.

    2013-01-15

    The environmental pollution in urban areas is one of the causes for poor indoor air quality in buildings, particularly in suburban areas. The development of photocatalytic construction materials can contribute to clean the air and improve sustainability levels. Previous studies have focused mainly in cement and concrete materials, disregarding the potential application in historic buildings. In this work, a photocatalytic additive (titanium dioxide) was added to mortars prepared with aerial lime, cement and gypsum binders. The main goal was to study the way that microstructural changes affect the photocatalytic efficiency. The photocatalytic activity was determined using a reactor developed to assess the degradation rate with a common urban pollutant, NO{sub x}. The laboratory results show that all the compositions tested exhibited high photocatalytic efficiency. It was demonstrated that photocatalytic mortars can be applied in new and old buildings, because the nanoadditives do not compromise the mortar hardened state properties.

  12. Titanium dioxide/silicon hole-blocking selective contact to enable double-heterojunction crystalline silicon-based solar cell

    SciTech Connect (OSTI)

    Nagamatsu, Ken A. Man, Gabriel; Jhaveri, Janam; Berg, Alexander H.; Kahn, Antoine; Wagner, Sigurd; Sturm, James C.; Avasthi, Sushobhan; Sahasrabudhe, Girija; Schwartz, Jeffrey

    2015-03-23

    In this work, we use an electron-selective titanium dioxide (TiO{sub 2}) heterojunction contact to silicon to block minority carrier holes in the silicon from recombining at the cathode contact of a silicon-based photovoltaic device. We present four pieces of evidence demonstrating the beneficial effect of adding the TiO{sub 2} hole-blocking layer: reduced dark current, increased open circuit voltage (V{sub OC}), increased quantum efficiency at longer wavelengths, and increased stored minority carrier charge under forward bias. The importance of a low rate of recombination of minority carriers at the Si/TiO{sub 2} interface for effective blocking of minority carriers is quantitatively described. The anode is made of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) heterojunction to silicon which forms a hole selective contact, so that the entire device is made at a maximum temperature of 100 °C, with no doping gradients or junctions in the silicon. A low rate of recombination of minority carriers at the Si/TiO{sub 2} interface is crucial for effective blocking of minority carriers. Such a pair of complementary carrier-selective heterojunctions offers a path towards high-efficiency silicon solar cells using relatively simple and near-room temperature fabrication techniques.

  13. Electronic states and photoexcitation processes of titanium dioxide nanoparticle films dip coated from aqueous Degussa P25 photocatalyst suspension

    SciTech Connect (OSTI)

    Yang, Jihua; Warren, David S.; Gordon, Keith C.; McQuillan, A. James

    2007-01-15

    The electronic properties of titanium dioxide (TiO{sub 2}) nanocrystalline films, which were prepared by dip coating from Degussa P25 photocatalyst aqueous suspension, have been investigated by surface photovoltage spectroscopy (SPS). As indicated by the positive contact potential difference (CPD) change in the sub-band-gap region, SPS shows that the molecularly adsorbed H{sub 2}O in the freshly prepared P25 film creates an empty electron state, which is distributed within 0.79 eV below the conduction band edge, and acts as an electron trap and carrier recombination center. With film aging or under a drying atmosphere, the H{sub 2}O-associated state diminishes, and the occupied electron state due to molecularly adsorbed oxygen, lying within 1.06 eV above the valence band edge, is identified by the reversed polarity of the CPD change in the sub-band-gap region. This information is important in developing a better understanding of real photocatalyst behavior.

  14. Phototoxicity of nano titanium dioxides in HaCaT keratinocytesGeneration of reactive oxygen species and cell damage

    SciTech Connect (OSTI)

    Yin, Jun-Jie; Liu, Jun; Ehrenshaft, Marilyn; Roberts, Joan E.; Fu, Peter P.; Mason, Ronald P.; Zhao, Baozhong

    2012-08-15

    Nano-sized titanium dioxide (TiO{sub 2}) is among the top five widely used nanomaterials for various applications. In this study, we determine the phototoxicity of TiO{sub 2} nanoparticles (nano-TiO{sub 2}) with different molecular sizes and crystal forms (anatase and rutile) in human skin keratinocytes under UVA irradiation. Our results show that all nano-TiO{sub 2} particles caused phototoxicity, as determined by the MTS assay and by cell membrane damage measured by the lactate dehydrogenase (LDH) assay, both of which were UVA dose- and nano-TiO{sub 2} dose-dependent. The smaller the particle size of the nano-TiO{sub 2} the higher the cell damage. The rutile form of nano-TiO{sub 2} showed less phototoxicity than anatase nano-TiO{sub 2}. The level of photocytotoxicity and cell membrane damage is mainly dependent on the level of reactive oxygen species (ROS) production. Using polyunsaturated lipids in plasma membranes and human serum albumin as model targets, and employing electron spin resonance (ESR) oximetry and immuno-spin trapping as unique probing methods, we demonstrated that UVA irradiation of nano-TiO{sub 2} can induce significant cell damage, mediated by lipid and protein peroxidation. These overall results suggest that nano-TiO{sub 2} is phototoxic to human skin keratinocytes, and that this phototoxicity is mediated by ROS generated during UVA irradiation. Highlights: ? We evaluate the phototoxicity of nano-TiO{sub 2} with different sizes and crystal forms. ? The smaller the particle size of the nano-TiO{sub 2} the higher the cell damage. ? The rutile form of nano-TiO{sub 2} showed less phototoxicity than anatase nano-TiO{sub 2}. ? ESR oximetry and immuno-spin trapping techniques confirm UVA-induced cell damage. ? Phototoxicity is mediated by ROS generated during UVA irradiation of nano-TiO{sub 2}.

  15. Atmospheric Pressure Chemical Vapor Deposition of High Silica SiO2-TiO2 Antireflective Thin Films for Glass Based Solar Panels

    SciTech Connect (OSTI)

    Klobukowski, Erik R; Tenhaeff, Wyatt E; McCamy, James; Harris, Caroline; Narula, Chaitanya Kumar

    2013-01-01

    The atmospheric pressure chemical vapor deposition (APCVD) of SiO2-TiO2 thin films employing [[(tBuO)3Si]2O-Ti(OiPr)2], which can be prepared from commercially available materials, results in antireflective thin films on float glass under industrially relevant manufacturing conditions. It was found that while the deposition temperature had an effect on the SiO2:TiO2 ratio, the thickness was dependent on the time of deposition. This study shows that it is possible to use APCVD employing a single source precursor containing titanium and silicon to produce thin films on float glass with high SiO2:TiO2 ratios.

  16. Preparation of porous nitrogen-doped titanium dioxide microspheres and a study of their photocatalytic, antibacterial and electrochemical activities

    SciTech Connect (OSTI)

    Chen, S.; Chu, W.; Huang, Y.Y.; Liu, X.; Tong, D.G.

    2012-12-15

    Graphical abstract: Porous N-doped TiO{sub 2} microspheres were prepared for the first time via plasma technique. The sample exhibited better photocatalytic activity, photoinduced inactivation activity and better electrochemical activity than those of TiO{sub 2} microspheres and P25. Display Omitted Highlights: ► Porous N-doped TiO{sub 2} microspheres were prepared via nitrogen plasma technique. ► Plasma treatment did not affect the porous structure of the TiO{sub 2} microspheres. ► With the plasma treatment, the N contents in the samples increased. ► Their photocatalytic, antibacterial and electrochemical activities were studied. -- Abstract: Nitrogen-doped titanium dioxide (N-doped TiO{sub 2}) microspheres with porous structure were prepared via the nitrogen-assisted glow discharge plasma technique at room temperature for the first time. The samples were characterized by X-ray diffraction, scanning electron microscopy, nitrogen adsorption–desorption measurement, UV–Vis diffuse reflectance spectra, photoluminescence spectroscopy and X-ray photoelectron spectroscopy. The results indicated that the plasma treatment did not affect the porous structure of the TiO{sub 2} microspheres. With the plasma treatment, the N contents in the samples increased. During the photocatalytic degradation of methylene blue under simulative sunlight irradiation, the sample after plasma treatment for 60 min (N-TiO{sub 2}-60) exhibited higher photocatalytic activity than those of the TiO{sub 2} microspheres, P25 and other N-doped TiO{sub 2} microspheres. Furthermore, the N-TiO{sub 2}-60 showed excellent antibacterial activities towards Escherichia coli under visible irradiation. These should be attributed to the enhancement of the visible light region absorption for TiO{sub 2} after N-doping. Electrochemical data demonstrated that the N-doping not only enhanced the electrochemical activity of TiO{sub 2}, but also improved the reversibility of Li insertion/extraction reactions

  17. Ammonia formation from NO reaction with surface hydroxyls on rutile TiO2 (110) - 11

    SciTech Connect (OSTI)

    Kim, Boseong; Kay, Bruce D.; Dohnalek, Zdenek; Kim, Yu Kwon

    2015-01-15

    The reaction of NO with hydroxylated rutile TiO2(110)-11 surface (h-TiO2) was investigated as a function of NO coverage using temperature-programmed desorption. Our results show that NO reaction with h-TiO2 leads to formation of NH3 which is observed to desorb at ~ 400 K. Interestingly, the amount of NH3 produced depends nonlinearly on the coverage of NO. The yield increases up to a saturation value of ~1.31013 NH3/cm2 at a NO dose of 51013 NO/cm2, but subsequently decreases at higher NO doses. Preadsorbed H2O is found to have a negligible effect on the NH3 desorption yield. Additionally, no NH3 is formed in the absence of surface hydroxyls (HObs) upon coadsorption of NO and H2O on a stoichiometric TiO2(110) (s-TiO2(110)). Based on these observations, we conclude that nitrogen from NO has a strong preference to react with HObs on the bridge-bonded oxygen rows (but not with H2O) to form NH3. The absolute NH3 yield is limited by competing reactions of HOb species with titanium-bound oxygen adatoms to form H2O. Our results provide new mechanistic insight about the interactions of NO with hydroxyl groups on TiO2(110) .

  18. Micro-Raman study on the softening and stiffening of phonons in rutile titanium dioxide film: Competing effects of structural defects, crystallite size, and lattice strain

    SciTech Connect (OSTI)

    Gautam, Subodh K.; Singh, Fouran Sulania, I.; Kulriya, P. K.; Singh, R. G.; Pippel, E.

    2014-04-14

    Softening and stiffening of phonons in rutile titanium dioxide films are investigated by in situ micro-Raman studies during energetic ion irradiation. The in situ study minimized other possible mechanisms of phonon dynamics. Initial softening and broadening of Raman shift are attributed to the phonon confinement by structural defects and loss of stoichiometry. The stiffening of A{sub 1g} mode is ascribed to large distortion of TiO{sub 6} octahedra under the influence of lattice strain in the (110) plane, which gives rise to lengthening of equatorial Ti-O bond and shortening of apical Ti-O bond. The shortening of apical Ti-O bond induces stiffening of A{sub 1g} mode in the framework of the bond-order-length-strength correlation mechanism.

  19. Conversion of 1,3-Propylene Glycol on Rutile TiO2(110) (Journal...

    Office of Scientific and Technical Information (OSTI)

    Conversion of 1,3-Propylene Glycol on Rutile TiO2(110) Citation Details In-Document Search Title: Conversion of 1,3-Propylene Glycol on Rutile TiO2(110) The adsorption of...

  20. Visible Light Absorption of N-Doped TiO2 Rutile Using (LR/RT...

    Office of Scientific and Technical Information (OSTI)

    N-Doped TiO2 Rutile Using (LRRT)-TDDFT and Active Space EOMCCSD Calculations Citation Details In-Document Search Title: Visible Light Absorption of N-Doped TiO2 Rutile Using ...

  1. Role of precursor chemistry in the direct fluorination to form titanium based conversion anodes for lithium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adcock, Jamie; Dai, Sheng; Veith, Gabriel M.; Bridges, Craig A.; Powell, Jonathan M.

    2015-10-13

    In this study, a new synthetic route for the formation of titanium oxydifluoride (TiOF2) through the process of direct fluorination via a fluidized bed reactor system and the associated electrochemical properties of the powders formed from this approach are reported. The flexibility of this synthetic route was demonstrated using precursor powders of titanium dioxide (TiO2) nanoparticles, as well as a reduced TiOxNy. An advantage of this synthetic method is the ability to directly control the extent of fluorination as a function of reaction temperature and time. The reversible capacity of TiOF2 anodes was found to depend greatly upon the precursormore » employed. The TiOF2 synthesized from TiO2 and TiOxNy showed reversible capacities of 300 mAh g-1 and 440 mAh g-1, respectively, over 100 cycles. The higher reversible capacity of the TiOF2 powders derived from TiOxNy likely relate to the partial reduction of the Ti in the fluorinated electrode material, highlighting a route to optimize the properties of conversion electrode materials.« less

  2. Mechanisms of Oriented Attachment of TiO2 Nanocrystals in Vacuum...

    Office of Scientific and Technical Information (OSTI)

    Mechanisms of Oriented Attachment of TiO2 Nanocrystals in Vacuum and Humid Environments: Reactive Molecular Dynamics Citation Details In-Document Search Title: Mechanisms of ...

  3. Synthesis of Highly Ordered TiO2 Nanotubes Using Ionic Liquids for Photovoltaics Applications

    SciTech Connect (OSTI)

    2009-04-01

    This factsheet describes a study that deals with a new, green approach of synthesizing highly ordered TiO2 nanotubes using ionic liquids for photovoltaics (PV) applications.

  4. Three Human Cell Types Respond to Multi-Walled Carbon Nanotubes and Titanium Dioxide Nanobelts with Cell-Specific Transcriptomic and Proteomic Expression Patterns.

    SciTech Connect (OSTI)

    Tilton, Susan C.; Karin, Norman J.; Tolic, Ana; Xie, Yumei; Lai, Xianyin; Hamilton, Raymond F.; Waters, Katrina M.; Holian, Andrij; Witzmann, Frank A.; Orr, Galya

    2014-08-01

    The growing use of engineered nanoparticles (NPs) in commercial and medical applications raises the urgent need for tools that can predict NP toxicity. Global transcriptome and proteome analyses were conducted on three human cell types, exposed to two high aspect ratio NP types, to identify patterns of expression that might indicate high versus low NP toxicity. Three cell types representing the most common routes of human exposure to NPs, including macrophage-like (THP-1), small airway epithelial and intestinal (Caco-2/HT29-MTX) cells, were exposed to TiO2 nanobelts (TiO2-NB; high toxicity) and multi-walled carbon nanotubes (MWCNT; low toxicity) at low (10 g/mL) and high (100 g/mL) concentrations for 1 and 24 h. Unique patterns of gene and protein expressions were identified for each cell type, with no differentially expressed (p < 0.05, 1.5-fold change) genes or proteins overlapping across all three cell types. While unique to each cell type, the early response was primarily independent of NP type, showing similar expression patterns in response to both TiO2-NB and MWCNT. The early response might, therefore, indicate a general response to insult. In contrast, the 24 h response was unique to each NP type. The most significantly (p < 0.05) enriched biological processes in THP-1 cells indicated TiO2-NB regulation of pathways associated with inflammation, apoptosis, cell cycle arrest, DNA replication stress and genomic instability, while MWCNT-regulated pathways indicated increased cell proliferation, DNA repair and anti-apoptosis. These two distinct sets of biological pathways might, therefore, underlie cellular responses to high and low NP toxicity, respectively.

  5. Sealing glasses for titanium and titanium alloys

    DOE Patents [OSTI]

    Brow, R.K.; McCollister, H.L.; Phifer, C.C.; Day, D.E.

    1997-07-15

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B{sub 2}O{sub 3}), barium oxide (BaO), lanthanum oxide (La{sub 2}O{sub 3}), and at least one other oxide selected from the group consisting of aluminum oxide (Al{sub 2}O{sub 3}), calcium oxide (CaO), lithium oxide (Li{sub 2}O), sodium oxide (Na{sub 2}O), silicon dioxide (SiO{sub 2}), or titanium dioxide (TiO{sub 2}). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900 C, and generally about 700--800 C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 1 fig.

  6. Sealing glasses for titanium and titanium alloys

    DOE Patents [OSTI]

    Brow, Richard K.; McCollister, Howard L.; Phifer, Carol C.; Day, Delbert E.

    1997-01-01

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B.sub.2 O.sub.3), barium oxide (BaO), lanthanum oxide (La.sub.2 O.sub.3), and at least one other oxide selected from the group consisting of aluminum oxide (Al.sub.2 O.sub.3), calcium oxide (CaO), lithium oxide (Li.sub.2 O), sodium oxide (Na.sub.2 O), silicon dioxide (SiO.sub.2), or titanium dioxide (TiO.sub.2). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900.degree. C., and generally about 700.degree.-800.degree. C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  7. Tuning the Optical Properties of Mesoporous TiO2 Films by Nanoscale Engineering

    SciTech Connect (OSTI)

    Schwenzer, Birgit; Wang, Liang; Swensen, James S.; Padmaperuma, Asanga B.; Silverman, Gary; Korotkov, Roman; Gaspar, Daniel J.

    2012-07-03

    Introducing mesoscale pores into spincoated titanium dioxide films, prepared by spincoating different sol-gel precursor solutions on silicon substrates and subsequent annealing at 350 C, 400 C or 450 C, respectively, affects several optical properties of the material. The change in refractive index observed for different mesoporous anatase films directly correlates with changes in pore size, but is also in a more complex manner influenced by the film thickness and the density of pores within the films. Additionally, the band gap of the films is blueshifted by the stress the introduction of pores exerts on the inorganic matrix. The differently sized pores were templated by Pluronic{reg_sign} block copolymers in the solgel solutions and tuned by employing different annealing temperatures for the film preparation. This study focused on elucidating the effect different templating materials (F127 and P123) have on the pore size of the final mesoporous titania film, and on understanding the relation of varying polymer concentration (taking P123 as an example) in the sol-gel solution to the pore concentration and size in the resultant titania film. Titania thin film samples or corresponding titanium dioxide powders were characterized by X-ray diffraction, nitrogen adsorption, ellipsometery, UV/Vis spectrometry and other techniques to understand the interplay between mesoporosity and optical properties.

  8. Titanium metal: extraction to application

    SciTech Connect (OSTI)

    Gambogi, Joseph; Gerdemann, Stephen J.

    2002-09-01

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium. In this paper, we discuss all aspects of the titanium industry from ore deposits through extraction to present and future applications. The methods of both primary (mining of ore, extraction, and purification) and secondary (forming and machining) operations will be analyzed. The chemical and physical properties of titanium metal will be briefly examined. Present and future applications for titanium will be discussed. Finally, the economics of titanium metal production also are analyzed as well as the advantages and disadvantages of various alternative extraction methods.

  9. Doping of TiO 2 Polymorphs for Altered Optical and Photocatalytic Properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nie, Xiliang; Zhuo, Shuping; Maeng, Gloria; Sohlberg, Karl

    2009-01-01

    Tmore » his paper reviews recent investigations of the influence of dopants on the optical properties of TiO 2 polymorphs.he common undoped polymorphs of TiO 2 are discussed and compared.he results of recent doping efforts are tabulated, and discussed in the context of doping by elements of the same chemical group. Dopant effects on the band gap and photocatalytic activity are interpreted with reference to a simple qualitative picture of the TiO 2 electronic structure, which is supported with first-principles calculations.« less

  10. Pulmonary instillation of low doses of titanium dioxide nanoparticles in mice leads to particle retention and gene expression changes in the absence of inflammation

    SciTech Connect (OSTI)

    Husain, Mainul; Saber, Anne T.; Guo, Charles; Jacobsen, Nicklas R.; Jensen, Keld A.; Yauk, Carole L.; Williams, Andrew; Vogel, Ulla; Wallin, Hakan; Halappanavar, Sabina

    2013-06-15

    We investigated gene expression, protein synthesis, and particle retention in mouse lungs following intratracheal instillation of varying doses of nano-sized titanium dioxide (nano-TiO{sub 2}). Female C57BL/6 mice were exposed to rutile nano-TiO{sub 2} via single intratracheal instillations of 18, 54, and 162 μg/mouse. Mice were sampled 1, 3, and 28 days post-exposure. The deposition of nano-TiO{sub 2} in the lungs was assessed using nanoscale hyperspectral microscopy. Biological responses in the pulmonary system were analyzed using DNA microarrays, pathway-specific real-time RT-PCR (qPCR), gene-specific qPCR arrays, and tissue protein ELISA. Hyperspectral mapping showed dose-dependent retention of nano-TiO{sub 2} in the lungs up to 28 days post-instillation. DNA microarray analysis revealed approximately 3000 genes that were altered across all treatment groups (± 1.3 fold; p < 0.1). Several inflammatory mediators changed in a dose- and time-dependent manner at both the mRNA and protein level. Although no influx of neutrophils was detected at the low dose, changes in the expression of several genes and proteins associated with inflammation were observed. Resolving inflammation at the medium dose, and lack of neutrophil influx in the lung fluid at the low dose, were associated with down-regulation of genes involved in ion homeostasis and muscle regulation. Our gene expression results imply that retention of nano-TiO{sub 2} in the absence of inflammation over time may potentially perturb calcium and ion homeostasis, and affect smooth muscle activities. - Highlights: • Pulmonary effects following exposure to low doses of nano-TiO{sub 2} were examined. • Particle retention in lungs was assessed using nanoscale hyperspectral microscopy. • Particles persisted up to 28 days in lungs in all dose groups. • Inflammation was the pathway affected in the high dose group at all time points. • Ion homeostasis and muscle activity pathways were affected in the low dose

  11. Synthesis and characterization of anodized titanium-oxide nanotube arrays

    SciTech Connect (OSTI)

    Hu, Michael Z.; Lai, Peng; Bhuiyan, Md S; Tsouris, Costas; Gu, Baohua; Paranthaman, Mariappan Parans; Gabitto, Jorge; Harrison, L. D.

    2009-01-01

    Anodized titanium-oxide containing highly ordered, vertically oriented TiO2 nanotube arrays is a nanomaterial architecture that shows promise for diverse applications. In this paper, an anodization synthesis using HF-free aqueous solution is described. The anodized TiO2 film samples (amorphous, anatase, and rutile) on titanium foils were characterized with scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. Additional characterization in terms of photocurrent generated by an anode consisting of a titanium foil coated by TiO2 nanotubes was performed using an electrochemical cell. A platinum cathode was used in the electrochemical cell. Results were analyzed in terms of the efficiency of the current generated, defined as the ratio of the difference between the electrical energy output and the electrical energy input divided by the input radiation energy, with the goal of determining which phase of TiO2 nanotubes leads to more efficient hydrogen production. It was determined that the anatase crystalline structure converts light into current more efficiently and is therefore a better photocatalytic material for hydrogen production via photoelectrochemical splitting of water.

  12. Molecular Hydrogen Formation from Proximal Glycol Pairs on TiO2(110)

    SciTech Connect (OSTI)

    Chen, Long; Li, Zhenjun; Smith, R. Scott; Kay, Bruce D.; Dohnalek, Zdenek

    2014-04-16

    Understanding hydrogen formation on TiO2 surfaces is of great importance as it could provide fundamental insight into water splitting for hydrogen production using solar energy. In this work, hydrogen formation from glycols having different numbers of methyl end-groups have been studied using temperature pro-grammed desorption on reduced, hydroxylated, and oxidized TiO2(110) surfaces. The results from OD-labeled glycols demon-strate that gas-phase molecular hydrogen originates exclusively from glycol hydroxyl groups. The yield is controlled by a combi-nation of glycol coverage, steric hindrance, TiO2(110) order and the amount of subsurface charge. Combined, these results show that proximal pairs of hydroxyl aligned glycol molecules and subsurface charge are required to maximize the yield of this redox reaction. These findings highlight the importance of geometric and electronic effects in hydrogen formation from adsorbates on TiO2(110).

  13. Preparation of atomically flat rutile TiO2(001) surfaces for...

    Office of Scientific and Technical Information (OSTI)

    surfaces for oxide film growth This content will become publicly available on January 1, 2017 Prev Next Title: Preparation of atomically flat rutile TiO2(001) surfaces ...

  14. Composite WO3/TiO2 nanostructures for high electrochromic activity.

    SciTech Connect (OSTI)

    Reyes, Karla Rosa; Stephens, Zachary Dan.; Robinson, David B.

    2013-05-01

    A composite material consisting of TiO2 nanotubes (NTs) with WO3 electrodeposited homogeneously on its surface has been fabricated, detached from its substrate, and attached to a fluorine-doped tin oxide film on glass for application to electrochromic (EC) reactions. A paste of TiO2 made from commercially available TiO2 nanoparticles creates an interface for the TiO2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length on the current density and the EC contrast of the material were studied. The EC redox reaction seen in this material is diffusion- limited, having relatively fast reaction rates at the electrode surface. The composite WO3/TiO2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast and longer memory time compared with the pure WO3 and TiO2.

  15. Composite WO3/TiO2 nanostructures for high electrochromic activity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reyes-Gil, Karla R.; Stephens, Zachary D.; Stavila, Vitalie; Robinson, David B.

    2015-01-06

    A composite material consisting of TiO2 nanotubes (NT) with WO3 electrodeposited on its surface has been fabricated, detached from its Ti substrate, and attached to a fluorine-doped tin oxide (FTO) film on glass for application to electrochromic (EC) reactions. Several adhesion layers were tested, finding that a paste of TiO2 made from commercially available TiO2 nanoparticles creates an interface for the TiO2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length and WO3 concentration on the EC performancemore » were studied. As a result, the composite WO3/TiO2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast, and longer memory time compared with the pure WO3 and TiO2 materials« less

  16. Synthesis and Characterization of Photocatalytic TiO 2 -ZnFe 2 O 4 Nanoparticles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Srinivasan, Sesha S.; Wade, Jeremy; Stefanakos, Elias K.

    2006-01-01

    A new coprecipimore » tation/hydrolysis synthesis route is used to create a TiO 2 -ZnFe 2 O 4 nanocomposite that is directed towards extending the photoresponse of TiO 2 from UV to visible wavelengths ( > 400   nm ). The effect of TiO 2 's accelerated anatase-rutile phase transformation due to the presence of the coupled ZnFe 2 O 4 narrow-bandgap semiconductor is evaluated. The transformation's dependence on pH, calcinations temperature, particle size, and ZnFe 2 O 4 concentration has been analyzed using XRD, SEM, and UV-visible spectrometry. The requirements for retaining the highly photoactive anatase phase present in a ZnFe 2 O 4 nanocomposite are outlined. The visible-light-activated photocatalytic activity of the TiO 2 -ZnFe 2 O 4 nanocomposites has been compared to an Aldrich TiO 2 reference catalyst, using a solar-simulated photoreactor for the degradation of phenol.« less

  17. WO3/TiO2 nanotube photoanodes for solar water splitting with simultaneous wastewater treatment.

    SciTech Connect (OSTI)

    Reyes, Karla Rosa; Robinson, David B.

    2013-05-01

    Nanostructured WO3/TiO2 nanotubes with properties that enhance solar photoconversion reactions were developed, characterized and tested. The TiO2 nanotubes were prepared by anodization of Ti foil, and WO3 was electrodeposited on top of the nanotubes. SEM images show that these materials have the same ordered structure as TiO2 nanotubes, with an external nanostructured WO3 layer. Diffuse reflectance spectra showed an increase in the visible absorption relative to bare TiO2 nanotubes, and in the UV absorption relative to bare WO3 films. Incident simulated solar photon-to-current efficiency increased from 30% (for bare WO3) to 50% (for WO3/TiO2 composites). With the addition of diverse organic pollutants, the photocurrent densities exhibited more than a 5-fold increase. Chemical oxygen demand measurements showed the simultaneous photodegradation of organic pollutants. The results of this work indicate that the unique structure and composition of these composite materials enhance the charge carrier transport and optical properties compared with the parent materials.

  18. Transparent TiO2 nanotube array photoelectrodes prepared via two-step anodization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Jin Young; Zhu, Kai; Neale, Nathan R.; Frank, Arthur J.

    2014-04-04

    Two-step anodization of transparent TiO2 nanotube arrays has been demonstrated with aid of a Nb-doped TiO2 buffer layer deposited between the Ti layer and TCO substrate. Enhanced physical adhesion and electrochemical stability provided by the buffer layer has been found to be important for successful implementation of the two-step anodization process. As a result, with the proposed approach, the morphology and thickness of NT arrays could be controlled very precisely, which in turn, influenced their optical and photoelectrochemical properties.

  19. Preparation of atomically flat rutile TiO2(001) surfaces for oxide film growth

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Yang; Lee, Shinbuhm; Vilmercati, P.; Lee, Ho Nyung; Weitering, Hanno; Snijders, Paul C.

    2016-01-01

    The availability of low-index rutile TiO2 single crystal substrates with atomically flat surfaces is essential for enabling epitaxialgrowth of rutile transition metal oxide films. The high surface energy of the rutile (001) surface often leads to surface faceting, which precludes the sputter and annealing treatment commonly used for the preparation of clean and atomically flat TiO2(110) substrate surfaces. In this work, we reveal that stable and atomically flat rutile TiO2(001) surfaces can be prepared with an atomically ordered reconstructedsurface already during a furnace annealing treatment in air. We tentatively ascribe this result to the decrease in surface energy associated withmore » the surface reconstruction, which removes the driving force for faceting. Despite the narrow temperature window where this morphology can initially be formed, we demonstrate that it persists in homoepitaxialgrowth of TiO2(001) thin films. The stabilization of surface reconstructions that prevent faceting of high-surface-energy crystal faces may offer a promising avenue towards the realization of a wider range of high quality epitaxial transition metal oxide heterostructures.« less

  20. Generation of Organic Radicals During Photocatalytic Reactions on TiO2

    SciTech Connect (OSTI)

    Henderson, Michael A.; Deskins, N. Aaron; Zehr, Robert T.; Dupuis, Michel

    2011-04-01

    Using a variety of organic carbonyl molecules (R1C(O)R2) and the rutile TiO2(110) surface as a model photocatalyst, we demonstrate both experimentally and theoretically that ejection of organic radicals from TiO2 surfaces is likely a prevalent reaction process occurring during heterogeneous photooxidationof organic molecules. Organic carbonyls react with coadsorbed oxygen species to form organic diolates which are more strongly bound to TiO2 than are the parent carbonyls. The parent carbonyls, when bound to TiO2(110) in an ?1 configuration, are photo-inactive. However, the diolates are shown to photodecompose by ejection one of the two R substituents from the surface into the gas phase, leaving behind the carboxylate of the other R group. Theoretical calculations using DFT show that in most cases the choice of which R group is ejected can be predicted based on the C-R bond energies and, to a lesser extent, the stability of the ejected R group.

  1. Structural Environment of Nitrogen in N-doped Rutile TiO2(110)

    SciTech Connect (OSTI)

    Henderson, Michael A.; Shutthanandan, V.; Ohsawa, Takeo; Chambers, Scott A.

    2010-12-31

    We employ x-ray photoelectron spectroscopy (XPS), reflection high-energy electron diffraction (RHEED) and nuclear reaction analysis (NRA) to characterize the concentration-dependent structural properties of nitrogen doping into rutile TiO2. High quality N-doped TiO2 were prepared on rutile single crystal TiO2(110) substrates using plasma-assisted molecular beam epitaxy with an electron cyclotron resonance (ECR) plasma and Ti effusive sources. Films with N dopant concentrations at or below 2 at.% exhibited predominately substitutional doping based on NRA data, whereas films with concentrations above this limit resulted in little or no substitutional N and surfaces rich in Ti3+. The binding energy of the N 1s feature in XPS did not readily distinguish between these two extremes in N-doping, rendering features within 0.4 eV of each other and similar peak profiles. Although widely used to characterize the state of N in anion-doped TiO2 materials, we find that XPS is unsuitable for this task.

  2. Grafting Strategy to Develop Single Site Titanium on an Amorphous Silica Surface

    SciTech Connect (OSTI)

    Capel-Sanchez, M.; Blanco-Brieva, G; Campos-Martin, J; de Frutos, M; Wen, W; Rodriguez, J; Fierro, J

    2009-01-01

    Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO2-SiO2 samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate. The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.

  3. Preparing titanium nitride powder

    DOE Patents [OSTI]

    Bamberger, Carlos E.

    1989-07-04

    A process for making titanium nitride powder by reaction of titanium phosphates with sodium cyanide.

  4. Preparing titanium nitride powder

    DOE Patents [OSTI]

    Bamberger, Carlos E.

    1989-01-01

    A process for making titanium nitride powder by reaction of titanium phosphates with sodium cyanide.

  5. Aggregated TiO2 Based Nanotubes for Dye Sensitized Solar Cells

    SciTech Connect (OSTI)

    Nie, Zimin; Zhou, Xiaoyuan; Zhang, Qifeng; Cao, Guozhong; Liu, Jun

    2013-11-01

    One-dimensional (1D) semiconducting oxides have attracted great attention for dye sensitized solar cells (DSCs), but the overall performance is still quite limited as compared to TiO2 nanocrystalline DSCs. Here, we report the synthesis of aggregated TiO2 based nanotubes with controlled morphologies and crystalline structures to obtain an overall power conversion efficiency of 9.9% using conventional dye without any additional chemical treatment steps. The high efficiency is attributed to the unique aggregate structure for light harvesting, optimized high surface area, and good crystallinity of the nanotube aggregates obtained through proper thermal annealing. This study demonstrates that high efficiency DSCs can be obtained with 1D nanomaterials, and provides lessons on the importance of optimizing both the nanocrystalline structure and the overall microscale morphology.

  6. Visible Light Photocatalysis via CdS/ TiO 2 Nanocomposite Materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Srinivasan, Sesha S.; Wade, Jeremy; Stefanakos, Elias K.

    2006-01-01

    Nmore » anostructured colloidal semiconductors with heterogeneous photocatalytic behavior have drawn considerable attention over the past few years. This is due to their large surface area, high redox potential of the photogenerated charge carriers, and selective reduction/oxidation of different classes of organic compounds. In the present paper, we have carried out a systematic synthesis of nanostructured CdS- TiO 2 via reverse micelle process. The structural and microstructural characterizations of the as-prepared CdS- TiO 2 nanocomposites are determined using XRD and SEM-EDS techniques. The visible light assisted photocatalytic performance is monitored by means of degradation of phenol in water suspension.« less

  7. Ultrafast Multiphoton Pump-probe Photoemission Excitation Pathways in Rutile TiO2(110)

    SciTech Connect (OSTI)

    Argondizzo, Adam; Cui, Xuefeng; Wang, Cong; Sun, Huijuan; Shang, Honghui; Zhao, Jin; Petek, Hrvoje

    2015-04-27

    We investigate the spectroscopy and photoinduced electron dynamics within the conduction band of reduced rutile TiO2(110) surface by multiphoton photoemission (mPP) spectroscopy with wavelength tunable ultrafast (!20 fs) laser pulse excitation. Tuning the mPP photon excitation energy between 2.9 and 4.6 eV reveals a nearly degenerate pair of new unoccupied states located at 2.73 ± 0.05 and 2.85 ± 0.05 eV above the Fermi level, which can be analyzed through the polarization and sample azimuthal orientation dependence of the mPP spectra. Based on the calculated electronic structure and optical transition moments, as well as related spectroscopic evidence, we assign these resonances to transitions between Ti 3d bands of nominally t2g and eg symmetry, which are split by crystal field. The initial states for the optical transition are the reduced Ti3+ states of t2g symmetry populated by formation oxygen vacancy defects, which exist within the band gap of TiO2. Furthermore,we studied the electron dynamics within the conduction band of TiO2 by three-dimensional time-resolved pump-probe interferometric mPP measurements. The spectroscopic and time-resolved studies reveal competition between 2PP and 3PP processes where the t2g-eg transitions in the 2PP process saturate, and are overtaken by the 3PP process initiated by the band-gap excitation from the valence band of TiO2.

  8. Direct Evidence of Lithium-Induced Atomic Ordering in Amorphous TiO2 Nanotubes

    SciTech Connect (OSTI)

    Gao, Qi; Gu, Meng; Nie, Anmin; Mashayek, Farzad; Wang, Chong M.; Odegard, Gregory M.; Shahbazian-Yassar, Reza

    2014-01-27

    In this paper, we report the first direct chemical and imaging evidence of lithium-induced atomic ordering in amorphous TiO2 nanomaterials and propose new reaction mechanisms that contradict the many works in the published literature on the lithiation behavior of these materials. The lithiation process was conducted in situ inside an atomic resolution transmission electron microscope. Our results indicate that the lithiation started with the valence reduction of Ti4+ to Ti3+ leading to a LixTiO2 intercalation compound. The continued intercalation of Li ions in TiO2 nanotubes triggered an amorphous to crystalline phase transformation. The crystals were formed as nano-islands and identified to be Li2Ti2O4 with cubic structure (a = 8.375 ). The tendency for the formation of these crystals was verified with density functional theory (DFT) simulations. The size of the crystalline islands provides a characteristic length scale (?5 nm) at which the atomic bonding configuration has been changed within a short time period. This phase transformation is associated with local inhomogeneities in Li distribution. On the basis of these observations, a new reaction mechanism is proposed to explain the first cycle lithiation behavior in amorphous TiO2 nanotubes.

  9. Increased photocatalytic activity of TiO2 mesoporous microspheres from codoping with transition metals and nitrogen

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mathis, John E.; Lieffers, Justin J.; Mitra, Chandrima; Reboredo, Fernando A.; Bi, Z.; Bridges, Craig A.; Kidder, Michelle K.; Paranthaman, Mariappan Parans

    2015-11-06

    The composition of anatase TiO2 was modified by codoping using combinations of a transition metal and nitrogen in order to increase its photocatalytic activity and extend it performance in the visible region of the electromagnetic spectrum. The transition metals (Mn, Co, Ni, Cu) were added during the hydrothermal preparation of mesoporous TiO2 particles, and the nitrogen was introduced by post-annealing in flowing ammonia gas at high temperature. The samples were analyzed by SEM, XRD, BET, inductively-coupled plasma spectroscopy, and diffuse reflectance UV-vis spectroscopy. The photocatalytic activity was assessed by observing the change in methylene blue concentrations under both UV-vis andmore » visible-only light irradiation. As a result, the photocatalytic activity of the (Mn,N), (Co,N), (Cu,N), and Ni,N) codoped TiO2 was significantly enhanced relative to (N) TiO2.« less

  10. Role of Water in Methanol Photochemistry on Rutile TiO2(110)

    SciTech Connect (OSTI)

    Shen, Mingmin; Henderson, Michael A.

    2012-08-07

    Photochemistry of the molecularly and dissociatively adsorbed forms of methanol on the vacuum-annealed rutile TiO2(110) surface was explored using temperature programmed desorption (TPD), both with and without coadsorbed water. Methoxy, and not methanol, was confirmed as the photochemically active form of adsorbed methanol on this surface. UV irradiation of methoxy-covered TiO2(110) lead to depletion of the methoxy coverage and formation of formaldehyde and a surface OH group. Coadsorbed water did not promote either molecular methanol photochemistry or thermal decomposition of methanol to methoxy. However, terminal OH groups (OHt), prepared by coadsorption of water and oxygen atoms, thermally converted molecularly adsorbed methanol to methoxy at 120 K, thus enabling photoactivity. While chemisorbed water molecules had no influence on methoxy photochemistry, water molecules hydrogen-bonded in the second layer to bridging oxygen (Obr) sites inhibited the methoxy photodecomposition to formaldehyde. From this we conclude that Obr sites accept protons from the hole-mediated conversion of methoxy to formaldehyde. These results provide new fundamental understanding of the hole-scavenging role of methanol in photochemical processes on TiO2-based materials and how water influences this photochemistry. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle under contract DEAC05-76RL01830. The research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  11. Importance of Diffusion in Methanol Photochemistry on TiO2(110)

    SciTech Connect (OSTI)

    Shen, Mingmin; Acharya, Danda P.; Dohnalek, Zdenek; Henderson, Michael A.

    2012-12-06

    The photoactivity of methanol on the rutile TiO2(110) surface is shown to depend on the ability of methanol to diffuse on the surface and find sites active for its thermal dissociation to methoxy. Temperature programmed desorption (TPD) results show that the extent of methanol photodecomposition to formaldehyde is negligible on the clean TiO2(110) surface at 100 K due to a scarcity of sites that can convert (photoinactive) methanol to (photoactive) methoxy. The extent of photoactivity at 100 K significantly increases when methanol is coadsorbed with oxygen, however only those molecules able to adsorb near (next to) a coadsorbed oxygen species are active. Preannealing coadsorbed methanol and oxygen to above 200 K prior to UV irradiation results in a significant increase in photoactivity. Scanning tunneling microscopy (STM) images clearly show that the advent of increased photoactivity in TPD correlates with the onset of methanol diffusion along the surfaces Ti4+ rows at ~200 K. These results demonstrate that optimizing thermal processes (such as diffusion or proton transfer reactions) can be critical to maximizing photocatalytic reactivity on TiO2 surfaces. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle under contract DEAC05-76RL01830. The research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  12. Electron-Selective TiO2 Contact for Cu(In,Ga)Se2 Solar Cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hsu, Weitse; Sutter-Fella, Carolin M.; Hettick, Mark; Cheng, Lungteng; Chan, Shengwen; Chen, Yunfeng; Zeng, Yuping; Zheng, Maxwell; Wang, Hsin-Ping; Chiang, Chien-Chih; et al

    2015-11-03

    The non-toxic and wide bandgap material TiO2 is explored as an n-type buffer layer on p-type Cu(In,Ga)Se2 (CIGS) absorber layer for thin film solar cells. The amorphous TiO2 thin film deposited by atomic layer deposition process at low temperatures shows conformal coverage on the CIGS absorber layer. Solar cells from non-vacuum deposited CIGS absorbers with TiO2 buffer layer result in a high short-circuit current density of 38.9 mA/cm2 as compared to 36.9 mA/cm2 measured in the reference cell with CdS buffer layer, without compromising open-circuit voltage. The significant photocurrent gain, mainly in the UV part of the spectrum, can bemore » attributed to the low parasitic absorption loss in the ultrathin TiO2 layer (~10 nm) with a larger bandgap of 3.4 eV compared to 2.4 eV of the traditionally used CdS. Overall the solar cell conversion efficiency was improved from 9.5% to 9.9% by substituting the CdS by TiO2 on an active cell area of 10.5 mm2. In conclusion, optimized TiO2/CIGS solar cells show excellent long-term stability. The results imply that TiO2 is a promising buffer layer material for CIGS solar cells, avoiding the toxic CdS buffer layer with added performance advantage.« less

  13. Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds

    DOE Patents [OSTI]

    Bamberger, C.E.

    A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.

  14. Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds

    DOE Patents [OSTI]

    Bamberger, Carlos E.

    1980-01-01

    A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.

  15. Molecular-Level Insights into Photocatalysis from Scanning Probe Microscopy Studies on TiO2(110)

    SciTech Connect (OSTI)

    Henderson, Michael A.; Lyubinetsky, Igor

    2013-06-12

    The field of heterogeneous photocatalysis has grown considerably in the decades since Fujishima and Honda's ground-breaking publications of photoelectrochemistry on TiO2. Numerous review articles continue to point to both progress made in the use of heterogeneous materials (such as TiO2) to perform photoconversion processes, and the many opportunities and challenges in heterogeneous photocatalysis research such as solar energy conversion and environmental remediation. The past decade has also seen an increase in the use of molecular-level approaches applied to model single crystal surfaces in an effort to obtain new insights into photocatalytic phenomena. In particular, scanning probe techniques (SPM) have enabled researchers to take a nanoscale approach to photocatalysis that includes interrogation of the reactivities of specific sites and adsorbates on a model photocatalyst surface. The rutile TiO2(110) surface has become the prototypical oxide single crystal surface for fundamental studies of many interfacial phenomena. In particular, TiO2(110) has become an excellent model surface for probing photochemical and photocatalytic reactions at the molecular level. A variety of experimental approaches have emerged as being ideally suited for studying photochemical reactions on TiO2(110), including desorption-oriented approaches and electronic spectroscopies, but perhaps the most promising techniques for evaluating site-specific properties are those of SPM. In this review, we highlight the growing use of SPM techniques in providing molecular-level insights into surface photochemistry on the model photocatalyst surface of rutile TiO2(110). Our objective is to both illustrate the unique knowledge that scanning probe techniques have already provided the field of photocatalysis, and also to motivate a new generation of effort into the use of such approaches to obtain new insights into the molecular level details of photochemical events occurring at interfaces. Discussion will start with an examination of how scanning probe techniques are being used to characterize the TiO2(110) surface in ways that are relevant to photocatalysis. We will then discuss specific classes of photochemical reaction on TiO2(110) for which SPM has proven indispensible in providing unique molecular-level insights, and conclude with discussion of future areas in which SPM studies may prove valuable to photocatalysis on TiO2. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. I.L. was partially supported by a Pacific Northwest National Laboratory (PNNL) Chemical Imaging Initiative project. PNNL is a multiprogram national laboratory operated for DOE by Battelle.

  16. Electrolyte Concentration Effect of a Photoelectrochemical Cell Consisting of TiO 2 Nanotube Anode

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ren, Kai; Gan, Yong X.; Nikolaidis, Efstratios; Sofyani, Sharaf Al; Zhang, Lihua

    2013-01-01

    The photoelectrochemical responses of a TiO 2 nanotube anode in ethylene glycol (EG), glycerol, ammonia, ethanol, urea, and Na 2 S electrolytes with different concentrations were investigated. The TiO 2 nanotube anode was highly efficient in photoelectrocatalysis in these solutions under UV light illumination. The photocurrent density is obviously affected by the concentration change. Na 2 S generated the highest photocurrent density at 0, 1, and 2 V bias voltages, but its concentration does not significantly affect the photocurrent density. Urea shows high open circuit voltage at proper concentration and low photocurrent at different concentrations. Externally applied bias voltage ismore » also an important factor that changes the photoelectrochemical reaction process. In view of the open circuit voltage, EG, ammonia, and ethanol fuel cells show the trend that the open circuit voltage (OCV) increases with the increase of the concentration of the solutions. Glycerol has the highest OCV compared with others, and it deceases with the increase in the concentration because of the high viscosity. The OCV of the urea and Na 2 S solutions did not show obvious concentration effect.« less

  17. On the consistency of QCBED structure factor measurements for TiO2 (Rutile)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jiang, Bin; Zuo, Jian -Min; Friis, Jesper; Spence, John C. H.

    2003-09-16

    The same Bragg reflection in TiO2 from twelve different CBED patterns (from different crystals, orientations and thicknesses) are analysed quantitatively in order to evaluate the consistency of the QCBED method for bond-charge mapping. The standard deviation in the resulting distribution of derived X-ray structure factors is found to be an order of magnitude smaller than that in conventional X-ray work, and the standard error (0.026% for FX(110)) is slightly better than obtained by the X-ray Pendellosung method applied to silicon. This is sufficiently accuracy to distinguish between atomic, covalent and ionic models of bonding. We describe the importance of extractingmore » experimental parameters from CCD camera characterization, and of surface oxidation and crystal shape. Thus, the current experiments show that the QCBED method is now a robust and powerful tool for low order structure factor measurement, which does not suffer from the large extinction (multiple scattering) errors which occur in inorganic X-ray crystallography, and may be applied to nanocrystals. Our results will be used to understand the role of d electrons in the chemical bonding of TiO2.« less

  18. Dimensionality of nanoscale TiO2 determines the mechanism of photoinduced electron injection from a CdSe nanoparticle

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tafen, De Nyago; Long, Run; Prezhdo, Oleg V.

    2014-03-10

    Assumptions about electron transfer (ET) mechanisms guide design of catalytic, photovoltaic, and electronic systems. We demonstrate that the mechanism of ET from a CdSe quantum dot (QD) into nanoscale TiO2 depends on TiO2 dimensionality. The injection into a TiO2 QD is adiabatic due to strong donor–acceptor coupling, arising from unsaturated chemical bonds on the QD surface, and low density of acceptor states. In contrast, the injection into a TiO2 nanobelt (NB) is nonadiabatic, because the state density is high, the donor–acceptor coupling is weak, and multiple phonons accommodate changes in the electronic energy. The CdSe adsorbant breaks symmetry of delocalizedmore » TiO2 NB states, relaxing coupling selection rules, and generating more ET channels. Both mechanisms can give efficient ultrafast injection. Furthermore, the dependence on system properties is very different for the two mechanisms, demonstrating that the fundamental principles leading to efficient charge separation depend strongly on the type of nanoscale material.« less

  19. Temperature-programmed desorption study of NO reactions on rutile TiO2(110)-1×1

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Boseong; Dohnalek, Zdenek; Szanyi, Janos; Kay, Bruce D.; Kim, Yu Kwon

    2016-02-24

    In this study, systematic temperature-programmed desorption (TPD) studies of NO adsorption and reactions on rutile TiO2(110)-1 × 1 surface reveal several distinct reaction channels in a temperature range of 50–500 K. NO readily reacts on TiO2(110) to form N2O, which desorbs between 50 and 200 K (LT N2O channels), which leaves the TiO2 surface populated with adsorbed oxygen atoms (Oa) as a by-product of N2O formation. In addition, we observe simultaneous desorption peaks of NO and N2O at 270 K (HT1 N2O) and 400 K (HT2 N2O), respectively, both of which are attributed to reaction-limited processes. No N-derived reaction productmore » desorbs from TiO2(110) surface above 500 K or higher, while the surface may be populated with Oa's and oxidized products such as NO2 and NO3. The adsorbate-free TiO2 surface with oxygen vacancies can be regenerated by prolonged annealing at 850 K or higher. Detailed analysis of the three N2O desorption yields reveals that the surface species for the HT channels are likely to be various forms of NO dimers.« less

  20. Microsoft PowerPoint - Datskos_2015_UserProjectHighlight_AngewChemie

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    silica (silicon dioxide; SiO2) and hybrid microstructures made of silica and titania (titanium dioxide; TiO2). This approach provides a high degree of control of (1) shape, (2)...

  1. Nucleation and Growth of Crystalline Grains in RF-Sputtered TiO 2 Films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, J. C.; Ahrenkiel, S. P.; Dutta, P.; Bommisetty, V. R.

    2009-01-01

    Amore » morphous TiO 2 thin films were radio frequency sputtered onto siliconmonoxide and carbon support films on molybdenum transmission electron microscope (TEM) grids and observed during in situ annealing in a TEM heating stage at 250 ∘ C. The evolution of crystallization is consistent with a classical model of homogeneous nucleation and isotropic grain growth. The two-dimensional grain morphology of the TEM foil allowed straightforward recognition of amorphous and crystallized regions of the films, for measurement of crystalline volume fraction and grain number density. By assuming that the kinetic parameters remain constant beyond the onset of crystallization, the final average grain size was computed, using an analytical extrapolation to the fully crystallized state. Electron diffraction reveals a predominance of the anatase crystallographic phase.« less

  2. Describing excited state relaxation and localization in TiO2 nanoparticles using TD-DFT

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Berardo, Enrico; Hu, Han -Shi; van Dam, Hubertus J. J.; Shevlin, Stephen A.; Woodley, Scott M.; Kowalski, Karol; Zwijnenburg, Martijn A.

    2014-02-26

    We have investigated the description of excited state relaxation in naked and hydrated TiO2 nanoparticles using Time-Dependent Density Functional Theory (TD-DFT) with three common hybrid exchange-correlation (XC) potentials; B3LYP, CAM-B3LYP and BHLYP. Use of TD-CAM-B3LYP and TD-BHLYP yields qualitatively similar results for all structures, which are also consistent with predictions of coupled cluster theory for small particles. TD-B3LYP, in contrast, is found to make rather different predictions; including apparent conical intersections for certain particles that are not observed with TD-CAM-B3LYP nor with TD-BHLYP. In line with our previous observations for vertical excitations, the issue with TD-B3LYP appears to be themore » inherent tendency of TD-B3LYP, and other XC potentials with no or a low percentage of Hartree-Fock Like Exchange, to spuriously stabilize the energy of charge-transfer (CT) states. Even in the case of hydrated particles, for which vertical excitations are generally well described with all XC potentials, the use of TD-B3LYP appears to result in CT-problems for certain particles. We hypothesize that the spurious stabilization of CT-states by TD-B3LYP even may drive the excited state optimizations to different excited state geometries than those obtained using TD-CAM-B3LYP or TD-BHLYP. In conclusion, focusing on the TD-CAM-B3LYP and TD-BHLYP results, excited state relaxation in naked and hydrated TiO2 nanoparticles is predicted to be associated with a large Stokes’ shift.« less

  3. TiO2 nanotube arrays grown in ionic liquids: high-efficiency in photocatalysis and pore-widening

    SciTech Connect (OSTI)

    Li, Huaqing; Qu, Jun; Cui, Qingzhou; Xu, Hanbing; Luo, Huimin; Chi, Miaofang; Meisner, Roberta Ann; Wang, Wei; Dai, Sheng

    2011-01-01

    Debris-free, long, well-separated TiO2 nanotube arrays were obtained using an ionic liquid (IL) as electrolyte. The high conductivity of IL resulted in fast pore widening and few contaminants from electrolyte decomposition leading to high photocatalytic efficiency in water splitting.

  4. Low thermal budget, photonic-cured compact TiO2 layers for high-efficiency perovskite solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Das, Sanjib; Gu, Gong; Joshi, Pooran C.; Yang, Bin; Aytug, Tolga; Rouleau, Christopher M.; Geohegan, David B.; Xiao, Kai

    2016-05-25

    Rapid advances in organometallic trihalide perovskite solar cells (PSCs) have positioned them to be one of the leading next generation photovoltaic technologies. However, most of the high-performance PSCs, particularly those using compact TiO2 as an electron transport layer, require a high-temperature sintering step, which is not compatible with flexible polymer-based substrates. Considering the materials of interest for PSCs and corresponding device configurations, it is technologically imperative to fabricate high-efficiency cells at low thermal budget so that they can be realized on low-temperature plastic substrates. In this paper, we report on a new photonic curing technique that produces crystalline anatase-phase TiO2more » films on indium tin oxide-coated glass and flexible polyethylene terephthalate (PET) substrates. Finally, the planar PSCs, using photonic-cured TiO2 films, exhibit PCEs as high as 15.0% and 11.2% on glass and flexible PET substrates, respectively, comparable to the device performance of PSCs incorporating furnace annealed TiO2 films.« less

  5. Low Thermal Budget, Photonic-Cured Compact TiO2 Layer for High-Efficiency Perovskite Solar Cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Das, Sanjib; Gu, Gong; Joshi, Pooran C; Aytug, Tolga; Rouleau, Christopher; Geohegan, David B; Xiao, Kai

    2016-01-01

    Rapid advances in organometal trihalide perovskite solar cells (PSCs) have positioned them to be one of the leading next generation photovoltaic technologies. However, most of the high-performance PSCs, particularly those using compact TiO2 as electron transport layer, require a high-temperature sintering step, which is not compatible with flexible polymer-based substrates. Considering the materials of interest for PSCs and corresponding device configurations, it is technologically imperative to fabricate high-efficiency cells at low thermal budget so that they can be realized on low-temperature plastic substrates. We report on a new photonic curing technique that produces high-quality crystalline TiO2 films on indium tinmore » oxide-coated glass and flexible polyethylene terephthalate (PET) substrates. The planar PSCs, using photonic-cured TiO2 films, exhibit PCEs as high as 15.0% and 11.2% on glass and flexible PET substrates, respectively, comparable to the device performance of PSCs incorporating furnace annealed TiO2 films.« less

  6. Highly Active TiO2-Based Visible-Light Photocatalyst with Nonmetal Doping and Plasmonic Metal Decoration

    SciTech Connect (OSTI)

    Zhang, Qiao; Lima, Diana Q.; Chi, Miaofang; Yin, Yadong

    2011-01-01

    A sandwich-structured photocatalyst shows an excellent performance in degradation reactions of a number of organic compounds under UV, visible light, and direct sunlight (see picture). The catalyst was synthesized by a combination of nonmetal doping and plasmonic metal decoration of TiO2 nanocrystals, which improves visible-light activity and enhances light harvesting and charge separation, respectively.

  7. Preparation of titanium diboride powder

    DOE Patents [OSTI]

    Brynestad, Jorulf; Bamberger, Carlos E.

    1985-01-01

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  8. Bisphosphine dioxides

    DOE Patents [OSTI]

    Moloy, K.G.

    1990-02-20

    A process is described for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  9. Bisphosphine dioxides

    DOE Patents [OSTI]

    Moloy, Kenneth G.

    1990-01-01

    A process for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  10. Molecular and Dissociative Adsorption of Water on (TiO 2 ) n Clusters, n = 1–4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Mingyang; Straatsma, Tjerk P.; Dixon, David A.

    2015-10-20

    In the low energy structures of the (TiO2)n(H2O)m (n ≤ 4, m ≤ 2n) and (TiO2)8(H2O)m (m = 3, 7, 8) clusters were predicted using a global geometry optimization approach, with a number of new lowest energy isomers being found. Water can molecularly or dissociatively adsorb on pure and hydrated TiO2 clusters. Dissociative adsorption is the dominant reaction for the first two H2O adsorption reactions for n = 1, 2, and 4, for the first three H2O adsorption reactions for n = 3, and for the first four H2O adsorption reactions for n = 8. As more H2O’s are addedmore » to the hydrated (TiO2)n cluster, dissociative adsorption becomes less exothermic as all the Ti centers become 4-coordinate. Furthermore two types of bonds can be formed between the molecularly adsorbed water and TiO2 clusters: a Lewis acid–base Ti–O(H2) bond or an O···H hydrogen bond. The coupled cluster CCSD(T) results show that at 0 K the H2O adsorption energy at a 4-coordinate Ti center is ~15 kcal/mol for the Lewis acid–base molecular adsorption and ~7 kcal/mol for the H-bond molecular adsorption, in comparison to that of 8–10 kcal/mol for the dissociative adsorption. The cluster size and geometry independent dehydration reaction energy, ED, for the general reaction 2(-TiOH) → -TiOTi– + H2O at 4-coordinate Ti centers was estimated from the aggregation reaction of nTi(OH)4 to form the monocyclic ring cluster (TiO3H2)n + nH2O. ED is estimated to be -8 kcal/mol, showing that intramolecular and intermolecular dehydration reactions are intrinsically thermodynamically allowed for the hydrated (TiO2)n clusters with all of the Ti centers 4-coordinate, which can be hindered by cluster geometry changes caused by such processes. Finally by bending force constants for the TiOTi and OTiO bonds are determined to be 7.4 and 56.0 kcal/(mol·rad2). Infrared vibrational spectra were calculated using density functional theory, and the new bands appearing upon water adsorption were assigned.« less

  11. Imaging Hindered Rotations of Alkoxy Species on TiO2(110)

    SciTech Connect (OSTI)

    Zhang, Zhenrong; Rousseau, Roger J.; Gong, Jinlong; Kay, Bruce D.; Dohnalek, Zdenek

    2009-12-16

    We present the first study of the rotational dynamics of organic species on any oxide surface. Specifically, variable-temperature scanning tunneling microscopy (STM) and dispersion-corrected density functional theory are used to study the alkyl chain conformational disorder and dynamics of 1-, 2-, 3- and 4-octoxy on rutile TiO2(110). Initially, the geminate pairs of the octoxy and bridging hydroxyl species are created via octanol dissociation on bridging-oxygen (Ob) vacancy defects. The STM images provide time averaged snapshots of octoxy species rotating among multiple energetically nearly-degenerate configurations accessible at a given temperature. In the calculations we find that the underlying corrugated potential energy surface is a result of the interplay between attractive Van der Waals dispersion forces leading to weak attractive C...Ti and repulsive C...Ob interactions which lead to large barriers of 50-70kJmol-1 for the rotation of the octoxy alkyl chains across the Ob rows. In the presence of the germinal hydroxyl groups we find that the relative populations of the various conformations as well as the rotational barriers are perturbed by the presence of geminate hydroxyl due to additional C...hydroxyl repulsions.

  12. Adsorption of small hydrocarbons on rutile TiO2(110)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Long; Smith, R. Scott; Kay, Bruce D.; Dohnalek, Zdenek

    2015-11-21

    Here, temperature programmed desorption and molecular beam scattering were used to study the adsorption and desorption of small hydrocarbons (n-alkanes, 1-alkenes and 1-alkynes of C1–C4) on rutile TiO2(110). We show that the sticking coefficients for all the hydrocarbons are close to unity (> 0.95) at an adsorption temperature of 60 K. The desorption energies for hydrocarbons of the same chain length increase from n-alkanes to 1-alkenes and to 1-alkynes. This trend is likely a consequence of additional dative bonding of the alkene and alkyne π system to the coordinatively unsaturated Ti5c sites. Similar to previous studies on the adsorption ofmore » n-alkanes on metal and metal oxide surfaces, we find that the desorption energies within each group (n-alkanes vs. 1-alkenes vs. 1-alkynes) from Ti5c sites increase linearly with the chain length. The absolute saturation coverages of each hydrocarbon on Ti5c sites were also determined. The saturation coverage of CH4, is found to be ~ 2/3 monolayer (ML). The saturation coverages of C2–C4 hydrocarbons are found nearly independent of the chain length with values of ~ 1/2 ML for n-alkanes and 1-alkenes and 2/3 ML for 1-alkynes. This result is surprising considering their similar sizes.« less

  13. Level Alignment of a Prototypical Photocatalytic System: Methanol on TiO2(110)

    SciTech Connect (OSTI)

    Migani, Annapaola; Mowbray, Duncan J.; Iacomino, Amilcare; Zhao, Jin; Petek, Hrvoje

    2013-08-07

    Photocatalytic activity depends on the optimal alignment of electronic levels at the molecule? semiconductor interface. Establishing the level alignment experimentally is complicated by the uncertain chemical identity of the surface species. We address the assignment of the occupied and empty electronic levels for the prototypical photocatalytic system consisting of methanol on a rutile TiO2(110) surface. Using many-body quasiparticle (QP) techniques, we show that the frontier levels measured in UV photoelectron and two-photon photoemission spectroscopy experiments can be assigned to molecularly chemisorbed methanol rather than its dissociated product, the methoxy species. We find that the highest occupied molecular orbital of the methoxy species is much closer to the valence band maximum, suggesting why it is more photocatalytically active than the methanol molecule. We develop a general semiquantitative model for predicting many-body QP energies based on the electronic screening within the bulk, molecular, or vacuum regions of the wave functions at molecule?semiconductor interfaces.

  14. Large-Scale Synthesis of Transition-Metal-Doped TiO2 Nanowires with Controllable Overpotential

    SciTech Connect (OSTI)

    Liu, Bin; Chen, HaoMing; Liu, Chong; Andrews, Sean; Han, Chris; Yang, Peidong

    2013-03-13

    Practical implementation of one-dimensional semiconductors into devices capable of exploiting their novel properties is often hindered by low product yields, poor material quality, high production cost, or overall lack of synthetic control. Here, we show that a molten-salt flux scheme can be used to synthesize large quantities of high-quality, single-crystalline TiO2 nanowires with controllable dimensions. Furthermore, in situ dopant incorporation of various transition metals allows for the tuning of optical, electrical, and catalytic properties. With this combination of control, robustness, and scalability, the molten-salt flux scheme can provide high-quality TiO2 nanowires to satisfy a broad range of application needs from photovoltaics to photocatalysis.

  15. 19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yin, Xingtian; Battaglia, Corsin; Lin, Yongjing; Chen, Kevin; Hettick, Mark; Zheng, Maxwell; Chen, Cheng-Ying; Kiriya, Daisuke; Javey, Ali

    2014-09-25

    We demonstrate an InP heterojunction solar cell employing an ultrathin layer (~10 nm) of amorphous TiO2 deposited at 120°C by atomic layer deposition as the transparent electron-selective contact. The TiO2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. Lastly, a hydrogen plasma treatment of the InP surface drastically improves the long-wavelength response of the device, resulting in a high short-circuit current density of 30.5 mA/cm2 and a high power conversion efficiency of 19.2%.

  16. Identification of the Active Species in Photochemical Hole Scavenging Reactions of Methanol on TiO2

    SciTech Connect (OSTI)

    Shen, Mingmin; Henderson, Michael A.

    2011-11-03

    Molecular and dissociative methanol adsorption species were prepared on rutile TiO2(110) surfaces to study photocatalytic oxidation of methanol in ultrahigh vacuum (UHV) using temperature-programmed desorption (TPD). Adsorbed methoxy groups (CH3O-) were found to be the photoactive form of adsorbed methanol converted to adsorbed formaldehyde and a surface OH group by hole-mediated C-H bond cleavage. These results suggest that adsorbed methoxy is the effective hole scavenger in photochemical reactions involving methanol.

  17. Reactivity Screening of Anatase TiO2 Nanotube Arrays and Anatase Thin Films: A Surface Chemistry Point of View

    SciTech Connect (OSTI)

    Funk, S.; Hokkanen, B.; Nurkic, T.; Goering, J.; Kadossov, E.; Burghaus, Uwe; Ghicov, A.; Schmuki, P.; Yu, Zhongqing; Thevuthasan, Suntharampillai; Saraf, Laxmikant V.

    2008-09-19

    As a reactivity screening we collected thermal desorption spectroscopy (TDS) data of iso-butane, O2, CO2, and CO adsorbed on ordered TiO2 nanotube (TiNTs) arrays. As a reference system iso-butane adsorption on an anatase TiO2 thin film has been considered as well. The as-grown TiNTs are vertically aligned and amorphous. Polycrystalline (poly.) anatase or poly. anatase/rutile mixed nanotubes are formed by annealing confirmed by x-ray diffraction (XRD) and scanning electron microscopy (SEM). The anatase thin film was grown on SrTiO3(001) and characterized by XRD and atomic force microscopy (AFM). Surprisingly, oxygen distinctly interacts with the TiNTs whereas this process is not observed on fully oxidized single crystal rutile TiO2(110). Desorption temperatures of 110-150 K and 100-120 K were observed for CO2 and CO, respectively, on the TiNTs. Variations in the binding energies of the alkanes on TiNTs and anatase thin films also were present, i.e., a structure-activity relationship (SAR) is evident.

  18. Remediation of Organic and Inorganic Arsenic Contaminated Groundwater using a Nonocrystalline TiO2 Based Adsorbent

    SciTech Connect (OSTI)

    Jing, C.; Meng, X; Calvache, E; Jiang, G

    2009-01-01

    A nanocrystalline TiO2-based adsorbent was evaluated for the simultaneous removal of As(V), As(III), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in contaminated groundwater. Batch experimental results show that As adsorption followed pseudo-second order rate kinetics. The competitive adsorption was described with the charge distribution multi-site surface complexation model (CD-MUSIC). The groundwater containing an average of 329 ?g L-1 As(III), 246 ?g L-1 As(V), 151 ?g L-1 MMA, and 202 ?g L-1 DMA was continuously passed through a TiO2 filter at an empty bed contact time of 6 min for 4 months. Approximately 11 000, 14 000, and 9900 bed volumes of water had been treated before the As(III), As(V), and MMA concentration in the effluent increased to 10 ?g L-1. However, very little DMA was removed. The EXAFS results demonstrate the existence of a bidentate binuclear As(V) surface complex on spent adsorbent, indicating the oxidation of adsorbed As(III). A nanocrystalline TiO2-based adsorbent could be used for the simultaneous removal of As(V), As(III), MMA, and DMA in contaminated groundwater.

  19. Site Competition During Coadsorption of Acetone with Methanol and Water on TiO2(110)

    SciTech Connect (OSTI)

    Shen, Mingmin; Henderson, Michael A.

    2011-08-02

    The competitive interaction between acetone and two solvent molecules (methanol and water) for surface sites on rutile TiO2(110) was studied using temperature programmed desorption (TPD). On a vacuum reduced TiO2(110) surface, which possessed ~5% oxygen vacancy sites, excess methanol displaced preadsorbed acetone molecules to weakly bound and physisorbed desorption states below 200 K, whereas acetone was stabilized to 250 K against displacement by methanol on an oxidized surface through formation of an acetone-diolate species. These behaviors of acetone differ from the competitive interactions between acetone and water in that acetone is less susceptible to displacement by water. Examination of acetone+methanol and acetone+water multilayer combinations shows that acetone is more compatible in water-ice films than in methanol-ice films, presumably because water has greater potential as a hydrogen-bond donor than does methanol. Acetone molecules displaced from the TiO2(110) surface by water are more likely to be retained in the near-surface region, having a greater opportunity to revisit the surface, than when methanol is used as a coadsorbate. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  20. Constructing hierarchical interfaces: TiO2-supported PtFe-FeOx nanowires for room temperature CO oxidation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Huiyuan; Wu, Zili; Dong, Su; Veith, Gabriel M.; Lu, Hanfeng; Zhang, Pengfei; Chai, Song -Hai; Dai, Sheng

    2015-08-05

    This is a report of a facile approach to constructing catalytic active hierarchical interfaces in one-dimensional (1D) nanostructure, exemplified by the synthesis of TiO2-supported PtFe–FeOx nanowires (NWs). The hierarchical interface, constituting atomic level interactions between PtFe and FeOx within each NW and the interactions between NWs and support (TiO2), enables CO oxidation with 100% conversion at room temperature. We identify the role of the two interfaces by probing the CO oxidation reaction with isotopic labeling experiments. Both the oxygen atoms (Os) in FeOx and TiO2 participate in the initial CO oxidation, facilitating the reaction through a redox pathway. Moreover, themore » intact 1D structure leads to the high stability of the catalyst. After 30 h in the reaction stream, the PtFe–FeOx/TiO2 catalyst exhibits no activity decay. These results provide a general approach and new insights into the construction of hierarchical interfaces for advanced catalysis.« less

  1. Composite materials and bodies including silicon carbide and titanium diboride and methods of forming same

    DOE Patents [OSTI]

    Lillo, Thomas M.; Chu, Henry S.; Harrison, William M.; Bailey, Derek

    2013-01-22

    Methods of forming composite materials include coating particles of titanium dioxide with a substance including boron (e.g., boron carbide) and a substance including carbon, and reacting the titanium dioxide with the substance including boron and the substance including carbon to form titanium diboride. The methods may be used to form ceramic composite bodies and materials, such as, for example, a ceramic composite body or material including silicon carbide and titanium diboride. Such bodies and materials may be used as armor bodies and armor materials. Such methods may include forming a green body and sintering the green body to a desirable final density. Green bodies formed in accordance with such methods may include particles comprising titanium dioxide and a coating at least partially covering exterior surfaces thereof, the coating comprising a substance including boron (e.g., boron carbide) and a substance including carbon.

  2. Selective Catalytic Reduction of NO by NH3 with WO3-TiO2 Catalysts: Influence of Catalyst Synthesis Method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Yuanyuan; Ford, Michael E.; Zhu, Minghui; Liu, Qingcai; Wu, Zili; Wachs, Israel E.

    2016-02-02

    A series of supported WO3/TiO2 catalysts was prepared by a new synthesis procedure involving co-precipitation of an aqueous TiO(OH)2 and (NH4)10W12O41*5H2O slurry under controlled pH conditions. The morphological properties, molecular structures, surface acidity and surface chemistry of the supported WO3/TiO2 catalysts were determined with BET, in situ Raman, in situ IR and temperature-programmed surface reaction (TPSR) spectroscopy, respectively. Isotopic 18O-16O exchange demonstrated that tungsten oxide was exclusively present as surface WOx species on the TiO2 support with mono-oxo W=O coordination. In contrast to previous studies employing impregnation synthesis that found only surface one mono-oxo O=WO4 site on TiO2, the co-precipitationmore » procedure resulted in the formation of two distinct surface WOx species: mono-oxo O=WO4 (~1010-1017 cm-1) on low defect density patches of TiO2 and a second mono-oxo O=WO4 (~983-986 cm-1) on high defect density patches of TiO2. The concentration of the second WOx surface species increases as a function of solution pH. Both surface WOx sites, however, exhibited the same NO/NH3 SCR reactivity. The co-precipitated WO3-TiO2 catalysts synthesized in alkaline solutions exhibited enhanced performance for the NO/NH3 SCR reaction that is ascribed to the greater number of surface defects on the resulting TiO2 support. For the co-precipitated catalyst prepared at pH10, surface NH4+ species on Br nsted acid sites were found to be more reactive than surface NH3* species on Lewis acid sites for SCR of NO with NH3.« less

  3. Multi-Timescale Investigation of Radiation Damage near TiO2 Rutile Grain Boundaries

    SciTech Connect (OSTI)

    Xian-Ming Bai; Blas P. Uberuaga

    2012-04-01

    Although grain boundaries (GBs) have been experimentally demonstrated to serve as sinks for absorbing radiation induced defects and improving the radiation tolerance of materials, the detailed atomistic interactions between defects and GBs leading to this enhanced tolerance are not well understood. In oxide ceramics the interactions are further complicated as defects can be charged and grain boundaries may exhibit space charge and charge dipole effects. Here, we use two atomistic modeling methods to examine the role of GBs in a model oxide system, rutile TiO2, in modifying defect production during irradiation events. The GB studied is a symmetric tilt GB with a rotation axis of [100] and a rotation angle of 15.25{sup o}. We use molecular dynamics to investigate defect production near the GB at both 300K and 1000 K and find that the damage production is sensitive to the initial distance of the primary knock-on atom (PKA) from the GB. We find three distinct regimes in which GBs have different effects on modifying defect production. Similar to GBs in metals, the GB absorbs more interstitials than vacancies at certain distances while this behavior of biased loading of interstitials diminishes at other distances. Further, we obtain the statistics of both interstitial and vacancy clusters 2 produced in collision cascades in terms of their compositions at two temperatures. We find that perfectly stoichiometric defect clusters (Schottky and anti-Schottky clusters) represent a small fraction of the total defect clusters produced. Moreover, a significant reduction in the number of interstitial clusters at 1000 K compared to 300 K is thought to be a consequence of enhanced migration of interstitials towards the GB. Finally the kinetic properties of certain defect clusters are investigated with temperature accelerated dynamics, without any priori assumptions of migration mechanisms. We find that small interstitial clusters become mobile at high temperatures while small vacancy clusters do not. Multiple migration pathways exist and are typically complex and non-intuitive. We use this kinetic information to explain experimental observations and predict their long-time migration behavior near GBs.

  4. Photo-catalytic oxidation of acetone on a TiO2 powder: An in situ FTIR investigation

    SciTech Connect (OSTI)

    Szanyi, Janos; Kwak, Ja Hun

    2015-09-01

    In situ transmission infrared spectroscopy was used to investigate the photo-oxidation of acetone on a commercial, oxidized TiO2 (P25) powder catalyst under UV irradiation at ambient temperature, in the absence and presence of gas phase O2. The photochemistry of a number of organic molecules (1-butanone, methanol and acetic acid,) under the same conditions was also studied in order to identify reaction intermediates and products formed in the photo-oxidation of acetone. Under anaerobic conditions (in the absence of gas phase oxygen) limited extent of photo-oxidation of acetone took place on the oxidized TiO2 sample. In the presence of O2 in the gas phase, however, acetone was completely converted to acetates and formates, and ultimately CO2. The initial step in the sequence of photo-induced reactions is the ejection of a methyl radical, resulting in the formation of surface acetates (from the acetyl group) and formates (from the methyl radicals). Acetate ions are also converted to formates, that, in turn, photo-oxidized to CO2. Under the experimental conditions applied the accumulation of carbonates and bicarbonates were observed on the TiO2 surface as the photo-oxidation of acetone proceeded (this was also observed during the course of photo-oxidation of all the other organics studied here). When the initial radical ejection step produced hydrocarbons containing more than one C atoms (as in the case in 2-butanone and mesytil oxide), the formation of aldehydes on the catalyst surface was also observed as a result of secondary reactions. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. JHK also acknowledges the support of this work by the 2014 Research Fund of UNIST (Ulsan National Institute of Science and Technology, Ulsan, Korea). The authors thank M.A. Henderson for the fruitful discussions on the photo-oxidation of organic molecules on TiO2.

  5. Photoinduced electron transfer in perylene-TiO2 nanoassemblies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ABSTRACT: The photosensitization effect of three perylene dye derivatives on titanium dioxide nanoparticles (TiO2 NPs) has been investigated. The dyes used, 1,7-dibromoperylene-3,4...

  6. Summer 2011 Intern Project- Nancy Trejo | Center for Energy Efficient...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In this study, we attempted to create one such system where wide band gap semiconducting oxides such as titanium dioxide (TiO2) and zinc oxide (ZnO) are coated with uniform layers ...

  7. Applications of Tunable TiO2 Nanotubes as Nanotemplate and Photovoltaic Device

    SciTech Connect (OSTI)

    Li, Dongdong; Chang, Pai-Chun; Chien, Chung-Jen; Lu, Jia Grace

    2010-10-26

    Highly ordered anodic titanium oxide (ATO) TiO{sub 2} nanotube film has been synthesized via a typical two-step anodization method. Following a reductive doping approach, metallic materials (copper and nickel) can be efficiently electrodeposited into the nanotubes. This versatile process yields reproducible tubular structures in ATO membranes, because of the conductive nature of crystallized TiO{sub 2}, yielding promising potential for nanotemplate applications. In this paper, we present a dye-sensitized solar cell constructed by employing such ATO films. It is observed that the reductive doping treatment can also enhance the solar cells short current density and fill factor, resulting in an improved energy conversion efficiency.

  8. Titanium Alloys - Some

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SLM of Aluminium and Titanium Alloys - Some lessons learned Presented by: Dr Chris Tuck Nottingham Background Lattice Design Investigating Density ...

  9. Titanium hermetic seals

    DOE Patents [OSTI]

    Brow, Richard K.; Watkins, Randall D.

    1995-07-04

    Titanium is prenitrided by being heated in a nitrogen environment under conditions which give rise to the formation of a titanium-nitride surface layer on the titanium. Titanium thus prenitrided may be used in electrical components which are hermetically sealed using silicate glasses and standard glass sealing techniques. According to the method of the invention, alkali volatilization and formation of deleterious interfacial silicide are inhibited.

  10. Titanium hermetic seals

    DOE Patents [OSTI]

    Brow, Richard K.; Watkins, Randall D.

    1995-01-01

    Titanium is prenitrided by being heated in a nitrogen environment under conditions which give rise to the formation of a titanium-nitride surface layer on the titanium. Titanium thus prenitrided may be used in electrical components which are hermetically sealed using silicate glasses and standard glass sealing techniques. According to the method of the invention, alkali volatilization and formation of deleterious interfacial silicide are inhibited.

  11. Sealing glasses for titanium and titanium alloys

    DOE Patents [OSTI]

    Brow, Richard K.; Watkins, Randall D.

    1992-01-01

    Glass compositions containing CaO, Al.sub.2 O.sub.3, B.sub.2 O.sub.3, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.

  12. Sealing glasses for titanium and titanium alloys

    DOE Patents [OSTI]

    Brow, R.K.; Watkins, R.D.

    1988-01-21

    Glass compositions containing CaO, Al/sub 2/O/sub 3/, B/sub 2/O/sub 3/, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.

  13. Quenching of electron transfer reactions through coadsorption: A study of oxygen photodesorption from TiO2(110)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Petrik, Nikolay G.; Kimmel, Greg A.; Shen, Mingmin; Henderson, Michael A.

    2016-01-11

    Using temperature programmed desorption (TPD) and photon-stimulated desorption (PSD), we show that coadsorbates of varying binding energies on the rutile TiO2(110) surface exert a commensurate inhibiting influence on the hole-mediated photodesorption of adsorbed O2. A variety of coadsorbates (Ar, Kr, Xe, N2, CO, CO2, CH4, N2O, acetone, methanol or water) were shown to quench O2 photoactivity, with the extent correlating with the coadsorbate's gas phase basicity, which in turn determines the strength of the coadsorbate–Ti4+ bond. Coadsorbed rare gases inhibited the photodesorption of O2 by ~ 10–25%, whereas strongly bound species (water, methanol, and acetone) nearly completely inhibited O2 PSD.more » We suggest that coadsorption of these molecules inhibit the arrival probability of holes to the surface. Band-bending effects, which vary with the extent of charge transfer between the coadsorbate and the TiO2(110) surface, are not expected to be significant in the cases of the rare gases and physisorbed species. Furthermore, these results indicate that neutral coadsorbates can exert a significant influence on charge transfer events by altering the interfacial dipole in the vicinity of the target molecule.« less

  14. TiO2 Nanotubes/MWCNTs Nanocomposite Photocatalysts: Synthesis, Characterization and Photocatalytic Hydrogen Evolution Under UV-Vis Light Illumination

    SciTech Connect (OSTI)

    Li, Hao-Peng; Zhang, Xiao-Yan; Cui, Xiao-Li; Lin, Yuehe

    2012-03-01

    Nanocomposite of TiO2 nanotubes (TiO2NTs) and multiwalled carbon nanotubes (MWCNTs) has been synthesized by a hydrothermal method and firstly used in photocatalytic hydrogen production. The obtained TiO2 NTs/MWCNTs composites were characterized by X-ray diffraction, transmission electron microscopy, Raman spectrum and ultraviolet-visible diffuse reflectance spectroscopy. The experimental results revealed that the MWCNTs were decorated with well dispersed anatase TiO2 nanotubes with a diameter of 8-15 nm. A slight blue shift and weak symmetry was observed for the strongest Raman peak which resulted from strain gradients originating from interface integration between TiO2 nanotubes and MWCNTs. The photocatalytic activity of the as-prepared samples was evaluated by hydrogen evolution from water splitting using Na2S and Na2SO3 as sacrificial reagents under UV-vis light irradiation. Enhanced photocatalytic activity compared with P25 has been observed for the resulted samples. The nanocomposite with optimized MWCNTs content of 1% displayed a hydrogen production rate of 161 u mol/h/g. Good photocatalytic stability of the as-synthesized samples was observed as well.

  15. Atomic structure of nanometer-sized amorphous TiO2

    SciTech Connect (OSTI)

    Zhang, H.; Chen, B.; Banfield, J.F.; Waychunas, G.A.

    2008-10-15

    Amorphous titania (TiO{sub 2}) is an important precursor for synthesis of single-phase nanocrystalline anatase. We synthesized x-ray amorphous titania by hydrolysis of titanium ethoxide at the ice point. Transmission electron microscopy examination and nitrogen gas adsorption indicated the particle size of the synthesized titania is {approx} 2 nm. Synchrotron wide-angle x-ray scattering (WAXS) was used to probe the atomic correlations in this amorphous sample. Atomic pair-distribution function (PDF) derived from Fourier transform of the WAXS data was used for reverse Monte Carlo (RMC) simulations of the atomic structure of the amorphous TiO{sub 2} nanoparticles. Molecular dynamics simulations were used to generate input structures for the RMC. X-ray absorption spectroscopy (XAS) simulations were used to screen candidate structures obtained from the RMC by comparing with experimental XAS data. The structure model that best describes both the WAXS and XAS data shows that an amorphous TiO{sub 2} particle consists of a highly distorted shell and a small strained anatase-like crystalline core. The average coordination number of Ti is 5.3 and most Ti-O bonds are populated around 1.940 {angstrom}. Relative to bulk TiO{sub 2}, the reduction of the coordination number is primarily due to the truncation of the Ti-O octahedra at the amorphous nanoparticle surface and the shortening of the Ti-O bond length to the bond contraction in the distorted shell. The preexistence of the anatase-like core may be critical to the formation of single-phase nanocrystalline anatase in crystallization of amorphous TiO{sub 2} upon heating.

  16. Removal of Hazardous Pollutants from Wastewaters: Applications of TiO 2 -SiO 2 Mixed Oxide Materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rasalingam, Shivatharsiny; Peng, Rui; Koodali, Ranjit T.

    2014-01-01

    The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP) have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the applicationmore » of TiO 2 -SiO 2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.« less

  17. Probing the photochemistry of chemisorbed oxygen on TiO2(110) with Kr and other co-adsorbates

    SciTech Connect (OSTI)

    Petrik, Nikolay G.; Kimmel, Gregory A.

    2014-02-14

    Weakly bound (physisorbed) atoms and molecules such as Ar, Kr, Xe, CO, CH4, CH3OH, CO2 and N2 are used to probe the photochemical interactions of O2 on rutile TiO2(110). UV irradiation of chemisorbed O2 along with the physisorbed probe species leads to photon-stimulated desorption (PSD) of Ar, Kr, CO, CH4 and N2. Without co-adsorbed O2, the PSD yields of the probe species are very low or not observed. No PSD was observed for CO2, N2O, CH3OH and the PSD yield for Xe is very low compared to the other probe atoms or molecules. The angular distribution of the photo-desorbing Kr, which is broad and cosine, is quite different from the O2 PSD angular distribution, which is sharply peaked along the surface normal. The Kr PSD yields increase with increasing coverage of Kr and of chemisorbed O2. We propose a mechanism for the observed phenomena where the chemisorbed O2 serves as photoactive center, excited via electronic excitations (electrons and/or holes) created in the TiO2 substrate by UV photon irradiation. The photo-excited O2 may transfer its energy to neighboring co-adsorbed atom or molecule resulting in desorption of the latter. Simple momentum transfer considerations suggest that heavier adsorbates (like Xe) and adsorbates with higher binding energy (like CO2) should desorb less efficiently according to the proposed mechanism. Various forms of chemisorbed O2 appeared photoactive in such stimulated desorption of Kr atoms: molecular anions (O22-, O2-), adatoms (Oa), and others. The observed phenomenon provides a new tool for study of photocatalysis.

  18. Photochemical Grafting of Organic Alkenes to Single-Crystal TiO2 Surfaces: A Mechanistic Study

    SciTech Connect (OSTI)

    Franking, Ryan A.; Kim, Heesuk; Chambers, Scott A.; Mangham, Andrew N.; Hamers, Robert J.

    2012-08-21

    The UV-induced photochemical grafting of terminal alkenes has emerged as a versatile way to form molecular layers on semiconductor surfaces. Recent studies have shown that grafting reactions can be initiated by photoelectron emission into the reactant liquid as well as by excitation across the semiconductor bandgap, but the relative importance of these two processes is expected to depend on the nature of the semiconductor and the reactant alkene and the excitation wavelength. Here we report a study of the wavelength-dependent photochemical grafting of alkenes onto single-crystal TiO2 samples. Trifluoroacetamide-protected 10-aminododec-1-ene (TFAAD), 10-N-BOC-aminodec-1-ene (t-BOC) and 1-dodecene were used as model alkenes. On rutile(110), photons with energy above the bandgap but below the expected work function are not effective at inducing grafting, while photons with energy sufficient to induce electronic transitions from the TiO2 Fermi level to electronic acceptor states of the reactant molecules induce grafting. A comparison of rutile (110), rutile(001), anatase (001), and anatase(101) samples shows slightly enhanced grafting for rutile but no difference between crystal faces for a given crystal phase. Hydroxylation of the surface increases the reaction rate by lowering the work function and thereby facilitating photoelectron ejection into the adjacent alkene. These results demonstrate that photoelectron emission is the dominant mechanism responsible for grafting when using short-wavelength (~254 nm) light and suggest that photoemission events beginning on mid-gap states may play a crucial role.

  19. Magnetic Fe3O4@TiO2 Nanoparticles-based Test Strip Immunosensing Device for Rapid Detection of Phosphorylated Butyrylcholinesterase

    SciTech Connect (OSTI)

    Ge, Xiaoxiao; Zhang, Weiying; Lin, Yuehe; Du, Dan

    2013-12-15

    An integrated magnetic nanoparticles-based test-strip immunosensing device was developed for rapid and sensitive quantification of phosphorylated butyrylcholinesterase (BChE), the biomarker of exposure to organophosphous pesticides (OP), in human plasma. In order to overcome the difficulty in scarce availability of OP-specific antibody, here magnetic Fe3O4@TiO2 nanoparticles were used and adsorbed on the test strip through a small magnet inserted in the device to capture target OP-BChE through selective binding between TiO2 and OP moiety. Further recognition was completed by horseradish peroxidase (HRP) and anti-BChE antibody (Ab) co-immobilized gold nanoparticles (GNPs). Their strong affinities among Fe3O4@TiO2, OP-BChE and HRP/Ab-GNPs were characterized by quartz crystal microbalance (QCM), surface plasmon resonance (SPR) and square wave voltammetry (SWV) measurements. After cutting off from test strip, the resulted immunocomplex (HRP/Ab-GNPs/OP-BChE/Fe3O4@TiO2) was measured by SWV using a screen printed electrode under the test zone. Greatly enhanced sensitivity was achieved by introduction of GNPs to link enzyme and antibody at high ratio, which amplifies electrocatalytic signal significantly. Moreover, the use of test strip for fast immunoreactions reduces analytical time remarkably. Coupling with a portable electrochemical detector, the integrated device with advanced nanotechnology displays great promise for sensitive, rapid and in-filed on-site evaluation of OP poisoning.

  20. Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Yuanyuan; Ford, Michael E.; Zhu, Minghui; Liu, Qingcai; Tumuluri, Uma; Wu, Zili; Wachs, Israel E.

    2016-04-14

    We compared the molecular structures, surface acidity and catalytic activity for NO/NH3/O2 SCR of V2O5-WO3/TiO2 catalysts for two different synthesis methods: co-precipitation of aqueous vanadium and tungsten oxide precursors with TiO(OH)2 and by incipient wetness impregnation of the aqueous precursors on a reference crystalline TiO2 support (P25; primarily anatase phase). Bulk analysis by XRD showed that co-precipitation results in small and/or poorly ordered TiO2(anatase) particles and that VOx and WOx do not form solid solutions with the bulk titania lattice. Surface analysis of the co-precipitated catalyst by High Sensitivity-Low Energy Ion Scattering (HS-LEIS) confirms that the VOx and WOx aremore » surface segregated for the co-precipitated catalysts. In situ Raman and IR spectroscopy revealed that the vanadium and tungsten oxide components are present as surface mono-oxo O = VO3 and O = WO4 sites on the TiO2 supports. Co-precipitation was shown for the first time to also form new mono-oxo surface VO4 and WO4 sites that appear to be anchored at surface defects of the TiO2 support. IR analysis of chemisorbed ammonia showed the presence of both surface NH3* on Lewis acid sites and surface NH4+* on Brønsted acid sites. TPSR spectroscopy demonstrated that the specific SCR kinetics was controlled by the redox surface VO4 species and that the surface kinetics was independent of TiO2 synthesis method or presence of surface WO5 sites. SCR reaction studies revealed that the surface WO5 sites possess minimal activity below ~325 °C and their primary function is to increase the adsorption capacity of ammonia. A relationship between the SCR activity and surface acidity was not found. The SCR reaction is controlled by the surface VO4 sites that initiate the reaction at ~200 °C. The co-precipitated catalysts were always more active than the corresponding impregnated catalysts. Finally, we ascribe the higher activity of the co-precipitated catalysts to the presence of the new surface WOx sites associated surface defects on the TiO2 support that increase the ammonia adsorption capacity.« less

  1. Dual Phase Li4 Ti5O12TiO2 Nanowire Arrays As Integrated Anodes For High-rate Lithium-ion Batteries

    SciTech Connect (OSTI)

    Liao, Jin; Chabot, Victor; Gu, Meng; Wang, Chong M.; Xiao, Xingcheng; Chen, Zhongwei

    2014-08-19

    Lithium titanate (Li4Ti5O12) is well known as a zero strain material inherently, which provides excellent long cycle stability as a negative electrode for lithium ion batteries. However, the low specific capacity (175 mA h g?1) limits it to power batteries although the low electrical conductivity is another intrinsic issue need to be solved. In this work, we developed a facile hydrothermal and ion-exchange route to synthesize the self-supported dual-phase Li4Ti5O12TiO2 nanowire arrays to further improve its capacity as well as rate capability. The ratio of Li4Ti5O12 to TiO2 in the dual phase Li4Ti5O12TiO2 nanowire is around 2:1. The introduction of TiO2 into Li4Ti5O12 increases the specific capacity. More importantly, by interface design, it creates a dual-phase nanostructure with high grain boundary density that facilitates both electron and Li ion transport. Compared with phase-pure nanowire Li4Ti5O12 and TiO2 nanaowire arrays, the dual-phase nanowire electrode yielded superior rate capability (135.5 at 5 C, 129.4 at 10 C, 120.2 at 20 C and 115.5 mA h g?1 at 30 C). In-situ transmission electron microscope clearly shows the near zero deformation of the dual phase structure, which explains its excellent cycle stability.

  2. Sprayable titanium composition

    DOE Patents [OSTI]

    Tracy, Chester E.; Kern, Werner; Vibronek, Robert D.

    1980-01-01

    The addition of 2-ethyl-1-hexanol to an organometallic titanium compound dissolved in a diluent and optionally containing a lower aliphatic alcohol spreading modifier, produces a solution that can be sprayed onto a substrate and cured to form an antireflection titanium oxide coating having a refractive index of from about 2.0 to 2.2.

  3. Site-Specific Imaging of Elemental Steps in Dehydration of Diols on TiO2(110)

    SciTech Connect (OSTI)

    Acharya, Danda P.; Yoon, Yeohoon; Li, Zhenjun; Zhang, Zhenrong; Lin, Xiao; Mu, Rentao; Chen, Long; Kay, Bruce D.; Rousseau, Roger J.; Dohnalek, Zdenek

    2013-11-26

    The conversion of diols on partially reduced TiO2(110) at low coverage was studied using variable-temperature scanning tunneling microscopy, temperature programmed desorption and density functional theory calculations. We find, that below ~230 K, ethane-1,2-diol and propane-1,3-diol molecules adsorb predominantly on five-fold coordinated Ti5c atoms. The dynamic equilibrium between molecularly bound and dissociated species resulting from O-H bond scission and reformation is observed. As the diols start to diffuse on the Ti5c rows above ~230 K, they dissociate irreversibly upon encountering bridging oxygen (Ob) vacancy (VOs) defects. Two dissociation pathways, one via O-H and the other via C-O bond scission leading to identical surface intermediates, hydroxyalkoxy, Ob-(CH2)n-OH (n = 2, 3) and bridging hydroxyl, HOb, are seen. For O-H bond scission, the Ob-(CH2)n-OH is found on the position of the original VO, while for C-O scission it is found on the adjacent Ob site. Theoretical calculations suggest that the observed mixture of C-O/O-H bond breaking processes are a result of the steric factors enforced upon the diols by the second OH group that is bound to a Ti5c site. At room temperature, rich dissociation/reformation dynamics of the second, Ti5c-bound O-H leads to the formation of dioxo, Ob-(CH2)n-OTi, species. Above ~400 K, both Ob-(CH2)n-OH and Ob-(CH2)n-OTi species convert into a new intermediate, that is centered on Ob row. Combined experimental and theoretical evidence shows that this intermediate is most likely a new dioxo, Ob-(CH2)2-Ob, species. Further annealing leads to sequential C-Ob bond cleavage and alkene desorption above ~ 500 K. Simulations find that the sequential C-O bond breaking process follows a homolytic diradical pathway with the first C-O bond breaking event accompanied by a non-adiabatic electron transfer within the TiO2(110) substrate.

  4. Size and Temperature Dependence of Electron Transfer between CdSe Quantum Dots and a TiO 2 Nanobelt

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tafen, De Nyago; Prezhdo, Oleg V.

    2015-02-24

    Understanding charge transfer reactions between quantum dots (QD) and metal oxides is fundamental for improving photocatalytic, photovoltaic and electronic devices. The complexity of these processes makes it difficult to find an optimum QD size with rapid charge injection and low recombination. We combine time-domain density functional theory with nonadiabatic molecular dynamics to investigate the size and temperature dependence of the experimentally studied electron transfer and charge recombination at CdSe QD-TiO2 nanobelt (NB) interfaces. The electron injection rate shows strong dependence on the QD size, increasing for small QDs. The rate exhibits Arrhenius temperature dependence, with the activation energy of themore » order of millielectronvolts. The charge recombination process occurs due to coupling of the electronic subsystem to vibrational modes of the TiO2 NB. Inelastic electron-phonon scattering happens on a picosecond time scale, with strong dependence on the QD size. Our simulations demonstrate that the electron-hole recombination rate decreases significantly as the QD size increases, in excellent agreement with experiments. The temperature dependence of the charge recombination rates can be successfully modeled within the framework of the Marcus theory through optimization of the electronic coupling and the reorganization energy. Our simulations indicate that by varying the QD size, one can modulate the photoinduced charge separation and charge recombination, fundamental aspects of the design principles for high efficiency devices.« less

  5. Hydrogen Reactivity on Highly-hydroxylated TiO2(110) Surfaces Prepared via Carboxylic Acid Adsorption and Photolysis

    SciTech Connect (OSTI)

    Du, Yingge; Petrik, Nikolay G.; Deskins, N. Aaron; Wang, Zhitao; Henderson, Michael A.; Kimmel, Gregory A.; Lyubinetsky, Igor

    2012-02-27

    Combined scanning tunneling microscopy, temperature-programmed desorption, photo stimulated desorption, and density functional theory studies have probed the formation and reactivity of highly-hydroxylated rutile TiO2(110) surfaces, which were prepared via a novel, photochemical route using trimethyl acetic acid (TMAA) dissociative adsorption and subsequent photolysis at 300 K. Deprotonation of TMAA molecules upon adsorption produces both surface bridging hydroxyls (OHb) and bidentate trimethyl acetate (TMA) species with a saturation coverage of near 0.5 monolayer (ML). Ultra-violet light irradiation selectively removes TMA species, producing a highly-hydroxylated surface with up to ~0.5 ML OHb coverage. At high coverages, the OHb species typically occupy second-nearest neighbor sites along the bridging oxygen row locally forming linear (21) structures of different lengths, although the surface is less ordered on a long scale. The annealing of the highly-hydroxylated surface leads to hydroxyl recombination and H2O desorption with ~100% yield, thus ruling out the diffusion of H into the bulk that has been suggested in the literature. In agreement with experimental data, theoretical results show that the recombinative H2O desorption is preferred over both H bulk diffusion and H2 desorption processes.

  6. Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles and their application for immunoassay of biomarker of exposure to organophosphorus pesticides

    SciTech Connect (OSTI)

    Zhang, Xiao; Wang, Hongbo; Yang, Chunming; Du, Dan; Lin, Yuehe

    2013-03-15

    Novel Fe3O4 at TiO2 magnetic nanoparticles were prepared and developed for a new nanoparticle-based immunosensor for electrochemical quantification of organophosphorylated butyrylcholinesterase (BChE) in plasma, a specific biomarker of exposure to organophosphorus (OP) agents. The Fe3O4 at TiO2 nanoparticles were synthesized by hydrolysis of tetrabutyltitanate on the surface of Fe3O4 magnetic nanospheres, and characterized by attenuated total reflection Fourier-transform infrared spectra, transmission electron microscope and X-ray diffraction. The functional Fe3O4 at TiO2 nanoparticles were performed as capture antibody to selectively enrich phosphorylated moiety instead of phosphoserine antibody in the traditional sandwich immunoassays. The secondary recognition was served by quantum dots (QDs)-tagged anti-BChE antibody (QDs-anti-BChE). With the help of a magnet, the resulting sandwich-like complex, Fe3O4 at TiO2/OP-BChE/QDs-anti-BChE, was easily isolated from sample solutions and the released cadmium ions were detected on a disposable screen-printed electrode (SPE). The binding affinities were investigated by both surface plasmon resonance (SPR) and square wave voltammetry (SWV). This method not only avoids the drawback of unavailability of commercial OP-specific antibody but also amplifies detection signal by QDs-tags together with easy separation of samples by magnetic forces. The proposed immunosensor yields a linear response over a broad OP-BChE concentrations range from 0.02 to 10 nM, with detection limit of 0.01 nM. Moreover, the disposable nanoparticle-based immunosensor has been validated with human plasma samples. It offers a new method for rapid, sensitive, selective and inexpensive screening/evaluating exposure to OP pesticides.

  7. ALD TiO2-Al2O3 Stack: An Improved Gate Dielectrics on Ga-polar GaN MOSCAPs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.; Srijanto, Bernadeta R.; Retterer, Scott T.; Meyer, III, Harry M.

    2014-10-15

    This research focuses on the benefits and properties of TiO2-Al2O3 nano-stack thin films deposited on Ga2O3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO2, 7.1 nm Al2O3 and 2 nm Ga2O3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectron spectroscopy (XPS) depth profile, was negligible for GaN pretreated bymore » thermal oxidation in O2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO2-Al2O3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al2O3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 1011 cm-2. The gate leakage current density (J=2.81× 10-8 A/cm2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO2/Al2O3 for serving as the gate oxide on Ga2O3/GaN based MOS devices.« less

  8. Temperature-dependent local structural properties of redox Pt nanoparticles on TiO2 and ZrO2 supports

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jeong, Eun -Suk; Park, Chang -In; Jin, Zhenlan; Hwang, In -Hui; Son, Jae -Kwan; Kim, Mi -Young; Choi, Jae -Soon; Han, Sang -Wook

    2015-01-21

    This paper examined the local structural properties of Pt nanoparticles on SiO2, TiO2–SiO2, and ZrO2–SiO2 supports to better understand the impact of oxide-support type on the performance of Pt-based catalysts. In situ X-ray absorption fine structure (XAFS) measurements were taken for the Pt L3-edge in a temperature range from 300 to 700 K in He, H2, and O2 gas environments. The XAFS measurements demonstrated that Pt atoms were highly dispersed on TiO2–SiO2 and ZrO2–SiO2 forming pancake-shaped nanoparticles, whereas Pt atoms formed larger particles of hemispherical shapes on SiO2 supports. Contrary to the SiO2 case, the coordination numbers for Pt, Ti,more » and Zr around Pt atoms on the TiO2–SiO2 and ZrO2–SiO2 supports were nearly constant from 300 to 700 K under the different gas environments. These results are consistent with the improvements in thermal stability of Pt nanoparticles achieved by incorporating TiO2 or ZrO2 on the surface of SiO2 supports. XAFS analysis further indicated that the enhanced dispersion and stability of Pt were a consequence of the strong metal support interaction via Pt–Ti and Pt–Zr bonds.« less

  9. Quantitative Phase Composition of TiO2-Coated Nanoporous-Au Monoliths by X-ray Absorption Spectroscopy and Correlations to Catalytic

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bagge-Hansen, Michael; Wichmann, Andre; Wittstock, Arne; Lee, Jonathan R. I.; Ye, Jianchao; Willey, Trevor M.; Kuntz, Joshua D.; van Buuren, Tony; Biener, Juergen; Baumer, Marcus; et al

    2014-02-03

    Porous titania/metal composite materials have many potential applications in the fields of green catalysis, energy harvesting, and storage in which both the overall morphology of the nanoporous host material and the crystallographic phase of the titania (TiO 2) guest determine the material’s performance. New insights into the structure–function relationships of these materials were obtained by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy that, for example, provides quantitative crystallographic phase composition from ultrathin, nanostructured titania films, including sensitivity to amorphous components. We demonstrate that crystallographic phase, morphology, and catalytic activity of TiO 2-functionalized nanoporous gold (np-Au) can be controlled by amore » simple annealing procedure (T < 1300 K). The material was prepared by atomic layer deposition of ~2 nm thick TiO2 on millimeter-sized samples of np-Au (40–50 nm mean ligament size) and catalytically investigated with respect to aerobic CO oxidation. Moreover, the annealing-induced changes in catalytic activity are correlated with concurrent morphology and phase changes as provided by cross-sectional scanning electron microscopy, transmission electron microscopy, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy.« less

  10. Impact of Solvent on Photocatalytic Mechanisms: Reactions of Photodesorption Products with Ice Overlayers on the TiO2(110) Surface

    SciTech Connect (OSTI)

    Shen, Mingmin; Henderson, Michael A.

    2011-04-07

    The effects of water and methanol ice overlayers on the photodecomposition of acetone on rutile TiO2(110) were evaluated in ultrahigh vacuum (UHV) using photon stimulated desorption (PSD) and temperature programmed desorption (TPD). In the absence of ice overlayers, acetone photodecomposed on TiO2(110) at 95 K by ejection of a methyl radical into the gas phase and formation of acetate on the surface. With ice overlayers, the methyl radicals are trapped at the interface between TiO2(110) and the ice. When water ice was present, these trapped methyl radicals reacted either with each other to form ethane or with other molecules in the ice (e.g., water or displaced acetone) to form methane (CH4), ethane (CH3CH3) and other products (e.g., methanol), with all of these products trapped in the ice. The new products were free to revisit the surface or depart during desorption of the ice. When methanol ice was present, methane formation came about only from reaction of trapped methyl radicals with the methanol ice. Methane and ethane slowly leaked through methanol ice overlayers into vacuum at 95 K, but not through water ice overlayers. Different degrees of site competition between water and acetone, and between methanol and acetone led to different hydrogen abstraction pathways in the two ices. These results provide new insights into product formation routes and solution-phase radical formation mechanisms that are important in heterogeneous photocatalysis.

  11. The role of double TiO2 layers at the interface of FeSe/SrTiO3 superconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zou, Ke; Bozovic, Ian; Mandal, Subhasish; Albright, Stephen; Peng, Rui; Kumah, Divine; Simon, Georg; Dagdeviren, Omur; He, Xi; Schwarz, Udo; et al

    2016-05-16

    Here, we determine the surface reconstruction of SrTiO3 used to achieve superconducting FeSe films in experiments, which is different from the 1×1 TiO2-terminated SrTiO3 assumed by most previous theoretical studies. In particular, we identify the existence of a double TiO2 layer at the FeSe/SrTiO3 interface that plays two important roles. First, it facilitates the epitaxial growth of FeSe. Second, ab initio calculations reveal a strong tendency for electrons to transfer from an oxygen deficient SrTiO3 surface to FeSe when the double TiO2 layer is present. The double layer helps to remove the hole pocket in the FeSe at the Γmore » point of the Brillouin zone and leads to a band structure characteristic of superconducting samples. The characterization of the interface structure presented here is a key step towards the resolution of many open questions about this superconductor.« less

  12. Titanium alkoxide compound

    DOE Patents [OSTI]

    Boyle, Timothy J.

    2007-08-14

    A titanium alkoxide composition is provided, as represented by the chemical formula (OC.sub.6H.sub.5N).sub.2Ti(OC.sub.6H.sub.5NH.sub.2).sub.2. As prepared, the compound is a crystalline substance with a hexavalent titanium atom bonded to two OC.sub.6H.sub.5NH.sub.2 groups and two OC.sub.6H.sub.5N groups with a theoretical molecular weight of 480.38, comprising 60.01% C, 5.04% H and 11.66% N.

  13. An Insoluble Titanium-Lead Anode for Sulfate Electrolytes

    SciTech Connect (OSTI)

    Ferdman, Alla

    2005-05-11

    The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead composite material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no

  14. Method for synthesis of titanium dioxide nanotubes using ionic...

    Office of Scientific and Technical Information (OSTI)

    devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices. Authors: Qu, Jun ; Luo, Huimin ; Dai, Sheng ...

  15. Excellent Passivation and Low Reflectivity Al2O3/TiO2 Bilayer Coatings for n-Wafer Silicon Solar Cells: Preprint

    SciTech Connect (OSTI)

    Lee, B. G.; Skarp, J.; Malinen, V.; Li, S.; Choi, S.; Branz, H. M.

    2012-06-01

    A bilayer coating of Al2O3 and TiO2 is used to simultaneously achieve excellent passivation and low reflectivity on p-type silicon. This coating is targeted for achieving high efficiency n-wafer Si solar cells, where both passivation and anti-reflection (AR) are needed at the front-side p-type emitter. It could also be valuable for front-side passivation and AR of rear-emitter and interdigitated back contact p-wafer cells. We achieve high minority carrier lifetimes {approx}1 ms, as well as a nearly 2% decrease in absolute reflectivity, as compared to a standard silicon nitride AR coating.

  16. Nitrogen dioxide detection

    DOE Patents [OSTI]

    Sinha, Dipen N.; Agnew, Stephen F.; Christensen, William H.

    1993-01-01

    Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.

  17. Synthesis and characterization of anodized titanium-oxide nanotube...

    Office of Scientific and Technical Information (OSTI)

    of determining which phase of TiO2 nanotubes leads to more efficient hydrogen production. ... material for hydrogen production via photoelectrochemical splitting of water. ...

  18. Photochemical Properties, Composition, and Structure in Molecular Beam Epitaxy Grown Fe Doped and (Fe,N) Codoped Rutile TiO2(110)

    SciTech Connect (OSTI)

    Mangham, Andrew N.; Govind, Niranjan; Bowden, Mark E.; Shutthanandan, V.; Joly, Alan G.; Henderson, Michael A.; Chambers, Scott A.

    2011-08-11

    We have investigated the surface photochemical properties of Fe "doped" and (Fe,N) co-doped homoepitaxial rutile TiO2 (110) films grown by plasma assisted molecular beam epitaxy. Fe does not incorporate as an electronic dopant in the rutile lattice, but rather segregates to the film surface. However, co-deposition of Fe with N enhances the solubility of Fe, and DFT calculations suggest that co-dopant complex formation is the driving force behind the enhanced solubility. The co-doped films, in which a few atomic percent of Ti (O) are replaced with Fe (N), exhibit significant disorder compared to undoped films grown under the same conditions, presumably due to dopant-induced strain. Co-doping redshifts the rutile bandgap into the visible. However, the film surfaces are photochemically inert with respect to hole-mediated decomposition of adsorbed trimethyl acetate. The absence of photochemical activity may result from dopant-induced trap and/or recombination sites within the film. This study indicates that enhanced visible light absorptivity in TiO2 does not necessarily result in visible light initiated surface photochemistry.

  19. In-situ imaging of the nucleation and growth of epitaxial anatase TiO2(001) films on SrTiO3(001)

    SciTech Connect (OSTI)

    Du, Yingge; Kim, Dong Jun; Kaspar, Tiffany C.; Chamberlin, Sara E.; Lyubinetsky, Igor; Chambers, Scott A.

    2012-09-30

    The growth of TiO2 anatase films on Nb doped SrTiO3(001) by oxygen-assisted molecular beam epitaxy has been studied in-situ by scanning tunneling microscopy. We show that the initial growth follows the Stranski-Krastanov mode, where islands form on top of a wetting layer consisting of two monolayers (ML) of TiO2. The epitaxial islands subsequently nucleate and coalescence into large commonly-oriented crystallites. The (4x4) reconstruction observed by reflection high-energy electron diffraction (RHEED) is shown to result from the coexistence of individual (4x1) and (1x4) reconstructions present on different crystallite surfaces. The anatase grows in units of bilayers, resulting in a step height of 2 ML (~0.5 nm). This result explains the fact that the measured period of the RHEED specular-beam intensity oscillations corresponds to the time required for deposition of 2 ML. Ar ion sputtering and UHV annealing results in a transformation to coexisting (4x1) and (1x4) reconstructed terraces on individual crystallites, as commonly observed by ex-situ STM studies.

  20. Phonon quarticity induced by changes in phonon-tracked hybridization during lattice expansion and its stabilization of rutile TiO2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lan, Tian; Li, Chen W.; Hellman, O.; Kim, D. S.; Muñoz, Jorge A.; Smith, Hillary; Abernathy, Douglas L.; Fultz, B.

    2015-08-11

    Although the rutile structure of TiO2 is stable at high temperatures, the conventional quasiharmonic approximation predicts that several acoustic phonons decrease anomalously to zero frequency with thermal expansion, incorrectly predicting a structural collapse at temperatures well below 1000 K. In this paper, inelastic neutron scattering was used to measure the temperature dependence of the phonon density of states (DOS) of rutile TiO2 from 300 to 1373 K. Surprisingly, these anomalous acoustic phonons were found to increase in frequency with temperature. First-principles calculations showed that with lattice expansion, the potentials for the anomalous acoustic phonons transform from quadratic to quartic, stabilizingmore » the rutile phase at high temperatures. In these modes, the vibrational displacements of adjacent Ti and O atoms cause variations in hybridization of 3d electrons of Ti and 2p electrons of O atoms. Finally, with thermal expansion, the energy variation in this “phonon-tracked hybridization” flattens the bottom of the interatomic potential well between Ti and O atoms, and induces a quarticity in the phonon potential.« less

  1. Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural with ALD overcoating (II) – Comparison between TiO2 and Al2O3 overcoatings

    SciTech Connect (OSTI)

    Zhang, Hongbo; Canlas, Christian; Kropf, A. Jeremy; Elam, Jeffrey W.; Dumesic, James A; Marshall, Christopher L.

    2015-01-01

    TiO2 atomic layer deposition (ALD) overcoatings were applied to copper chromite catalysts to increase the stability for 2-furfuraldehyde (“furfural”) hydrogenation. After overcoating, about 75% activity was preserved compared to neat copper chromite: much higher activity than an alumina ALD overcoated catalyst with a similar number of ALD cycles. The effects of ALD TiO2 on the active Cu nanoparticles were studied extensively using both in-situ TPR/isothermal-oxidation and in-situ furfural hydrogenation via Cu XAFS. The redox properties of Cu were modified only slightly by the TiO2 ALD overcoat. However, a subtle electronic interaction was observed between the TiO2 ALD layers and the Cu nanoparticles. With calcination at 500 °C the interaction between the TiO2 overcoat and the underlying catalyst is strong enough to inhibit migration and site blocking by chromite, but is sufficiently weaker than the interaction between the Al2O3 overcoat and copper chromite that it does not strongly inhibit the catalytic activity of the copper nanoparticles.

  2. Toho Titanium Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Toho Titanium Co Ltd Place: Chigasaki-Shi, Kanagawa, Japan Zip: 253-8510 Product: Quoted Japanese company that manfactures and retails titanium...

  3. Induction slag reduction process for making titanium

    DOE Patents [OSTI]

    Traut, Davis E.

    1991-01-01

    Continuous process for preparing titanium comprising fluorinating titanium ore, and reducing the formed alkaline earth fluotitanate with an alkaline earth metal in an induction slag reactor.

  4. Carbon Dioxide Utilization Summit

    Broader source: Energy.gov [DOE]

    The 6th Carbon Dioxide Utilization Summit will be held in Newark, New Jersey, from Feb. 24–26, 2016. The conference will look at the benefits and challenges of carbon dioxide utilization. Advanced Algal Systems Program Manager Alison Goss Eng and Technology Manager Devinn Lambert will be in attendance. Dr. Goss Eng will be chairing a round table on Fuels and Chemicals during the Carbon Dioxide Utilization: From R&D to Commercialization discussion session.

  5. Stoichiometric growth of SrTiO3 films by sequential pulsed laser deposition from SrO and TiO2 targets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Herklotz, A; Dorr, Kathrin; Biegalski, Michael D

    2015-01-01

    We report the growth of stoichiometric SrTiO3 films by sequential pulsed laser deposition from SrO and TiO2 targets. In-situ reflection high-energy electron diffraction is used to control the growth and achieve films with excellent structural quality. The growth shows similarities to the case of molecular beam epitaxy of SrTiO3 from Sr and Ti sources. In order to further demonstrate the capability of the approach, we grow artificial Srn+1TinO3n+1 Ruddlesden-Popper phases with n = 2 and 3. Our result has potential to be extendable to other perovskite-type oxides, enabling one to grow epitaxial films with improved structural quality and electronic functionality.

  6. Method for dissolving plutonium dioxide

    DOE Patents [OSTI]

    Tallent, Othar K.

    1976-01-01

    A method for dissolving plutonium dioxide comprises adding silver ions to a nitric acid-hydrofluoric acid solution to significantly speed up dissolution of difficultly soluble plutonium dioxide.

  7. Future Sulfur Dioxide Emissions

    SciTech Connect (OSTI)

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  8. Rutile-structured TiO{sub 2} deposited by plasma enhanced atomic layer deposition using tetrakis(dimethylamino)titanium precursor on in-situ oxidized Ru electrode

    SciTech Connect (OSTI)

    Pointet, John; Gonon, Patrice; Latu-Romain, Lawrence; Bsiesy, Ahmad Vallée, Christophe

    2014-01-15

    In this work, tetrakis(dimethylamino)titanium precursor as well as in-situ oxidized ruthenium bottom electrode were used to grow rutile-structured titanium dioxide thin layers by plasma enhanced atomic layer deposition. Metal–insulator–metal capacitors have been elaborated in order to study the electrical properties of the device. It is shown that this process leads to devices exhibiting excellent results in terms of dielectric constant and leakage current.

  9. Advanced titanium processing

    SciTech Connect (OSTI)

    Hartman, Alan D.; Gerdemann, Stephen J.; Schrems, Karol K.; Holcomb, Gordon R.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; Turner, Paul C.

    2001-01-01

    The Albany Research Center of the U.S. Department of Energy has been investigating a means to form useful wrought products by direct and continuous casting of titanium bars using cold-wall induction melting rather than current batch practices such as vacuum arc remelting. Continuous ingots produced by cold-wall induction melting, utilizing a bottomless water-cooled copper crucible, without slag (CaF2) additions had minor defects in the surface such as ''hot tears''. Slag additions as low as 0.5 weight percent were used to improve the surface finish. Therefore, a slag melted experimental Ti-6Al-4V alloy ingot was compared to a commercial Ti-6Al-4V alloy ingot in the areas of physical, chemical, mechanical, and corrosion attributes to address the question, ''Are any detrimental effects caused by slag addition''?

  10. Carbon dioxide removal process

    DOE Patents [OSTI]

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  11. Process for reproducibly preparing titanium subhydride

    DOE Patents [OSTI]

    Carlson, Richard S.

    1982-01-01

    Titanium subhydride is produced in a reactor by heating a selected amount of finely divided titanium compound at a selected temperature for a selected period of time under dynamic vacuum conditions. Hydrogen is removed substantially uniformly from each powder grain and there is produced a subhydride of substantially uniform titanium-hydrogen composition. Selection of the amount, temperature and time produces a subhydride of selected titanium-hydrogen composition.

  12. Regenerable immobilized aminosilane sorbents for carbon dioxide capture applications

    DOE Patents [OSTI]

    Gay, McMahan; Choi, Sunho; Jones, Christopher W

    2014-09-16

    A method for the separation of carbon dioxide from ambient air and flue gases is provided wherein a phase separating moiety with a second moiety are simultaneously coupled and bonded onto an inert substrate to create a mixture which is subsequently contacted with flue gases or ambient air. The phase-separating moiety is an amine whereas the second moiety is an aminosilane, or a Group 4 propoxide such as titanium (IV) propoxide (tetrapropyl orthotitanate, C.sub.12H.sub.28O.sub.4Ti). The second moiety makes the phase-separating moiety insoluble in the pores of the inert substrate. The new sorbents have a high carbon dioxide loading capacity and considerable stability over hundreds of cycles. The synthesis method is readily scalable for commercial and industrial production.

  13. Unraveling the Hydrogenation of TiO 2 and Graphene Oxide/TiO 2 Composites in Real Time by in Situ Synchrotron X-ray Powder Diffraction and Pair Distribution Function Analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nguyen-Phan, Thuy-Duong; Liu, Zongyuan; Luo, Si; Gamalski, Andrew D.; Vovchok, Dimitry; Xu, Wenqian; Stach, Eric A.; Polyansky, Dmitry E.; Fujita, Etsuko; Rodriguez, José A.; et al

    2016-02-18

    The functionalization of graphene oxide (GO) and graphene by TiO2 and other metal oxides has attracted considerable attention due to numerous promising applications in catalysis, energy conversion, and storage. We propose hydrogenation of this class of materials as a promising way to tune catalytic properties by altering the structural and chemical transformations that occur upon H incorporation. We also investigate the structural changes that occur during the hydrogenation process using in situ powder X-ray diffraction and pair distribution function analysis of GO–TiO2 and TiO2 under H2 reduction. Sequential Rietveld refinement was employed to gain insight into the evolution of crystalmore » growth of TiO2 nanoparticles in the presence of two-dimensional (2D) GO nanosheets. GO sheets not only significantly retarded the nucleation and growth of rutile impurities, stabilizing the anatase structure, but was also partially reduced to hydrogenated graphene by the introduction of atomic hydrogen into the honeycomb lattice. We discuss the hydrogenation processes and the resulting composite structure that occurs during the incorporation of atomic H and the dynamic structural transformations that leads to a highly active photocatalyst.« less

  14. Method of making multilayered titanium ceramic composites

    DOE Patents [OSTI]

    Fisher, G.T. II; Hansen, J.S.; Oden, L.L.; Turner, P.C.; Ochs, T.L.

    1998-08-25

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body followed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet. 3 figs.

  15. Method of making multilayered titanium ceramic composites

    DOE Patents [OSTI]

    Fisher, II, George T.; Hansen, Jeffrey S.; Oden, Laurance L.; Turner, Paul C.; Ochs, Thomas L.

    1998-01-01

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.

  16. Method of making multilayered titanium ceramic composites

    DOE Patents [OSTI]

    Fisher, George T., II; Hansen; Jeffrey S.; Oden; Laurance L.; Turner; Paul C.; Ochs; Thomas L.

    1998-08-25

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.

  17. METHOD OF SINTERING URANIUM DIOXIDE

    DOE Patents [OSTI]

    Henderson, C.M.; Stavrolakis, J.A.

    1963-04-30

    This patent relates to a method of sintering uranium dioxide. Uranium dioxide bodies are heated to above 1200 nif- C in hydrogen, sintered in steam, and then cooled in hydrogen. (AEC)

  18. Electrobiocommodities from Carbon Dioxide: Enhancing Microbial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrobiocommodities from Carbon Dioxide: Enhancing Microbial Electrosynthesis with Synthetic Electromicrobiology and System Design Electrobiocommodities from Carbon Dioxide: ...

  19. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    DOE Patents [OSTI]

    Coffinberry, A.S.

    1959-07-28

    A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.

  20. Microstructural characterization of titanium diboride

    SciTech Connect (OSTI)

    Shim, Kwang Bo; Kwiencinski, J.; Edirisinghe, M.J.; Ralph, B. )

    1993-07-01

    A wide range of microstructural and microanalytical techniques has been used to follow the effects of heat treatment on a commercial sample of titanium diboride. The effects of the interplay of grain size with microchemical changes, the initial distribution of pores, and the microcracks that develop on heat treatment are demonstrated.

  1. Carbon dioxide sensor

    DOE Patents [OSTI]

    Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  2. Ultrafine-grained titanium for medical implants

    DOE Patents [OSTI]

    Zhu, Yuntian T.; Lowe, Terry C.; Valiev, Ruslan Z.; Stolyarov, Vladimir V.; Latysh, Vladimir V.; Raab, Georgy J.

    2002-01-01

    We disclose ultrafine-grained titanium. A coarse-grained titanium billet is subjected to multiple extrusions through a preheated equal channel angular extrusion (ECAE) die, with billet rotation between subsequent extrusions. The resulting billet is cold processed by cold rolling and/or cold extrusion, with optional annealing. The resulting ultrafine-grained titanium has greatly improved mechanical properties and is used to make medical implants.

  3. Plasma column and nano-powder generation from solid titanium by localized microwaves in air

    SciTech Connect (OSTI)

    Popescu, Simona; Jerby, Eli Meir, Yehuda; Ashkenazi, Dana; Barkay, Zahava; Mitchell, J. Brian A.; Le Garrec, Jean-Luc; Narayanan, Theyencheri

    2015-07-14

    This paper studies the effect of a plasma column ejected from solid titanium by localized microwaves in an ambient air atmosphere. Nanoparticles of titanium dioxide (titania) are found to be directly synthesized in this plasma column maintained by the microwave energy in the cavity. The process is initiated by a hotspot induced by localized microwaves, which melts the titanium substrate locally. The molten hotspot emits ionized titanium vapors continuously into the stable plasma column, which may last for more than a minute duration. The characterization of the dusty plasma obtained is performed in-situ by small-angle X-ray scattering (SAXS), optical spectroscopy, and microwave reflection analyses. The deposited titania nanoparticles are structurally and morphologically analyzed by ex-situ optical and scanning-electron microscope observations, and also by X-ray diffraction. Using the Boltzmann plot method combined with the SAXS results, the electron temperature and density in the dusty plasma are estimated as ∼0.4 eV and ∼10{sup 19 }m{sup −3}, respectively. The analysis of the plasma product reveals nanoparticles of titania in crystalline phases of anatase, brookite, and rutile. These are spatially arranged in various spherical, cubic, lamellar, and network forms. Several applications are considered for this process of titania nano-powder production.

  4. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOE Patents [OSTI]

    Gerdemann, Stephen J.; White, Jack C.

    1998-01-01

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  5. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOE Patents [OSTI]

    Gerdemann, S.J.; White, J.C.

    1998-08-04

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag. 1 fig.

  6. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOE Patents [OSTI]

    Gerdemann, Stephen J.; White, Jack C.

    1999-01-01

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  7. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    SciTech Connect (OSTI)

    Gerdemann, S.J.; White, J.C.

    1999-10-19

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  8. Method for producing titanium aluminide weld rod

    DOE Patents [OSTI]

    Hansen, Jeffrey S.; Turner, Paul C.; Argetsinger, Edward R.

    1995-01-01

    A process for producing titanium aluminide weld rod comprising: attaching one end of a metal tube to a vacuum line; placing a means between said vacuum line and a junction of the metal tube to prevent powder from entering the vacuum line; inducing a vacuum within the tube; placing a mixture of titanium and aluminum powder in the tube and employing means to impact the powder in the tube to a filled tube; heating the tube in the vacuum at a temperature sufficient to initiate a high-temperature synthesis (SHS) reaction between the titanium and aluminum; and lowering the temperature to ambient temperature to obtain a intermetallic titanium aluminide alloy weld rod.

  9. Igniter containing titanium hydride and potassium perchlorate

    DOE Patents [OSTI]

    Dietzel, Russel W.; Leslie, William B.

    1976-01-01

    An explosive device is described which employs a particular titanium hydride-potassium perchlorate composition directly ignitible by an electrical bridgewire.

  10. Titanium ? - ? phase transformation pathway and a predicted...

    Office of Scientific and Technical Information (OSTI)

    Titanium - phase transformation pathway and a predicted metastable structure Citation Details In-Document Search This content will become publicly available on January 14,...

  11. Friction and Wear Enhancement of Titanium Alloy Engine Components...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Wear Enhancement of Titanium Alloy Engine Components Friction and Wear Enhancement of Titanium Alloy Engine Components 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle ...

  12. A Versatile Synthetic Route for the Preparation of Titanium Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Versatile Synthetic Route for the Preparation of Titanium Metal-Organic Frameworks ... A Versatile Synthetic Route for the Preparation of Titanium Metal-Organic Frameworks. ...

  13. Process for sequestering carbon dioxide and sulfur dioxide

    DOE Patents [OSTI]

    Maroto-Valer, M. Mercedes (State College, PA); Zhang, Yinzhi (State College, PA); Kuchta, Matthew E. (State College, PA); Andresen, John M. (State College, PA); Fauth, Dan J. (Pittsburgh, PA)

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  14. Titanium carbide bipolar plate for electrochemical devices

    DOE Patents [OSTI]

    LaConti, Anthony B.; Griffith, Arthur E.; Cropley, Cecelia C.; Kosek, John A.

    2000-07-04

    A corrosion resistant, electrically conductive, non-porous bipolar plate is made from titanium carbide for use in an eletrochemical device. The process involves blending titanium carbide powder with a suitable binder material, and molding the mixture, at an elevated temperature and pressure.

  15. Gold-nickel-titanium brazing alloy

    DOE Patents [OSTI]

    Mizuhara, Howard

    1990-07-03

    A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99% gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.

  16. Gold-nickel-titanium brazing alloy

    DOE Patents [OSTI]

    Mizuhara, Howard

    1995-01-03

    A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99 gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.

  17. Titanium vs. traditional coiled tubing

    SciTech Connect (OSTI)

    1997-06-01

    The development of composite and titanium pipe has the potential to eliminate many of the issues facing coiled-tubing (CT) work on platforms with restricted lift capability in the North Sea, such as the time to mobilize and set up the CT reel, additional personnel requirements, and weather dependence. A number of methods are available to overcome reel-weight limitations when conventional steel Ct is used. These include Ct welding, split reels, boat spooling, and tube/tube connectors. These factors are discussed then the paper discusses results from 3 field tests on gas and oil wells.

  18. Carbon dioxide and climate

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  19. Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions...

    Open Energy Info (EERE)

    Supercritical Carbon Dioxide Reservoir Rock Chemical Interactions Jump to: navigation, search Geothermal Lab Call Projects for Supercritical Carbon Dioxide Reservoir Rock...

  20. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  1. Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transcritical Carbon Dioxide Supermarket Refrigeration Systems Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems This case study documents one year of ...

  2. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate ...

  3. Characterisation of titanium-titanium boride composites processed by powder metallurgy techniques

    SciTech Connect (OSTI)

    Selva Kumar, M.; Chandrasekar, P.; Chandramohan, P.; Mohanraj, M.

    2012-11-15

    In this work, a detailed characterisation of titanium-titanium boride composites processed by three powder metallurgy techniques, namely, hot isostatic pressing, spark plasma sintering and vacuum sintering, was conducted. Two composites with different volume percents of titanium boride reinforcement were used for the investigation. One was titanium with 20% titanium boride, and the other was titanium with 40% titanium boride (by volume). Characterisation was performed using X-ray diffraction, electron probe micro analysis - energy dispersive spectroscopy and wavelength dispersive spectroscopy, image analysis and scanning electron microscopy. The characterisation results confirm the completion of the titanium boride reaction. The results reveal the presence of titanium boride reinforcement in different morphologies such as needle-shaped whiskers, short agglomerated whiskers and fine plates. The paper also discusses how mechanical properties such as microhardness, elastic modulus and Poisson's ratio are influenced by the processing techniques as well as the volume fraction of the titanium boride reinforcement. - Highlights: Black-Right-Pointing-Pointer Ti-TiB composites were processed by HIP, SPS and vacuum sintering. Black-Right-Pointing-Pointer The completion of Ti-TiB{sub 2} reaction was confirmed by XRD, SEM and EPMA studies. Black-Right-Pointing-Pointer Hardness and elastic properties of Ti-TiB composites were discussed. Black-Right-Pointing-Pointer Processing techniques were compared with respect to their microstructure.

  4. High Cyclability of Ionic Liquid-Produced TiO2 Nanotube Arrays As an Anode Material for Lithium-Ion Batteries

    SciTech Connect (OSTI)

    Li, Huaqing; Martha, Surendra K; Unocic, Raymond R; Luo, Huimin; Dai, Sheng; Qu, Jun

    2012-01-01

    TiO{sub 2} nanotubes (NTs) are considered as a potential SEI-free anode material for Li-ion batteries to offer enhanced safety. Organic solutions, dominatingly ethylene glycol (EG)-based, have widely been used for synthesizing TiO{sub 2} NTs via anodization because of their ability to generate long tubes and well-aligned structures. However, it has been revealed that the EG-produced NTs are composited with carbonaceous decomposition products of EG, release of which during the tube crystallization process inevitably causes nano-scale porosity and cracks. These microstructural defects significantly deteriorate the NTs charge transport efficiency and mechanical strength/toughness. Here we report using ionic liquids (ILs) to anodize titanium to grow low-defect TiO{sub 2} NTs by reducing the electrolyte decomposition rate (less IR drop due to higher electrical conductivity) as well as the chance of the decomposition products mixing into the TiO{sub 2} matrix (organic cations repelled away). Promising electrochemical results have been achieved when using the IL-produced TiO{sub 2} NTs as an anode for Li-ion batteries. The ILNTs demonstrated excellent capacity retention without microstructural damage for nearly 1200 cycles of charge-discharge, while the NTs grown in a conventional EG solution totally pulverized in cycling, resulting in significant capacity fade.

  5. Novel Neo-Pentoxide Precursors for MOCVD Thin Films of TiO(2) and ZrO(2).[1

    SciTech Connect (OSTI)

    Boyle, Timothy J.; Francisco, Laila P.; Gallegos, Jesus J.; Rodriguez, Mark A.; Ward, Timothy L.

    1999-07-14

    Two novel Group IV precursors, titanium (IV) neo-pentoxide, [Ti({mu}-ONep)(ONep){sub 3}]{sub 2} (l), and zirconium (IV) neo-pentoxide, [Zr({mu}-ONep)(ONep){sub 3}]{sub 2} (2), were reported to possess relatively high volatility at low temperatures. These compounds were therefore investigated as MOCVD precursors using a lamp-heated cold-wall CVD reactor and direct sublimation without carrier gas. The ONep derivatives proved to be competitive precursors for the production of thin films of the appropriate MO{sub 2} (M = Ti or Zr) materials in comparison to other metallo-organic precursors. Compound 1 was found to sublime at 120 C with a deposition rate of {approximately}0.350 {mu}m/min onto a substrate at 330 C forming the anatase phase with < 1% residual C found in the final film. Compound 2 was found to sublime at 160 C and deposited as crystalline material at 300 C with < 1% residual C found in the final film. A comparison to standard alkoxide and {beta}-diketonates is presented where appropriate.

  6. Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells

    SciTech Connect (OSTI)

    Kumar, Akshay; Madaria, Anuj R.; Zhou, Chongwu

    2010-05-06

    TiO{sub 2} is a wide band gap semiconductor with important applications in photovoltaic cells and photocatalysis. In this paper, we report synthesis of single-crystalline rutile phase TiO{sub 2} nanowires on arbitrary substrates, including fluorine-doped tin oxide (FTO), glass slides, tin-doped indium oxide (ITO), Si/SiO{sub 2}, Si(100), Si(111), and glass rods. By controlling the growth parameters such as growth temperature, precursor concentrations, and so forth, we demonstrate that anisotropic growth of TiO{sub 2} is possible leading to various morphologies of nanowires. Optimization of the growth recipe leads to well-aligned vertical array of TiO{sub 2} nanowires on both FTO and glass substrates. Effects of various titanium precursors on the growth kinetics, especially on the growth rate of nanowires, are also studied. Finally, application of vertical array of TiO{sub 2} nanowires on FTO as the photoanode is demonstrated in dye-sensitized solar cell with an efficiency of 2.9 0.2%.

  7. Uranium dioxide electrolysis

    SciTech Connect (OSTI)

    Willit, James L.; Ackerman, John P.; Williamson, Mark A.

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  8. DOE - Office of Legacy Management -- Titanium Alloys Manufacturing Co Div

    Office of Legacy Management (LM)

    of National Lead of Ohio - NY 41 Alloys Manufacturing Co Div of National Lead of Ohio - NY 41 FUSRAP Considered Sites Site: TITANIUM ALLOYS MANUFACTURING CO., DIV. OF NATIONAL LEAD OF OHIO (NY.41) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Titanium Alloy Metals Titanium Alloy Manufacturing Division Titanium Alloy Manufacturing (TAM) Division of National Lead Company The Titanium Pigment Co. NL Industries ICD/Niagara NY.41-1 NY.41-2 NY.41-3

  9. Membranes for separation of carbon dioxide

    DOE Patents [OSTI]

    Ku, Anthony Yu-Chung; Ruud, James Anthony; Ramaswamy, Vidya; Willson, Patrick Daniel; Gao, Yan

    2011-03-01

    Methods for separating carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity include contacting a porous membrane with the fluid stream to preferentially transport carbon dioxide. The porous membrane includes a porous support and a continuous porous separation layer disposed on a surface of the porous support and extending between the fluid stream and the porous support layer. The porous support comprises alumina, silica, zirconia, stabilized zirconia, stainless steel, titanium, nickel-based alloys, aluminum-based alloys, zirconium-based alloys or a combination thereof. Median pore size of the porous separation layer is less than about 10 nm, and the porous separation layer comprises titania, MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, HfO.sub.2, Y.sub.2O.sub.3, VO.sub.z, NbO.sub.z, TaO.sub.z, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3 CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3, Li.sub.2HfO.sub.3, A.sup.4N.sup.1.sub.yO.sub.z, Y.sub.xN.sup.1.sub.yO.sub.z, La.sub.xN.sup.1.sub.yO.sub.z, HfN.sup.2.sub.yO.sub.z, or a combination thereof; wherein A is La, Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; A.sup.3 is Sr or Ba; A.sup.4 is Mg, Ca, Sr, Ba, Ti or Zr; N.sup.1 is V, Nb, Ta, Cr, Mo, W, Mn, Si or Ge; N.sup.2 is V, Mo, W or Si; x is 1 or 2; y ranges from 1 to 3; and z ranges from 2 to 7.

  10. Reducing carbon dioxide to products

    DOE Patents [OSTI]

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  11. Microstructural Properties of Gamma Titanium Aluminide Manufactured...

    Office of Scientific and Technical Information (OSTI)

    The process is run in vacuum, which makes it well suited for materials with a high affinity to oxygen, i.e. . titanium compounds. We present material data from a recently conducted ...

  12. METHOD OF MAKING PLUTONIUM DIOXIDE

    DOE Patents [OSTI]

    Garner, C.S.

    1959-01-13

    A process is presented For converting both trivalent and tetravalent plutonium oxalate to substantially pure plutonium dioxide. The plutonium oxalate is carefully dried in the temperature range of 130 to300DEC by raising the temperature gnadually throughout this range. The temperature is then raised to 600 C in the period of about 0.3 of an hour and held at this level for about the same length of time to obtain the plutonium dioxide.

  13. Recuperative supercritical carbon dioxide cycle

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  14. Black Conductive Titanium Oxide High-Capacity Materials for Battery Electrodes

    SciTech Connect (OSTI)

    Han, W.

    2011-05-18

    Stoichiometric titanium dioxide (TiO{sub 2}) is one of the most widely studied transitionmetal oxides because of its many potential applications in photoelectrochemical systems, such as dye-sensitized TiO{sub 2} electrodes for photovoltaic solar cells, and water-splitting catalysts for hydrogen generation, and in environmental purification for creating or degrading specific compounds. However, TiO{sub 2} has a wide bandgap and high electrical resistivity, which limits its use as an electrode. A set of non-stoichiometric titanium oxides called the Magneli phases, having a general formula of Ti{sub n}O{sub 2n-1} with n between 4 and 10, exhibits lower bandgaps and resistivities, with the highest electrical conductivities reported for Ti{sub 4}O{sub 7}. These phases have been formulated under different conditions, but in all reported cases the resulting oxides have minimum grain sizes on the order of micrometers, regardless of the size of the starting titanium compounds. In this method, nanoparticles of TiO{sub 2} or hydrogen titanates are first coated with carbon using either wet or dry chemistry methods. During this process the size and shape of the nanoparticles are 'locked in.' Subsequently the carbon-coated nanoparticles are heated. This results in the transformation of the original TiO{sub 2} or hydrogen titanates to Magneli phases without coarsening, so that the original size and shape of the nanoparticles are maintained to a precise degree. People who work on batteries, fuel cells, ultracapacitors, electrosynthesis cells, electro-chemical devices, and soil remediation have applications that could benefit from using nanoscale Magneli phases of titanium oxide. Application of these electrode materials may not be limited to substitution for TiO{sub 2} electrodes. Combining the robustness and photosensitivity of TiO{sub 2} with higher electrical conductivity may result in a general electrode material.

  15. Degradation of organic chemicals with titanium ceramic membranes

    DOE Patents [OSTI]

    Anderson, Marc A.; Tunesi, Simonetta; Xu, Qunyin

    1991-01-01

    Complex organic molecules, such as polychlorinated biphenyls can be degraded on porous titanium ceramic membranes by photocatalysis under ultraviolet light.

  16. SEPARATING PROTOACTINIUM WITH MANGANESE DIOXIDE

    DOE Patents [OSTI]

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1958-04-22

    The preparation of U/sup 235/ and an improved method for isolating Pa/ sup 233/ from foreign products present in neutronirradiated thorium is described. The method comprises forming a solution of neutron-irradiated thorium together with a manganous salt, then adding potassium permanganate to precipitate the manganese as manganese dioxide whereby protoactinium is carried down with the nnanganese dioxide dissolving the precipitate, adding a soluble zirconium salt, and adding phosphate ion to precipitate zirconium phosphate whereby protoactinium is then carried down with the zirconium phosphate to effect a further concentration.

  17. Thermochemical cyclic system for decomposing H.sub.2 O and/or CO.sub.2 by means of cerium-titanium-sodium-oxygen compounds

    DOE Patents [OSTI]

    Bamberger, Carlos E.

    1982-01-01

    A thermochemical closed cyclic process for the decomposition of water and/or carbon dioxide to hydrogen and/or carbon monoxide begins with the reaction of ceric oxide (CeO.sub.2), titanium dioxide (TiO.sub.2) and sodium titanate (Na.sub.2 TiO.sub.3) to form sodium cerous titanate (NaCeTi.sub.2 O.sub.6) and oxygen. Sodium cerous titanate (NaCeTi.sub.2 O.sub.6) reacted with sodium carbonate (Na.sub.2 CO.sub.3) in the presence of steam, produces hydrogen. The same reaction, in the absence of steam, produces carbon monoxide. The products, ceric oxide and sodium titanate, obtained in either case, are treated with carbon dioxide and water to produce ceric oxide, titanium dioxide, sodium titanate, and sodium bicarbonate. After dissolving sodium bicarbonate from the mixture in water, the remaining insoluble compounds are used as starting materials for a subsequent cycle. The sodium bicarbonate can be converted to sodium carbonate by heating and returned to the cycle.

  18. Thermochemical cyclic system for decomposing H/sub 2/O and/or CO/sub 2/ by means of cerium-titanium-sodium-oxygen compounds

    DOE Patents [OSTI]

    Bamberger, C.E.

    1980-04-24

    A thermochemical closed cyclic process for the decomposition of water and/or carbon dioxide to hydrogen and/or carbon monoxide begins with the reaction of ceric oxide (CeO/sub 2/), titanium dioxide (TiO/sub 2/) and sodium titanate (Na/sub 2/TiO/sub 3/) to form sodium cerous titanate (NaCeTi/sub 2/O/sub 6/) and oxygen. Sodium cerous titanate (NaCeTi/sub 2/O/sub 6/) reacted with sodium carbonate (Na/sub 2/CO/sub 3/) in the presence of steam, produces hydrogen. The same reaction, in the absence of steam, produces carbon monoxide. The products, ceric oxide and sodium titanate, obtained in either case, are treated with carbon dioxide and water to produce ceric oxide, titanium dioxide, sodium titanate, and sodium bicarbonate. After dissolving sodium bicarbonate from the mixture in water, the remaining insoluble compounds are used as starting materials for a subsequent cycle. The sodium bicarbonate can be converted to sodium carbonate by heating and returned to the cycle.

  19. Titanium sealing glasses and seals formed therefrom

    DOE Patents [OSTI]

    Brow, Richard K.; McCollister, Howard L.; Phifer, Carol C.; Day, Delbert E.

    1997-01-01

    Alkaline-earth lanthanoborate sealing-glass compositions containing CaO, La.sub.2 O.sub.3, B.sub.2 O.sub.3, TiO.sub.2 and Al.sub.2 O.sub.3 in various combinations of mole-% are provided. These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys that have a high aqueous durability for component or device applications requiring exposure to moisture, water or body fluids. Particular applications of the titanium sealing-glass compositions include forming glass-to-metal seals for lithium batteries and implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  20. Titanium sealing glasses and seals formed therefrom

    DOE Patents [OSTI]

    Brow, R.K.; McCollister, H.L.; Phifer, C.C.; Day, D.E.

    1997-12-02

    Alkaline-earth lanthanoborate sealing-glass compositions containing CaO, La{sub 2}O{sub 3}, B{sub 2}O{sub 3}, TiO{sub 2} and Al{sub 2}O{sub 3} in various combinations of mole-% are provided. These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys that have a high aqueous durability for component or device applications requiring exposure to moisture, water or body fluids. Particular applications of the titanium sealing-glass compositions include forming glass-to-metal seals for lithium batteries and implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 2 figs.

  1. Stainless Steel to Titanium Bimetallic Transitions

    SciTech Connect (OSTI)

    Kaluzny, J. A.; Grimm, C.; Passarelli, D.

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  2. Process for preparing titanium nitride powder

    DOE Patents [OSTI]

    Bamberger, C.E.

    1988-06-17

    A process for making titanium nitride powder by reaction of titanium phosphates with sodium cyanide. The process of this invention may comprise mixing one or more phosphates of Ti with a cyanide salt in the absence of oxygen and heating to a temperature sufficient to cause reaction to occur. In the preferred embodiment the ratio of cyanide salt to Ti should be at least 2 which results in the major Ti-containing product being TiN rather than sodium titanium phosphate byproducts. The process is an improvement over prior processes since the byproducts are water soluble salts of sodium which can easily be removed from the preferred TiN product by washing. 2 tabs.

  3. ARM - Measurement - Carbon dioxide (CO2) concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Carbon dioxide (CO2) concentration The amount of carbon dioxide, a heavy, colorless...

  4. Titanium nitride thin films for minimizing multipactoring

    DOE Patents [OSTI]

    Welch, Kimo M.

    1979-01-01

    Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.

  5. Enhanced photocatalytic activity of nano titanium dioxide coated on ethanol-soluble carbon nanotubes

    SciTech Connect (OSTI)

    Fu, Xiaofei; Yang, Hanpei; He, Kuanyan; Zhang, Yingchao; Wu, Junming

    2013-02-15

    Graphical abstract: Homogenous and dense spreading of TiO{sub 2} on surface modified CNTs and improved photocatalytic performance of TiO{sub 2} was achieved by coupling TiO{sub 2} with ethanol-soluble CNTs. Display Omitted Highlights: ► Ethanol-soluble CNTs were acquired by surface modification. ► Enhanced photoactivity of TiO{sub 2} coated on modified CNTs was obtained. ► Improved activity of TiO{sub 2} is attributed to the intimate contact between TiO{sub 2} and CNTs. ► Dense heterojunctions through Ti–O–CNTs at the interface is proposed. -- Abstract: Surface functionalized carbon nanotubes (CNTs) with ethanol solubility were synthesized and the CNTs–TiO{sub 2} nanocomposites were prepared by coupling of TiO{sub 2} with modified CNTs through a sol–gel method. The as-prepared CNTs and composites were characterized and the composite samples were evaluated for their photocatalytic activity toward the degradation of aqueous methyl orange. It is showed that the acid oxidation of CNTs leads to the embedding of oxygenated functional groups, and as a result, the acid-treated CNTs in turn may serve as chemical reactors for subsequent covalent grafting of octadecylamine. Improved photocatalytic performance of CNTs–TiO{sub 2} composites was obtained, which is mainly attributed to the high dispersion of TiO{sub 2} on ethanol-soluble CNTs and the intimate contact between TiO{sub 2} and CNTs resulted from the dense heterojunctions through the Ti-O-C structure at the interface between TiO{sub 2} and CNTs.

  6. Photocatalytic oxidation of 4-chlorophenol on titanium dioxide: A comparison with {gamma}-radiolysis

    SciTech Connect (OSTI)

    Stafford, U.; Gray, K.A.; Kamat, P.V.

    1994-02-01

    To gain useful insight into the mechanistic details of the TiO{sub 2} photocatalyzed oxidation of halogenated organic compounds, the intermediates produced during the photocatalytic degradation of 4-chlorophenol (4-CP) have been compared with those produced during {gamma}-radiolysis. Photocatalytic degradation of 4-CP produces aromatic intermediates consistent with {gamma}-radiolytic hydroxyl radical oxidation, but the distribution of the intermediates differs. The surface area of TiO{sub 2} has an important influence on the intermediate distribution suggesting that the presence of surface influences the reaction pathway. The course of photocatalytic transformation of 4-CP involves a combination of hydroxyl radical oxidation, direct electron transfer and surface chemical reactions contributing to the disappearance of 4-CP and its reaction intermediates in TiO{sub 2} slurries.

  7. Ferromagnetism at room temperature in Cr-doped anodic titanium dioxide nanotubes

    SciTech Connect (OSTI)

    Liao, Yulong E-mail: hwzhang@uestc.edu.cn; Zhang, Huaiwu E-mail: hwzhang@uestc.edu.cn; Li, Jie; Yu, Guoliang; Zhong, Zhiyong; Bai, Feiming; Jia, Lijun; Zhang, Shihong; Zhong, Peng

    2014-05-07

    This study reports the room-temperature ferromagnetism in Cr-doped TiO{sub 2} nanotubes (NTs) synthesized via the electrochemical method followed by a novel Cr-doping process. Scanning electron microscopy and transmission electron microscopy showed that the TiO{sub 2} NTs were highly ordered with length up to 26 ?m, outer diameter about 110 nm, and inner diameter about 100 nm. X-ray diffraction results indicated there were no magnetic contaminations of metallic Cr clusters or any other phases except anatase TiO{sub 2}. The Cr-doped TiO{sub 2} NTs were further annealed in oxygen, air and argon, and room-temperature ferromagnetism was observed in all Cr-doped samples. Moreover, saturation magnetizations and coercivities of the Cr-doped under various annealing atmosphere were further analyzed, and results indicate that oxygen content played a critical role in the room-temperature ferromagnetism.

  8. Method for dissolving plutonium dioxide

    DOE Patents [OSTI]

    Tallent, Othar K.

    1978-01-01

    The fluoride-catalyzed, non-oxidative dissolution of plutonium dioxide in HNO.sub.3 is significantly enhanced in rate by oxidizing dissolved plutonium ions. It is believed that the oxidation of dissolved plutonium releases fluoride ions from a soluble plutonium-fluoride complex for further catalytic action.

  9. Titanium Metal Powder Production by the Plasma Quench Process

    SciTech Connect (OSTI)

    R. A. Cordes; A. Donaldson

    2000-09-01

    The goals of this project included the scale-up of the titanium hydride production process to a production rate of 50 kg/hr at a purity level of 99+%. This goal was to be achieved by incrementally increasing the production capability of a series of reactor systems. This methodic approach was designed to allow Idaho Titanium Technologies to systematically address the engineering issues associated with plasma system performance, and powder collection system design and performance. With quality powder available, actual fabrication with the titanium hydride was to be pursued. Finally, with a successful titanium production system in place, the production of titanium aluminide was to be pursued by the simultaneously injection of titanium and aluminum precursors into the reactor system. Some significant accomplishments of the project are: A unique and revolutionary torch/reactor capable of withstanding temperatures up to 5000 C with high thermal efficiency has been operated. The dissociation of titanium tetrachloride into titanium powder and HC1 has been demonstrated, and a one-megawatt reactor potentially capable of producing 100 pounds per hour has been built, but not yet operated at the powder level. The removal of residual subchlorides and adsorbed HC1 and the sintering of powder to form solid bodies have been demonstrated. The production system has been operated at production rates up to 40 pounds per hour. Subsequent to the end of the project, Idaho Titanium Technologies demonstrated that titanium hydride powder can indeed be sintered into solid titanium metal at 1500 C without sintering aids.

  10. Titanium nitride electrodes for thermoelectric generators

    DOE Patents [OSTI]

    Novak, Robert F.; Schmatz, Duane J.; Hunt, Thomas K.

    1987-12-22

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film of titanium nitride as an electrode deposited onto solid electrolyte. The invention is also directed to the method of making same.

  11. Method for carbon dioxide sequestration

    DOE Patents [OSTI]

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2015-09-22

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation. This process allows for the immobilization of the injected SC--CO.sub.2 for very long times. The dispersal of scCO2 into small ganglia is accomplished by alternating injection of SC--CO.sub.2 and water. The injection rate is required to be high enough to ensure the SC--CO.sub.2 at the advancing front to be broken into pieces and small enough for immobilization through viscous instability.

  12. High capacity carbon dioxide sorbent

    DOE Patents [OSTI]

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  13. CARBON DIOXIDE AS A FEEDSTOCK.

    SciTech Connect (OSTI)

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  14. Process for making a titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A ceramic composition composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to aobut 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness.

  15. Process for making a titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition

    DOE Patents [OSTI]

    Holcombe, C.E.; Dykes, N.L.

    1992-04-28

    A ceramic composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to about 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness. No Drawings

  16. Preparation of titanium oxide ceramic membranes

    DOE Patents [OSTI]

    Anderson, Marc A.; Xu, Qunyin

    1992-01-01

    A procedure is disclosed for the reliable production of either particulate or polymeric titanium ceramic membranes by a highly constrained sol-gel procedure. The critical constraints in the procedure include the choice of alkyl alcohol solvent, the amount of water and its rate of addition, the pH of the solution during hydrolysis, and the limit of sintering temperature applied to the resulting gels.

  17. Preparation of titanium oxide ceramic membranes

    DOE Patents [OSTI]

    Anderson, M.A.; Xu, Q.

    1992-03-17

    A procedure is disclosed for the reliable production of either particulate or polymeric titanium ceramic membranes by a highly constrained sol-gel procedure. The critical constraints in the procedure include the choice of alkyl alcohol solvent, the amount of water and its rate of addition, the pH of the solution during hydrolysis, and the limit of sintering temperature applied to the resulting gels.

  18. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  19. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  20. How Atomic Vibrations Transform Vanadium Dioxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Atomic Vibrations Transform Vanadium Dioxide How Atomic Vibrations Transform Vanadium Dioxide Calculations Confirm Material's Potential for Next-Generation Electronics, Energy November 10, 2014 Contact: Dawn Levy, levyd@ornl.gov, 865.576.6448 Budaivibe Vanadium atoms (blue) have unusually large thermal vibrations that stabilize the metallic state of a vanadium dioxide crystal. Red depicts oxygen atoms. Image credit: Oak Ridge National Laboratory For more than 50 years, scientists have

  1. A single crystalline porphyrinic titanium metal–organic framework

    SciTech Connect (OSTI)

    Yuan, Shuai; Liu, Tian -Fu; Feng, Dawei; Tian, Jian; Wang, Kecheng; Qin, Junsheng; Zhang, Qiang; Chen, Ying -Pin; Bosch, Mathieu; Zou, Lanfang; Teat, Simon J.; Dalgarno, Scott J.; Zhou, Hong -Cai

    2015-04-28

    We successfully assembled the photocatalytic titanium-oxo cluster and photosensitizing porphyrinic linker into a metal–organic framework (MOF), namely PCN-22. A preformed titanium-oxo carboxylate cluster is adopted as the starting material to judiciously control the MOF growth process to afford single crystals. This synthetic method is useful to obtain highly crystalline titanium MOFs, which has been a daunting challenge in this field. Moreover, PCN-22 demonstrated permanent porosity and photocatalytic activities toward alcohol oxidation.

  2. Iron-titanium-mischmetal alloys for hydrogen storage

    DOE Patents [OSTI]

    Sandrock, Gary Dale

    1978-01-01

    A method for the preparation of an iron-titanium-mischmetal alloy which is used for the storage of hydrogen. The alloy is prepared by air-melting an iron charge in a clay-graphite crucible, adding titanium and deoxidizing with mischmetal. The resultant alloy contains less than about 0.1% oxygen and exhibits a capability for hydrogen sorption in less than half the time required by vacuum-melted, iron-titanium alloys.

  3. A single crystalline porphyrinic titanium metalorganic framework

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yuan, Shuai; Liu, Tian -Fu; Feng, Dawei; Tian, Jian; Wang, Kecheng; Qin, Junsheng; Zhang, Qiang; Chen, Ying -Pin; Bosch, Mathieu; Zou, Lanfang; et al

    2015-04-28

    We successfully assembled the photocatalytic titanium-oxo cluster and photosensitizing porphyrinic linker into a metalorganic framework (MOF), namely PCN-22. A preformed titanium-oxo carboxylate cluster is adopted as the starting material to judiciously control the MOF growth process to afford single crystals. This synthetic method is useful to obtain highly crystalline titanium MOFs, which has been a daunting challenge in this field. Moreover, PCN-22 demonstrated permanent porosity and photocatalytic activities toward alcohol oxidation.

  4. Energy Innovator Drops Costs for Titanium Metalwork | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovator Drops Costs for Titanium Metalwork Energy Innovator Drops Costs for Titanium Metalwork March 13, 2012 - 12:42pm Addthis Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What are the key facts? Iowa Powder Atomization Technology is one of 36 companies that licensed technology under an agreement with the National Lab as part of the America's Next Top Energy Innovator program. Titanium is the stuff aircrafts are made of, at least the important

  5. ARM - Measurement - Carbon dioxide (CO2) flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon dioxide, a heavy, colorless greenhouse gas. Categories Atmospheric Carbon, Surface Properties Instruments The above measurement is considered scientifically relevant for the...

  6. Method of Making Uranium Dioxide Bodies

    DOE Patents [OSTI]

    Wilhelm, H. A.; McClusky, J. K.

    1973-09-25

    Sintered uranium dioxide bodies having controlled density are produced from U.sub.3 O.sub.8 and carbon by varying the mole ratio of carbon to U.sub.3 O.sub.8 in the mixture, which is compressed and sintered in a neutral or slightly oxidizing atmosphere to form dense slightly hyperstoichiometric uranium dioxide bodies. If the bodies are to be used as nuclear reactor fuel, they are subsequently heated in a hydrogen atmosphere to achieve stoichiometry. This method can also be used to produce fuel elements of uranium dioxide -- plutonium dioxide having controlled density.

  7. A Single Crystalline Porphyrinic Titanium Metal-Organic Framework...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single Crystalline Porphyrinic Titanium Metal-Organic Framework Previous Next List Yuan, Shuai; Liu, Tian-Fu; Feng, Dawei; Tian, Jian; Wang, Kecheng; Qin, Junsheng; Zhang, Qiang; ...

  8. Color Anodizing of Titanium Coated Rolled Carbon Steel Plate

    SciTech Connect (OSTI)

    Sarajan, Zohair; Mobarakeh, Hooman Nikbakht; Namiranian, Sohrab

    2011-12-26

    As an important kind of structural materials, the titanium cladded steel plates have the advantages of both metals and have been applied in aviation, spaceflight, chemical and nuclear industries. In this study, the specimens which were prepared under soldering mechanism during rolling were anodized by electrochemical process under a given conditions. The color anodizing takes place by physical phenomenon of color interference. Part of incident light on the titanium oxide is reflected and the other part reflects inside coated titanium layer. Major part of the light which reflects from titanium-oxide interface, reflects again inside of the oxide layer.

  9. Process for preparing fine grain titanium carbide powder

    DOE Patents [OSTI]

    Janney, M.A.

    1985-03-12

    A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.

  10. Process for preparing fine grain titanium carbide powder

    DOE Patents [OSTI]

    Janey, Mark A.

    1986-01-01

    A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular-level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.

  11. Friction and Wear Enhancement of Titanium Alloy Engine Components...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Friction and Wear Enhancement of Titanium Alloy Engine Components Vehicle Technologies Office Merit Review 2014: Can hard coatings and lubricant anti-wear additives work together? ...

  12. Degradation of organic chemicals with titanium ceramic membranes

    DOE Patents [OSTI]

    Anderson, M.A.; Tunesi, S.; Xu, Q.

    1991-07-30

    Complex organic molecules, such as polychlorinated biphenyls can be degraded on porous titanium ceramic membranes by photocatalysis under ultraviolet light. 3 figures.

  13. A Single Crystalline Porphyrinic Titanium Metal-Organic Framework...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single Crystalline Porphyrinic Titanium Metal-Organic Framework Previous Next List Yuan, Shuai; Liu, Tian-Fu; Feng, Dawei; Tian, Jian; Wang, Kecheng; Qin, Junsheng; Zhang, Qiang;...

  14. Solid State Processing of New Low Cost Titanium Powders Enabling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powders Enabling Affordable Automotive Components Solid State Processing of New Low Cost Titanium Powders Enabling Affordable Automotive Components Presentation given at ...

  15. Time-resolved surface infrared spectroscopy during atomic layer deposition of TiO{sub 2} using tetrakis(dimethylamido)titanium and water

    SciTech Connect (OSTI)

    Sperling, Brent A. Hoang, John; Kimes, William A.; Maslar, James E.; Steffens, Kristen L.; Nguyen, Nhan V.

    2014-05-15

    Atomic layer deposition of titanium dioxide using tetrakis(dimethylamido)titanium (TDMAT) and water vapor is studied by reflection-absorption infrared spectroscopy (RAIRS) with a time resolution of 120 ms. At 190 °C and 240 °C, a decrease in the absorption from adsorbed TDMAT is observed without any evidence of an adsorbed product. Ex situ measurements indicate that this behavior is not associated with an increase in the impurity concentration or a dramatic change in the growth rate. A desorbing decomposition product is consistent with these observations. RAIRS also indicates that dehydroxylation of the growth surface occurs only among one type of surface hydroxyl groups. Molecular water is observed to remain on the surface and participates in reactions even at a relatively high temperature (110 °C) and with long purge times (30 s)

  16. A NEW METHOD FOR LOW-COST PRODUCTION OF TITANIUM ALLOYS FOR REDUCING...

    Broader source: Energy.gov (indexed) [DOE]

    A novel metallurgical process for producing titanium (Ti) components could produce a ... PDF icon A New Method for Low-Cost Production of Titanium Alloys More Documents & ...

  17. Electrobiocommodities from Carbon Dioxide: Enhancing Microbial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrosynthesis with Synthetic Electromicrobiology and System Design | Department of Energy Electrobiocommodities from Carbon Dioxide: Enhancing Microbial Electrosynthesis with Synthetic Electromicrobiology and System Design Electrobiocommodities from Carbon Dioxide: Enhancing Microbial Electrosynthesis with Synthetic Electromicrobiology and System Design Presentation by Derek Lovley, UMass Amherst, during the "Targeting High-Value Challenges" panel at the Hydrogen, Hydrocarbons,

  18. Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers This fact sheet describes a supercritical carbon ...

  19. Nuclear Hydrogen and Captured Carbon Dioxide for Alternative...

    Office of Scientific and Technical Information (OSTI)

    Conference: Nuclear Hydrogen and Captured Carbon Dioxide for Alternative Liquid Fuels. Citation Details In-Document Search Title: Nuclear Hydrogen and Captured Carbon Dioxide for ...

  20. Molecular Simulation of Carbon Dioxide, Brine, and Clay Mineral...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Molecular Simulation of Carbon Dioxide, Brine, and Clay Mineral Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide, Brine, and Clay ...

  1. Modeling the Impact of Carbon Dioxide Leakage into an Unconfined...

    Office of Scientific and Technical Information (OSTI)

    the Impact of Carbon Dioxide Leakage into an Unconfined, Oxidizing Carbonate Aquifer Citation Details In-Document Search Title: Modeling the Impact of Carbon Dioxide Leakage ...

  2. NUCLEAR HYDROGEN AND CAPTURED CARBON DIOXIDE FOR ALTERNATIVE...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: NUCLEAR HYDROGEN AND CAPTURED CARBON DIOXIDE FOR ALTERNATIVE LIQUID FUELS. Citation Details In-Document Search Title: NUCLEAR HYDROGEN AND CAPTURED CARBON DIOXIDE ...

  3. Molecular Simulation of Carbon Dioxide Brine and Clay Mineral...

    Office of Scientific and Technical Information (OSTI)

    of Carbon Dioxide Brine and Clay Mineral Interactions and Determination of Contact Angles. Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide ...

  4. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine NREL logo -- This project is inactive -- The ...

  5. Electrochemical Membrane for Carbon Dioxide Separation and Power...

    Office of Scientific and Technical Information (OSTI)

    for Carbon Dioxide Separation and Power Generation Citation Details In-Document Search Title: Electrochemical Membrane for Carbon Dioxide Separation and Power Generation ...

  6. ARM - Lesson Plans: Plant Growth and Carbon Dioxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant Growth and Carbon Dioxide Outreach Home Room News Publications Traditional Knowledge ... Teachers' Toolbox Lesson Plans Lesson Plans: Plant Growth and Carbon Dioxide Objective The ...

  7. Vanadium-pumped titanium x-ray laser

    DOE Patents [OSTI]

    Nilsen, Joseph

    1992-01-01

    A resonantly photo-pumped x-ray laser (10) is formed of a vanadium (12) and titanium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state neon-like titanium ions (34) are resonantly photo-pumped by line emission from fluorine-like vanadium ions (32).

  8. Vanadium-pumped titanium x-ray laser

    DOE Patents [OSTI]

    Nilsen, J.

    1992-05-26

    A resonantly photo-pumped x-ray laser is formed of a vanadium and titanium foil combination that is driven by two beams of intense line focused optical laser radiation. Ground state neon-like titanium ions are resonantly photo-pumped by line emission from fluorine-like vanadium ions. 4 figs.

  9. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    DOE Patents [OSTI]

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  10. Water-soluble titanium alkoxide material

    DOE Patents [OSTI]

    Boyle, Timothy J.

    2010-06-22

    A water soluble, water stable, titanium alkoxide composition represented by the chemical formula (OC.sub.6H.sub.6N).sub.2Ti(OC.sub.6H.sub.2(CH.sub.2N(CH.sub.3).sub.2).sub- .3-2,4,6).sub.2 with a theoretical molecular weight of 792.8 and an elemental composition of 63.6% C, 8.1% H, 14.1% N, 8.1% O and 6.0% Ti.

  11. Carbon or boron modified titanium silicide

    DOE Patents [OSTI]

    Thom, Andrew J.; Akinc, Mufit

    1996-12-03

    A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

  12. Carbon or boron modified titanium silicide

    DOE Patents [OSTI]

    Thom, Andrew J.; Akinc, Mufit

    1998-07-14

    A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

  13. Carbon or boron modified titanium silicide

    DOE Patents [OSTI]

    Thom, A.J.; Akinc, M.

    1996-12-03

    A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.

  14. Carbon or boron modified titanium silicide

    DOE Patents [OSTI]

    Thom, A.J.; Akinc, M.

    1998-07-14

    A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.

  15. Carbon or boron modified titanium silicide

    DOE Patents [OSTI]

    Thom, A.J.; Akinc, M.

    1997-12-02

    A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.

  16. Carbon or boron modified titanium silicide

    DOE Patents [OSTI]

    Thom, Andrew J.; Akinc, Mufit

    1997-12-02

    A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

  17. Stress enhanced diffusion of krypton ions in polycrystalline titanium

    SciTech Connect (OSTI)

    Nsengiyumva, S.; Raji, A. T.; Rivière, J. P.; Britton, D. T.; Härting, M.

    2014-07-14

    An experimental investigation on the mutual influence of pre-existing residual stress and point defect following ion implantation is presented. The study has been carried out using polycrystalline titanium samples energetically implanted with krypton ions at different fluences. Ion beam analysis was used to determine the concentration profile of the injected krypton ions, while synchrotron X-ray diffraction has been used for stress determination. Ion beam analysis and synchrotron X-ray diffraction stress profile measurements of the implanted titanium samples show a clear evidence of stress-enhanced diffusion of krypton ions in titanium. It is further observed that for the titanium samples implanted at low fluence, ion implantation modifies the pre-existing residual stress through the introduction of point and open volume defects. The stress fields resulting from the ion implantation act to drift the krypton inclusions towards the surface of titanium.

  18. Thermodynamic properties of uranium dioxide

    SciTech Connect (OSTI)

    Fink, J.K.; Chasanov, M.G.; Leibowitz, L.

    1981-04-01

    In order to provide reliable and consistent data on the thermophysical properties of reactor materials for reactor safety studies, this revision is prepared for the thermodynamic properties of the uranium dioxide portion of the fuel property section of the report Properties for LMFBR Safety Analysis. Since the original report was issued in 1976, there has been international agreement on a vapor pressure equation for the total pressure over UO/sub 2/, new methods have been suggested for the calculation of enthalpy and heat capacity, and a phase change at 2670 K has been proposed. In this report, an electronic term is used in place of the Frenkel defect term in the enthalpy and heat capacity equation and the phase transition is accepted.

  19. Electrocatalysts for carbon dioxide conversion

    DOE Patents [OSTI]

    Masel, Richard I; Salehi-Khojin, Amin

    2015-04-21

    Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO.sub.2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  20. Dissolution of surface oxide layers on titanium and titanium subhydride between 25/sup 0/ and 700/sup 0/C

    SciTech Connect (OSTI)

    Wittberg, T.N.; Wang, P.S.

    1981-01-01

    The surface-sensitive, spectroscopic techniques of Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS) have been applied to the study of oxide dissolution on titanium and titanium subhydride. In an earlier study it was shown, using AES, that the rate of oxygen dissolution into titanium increased sharply at about 350/sup 0/C. These data correlated well with physical property measurements that indicated that at these temperatures an exothermic reaction, corresponding to the reaction of free titanium with atmospheric oxygen, was occurring. In the present study the work has been expanded to include studies of TiH/sub x/ (x = 1.15, 1.62). It has been found that dissolution of the native oxide on titanium subhydride occurs at a substantially higher temperature (about 500/sup 0/C) than for titanium. It appears that the outward diffusion of hydrogen is inhibiting the inward diffusion of oxygen on the subhydride samples at temperatures below 500/sup 0/C. Further studies of the dissolution of oxides on titanium at fixed temperatures in the range of 300 to 350/sup 0/C have shown that there is a semi-logarithmic relationship between the surface oxygen level and the time at temperature. This is in agreement with earlier gravimetric studies on titanium oxidation in this temperature range.

  1. Powder Injection Molding of Titanium Components

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Nyberg, Eric A.; Weil, K. Scott; Miller, Megan R.

    2005-01-01

    Powder injection molding (PIM) is a well-established, cost-effective method of fabricating small-to-moderate size metal components. Derived from plastic injection molding and employing a mixture of metal powder and plastic binder, the process has been used with great success in manufacturing a wide variety of metal products, including those made from stainless steel, nickel-based superalloys, and copper alloys. Less progress has been achieved with titanium and other refractory metal alloys because of problems with alloy impurities that are directly attributable to the injection molding process. Specifically, carbon, oxygen, and nitrogen are left behind during binder removal and become incorporated into the chemistry and microstructure of the material during densification. Even at low concentration, these impurities can cause severe degradation in the mechanical properties of titanium and its alloys. We have developed a unique blend of PIM constituents where only a small volume fraction of binder (~5 10 vol%) is required for injection molding; the remainder of the mixture consists of the metal powder and binder solvent. Because of the nature of decomposition in the binder system and the relatively small amount used, the binder is eliminated almost completely from the pre-sintered component during the initial stage of a two-step heat treatment process. Results will be presented on the first phase of this research, in which the binder, injection molding, de-binding and sintering schedule were developed. Additional data on the mechanical and physical properties of the material produced will be discussed.

  2. Titanium for long-term tritium storage

    SciTech Connect (OSTI)

    Heung, L.K.

    1994-12-01

    Due to the reduction of nuclear weapon stockpile, there will be an excess of tritium returned from the field. The excess tritium needs to be stored for future use, which might be several years away. A safe and cost effective means for long term storage of tritium is needed. Storing tritium in a solid metal tritide is preferred to storing tritium as a gas, because a metal tritide can store tritium in a compact form and the stored tritium will not be released until heat is applied to increase its temperature to several hundred degrees centigrade. Storing tritium as a tritide is safer and more cost effective than as a gas. Several candidate metal hydride materials have been evaluated for long term tritium storage. They include uranium, La-Ni-Al alloys, zirconium and titanium. The criteria used include material cost, radioactivity, stability to air, storage capacity, storage pressure, loading and unloading conditions, and helium retention. Titanium has the best combination of properties and is recommended for long term tritium storage.

  3. Carbon dioxide-soluble polymers and swellable polymers for carbon dioxide applications

    DOE Patents [OSTI]

    DeSimone, Joseph M.; Birnbaum, Eva; Carbonell, Ruben G.; Crette, Stephanie; McClain, James B.; McCleskey, T. Mark; Powell, Kimberly R.; Romack, Timothy J.; Tumas, William

    2004-06-08

    A method for carrying out a catalysis reaction in carbon dioxide comprising contacting a fluid mixture with a catalyst bound to a polymer, the fluid mixture comprising at least one reactant and carbon dioxide, wherein the reactant interacts with the catalyst to form a reaction product. A composition of matter comprises carbon dioxide and a polymer and a reactant present in the carbon dioxide. The polymer has bound thereto a catalyst at a plurality of chains along the length of the polymer, and wherein the reactant interacts with the catalyst to form a reaction product.

  4. Carbon Dioxide Emission Factors for Coal

    Reports and Publications (EIA)

    1994-01-01

    The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

  5. Copper mercaptides as sulfur dioxide indicators

    DOE Patents [OSTI]

    Eller, Phillip G.; Kubas, Gregory J.

    1979-01-01

    Organophosphine copper(I) mercaptide complexes are useful as convenient and semiquantitative visual sulfur dioxide gas indicators. The air-stable complexes form 1:1 adducts in the presence of low concentrations of sulfur dioxide gas, with an associated color change from nearly colorless to yellow-orange. The mercaptides are made by mixing stoichiometric amounts of the appropriate copper(I) mercaptide and phosphine in an inert organic solvent.

  6. Thorium dioxide: properties and nuclear applications

    SciTech Connect (OSTI)

    Belle, J.; Berman, R.M.

    1984-01-01

    This is the sixth book on reactor materials published under sponsorship of the Naval Reactors Office of the United States Department of Energy, formerly the United States Atomic Energy Commission. This book presents a comprehensive compilation of the most significant properties of thorium dioxide, much like the book Uranium Dioxide: Properties and Nuclear Applications presented information on the fuel material used in the Shippingport Pressurized Water Reactor core.

  7. PROCESS OF COATING GRAPHITE WITH NIOBIUM-TITANIUM CARBIDE

    DOE Patents [OSTI]

    Halden, F.A.; Smiley, W.D.; Hruz, F.M.

    1961-07-01

    A process of coating graphite with niobium - titanium carbide is described. It is found that the addition of more than ten percent by weight of titanium to niobium results in much greater wetting of the graphite by the niobium and a much more adherent coating. The preferred embodiment comprises contacting the graphite with a powdered alloy or mixture, degassing simultaneously the powder and the graphite, and then heating them to a high temperature to cause melting, wetting, spreading, and carburization of the niobium-titanium powder.

  8. Titanium aluminide intermetallic alloys with improved wear resistance

    DOE Patents [OSTI]

    Qu, Jun; Lin, Hua-Tay; Blau, Peter J.; Sikka, Vinod K.

    2014-07-08

    The invention is directed to a method for producing a titanium aluminide intermetallic alloy composition having an improved wear resistance, the method comprising heating a titanium aluminide intermetallic alloy material in an oxygen-containing environment at a temperature and for a time sufficient to produce a top oxide layer and underlying oxygen-diffused layer, followed by removal of the top oxide layer such that the oxygen-diffused layer is exposed. The invention is also directed to the resulting oxygen-diffused titanium aluminide intermetallic alloy, as well as mechanical components or devices containing the improved alloy composition.

  9. Pressure-reaction synthesis of titanium composite materials

    DOE Patents [OSTI]

    Oden, Laurance L.; Ochs, Thomas L.; Turner, Paul C.

    1993-01-01

    A pressure-reaction synthesis process for producing increased stiffness and improved strength-to-weight ratio titanium metal matrix composite materials comprising exothermically reacting a titanium powder or titanium powder alloys with non-metal powders or gas selected from the group consisting of C, B, N, BN, B.sub.4 C, SiC and Si.sub.3 N.sub.4 at temperatures from about 900.degree. to about 1300.degree. C., for about 5 to about 30 minutes in a forming die under pressures of from about 1000 to 5000 psi.

  10. Beneficial Use of Carbon Dioxide in Precast Concrete Production (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Beneficial Use of Carbon Dioxide in Precast Concrete Production Citation Details In-Document Search Title: Beneficial Use of Carbon Dioxide in Precast Concrete Production The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during

  11. Cleaning graphene with a titanium sacrificial layer

    SciTech Connect (OSTI)

    Joiner, C. A. Roy, T.; Hesabi, Z. R.; Vogel, E. M.; Chakrabarti, B.

    2014-06-02

    Graphene is a promising material for future electronic applications and chemical vapor deposition of graphene on copper is a promising method for synthesizing graphene on the wafer scale. The processing of such graphene films into electronic devices introduces a variety of contaminants which can be difficult to remove. An approach to cleaning residues from the graphene channel is presented in which a thin layer of titanium is deposited via thermal e-beam evaporation and immediately removed. This procedure does not damage the graphene as evidenced by Raman spectroscopy, greatly enhances the electrical performance of the fabricated graphene field effect transistors, and completely removes the chemical residues from the surface of the graphene channel as evidenced by x-ray photoelectron spectroscopy.

  12. Cesium titanium silicate and method of making

    DOE Patents [OSTI]

    Balmer, M.L.

    1997-01-07

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs{sub 2}Ti{sub 2}Si{sub 4}O{sub 13} pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs{sub 2}O and TiO{sub 2} loadings and are durable glass and ceramic materials. The amount of TiO{sub 2} and Cs{sub 2} that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass. 10 figs.

  13. Cesium titanium silicate and method of making

    DOE Patents [OSTI]

    Balmer, Mari L.

    1997-01-01

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs.sub.2 Ti.sub.2 Si.sub.4 O.sub.13 pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs.sub.2 O and TiO.sub.2 loadings and are durable glass and ceramic materials. The amount of TiO.sub.2 and Cs.sub.2 that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass.

  14. Waterless TiO{sub 2} atomic layer deposition using titanium tetrachloride and titanium tetraisopropoxide

    SciTech Connect (OSTI)

    Anderson, Virginia R.; Cavanagh, Andrew S.; Abdulagatov, Aziz I.; Gibbs, Zachary M.; George, Steven M.

    2014-01-15

    The surface chemistry for TiO{sub 2} atomic layer deposition (ALD) typically utilizes water or other oxidants that can oxidize underlying substrates such as magnetic disks or semiconductors. To avoid this oxidation, waterless or oxidant-free surface chemistry can be used that involves titanium halides and titanium alkoxides. In this study, waterless TiO{sub 2} ALD was accomplished using titanium tetrachloride (TiCl{sub 4}) and titanium tetraisopropoxide (TTIP). In situ transmission Fourier transform infrared (FTIR) studies were employed to study the surface species and the reactions during waterless TiO{sub 2} ALD. At low temperatures between 125 and 225  °C, the FTIR absorbance spectra revealed that the isopropoxide species remained on the surface after TTIP exposures. The TiCl{sub 4} exposures then removed the isopropoxide species and deposited additional titanium species. At high temperatures between 250 and 300  °C, the isopropoxide species were converted to hydroxyl species by β-hydride elimination. The observation of propene gaseous reaction product by quadrupole mass spectrometry (QMS) confirmed the β-hydride elimination reaction pathway. The TiCl{sub 4} exposures then easily reacted with the hydroxyl species. QMS studies also observed the 2-chloropropane and HCl gaseous reaction products and monitored the self-limiting nature of the TTIP reaction. Additional studies examined the waterless TiO{sub 2} ALD growth at low and high temperature. Quartz crystal microbalance measurements observed growth rates of ∼3 ng/cm{sup 2} at a low temperature of 150  °C. Much higher growth rates of ∼15 ng/cm{sup 2} were measured at a higher temperature of 250  °C under similar reaction conditions. X-ray reflectivity analysis measured a growth rate of 0.55 ± 0.05 Å/cycle at 250  °C. X-ray photoelectron depth-profile studies showed that the TiO{sub 2} films contained low Cl concentrations <1 at. %. This waterless TiO{sub 2} ALD process

  15. Oxidation resistance of novel ferritic stainless steels alloyed with titanium for SOFC interconnect applications

    SciTech Connect (OSTI)

    Jablonski, P.D.; Alman, D.E.

    2008-05-15

    Chromia (Cr2O3) forming ferritic stainless steels are being developed for interconnect application in Solid Oxide Fuel Cells (SOFC). A problem with these alloys is that in the SOFC environment chrome in the surface oxide can evaporate and deposit on the electrochemically active sites within the fuel cell. This poisons and degrades the performance of the fuel cell. The development of steels that can form conductive outer protective oxide layers other than Cr2O3 or (CrMn)3O4 such as TiO2 may be attractive for SOFC application. This study was undertaken to assess the oxidation behavior of ferritic stainless steel containing 1 weight percent (wt.%) Ti, in an effort to develop alloys that form protective outer TiO2 scales. The effect of Cr content (622 wt.%) and the application of a Ce-based surface treatment on the oxidation behavior (at 800 C in air+3% H2O) of the alloys was investigated. The alloys themselves failed to form an outer TiO2 scale even though the large negative {delta}G of this compound favors its formation over other species. It was found that in conjunction with the Ce-surface treatment, a continuous outer TiO2 oxide layer could be formed on the alloys, and in fact the alloy with 12 wt.% Cr behaved in an identical manner as the alloy with 22 wt.% Cr.

  16. Titanium and germanium lined hohlraums and halfraums as multi...

    Office of Scientific and Technical Information (OSTI)

    Titanium and germanium lined hohlraums and halfraums as multi-keV X-ray radiators Citation ... You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This ...

  17. Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance Technology available for licensing: Li4Ti5O12 spinel is a promising alternative to graphite electrodes with ...

  18. Ab initio study of helium behavior in titanium tritides

    SciTech Connect (OSTI)

    Liang, J. H.; Dai, Yunya; Yang, Li; Peng, SM; Fan, K. M.; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei

    2013-03-01

    Ab initio calculations based on density functional theory have been performed to investigate the relative stability of titanium tritides and the helium behavior in stable titanium tritides. The results show that the β-phase TiT1.5 without two tritium along the [100] direction (TiT1.5[100]) is more stable than other possible structures. The stability of titanium tritides decrease with the increased generation of helium in TiT1.5[100]. In addition, helium generated by tritium decay prefers locating at a tetrahedral site, and favorably migrates between two neighbor vacant tetrahedral sites through an intermediate octahedral site in titanium tritides, with a migration energy of 0.23 eV. Furthermore, helium is easily accumulated on a (100) plane in β-phase TiT1.5[100].

  19. Erratum: ''Titanium and germanium lined hohlraums and halfraums...

    Office of Scientific and Technical Information (OSTI)

    Title: Erratum: ''Titanium and germanium lined hohlraums and halfraums as multi-keV x-ray radiators'' Phys. Plasmas 16, 052704 (2009) No abstract prepared. Authors: Girard, F. ; ...

  20. Role of precursor chemistry in the direct fluorination to form titanium based conversion anodes for lithium ion batteries

    SciTech Connect (OSTI)

    Adcock, Jamie; Dai, Sheng; Veith, Gabriel M.; Bridges, Craig A.; Powell, Jonathan M.

    2015-10-13

    In this study, a new synthetic route for the formation of titanium oxydifluoride (TiOF2) through the process of direct fluorination via a fluidized bed reactor system and the associated electrochemical properties of the powders formed from this approach are reported. The flexibility of this synthetic route was demonstrated using precursor powders of titanium dioxide (TiO2) nanoparticles, as well as a reduced TiOxNy. An advantage of this synthetic method is the ability to directly control the extent of fluorination as a function of reaction temperature and time. The reversible capacity of TiOF2 anodes was found to depend greatly upon the precursor employed. The TiOF2 synthesized from TiO2 and TiOxNy showed reversible capacities of 300 mAh g-1 and 440 mAh g-1, respectively, over 100 cycles. The higher reversible capacity of the TiOF2 powders derived from TiOxNy likely relate to the partial reduction of the Ti in the fluorinated electrode material, highlighting a route to optimize the properties of conversion electrode materials.

  1. Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of Titanium |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of Titanium Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of Titanium 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_qu.pdf (724.19 KB) More Documents & Publications Ionic Liquids as Multifunctional Ashless

  2. Microstructural Properties of Gamma Titanium Aluminide Manufactured by

    Office of Scientific and Technical Information (OSTI)

    Electron Beam Melting (Conference) | SciTech Connect Microstructural Properties of Gamma Titanium Aluminide Manufactured by Electron Beam Melting Citation Details In-Document Search Title: Microstructural Properties of Gamma Titanium Aluminide Manufactured by Electron Beam Melting In recent years, Electron Beam Melting (EBM) has matured as a technology for additive manufacturing of dense metal parts. The parts are built by additive consolidation of thin layers of metal powder using an

  3. Carbon dioxide capture process with regenerable sorbents

    DOE Patents [OSTI]

    Pennline, Henry W.; Hoffman, James S.

    2002-05-14

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  4. Electrochemical Deposition of Iron Nanoneedles on Titanium Oxide Nanotubes

    SciTech Connect (OSTI)

    Gan Y. X.; Zhang L.; Gan B.J.

    2011-10-01

    Iron as a catalyst has wide applications for hydrogen generation from ammonia, photodecomposition of organics, and carbon nanotube growth. Tuning the size and shape of iron is meaningful for improving the catalysis efficiency. It is the objective of this work to prepare nanostructured iron with high surface area via electrochemical deposition. Iron nanoneedles were successfully electrodeposited on Ti supported TiO2 nanotube arrays in a chlorine-based electrolyte containing 0.15 M FeCl2 {center_dot} 4H2O and 2.0 M HCl. Transmission electron microscopic analysis reveals that the average length of the nanoneedles is about 200 nm and the thickness is about 10 nm. It has been found that a high overpotential at the cathode made of Ti/TiO2 nanotube arrays is necessary for the formation of the nanoneedles. Cyclic voltammetry test indicates that the electrodeposition of iron nanoneedles is a concentration-limited process.

  5. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    SciTech Connect (OSTI)

    K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

    2003-04-30

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, also

  6. Polymers for metal extractions in carbon dioxide

    DOE Patents [OSTI]

    DeSimone, Joseph M.; Tumas, William; Powell, Kimberly R.; McCleskey, T. Mark; Romack, Timothy J.; McClain, James B.; Birnbaum, Eva R.

    2001-01-01

    A composition useful for the extraction of metals and metalloids comprises (a) carbon dioxide fluid (preferably liquid or supercritical carbon dioxide); and (b) a polymer in the carbon dioxide, the polymer having bound thereto a ligand that binds the metal or metalloid; with the ligand bound to the polymer at a plurality of locations along the chain length thereof (i.e., a plurality of ligands are bound at a plurality of locations along the chain length of the polymer). The polymer is preferably a copolymer, and the polymer is preferably a fluoropolymer such as a fluoroacrylate polymer. The extraction method comprises the steps of contacting a first composition containing a metal or metalloid to be extracted with a second composition, the second composition being as described above; and then extracting the metal or metalloid from the first composition into the second composition.

  7. MANGANESE DIOXIDE METHOD FOR PREPARATION OF PROTACTINIUM

    DOE Patents [OSTI]

    Katzin, L.I.

    1958-08-12

    A method of obtaining U/sup 233/ is described. An aqueous solution of neutriln irradiated thoriunn is treated by forming tberein a precipitate of manganese dioxide which carries and thus separates the Pa/sup 233/ from the solution. The carrier precipitate so formed is then dissolved in an acidic solution containing a reducing agent sufficiently electronegative to reduce the tetravalent manganese to the divalent state. Further purification of the Pa/sup 233/ may be obtained by forming another manganese dioxide carrier precipitate and subsequently dissolving it. Ater a sufficient number of such cycles have brought the Pa/sup 233/ to the desired purity, the solution is aged, allowing the formation ot U/sup 233/ by radioaetive decay. A manganese dioxide precipitate is then formed in the U/sup 233/ containing solution. This precipitate carries down any remaining Pa/sup 233/ thus leaving the separated U/sup 233/solution, from whieh it may be easily recovered.

  8. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    aim to demonstrate a multi-megawatt power cycle using supercritical carbon dioxide (s-CO2) as the working fluid. The use of carbon dioxide instead of steam allows higher...

  9. Crystal structure and compressibility of lead dioxide up to 140...

    Office of Scientific and Technical Information (OSTI)

    Crystal structure and compressibility of lead dioxide up to 140 GPa Citation Details In-Document Search Title: Crystal structure and compressibility of lead dioxide up to 140 GPa ...

  10. Geothermal Startup Will Put Carbon Dioxide to Good Use

    Broader source: Energy.gov [DOE]

    Geothermal power holds enormous opportunities to provide affordable, clean energy that avoids greenhouse gases like carbon dioxide (CO2).

  11. Los Alamos probes mysteries of uranium dioxide's thermal conductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mysteries of uranium dioxide's thermal conductivity Los Alamos probes mysteries of uranium dioxide's thermal conductivity New research is showing that the thermal conductivity of cubic uranium dioxide is strongly affected by interactions between phonons carrying heat and magnetic spins. August 4, 2014 Illustration of anisotropic thermal conductivity in uranium dioxide (UO2). Scientists are studying the thermal conductivity related to the material's different crystallographic directions, hoping

  12. Electrodeposition of titanium in dimethyl sulfoxide on various metallic electrodes

    SciTech Connect (OSTI)

    Petrova, N.V.; Kazakov, V.A.; Titova, V.N.

    1985-12-01

    It has been shown that titanium is precipitated from solutions of TiCl/sub 4/ in DMSO on a Pt-electrode only in the form of thin films. One of the ways of obtaining thicker coatings may be joint deposition of titanium with other metals. In the present work the authors investigated the reduction of tiCl/sub 4/ in a 0.1 M LiCl supporting electrolyte on rotating disk electrodes of Fe, Cu, Ni, Pt and Ti in an atmosphere of argon. To explain the protective properties of the films formed, in this work the authors investigated the corrosion resistance of Armco iron with an applied titanium coating in a borate buffer solution of 0.01 N NaCl (pH 7.36) on a rotating disk electrode. As can be seen from the anodic polarization curves presented, the rate of active dissolution of iron, coated with a titanium film, is lowered six-fold in comparison with activated iron. The protective properties of the deposited films are close to the protected properties of pure titanium.

  13. Formation of low resistivity titanium silicide gates in semiconductor integrated circuits

    DOE Patents [OSTI]

    Ishida, Emi

    1999-08-10

    A method of forming a titanium silicide (69) includes the steps of forming a transistor having a source region (58), a drain region (60) and a gate structure (56) and forming a titanium layer (66) over the transistor. A first anneal is performed with a laser anneal at an energy level that causes the titanium layer (66) to react with the gate structure (56) to form a high resistivity titanium silicide phase (68) having substantially small grain sizes. The unreacted portions of the titanium layer (66) are removed and a second anneal is performed, thereby causing the high resistivity titanium silicide phase (68) to convert to a low resistivity titanium silicide phase (69). The small grain sizes obtained by the first anneal allow low resistivity titanium silicide phase (69) to be achieved at device geometries less than about 0.25 micron.

  14. Project Profile: Direct Supercritical Carbon Dioxide Receiver Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Direct Supercritical Carbon Dioxide Receiver Development Project Profile: Direct Supercritical Carbon Dioxide Receiver Development National Renewable Energy Laboratory logo -- This project is inactive -- The National Renewable Energy Laboratory (NREL), under the National Laboratory R&D competitive funding opportunity, is working to develop, characterize, and experimentally demonstrate a novel high-temperature receiver technology using supercritical carbon dioxide

  15. Acid sorption regeneration process using carbon dioxide

    DOE Patents [OSTI]

    King, C. Judson; Husson, Scott M.

    2001-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent in the presence of carbon dioxide under pressure. The acids are freed from the sorbent phase by a suitable regeneration method, one of which is treating them with an organic alkylamine solution thus forming an alkylamine-carboxylic acid complex which thermally decomposes to the desired carboxylic acid and the alkylamine.

  16. Low-Cost and Lightweight: Strongest titanium alloy aims at improving

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle fuel economy and reducing CO2 emissions | Department of Energy Low-Cost and Lightweight: Strongest titanium alloy aims at improving vehicle fuel economy and reducing CO2 emissions Low-Cost and Lightweight: Strongest titanium alloy aims at improving vehicle fuel economy and reducing CO2 emissions April 1, 2016 - 11:26am Addthis News release from Pacific Northwest National Laboratory, April 1, 2016 RICHLAND, Wash. - An improved titanium alloy - stronger than any commercial titanium

  17. Improve photovoltaic performance of titanium dioxide nanorods based dye-sensitized solar cells by Ca-doping

    SciTech Connect (OSTI)

    Li, Weixin; Yang, Junyou Zhang, Jiaqi; Gao, Sheng; Luo, Yubo; Liu, Ming

    2014-09-15

    Highlights: • TiO{sub 2} nanorods doped with Ca ions were synthesized by one-step hydrothermal method. • The flat band edge of rutile TiO{sub 2} shifted positively via Ca-doping. • The photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs) based on TiO{sub 2} electrode was much enhanced by Ca-doping. • A relatively high open circuit voltage was obtained by adopting Ca-doped TiO{sub 2} nanorods electrode. - Abstract: Ca-doped TiO{sub 2} nanorod arrays were prepared via the one-step hydrothermal method successfully, and the effect of Ca ions content on the photovoltaic conversion efficiency of dye-sensitized solar cells has been fully discussed in the paper. Although no obvious change on the microstructure and morphology was observed by field emission scanning electron microscope and transmission electron microscope for the Ca-doped samples, the results of X-ray diffraction and X-ray photoelectron spectroscopy confirmed that Ti{sup 4+} was substituted with Ca{sup 2+} successfully. UV–vis spectroscopy results revealed that the flat band edge shifted positively by Ca ions doping. The photovoltaic conversion efficiency of the dye-sensitized solar cells based on the 2 mol% Ca-doped TiO{sub 2} electrode was 43% higher than that of the undoped one due to the less recombination possibility.

  18. Brazing titanium-vapor-coated zirconia

    SciTech Connect (OSTI)

    Santella, M.L. ); Pak, J.J. )

    1993-04-01

    Partially stabilized zirconia was vacuum furnace brazed to itself, to nodular cast iron, and to commercially pure titanium with a Ag-30Cu-10Sn wt% filler metal. Wetting was obtained by coating the ZrO[sub 2] surfaces with Ti prior to brazing by RF sputtering or electron beam evaporation. Braze joints made with Ti-sputter-coated ZrO[sub 2] contained high levels of porosity, but those made with Ti coatings deposited by evaporation, referred to as Ti-vapor-coated, contained little or no porosity. Brazing caused the ZrO[sub 2] within about 1 mm (0.04 in.) of the joint surfaces to turn black in color, and thermodynamic analysis indicated that the discoloration was likely due to oxygen diffusion out of the ZrO[sub 2] into the Ti vapor coating during brazing. Braze joint strength was determined by flexure testing in the four-point bend arrangement, and on a more limited basis, by shear testing. The latter method was used mainly as a screening test for ZrO[sub 2]-Fe and ZrO[sub 2]-Ti joints. Flexure testing of ZrO[sub 2]-ZrO[sub 2] and ZrO[sub 2]-Fe braze joints was done at 25, 200, 400, and 575 C (77, 392, 752 and 1,067 F) in air. For flexure testing, average strengths of joint specimens decreased with increasing test temperature. The lower average strengths of ZrO[sub 2]-Fe specimens compared to those from ZrO[sub 2]-ZrO[sub 2] joints was attributed to higher residual stresses in the ceramic-to-metal joints.

  19. Titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition and a process for making the same

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Dykes, Norman L.

    1991-01-01

    A ceramic composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to about 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness.

  20. Method for preparing hydrous titanium oxide spherules and other gel forms thereof

    DOE Patents [OSTI]

    Collins, Jack L.

    1998-01-01

    The present invention are methods for preparing hydrous titanium oxide spherules, hydrous titanium oxide gels such as gel slabs, films, capillary and electrophoresis gels, titanium monohydrogen phosphate spherules, hydrous titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite sorbent, titanium monohydrogen phosphate spherules having suspendible particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, titanium oxide spherules in the form of anatase, brookite or rutile, titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite, hydrous titanium oxide fiber materials, titanium oxide fiber materials, hydrous titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite, titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite and spherules of barium titanate. These variations of hydrous titanium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters and ceramics.

  1. Method for preparing hydrous titanium oxide spherules and other gel forms thereof

    DOE Patents [OSTI]

    Collins, J.L.

    1998-10-13

    The present invention are methods for preparing hydrous titanium oxide spherules, hydrous titanium oxide gels such as gel slabs, films, capillary and electrophoresis gels, titanium monohydrogen phosphate spherules, hydrous titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite sorbent, titanium monohydrogen phosphate spherules having suspendible particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, titanium oxide spherules in the form of anatase, brookite or rutile, titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite, hydrous titanium oxide fiber materials, titanium oxide fiber materials, hydrous titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite, titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite and spherules of barium titanate. These variations of hydrous titanium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters and ceramics. 6 figs.

  2. Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels

    DOE Patents [OSTI]

    Subramanian, Vaidyanathan; Murugesan, Sankaran

    2014-04-29

    The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.

  3. Investigation of defect nucleation in titanium under mechanical loading

    SciTech Connect (OSTI)

    Zolnikov, Konstantin P. Kryzhevich, Dmitrij S.; Korchuganov, Aleksandr V.; Psakhie, Sergey G.

    2014-11-14

    The paper undertakes a study of plastic deformation in a titanium crystallite under mechanical loading (uniaxial tension and indentation) in terms of atomic mechanisms of its generation and development. The molecular dynamics method with many-body interatomic potentials is employed. It is shown that there is a threshold strain, at which a crystal reveals the generation of local structural transformations associated with changes in atomic configurations of the first and second coordination spheres. The onset of plastic deformation in a crystallite is accompanied by a stepwise decrease in potential energy. The effect of free surfaces and grain boundaries on the generation of local structural transformations in a titanium crystallite is investigated.

  4. Processing of hydroxylapatite coatings on titanium alloy bone prostheses

    DOE Patents [OSTI]

    Nastasi, M.A.; Levine, T.E.; Mayer, J.W.; Pizziconi, V.B.

    1998-10-06

    Processing of hydroxylapatite sol-gel films on titanium alloy bone prostheses. A method utilizing non-line-of-sight ion beam implantation and/or rapid thermal processing to provide improved bonding of layers of hydroxylapatite to titanium alloy substrates while encouraging bone ingrowth into the hydroxylapatite layers located away from the substrate, is described for the fabrication of prostheses. The first layer of hydroxylapatite is mixed into the substrate by the ions or rapidly thermally annealed, while subsequent layers are heat treated or densified using ion implantation to form layers of decreasing density and larger crystallization, with the outermost layers being suitable for bone ingrowth.

  5. Effects of titanium and zirconium on iron aluminide weldments

    SciTech Connect (OSTI)

    Burt, R.P.; Edwards, G.R.; David, S.A.

    1996-08-01

    Iron aluminides form a coarse fusion zone microstructure when gas-tungsten arc welded. This microstructure is susceptible to hydrogen cracking when water vapor is present in the welding environment. Because fusion zone microstructural refinement can reduce the hydrogen cracking susceptibility, titanium was used to inoculate the weld pool in iron aluminide alloy FA-129. Although the fusion zone microstructure was significantly refined by this method, the fracture stress was found to decrease with titanium additions. This decrease is attributed to an increase in inclusions at the grain boundaries.

  6. Processing of hydroxylapatite coatings on titanium alloy bone prostheses

    DOE Patents [OSTI]

    Nastasi, Michael A.; Levine, Timothy E.; Mayer, James W.; Pizziconi, Vincent B.

    1998-01-01

    Processing of hydroxylapatite sol-gel films on titanium alloy bone prostheses. A method utilizing non-line-of-sight ion beam implantation and/or rapid thermal processing to provide improved bonding of layers of hydroxylapatite to titanium alloy substrates while encouraging bone ingrowth into the hydroxylapatite layers located away from the substrate, is described for the fabrication of prostheses. The first layer of hydroxylapatite is mixed into the substrate by the ions or rapidly thermally annealed, while subsequent layers are heat treated or densified using ion implantation to form layers of decreasing density and larger crystallization, with the outermost layers being suitable for bone ingrowth.

  7. Titanium tritide radioisotope heat source development : palladium-coated titanium hydriding kinetics and tritium loading tests.

    SciTech Connect (OSTI)

    Van Blarigan, Peter; Shugard, Andrew D.; Walters, R. Tom

    2012-01-01

    We have found that a 180 nm palladium coating enables titanium to be loaded with hydrogen isotopes without the typical 400-500 C vacuum activation step. The hydriding kinetics of Pd coated Ti can be described by the Mintz-Bloch adherent film model, where the rate of hydrogen absorption is controlled by diffusion through an adherent metal-hydride layer. Hydriding rate constants of Pd coated and vacuum activated Ti were found to be very similar. In addition, deuterium/tritium loading experiments were done on stacks of Pd coated Ti foil in a representative-size radioisotope heat source vessel. The experiments demonstrated that such a vessel could be loaded completely, at temperatures below 300 C, in less than 10 hours, using existing department-of-energy tritium handling infrastructure.

  8. SULPHUR DIOXIDE LEACHING OF URANIUM CONTAINING MATERIAL

    DOE Patents [OSTI]

    Thunaes, A.; Rabbits, F.T.; Hester, K.D.; Smith, H.W.

    1958-12-01

    A process is described for extracting uranlum from uranium containing material, such as a low grade pitchblende ore, or mill taillngs, where at least part of the uraniunn is in the +4 oxidation state. After comminuting and magnetically removing any entrained lron particles the general material is made up as an aqueous slurry containing added ferric and manganese salts and treated with sulfur dioxide and aeration to an extent sufficient to form a proportion of oxysulfur acids to give a pH of about 1 to 2 but insufficient to cause excessive removal of the sulfur dioxide gas. After separating from the solids, the leach solution is adjusted to a pH of about 1.25, then treated with metallic iron in the presence of a precipitant such as a soluble phosphate, arsonate, or fluoride.

  9. Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder Metallurgy Produced Titanium Alloys

    SciTech Connect (OSTI)

    Muth, Thomas R; Yamamoto, Yukinori; Frederick, David Alan; Contescu, Cristian I; Chen, Wei; Lim, Yong Chae; Peter, William H; Feng, Zhili

    2013-01-01

    ORNL undertook an investigation using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate, to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas forming species. PM-titanium made from revert scrap where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal / minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders, are critical to achieve equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

  10. Nanocomposite formed by titanium ion implantation into alumina

    SciTech Connect (OSTI)

    Spirin, R. E.; Salvadori, M. C. Teixeira, F. S.; Sgubin, L. G.; Cattani, M.; Brown, I. G.

    2014-11-14

    Composites of titanium nanoparticles in alumina were formed by ion implantation of titanium into alumina, and the surface electrical conductivity measured in situ as the implantation proceeded, thus generating curves of sheet conductivity as a function of dose. The implanted titanium self-conglomerates into nanoparticles, and the spatial dimensions of the buried nanocomposite layer can thus be estimated from the implantation depth profile. Rutherford backscattering spectrometry was performed to measure the implantation depth profile, and was in good agreement with the calculated profile. Transmission electron microscopy of the titanium-implanted alumina was used for direct visualization of the nanoparticles formed. The measured conductivity of the buried layer is explained by percolation theory. We determine that the saturation dose, φ{sub 0}, the maximum implantation dose for which the nanocomposite material still remains a composite, is φ{sub 0} = 2.2 × 10{sup 16 }cm{sup −2}, and the corresponding saturation conductivity is σ{sub 0} = 480 S/m. The percolation dose φ{sub c}, below which the nanocomposite still has basically the conductivity of the alumina matrix, was found to be φ{sub c} = 0.84 × 10{sup 16 }cm{sup −2}. The experimental results are discussed and compared with a percolation theory model.

  11. Co-doped titanium oxide foam and water disinfection device

    DOE Patents [OSTI]

    Shang, Jian-Ku; Wu, Pinggui; Xie, Rong-Cai

    2016-01-26

    A quaternary oxide foam, comprises an open-cell foam containing (a) a dopant metal, (b) a dopant nonmetal, (c) titanium, and (d) oxygen. The foam has the advantages of a high surface area and a low back pressure during dynamic flow applications. The inactivation of Escherichia coli (E. coli) was demonstrated in a simple photoreactor.

  12. Degradation mode survey of titanium-base alloys

    SciTech Connect (OSTI)

    Gdowski, G.E.; Ahluwalia, H.S.

    1995-01-30

    Of the materials reviewed, commercially pure titanium, Ti Gr 2, is the most susceptible to crevice corrosion. Ti Gr 7, 12, and 16 are likely to be resistant to crevice corrosion under the current expected Yucca Mountain repository conditions. Although Grade 7 has the greatest resistance to crevice corrosion it is also the most expensive. Although the possibility of sustained loads cracking exists, it has not yet been observed in a Ti alloys. For hydride precipitation to occur 100{degrees}C, the hydrogen concentration would need to be relatively high, much higher than the maximum amount of hydrogen allowed during the manufacture of ({alpha} Ti alloys (0.0 15 wt%). A large amount of (SCC) stress corrosion cracking data accumulated at SNL and BNL for the WIPP program and by the Canadian Waste Management Program on titanium grades 2 and 12 indicates that there is no SCC at naturally occurring potentials in various brines. Hydride-induced cracking of titanium is a possibility and therefore, further investigation of this phenomenon under credible repository conditions is warranted. One disadvantage of titanium and its alloys is that their strengths decrease rather rapidly with temperature. This is due to the strong temperature dependence of interstitial solute strengthening mechanisms. Ti Gr 12 and 16 are recommended for further consideration as candidate materials for high level nuclear waste containers.

  13. Fractal Studies on Titanium-Silica Aerogels using SMARTer

    SciTech Connect (OSTI)

    Putra, E. Giri Rachman; Ikram, A.; Bharoto; Santoso, E. [Neutron Scattering Laboratory, BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Fang, T. Chiar; Ibrahim, N. [Department of Physics, Faculty of Science Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor (Malaysia); Mohamed, A. Aziz [Materials Technology Group, Industrial Technology Division Agensi Nuklear Malaysia, 43000 Kajang (Malaysia)

    2008-03-17

    Power-law scattering approximation has been employed to reveal the fractal structures of solid-state titanium-silica aerogel samples. All small-angle neutron scattering (SANS) measurements were performed using 36 meters SANS BATAN spectrometer (SMARTer) at the neutron scattering laboratory (NSL) in Serpong, Indonesia. The mass fractal dimension of titanium-silica aerogels at low scattering vector q range increases from -1.4 to -1.92 with the decrease of acid concentrations during sol-gel process. These results are attributed to the titanium-silica aerogels that are growing to more polymeric and branched structures. At high scattering vector q range the Porod slope of -3.9 significantly down to -2.24 as the roughness of particle surfaces becomes higher. The cross over between these two regimes decreases from 0.4 to 0.16 nm{sup -1} with the increase of acid concentrations indicating also that the titanium-silica aerogels are growing.

  14. Extraction of furfural with carbon dioxide

    SciTech Connect (OSTI)

    Gamse, T.; Marr, R.; Froeschl, F.; Siebenhofer, M.

    1997-01-01

    A new approach to separate furfural from aqueous waste has been investigated. Recovery of furfural and acetic acid from aqueous effluents of a paper mill has successfully been applied on an industrial scale since 1981. The process is based on the extraction of furfural and acetic acid by the solvent trooctylphosphineoxide (TOPO). Common extraction of both substances may cause the formation of resin residues. Improvement was expected by selective extraction of furfural with chlorinated hydrocarbons, but ecological reasons stopped further development of this project. The current investigation is centered in the evaluation of extraction of furfural by supercritical carbon dioxide. The influence of temperature and pressure on the extraction properties has been worked out. The investigation has considered the multi-component system furfural-acetic acid-water-carbon dioxide. Solubility of furfural in liquid and supercritical carbon dioxide has been measured, and equilibrium data for the ternary system furfural-water-CO{sub 2} as well as for the quaternary system furfural-acetic acid-water-CO{sub 2} have been determined. A high-pressure extraction column has been used for evaluation of mass transfer rates.

  15. Method of immobilizing carbon dioxide from gas streams

    DOE Patents [OSTI]

    Holladay, David W.; Haag, Gary L.

    1979-01-01

    This invention is a method for rapidly and continuously immobilizing carbon dioxide contained in various industrial off-gas streams, the carbon dioxide being immobilized as dry, stable, and substantially water-insoluble particulates. Briefly, the method comprises passing the gas stream through a fixed or fluidized bed of hydrated barium hydroxide to remove and immobilize the carbon dioxide by converting the bed to barium carbonate. The method has several important advantages: it can be conducted effectively at ambient temperature; it provides a very rapid reaction rate over a wide range of carbon dioxide concentrations; it provides high decontamination factors; and it has a high capacity for carbon dioxide. The invention is especially well suited for the removal of radioactive carbon dioxide from off-gases generated by nuclear-fuel reprocessing facilities and nuclear power plants.

  16. The CNG process: Acid gas removal with liquid carbon dioxide

    SciTech Connect (OSTI)

    Liu, Y.C.; Auyang, L.; Brown, W.R.

    1987-01-01

    The CNG acid gas removal process has two unique features: the absorption of sulfur-containing compounds and other trace contaminants with liquid carbon dioxide, and the regeneration of pure liquid carbon dioxide by triple-point crystallization. The process is especially suitable for treating gases which contain large amounts of carbon dioxide and much smaller amounts (relative to carbon dioxide) of hydrogen sulfide. Capital and energy costs are lower than conventional solvent processes. Further, products of the CNG process meet stringent purity specifications without undue cost penalties. A process demonstration unit has been constructed and operated to demonstrate the two key steps of the CNG process. Hydrogen sulfide and carbonyl sulfide removal from gas streams with liquid carbon dioxide absorbent to sub-ppm concentrations has been demonstrated. The production of highly purified liquid carbon dioxide (less than 0.1 ppm total contaminant) by triple-point crystallization also has been demonstrated.

  17. Haverford College Researchers Create Carbon Dioxide-Separating Polymer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Haverford College Researchers Create Carbon Dioxide-Separating Polymer Haverford College Researchers Create Carbon Dioxide-Separating Polymer August 1, 2012 Rebecca Raber, rraber@haverford.edu, +1 610 896 1038 gtoc.jpg Carbon dioxide gas separation is important for many environmental and energy applications. Molecular dynamics simulations are used to characterize a two-dimensional hydrocarbon polymer, PG-ES1, that uses a combination of surface adsorption and narrow pores to separate carbon

  18. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine NREL logo -- This project is inactive -- The National Renewable Energy Laboratory (NREL) and its partners, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), aim to demonstrate a multi-megawatt power cycle using supercritical carbon dioxide (s-CO2) as the working fluid. The use of carbon

  19. Project Profile: High-Efficiency Receivers for Supercritical Carbon Dioxide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cycles | Department of Energy Receivers for Supercritical Carbon Dioxide Cycles Project Profile: High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles Brayton logo --This project is inactive -- Brayton Energy, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is building and testing a new solar receiver that uses supercritical carbon dioxide (s-CO2) as the heat-transfer fluid. The research team is designing the receiver to withstand higher operating temperatures

  20. Project Profile: Supercritical Carbon Dioxide Turbo-Expander and Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exchangers | Department of Energy Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers Project Profile: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers SWRI Logo The Southwest Research Institute (SWRI) and its partners, under the 2012 Concentrating Solar Power (CSP) SunShot R&D funding opportunity announcement (FOA), are developing a supercritical carbon dioxide (s-CO2) power cycle that combines high efficiencies and low costs for modular CSP applications.

  1. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock

  2. Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Transcritical Carbon Dioxide Supermarket Refrigeration Systems Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems This case study documents one year of operating experience with a transcritical carbon dioxide (TC CO2) booster refrigeration system at Delhaize America's Hannaford supermarket location in Turner, Maine. This supermarket, which began operation in June 2013, is the first supermarket installation in the U.S. of a TC CO2 booster

  3. Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic Sequestration Conditions Using X-ray Computed Microtomography Citation Details In-Document ...

  4. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brayton Energy's supercritical carbon dioxide (s-CO 2 ) solar receiver has the potential to significantly improve reliability, increase efficiency, and reduce costs of CSP systems. ...

  5. Comprehensive study of carbon dioxide adsorption in the metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comprehensive study of carbon dioxide adsorption in the metal-organic frameworks M2(dobdc) (M ... physisorptive interaction with the framework surface and sheds more light on the ...

  6. Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel...

    Open Energy Info (EERE)

    Fuel CO2 Emissions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions AgencyCompany...

  7. Carbon Dioxide Emissions Associated with Bioenergy and Other...

    Open Energy Info (EERE)

    and Other Biogenic Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources AgencyCompany...

  8. Beneficial Use of Carbon Dioxide in Precast Concrete Production...

    Office of Scientific and Technical Information (OSTI)

    of Carbon Dioxide in Precast Concrete Production Shao, Yixin 36 MATERIALS SCIENCE Clean Coal Technology Coal - Environmental Processes Clean Coal Technology Coal - Environmental...

  9. Haverford College Researchers Create Carbon Dioxide-Separating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dioxide gas separation is important for many environmental and energy applications. Molecular dynamics simulations are used to characterize a two-dimensional hydrocarbon...

  10. Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    Office of Scientific and Technical Information (OSTI)

    Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Gutierrez, Marte 54 ENVIRONMENTAL...

  11. U.S. Energy-Related Carbon Dioxide Emissions, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Related Carbon Dioxide Emissions, 2014 November 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 November 2015 U.S. Energy Information Administration | U.S. Energy-Related Carbon Dioxide Emissions, 2014 1 November 2015 U.S. Energy Information Administration | U.S. Energy-Related Carbon Dioxide Emissions, 2014 2 November 2015 U.S. Energy Information Administration | U.S. Energy-Related Carbon Dioxide Emissions, 2014 3 November 2015 U.S. Energy

  12. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and...

    Office of Scientific and Technical Information (OSTI)

    Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer Citation Details In-Document Search Title: Geochemical Impacts of Carbon ...

  13. Molecular Simulation of Carbon Dioxide Nanodroplets on Clay in...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide Nanodroplets on Clay in Deep Saline Aquifers. Authors: Tenney, Craig M. Publication Date: ...

  14. Molecular Simulation of Carbon Dioxide Nanodroplets on Clay Surfaces...

    Office of Scientific and Technical Information (OSTI)

    Surfaces in Deep Saline Aquifers. Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide Nanodroplets on Clay Surfaces in Deep Saline Aquifers. Authors: ...

  15. Carbon Dioxide Capture and Storage Demonstration in Developing...

    Open Energy Info (EERE)

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Capture and Storage Demonstration in Developing Countries: Analysis of Key Policy Issues and Barriers...

  16. Method for carbon dioxide sequestration (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of ...

  17. Carbon dioxide absorbent and method of using the same

    DOE Patents [OSTI]

    Perry, Robert James; O'Brien, Michael Joseph

    2014-06-10

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  18. Carbon dioxide absorbent and method of using the same

    DOE Patents [OSTI]

    Perry, Robert James; O'Brien, Michael Joseph

    2015-12-29

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  19. Theoretical analysis of uranium-doped thorium dioxide: Introduction...

    Office of Scientific and Technical Information (OSTI)

    polarization Citation Details In-Document Search Title: Theoretical analysis of uranium-doped thorium dioxide: Introduction of a thoria force field with explicit polarization ...

  20. OSTIblog Articles in the carbon dioxide Topic | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    regions and seasons, increasing intensity and frequency of storm events, flooding and... Related Topics: carbon dioxide, carbon sequestration, climate change, greenhouse gases

  1. Elevated Carbon Dioxide Suppresses Dominant Plant Species in...

    Office of Science (SC) Website

    depend on interannual variation in precipitation and (2) the effects of elevated carbon dioxide are not limited to water saving because they differ from those of irrigation. ...

  2. CarBen Version 3: Multisector Carbon Dioxide Emissions Accounting...

    Open Energy Info (EERE)

    Name: CarBen Version 3: Multisector Carbon Dioxide Emissions Accounting Tool Focus Area: Geothermal Power Topics: Policy, Deployment, & Program Impact Website: www.netl.doe.gov...

  3. Project Profile: Supercritical Carbon Dioxide Turbo-Expander...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers Project Profile: ... Concentrating Solar Power (CSP) SunShot R&D funding opportunity announcement (FOA), are ...

  4. Synthesis, Structure, and Carbon Dioxide Capture Properties of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks Previous Next List Anh Phan, Christian J. Doonan, Fernando J. Uribe-Romo, Carolyn B....

  5. A Novel System for Carbon Dioxide Capture Utilizing Electrochemical...

    Office of Scientific and Technical Information (OSTI)

    Electric Power and Carbon-Dioxide Separation (CEPACS) system, under a contract from ... The unique chemistry of carbonate fuel cells offers an innovative approach for separation ...

  6. Innovative Concepts for Beneficial Reuse of Carbon Dioxide | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Innovative Concepts for Beneficial Reuse of Carbon Dioxide Innovative Concepts for Beneficial Reuse of Carbon Dioxide Funding for 12 projects to test innovative concepts for the beneficial use of carbon dioxide (CO2) was announced by the U.S. Department of Energy. The awards are part of $1.4 billion in funding from the American Recovery and Reinvestment Act (ARRA) for projects that will capture carbon dioxide from industrial sources. These 12 projects will engage in a first phase

  7. Fast, Efficient Isothermal Redox to Split Water or Carbon Dioxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fast, Efficient Isothermal Redox to Split Water or Carbon Dioxide using Solar Energy ... the hercynite cycle allows faster, more efficient cycling and less wear on the equipment ...

  8. Capture of carbon dioxide by hybrid sorption

    DOE Patents [OSTI]

    Srinivasachar, Srivats

    2014-09-23

    A composition, process and system for capturing carbon dioxide from a combustion gas stream. The composition has a particulate porous support medium that has a high volume of pores, an alkaline component distributed within the pores and on the surface of the support medium, and water adsorbed on the alkaline component, wherein the proportion of water in the composition is between about 5% and about 35% by weight of the composition. The process and system contemplates contacting the sorbent and the flowing gas stream together at a temperature and for a time such that some water remains adsorbed in the alkaline component when the contact of the sorbent with the flowing gas ceases.

  9. Method for extracting and sequestering carbon dioxide

    DOE Patents [OSTI]

    Rau, Gregory H. (Castro Valley, CA); Caldeira, Kenneth G. (Livermore, CA)

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said method and apparatus hydrates CO.sub.2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  10. Apparatus for extracting and sequestering carbon dioxide

    DOE Patents [OSTI]

    Rau, Gregory H. (Castro Valley, CA); Caldeira, Kenneth G. (Livermore, CA)

    2010-02-02

    An apparatus and method associated therewith to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said apparatus hydrates CO.sub.2 and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  11. Catalytic conversion of sulfur dioxide and trioxide

    SciTech Connect (OSTI)

    Solov'eva, E.L.; Shenfel'd, B.E.; Kuznetsova, S.M.; Khludenev, A.G.

    1987-11-10

    The reclamation and utilization of sulfur-containing wastes from the flue gas of fossil-fuel power plants and the subsequent reduction in sulfur emission is addressed in this paper. The authors approach this problem from the standpoint of the catalytic oxidation of sulfur dioxide on solid poison-resistant catalysts with subsequent sorption of the sulfur trioxide and its incorporation into the manufacture of sulfuric acid. The catalyst they propose is a polymetallic dust-like waste from the copper-smelting industry comprised mainly of iron and copper oxides. Experiments with this catalyst were carried out using multifactorial experiment planning.

  12. Eutectic precipitation of melt quenched titanium-silicon-neodymium alloy

    SciTech Connect (OSTI)

    Li, G.P.; Liu, Y.Y.; Li, D.; Hu, Z.Q. . Inst. of Metal Research)

    1995-01-15

    Titanium based metallic glasses have attracted keen interest because of the promise of industrial applications owing to their improves corrosion resistance, better mechanical properties, occurrence of superconductivity and superior magnetic properties. The titanium alloy systems where metallic glass has been obtained include Ti-Cu, Ti-Be, Ti-Si, Ti-B. Polk et al. had reported that they were able to produce an amorphous phase in binary Ti[sub 80]Si[sub 20] alloy system by using an arc-melting piston and anvil apparatus. In the present study, the authors have investigated the effect of adding rare earth element Nd on eutective precipitation of the amorphous Ti[sub 80]Si[sub 20] alloy and the orientation relationship which exists between the [beta]-Ti and Ti[sub 5]Si[sub 3].

  13. Electron beam melting of charge based on titanium sponge

    SciTech Connect (OSTI)

    Tikhonovsky, A.L.; Tikhonovsky, K.A.

    1995-12-31

    An experience of 0.8 MW consumable box melting furnace operation and theoretical simulation have led to the further development of the FIKO plant under construction on the base of melting of two consumable box-like bullets which move opposite each other and form narrow heated space between melted butt ends. It allows to reduce vaporization, spatter and radiation losses by several times and to reach two times increase in melting rate and 99%(97%) yield for c.p. titanium (alloys) without furnace power add. Future furnace design will provide the optimum protection of vacuum pumps against chlorides, the safety when melting titanium sponge and will permit hot ingots to move to the special furnace for EB surface conditioning. The maximum productivity is to be 18,000 t/year. The furnace can be used for the manufacture of aluminum-, copper-, iron-, nickel-, tungsten-based alloys and others of any charge including salvage.

  14. Electron flux at the surface of titanium tritide films

    SciTech Connect (OSTI)

    Kherani, N.P.; Shmayda, W.T. . Research Center)

    1992-03-01

    Certain metal tritides have been investigated as reliable and quasi-constant sources of electrons for a number of practical purposes with particular attention to the dependence of the electron emission rate as a function of temperature. The objective of this paper is to carry out simple calculations that illustrate the relative ranking of a numbed of binary metal tritides with respect to the maximum achievable electron flux; examine semi-empirically the energy spectrum of the electrons emanating from the surface of a titanium tritide film; and present experimental measurements of the electron emission rate from the surface of titanium tritide films. THe results suggest that beryllium tritide would yield the greatest electron emission rate of all the metal tritides; the emitted flux has a significant component of secondary electrons; and, the total electron emission rate is quite sensitive to the condition of the emitting surface.

  15. Laser Acoustic Molten Metal Depth Sensing in Titanium

    SciTech Connect (OSTI)

    J. B. Walter; K. L. Telschow; R. E. Haun

    1999-09-22

    A noncontacting ultrasonic method has been investigated for probing the solidification front in molten titanium for the purposes of profiling the channel depth in a plasma hearth re-melter. The method, known as Laser Ultrasonics, utilized a pulsed laser for generation of ultrasonic waves at the surface of a molten metal pool. The ultrasonic waves propagated into the liquid titanium reflected from the solidification front and the boundaries of the solid plug. A Fabry-Perot interferometer, driven by a second laser, demodulated the small displacements caused by the ultrasonic wave motion at the liquid surface. The method and results of measurements taken within a small research plasma melting furnace will be described. Successful results were obtained even directly beneath the plasma arc using this all-optical approach.

  16. Laser Acoustic Molten Metal Depth Sensing in Titanium

    SciTech Connect (OSTI)

    Walter, John Bradley; Telschow, Kenneth Louis; Haun, R.E.

    1999-08-01

    A noncontacting ultrasonic method has been investigated for probing the solidification front in molten titanium for the purposes of profiling the channel depth in plasma hearth re-melter. The method, known as Laser Ultrasonics, utilized a pulsed laser for generation of ultrasonic waves at the surface of a molten metal pool. The ultrasonic waves propagated into the liquid titanium reflected from the solidification front and the boundaries of the solid plug. A Fabry-Perot interferometer, driven by a second laser, demodulated the small displacements caused by the ultrasonic wave motion at the liquid surface. The method and results of measurements taken within a small research plasma melting furnace will be described. Successful results were obtained even directly beneath the plasma arc using this all optical approach.

  17. Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance Technology available for licensing: Li4Ti5O12 spinel is a promising alternative to graphite electrodes with enhanced conductivity, voltage and energy density. Enhanced stability at lower cost Li4Ti5O12 spinel is a promising alternative to graphite electrodes with enhanced conductivity, voltage and energy density PDF icon LTO_anodes

  18. Method for removing oxide contamination from titanium diboride powder

    DOE Patents [OSTI]

    Brynestad, Jorulf; Bamberger, Carlos E.

    1984-01-01

    A method for removing oxide contamination from titanium diboride powder involves the direct chemical treatment of TiB.sub.2 powders with a gaseous boron halide, such as BCl.sub.3, at temperatures in the range of 500.degree.-800.degree. C. The BCl.sub.3 reacts with the oxides to form volatile species which are removed by the BCl.sub.3 exit stream.

  19. Method for removing oxide contamination from titanium diboride powder

    DOE Patents [OSTI]

    Brynestad, J.; Bamberger, C.E.

    A method for removing oxide contamination from titanium diboride powder involves the direct chemical treatment of TiB/sub 2/ powders with a gaseous boron halide, such as BCl/sub 3/, at temperatures in the range of 500 to 800/sup 0/C. The BCl/sub 3/ reacts with the oxides to form volatile species which are removed by the BCl/sub 3/ exit stream.

  20. Surface-Induced Hybridization between Graphene and Titanium

    SciTech Connect (OSTI)

    Hsu, Allen L.; Koch, Roland J.; Ong, Mitchell T.; Fang, Wenjing; Hofmann, Mario; Kim, Ki Kang; Seyller, Thomas; Dresselhaus, Mildred S.; Reed, Evan J.; Kong, Jing; Palacios, Tomás

    2014-08-26

    Carbon-based materials such as graphene sheets and carbon nanotubes have inspired a broad range of applications ranging from high-speed flexible electronics all the way to ultrastrong membranes. However, many of these applications are limited by the complex interactions between carbon-based materials and metals. In this work, we experimentally investigate the structural interactions between graphene and transition metals such as palladium (Pd) and titanium (Ti), which have been confirmed by density functional simulations. We find that the adsorption of titanium on graphene is more energetically favorable than in the case of most metals, and density functional theory shows that a surface induced p-d hybridization occurs between atomic carbon and titanium orbitals. This strong affinity between the two materials results in a short-range ordered crystalline deposition on top of graphene as well as chemical modifications to graphene as seen by Raman and X-ray photoemission spectroscopy (XPS). This induced hybridization is interface-specific and has major consequences for contacting graphene nanoelectronic devices as well as applications toward metal-induced chemical functionalization of graphene.

  1. Effects of titanium and zirconium on iron aluminide weldments

    SciTech Connect (OSTI)

    Mulac, B.L.; Edwards, G.R.; Burt, R.P.; David, S.A.

    1997-12-01

    When gas-tungsten arc welded, iron aluminides form a coarse fusion zone microstructure which is susceptible to hydrogen embrittlement. Titanium inoculation effectively refined the fusion zone microstructure in iron aluminide weldments, but the inoculated weldments had a reduced fracture strength despite the presence of a finer microstructure. The weldments fractured by transgranular cleavage which nucleated at cracked second phase particles. With titanium inoculation, second phase particles in the fusion zone changed shape and also became more concentrated at the grain boundaries, which increased the particle spacing in the fusion zone. The observed decrease in fracture strength with titanium inoculation was attributed to increased spacing of second phase particles in the fusion zone. Current research has focused on the weldability of zirconium- and carbon-alloyed iron aluminides. Preliminary work performed at Oak Ridge National Laboratory has shown that zirconium and carbon additions affect the weldability of the alloy as well as the mechanical properties and fracture behavior of the weldments. A sigmajig hot cracking test apparatus has been constructed and tested at Colorado School of Mines. Preliminary characterization of hot cracking of three zirconium- and carbon-alloyed iron aluminides, each containing a different total concentration of zirconium at a constant zirconium/carbon ratio of ten, is in progress. Future testing will include low zirconium alloys at zirconium/carbon ratios of five and one, as well as high zirconium alloys (1.5 to 2.0 atomic percent) at zirconium/carbon ratios of ten to forty.

  2. Titanium Sheet Fabricated from Powder for Industrial Applications

    SciTech Connect (OSTI)

    Peter, William H; Muth, Thomas R; Chen, Wei; Yamamoto, Yukinori; Jolly, Brian C; Stone, Nigel; Cantin, G.M.D.; Barnes, John; Paliwal, Muktesh; Smith, Ryan; Capone, Joseph; Liby, Alan L; Williams, James C; Blue, Craig A

    2012-01-01

    In collaboration with Ametek and Commonwealth Scientific and Industrial Research Organization (CSIRO), Oak Ridge National Laboratory has evaluated three different methods for converting titanium hydride-dehydride (HDH) powder into thin gauge titanium sheet from a roll compacted preform. Methodologies include sintering, followed by cold rolling and annealing; direct hot rolling of the roll-compacted sheet; and hot rolling of multiple layers of roll compacted sheet that are encapsulated in a steel can. All three methods have demonstrated fully consolidated sheet, and each process route has the ability to produce sheet that meets ASTM B265 specifications. However, not every method currently provides sheet that can be highly formed without tearing. The degree of sintering between powder particles, post processing density, and the particle to particle boundary layer where compositional variations may exist, have a significant effect on the ability to form the sheet into useful components. Uniaxial tensile test results, compositional analysis, bend testing, and biaxial testing of the titanium sheet produced from hydride-dehydride powder will be discussed. Multiple methods of fabrication and the resulting properties can then be assessed to determine the most economical means of making components for industrial applications.

  3. Microstructural characterization of titanium to 304 stainless steel brazed joints

    SciTech Connect (OSTI)

    Camargo, P.R.C.; Liu, S. . Center for Welding and Joining Research); Trevisan, R.E. . Dept. of Fabrication Engineering)

    1993-12-01

    The formation of intermetallic compounds in brazed joints between titanium and 304 stainless steel is of major concern, since they considerably degrade the joint properties. This research examined the vacuum brazing of commercially pure titanium to 304 stainless steel using two different silver-copper brazing filler metals. Pure copper and silver were used to prepare the brazing filler metals in these experiments. Special attention was given to the characterization of the different phases formed at the brazed joint and the effect of the intermetallic compounds on the mechanical properties of the brazed joints. Light and electron microscopy, electron probe microanalysis, microhardness, and shear testing were used to support the investigation. From the mechanical properties point of view, brazed joints using an eutectic composition filler metal (Ag-28 wt-% Cu) proved to be superior compared to the joints prepared with a filler metal of composition Ag-46 wt-% Cu. To maximize the shear strength of the joint, the brazing time must be optimized such that interfacial reactions, titanium-iron intermetallics formation are minimized.

  4. Effects of titanium additions to austenitic ternary alloys on microstructural evolution and void swelling

    SciTech Connect (OSTI)

    Okita, T; Wolfer, W G; Garner, F A; Sekimura, N

    2003-12-01

    Ternary austenitic model alloys were modified with 0.25 wt.% titanium and irradiated in FFTF reactor at dose rates ranging over more than two orders in magnitude. While lowering of dose rate strongly increases swelling by shortening the incubation dose, the steady state swelling rate is not affected by dose rate. Although titanium addition strongly alters the void microstructure, swelling at {approx} 420 C does not change with titanium additions, but the sensitivity to dose rate is preserved.

  5. Intense X-rays expose tiny flaws in 3-D printed titanium that can lead to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    breakage over time | Argonne National Laboratory Intense X-rays expose tiny flaws in 3-D printed titanium that can lead to breakage over time By Katie Elyce Jones * March 4, 2016 Tweet EmailPrint Titanium is strong but light - a desirable property among metals. In the twentieth century, titanium was used in military aircraft and equipment and commercial jets. Today, we find this tough and flexible metal all around us - in sports gear, tools, surgical and dental implants, prosthetics,

  6. Project Profile: Carbon Dioxide Shuttling Thermochemical Storage Using

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strontium Carbonate | Department of Energy Project Profile: Carbon Dioxide Shuttling Thermochemical Storage Using Strontium Carbonate Project Profile: Carbon Dioxide Shuttling Thermochemical Storage Using Strontium Carbonate University of Florida Logo -- This project is inactive -- The University of Florida (UF), through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program, is working on making

  7. Production of Diesel Engine Turbocharger Turbine from Low Cost Titanium Powder

    SciTech Connect (OSTI)

    Muth, T. R.; Mayer, R.

    2012-05-04

    Turbochargers in commercial turbo-diesel engines are multi-material systems where usually the compressor rotor is made of aluminum or titanium based material and the turbine rotor is made of either a nickel based superalloy or titanium, designed to operate under the harsh exhaust gas conditions. The use of cast titanium in the turbine section has been used by Cummins Turbo Technologies since 1997. Having the benefit of a lower mass than the superalloy based turbines; higher turbine speeds in a more compact design can be achieved with titanium. In an effort to improve the cost model, and develop an industrial supply of titanium componentry that is more stable than the traditional aerospace based supply chain, the Contractor has developed component manufacturing schemes that use economical Armstrong titanium and titanium alloy powders and MgR-HDH powders. Those manufacturing schemes can be applied to compressor and turbine rotor components for diesel engine applications with the potential of providing a reliable supply of titanium componentry with a cost and performance advantage over cast titanium.

  8. Method of producing titanium-modified austenitic steel having improved swelling resistance

    DOE Patents [OSTI]

    Megusar, Janez; Grant, Nicholas J.

    1989-01-01

    A process for improving the swelling resistance of a titanium-modified austenitic stainless steel that involves a combination of rapid solidification and dynamic compaction techniques.

  9. Excess Titanium from NNSA's Y-12 Plant to be Used by the Army...

    National Nuclear Security Administration (NNSA)

    Excess Titanium from NNSA's Y-12 Plant to be Used by the Army for New Generation of Protective Body Armor for Combat Troops | National Nuclear Security Administration Facebook...

  10. Carbon dioxide absorbent and method of using the same

    DOE Patents [OSTI]

    Perry, Robert James; Lewis, Larry Neil; O'Brien, Michael Joseph; Soloveichik, Grigorii Lev; Kniajanski, Sergei; Lam, Tunchiao Hubert; Lee, Julia Lam; Rubinsztajn, Malgorzata Iwona

    2011-10-04

    In accordance with one aspect, the present invention provides an amino-siloxane composition comprising at least one of structures I, II, III, IV or V said compositions being useful for the capture of carbon dioxide from gas streams such as power plant flue gases. In addition, the present invention provides methods of preparing the amino-siloxane compositions are provided. Also provided are methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention as species which react with carbon dioxide to form an adduct with carbon dioxide. The reaction of the amino-siloxane compositions provided by the present invention with carbon dioxide is reversible and thus, the method provides for multicycle use of said compositions.

  11. Table 5. Per capita energy-related carbon dioxide emissions by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Per capita energy-related carbon dioxide emissions by State (2000-2011)" "metric tons of carbon dioxide per person" ,,,"Change" ,,,"2000 to 2011"...

  12. Table 2. 2011 State energy-related carbon dioxide emissions by...

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 State energy-related carbon dioxide emissions by fuel " ,"million metric tons of carbon dioxide",,,,,"shares" "State","Coal","Petroleum","Natural Gas ","Total",,"Coal","Petrol...

  13. Table 3. 2011 State energy-related carbon dioxide emissions by...

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 State energy-related carbon dioxide emissions by sector " "million metric tons of carbon dioxide" "State","Commercial","Electric Power","Residential","Industrial","Transportat...

  14. Table 1. State energy-related carbon dioxide emissions by year...

    U.S. Energy Information Administration (EIA) Indexed Site

    State energy-related carbon dioxide emissions by year (2000-2011)" "million metric tons of carbon dioxide" ,,,"Change" ,,,"2000 to 2011" "State",2000,2001,2002,...

  15. Table 11.2a Carbon Dioxide Emissions From Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    a Carbon Dioxide Emissions From Energy Consumption: Residential Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Electricity 5 ...

  16. Helium Migration Mechanisms in Polycrystalline Uranium Dioxide

    SciTech Connect (OSTI)

    Martin, Guillaume; Desgardin, Pierre; Sauvage, Thierry; Barthe, Marie-France; Garcia, Philippe; Carlot, Gaelle

    2007-07-01

    This study aims at identifying the release mechanisms of helium in uranium dioxide. Two sets of polycrystalline UO{sub 2} sintered samples presenting different microstructures were implanted with {sup 3}He ions at concentrations in the region of 0.1 at.%. Changes in helium concentrations were monitored using two Nuclear Reaction Analysis (NRA) techniques based on the {sup 3}He(d,{alpha}){sup 1}H reaction. {sup 3}He release is measured in-situ during sample annealing at temperatures ranging between 700 deg. C and 1000 deg. C. Accurate helium depth profiles are generated after each annealing stage. Results that provide data for further understanding helium release mechanisms are discussed. It is found that helium diffusion appears to be enhanced above 900 deg. C in the vicinity of grain boundaries possibly as a result of the presence of defects. (authors)

  17. Molten uranium dioxide structure and dynamics

    SciTech Connect (OSTI)

    Skinner, L. B.; Parise, J. B.; Benmore, C. J.; Weber, J. K.R.; Williamson, M. A.; Tamalonis, A.; Hebden, A.; Wiencek, T.; Alderman, O. L.G.; Guthrie, M.; Leibowitz, L.

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. On melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.

  18. Layered solid sorbents for carbon dioxide capture

    DOE Patents [OSTI]

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  19. Carbon dioxide research plan. A summary

    SciTech Connect (OSTI)

    Trivelpiece, Alvin W.; Koomanoff, F. A.; Suomi, Verner E.

    1983-11-01

    The Department of Energy is the lead federal agency for research related to atmospheric carbon dioxide. Its responsibility is to sponsor a program of relevant research, and to coordinate this research with that of others. As part of its responsibilities, the Department of Energy has prepared a research plan. The plan documented in this Summary delineated the logic, objectives, organization, background and current status of the research activities. The Summary Plan is based on research subplans in four specific areas: global carbon cycle, climate effects, vegetative response and indirect effects. These subplans have emanated from a series of national and international workshops, conferences, and from technical reports. The plans have been peer reviewed by experts in the relevant scientific fields. Their execution is being coordinated between the responsible federal and international government agencies and the involved scientific community.

  20. Molten uranium dioxide structure and dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Skinner, L. B.; Parise, J. B.; Benmore, C. J.; Weber, J. K.R.; Williamson, M. A.; Tamalonis, A.; Hebden, A.; Wiencek, T.; Alderman, O. L.G.; Guthrie, M.; et al

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. Onmore » melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.« less

  1. Coiled tubing drilling with supercritical carbon dioxide

    DOE Patents [OSTI]

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  2. Electrochemical, galvanic, and mechanical responses of grade 2 titanium in 6% sodium chloride solution

    SciTech Connect (OSTI)

    Wang, Z.F.; Briant, C.L.; Kumar, K.S.

    1999-02-01

    The electrochemical, galvanic, and mechanical responses of grade 2 titanium in 6% sodium chloride (NaCl) solution at different temperatures were investigated. The initial corrosion potential and cathodic reaction rate increased with decreasing pH and increasing temperature. The initial corrosion potential changed when titanium was coupled with other metals. Naval brass and alloy 600 (UNS N06600) anodically polarized titanium, while zinc and aluminum caused titanium to become a cathode. HY80 steel (UNS K31820), type 316 stainless steel ([SS] UNS S31600), and Monel K500 (UNS N05500, a copper-nickel alloy), polarized titanium anodically or cathodically depending upon temperature and pH. Hydrides formed on the titanium surface at potentials < {approximately} {minus}600 mV{sub SCE} to {minus}700 mV{sub SCE}. Zinc at all temperatures and HY80 at high temperatures caused hydride formation in titanium when coupled galvanically with titanium. Mechanical tests showed an {approx} 10% decrease in ductility under prior and dynamic hydrogen charging conditions.

  3. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOE Patents [OSTI]

    Johnson, R.; Steinberg, M.

    This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  4. Estimated Carbon Dioxide Emissions in 2008: United States

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-04-01

    Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary

  5. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOE Patents [OSTI]

    Johnson, Richard; Steinberg, Meyer

    1981-01-01

    This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  6. Titanium diboride ceramic fiber composites for Hall-Heroult cells

    DOE Patents [OSTI]

    Besmann, T.M.; Lowden, R.A.

    1990-05-29

    An improved cathode structure is described for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 C can be used.

  7. Titanium diboride ceramic fiber composites for Hall-Heroult cells

    DOE Patents [OSTI]

    Besmann, Theodore M.; Lowden, Richard A.

    1990-01-01

    An improved cathode structure for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 deg. C can be used.

  8. Machining of Aircraft Titanium with Abrasive-Waterjets for Fatigue Critical Applications

    SciTech Connect (OSTI)

    Liu, H. T.; Hovanski, Yuri; Dahl, Michael E.

    2012-02-01

    Laboratory tests were conducted to determine the fatigue performance of abrasive-waterjet- (AWJ-) machined aircraft titanium. Dog-bone specimens machined with AWJs were prepared and tested with and without sanding and dry-grit blasting with Al2O3 as secondary processes. The secondary processes were applied to remove the visual appearance of AWJ-generated striations and to clean up the garnet embedment. The fatigue performance of AWJ-machined specimens was compared with baseline specimens machined with CNC milling. Fatigue test results of the titanium specimens not only confirmed our previous findings in aluminum dog-bone specimens but in comparison also further enhanced the fatigue performance of the titanium. In addition, titanium is known to be difficult to cut, particularly for thick parts, however AWJs cut the material 34% faster han stainless steel. AWJ cutting and dry-grit blasting are shown to be a preferred ombination for processing aircraft titanium that is fatigue critical.

  9. Short-Term Energy Outlook Model Documentation: Carbon Dioxide (CO2) Emissions Model

    Reports and Publications (EIA)

    2009-01-01

    Description of the procedures for estimating carbon dioxide emissions in the Short-Term Energy Outlook

  10. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  11. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  12. A versatile metal-organic framework for carbon dioxide capture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    versatile metal-organic framework for carbon dioxide capture and cooperative catalysis Previous Next List Jinhee Park, Jian-Rong Li, Ying-Pin Chen, Jiamei Yu, Andrey A. Yakovenko, ...

  13. Recent advances in carbon dioxide capture with metal-organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent advances in carbon dioxide capture with metal-organic frameworks Previous Next List ... Great progress in MOF materials for CO2 capture has been made in the past and reviewed ...

  14. Carbon Dioxide Emissions From Vegetation-Kill Zones Around The...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Carbon Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dome Of Long Valley...

  15. Fact #898: November 9, 2015 World Carbon Dioxide Emissions, 1990...

    Broader source: Energy.gov (indexed) [DOE]

    World Carbon Dioxide Emissions, 1990-2012 Year United States Rest of North America Central & South America Europe Eurasia Middle East Africa India China Rest of Asia & Oceania 1990 ...

  16. U.S. Energy-Related Carbon Dioxide Emissions, 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy-Related Carbon Dioxide Emissions, 2013 October 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 October 2014 U.S. Energy...

  17. Carbon Dioxide Capture: Prospects for New Materials | Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Dioxide Capture: Prospects for New Materials Previous Next List D. M. D'Alessandro, B. Smit, and J. R. Long, Angew. Chem.-Int. Edit. 49 (35), 6058 (2010) DOI: 10.1002...

  18. Carbon Dioxide Capture in Metal-Organic Frameworks | Center for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Dioxide Capture in Metal-Organic Frameworks Previous Next List Kenji Sumida , David L. Rogow , Jarad A. Mason , Thomas M. McDonald , Eric D. Bloch , Zoey R. Herm , Tae-Hyun...

  19. Table 21. Total Energy Related Carbon Dioxide Emissions, Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual Projected (million metric tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 ...

  20. "Table 21. Total Energy Related Carbon Dioxide Emissions, Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,200...

  1. Formation of rare earth carbonates using supercritical carbon dioxide

    DOE Patents [OSTI]

    Fernando, Quintus; Yanagihara, Naohisa; Dyke, James T.; Vemulapalli, Krishna

    1991-09-03

    The invention relates to a process for the rapid, high yield conversion of select rare earth oxides or hydroxides, to their corresponding carbonates by contact with supercritical carbon dioxide.

  2. Carbon dioxide capture-related gas adsorption and separation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks Previous Next List Jian-Rong Li, Yuguang Ma, M. Colin McCarthy, Julian Sculley, Jiamei Yu,...

  3. DOE to Provide $36 Million to Advance Carbon Dioxide Capture...

    Broader source: Energy.gov (indexed) [DOE]

    of carbon dioxide (CO2) from the existing fleet of coal-fired power plants. "Currently, the ... and laboratory methods to identify and ... an additive for reducing the stripping ...

  4. Short-Term Energy Carbon Dioxide Emissions Forecasts August 2009

    Reports and Publications (EIA)

    2009-01-01

    Supplement to the Short-Term Energy Outlook. Short-term projections for U.S. carbon dioxide emissions of the three fossil fuels: coal, natural gas, and petroleum.

  5. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

    2005-01-01

    This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

  6. Increased photocatalytic activity of TiO2 mesoporous microspheres...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 42; Journal Issue: 1; Journal ID: ISSN 0272-8842 Publisher: Elsevier Research Org: Oak Ridge National Laboratory (ORNL), Oak Ridge, ...

  7. New Texas Oil Project Will Help Keep Carbon Dioxide Underground |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy’s National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen production facilities.

  8. First Direct Observation of Carbon Dioxide's Increasing Greenhouse Effect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Earth's Surface First Direct Observation of Carbon Dioxide's Increasing Greenhouse Effect at Earth's Surface First Direct Observation of Carbon Dioxide's Increasing Greenhouse Effect at Earth's Surface Researchers Link Rising CO₂ Levels from Fossil Fuels to Radiative Forcing February 25, 2015 Contact: Dan Krotz, dakrotz@lbl.gov, 510-486-4019 ARM Alaska Caption: The scientists used incredibly precise spectroscopic instruments at two sites operated by the Department of Energy's

  9. Tethered catalysts for the hydration of carbon dioxide

    DOE Patents [OSTI]

    Valdez, Carlos A; Satcher, Jr., Joe H; Aines, Roger D; Wong, Sergio E; Baker, Sarah E; Lightstone, Felice C; Stolaroff, Joshuah K

    2014-11-04

    A system is provided that substantially increases the efficiency of CO.sub.2 capture and removal by positioning a catalyst within an optimal distance from the air-liquid interface. The catalyst is positioned within the layer determined to be the highest concentration of carbon dioxide. A hydrophobic tether is attached to the catalyst and the hydrophobic tether modulates the position of the catalyst within the liquid layer containing the highest concentration of carbon dioxide.

  10. Recycling Carbon Dioxide to Make Plastics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics May 20, 2013 - 1:31pm Addthis Novomer’s thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Novomer's thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Why is this important? By using CO2 that would otherwise be emitted to the atmosphere, the process has the potential to cut greenhouse gas emissions while simultaneously reducing petroleum

  11. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print Friday, 19 February 2016 13:11 The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric

  12. Geologic Carbon Dioxide Storage Field Projects Supported by DOE's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sequestration Program | Department of Energy Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Background: The U.S. DOE's Sequestration Program began with a small appropriation of $1M in 1997 and has grown to be the largest most comprehensive CCS R&D program in the world. The U.S. DOE's sequestration program has supported a number of projects implementing CO2

  13. Using supercritical carbon dioxide as a fracturing fluid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using supercritical carbon dioxide as a fracturing fluid Using supercritical carbon dioxide as a fracturing fluid The Laboratory team used a combination of experiments and modeling for the investigation. June 25, 2015 Simulation of a selection of the particle trajectories toward the well. Simulation of a selection of the particle trajectories toward the well. Communications Office (505) 667-7000 The Laboratory research is part of an ongoing project to make the necessary measurements and develop

  14. Carbon Ion Pump for Carbon Dioxide Removal - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Carbon Ion Pump for Carbon Dioxide Removal Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing Summary The limitation to reducing greenhouse gases in the atmosphere is the expense of stripping carbon dioxide from other combustion gases. Without a cost-effective means of accomplishing this, hydrocarbon resources cannot be used freely. A few power plants currently remove

  15. Neutral beam dump with cathodic arc titanium gettering

    SciTech Connect (OSTI)

    Smirnov, A.; Korepanov, S. A.; Putvinski, S.; Krivenko, A. S.; Murakhtin, S. V.; Savkin, V. Ya.

    2011-03-15

    An incomplete neutral beam capture can degrade the plasma performance in neutral beam driven plasma machines. The beam dumps mitigating the shine-through beam recycling must entrap and retain large particle loads while maintaining the beam-exposed surfaces clean of the residual impurities. The cathodic arc gettering, which provides high evaporation rate coupled with a fast time response, is a powerful and versatile technique for depositing clean getter films in vacuum. A compact neutral beam dump utilizing the titanium arc gettering was developed for a field-reversed configuration plasma sustained by 1 MW, 20-40 keV neutral hydrogen beams. The titanium evaporator features a new improved design. The beam dump is capable of handling large pulsed gas loads, has a high sorption capacity, and is robust and reliable. With the beam particle flux density of 5 x 10{sup 17} H/(cm{sup 2}s) sustained for 3-10 ms, the beam recycling coefficient, defined as twice the ratio of the hydrogen molecular flux leaving the beam dump to the incident flux of high-energy neutral atoms, is {approx}0.7. The use of the beam dump allows us to significantly reduce the recycling of the shine-through neutral beam as well as to improve the vacuum conditions in the machine.

  16. Structural phase stability in nanocrystalline titanium to 161 GPa

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Velisavljevic, Nenad; Jacobsen, Matthew K.; Vohra, Yogesh K.

    2014-09-16

    Nanocrystalline titanium (nc-Ti) metal was investigated up to 161 GPa at room temperature using a diamond anvil cell. X-ray diffraction and electrical resistance techniques were used to investigate the compressibility and structural phase stability. nc-Ti is observed to undergo three structural phase transitions at high pressures, starting with α → ω at 10GPa and followed by ω → γ at 127GPa and γ → δ at 140GPa. The observed structural phase transitions, as well as compressibility, are consistent with previously reported values for coarse grained Ti (c-Ti). The high pressure experiments on nc-Ti samples do no show any significant variationmore » of the α → ω transition pressure under varying nonhydrostatic conditions. This is in sharp contrast to c-Ti, where a significant decrease in the α → ω transition pressure is observed under increasing nonhydrostatic conditions. As a result, this would indicate that the decrease in grain size in nano grained titanium makes the α → ω phase transition less sensitive to shear stresses as compared to bulk or c-Ti.« less

  17. Brazing of titanium-vapor-coated silicon nitride

    SciTech Connect (OSTI)

    Santella, M.L. )

    1988-09-01

    A technique for brazing Si{sub 3}N{sub 4} with metallic alloys was evaluated. The process involved vapor coating the ceramic with a 1.0-{mu}-thick layer of titanium before the brazing operation. The coating improved wetting of the Si{sub 3}N{sub 4} surfaces to the extent that strong bonding between the solidified braze filler metal and the ceramic occurred. Braze joints of Si{sub 3}N{sub 4} were made with Ag-Cu, Au-Ni, and Au-Ni-Pd alloys at temperatures of 790{degree}, 970{degree}, and 1,130{degree}C. Silicon nitride specimens were also brazed with a Ag-Cu alloy to the molybdenum alloy TZM, titanium, and A286 steel at 790{degree}C. Residual stresses resulting from mismatch of thermal expansion coefficients between the Si{sub 3}N{sub 4} and the metals caused all of the ceramic-to-metal joints to spontaneously crack in the Si{sub 3}N{sub 4} upon cooling from the brazing temperature.

  18. Nitrogen dioxide and respiratory illnesses in infants

    SciTech Connect (OSTI)

    Samet, J.M.; Lambert, W.E.; Skipper, B.J.; Cushing, A.H.; Hunt, W.C.; Young, S.A.; McLaren, L.C.; Schwab, M.; Spengler, J.D. )

    1993-11-01

    Nitrogen dioxide is an oxidant gas that contaminates outdoor air and indoor air in homes with unvented gas appliances. A prospective cohort study was carried out to test the hypothesis that residential exposure to NO2 increases incidence and severity of respiratory illnesses during the first 18 months of life. A cohort of 1,205 healthy infants from homes without smokers was enrolled. The daily occurrence of respiratory symptoms and illnesses was reported by the mothers every 2 wk. Illnesses with wheezing or wet cough were classified as lower respiratory tract. Indoor NO2 concentrations were serially measured with passive samplers place in the subjects' bedrooms. In stratified analyses, illness incidence rates did not consistently increase with exposure to NO2 or stove type. In multivariate analyses that adjusted for potential confounding factors, odds ratios were not significantly elevated for current or lagged NO2 exposures, or stove type. Illness duration, a measure of illness severity, was not associated with NO2 exposure. The findings can be extended to homes with gas stoves in regions of the United States where the outdoor air is not heavily polluted by NO2.

  19. Anomalous response of superconducting titanium nitride resonators to terahertz radiation

    SciTech Connect (OSTI)

    Bueno, J. Baselmans, J. J. A; Coumou, P. C. J. J.; Zheng, G.; Visser, P. J. de; Klapwijk, T. M.; Driessen, E. F. C.; Doyle, S.

    2014-11-10

    We present an experimental study of kinetic inductance detectors (KIDs) fabricated of atomic layer deposited TiN films and characterized at radiation frequencies of 350 GHz. The responsivity to radiation is measured and found to increase with the increase in radiation powers, opposite to what is expected from theory and observed for hybrid niobium titanium nitride/aluminium (NbTiN/Al) and all-aluminium (all-Al) KIDs. The noise is found to be independent of the level of the radiation power. The noise equivalent power improves with higher radiation powers, also opposite to what is observed and well understood for hybrid NbTiN/Al and all-Al KIDs. We suggest that an inhomogeneous state of these disordered superconductors should be used to explain these observations.

  20. Acidity characterization of a titanium and sulfate modified vermiculite

    SciTech Connect (OSTI)

    Hernandez, W.Y.; Centeno, M.A.; Odriozola, J.A.; Moreno, S.; Molina, R.

    2008-07-01

    A natural vermiculite has been modified with titanium and sulfated by the intercalation and impregnation method in order to optimize the acidity of the clay mineral, and characterization of samples were analyzed by X-ray fluorescence (XRF), X-ray diffraction (XRD), nitrogen adsorption isotherms, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature programmed desorption with ammonia (TPD-NH{sub 3}). All the modified solids have a significantly higher number of acidic sites with respect to the parent material and in all of these, Broensted as well as Lewis acidity are identified. The presence of sulfate appears not to increase the number of acidic centers in the modified clay. For the materials sulfated with the intercalation method, it is observed that the strength of the acidic sites found in the material increases with the nominal sulfate/metal ratio. Nevertheless, when elevated quantities of sulfur are deposited, diffusion problems in the heptane reaction appear.

  1. DEVELOPMENT OF TITANIUM NITRIDE COATING FOR SNS RING VACUUM CHAMBERS.

    SciTech Connect (OSTI)

    HE,P.; HSEUH,H.C.; MAPES,M.; TODD,R.; WEISS,D.

    2001-06-18

    The inner surface of the ring vacuum chambers of the US Spallation Neutron Source (SNS) will be coated with {approximately}100 nm of Titanium Nitride (TiN). This is to minimize the secondary electron yield (SEY) from the chamber wall, and thus avoid the so-called e-p instability caused by electron multipacting as observed in a few high-intensity proton storage rings. Both DC sputtering and DC-magnetron sputtering were conducted in a test chamber of relevant geometry to SNS ring vacuum chambers. Auger Electron Spectroscopy (AES) and Rutherford Back Scattering (RBS) were used to analyze the coatings for thickness, stoichiometry and impurity. Excellent results were obtained with magnetron sputtering. The development of the parameters for the coating process and the surface analysis results are presented.

  2. Nondestructive detection of titanium disilicide phase transformation by picosecond ultrasonics

    SciTech Connect (OSTI)

    Lin, H.; Stoner, R.J.; Maris, H.J. ); Harper, J.M.E.; Cabral, C. Jr.; Halbout, J.; Rubloff, G.W. )

    1992-11-30

    We demonstrate that picosecond ultrasonics is a sensitive nondestructive probe of the formation of TiSi{sub 2} from the reaction of titanium films on silicon annealed at temperatures of 300--800 {degree}C. From the measured change in optical reflectivity, the responses due to electronic excitation, acoustic echoes, and thermal coupling to the underlying Si are resolved. The results show significant differences in the electronic response and the ultrasonic echo pattern before and after the structural phases C49 and C54 TiSi{sub 2} are formed. The longitudinal sound velocity is measured to be (8.3{plus minus}0.2){times}10{sup 5} cm/s for C49 TiSi{sub 2}, and about 5% lower for the C54 phase.

  3. Photo-oxidation of gaseous ethanol on photocatalyst prepared by acid leaching of titanium oxide/hydroxyapatite composite

    SciTech Connect (OSTI)

    Ono, Y.; Rachi, T.; Yokouchi, M.; Kamimoto, Y.; Nakajima, A.; Okada, K.

    2013-06-01

    Highlights: ► Photocatalyst powder was prepared by acid leaching of TiO{sub 2}/apatite composite. ► The photocatalytic activity was evaluated from in situ FT-IR study using ethanol. ► Apatite in the composite had positive effect for the photo-oxidation of ethanol. ► The enhanced oxidation rate was explained by the difference in deactivation rate. - Abstract: Highly active photocatalysts were synthesized by leaching of heat-treated titanium dioxide (TiO{sub 2})/hydroxyapatite (HAp) powder with hydrochloric acid at 0.25, 0.50, 0.75 mol/l, and their photocatalytic activities were evaluated from in situ Fourier transform infrared (FT-IR) study of photo-oxidation of gaseous ethanol. By changing the acid concentration, the TiO{sub 2}/HAp composite had different atomic ratios of Ca/Ti (0.0–2.8) and P/Ti (0.3–2.1). It was found that phosphate group remained on the surface of TiO{sub 2} particle even in the sample treated with concentrated acid (0.75 mol/l). These acid-treated samples showed higher rates for ethanol photo-oxidation than the commercial TiO{sub 2} powder, Degussa P25. The highest rate was obtained in the TiO{sub 2}/HAp composite treated with the dilute (0.25 mol/l) acid in spite of its low content of TiO{sub 2} photocatalyst. This enhanced photocatalytic activity was attributed to the result that the deactivation with repeated injections of ethanol gas was suppressed in the TiO{sub 2}/HAp composites compared with the TiO{sub 2} powders.

  4. Formation of a memristor matrix based on titanium oxide and investigation by probe-nanotechnology methods

    SciTech Connect (OSTI)

    Avilov, V. I.; Ageev, O. A.; Kolomiitsev, A. S.; Konoplev, B. G. Smirnov, V. A.; Tsukanova, O. G.

    2014-12-15

    The results of investigation of a memristor-matrix model on the basis of titanium-oxide nanoscale structures (ONSs) fabricated by methods of focused ion beams and atomic-force microscopy (AFM) are presented. The effect of the intensity of interaction between the AFM probe and the sample surface on the memristor effect in the titanium ONS is shown. The memristor effect in the titanium ONS is investigated by an AFM in the mode of spreading-resistance map. The possibility of the recording and erasure of information in the submicron cells is shown on the basis of using the memristor effect in the titanium ONS, which is most promising for developing the technological processes of the formation of resistive operation memory cells.

  5. Developments in Die Pressing Strategies for Low-Cost Titanium Powders

    SciTech Connect (OSTI)

    Hovanski, Yuri; Weil, K. Scott; Lavender, Curt A.

    2009-05-01

    Recent developments in the production of low-cost titanium powders have rejuvenated interest in manufacturing titanium powder metallurgy components by direct press and sinter techniques. However excessive friction typically observed during titanium powder pressing operations leads to numerous problems ranging from non-homogeneous green densities of the compacted powder to excessive part ejection forces and reduced die life due to wear and galling. An instrumented double-acting die press was developed to both investigate the mechanics of titanium powder pressing (particularly for the new low-cost powder morphologies) and to screen potential lubricants that could reduce frictional effects. As will be discussed, the instrument was used to determine friction coefficients and to evaluate a number of candidate lubricants. These results were then used to optimize the lubricant system to reduce die-wall stresses and improve part density uniformity.

  6. A New Method for Low-Cost Production ff Titanium Alloys for Reducing...

    Broader source: Energy.gov (indexed) [DOE]

    The University of Utah - Salt Lake City, UT A novel metallurgical process for producing titanium (Ti) components could produce a ten-fold material usage improvement in aircraft and ...

  7. Vegetation Response to Carbon Dioxide and Climate: Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to vegetation response to carbon dioxide and climate includes: • Area and Carbon Content of Sphagnum Since Last Glacial Maximum (2002) (Trends Online) • TDE Model Intercomparison Project Data Archive • Presentations and abstracts from the recent DOE Terrestrial Science Team Meeting (Argonne National Laboratory, October 29-31, 2001) • FACE (Free-Air CO2 Enrichment) • Walker Branch Throughfall Displacement Experiment Data Report: Site Characterization, System Performance, Weather, Species Composition, and Growth (2001) • Bibliography on CO2 Effects on Vegetation and Ecosystems: 1990-1999 Literature (2000) • Direct effects of atmospheric CO2 enrichment on plants and ecosystems: An updated bibliographic data base (1994) • A Database of Herbaceous Vegetation Responses to Elevated Atmospheric CO2 (1999) • A Database of Woody Vegetation Responses to Elevated Atmospheric CO2 (1999) • Forest Responses to Anthropogenic Stress (FORAST) Database (1995) • Effects of CO2 and Nitrogen Fertilization on Growth and Nutrient Content of Juvenile Ponderosa Pine (1998) • Carbon Dioxide Enrichment: Data on the Response of Cotton to Varying CO2Irrigation, and Nitrogen (1992) • Growth and Chemical Responses to CO2 Enrichment Virginia Pine Pinus Virginiana Mill.(1985)

  8. Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders

    SciTech Connect (OSTI)

    Dr. David M. Bowden; Dr. William H. Peter

    2012-03-31

    The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operations to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical

  9. Metal Oxide Semiconductor Nanoparticles Pave the Way for Medical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Contact ANL About This Technology

    Titanium dioxide ... Titanium dioxide nanocomposites "locate and destroy" defective cell lines using the white ...

  10. Modification of surface oxide layers of titanium targets for increasing lifetime of neutron tubes

    SciTech Connect (OSTI)

    Zakharov, A. M. Dvoichenkova, O. A.; Evsin, A. E.

    2015-12-15

    The peculiarities of interaction of hydrogen ions with a titanium target and its surface oxide layer were studied. Two ways of modification of the surface oxide layers of titanium targets for increasing the lifetime of neutron tubes were proposed: (1) deposition of an yttrium oxide barrier layer on the target surface; (2) implementation of neutron tube work regime in which the target is irradiated with ions with energies lower than 1000 eV between high-energy ion irradiation pulses.

  11. Supercritical fluid carbon dioxide cleaning of plutonium parts

    SciTech Connect (OSTI)

    Hale, S.J.

    1991-12-31

    Supercritical fluid carbon dioxide is under investigation in this work for use as a cleaning solvent for the final cleaning of plutonium parts. These parts must be free of organic residue to avoid corrosion in the stockpile. Initial studies on stainless steel and full-scale mock-up parts indicate that the oils of interest are easily and adequately cleaned from the metal surfaces with supercritical fluid carbon dioxide. Results from compatibility studies show that undesirable oxidation or other surface reactions are not occurring during exposure of plutonium to the supercritical fluid. Cleaning studies indicate that the oils of interest are removed from the plutonium surface under relatively mild conditions. These studies indicate that supercritical fluid carbon dioxide is a very promising cleaning medium for this application.

  12. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-07-01

    This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

  13. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect (OSTI)

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box Raghubir P. Gupta

    2006-09-30

    This report describes research conducted between July 1, 2006 and September 30, 2006 on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. Modifications to the integrated absorber/ sorbent regenerator/ sorbent cooler system were made to improve sorbent flow consistency and measurement reliability. Operation of the screw conveyor regenerator to achieve a sorbent temperature of at least 120 C at the regenerator outlet is necessary for satisfactory carbon dioxide capture efficiencies in succeeding absorption cycles. Carbon dioxide capture economics in new power plants can be improved by incorporating increased capacity boilers, efficient flue gas desulfurization systems and provisions for withdrawal of sorbent regeneration steam in the design.

  14. Alloy Design and Thermomechanical Processing of a Beta Titanium Alloy for a Heavy Vehicle Application

    SciTech Connect (OSTI)

    Blue, C.A.; Peter, W.H.

    2010-07-02

    With the strength of steel, but at half the weight, titanium has the potential to offer significant benefits in the weight reduction of heavy vehicle components while possibly improving performance. However, the cost of conventional titanium fabrication is a major barrier in implementation. New reduction technologies are now available that have the potential to create a paradigm shift in the way the United States uses titanium, and the economics associated with fabrication of titanium components. This CRADA project evaluated the potential to develop a heavy vehicle component from titanium powders. The project included alloy design, development of manufacturing practices, and modeling the economics associated with the new component. New Beta alloys were designed for this project to provide the required mechanical specifications while utilizing the benefits of the new fabrication approach. Manufacturing procedures were developed specific to the heavy vehicle component. Ageing and thermal treatment optimization was performed to provide the desired microstructures. The CRADA partner established fabrication practices and targeted capital investment required for fabricating the component out of titanium. Though initial results were promising, the full project was not executed due to termination of the effort by the CRADA partner and economic trends observed in the heavy vehicle market.

  15. Application of electrochemical techniques for machining titanium aluminide-based alloys

    SciTech Connect (OSTI)

    Ziomek-Moroz, M.; Su, W; Alman, David E.; Hawk, Jeffrey A.

    1997-01-01

    Intermetallic materials with excellent resistance to high-temperature oxidation have been considered as potential replacements for superalloys used as aerospace materials. Titanium aluminides are especially attractive for this role. However, further commercialization of titanium aluminides requires the development of non-conventional machining, such as electrochemical machining (ECM). As a first attempt in the development of the ECM process, the corrosion behavior of arc-melted gamma TiAl and alpha 2 Ti3Al was investigated along with pure titanium and aluminum in deaerated and non-deaerated solutions of sulfuric acid, sodium sulfate, and sodium hydroxide. Two types of electrochemical experiments were carried out, namely, potentiodynamic and potentiostatic. In the Na2SO4 solution, the highest current was found for Al and the lowest for TiAl. The shape of the polarization curves indicates that the intermetallics show similar behavior to that of Ti. It has been found that, in sulfuric acid, current values decrease with increasing titanium content. In the sodium sulfate and sodium hydroxide solutions, current values initially decrease with increasing titanium content and remain unchanged for higher concentrations of titanium.

  16. Water and Carbon Dioxide Adsorption at Olivine Surfaces

    SciTech Connect (OSTI)

    Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

    2013-11-14

    Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.

  17. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    SciTech Connect (OSTI)

    Shao, Yixin

    2014-06-26

    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber-cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long-term durability and reduce energy and emission. For a reaction within a 24-hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60-80% in 4-hour carbon dioxide curing and improve the resistance to freeze-thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO2 in carbon utilization. By the use of self-concentrating absorption technology, high purity CO2 can be produced at a price below $40/t. With low cost CO2 capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO2/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  18. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles This fact sheet describes a project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Brayton Energy, aims to develop and demonstrate a low-cost, high-efficiency solar receiver that is compatible with s-CO2 cycles and modern thermal storage subsystems. Supercritical CO2 Brayton-cycle

  19. Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications

    SciTech Connect (OSTI)

    Thomas Zwitter; Phillip Nash; Xiaoyan Xu; Chadwick Johnson

    2011-03-31

    This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibility of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a

  20. Silicon dioxide and hafnium dioxide evaporation characteristics from a high-frequency sweep e-beam system

    SciTech Connect (OSTI)

    Chow, R. [Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States); Tsujimoto, N. [MDC Vacuum Products Corporation, Hayward, California 94545 (United States)

    1996-09-01

    Reactive oxygen evaporation characteristics were determined as a function of the front-panel control parameters provided by a programmable, high-frequency sweep e-beam system. An experimental design strategy used deposition rate, beam speed, pattern, azimuthal rotation speed, and dwell time as the variables. The optimal settings for obtaining a broad thickness distribution, efficient silicon dioxide boule consumption, and minimal hafnium dioxide defect density were generated. The experimental design analysis showed the compromises involved with evaporating these oxides. {copyright} {ital 1996 Optical Society of America.}

  1. Low-Cost, High-Accuracy, Whole-Building Carbon Dioxide Monitoring for Demand Control Ventilation

    Broader source: Energy.gov [DOE]

    Lead Performer: Dioxide Materials™ – Boca Raton, FL Partner: I-SENSE at Florida Atlantic University – Boca Raton, FL

  2. In Milestone, Energy Department Projects Safely and Permanently Store 10 Million Metric Tons of Carbon Dioxide

    Broader source: Energy.gov [DOE]

    Carbon Capture and Storage projects supported by the Department reached a milestone of 10 million tons of carbon dioxide.

  3. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOE Patents [OSTI]

    Rathke, Jerome W. (Lockport, IL); Klingler, Robert J. (Westmount, IL)

    1993-01-01

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  4. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOE Patents [OSTI]

    Rathke, J.W.; Klingler, R.J.

    1993-03-30

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  5. Vacancies in ordered and disordered titanium monoxide: Mechanism of B1 structure stabilization

    SciTech Connect (OSTI)

    Kostenko, M.G.; Lukoyanov, A.V.; Zhukov, V.P.; Rempel, A.A.

    2013-08-15

    The electronic structure and stability of three phases of titanium monoxide TiO{sub y} with B1 type of the basic structure have been studied. Cubic phase without structural vacancies, TiO, and two phases with structural vacancies, monoclinic Ti{sub 5}O{sub 5} and cubic disordered TiO{sub 1.0}, was treated by means of first-principles calculations within the density functional theory with pseudo-potential approach based on the plane wave's basis. The ordered monoclinic phase Ti{sub 5}O{sub 5} was found to be the most stable and the cubic TiO without vacancies the less stable one. The role of structural vacancies in the titanium sublattice is to decrease the Fermi energy, the role of vacancies in the oxygen sublattice is to contribute to the appearance of Ti–Ti bonding interactions through these vacancies and to reinforce the Ti–Ti interactions close to them. Listed effects are significantly pronounced if the vacancies in the titanium and oxygen sublattices are associated in the so called “vacancy channels” which determine the formation of vacancy ordered structure of monoclinic Ti{sub 5}O{sub 5}-type. - Graphical abstract: Changes in total DOS of titanium monoxide when going from vacancy-free TiO to TiO with disordered structural vacancies and to TiO with ordered structural vacancies. Highlights: • Ordered monoclinic Ti{sub 5}O{sub 5} is the most stable phase of titanium monoxide. • Vacancy-free TiO is the less stable phase of the titanium monoxide. • Ordering of oxygen vacancies leads to the appearance of Ti–Ti bonding interactions. • Titanium vacancies contribute significantly to the decreasing of the Fermi energy.

  6. Titanium cholla : lightweight, high-strength structures for aerospace applications.

    SciTech Connect (OSTI)

    Atwood, Clinton J.; Voth, Thomas Eugene; Taggart, David G.; Gill, David Dennis; Robbins, Joshua H.; Dewhurst, Peter

    2007-10-01

    Aerospace designers seek lightweight, high-strength structures to lower launch weight while creating structures that are capable of withstanding launch loadings. Most 'light-weighting' is done through an expensive, time-consuming, iterative method requiring experience and a repeated design/test/redesign sequence until an adequate solution is obtained. Little successful work has been done in the application of generalized 3D optimization due to the difficulty of analytical solutions, the large computational requirements of computerized solutions, and the inability to manufacture many optimized structures with conventional machining processes. The Titanium Cholla LDRD team set out to create generalized 3D optimization routines, a set of analytically optimized 3D structures for testing the solutions, and a method of manufacturing these complex optimized structures. The team developed two new computer optimization solutions: Advanced Topological Optimization (ATO) and FlexFEM, an optimization package utilizing the eXtended Finite Element Method (XFEM) software for stress analysis. The team also developed several new analytically defined classes of optimized structures. Finally, the team developed a 3D capability for the Laser Engineered Net Shaping{trademark} (LENS{reg_sign}) additive manufacturing process including process planning for 3D optimized structures. This report gives individual examples as well as one generalized example showing the optimized solutions and an optimized metal part.

  7. Titanium alloy as a potential low radioactivation vacuum material

    SciTech Connect (OSTI)

    Kamiya, Junichiro Hikichi, Yusuke; Kinsho, Michikazu; Ogiwara, Norio; Fukuda, Mitsuhiro; Hamatani, Noriaki; Hatanaka, Kichiji; Kamakura, Keita; Takahisa, Keiji

    2015-05-15

    For the vacuum systems of high-intensity beam accelerators, low radioactivation materials with good vacuum characteristics and high mechanical strength are required. The titanium alloy Ti-6Al-4V was investigated as a potential low activation vacuum material with high mechanical strength for the fabrication of vacuum components, particularly the flanges of beam pipes, in the J-PARC 3 GeV synchrotron. The dose rate of Ti-6Al-4V when irradiated by a 400 MeV proton was observed to decrease more rapidly than that of stainless steel. Furthermore, the generated radioactive isotopes were nuclides with relatively short half-lives. The outgassing rate per unit area of Ti-6Al-4V was approximately 10{sup −8 }Pa m{sup 3}/s m{sup 2} after pumping for 100 h, which is the same as the typical value for stainless steel. Additionally, the hydrogen concentration in bulk Ti-6Al-4V was reduced to approximately 1 ppm by vacuum firing at 700 °C for 9 h; the mechanical strength was not reduced by this process. These results indicate that Ti-6Al-4V is a good candidate for use as a low activation vacuum material with high mechanical strength.

  8. Charge density wave transition in single-layer titanium diselenide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, P.; Chan, Y. -H.; Fang, X. -Y.; Zhang, Y.; Chou, M. Y.; Mo, S. -K.; Hussain, Z.; Fedorov, A. -V.; Chiang, T. -C.

    2015-11-16

    A single molecular layer of titanium diselenide (TiSe2) is a promising material for advanced electronics beyond graphene--a strong focus of current research. Such molecular layers are at the quantum limit of device miniaturization and can show enhanced electronic effects not realizable in thick films. We show that single-layer TiSe2 exhibits a charge density wave (CDW) transition at critical temperature TC=232±5 K, which is higher than the bulk TC=200±5 K. Angle-resolved photoemission spectroscopy measurements reveal a small absolute bandgap at room temperature, which grows wider with decreasing temperature T below TC in conjunction with the emergence of (2 × 2) ordering.more » The results are rationalized in terms of first-principles calculations, symmetry breaking and phonon entropy effects. The behavior of the Bardeen-Cooper-Schrieffer (BCS) gap implies a mean-field CDW order in the single layer and an anisotropic CDW order in the bulk.« less

  9. Charge density wave transition in single-layer titanium diselenide

    SciTech Connect (OSTI)

    Chen, P.; Chan, Y. -H.; Fang, X. -Y.; Zhang, Y.; Chou, M. Y.; Mo, S. -K.; Hussain, Z.; Fedorov, A. -V.; Chiang, T. -C.

    2015-11-16

    A single molecular layer of titanium diselenide (TiSe2) is a promising material for advanced electronics beyond graphene--a strong focus of current research. Such molecular layers are at the quantum limit of device miniaturization and can show enhanced electronic effects not realizable in thick films. We show that single-layer TiSe2 exhibits a charge density wave (CDW) transition at critical temperature TC=232±5 K, which is higher than the bulk TC=200±5 K. Angle-resolved photoemission spectroscopy measurements reveal a small absolute bandgap at room temperature, which grows wider with decreasing temperature T below TC in conjunction with the emergence of (2 × 2) ordering. The results are rationalized in terms of first-principles calculations, symmetry breaking and phonon entropy effects. The behavior of the Bardeen-Cooper-Schrieffer (BCS) gap implies a mean-field CDW order in the single layer and an anisotropic CDW order in the bulk.

  10. Preparation and characterization of tritium targets. [Titanium tritide

    SciTech Connect (OSTI)

    Ramey, D.W.; Adair, H.L.

    1982-01-01

    The Isotope Research Materials Laboratory (IRML) of the Oak Ridge National Laboratory (ORNL) prepares tritium targets that are used to produce an intense beam of 14.5 MeV neutrons by the /sup 3/H(/sup 2/H,/sup 1/n)/sup 4/He reaction. The intense beams of 14.5 MeV neutrons are used in programs involving cancer research, materials evaluation, and materials identification. The tritium targets required by researchers have ranged in size from 1-cm diam to 50-cm diam and have contained from 3.7 x 10/sup 4/ MBq to 2.2 x 10/sup 8/ MBq of tritium. Important parameters in the performance of tritium targets, when bombarded with deuterons, include target lifetime and neutron output. These parameters are heavily dependent on the host metal layer used to form the tritide compound and the gas-to-metal loading of the host material. Fabrication procedures used in preparing titanium tritide targets with subsequent gas-to-metal determinations are described.

  11. Titanium nitride as a seed layer for Heusler compounds

    SciTech Connect (OSTI)

    Niesen, Alessia Glas, Manuel; Ludwig, Jana; Schmalhorst, Jan-Michael; Reiss, Günter; Sahoo, Roshnee; Ebke, Daniel; Arenholz, Elke

    2015-12-28

    Titanium nitride (TiN) shows low resistivity at room temperature (27 μΩ cm), high thermal stability and thus has the potential to serve as seed layer in magnetic tunnel junctions. High quality TiN thin films with regard to the crystallographic and electrical properties were grown and characterized by x-ray diffraction and 4-terminal transport measurements. Element specific x-ray absorption spectroscopy revealed pure TiN inside the thin films. To investigate the influence of a TiN seed layer on a ferro(i)magnetic bottom electrode in magnetic tunnel junctions, an out-of-plane magnetized Mn{sub 2.45}Ga as well as in- and out-of-plane magnetized Co{sub 2}FeAl thin films were deposited on a TiN buffer, respectively. The magnetic properties were investigated using a superconducting quantum interference device and anomalous Hall effect for Mn{sub 2.45}Ga. Magneto optical Kerr effect measurements were carried out to investigate the magnetic properties of Co{sub 2}FeAl. TiN buffered Mn{sub 2.45}Ga thin films showed higher coercivity and squareness ratio compared to unbuffered samples. The Heusler compound Co{sub 2}FeAl showed already good crystallinity when grown at room temperature on a TiN seed-layer.

  12. Supercritical carbon dioxide cycle control analysis.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J.

    2011-04-11

    This report documents work carried out during FY 2008 on further investigation of control strategies for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle energy converters. The main focus of the present work has been on investigation of the S-CO{sub 2} cycle control and behavior under conditions not covered by previous work. An important scenario which has not been previously calculated involves cycle operation for a Sodium-Cooled Fast Reactor (SFR) following a reactor scram event and the transition to the primary coolant natural circulation and decay heat removal. The Argonne National Laboratory (ANL) Plant Dynamics Code has been applied to investigate the dynamic behavior of the 96 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) S-CO{sub 2} Brayton cycle following scram. The timescale for the primary sodium flowrate to coast down and the transition to natural circulation to occur was calculated with the SAS4A/SASSYS-1 computer code and found to be about 400 seconds. It is assumed that after this time, decay heat is removed by the normal ABTR shutdown heat removal system incorporating a dedicated shutdown heat removal S-CO{sub 2} pump and cooler. The ANL Plant Dynamics Code configured for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) was utilized to model the S-CO{sub 2} Brayton cycle with a decaying liquid metal coolant flow to the Pb-to-CO{sub 2} heat exchangers and temperatures reflecting the decaying core power and heat removal by the cycle. The results obtained in this manner are approximate but indicative of the cycle transient performance. The ANL Plant Dynamics Code calculations show that the S-CO{sub 2} cycle can operate for about 400 seconds following the reactor scram driven by the thermal energy stored in the reactor structures and coolant such that heat removal from the reactor exceeds the decay heat generation. Based on the results, requirements for the shutdown heat removal system may be defined

  13. Fact #576: June 22, 2009 Carbon Dioxide from Gasoline and Diesel Fuel |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6: June 22, 2009 Carbon Dioxide from Gasoline and Diesel Fuel Fact #576: June 22, 2009 Carbon Dioxide from Gasoline and Diesel Fuel The amount of carbon dioxide released into the atmosphere by a vehicle is primarily determined by the carbon content of the fuel. However, there is a small portion of the fuel that is not oxidized into carbon dioxide when the fuel is burned. The Environmental Protection Agency (EPA) has published information on carbon dioxide emissions from

  14. Synthesis and characterization of hybrid nanostructures produced in the presence of the titanium dioxide and bioactive organic substances by hydrothermal method

    SciTech Connect (OSTI)

    Zima, Tatyana; Baklanova, Natalya; Bataev, Ivan

    2013-02-15

    Hybrid nanostructures produced by hydrothermal treatment of TiO{sub 2} in the presence of bioactive organic substances such as chitosan, aminoterephthalic acid and their mixture have been investigated. Sodium polytitanates as one-dimensional elongated structures with lengths of several hundred of nanometers were obtained in the presence of chitosan and aminoterephthalic acid. With chitosan the elongated nanostructures are formed by successive superposition of structural fragments-nanostrips with well-ordered multilayered morphology and increased distance between successive layers to 1.2 nm. Quite different amorphous products as agglomerates with roundest and rhomboid morphology are formed when the mixture of chitosan and aminoterephthalic acid is added to the reaction system. One can propose that main reason of such behavior is a low rate of diffusion of dissolved Ti(IV) ions in the high viscous mixed chitosan-aminoterephthalic system. An effect of organic substances on the formation, morphology and transformation of various titanates is discussed. - Graphical abstract: The typical images of hybrid nanostructures produced by hydrothermal treatment of TiO{sub 2} in the presence chitosan and mixed chitosan with aminoterephthalic acid. Highlights: Black-Right-Pointing-Pointer Various shapes of TiO{sub 2} based structures can be produced in the presence of organic. Black-Right-Pointing-Pointer An addition of chitosan results in the formation of the elongated nanostructures. Black-Right-Pointing-Pointer These structures have multilayered morphology and increased distance between layers. Black-Right-Pointing-Pointer Different agglomerates are formed when chitosan and aminoterephthalic acid are mixed.

  15. Synthesis and characterization of ester and amide derivatives of titanium(IV) carboxymethylphosphonate

    SciTech Connect (OSTI)

    Melánová, Klára; Beneš, Ludvík; Trchová, Miroslava; Svoboda, Jan; Zima, Vítězslav

    2013-06-15

    A set of layered ester and amide derivatives of titanium(IV) carboxymethylphosphonate was prepared by solvothermal treatment of amorphous titanium(IV) carboxymethylphosphonate with corresponding 1-alkanols, 1,ω-alkanediols, 1-aminoalkanes, 1,ω-diaminoalkanes and 1,ω-amino alcohols and characterized by powder X-ray diffraction, IR spectroscopy and thermogravimetric analysis. Whereas alkyl chains with one functional group form bilayers tilted to the layers, 1,ω-diaminoalkanes and most of 1,ω-alkanediols form bridges connecting the adjacent layers. In the case of amino alcohols, the alkyl chains form bilayer and either hydroxyl or amino group is used for bonding. This simple method for the synthesis of ester and amide derivatives does not require preparation of acid chloride derivative as a precursor or pre-intercalation with alkylamines and can be used also for the preparation of ester and amide derivatives of titanium carboxyethylphosphonate and zirconium carboxymethylphosphonate. - Graphical abstract: Ester and amide derivatives of layered titanium carboxymethylphosphonate were prepared by solvothermal treatment of amorphous solid with alkanol or alkylamine. - Highlights: • Ester and amide derivatives of titanium carboxymethylphosphonate. • Solvothermal treatment of amorphous solid with alkanol or alkylamine. • Ester and amide formation confirmed by IR spectroscopy.

  16. Thermal Diffusivity and Specific Heat Measurements of Titanium Potassium Perchlorate Titanium Subhydride Potassium Perchlorate 9013 Glass 7052 Glass SB-14 Glass and C-4000 Muscovite Mica Using the Flash Technique.

    SciTech Connect (OSTI)

    Specht, Paul Elliott; Cooper, Marcia A.

    2015-02-01

    The flash technique was used to measure the thermal diffusivity and specific heat of titanium potassium perchlorate (TKP) ignition powder (33wt% Ti - 67wt% KP) with Ventron sup- plied titanium particles, TKP ignition powder (33wt% Ti - 67wt% KP) with ATK supplied titanium particles, TKP output powder (41wt% Ti - 59wt% KP), and titanium subhydride potassium perchlorate (THKP) (33wt% TiH 1.65 - 67wt% KP) at 25 o C. The influence of density and temperature on the thermal diffusivity and specific heat of TKP with Ventron supplied titanium particles was also investigated. Lastly, the thermal diffusivity and specific heats of 9013 glass, 7052 glass, SB-14 glass, and C-4000 Muscovite mica are presented as a function of temperature up to 300 o C.

  17. Yield stress and plasticity of nanostructured titanium of different purity at 300, 77, and 4.2 K

    SciTech Connect (OSTI)

    Tabachnikova, E. D. Bengus, V. Z.; Podol'skii, A. V.; Smirnov, S. N.; Valiev, R. Z.

    2009-11-15

    Specimens of nanostructured titanium with different dopant concentrations were prepared by intense plastic deformation via equal-channel-angular pressing. The low-temperature mechanical characteristics of the specimens subjected to active deformation under uniaxial tension and compression were studied. The yield stress and the limit uniform deformation of nanostructured and coarse-grained polycrystalline titanium were compared.

  18. AN EVALUATION OF HYDROGEN INDUCED CRACKING SUSCEPTIBILITY OF TITANIUM ALLOYS IN US HIGH-LEVEL NUCLEAR WASTE REPOSITORY ENVIRONMENTS

    SciTech Connect (OSTI)

    G. De; K. Mon; G. Gordon; D. Shoesmith; F. Hua

    2006-02-21

    This paper evaluates hydrogen-induced cracking (HIC) susceptibility of titanium alloys in environments anticipated in the Yucca Mountain nuclear waste repository with particular emphasis on the. effect of the oxide passive film on the hydrogen absorption process of titanium alloys being evaluated. The titanium alloys considered in this review include Ti 2, 5 , 7, 9, 11, 12, 16, 17, 18, 24 and 29. In general, the concentration of hydrogen in a titanium alloy can increase due to absorption of atomic hydrogen produced from passive general corrosion of that alloy or galvanic coupling of it to a less noble metal. It is concluded that under the exposure conditions anticipated in the Yucca Mountain repository, the HIC of titanium drip shield will not occur because there will not be sufficient hydrogen in the metal even after 10,000 years of emplacement. Due to the conservatisms adopted in the current evaluation, this assessment is considered very conservative.

  19. Application Of Optical Processing For Growth Of Silicon Dioxide

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    1997-06-17

    A process for producing a silicon dioxide film on a surface of a silicon substrate. The process comprises illuminating a silicon substrate in a substantially pure oxygen atmosphere with a broad spectrum of visible and infrared light at an optical power density of from about 3 watts/cm.sup.2 to about 6 watts/cm.sup.2 for a time period sufficient to produce a silicon dioxide film on the surface of the silicon substrate. An optimum optical power density is about 4 watts/cm.sup.2 for growth of a 100.ANG.-300.ANG. film at a resultant temperature of about 400.degree. C. Deep level transient spectroscopy analysis detects no measurable impurities introduced into the silicon substrate during silicon oxide production and shows the interface state density at the SiO.sub.2 /Si interface to be very low.

  20. Application of optical processing for growth of silicon dioxide

    DOE Patents [OSTI]

    Sopori, B.L.

    1997-06-17

    A process for producing a silicon dioxide film on a surface of a silicon substrate is disclosed. The process comprises illuminating a silicon substrate in a substantially pure oxygen atmosphere with a broad spectrum of visible and infrared light at an optical power density of from about 3 watts/cm{sup 2} to about 6 watts/cm{sup 2} for a time period sufficient to produce a silicon dioxide film on the surface of the silicon substrate. An optimum optical power density is about 4 watts/cm{sup 2} for growth of a 100{angstrom}-300{angstrom} film at a resultant temperature of about 400 C. Deep level transient spectroscopy analysis detects no measurable impurities introduced into the silicon substrate during silicon oxide production and shows the interface state density at the SiO{sub 2}/Si interface to be very low. 1 fig.

  1. Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results

    SciTech Connect (OSTI)

    Smith, Steven J.; Andres, Robert; Conception , Elvira; Lurz, Joshua

    2004-01-25

    A global, self-consistent estimate of sulfur dioxide emissions over the last one and a half century were estimated by using a combination of bottom-up and best available inventory methods including all anthropogenic sources. We find that global sulfur dioxide emissions peaked about 1980 and have generally declined since this time. Emissions were extrapolated to a 1{sup o} x 1{sup o} grid for the time period 1850-2000 at annual resolution with two emission height levels and by season. Emissions are somewhat higher in the recent past in this new work as compared with some comprehensive estimates. This difference is largely due to our use of emissions factors that vary with time to account for sulfur removals from fossil fuels and industrial smelting processes.

  2. Actinide Dioxides in Water: Interactions at the Interface

    SciTech Connect (OSTI)

    Alexandrov, Vitaly; Shvareva, Tatiana Y.; Hayun, Shmuel; Asta, Mark; Navrotsky, Alexandra

    2011-12-15

    A comprehensive understanding of chemical interactions between water and actinide dioxide surfaces is critical for safe operation and storage of nuclear fuels. Despite substantial previous research, understanding the nature of these interactions remains incomplete. In this work, we combine accurate calorimetric measurements with first-principles computational studies to characterize surface energies and adsorption enthalpies of water on two fluorite-structured compounds, ThO? and CeO?, that are relevant for understanding the behavior of water on actinide oxide surfaces more generally. We determine coverage-dependent adsorption enthalpies and demonstrate a mixed molecular and dissociative structure for the first hydration layer. The results show a correlation between the magnitude of the anhydrous surface energy and the water adsorption enthalpy. Further, they suggest a structural model featuring one adsorbed water molecule per one surface cation on the most stable facet that is expected to be a common structural signature of water adsorbed on actinide dioxide compounds.

  3. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    SciTech Connect (OSTI)

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun Wang, Kedian; Mei, Xuesong; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054

    2014-03-15

    The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter), ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloy were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm{sup 2}.

  4. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  5. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  6. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  7. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOE Patents [OSTI]

    Jin, Yun; Yu, Qiquan; Chang, Shih-Ger

    1996-01-01

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h.sup.-1. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications.

  8. Sandia's Supercritical Carbon-Dioxide/Brayton-Cycle Laboratory Signs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Important MOU with Industry Partners Supercritical Carbon-Dioxide/Brayton-Cycle Laboratory Signs Important MOU with Industry Partners - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power

  9. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  10. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  11. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  12. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  13. Microstructure and Mechanical Properties of Titanium Components Fabricated by a New Powder Injection Molding Technique

    SciTech Connect (OSTI)

    Nyberg, Eric A.; Miller, Megan R.; Simmons, Kevin L.; Weil, K. Scott

    2005-05-01

    We have developed a powder injection molding (PIM) binder system for titanium that employs naphthalene as the primary constituent to facilitate easy binder removal and mitigate problems with carbon contamination. In the study presented here, we examined densification behavior, microstructure, and mechanical properties in specimens formed by this process. In general, we found that we could achieve tensile strengths comparable to wrought titanium in the PIM-formed specimens, but that maximum elongation was less than expected. Chemical and microstructural analyses suggest that use of higher purity powder and further process optimization will lead to significant improvements in ductility.

  14. Separation of Carbon Dioxide from Flue Gas Using Ion Pumping

    SciTech Connect (OSTI)

    Aines, R; Bourcier, W L; Johnson, M R

    2006-04-21

    We are developing a new way of separating carbon dioxide from flue gas based on ionic pumping of carbonate ions dissolved in water. Instead of relying on large temperature or pressure changes to remove carbon dioxide from solvent used to absorb it from flue gas, the ion pump increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, which can be removed from the downstream side of the ion pump as a nearly pure gas. This novel approach to increasing the concentration of the extracted gas permits new approaches to treating flue gas. The slightly basic water used as the extraction medium is impervious to trace acid gases that destroy existing solvents, and no pre-separation is necessary. The simple, robust nature of the process lends itself to small separation plants. Although the energy cost of the ion pump is significant, we anticipate that it will be compete favorably with the current 35% energy penalty of chemical stripping systems in use at power plants. There is the distinct possibility that this simple method could be significantly more efficient than existing processes.

  15. Utilizing the market to control sulfur dioxide emissions

    SciTech Connect (OSTI)

    Loeher, C.F. III

    1995-12-01

    Environmental policy in the United States is evolving; command and control approaches are being slowly replaced with market-based incentives. Market-based regulation is favorable because it provides the regulated community with flexibility in choosing between pollution control options. A recent application of a market-based approach is Title IV of the 1990 Clean Air Act Amendments. This paper evaluates the advantages of utilizing market-based incentives to control sulfur dioxide emissions. The evaluation embodies an extensive methodology, which provides an overview of the policy governing air quality, discusses pollution control philosophies and analyzes their associated advantages and limitations. Further, it describes the development and operation of a market for emissions trading, impediments to the market, and recommends strategies to improve the market. The evaluation concludes by analyzing the results of five empirical simulations demonstrating the cost-effectiveness of employing market-based incentives versus command-and-control regulation for controlling sulfur dioxide emissions. The results of the evaluation indicate that regulatory barriers and market impediments have inhibited allowance trading. However, many of these obstacles have been or are being eliminated through Federal and state regulations, and through enhancement of the market. Results also demonstrate that sulfur dioxide allowance trading can obtain identical levels of environmental protection as command-and-control approaches while realizing cost savings to government and industry.

  16. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Tyler Moore; Douglas P. Harrison

    2003-08-01

    This report describes research conducted between April 1, 2003 and June 30, 2003 on the use of dry regenerable sorbents for concentration of carbon dioxide from flue gas. Grade 1 sodium bicarbonate performed similarly to grade 5 sodium bicarbonate in fixed bed testing in that activity improved after the first carbonation cycle and did not decline over the course of 5 cycles. Thermogravimetric analysis indicated that sodium bicarbonate sorbents produced by calcination of sodium bicarbonate are superior to either soda ash or calcined trona. Energy requirements for regeneration of carbon dioxide sorbents (either wet or dry) is of primary importance in establishing the economic feasibility of carbon dioxide capture processes. Recent studies of liquid amine sorption processes were reviewed and found to incorporate conflicting assumptions of energy requirements. Dry sodium based processes have the potential to be less energy intensive and thus less expensive than oxygen inhibited amine based systems. For dry supported sorbents, maximizing the active fraction of the sorbent is of primary importance in developing an economically feasible process.

  17. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide and Storage Value-Added Options Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Value-Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle

  18. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the reaction, since adding water to titanium isopropoxide most often results in a fast reaction and large chunks of TiO2, rather than nanoparticles. "So the trick was to...

  19. Novel Electrodes for High Performance Batteries | U.S. DOE Office...

    Office of Science (SC) Website

    A flexible carbon nanotube (CNT) paper (left) is sprayed with oil-coated titanium oxide (TiO2) nanocrystals (middle). Heating removes the oil coating, yielding a composite ...

  20. Apparatus and method for removing solvent from carbon dioxide in resin recycling system

    DOE Patents [OSTI]

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2009-01-06

    A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

  1. Reactive spark plasma sintering (SPS) of nitride reinforced titanium alloy composites

    SciTech Connect (OSTI)

    Borkar, Tushar; Nag, Soumya; Ren, Yang; Tiley, Jaimie; Banerjee, Rajarshi

    2014-12-25

    Coupled in situ alloying and nitridation of titanium–vanadium alloys, has been achieved by introducing reactive nitrogen gas during the spark plasma sintering (SPS) of blended titanium and vanadium elemental powders, leading to a new class of nitride reinforced titanium alloy composites. The resulting microstructure includes precipitates of the d-TiN phase with the NaCl structure, equiaxed (or globular) precipitates of a nitrogen enriched hcp a(Ti,N) phase with a c/a ratio more than what is expected for pure hcp Ti, and fine scale plate-shaped precipitates of hcp a-Ti, distributed within a bcc b matrix. During SPS processing, the d-TiN phase appears to form at a temperature of 1400 C, while only hcp a(Ti,N) and a-Ti phases form at lower processing temperatures. Consequently, the highest microhardness is exhibited by the composite processed at 1400 C while those processed at 1300 C or below exhibit lower values. Processing at temperatures below 1300 C, resulted in an incomplete alloying of the blend of titanium and vanadium powders. These d-TiN precipitates act as heterogeneous nucleation sites for the a(Ti,N) precipitates that appear to engulf and exhibit an orientation relationship with the nitride phase at the center. Furthermore, fine scale a-Ti plates are precipitated within the nitride precipitates, presumably resulting from the retrograde solubility of nitrogen in titanium.

  2. Copper-silver-titanium-tin filler metal for direct brazing of structural ceramics

    DOE Patents [OSTI]

    Moorhead, Arthur J.

    1988-04-05

    A method of joining ceramics and metals to themselves and to one another at about 800.degree. C. is described using a brazing filler metal consisting essentially of 35 to 50 at. % copper, 40 to 50 at. % silver, 1 to 15 at. % titanium, and 2 to 8 at. % tin. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  3. Copper-silver-titanium filler metal for direct brazing of structural ceramics

    DOE Patents [OSTI]

    Moorhead, Arthur J.

    1987-01-01

    A method of joining ceramics and metals to themselves and to one another is described using a brazing filler metal consisting essentially of 35 to 50 atomic percent copper, 15 to 50 atomic percent silver and 10 to 45 atomic percent titanium. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  4. Extremely short impulse eddy current system for titanium and inconel samples testing

    SciTech Connect (OSTI)

    Chady, T.; Frankowski, P.

    2011-06-23

    This paper presents a new system for eddy current testing. The system enables tests with very short current impulses. Therefore, the frequency spectrum of the excitation signal is very wide. In this paper, a study of eddy current differential transducer for testing titanium element is also presented.

  5. Impact of Light-Duty Vehicle Emissions on 21st Century Carbon Dioxide Concentrations

    SciTech Connect (OSTI)

    Smith, Steven J.; Kyle, G. Page

    2007-08-04

    The impact of light-duty passenger vehicle emissions on global carbon dioxide concentrations was estimated using the MAGICC reduced-form climate model combined with the PNNL contribution to the CCSP scenarios product. Our central estimate is that tailpipe light duty vehicle emissions of carbon-dioxide over the 21st century will increase global carbon dioxide concentrations by slightly over 12 ppmv by 2100.

  6. Method of determining pH by the alkaline absorption of carbon dioxide

    DOE Patents [OSTI]

    Hobbs, David T.

    1992-01-01

    A method for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction.

  7. A new leaf: Scientists turn carbon dioxide back into fuel | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Argonne postdoctoral researcher Cong Liu and chemists Larry Curtiss and Peter Zapol discuss their recent research results on converting carbon dioxide into usable fuel. Photo by Wes Agresta. Argonne postdoctoral researcher Cong Liu and chemists Larry Curtiss and Peter Zapol discuss their recent research results on converting carbon dioxide into usable fuel. Photo by Wes Agresta. A new leaf: Scientists turn carbon dioxide back into fuel July 29, 2016 Tweet EmailPrint As

  8. Fact #898: November 9, 2015 World Carbon Dioxide Emissions, 1990-2012 -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dataset | Department of Energy 8: November 9, 2015 World Carbon Dioxide Emissions, 1990-2012 - Dataset Fact #898: November 9, 2015 World Carbon Dioxide Emissions, 1990-2012 - Dataset Excel file and dataset for 2015 World Carbon Dioxide Emissions, 1990-2012 fotw#898_web.xlsx (25.25 KB) More Documents & Publications ESPC Project Performance: Supplemental Data Natural Gas Imports and Exports Third Quarter Report 2015 Financial and Activity Report - December 31, 2009

  9. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Storage Technologies Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Carbon Dioxide Storage Technologies

  10. Strong and Reversible Binding of Carbon Dioxide in a Green Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strong and Reversible Binding of Carbon Dioxide in a Green Metal-Organic Framework Previous Next List Jeremiah J. Gassensmith, Hiroyasu Furukawa, Ronald A. Smaldone, Ross S. ...

  11. Effect of carbon dioxide and nitrogen on the diffusivity of methane...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: ORNL LDRD Director's R&D; SC USDOE - Office of Science (SC) Country of Publication: United States Language: English Subject: 03 NATURAL GAS; CARBON; CARBON DIOXIDE; ...

  12. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide...

    Office of Scientific and Technical Information (OSTI)

    Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1 Citation Details...

  13. Table 4. 2011 State energy-related carbon dioxide emission shares...

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 State energy-related carbon dioxide emission shares by sector " "percent of total" ,"shares" "State","Commercial","Electric Power","Residential","Industrial","Transportation"...

  14. METHOD OF DISSOLVING PLUTONIUM DIOXIDE IN NITRIC ACID USING CERIUM IONS

    DOE Patents [OSTI]

    Wilson, A.S.

    1961-10-24

    A method is descnibed for catalyzing the dissolution of plutenium dioxide in nitric acid with small amounts of cerium ions. (AEC)

  15. Projects Selected for Safe and Permanent Geologic Storage of Carbon Dioxide

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy announced the selection of 13 projects to develop technologies and methodologies for geologic storage of carbon dioxide.

  16. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  17. Insulator-to-Metal Transition of Vanadium Dioxide | U.S. DOE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    such as smart windows and ultrafast field effect transistors, exhibits an insulator to ... vanadium dioxide driven by large phonon entropy," Nature 515, 535-539, 2014. DOI: ...

  18. Synchrotron X-ray Studies of Super-critical Carbon Dioxide /...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synchrotron X-ray Studies of Super-critical Carbon Dioxide Reservoir Rock Interfaces Project obectives: Utilize synchrotron X-ray measurements, to monitor all aspects of atomic ...

  19. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  20. Ultra-thin titanium nanolayers for plasmon-assisted enhancement of bioluminescence of chloroplast in biological light emitting devices

    SciTech Connect (OSTI)

    Hsun Su, Yen; Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan ; Hsu, Chia-Yun; Chang, Chung-Chien; Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan ; Tu, Sheng-Lung; Shen, Yun-Hwei

    2013-08-05

    Ultra-thin titanium films were deposited via ultra-high vacuum ion beam sputter deposition. Since the asymmetric electric field of the metal foil plane matches the B-band absorption of chlorophyll a, the ultra-thin titanium nanolayers were able to generate surface plasmon resonance, thus enhancing the photoluminescence of chlorophyll a. Because the density of the states of plasmon resonance increases, the enhancement of photoluminescence also rises. Due to the biocompatibility and inexpensiveness of titanium, it can be utilized to enhance the bioluminescence of chloroplast in biological light emitting devices, bio-laser, and biophotonics.